
UCLA
UCLA Electronic Theses and Dissertations

Title
Learning Inhomogeneous FRAME Models for Object Patterns

Permalink
https://escholarship.org/uc/item/4367r57k

Author
Xie, Jianwen

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4367r57k
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Learning Inhomogeneous FRAME Models for Object
Patterns

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Statistics

by

Jianwen Xie

2014

c© Copyright by

Jianwen Xie

2014

ABSTRACT OF THE THESIS

Learning Inhomogeneous FRAME Models for Object
Patterns

by

Jianwen Xie
Master of Science in Statistics

University of California, Los Angeles, 2014

Professor Ying Nian Wu, Chair

This research investigates an inhomogeneous version of the FRAME (Filters, Random

field, And Maximum Entropy) model and apply it to modeling object patterns. The

inhomogeneous FRAME is a non-stationary Markov random field model that repro-

duces the observed marginal distributions or statistics of filter responses at all the dif-

ferent locations, scales and orientations. The experiments show that the inhomogeneous

FRAME model is capable of generating a wide variety of object patterns in natural im-

ages. It is useful for object detection, alignment, and clustering.

ii

The thesis of Jianwen Xie is approved.

Nicolas Christou

Frederic Paik Schoenberg

Ying Nian Wu, Committee Chair

University of California, Los Angeles

2014

iii

To my parents . . .

for their continual and unconditional support

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Background and Motivation . 1

1.2 Related work . 2

1.3 Organization . 2

2 Inhomogeneous FRAME model . 3

2.1 Model and learning algorithm . 3

2.1.1 Notation . 3

2.1.2 Model . 3

2.1.3 Maximum likelihood learning 6

2.1.4 Computing normalizing constants 7

2.2 Simulation by Hamiltonian Monte Carlo 8

2.3 Summary of the learning algorithm . 11

2.4 Experiment 1: Synthesis by inhomogeneous FRAME model 11

3 Detection . 16

3.1 Detection algorithm . 16

3.2 Experiment 2: Detection by template matching 17

4 Alignment . 21

4.1 Alignment algorithm . 21

4.2 Experiment 3: Multiple images alignment 22

5 Clustering . 25

v

5.1 Mixture of inhomogeneous FRAME models and EM 25

5.2 Model-based k-mean clustering . 26

5.3 Experiment 4: Model-based clustering 27

6 Discussion . 30

References . 32

vi

LIST OF FIGURES

2.1 The inhomogeneous FRAME is a generative model that seeks to rep-

resent and generate object patterns shown above. (From top to bottom:

hummingbird, deer, cat, tiger, and lion). 4

2.2 Synthesized images generated by the inhomogeneous FRAME model.

The sizes of the images are 70× 70. Each row contains 6 independent

samples (synthesized images) drawn from the learned model. 13

2.3 Learning sequence by inhomogeneous FRAME. The size of the images

are 70× 70. A separate model is learned from each training set shown

in Fig 1 (From top to bottom: hummingbird, deer, cat, tiger, and lion).

Synthesized images generated in step t = 1, 7, 10, 20, 50, 100, 200, and

500. 14

2.4 Images generated by the inhomogeneous FRAME model learned from

different categories of objects. The training images are collected from

the internet and are cropped so that the training images for each cat-

egory are roughly aligned. The number of training images for each

category is around 10. 15

3.1 Detection (tigers). On the top: A synthesized image generated by the

learned model. The rest: Testing images with bounding boxes locating

the detected objects. 18

3.2 Detection (wolves). On the top: A synthesized image generated by the

learned model. The rest: Testing images with bounding boxes locating

the detected objects. 19

3.3 Detection (zebras). On the top: A synthesized image generated by the

learned model. The rest: Testing images with bounding boxes locating

the detected objects. 20

vii

4.1 Alignment results (deers). Training images with bounding boxes locat-

ing the aligned objects. 23

4.2 Cropped objects after alignment (deers) 23

4.3 Alignment results (ducks). Training images with bounding boxes lo-

cating the aligned objects. 24

4.4 Cropped objects after alignment (ducks) 24

5.1 EM clustering: On the top: A synthesized image for each cluster is

displayed. The rest: 4 clusters of images separated by the model-based

EM algorithm. 28

5.2 k-mean clustering. Each row illustrates one clustering example by dis-

playing a synthesized image and a typical training example for each

cluster. 29

viii

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Ying Nian Wu, for introducing me to the

field of machine learning. He taught me not only the valuable knowledge in machine

learning but also how to conduct high-quality research. I am grateful to Professor

Song-Chun Zhu, the director of the VCLA (Center for Vision, Cognition, Learning,

and Arts), for his valuable advice and supports, and for creating a stimulating research

environment that has been very beneficial to me. I am also very grateful to Dr. Wenze

Hu for his help in this project. This project would not have been possible without his

incredible patience and invaluable help. Thanks to Professor Frederic Paik Schoen-

berg and Professor Nicolas Christou for taking their time to review my thesis and give

me suggestion. My special thanks go out to all my friends just for making my time

here at UCLA a pleasure. At last, I thank my parents for all their love, support, and

encouragement.

ix

CHAPTER 1

Introduction

1.1 Background and Motivation

Developing generative models for image patterns is one of the most fundamental prob-

lems in vision. Although the past decade has witnessed tremendous advance in devel-

oping discriminative methods for object recognition, the progress in developing gener-

ative models has been lagging behind. The goal of this paper is to develop generative

models for object patterns.

The foundation of our work is the FRAME (Filters, Random field, And Maximum

Entropy) model that Zhu, Wu, and Mumford (1997) [23] proposed for texture patterns.

Being a texture model, FRAME is a spatially stationary Markov random field model,

and it is the maximum entropy distribution that reproduces the observed marginal his-

tograms of responses from a band of filters, where for each filter tuned to a specific

scale and orientation, the marginal histogram is spatially pooled over all the pixels in

the image domain.

In this article, we investigate an inhomogeneous version of the FRAME model for

representing object patterns instead of texture patterns. The inhomogeneous FRAME

model is a spatially non-stationary random field that reproduces distributions or statis-

tics of filter responses at individual locations, scales and orientations without spatial

pooling.

Our experiments show that the inhomogeneous FRAME model are capable of gen-

erating realistic object patterns observed in images of natural scenes. Also, the learned

1

models can be useful for object detection, alignment, and clustering.

1.2 Related work

This class of models are also called energy-based models [18] [1], exponential family

models, and Gibbs distributions in various contexts. Examples include the FRAME

model [23], field of experts [16], product of experts [8], product of t model [20], re-

stricted Boltzmann machine [17] [9] and its many recent generalizations such as [15]

and the references therein. A Markov random field model is defined by an energy

function and may involve latent variables or hidden units. If the latent variables are

conditionally independent given the observed data or visible units, which is usually the

case, the latent variables can be integrated out, resulting in a marginal energy-based

model defined by a free energy function.

1.3 Organization

In this paper, we assume that the bank of filters are given, such as Gabor filters and

difference of Gaussian (DoG) filters as in the original FRAME model. They can be

learned if the training data are abundant.

The rest of the thesis is organized as follows. Section 2 presents the inhomogeneous

FRAME model. Section 3, Section 4, and Section 5 study object detection, alignment,

and clustering by using inhomogeneous FRAME model. Section 6 concludes with a

discussion.

2

CHAPTER 2

Inhomogeneous FRAME model

2.1 Model and learning algorithm

2.1.1 Notation

We start from modeling roughly aligned images of object patterns from the same cate-

gory, such as images in Figure 1. Let {Im,m = 1, ...,M} be a set of training images

defined on image domain D. We use the notation Bx,s,α to denote a basis function such

as a Gabor wavelet centered at pixel x (which is a two-dimensional vector), and tuned

to scale s and orientation α (Bx,s,α is also an image on D although it is non-zero only

within a local range. We assume that Bx,s,α are translated, dilated and rotated versions

of each other). We assume that s and α take values within a finite and properly dis-

cretized range. The inner product 〈I, Bx,s,α〉 can be considered the filter response of

I to a filter of scale s and orientation α at pixel x (Let us assume that Bx,s,α are all

normalized to have unit `2 norm).

2.1.2 Model

The inhomogeneous FRAME model is a probability distribution defined on I,

p(I;λ) =
1

Z(λ)
exp

(∑
x,s,α

λx,s,α(〈I, Bx,s,α〉)

)
q(I), (2.1)

3

Figure 2.1: The inhomogeneous FRAME is a generative model that seeks to represent

and generate object patterns shown above. (From top to bottom: hummingbird, deer,

cat, tiger, and lion).

where q(I) is a known reference distribution or a null model, λx,s,α() are one-dimensional

functions that depend on (x, s, α), λ = {λx,s,α, ∀x, s, α}, and

Z(λ) =

∫
exp

(∑
x,s,α

λx,s,α(〈I, Bx,s,α〉)

)
q(I)dI (2.2)

= Eq

[
exp

(∑
x,s,α

λx,s,α(〈I, Bx,s,α〉)

)]
(2.3)

is the normalizing constant, where the notation Eq means the expectation with respect

to the probability distribution q.

In the original FRAME model for stochastic textures [23], λx,s,α() is assumed to

be independent of x (but dependent of s and α, which index the shapes of the filters),

so the model is spatially stationary. For modeling object patterns that are not spatially

stationary, λx,s,α() must depend on x, in addition to s and α.

4

In the original homogeneous FRAME, the potential functions λs,α() (we drop the

subscript x due to stationarity) are estimated non-parametrically as step functions. In

the inhomogeneous FRAME, we have to estimate λx,s,α() for each individual x. With

small data sets, we may not afford estimating λx,s,α() non-parametrically. We therefore

decide to parametrize

λx,s,α(r) = λx,s,α|r|, (2.4)

where r = 〈I, Bx,s,α〉, and with slight abuse of notation, λx,s,α on the right hand side of

the above equation becomes a constant (instead of a function as on the left hand side).

The parametrization (2.4) is inspired by the Laplacian distribution that can account for

heavy tails in the distributions of filter responses. It is possible to replace the function

|r| by other class of parametrized functions to encourage heavy tails of the responses,

and we shall investigate this issue in future work.

In many Markov random field models including the original FRAME model, the

reference measure q(I) is simply the uniform measure. In our work, we assume q(I) to

be the Gaussian white noise model, under which the image intensities follow indepen-

dent N(0, σ2) distributions. So

q(I) =
1

(2πσ2)|D|/2
exp

(
− 1

2σ2

∑
x

I(x)2

)
, (2.5)

where |D| is the number of pixels in the image domain. q(I) itself is a maximum

entropy model relative to a uniform measure, and it reproduces the marginal mean and

variance of the image intensities. In our work, we normalize the observed images to

have marginal mean 0 and variance 1, so we choose σ2 = 1. This q(I) can be considered

an initial model or a model of the background residual image with the foreground object

removed. As a result, p(I;λ) in equation (2.1) can be written as an exponential family

model relative to a uniform measure.

5

2.1.3 Maximum likelihood learning

The inhomogeneous version of the FRAME model is a special case of the exponential

family model, and the parameter λ = (λx,s,α,∀x, s, α) can be estimated from the train-

ing images {Im,m = 1, ...,M} by maximum likelihood. The log-likelihood function

is

L(λ) =
1

M

M∑
m=1

log p(Im;λ)

=
1

M

M∑
m=1

∑
x,s,α

λx,s,α|〈Im, Bx,s,α〉| − logZ(λ) +
1

M

M∑
m=1

log q(Im), (2.6)

where Z(λ) =
∫

exp
(∑

x,s,α λx,s,α|〈I, Bx,s,α〉|
)
q(I)dI.

The maximization of L(λ) can be accomplished by gradient ascent, where the gra-

dient is

∂L(λ)

∂λx,s,α

=
1

M

M∑
m=1

|〈Im, Bx,s,α〉| −
1

Z(λ)

∂Z(λ)

∂λx,s,α

=
1

M

M∑
m=1

|〈Im, Bx,s,α〉| −
∫

1

Z(λ)
exp

(∑
x,s,α

λx,s,α|〈I, Bx,s,α〉|

)
q(I)|〈I, Bx,s,α〉|dI

=
1

M

M∑
m=1

|〈Im, Bx,s,α〉| −
∫
p(I;λ)|〈I, Bx,s,α〉|dI

=
1

M

M∑
m=1

|〈Im, Bx,s,α〉| − Ep(I;λ)[|〈I, Bx,s,α〉|],∀x, s, α, (2.7)

where Ep(I;λ)[|〈I, Bx,s,α〉|] is the expectation of |〈I, Bx,s,α〉| with I following the distri-

bution p(I;λ). Ep(I;λ)[|〈I, Bx,s,α〉|] is the derivative of logZ(λ).

The gradient ascent algorithm then becomes

λ(t+1)
x,s,α = λ(t)x,s,α + γt

(
1

M

M∑
m=1

|〈Im, Bx,s,α〉| − Ep(I;λ(t)) [|〈I, Bx,s,α〉|]

)
, (2.8)

where γt is the step size. The analytic form of the expectation under the current model

at step t, Ep(I;λ(t))[|〈I, Bx,s,α〉|], is not available, so we approximate it from a sample set

6

of synthesized images {Ĩm,m = 1, ..., M̃} generated from p(I;λ(t)):

Ep(I;λ)[|〈I, Bx,s,α〉|] ≈
1

M̃

M̃∑
m=1

|〈Ĩm, Bx,s,α〉|. (2.9)

The synthesized images {Ĩm} can be sampled from p(I;λ(t)) by the Hamiltonian Monte

Carlo (HMC) [13]. More details about the HMC algorithm will be presented in Section

2.2. The computation of HMC involves a bottom-up convolution step followed by a

top-down convolution step. Both steps can be efficiently implemented in Matlab by

GPU. With HMC and warm start, {Ĩm} are produced by M̃ parallel chains.

With Ep(I;λ)[|〈I, Bx,s,α〉|] approximated according to (2.9), we arrive at the stochas-

tic gradient algorithm analyzed by Younes (1999) [22] :

λ(t+1)
x,s,α = λ(t)x,s,α + γt

(
1

M

M∑
m=1

|〈Im, Bx,s,α〉| −
1

M̃

M̃∑
m=1

|〈Ĩm, Bx,s,α〉|

)
. (2.10)

This is the algorithm we use for maximum likelihood estimation of λ.

2.1.4 Computing normalizing constants

Thanks to HMC, we can simulate from p(I;λ) without knowing its normalizing con-

stant, thus estimating λ by MLE. Nevertheless, computing normalizing constant Z(λ)

is still required in situations such as fitting a mixture model or learning a codebook of

models. The ratio of the normalizing constants at two consecutive steps is

Z(λ(t+1))

Z(λ(t))

=

∫
1

Z(λ(t))
exp

(∑
x,s,α

λ(t)x,s,α|〈I, Bx,s,α〉|

)
q(I)×

exp
(∑

x,s,α λ
(t+1)
x,s,α |〈I, Bx,s,α〉|

)
exp

(∑
x,s,α λ

(t)
x,s,α|〈I, Bx,s,α〉|

) dI
=

∫
p(I;λ(t)) exp

(∑
x,s,α

(λ(t+1)
x,s,α − λ(t)x,s,α)× |〈I, Bx,s,α〉|

)
dI

= Ep(I;λ(t))

[
exp

(∑
x,s,α

(λ(t+1)
x,s,α − λ(t)x,s,α)× |〈I, Bx,s,α〉|

)]
(2.11)

7

which can be approximated by averaging over the sampled images {Ĩm} as an applica-

tion of importance sampling [5]:

Z(λ(t+1))

Z(λ(t))
≈ 1

M̃

M̃∑
m=1

[
exp

(∑
x,s,α

(λ(t+1)
x,s,α − λ(t)x,s,α)× |〈Ĩm, Bx,s,α〉|

)]
. (2.12)

Starting from λ(0) = 0 and logZ(λ(0)) = 0, we can compute logZ(λ(t)) along the

learning process by iteratively updating its value as follows:

logZ(λ(t+1)) = logZ(λ(t)) + log
Z(λ(t+1))

Z(λ(t))
. (2.13)

The calculation of Z is based on running parallel Markov chains for a sequence of

distributions p(I;λ(t)). The setting is similar to annealed importance sampling [12] and

bridge sampling [5].

2.2 Simulation by Hamiltonian Monte Carlo

To approximate Ep(I;λ(t))[|〈I, Bx,s,α〉|] in equation (2.8), we need to draw a synthesized

sample set {Ĩm} from p(I;λ(t)) by HMC [4]. HMC is a Markov chain Monte Carlo

method using Hamiltonian dynamics. It requires translating the probability distribu-

tion we wish to sample from to a potential energy function and introducing auxiliary

momentum variables, which typically follow independent Gaussian distributions, to go

with the original variables we are interested in. Then a Markov chain can be simulated

by two steps: (1) generating the momentum by sampling from Gaussian distribution,

and (2) performing a Metropolis update with a proposal found by Hamiltonian dynamic.

Unlike Gibbs sampler [6], HMC avoids diffusive random walk behavior, which might

lead to the slow exploration of the state space, by simulating the evolution of a physical

system under Hamiltonian dynamics [13]. Moreover, when sampling from continuous

variables such as I, HMC can prove to be a powerful and efficient tool [4]. Also, HMC

makes use of the gradient of the energy function, and it is particularly natural for the

inhomogeneous FRAME model.

8

To draw samples from inhomogeneous FRAME model p(I;λ), we can write p(I;λ)

as p(I) ∝ exp(−U(I)), where I ∈ R|D| and U(I) = −
∑

x,s,α λx,s,α|〈I, Bx,s,α〉|+ 1
2
|I|2

(assuming σ2 = 1). In physics context, I can be regarded as a position vector and U(I)

the potential energy function. To allow Hamiltonian dynamics to operate, we need to

introduce an auxiliary momentum vector φ ∈ R|D| and the corresponding kinetic en-

ergy function K(φ) = |φ|2/2m, where m represents the mass. After that, a fictitious

physical system described by the canonical coordinates (I,φ) is defined, and its total

energy is H(I,φ) = U(I) +K(φ). Instead of sampling from p(I) directly, HMC sam-

ples from the joint canonical distribution p(I,φ) ∝ exp(−H(I,φ)) by simulating the

evolution of the physical system using Hamiltonian dynamics, however, because I and

φ are independent, marginalizing over φ to retrieve the original target distribution p(I)

is trivial. If a physical system evolves under Hamiltonian dynamics, it will conserve

the total energy (i.e. H(I,φ) remains as a constant). Therefore, such a dynamics can

be used as transition operators of a Markov chain and will lead to invariant p(I,φ) in

MCMC sampling. As to our case, the time evolution under Hamiltonian dynamics can

be defined by Hamilton’s equations [7] as follows

dI

dt
=
∂H

∂φ
=

φ

m
, (2.14)

dφ

dt
= −∂H

∂I
= −∂U

∂I
. (2.15)

In practical implementation, the leapfrog algorithm is used to discretize the contin-

uous Hamiltonian dynamics as follows, with ε being the step-size:

φ(t+ε/2) = φ(t) − (ε/2)
∂U

∂I
(I(t)), (2.16)

I(t+ε) = I(t) + ε
φ(t+ε/2)

m
, (2.17)

φ(t+ε) = φ(t+ε/2) − (ε/2)
∂U

∂I
(I(t+ε)), (2.18)

that is, a half-step update of φ is performed first and then it is used to compute I(t+ε)

and φ(t+ε).

9

A key step in the leapfrog algorithm is the computation of the derivative of the

potential energy function

∂U

∂I
= −

∑
x,s,α

λx,s,αsign(〈I, Bx,s,α〉)Bx,s,α + I, (2.19)

where the map of responses rx,s,α = 〈I, Bx,s,α〉 is computed by bottom-up convolution

of the filter corresponding to (s, α) with I for each (s, α). Then the derivative is com-

puted by top-down linear superposition of the basis functions: −
∑

x,s,α λx,s,αsign(rx,s,α)Bx,s,α+

I, which can again be computed by convolution. Both bottom-up and top-down convo-

lutions can be carried out efficiently by GPUs.

The discretization of the leapfrog algorithm cannot keep H(I,φ) exactly constant,

so a Metropolis acceptance/rejection step is used to correct the discretization error.

Starting with the current state, (I,φ), the new state (I?,φ?) after L leapfrog steps is

accepted as the next state of the Markov chain with probability

min

(
1, exp(−H(I?,φ?) +H(I,φ))

)
. (2.20)

If it is not accepted, the next state is the same as the current state.

In summary, a complete description of the HMC sampler for inhomogeneous FRAME

is as follows:

(i) Generate momentum vector φ from p(φ) ∝ exp(−K(φ)), which is the zero-

mean Gaussian distribution with covariance matrix mI . (I is identity matrix).

(ii) Perform L leapfrog steps to reach the new state (I?,φ?).

(iii) Perform acceptance/rejection of the proposed state (I?,φ?).

L, ε, and m are parameters of the algorithm, which need to be tuned to obtain good

performance.

All the synthesized images presented in the figures of this paper are generated by

the HMC algorithm along the learning process.

10

2.3 Summary of the learning algorithm

Pseudocode of the algorithm for learning the inhomogeneous FRAME model is shown

in Algorithm 1. The algorithm stops when the gradient of the log-likelihood is close to

0, i.e., when the statistics of the synthesized images closely match those of the observed

images. Figure 2.2 displays the synthesized images {Ĩm} generated by the models

learned from training images shown in Figure 2.1 (a separate model is learned from

each training set). Figure 2.3 illustrates the learning process by showing the synthesized

images with λ being updated by the algorithm. The synthesized image starts from

Gaussian white noises sampled from q(I), then gradually gets similar to the observed

images in the overall shape and appearance.

The computational complexity of the Algorithm 1 isO(U×M̃×L×K×HB×WB)

with U the number of updating steps for λ, M̃ the number of synthesized images, L

the number of leapfrog steps in HMC, K the number of filters, and HB and WB are the

average window sizes (height and width) of the filters. As to the actual running time,

for the cat example, each iteration of a single chain takes about 2 seconds on a current

PC, with L = 30, K = 240100, HB = 12, and WB = 12.

2.4 Experiment 1: Synthesis by inhomogeneous FRAME model

Figure 2.4 displays some images generated by the inhomogeneous FRAME models

learned from roughly aligned training images. We run a single chain in the learning

process, i.e., M̃ = 1 in this experiment. The learned models can generate a wide

variety of natural image patterns. Typical sizes of the images are 70 × 70. We use a

filter bank containing Gabor filters at 3 scales and DoG filters at one scale. We run 500

iterations.

11

Algorithm 1 The learning algorithm for inhomogeneous FRAME
Input:

training images {Im,m = 1, ...,M}

Output:

λ = {λx,s,α,∀x, s, α} and logZ(λ)

1: Create a filters bank {Bx,s,α,∀x, s, α}

2: Initialize λ(0)x,s,α ← 0,∀x, s, α.

3: Calculate observed statistics:

Hobs
x,s,α ← 1

M

∑M
m=1 |〈Im, Bx,s,α〉|, ∀x, s, α.

4: Initialize synthesized images Ĩm as Gaussian white noises images

5: Initialize logZ(λ(0))← 0

6: Let t← 0

7: repeat

8: Generate {Ĩm,m = 1, ..., M̃} from p(I;λ(t)) by HMC

9: Calculate synthesized statistics:

Hsyn
x,s,α ← 1

M̃

∑M̃
m=1 |〈Ĩm, Bx,s,α〉|, ∀x, s, α.

10: Update λ(t+1)
x,s,α ← λ

(t)
x,s,α + γt(H

obs
x,s,α −Hsyn

x,s,α), ∀x, s, α.

11: Compute Z ratio Z(λ(t+1))

Z(λ(t))
by Eq. (2.12)

12: Update logZ(λ(t+1))← logZ(λ(t)) + log Z(λ(t+1))

Z(λ(t))

13: Let t← t+ 1

14: until
∑

x,s,α |Hobs
x,s,α −Hsyn

x,s,α| ≤ ε

12

Figure 2.2: Synthesized images generated by the inhomogeneous FRAME model. The

sizes of the images are 70×70. Each row contains 6 independent samples (synthesized

images) drawn from the learned model.

13

Figure 2.3: Learning sequence by inhomogeneous FRAME. The size of the images are

70 × 70. A separate model is learned from each training set shown in Fig 1 (From top

to bottom: hummingbird, deer, cat, tiger, and lion). Synthesized images generated in

step t = 1, 7, 10, 20, 50, 100, 200, and 500.

14

Figure 2.4: Images generated by the inhomogeneous FRAME model learned from dif-

ferent categories of objects. The training images are collected from the internet and are

cropped so that the training images for each category are roughly aligned. The number

of training images for each category is around 10.

15

CHAPTER 3

Detection

3.1 Detection algorithm

After learning the inhomogeneous FRAME model p(I;λ), where λ = (λx,s,α,∀x, s, α),

from the roughly aligned training images {Im,m = 1, ...,M}, the learned model p(I;λ)

can serve as a template, so that we can use it to detect the object in a testing image by

template matching.

Let I be a testing image defined on the domain D. We can scan the template over

D, and at each location X ∈ D, we match the template to the image patch of I within

the bounding box centered at X by computing the log-likelihood

L(I | λ) =
∑
x,s,α

λx,s,α|〈I, Bx,s,α〉| − logZ(λ), (3.1)

which serves as template matching score. We then choose the location X that achieves

the maximum template matching score as the center of the detected object. To deal with

the scaling issue, we can apply the above algorithm at multiple resolutions of the testing

image, and then choose the resolution that achieves the maximum template matching

score as the optimal resolution.

In addition to spatial translation in scanning, we can also allow geometric trans-

formations such as rotation and left-right flipping of the template. The geometrically

transformed versions of the learned model can be obtained by directly rotating or flip-

ping the learned parameter map λ = {λx,s,α,∀x, s, α} without recomputing the values

of λ. This amounts to simple affine transformations of (x, s, α,∀x, s, α). For better

16

performance in detection, we can first generate a collection of models at different ori-

entations with and without left/right flipping from the learned model. After that, we

use these transformed models to detect the object. We choose the combination of the

transformed template and image resolution that gives the best match in terms of the

template matching score, and infer the hidden location, orientation, and scale of the

detected object in the testing image.

3.2 Experiment 2: Detection by template matching

Experiment 2a: Figure 3.1 shows examples of detection in tiger category. We learn

the model from six roughly aligned training images, with M̃ = 36. We don’t use DoG

filters in learning for detection. The template size is 100×100. The image displayed on

the top row is a synthesized image generated by the learned model. We transform the

learned model into a collection of models at 9 different orientations without left/right

flipping, and then run the detection algorithm over 9 resolutions of the testing images

using these transformed templates. The detection results are displayed by drawing

bounding boxes on the detected objects.

Experiment 2b: Figure 3.2 shows another case of detection in wolf category, where

the model is learned from 16 training images, the detection algorithm is run over 7

resolutions. Other tuning parameters are the same as those in the last case.

Experiment 2c: Figure 3.3 shows the third case of detection in zebra category. In

this case, the number of training images is 7. Template size is 117 × 150. Seven

different orientations as well as left/right flipping are considered in transforming the

learned template for detection. A small square attached to the top left corner of the

bounding box is for distinguishing detected objects with or without left/right flipping.

17

Figure 3.1: Detection (tigers). On the top: A synthesized image generated by the

learned model. The rest: Testing images with bounding boxes locating the detected

objects.

18

Figure 3.2: Detection (wolves). On the top: A synthesized image generated by the

learned model. The rest: Testing images with bounding boxes locating the detected

objects.

19

Figure 3.3: Detection (zebras). On the top: A synthesized image generated by the

learned model. The rest: Testing images with bounding boxes locating the detected

objects.

20

CHAPTER 4

Alignment

4.1 Alignment algorithm

In the previous section, training images {Im,m = 1, ...,M} are defined on the same

bounding box. In this section, we study the problem of learning from images where the

objects are of unknown locations, orientations and scales. It is also called multiple im-

ages alignment, which is an unsupervised learning problem. We start from the multiple

alignment score defined by

ALIGN(Im,m = 1, ...,M) =
M∑
m=1

L(Im|λ), (4.1)

where L(Im|λ) is the log-likelihood or template matching score defined by equation

(3.1). However, when the training images {Im,m = 1, ...,M} are of different sizes,

and the objects appear at different locations, orientations, and scales in the training

images, we need to infer the unknown locations, orientations, and scales. We denote

box(x, s, α) as the rectangular bounding box of the template centered at location x,

with orientation α and scale s. For an image I, let I[box(x, s, α)] be the image patch

cropped from the image I within box(x, s, α). Our goal is to maximize the alignment

score

ALIGN(Im[box(xm, sm, αm)],m = 1, ...,M) (4.2)

over {(xm, sm, αm),m = 1, ...,M}, where (xm, sm, αm) is the unknown location, ori-

entation, scale of the bounding box in Im. A greedy strategy that iterates the following

two steps can be used to maximize equation (4.2):

21

(1) Learning: Given {(xm, sm, αm),m = 1, ...,M}, learning p(I;λ) from cropped

images {Im[box(xm, sm, αm)],m = 1, ...,M} by the learning algorithm for inhomoge-

neous FRAME described in Algorithm 1.

(2) Detection: Given p(I;λ), estimate {(xm, sm, αm),m = 1, ...,M} from each Im

using detection algorithm described in section 3.

4.2 Experiment 3: Multiple images alignment

Experiment 3a: We initialize the algorithm by assuming that the whole image lattice is

the initial bounding box of each training image. The template size is 100× 100. In step

(2), we search over 7 different scales and 3 different orientations. Instead of directly

scaling the template, we use 7 different resolutions of the input images (from 0.7 to 1.3

times the input image size). We crop Im[box(x, α)] from the optimum resolution. The

algorithm is run for 5 iterations. Figure 4.1 displays one example of alignment results,

where bounding boxes are placed on the aligned objects in training images to show the

inferred locations, orientations, and scales. Figure 4.2 shows the cropped objects.

Experiment 3b: Different from Experiment 3a, this experiment has one more hid-

den variable f , the unknown left/right flipping indicator (it takes 1 when flipping hap-

pens and 0 otherwise), to infer. Now, we simply replace the notation box(x, s, α) by

box(x, s, α, f) to represent the rectangular bounding box centered at location x, with

orientation α, scale s, and left/right flipping f . Let {Im[box(xm, sm, αm, f)],m =

1, ...,M} be the cropped image patches. The alignment leads to maximize the objec-

tive function: ALIGN(Im[box(xm, sm, αm, fm)],m = 1, ...,M). Figure 4.3 shows one

example, where a small square attached to the top left corner of the bounding box is

used for distinguishing objects with or without left/right flipping. Figure 4.4 shows the

cropped image patches after alignment.

22

Figure 4.1: Alignment results (deers). Training images with bounding boxes locating

the aligned objects.

Figure 4.2: Cropped objects after alignment (deers)

23

Figure 4.3: Alignment results (ducks). Training images with bounding boxes locating

the aligned objects.

Figure 4.4: Cropped objects after alignment (ducks)

24

CHAPTER 5

Clustering

In this section, we study the problem of clustering. Unlike conventional clustering

problem, we not only need to separate the examples into different clusters, but also

need to learn inhomogeneous FRAME model for each cluster. We will discuss two

types of clustering algorithms: (1) EM algorithm, and (2) k-mean algorithm.

5.1 Mixture of inhomogeneous FRAME models and EM

Suppose we have M images from K clusters, and each cluster k can be modeled by an

inhomogeneous FRAME model p(I;λ(k)). A mixture distribution for these images can

be described by

K∑
k=1

ρ(k)p(Im;λ(k)), (5.1)

where ρ(k) is the probability of a training image coming from cluster k, k = 1, .., K.

For each image Im, we define (z
(k)
m , k = 1, ..., K) as a hidden indicator vector, where

z
(k)
m = 1 if Im comes from cluster k, otherwise z(k)m = 0. Model-based clustering can

be accomplished by EM algorithm [3] that fits a mixture of inhomogeneous FRAME

models. EM starts with randomly generated {z(k)m } and then iterates the following M-

step and E-step until convergence.

M-step: For each cluster k = 1, ..., K, we learn p(I;λ(k)) by the learning algorithm

in Algorithm 1. We only need to change the calculation of the observed statistics in

25

step (3) in the original version of the learning algorithm into

Hobs
x,s,α ←

∑M
m=1 z

(k)
m |〈Im, Bx,s,α〉|∑M
m=1 z

(k)
m

,∀x, s, α, (5.2)

which is a weighted average. Also, for each k = 1, ..., K, we need to compute ρ(k) =

1
M

∑M
m=1 z

(k)
m .

E-step: For each m = 1, ...,M and k = 1, ..., K, we compute

z(k)m =
ρ(k) exp{L(Im|λ(k)})∑K
k=1 ρ

(k) exp{L(Im|λ(k)})
. (5.3)

z
(k)
m becomes a fraction due to a soft classification of image Im based on current learned

model of cluster k.

5.2 Model-based k-mean clustering

In this section, we use the same notations as those used in the previous section for

convenience. The model-based k-mean clustering is different from the conventional

k-mean algorithm. Instead of using simple average as mean vector, we learn the in-

homogeneous FRAME model. Also, the distance is not simple Euclidean distance.

Instead, it is measured by template matching score or log-likelihood defined by equa-

tion (3.1). The algorithm is a greedy scheme that infers {z(k)m } and {λ(k), k = 1, ..., K}

by maximizing the overall log-likelihood
K∑
k=1

M∑
m=1

z(k)m L(Im|λ(k)), (5.4)

where λ(k) are the learned parameters for cluster k, and L(Im|λ(k)) is the log-likelihood

or template matching score defined by equation (3.1).

The algorithm is initialized by randomly generating {z(k)m }, and then iterates the

following two steps:

Re-learning: Given {(z(k)m , k = 1, ..., K),m = 1, ...,M}, learn the inhomogeneous

FRAME model p(I;λ(k)) from images classified into the k-th cluster: {Im, zkm = 1},

for each k = 1, ..., K.

26

Classification: Given the learned models of theK clusters: {p(I;λ(k)), k = 1, ..., K},

assign each image Im to a cluster k∗ that maximizes the template matching score

L(Im|λ(k)) over all k = 1, ..., K. Set z(k∗)m = 1, and set z(k)m = 0 for k 6= k∗

In the above algorithm, the classification step corresponds to the E-step of the EM

algorithm, except that we adopt hard classification, instead of computing the expecta-

tion of zm for each image Im. The re-learning step corresponds to the M-step of the

EM algorithm. The algorithm usually converges within a few iterations.

5.3 Experiment 4: Model-based clustering

Experiment 4a: Figure 5.1 illustrates one clustering example using EM algorithm. No

DoG filters are used in this experiment. The EM algorithm converges after 4 iterations,

at which point all the images are correctly separated into their respective clusters. For

each cluster, we generate M̃ = 144 parallel chains in learning, because we need to

compute Z(λ) accurately for each model, as multiple models compete to explain the

images. Template sizes are 60× 80.

Experiment 4b: Figure 5.2 displays 5 clustering examples using the model-based

k-mean algorithm. Each row illustrates one clustering example by displaying a synthe-

sized image and a typical training example for each cluster. The typical number of the

training images in each cluster for each example is 15. The k-mean algorithm usually

converges within 3-5 iterations. We use DoG filters in this experiment.

27

Figure 5.1: EM clustering: On the top: A synthesized image for each cluster is dis-

played. The rest: 4 clusters of images separated by the model-based EM algorithm.

28

Figure 5.2: k-mean clustering. Each row illustrates one clustering example by display-

ing a synthesized image and a typical training example for each cluster.

29

CHAPTER 6

Discussion

Developing generative models for image patterns is one of the most fundamental prob-

lems in vision. Such models provide knowledge representations for image patterns, and

they may be learned in unsupervised manner so that the learned models can be useful

for various vision tasks. Although the past decade has witnessed tremendous advance

in developing discriminative methods for object recognition, the progress in developing

generative models for object patterns has been lagging behind. In this thesis, a gener-

ative model, inhomogeneous FRAME model, for object patterns is proposed under the

above motivation.

The proposed model has the following merits: (1) It can be considered a further

step in Markov random field or the original FRAME model. (2) It can synthesize new

vivid images. In fact, synthesis is required for estimating parameters and calculating the

normalizing constant. (3) It is an appearance model that encompasses sketch patterns,

flatness patterns and stochastic texture patterns. In fact, the learned λx,s,α can be either

positive for sketch patterns or negative for flatness patterns. (4) It can be used for object

detection, alignment, and clustering. (5) It is a probability distribution, so that it can be

learned in unsupervised manner. Also, it can be even further adapted to the codebook

learning framework proposed in [10].

Limitation and future works: (1) The experiments in this thesis are illustrative and

explorative. More empirical and quantitative experiments are needed for better under-

standing the limitations of the model. (2) Even though the model can capture informa-

tive appearance patterns, fitting p(I) in general requires MCMC simulation, which can

30

be computationally expensive. Further sparsification of {λx,s,α, ∀x, s, α} by lasso [19]

or matching pursuit [11] can be considered. (3) We assume that the dictionary of the

basis functions are given as Gabor wavelets or DoG. It is desirable to learn these basis

functions from training images. K-SVD [2] or Olshausen-Field sparse coding [14] can

be used to learn Gabor-like bases. (4) The model currently does not incorporate the

concept of shape deformations, even though it has taken into account appearance vari-

ations. Allowing small perturbations within proper ranges of Gabor and DoG wavelets

may be helpful in improving the robustness and the flexibility of the model. This strat-

egy has been successfully used in active basis model [21].

Implementation and Reproducibility

The experiments are run on a PC with Unix operating system, Intel Core i7-3770K

CPU@3.50GHz×8, 31.4G memory, and 2 GeForce GTX TITAN GPUs. When fit-

ting a mixture of models, the paralleled computing technique using multiple GPUs is

utilized for efficiently learning independent model for each cluster simultaneously. In

fitting each single model, the parallel M̃ chains sampling is implemented by tiling a

large parameter map Λ = [λ, ..., λ]1×M̃ with λ = {λx,s,α,∀x, s, α}, and then sampling

directly from p(I1×M̃ ; Λ) by GPU, where the synthesized image I1×M̃ would be a tiled

image that contains M̃ original-size target images. The tiling order in I1×M̃ is con-

sistent with that in Λ. The reason why we sample from a tiled model is as follows:

both HMC sampling and updating λ require convolution of images and filters, which is

rather time-consuming; while Matlab provides a built-in GPU version of convolution

operation that is significantly faster than CPU version. Because GPU consists of thou-

sands of cores to process parallel workloads efficiently, convolving a large image (tiled

images) by GPU can bring in more acceleration. All the experimental results reported

in this thesis can be reproduced by Matlab and mex-C code that we have posted on the

webpage: http://www.stat.ucla.edu/˜jxie/iFRAME.html .

31

http://www.stat.ucla.edu/~jxie/iFRAME.html

REFERENCES

[1] D. H. Ackley, G. E. Hinton, T. J. Sejnowski. A learning algorithm for Boltzmann
machines. Cognitive Science, 9, 147–169. 1985. 2

[2] M. Aharon, M. Elad, and A. M. Bruckstein. The K-SVD: an algorithm for de-
signing of overcomplete dictionaries for sparse representation, IEEE Trans. Signal
Process., 54, 4311–4322, 2006. 31

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum-likelihood from incom-
plete data via the EM algorithm. J. Royal Statistical Society B, 39, 1–38, 1977. 25

[4] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo,
Physics Letters, 195, 216–222, 1987. 8

[5] A. Gelman and X. L. Meng. Simulating normalizing constants: from importance
sampling to bridge sampling to path sampling. Statistical Science, 13, 163–185,
1998. 8

[6] S. Geman, and D. Geman. Stochastic relaxation, Gibbs distribution, and the
Bayesian restoration of images. IEEE Trans. PAMI, 6, 721–741, 1984. 8

[7] L.N. Hand, J.D. Finch, Analytical Mechanics, Cambridge University Press, 2008.
9

[8] G. E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14, 1771–1800, 2002. 2

[9] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18, 1527–1554, 2006. 2

[10] Y. Hong, Z. Si, W. Hu, S. C. Zhu, and Y. N. Wu, Unsupervised learning of com-
positional sparse code for natural image representation. Quarterly of Applied Math-
ematics, 72, 373–406, 2013. 30

[11] S. Mallat and Z. Zhang. Matching pursuit in a time-frequency dictionary. IEEE
Transactions on Signal Processing, 41, 3397–3415, 1993. 31

[12] R. M. Neal. Annealed importance sampling. Statistics and Computing, 11, 125–
139, 2001. 8

[13] R. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 2011. 7, 8

[14] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images. Nature, 381, 607–609, 1996.
31

32

[15] M. Ranzato and G. E. Hinton. Modeling pixel means and covariances using fac-
torized third-order Boltzmann machines. CVPR, 2010. 2

[16] S. Roth and M. Black. Fields of experts. IJCV, 82, 205–229, 2009. 2

[17] P. Smolensky. Information processing in dynamical systems: foundations of har-
mony theory. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed
Processing, volume 1, chapter 6, pages 194–281. MIT Press, Cambridge, 1986. 2

[18] Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton. Energy-based models
for sparse overcomplete representations. Journal of Machine Learning Research, 4,
1235–1260, 2003. 2

[19] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, B, 58, 267–288, 1996. 31

[20] M. Welling, G. E. Hinton, and S. Osindero. Learning sparse topographic repre-
sentations with products of student-t distributions. NIPS, 2003. 2

[21] Y. N. Wu, Z. Si, H. Gong, and S. C. Zhu. Learning active basis model for object
detection and recognition. IJCV, 90, 198–235, 2010. 31

[22] L. Younes. On the convergence of Markovian stochastic algorithms with rapidly
decreasing ergodicity rates. Stochastics and Stochastic Reports, 65, 177–228, 1999.
7

[23] S. C. Zhu, Y. N. Wu, and D. B. Mumford. Minimax entropy principle and its
application to texture modeling. Neural Computation, 9, 1627–1660, 1998. 1, 2, 4

33

