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ABSTRACT OF THE DISSERTATION 

 

Examination of the space-time variability and uncertainty of snow water storage  

over the Western U.S. and Andes 

 

by 

 

Yiwen Fang 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2023 

Professor Steven A. Margulis, Chair 

 

Seasonal snow water is a key component of the food-energy-water nexus in many 

regions, supporting one sixth of the global population. Given its importance, characterizing 

seasonal snow is critical to close terrestrial water budgets, especially for mountainous regions 

where as much as 70% of the water supply for humans originates from snowmelt. However, it is 

an ongoing challenge to characterize snow water equivalent (SWE) from existing snow products 

in snow-dominated mountain regions.  
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In Chapter 2 of this thesis, a novel Western U.S. (WUS) snow reanalysis dataset (WUS-

SR) that is continuous in space and time was developed at high-resolution (~ 500 m) over water 

years (WYs) 1985 to 2021. The snow dataset has been significantly verified with > 25,000 

station-years of independent in situ and airborne data. Overall, WUS-SR peak SWE is well 

correlated against in situ peak SWE with correlation coefficient of 0.77, and against lidar-derived 

SWE taken near April 1st with correlation coefficients ranging from 0.75 to 0.91.  

In Chapter 3, the newly derived WUS-SR dataset wass used for examining the role of 

snow on streamflow drought. The analysis in this thesis shows that WY 2021 stands out as an 

unpredictable year with extremely low streamflow in the WUS, with only moderately low 

upstream snow conditions. Although snowmelt played a key role in the streamflow drought, the 

2021 streamflow drought was a compound event modulated by contributors linking snow, soil 

moisture, and streamflow.  

In Chapter 4, the WUS-SR along with a previously derived Andes snow reanalysis were 

used as reference datasets in an intercomparison of other global products. Climatological snow 

storage is quantified as 269 km3 in the WUS and 29 km3 in the Andes from the reanalysis 

datasets. Existing high- and moderate-resolution products agree with the WUS-SR, whereas 

coarse-resolution products generally underestimate snow with large uncertainty in both WUS 

and Andes. Snow products with resolutions greater than 5 km did not resolve the orographic-

rainshadow patterns that are important to downstream water resources. In addition to 

precipitation as the main driver of snow uncertainty, product spatial resolution, LSM 

mechanisms such as rain-snow partitioning and snowmelt generation play important roles.  
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CHAPTER 1  

Introduction 

1.1 Background and Motivation 

Seasonal snow is a critical element of the terrestrial water cycle that provides freshwater 

to more than one billion people (~17% of the total population) globally (Immerzeel et al., 2020; 

Rhoades et al., 2022). Snowmelt in spring plays an important role in downstream water resources 

management especially for mountainous domains. For example, in the Western U.S. (WUS), 

53% of runoff comes from snowmelt on average and the percentage reaches as high as 70% in 

snow-dominated regions (Li et al., 2017). 

Knowledge of space-time variability and uncertainty of snow water storage and how it 

may be changing for snow-dominated regions is crucial for water availability and resources 

management. Intensified snow drought severity and duration have been observed in the WUS, 

and a low-to-no snow future is projected (Huning & AghaKouchak, 2020; Siirila-Woodburn et 

al., 2021). Large uncertainty of snow water storage in existing snow products have been found in 

the WUS, where this uncertainty propagates to the streamflow impacting water security, 

agriculture, and wildlife habitat (Kim et al., 2021). In the Andes, over 62% of the eastern basins 

have observed snow loss (Saavedra et al., 2018). Snowmelt from the Andes provides water for 

populated cities in Chile and Argentina, whereas the uncertainty of snow storage in the Andes 

has not been well characterized. 

Characterizing snow water storage in mountainous regions is challenging due to 1) lack 

of representative in situ measurements; 2) lack of high-resolution spaceborne snow water 
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equivalent (SWE) measurements to capture the spatial heterogeneity and deep snowpacks; 3) 

large uncertainty of snow water storage from existing global products.  

Bayesian snow estimation methods embedded in a data assimilation framework provide a 

pathway forward by leveraging remotely-sensed measurements to constrain model-based snow 

estimates at high resolution over large domain. The newly developed snow reanalysis framework 

(Margulis et al., 2015, 2019) has been verified and applied in the Sierra Nevada, the Andes, 

portions of the Upper Colorado River basin and High Mountain Asia (Baldo & Margulis, 2018; 

Cortés & Margulis, 2017; Girotto et al., 2014; Liu et al., 2021; Margulis et al., 2016). 

1.2 Objective and Organization of Dissertation 

The overarching objective of this dissertation is to characterize the spatial and temporal 

snow distribution over mountainous regions. To achieve the objective, a novel high-resolution 

snow dataset over the WUS is generated from water years (WYs) 1985 to 2021 using a newly 

developed Bayesian snow reanalysis framework (Margulis et al., 2015, 2019). In the framework, 

model-based snow estimates are updated by assimilation of Landsat fractional snow covered area 

images. Using the verified snow reanalysis dataset, the following scientific questions are 

addressed in this dissertation: 

1) What is the role of snow in streamflow drought in the WUS? 

2) How well do existing global and regional snow products characterize the spatial and 

temporal distribution of snow water storage in the WUS and Andes? 

The dissertation is organized into five Chapters. Chapter 2 describes the methods and 

inputs applied to generate the WUS snow reanalysis (WUS-SR) dataset, and verification against 

independent in situ snow measurements and airborne snow observatory snow estimates. The 

dataset generated in Chapter 2 is used to answer the above-mentioned scientific questions in 



 

3 
 

Chapter 3 and 4. Chapter 3 quantifies the severity of snow-streamflow drought and specifically 

analyzes the role of snow in streamflow drought over the WUS in WY 2021 as a case study. The 

knowledge gained in Chapter 3 is beneficial to understand and mitigate future droughts like 

2021. Chapter 4 uses high-resolution snow reanalysis datasets including WUS-SR generated 

from Chapter 1 and the previously generated Andes snow reanalysis dataset (Cortes and 

Margulis 2017) as reference datasets to quantify snow storage uncertainties over space and time. 

Insights gained in Chapter 4 provide knowledge of potential uncertainties for snow-related 

studies and guidelines on future snow dataset generation. Chapter 5 summarizes key findings 

from Chapter 2 to 4 and proposes future work to improve snow characterization with the ultimate 

goal of global mountain application. 
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CHAPTER 2  

A western United States snow reanalysis dataset over the Landsat era 

from water years 1985 to 2021 

Water stored in mountain snowpacks (i.e., snow water equivalent, SWE) represents an 

important but poorly characterized component of the terrestrial water cycle. The Western United 

States snow reanalysis (WUS–SR) dataset is novel in its combination of spatial resolution (~500 

m), spatial extent (31° – 49° N; 102° – 125° W), and temporal continuity (daily over 1985 – 

2021). WUS–SR is generated using a Bayesian framework with model-based snow estimates 

updated through the assimilation of cloud-free Landsat fractional snow-covered area 

observations. Over the WUS, the peak SWE verification with independent in situ measurements 

show correlation coefficient, mean difference (MD), and root mean squared difference (RMSD) 

of 0.77, -0.15 m, and 0.28 m, respectively. The effects of forest cover and Landsat image 

availability on peak SWE are assessed. WUS–SR peak SWE is well correlated (ranging from 

0.75 to 0.91) against independent lidar-derived SWE taken near April 1st, with MD < 0.15 m and 

RMSD < 0.38 m. The dataset is useful for characterizing WUS mountain snow storage, and 

ultimately for improving snow-derived water resources management. 
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2.1 Background & Summary 

Water stored in seasonal snowpacks, typically expressed in the form of snow water 

equivalent (SWE), provides a key resource relevant to water supply, hydropower generation, 

agricultural irrigation, river navigation, and urban usage in many areas of the globe. In the 

Western U.S. (WUS) it is estimated that more than half of runoff comes from seasonal snowmelt 

(Li et al., 2017; Sturm et al., 2017). Knowledge of SWE and its space-time variability impacts 

food, water and energy security, the financial stability of hydropower utilities, and public safety 

(Hamilton et al., 2020; Huning & AghaKouchak, 2020a; Yan et al., 2020).    

In situ SWE data, even in the WUS where it is arguably most readily collected 

operationally, remains extremely sparse. Moreover, snow exhibits significant spatial 

heterogeneity due to variability in snowfall, redistribution and ablation controlled by local 

meteorological conditions, landcover, forest cover, and other physiographic characteristics 

(Larson et al., 2009), especially in mountainous regions with high terrain complexity. The in situ 

snow stations that do exist are typically located in forest clearings, mid-elevations and flat terrain 

that do not necessarily sample the underlying heterogeneity of SWE (Molotch & Bales, 2006; 

Nolin et al., 2021). Hence, in situ networks tend to provide an incomplete picture of the spatial 

patterns of SWE and how point-scale SWE integrates to basin-scale water volumes.  

Remotely-sensed (satellite or airborne) observations of snow provide the potential to 

sample spatially-distributed characteristics of snow. The historically available satellite-borne 

measurements most closely related to SWE use Passive Microwave (PM, e.g., AMSR-E, SSMI) 

measurements to infer SWE or snow depth. However, PM measurements are typically obtained 

at coarse resolutions (tens of kilometers and thus incapable of resolving finer scale 

heterogeneity) and are highly sensitive to snowpack stratigraphy and microstructure, wet snow, 
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and forest coverage (introducing significant uncertainty and bias into SWE estimates (Andreadis 

& Lettenmaier, 2006). Recent and future airborne and spaceborne concepts aim to measure snow 

depth (from lidar, Markus et al., 2017; T. H. Painter et al., 2016; photogrammetry; radar, Lievens 

et al., 2019), or SWE (from P-band, Yueh et al., 2018; C-band; X-band, Shi & Dozier, 2000; Ku-

band radar, Nghiem & Wu-Yang Tsai, 2001). These newer methods show promise but cannot yet 

provide a long-term spatially-distributed SWE record. 

To leverage remotely-sensed and in situ datasets relevant to snow processes, data 

assimilation combined with snow and land surface models (LSMs) can be used to constrain 

model estimates based on snow related observations. Global reanalysis products including ERA5 

(Hersbach et al., 2020), ERA5-land (Muñoz-Sabater et al., 2021), JRA55 (Kobayashi et al., 

2015), GLDAS (Rodell et al., 2004), MERRA2 (Gelaro et al., 2017), and GlobSnow v3.0 

(Luojus et al., 2021) estimate terrestrial snow accumulation and melt with commonly used LSMs 

(e.g., VIC, SiB, Catchment, Noah) at scales of ~ 0.1° to 1°. Though coarse resolutions are typical 

in global applications, they do not provide the desired resolution to capture spatial variations, 

especially in complex terrain (Wrzesien et al., 2019). Additionally, several studies have found 

large uncertainties in SWE volumes derived from various input forcings and models applied over 

global snow covered mountains (Kim et al., 2021; Xu et al., 2019). Snow-focused products over 

the U.S. using data assimilation include the Snow Data Assimilation System (SNODAS, 

National Operational Hydrologic Remote Sensing Center, 2004) product and the University of 

Arizona SWE dataset (UA, Zeng et al., 2018). SNODAS daily SWE estimates are available from 

2004 at the spatial resolution of 1 km × 1 km. UA daily SWE estimates start from 1982 at the 

spatial resolution of 4 km × 4 km. Hence, SNODAS has a more limited temporal coverage (less 

than 20 years), and UA is at relatively coarse resolution that can be suboptimal for assessing 
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spatial variability in mountainous domains. In the mountainous WUS, historical space–time 

continuous snow estimates at high to moderate resolution and with low uncertainty are needed.  

To fill this gap, we use a Bayesian data assimilation approach that leverages high-

resolution remotely-sensed visible and near infrared (Vis-NIR) measurements that provide 

information on fractional snow-covered area (fSCA) and how its seasonal evolution is related to 

SWE.   Specifically, the approach yields a new snow reanalysis dataset across the WUS (Fig. 

2.1) over the Landsat–era (water years (WYs) 1985 to 2021). The dataset is publicly available at 

National Snow and Ice Data Center (https://doi.org/10.5067/PP7T2GBI52I2, Fang et al., 2022). 

The daily snow reanalysis framework accounts for a priori uncertainties in meteorological 

forcings and other snow model parameters and reduces the uncertainty via a Bayesian data 

assimilation approach as described in more detail in the Methods section. The snow reanalysis 

SWE estimates are verified against independent in situ SWE measurements and lidar-based SWE 

products. Previous applications of the method over the Sierra Nevada have demonstrated the 

ability to characterize historical snow droughts, characterize snowfall estimates from SWE 

accumulation patterns, and improve streamflow predictions (Huning & AghaKouchak, 2020b; Li 

et al., 2019; Margulis, Cortés, Girotto, Huning, et al., 2016; Pflug et al., 2022). 

 

https://doi.org/10.5067/PP7T2GBI52I2
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Figure 2.1 Map of elevation (meters) over the WUS domain with snow reanalysis tiles (1° × 1° 

squares) and Hydrologic Unit Codes 2 (HUC2) basins. HUC2 basins include California (CA), 

Pacific Northwest (PN), Great Basin (GB), Upper Colorado River Basin (UCRB), Missouri 

(MO), and other basins, i.e., Lower Colorado River Basin (LCRB), Rio Grande (RG), Texas 

Gulf (TG), Arkansas-White-Red (AWR), and Souris-Red-Rainy regions (SRR). The tiles 

highlighted in bold black outlines (in total 10) are used for prior precipitation uncertainty 

analysis as described in the Section 2.2. Snow Telemetry network (SNOTEL) sites and tiles with 

ASO SWE estimates (used for verification) are illustrated with red dots and white stars, 

respectively. 

2.2 Methods 

2.2.1 Snow Reanalysis Framework 

A Bayesian “snow reanalysis” framework (Margulis, Cortés, Girotto, & Durand, 2016; 

Margulis et al., 2015; Margulis, Liu, et al., 2019, Fig. 2.2) is applied to generate a new Landsat-



 

11 
 

era dataset over the WUS, herein referred to as the Western U.S. – Snow Reanalysis (WUS–SR). 

The dataset contains space–time continuous SWE and fractional snow-covered area (fSCA) 

estimates constrained by remotely-sensed (Landsat) fSCA using a particle batch smoother (PBS) 

data assimilation technique.  

 
Figure 2.2 Flowchart for the Bayesian snow reanalysis framework used to generate the WUS–

SR dataset (adapted from Margulis, Liu, et al. (2019)). 

The snow reanalysis framework generates an ensemble of (equally likely) prior snow 

estimates using a land surface model (LSM) driven by meteorological forcing, topographic data 

and landcover data (red boxes in Fig. 2.2). Uncertainty is expressed via perturbations related to 

precipitation (snowfall), the snow depletion curve and snow albedo in each ensemble member 

(described in the Uncertainty Parameters and Measurement Error section). The reanalysis step 

assimilates Landsat-derived fSCA measurements to provide posterior snow estimates (blue boxes 

in Fig. 2.2). More specifically, the a priori (equal) weights are updated to posterior weights that 

reflect the likelihood that a given ensemble member fits the fSCA measurements (Margulis, Liu, 
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et al., 2019). The posterior weights, when combined with the prior ensemble estimates (e.g., 

SWE) can be used to derive posterior estimates (ensemble statistics) of the relevant states. The 

resulting posterior SWE and fSCA make up the published dataset. 

While the snow reanalysis framework could be applied with any LSMs and their static 

and dynamic model inputs, in creating the WUS–SR, we use the same setup as described in 

Margulis, Liu, et al. (2019). In summary, a spatially-distributed version of the SSiB–SAST LSM 

(Sun & Xue, 2001; Xue et al., 2003; Sun et al., 1999) using the BATS (Dickinson et al., 1993) 

snow albedo model and coupled with the Liston (2004) Snow Depletion Curve (SDC) model is 

used. The SSiB–SAST LSM models a three-layer snowpack when snow depth is above 5 cm and 

uses a one-layer scheme when snow depth is below 5 cm. SWE at each layer is computed by 

mass balance with components including snowfall, rainfall, snowmelt, runoff and evaporation at 

the snow surface layer (Xue et al., 2003). Snow density, and therefore snow depth, is determined 

by the SAST compaction process as described in Sun & Xue (2001). For computational reasons, 

a uniform spatial resolution of 16 arcseconds (~500 m) is chosen with hourly outputs aggregated 

to the daily time step using an ensemble of 50 members. The SDC provides the mechanism 

whereby modeled estimates of SWE (and its sub-grid heterogeneity) provide predicted estimates 

of fSCA. For the reanalysis, the LSM–SDC model is applied separately at each pixel to the bare 

snow and forest covered fractions. It is assumed that Landsat sensors cannot see snow under the 

forest canopy. Therefore, only the predicted fSCA over bare soil is compared to the Landsat 

fSCA measurements in the assimilation step for each grid, while the update is applied to both 

bare and forested pixel fractions to obtain the grid-averaged SWE (Margulis, Liu, et al., 2019). 

The Bayesian update is applied in a batch over one WY at a time, where the batch of fSCA 
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measurements from that year are used together to derive the posterior weights and estimates. 

Table 2.1 summarizes the models and methods used in the snow reanalysis framework.  

Table 2.1 Modules used in the snow reanalysis framework 

 Model/ Methods Notes 

Prior step 
SSiB-SAST 

Land Surface Model (LSM) framework; 
surface (snow) energy balance fluxes; 

BATS snow albedo module 
Liston Snow Depletion 

Curve (SDC) 
Sub-grid distribution and pixel averaged 

SWE, ablation, and fSCA 

Posterior step Data assimilation (PBS) 
Ensemble-based Bayesian updated via 

assimilation of Landsat fSCA 
measurements 

2.2.2 Land Surface Model Inputs 

To generate the WUS–SR dataset, globally-available datasets are used as inputs. This 

includes the MERRA2 (Gelaro et al., 2017) near-surface meteorological forcing data, 30-m 

Shuttle Radar Topography Mission (SRTM, Farr et al., 2007) digital elevation model (DEM) for 

topographic data (with gaps filled by the Advanced Spaceborne Thermal Emission and 

Reflection, ASTER (NASA, 2001), version 2), 1-km Advanced Very High Resolution 

Radiometer (AVHRR, Hansen et al., 2000) landcover data and 30-m Global Land Cover Facility 

(recently updated to the Landsat Tree Canopy Version 4, TCC, Sexton et al., 2013) forest cover 

fraction data. The TCC data is available in 2000, 2005, 2010, and 2015 where each timestamped 

year represents multi-year average forest cover conditions during that period. Rather than 

implementing time-varying forest cover, the time-averaged forest cover over these 4 composites 

is applied for the whole reanalysis period. All inputs are downscaled or aggregated to the chosen 

model resolution. For example, the 1-km AVHRR dataset is first interpolated to the 30 m 
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resolution of the raw SRTM DEM at the nearest grid and then aggregated to the 480-m model 

resolution. 

The meteorological forcings used in this dataset include 2-m air temperature, 2-m 

specific humidity, 10-m zonal and meridional wind speed, surface pressure, surface precipitation, 

and surface downwelling shortwave (Margulis, Liu, et al., 2019). The raw MERRA2 

precipitation is perturbed to account for the expected bias and uncertainty in snowfall inputs (see 

more detail in the Uncertainty Parameters and Measurement Error section). In addition to 

precipitation, the bias and uncertainties of MERRA2 air temperature, dew point temperature 

(computed from MERRA2 specific humidity), and shortwave radiation are represented via 

ensemble perturbations. Hourly snowfall is computed by downscaled and bias-corrected air 

temperature and precipitation using a rain–snow threshold of 2°C. When air temperature is below 

the threshold, precipitation is classified as snowfall. Table 2.2 summarizes the static and dynamic 

inputs used to generate the dataset, as well as assimilated data described in the next section. 

Table 2.2 Static and dynamic model inputs and assimilated data 

Inputs Dataset Resolution 

Static Inputs 

SRTM  1 arcsecond × 1 arcsecond 

ASTER DEM   1 arcsecond × 1 arcsecond 

AVHRR landcover    1 km × 1 km 

GLCF forest cover   30 m × 30 m 
Meteorological 

Forcing MERRA2  0.5° × 0.625° 

Assimilated Data Landsat Imagery  30 m × 30 m 
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2.2.3 Assimilated Landsat fSCA Data 

The timeseries of derived Landsat fSCA (raw resolution of ~30 m aggregated to 16 

arcseconds), over the course of a WY is used as the measurement constraint in the Bayesian 

particle batch smoother (PBS) update. The retrieval of Landsat fSCA is obtained through 

applying linear spectral unmixing methods described in Painter et al. (2003) and Cortés et al. 

(2014) using Vis-NIR reflectance measured from three Landsat satellites: 1) Landsat 5 Thematic 

Mapper (TM) from 1985 to 2011; 2) Landsat 7 enhanced Thematic Mapper (ETM +) from 1999 

to present, and 3) Landsat 8 Operational Land Images (OLI) from 2013 to present. Orbital 

characteristics of the Landsat platform provide swath images every 16 days (~23 images per 

year). Adjacent swaths contain some overlap such that some locations may have up to ~46 fSCA 

images from a single satellite per year. This is the typical number of available measurements 

from 1985–1999 (when only Landsat 5 is available) and in 2012 (when only Landsat 7 is 

available). In the other years, where two satellites are available (i.e., 1999–2011 and 2013–

present), the number of available measurements is doubled. The failure of Landsat 7 Scan Line 

Corrector (starting in 2003) removes ~22% of its image areas, thus reducing the number of 

measurements per year (USGS(USGS, 2004)). However, the number of measurements described 

above provide only an upper limit on those used in the WUS–SR. Cloud contamination can 

significantly reduce the number of available (assimilated) measurements. Following the cloud 

screening methods described in Margulis, Liu, et al. (2019) and Liu et al. (2021), the internal 

Landsat cloud mask is used to attempt to exclude images with cloud cover fraction greater than 

40%. For those images included, the internal cloud masks are used to screen out any cloudy 

pixels. Thus, areas identified as contaminated by clouds are removed before assimilation which 

reduces the available number of measurements. Though errors introduced by omission or 



 

16 
 

commission are inevitable, they are implicitly accounted for in the snow reanalysis framework as 

described in the Section 2.2.4.3 section below.  

Fig. 2.3 shows that the total numbers of cloud-free fSCA measurements are much fewer 

in WYs 1992 and 2012 when only one Landsat platform is available over 10 months of the WY 

compared to WYs 2002 and 2018 when two Landsat satellites are available over the full WY. 

The number of available fSCA measurements is associated with satellite swaths that may cause 

spatial artifacts in posterior estimates within a WY. Grid cells with no fSCA measurements (no 

assimilation) or limited fSCA measurements may yield inconsistent results with grid cells that 

have abundant fSCA measurements. In the PN, spatial artifacts in the SWE estimates are more 

frequently observed when only one Landsat is available, where cloudy days are more common in 

the melting season. The method is capable of jointly assimilating other fSCA data (e.g., MODIS, 

Margulis, Liu, et al., 2019) or other relevant snow data (e.g., snow depth, Margulis, Fang, et al., 

2019). The dataset presented herein is chosen to use Landsat-only data to provide a long-term 

homogeneous snow reanalysis product. 
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Figure 2.3 Illustration of the number of cloud-free Landsat measurements used in the WUS–SR 

for four WYs (top four panels) and Landsat mission timelines (bottom panel). Landsat images 

with diagnosed cloud fractions of 40% are excluded entirely and those will less than 40% use the 

Landsat cloud mask to screen out cloudy measurements. The four illustrative WYs include: (a) 

WY 1992 and (c) 2012 when one Landsat satellite is in orbit, and (b) WY 2002 and (d) 2018 

when two Landsat satellites are in orbit. The stripes showing a larger number of measurements 

are the overlapping areas between adjacent Landsat tiles. The temporal coverage of 

measurements in (e) shows the Landsat 5, 7 and 8 mission timelines. Periods with only one 

Landsat satellite are shaded with a gray background. The orange hatched areas indicate the four 

WYs present in maps in the top panels. 
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2.2.4 Uncertainty Parameters and Measurement Error 

The ensemble Bayesian framework described above is applied by considering and 

modeling key sources of uncertainty and error. These include uncertainty in meteorological 

inputs and model parameters controlling snow albedo and sub-grid distribution, and fSCA 

measurement errors as described in more detail below and which follow those in Margulis, Liu, 

et al. (2019). 

2.2.4.1 Perturbed Meteorological Forcings  

The a priori meteorological forcing uncertainties are embedded in the prior ensemble via 

perturbations to the nominal (MERRA2) inputs using parameters randomly generated from 

specified distributions. The uncertainty and bias correction models used are similar to those that 

have been successfully applied to the Sierra Nevada (Margulis, Cortés, Girotto, & Durand, 

2016), Andes (Cortés & Margulis, 2017), and High Mountain Asia (Liu et al., 2021) to 

downscale and perturb forcings. Forcing downscaling uses a topographic correction approach 

following Girotto, Margulis, et al. (2014). The raw MERRA2 forcings are first (bilinearly) 

interpolated to the snow reanalysis grid followed by an elevation correction using differences 

between the (coarser resolution) MERRA2 and (higher resolution) reanalysis DEMs. 

Downscaled precipitation, air temperature, dew point temperature and shortwave inputs are bias-

corrected and perturbed using the formulation (Margulis, Liu, et al., 2019): 

 2j j MERRAPPT b PPT= ⋅  (1) 

 
,, , 2 a ja j a MERRA TT T ε= +  (2) 

 
,, , 2 d jd j d MERRA TT T ε= +  (3) 

 ( ) 21j j MERRASW SWγ= − ⋅  (4) 
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where PPT, Ta, Td, and SW represent the precipitation, air temperature, dew point temperature, 

and shortwave radiation forcings respectively, the subscript j represents the perturbed forcing 

realization within the ensemble and MERRA2 represents the downscaled MERRA2 forcings 

using the downscaling described above. The random variable b represents a lognormally 

distributed multiplicative precipitation perturbation. The random variable εTa and εTd  represent 

normally distributed additive error perturbations of air temperature and dew point temperature, 

respectively. The random variable γ represents a normally distributed multiplicative shortwave 

perturbation that varies with solar index (SI, ratio of MERRA2 solar radiation over clear sky 

solar radiation) to account for varying errors under clear-sky vs. cloudy-sky conditions 

(Margulis, Liu, et al., 2019).  

The moments of the precipitation parameter b distribution are estimated based on the 

same methodology described in Liu & Margulis (2019) from a sub-sample of 10 tiles across the 

WUS spanning a range of physiography and climatology (Fig. 2.1 in bold boxes). The 

precipitation uncertainty is quantified by running the snow reanalysis framework using a uniform 

(i.e., “uninformative”) distribution for the parameter b~U(0.1, 5) at the 10 tiles. After 

assimilating fSCA measurements using the PBS approach, a log-normal distribution is fitted to 

the posterior b values from all pixels and replicates in those 10 tiles (Table 2.3). The fitted 

distribution is then treated as the prior distribution for the full WUS–SR domain.  

The derivation of uncertainty models for air temperature, dew point temperature and 

shortwave uncertainty analysis followed Girotto, Margulis, et al. (2014) by comparing 

downscaled MERRA2 forcings to in situ measurements across the WUS. The uncertainties of 

MERRA2 forcings are quantified based on in situ Snow Telemetry network (SNOTEL) and Soil 

Climate Analysis Network (SCAN) air temperature, shortwave, and dew point temperature 
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measurements. For air temperature and dew point temperature, the differences between 

downscaled MERRA2 and in situ data (i.e., distribution of temperature errors εTa and εTd) are 

fitted with normal distributions separately. The in situ solar radiation measurements and 

downscaled MERRA2 data are used to fit normal distributions (Table 2.3) to the multiplicative 

parameter γ whose mean and standard deviation are polynomial functions of the SI.    

Table 2.3 summarizes the fitted parameters of the uncertainty models. The multiplicative 

precipitation factor b follows a lognormal distribution with mean of 1.80 and coefficient of 

variation (CV) of 0.69, which corrects the underestimation in raw MERRA2 precipitation used 

as input to the LSM. The normally distributed air temperature error εTa, has a positive mean of 

0.85 K, while the dew point temperature error εTd has mean of -1.37 K. The quantified mean 

parameters identify (and correct) a cold and dry bias in the MERRA2 data before running the 

LSM-SDC to generate prior snow estimates. 

2.2.4.2 Perturbed Model Parameters  

The snow reanalysis framework additionally acknowledges sub-grid snow heterogeneity 

(resulting in fractional snow-covered area) and the uncertainties in snow albedo that result from 

different dust conditions.  

The sub-grid distribution of snow cover and SWE is captured by the Liston (2004) SDC 

model with the free parameter representing the coefficient of variation (β) of the lognormal 

distribution. The free parameter β itself is treated as a uniformly distributed (~U(0.05, 0.8), 

Margulis, Liu, et al., 2019) uncertainty parameter. 

The uncertainties in snow albedo in the visible band are accounted for in the BATS snow 

albedo (αvis) model:  
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 , ,(1 )vis j vis j age VOC fα α= −  (5) 

where Cvis is a uniformly distributed (~U(0.2, 0.45), Margulis, Liu, et al., 2019) uncertainty 

parameter chosen to span clean to dusty snow conditions (Table 2.3). The variable fage represents 

the fraction of snow albedo reduction due to snow aging. The fresh snow albedo αVO is set to 

0.95. Such an approach does not include any explicit information on dust, but instead tries to 

realistically span the uncertainty when dust may be present. 

Table 2.3 Distributions of meteorological forcings and model parameter perturbations with 

details described in the Uncertainty Parameters and Measurement Error section. Std. Dev. 

represents standard deviation and CV represents the coefficient of variation. 

Parameters Distribution Uncertainty Parameter Distributions Statistics 
Meteorological Forcings 

b (PPT) Log normal 
Mean CV 
1.80 0.69 

εTa (Ta) Normal 
Mean Std. Dev. 
0.85 K 1.39 K 

εTd  (Td) Normal 
Mean Std. Dev. 

-1.37 K 1.20 K 

γ (SW) Normal 

Mean Std. Dev. SI 
0.2548 0.39 < 0.5 

3.66·SI3 – 1.88·SI3 + 1.39·SI – 0.05 –0.39·SI + 0.58 0.5 to 1 
0 0.19 >1 

Model Parameters 

Cvis (αvis) Uniform 
Minimum Maximum 

0.2 0.45 

β (SDC) Uniform 
Minimum Maximum 

0.05 0.8 

2.2.4.3 Measurement Error 

The data assimilation framework requires specification of fSCA error standard deviation 

as an input. The measurement error of retrieved Landsat fSCA is specified as 10% at ~500 m, 

which is consistent with previous work(Liu et al., 2021; Margulis, Liu, et al., 2019). The 
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measurement errors between different fSCA measurements are assumed to be uncorrelated in 

space and time. 

2.3 Data Records 

The raw gridded 16 arcsecond (~ 500 m) daily snow reanalysis dataset over the WUS 

(WUS–SR) is publicly available at the National Snow and Ice Data Center 

(https://doi.org/10.5067/PP7T2GBI52I2)(Fang et al., 2022) in netCDF format. It starts from WY 

1985 (Oct. 1st, 1984) to WY 2021 (Sept. 30th, 2021) and will be extended for future WYs when 

available (Table 2.4). The output files store daily maps of posterior SWE, fSCA, and snow depth 

within a 1° by 1° tile (Fig. 2.1) for a given WY. The results presented in this paper show the 

ensemble median of SWE (an output that is determined from the discrete PDF of posterior 

weights). The ensemble mean, standard deviation, and interquartile range of outputs are also 

provided in the dataset. Ancillary or derived data products (e.g., non-seasonal snow mask) are 

available upon request. 

Table 2.4 Spatial and temporal information of the WUS–SR dataset. 

Spatial Information 

Coverage Northernmost: 49° N; Southernmost: 31° N 
Easternmost: 102° W; Westernmost: 125° W 

Resolution 16 arcseconds (~ 500 m) 
Distribution tile dimension 1° by 1° 
Geographic coordinate system WGS 84 

Temporal Information 

Coverage Oct. 1st, 1984 – Sep. 30th, 2021 (i.e., WYs 1985-
2021) 

Output Resolution Daily 

https://doi.org/10.5067/PP7T2GBI52I2
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2.4 Technical Verification 

Fig. 2.4 shows a sample of the seasonal cycle and spatial distribution of SWE over HUC2 

basins and the entire WUS domain in WY 2019. No SWE or snow depth measurements are 

assimilated in deriving the WUS–SR dataset. Thus, in situ SWE and snow depth measurements, 

and ASO SWE and snow depth estimates are used as independent verification datasets. Landsat 

fSCA measurements are assimilated into the snow reanalysis framework assuming a 

measurement error (standard deviation) of 10%(Margulis, Liu, et al., 2019). Though Landsat 

fSCA cannot be used for independent verification, the WUS–SR posterior fSCA estimates, 

which are fitted to these measurements using a likelihood function, are expected to have 

comparable bulk error. The snow reanalysis framework has been successfully applied previously 

to generate datasets over the Sierra Nevada, Andes, and High Mountain Asia (Margulis, Cortés, 

Girotto, & Durand, 2016; Cortés & Margulis, 2017; Liu et al., 2021).  

 
Figure 2.4 Illustrative results from the WUS–SR SWE estimates in WY 2019. (a) Seasonal cycle 

of SWE volume (km3) integrated over HUC2 basins. (b) Spatial distribution of SWE (meters) 

over part of the Sierra Nevada on March 1st, WY 2019. (c) Spatial distribution of WUS SWE 

(meters) on March 1st, 2019. The boxed area in (c) represents that shown in (b). 
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2.4.1 Verification with in situ Data  

In this section, grid-averaged reanalysis SWE and snow depth are compared with point-

scale in situ measurements. It should be acknowledged a priori that there are inevitable 

representativeness issues in the comparison between point-scale in situ data and grid-averaged 

snow reanalysis data. The WUS–SR estimates are modeled with assumed sub-grid heterogeneity 

within each ~500 m grid cell (which is modeled via a lognormal distribution) meant to account 

for the complex sub-grid variations in terrain (elevation, slope, aspect), forest cover, and 

meteorological forcings. Given that in situ stations are often sited in non-representative regions 

of a grid cell (i.e., in sheltered flat forest clearings), it is unlikely that the grid-averaged 

SWE/snow depth (spanning ~ 250,000 m2) should match the point-scale in situ SWE/snow depth 

(spanning ~ 10 m2). Nevertheless, in situ measurements, from the SNOTEL and CA Department 

of Water Resources (CADWR) networks, represent the best available data that covers much of 

the WUS and extends back several decades. While not expected to match each other, the 

verification herein is meant to illustrate consistency between the in situ measurements and 

WUS–SR estimates.      

2.4.1.1 Peak SWE comparison with in situ data 

In situ SWE measurements from WY 1985 to 2021 are taken from 1) the SNOTEL 

network (https://www.wcc.nrcs.usda.gov/snow/) managed by the U.S. Natural Resources 

Conservation Service (NRCS), and 2) CADWR (https://cdec.water.ca.gov/dynamicapp/staSearch 

from sensor type: “SNO ADJ (82)”), collections of automated snow pillows in the WUS. For in 

situ verification, we pair each in situ site with the closest snow reanalysis grid based on the 

geolocation of these two datasets. The precision of in situ coordinate values varies from 

0.000001° (< 1 m) to 0.01° (> 1 km). Considering the potential for geolocation mismatch, the 

https://www.wcc.nrcs.usda.gov/snow/
https://cdec.water.ca.gov/dynamicapp/staSearch


 

25 
 

nine nearest pixels (Girotto, Cortés, et al., 2014; Margulis, Cortés, Girotto, & Durand, 2016; 

Margulis et al., 2015) are additionally used to compare in situ and WUS–SR peak SWE. In this 

latter approach, the differences between in situ peak SWE and the neighboring WUS–SR grid 

cell peak SWE with the smallest difference among the nine nearest snow reanalysis grids are 

used. To compare the SWE on the same day, peak SWE day determined by in situ SWE is used 

to extract peak SWE from both datasets throughout the paper.  

Figure 2.5 presents the density scatter plots comparing in situ peak SWE values against 

collocated grid-cell posterior peak SWE values. Peak SWE values less than 1 cm are screened 

out from the comparison. In total, 928 in situ sites are used in the comparison with the WUS–SR 

SWE estimates. To understand the performance of the WUS–SR dataset across different regimes 

in the WUS, verification is conducted for each HUC2 basin. The comparison is quantified using 

correlation coefficient (R), mean difference (MD), and root mean square difference (RMSD). 

Table 2.5 summarizes the number of total site-years, and statistics for both prior and posterior 

reanalysis SWE against in situ SWE within each HUC2 basin and over the WUS. 

Compared with the performance of the prior peak SWE estimates (i.e., not constrained by 

Landsat fSCA), posterior SWE estimates show a better correlation (higher R) with less bias and 

random error (lower MD and RMSD) than the prior SWE over most of the HUC2 basins. 

Posterior SWE in CA has the highest correlation against in situ SWE (R = 0.82). The correlations 

with in situ SWE over the entire WUS are improved from 0.74 (prior) to 0.77 (posterior). 

Posterior peak SWE in UCRB has lower bias and uncertainty compared against in situ data with 

a relatively small MD of 0.06 m in absolute value (reduced by 62% from prior MD) and RMSD 

of 0.19 m (reduced by 27%). Over the WUS, in situ peak SWE is (on average) larger than the 

WUS–SR peak SWE (negative MD). Sub-grid topographic variability, snow-forest interactions, 
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and wind-driven snow redistribution may all cause differences seen between grid-averaged peak 

SWE and point-scale in situ peak SWE. The statistics for PN indicate comparable correlation of 

in situ and both prior and posterior snow reanalysis, however the MD and RMSD do not get 

improved from posterior to prior. Fewer cloud-free fSCA measurements are available in PN, 

which limits the improvement of snow reanalysis SWE via data assimilation.  

 
Figure 2.5 Density scatter plot of in situ (snow pillow) peak SWE and collocated posterior (grid-

average) peak SWE grouped by HUC2 basins over WYs 1985 to 2021. The solid black line is the 

1:1 line. The correlation coefficient (R), mean difference (MD), and root mean square difference 

(RMSD) are shown for each HUC2 basin. In situ data with peak SWE values greater than 1 cm 

are included in the comparison. 
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Table 2.5 Number of in situ sites and comparison metrics between in situ (snow pillow) peak 

SWE and collocated grid-averaged snow reanalysis prior and posterior (post.) peak SWE 

grouped by HUC2 basins. Comparison statistics including correlation coefficient (R), mean 

difference (MD), and root mean square difference (RMSD). MD is computed by subtracting snow 

reanalysis SWE from in situ SWE. A negative MD represents that the snow reanalysis peak SWE 

is less than mean of in situ peak SWE. 

HUC2 # Sites # Site-
years 

R MD (m) RMSD (m) 
Prior Post. Prior Post. Prior Post. 

CA 183 4911 0.75 0.82 -0.19 -0.15 0.36 0.30 
PN 280 8566 0.76 0.76 -0.11 -0.22 0.31 0.36 
GB 114 2776 0.49 0.65 -0.25 -0.10 0.34 0.23 

UCRB 134 3823 0.51 0.70 -0.16 -0.06 0.26 0.19 
MO 139 4114 0.47 0.70 -0.15 -0.14 0.27 0.23 

Others 78 1736 0.59 0.72 0.19 0.08 0.25 0.16 
WUS Total 928 25926 0.74 0.77 -0.16 -0.15 0.31 0.28 

To acknowledge the potential geolocation mismatch, Fig. 2.6 provides verification of in 

situ peak SWE and posterior reanalysis peak SWE using an approach comparing to the best 

match among the nine nearest pixels. The WUS-wide correlation coefficient (R), MD and RMSD 

of posterior peak SWE and in situ peak SWE is 0.91, -0.08 m, 0.18 m, respectively. Compared to 

the approach used in Fig. 2.5, the posterior reanalysis peak SWE in Fig. 2.6 (as expected) is more 

correlated with in situ peak SWE (R values above 0.9), and has lower MD (< 0.13 m) and RMSD 

(< 0.24 m) over the WUS and at all HUC2 basins. Posterior reanalysis peak SWE is still lower 

than the in situ peak SWE at most of the sites, with the largest MD found in the PN. The PN has 

fewer cloud-free fSCA measurements, which may lead to larger errors than in regions with fewer 

cloud-contaminated images. The MD in CA is -0.07 m, which is within the range of -0.12 to 0.01 

m as reported in Margulis et al.(Margulis, Cortés, Girotto, & Durand, 2016), where the original 

90-m Sierra Nevada SWE reanalysis was compared against in situ peak SWE using the same 

approach. 
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Figure 2.6 Same as the density scatter plot in Fig. 2.5 but using posterior (grid-average) peak 

SWE from the best match among nine closest neighbor pixels. 

Figure 2.7a shows that the differences between posterior peak SWE and in situ peak 

SWE are sensitive to forest fraction exceeding 40%. The median RMSD remains stable at ~ 0.18 

m for forest fractions below 40%, and gradually increases to ~ 0.38 m when forest fraction 

increases to over 60%. The larger RMSD at higher forest fraction pixels might be caused by 1) 

larger disparities between in situ sites (that tend to be in forest clearings) and collocated pixels 

with large averaged forest coverage fraction and/or 2) larger estimation errors in WUS–SR peak 

SWE in areas with large forest coverage. Aside from forest coverage effects, the difference 

between in situ and posterior peak SWE is impacted by the number of fSCA measurements as 

illustrated in Fig. 2.7b. When over 40 fSCA measurements (after cloud screening) are available, 
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the median of absolute difference is as low as ~ 0.11 m. As the number of annual fSCA 

measurements is reduced, the median and spread of the absolute difference of peak SWE for 

each year increased. Figure 2.7c show that the peak SWE days determined by in situ data is 

highly correlated to peak SWE days determined by posterior WUS–SR SWE (R = 0.73). Overall, 

in situ SWE peaks later than the WUS–SR SWE with a MD value of -10 days.  

 

Figure 2.7 (a) RMSD of peak SWE as a function of averaged forest fraction for each site. RMSD 

is determined at each site from the 37-year peak SWE from in situ and posterior WUS–SR. (b) 

Absolute difference of peak SWE over the number of fSCA measurements (after cloud 

screening) for each year and site. The absolute difference of peak SWE is computed using in situ 

and posterior peak SWE. (c) Density scatterplot of peak SWE day from in situ and posterior 

WUS–SR for each year and site. 

2.4.1.2 Temporal (daily) SWE comparison with in situ data 

Figure 2.8 shows the spatial distribution of verification statistics at in situ sites by 

comparing posterior daily SWE against in situ daily SWE greater than 2.54 mm.  
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Figure 2.8 Spatial distribution of evaluation statistics determined via comparison of in situ daily 

SWE and collocated posterior SWE over WYs 1985 to 2021. Statistics include (a) R, (c) MD in 

meters, (d) RMSD in meters, (e) MD as percentage of peak SWE, and (f) RMSD as percentage of 

peak SWE. For reference, the in situ site elevations in meters are shown in (b). Daily SWE 

values less than 2.54 mm are excluded. 

Over the entire WUS, posterior daily SWE at in situ sites have high correlations (median 

of 0.79), small MD (median of -0.08 m) and RMSD (median of 0.17 m) against in situ SWE. The 

comparison suggests that posterior daily SWE agrees reasonably well with daily in situ SWE, 

especially in CA and UCRB with higher correlations and relatively lower MD and RMSD. Daily 

posterior SWE is slightly lower than point-scale in situ SWE (Fig. 2.6b. negative MD in blue) at 
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most of the sites. At some in situ sites in the western PN, posterior SWE shows higher 

differences. Figure 8 (e) and (f) show that low MD and RMSD expressed as percent of peak SWE 

are observed at some sites with high MD and RMSD due to deep snow. For sites with both large 

absolute and percent of differences, some of these differences may represent   larger errors 

caused by fewer available fSCA measurements after clouds screening. Finer resolutions may be 

needed to capture large sub-grid SWE values. 

2.4.1.3 Peak snow depth comparison with in situ data 

In situ snow depth measurements are taken from the same sources as SWE (i.e., NRCS 

and CADWR from sensor type: “SNOW DP (18)”). Similar verification steps as with peak SWE 

(Fig. 2.5) are conducted for snow depth as shown in Fig. 2.9. Compared to the SWE 

measurements, however, in situ snow depth measurements appear to be of lower quality with 

some station-years showing snow depth with persistently high values throughout the year, non-

physical oscillations in the measurements, and other erroneous behavior that are clearly 

inconsistent with the corresponding SWE measurements. Hence, extra screening is applied to the 

data before being used for verification. In situ snow depth measurements that changed by more 

than 1 m in a single day were assumed erroneous and excluded from the analysis. Further, 

assuming snow density is within the range of 200 to 500 kg/m3 at the peak day, snow depth 

measurements outside 2-5 times the corresponding SWE measurements were removed. To avoid 

incorrectly diagnosing peak snow depth day from snow depth measurements with missing data 

after screening, the in situ peak SWE day was used to determine the in situ snow depth used for 

comparison with posterior reanalysis estimates. Overall, posterior peak snow depth is correlated 

with in situ peak snow depth (R = 0.72) and has an MD of -0.36 m and RMSD of 0.66 m over the 

WUS. Compared to the results from peak SWE verification, the correlation coefficient between 
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in situ and posterior peak snow depth is about the same at all HUC2 basins, with the highest 

value (R = 0.81) in CA. The MD and RMSD values for peak snow depth are around 2 to 3 times 

larger than those in peak SWE, partially caused by larger snow depth values than SWE and 

perhaps the poorer quality of in situ snow depth measurements.  

 
Figure 2.9 Same as Fig. 2.5 but for peak snow depth. Peak day is determined by in situ peak 

SWE. In situ data with peak snow depth values greater than 5 cm are included in the comparison.  

2.4.2 Verification with Airborne Snow Observatory (ASO) Data 

The WUS–SR estimates are further verified against gridded SWE and snow depth 

estimates from ASO (Painter et al., 2016). The lidar-based ASO measures snow depth via an 

airborne laser scanner (ALS) based on the differences in elevations between a snow-off day and 

snow-on days. ASO SWE is estimated from the high-resolution snow depth measurements and 
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modeled snow density (Painter et al., 2016). For comparison, the 50-m ASO SWE and snow 

depth snapshots are aggregated to the WUS–SR SWE model resolution. ASO data is available 

over select sites in California, Colorado, and Washington starting from 2013. While abundant 

snapshots are available in the Tuolumne River Basin in California, limited snapshots (commonly 

once per year) were taken at most of the ASO sites. ASO snow depth is a relatively accurate 

measurement with measurement error less than 0.02 m at a 50 m × 50 m grid. Model error (5% - 

8% (Painter et al., 2016) could exist in modeled snow density, which is expected to propagate to 

ASO SWE estimates. 

ASO SWE and snow depth estimates are compared with prior and posterior ensemble 

median SWE and snow depth maps on coincident days (Fig. 2.10 and 2.11). Table 2.6 and 2.7 

reports the statistical metrics for comparisons closest to April 1st at sampled ASO basins: 

USCATB (Tuolumne River Basin, California), USWAOL (Olympic Mountains, Washington), 

and USCOCM (Aspen/Castle-Maroon, Colorado).  

2.4.2.1 SWE map comparison  

For the California domain (USCATB), posterior SWE is highly correlated with ASO 

SWE (ranging from 0.81 to 0.91) compared against prior SWE (ranging from 0.50 to 0.71). A 

negative MD indicates that the WUS–SR SWE is less than ASO SWE (on average) in Tuolumne. 

The difference significantly decreases from prior to posterior estimates in most years, along with 

decreased RMSD. WY 2015 was a historically dry year, in which posterior SWE shows no bias 

compared with ASO SWE, with a small RMSD of 0.07 m. Posterior SWE in WY 2017 has the 

highest correlation (0.91) with ASO SWE compared with a lower correlation (0.56) in prior 

SWE. MD drops from -0.13 m to -0.04 m, and RMSD decreases by half from prior to posterior in 

WY 2017. Fig. 2.10 (top row) illustrates that Tuolumne-averaged posterior SWE (1.23 m) is 
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comparable with ASO SWE (1.27 m), suggesting that the posterior WUS–SR SWE and ASO are 

in good agreement with respect to the basin-wide mean SWE. The prior underestimates SWE at 

high elevations in the northern parts and southern edges of Tuolumne basins whereas it 

overestimates shallow SWE near the basin outlet. The performance of the spatially distributed 

posterior SWE is considerably improved over the prior compared with ASO SWE. Though MD 

in WY 2019 increases from -0.06 m to -0.14 m (from prior to posterior), RMSD in that year 

decreases from 0.34 m to 0.27 m. The differences between prior SWE and ASO SWE are large 

in absolute values, while large positive differences are offset by negative differences causing a 

low MD for prior SWE in WY 2019. 

Non-seasonal SWE in portions of the PN (USWAOL) site is a potential error source in 

both ASO SWE and WUS–SR SWE. Snow depth retrieved from ASO may be erroneous at 

glacier pixels due to the lack of snow-off flights. The snow reanalysis framework does not 

include explicit modeling of glaciers. Therefore, non-seasonal snow pixels are removed when 

comparing the ASO SWE with WUS–SR SWE. This paper generates the WUS–SR non-seasonal 

snow mask following the method described in Liu et al.(Liu et al., 2021). To summarize the 

method herein, a pixel is considered as a non-seasonal snow pixel if the annual minimum SWE 

exceeds 10% of the annual maximum SWE at least once over the dataset period. After applying 

the non-seasonal snow mask, the mean posterior SWE is 0.51 m which is slightly lower than 

0.55 m in ASO SWE. Though the correlation coefficient is high (over 0.8) between prior snow 

reanalysis SWE and ASO SWE, the MD and RMSD in absolute value is over 0.50 m and 0.60 m 

respectively, which are both reduced significantly (by 94% and 44% respectively) in the 

posterior. 
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Figure 2.10 Comparison of ASO SWE with prior and posterior SWE at three ASO sites (top 

four rows): Tuolumne River Basin, California, (USCATB) in WY 2017 (left column); Olympic 

Mountains, Washington, (USWAOL) in WY 2016 (middle column); Aspen/Castle-Maroon, 

Colorado (USCOCM) in WY 2019 (bottom column). The prior maps are not shown, but instead 

included implicitly via the difference maps. The bottom row shows the relative RMSD between 

ASO and WUS–SR SWE as a function of forest fraction. RMSD (computed from pixels with 

both ASO and WUS–SR SWE greater than 1 cm) is computed for each forest fraction bin and 

then normalized by bin-averaged ASO SWE to get relative RMSD. 
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Table 2.6 SWE comparison statistics between ASO SWE estimates and prior and posterior 

(post.) snow reanalysis SWE on ASO measurement days (Day of Water Year; DOWY) closest to 

April 1st. USCATB represents the Tuolumne River Basin (California); USWAOL represents the 

Olympic Mountains (Washington); USCOCM represents Aspen/Castle-Maroon (Colorado). 

ASO basins Year DOWY 
R MD (m) RMSD (m) 

Prior Post. Prior Post. Prior Post. 

USCATB 

2015 185 0.54 0.81 -0.05 0.00 0.09 0.07 
2016 184 0.59 0.83 -0.24 -0.15 0.37 0.25 
2017 183 0.56 0.91 -0.13 -0.04 0.63 0.32 
2018 205 0.63 0.82 -0.18 -0.11 0.30 0.22 
2019 175 0.62 0.84 -0.06 -0.14 0.34 0.27 
2020 196 0.71 0.88 0.03 0.05 0.14 0.13 
2021 211 0.50 0.82 -0.12 0.03 0.18 0.13 

USWAOL 2016 181 0.81 0.81 0.53 -0.03 0.68 0.38 
USCOCM 2019 189 0.45 0.75 0.41 0.01 0.47 0.17 

In Colorado (USCOCM), the mean of posterior SWE (0.55 m) is comparable with ASO 

SWE (0.54 m). The MD is reduced by 98% (to 0.01 m) and RMSD is reduced by 64% (to 0.17 

m) from prior to posterior estimates. Although the posterior correlation coefficient is 

significantly improved over the prior, it is lower than the values seen at the USCATB and 

USWAOL sites. In Colorado, snow albedo has been shown to be affected by dust, black carbon, 

and other light-absorbing particles in recent decades(Deems et al., 2013). In the current snow 

reanalysis framework, the impact of dust on snow albedo is modeled through an unconstrained 

uncertainty parameter. Future work could be done to apply a more explicit treatment of dust 

impacts on snow albedo to yield potentially improved results. 

The effect of forest fraction on the performance of reanalysis SWE estimates is further 

illustrated using ASO SWE in Figure 10. The Olympics basin has denser forest fraction with a 

mean of 58%, while the Tuolumne and Aspen/Castle-Maroon basins have mean forest fractions 

of 17% and 20%, respectively. At all three ASO basins, the relative RMSD of posterior SWE 
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increases with the forest fraction. This is expected since Landsat-derived fSCA is only available 

over bare areas and/or forest gaps within a pixel. As forest cover increases, less useful 

information is available, while information is maximized at 0% of forest cover. However, the 

improvement in prior to posterior SWE estimates increases with forest coverage. This is likely 

related to the increased complexity of modeling SWE in dense forest areas where the larger 

uncertainty in forest areas is still reduced with the assimilation of fSCA. 

2.4.2.2 Snow depth map comparison  

Similar to the SWE comparison, posterior snow depth is verified against the ASO snow 

depth measurements (Fig. 2.11, Table 2.7). The spatial distribution of snow depth differences is 

comparable to the SWE differences with a correlation coefficient (R) of 0.85 and 0.76 in 

Washington and Colorado, respectively, and a value above 0.82 in California. In California, the 

MD of posterior snow depth is reduced by over 30% and RMSD is reduced by over 20% 

compared to the statistics of prior snow depth over WY 2015 to 2018, and WY 2021. In WY 

2019 and 2020, while the posterior MD values are larger than the prior MD (positive and 

negative differences cancel each other out), the R values are as high as 0.9, and the RMSD values 

are reduced by 28% and 30%, respectively. In Washington, the posterior MD is close to 0 with 

RMSD significantly reduced by over 50% from the prior to the posterior estimates. In Colorado, 

despite the absolute values of MD and RMSD for posterior snow depth being more than twice the 

values of posterior SWE statistics (due to the larger dynamic range), the estimation of posterior 

snow depth is significantly improved from the prior snow depth with MD and RMSD reduced by 

60% and 40%, respectively. 
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Figure 2.11 same as Fig. 2.10 (top four rows) but for snow depth. 

Table 2.7 same as Table 2.6 but for snow depth. 

ASO basins Year DOWY 
R MD (m) RMSD (m) 

Prior Post. Prior Post. Prior Post. 

USCATB 

2015 185 0.54 0.82 -0.10 -0.01 0.21 0.14 
2016 184 0.73 0.90 -0.38 -0.18 0.69 0.41 
2017 183 0.61 0.92 -0.13 0.09 1.16 0.62 
2018 205 0.71 0.83 -0.32 -0.18 0.60 0.46 
2019 175 0.72 0.90 -0.01 -0.20 0.78 0.56 
2020 196 0.75 0.90 0.02 0.05 0.43 0.30 
2021 211 0.50 0.82 -0.33 0.04 0.47 0.29 

USWAOL 2016 181 0.81 0.85 1.34 0.02 1.64 0.76 
USCOCM 2019 189 0.54 0.76 0.75 -0.30 1.03 0.62 
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2.5 Usage Notes 

The snow reanalysis framework described herein is designed to capture seasonal snow in 

mountainous areas and does not model glacier processes. However, some non-seasonal snow and 

glaciers may exist in some regions of the WUS (e.g., the Olympics). Such grid cells can be 

diagnosed and excluded as described above using the non-seasonal snow mask (as diagnosed via 

the snow reanalysis framework). It is recommended to mask out these pixels before comparing 

with other datasets for seasonal snow. 

The WUS–SR dataset is developed from a LSM-SDC model integrated with fSCA data 

assimilation. The strength of the product is in its space-time continuity where highly uncertain 

model-based prior estimates are constrained by snow measurements. While uncertainty and bias 

correction are embedded in the framework, errors and uncertainty in MERRA2 forcings, model 

parameters, and Landsat fSCA retrievals undoubtedly affect the accuracy of SWE estimates. 

Developing the uncertainty models using sparse in situ data and application of uncertainty model 

parameters uniformly over space, likely both oversimplify the true uncertainty and how it varies 

across different physiographic and climatological gradients. 

Compared with the previous framework and inputs used in the published 90-m reanalysis 

dataset over the Sierra Nevada (Margulis, Cortés, Girotto, & Durand, 2016), some key 

updates/changes in the current snow reanalysis framework include: 1) use of MERRA2 forcings 

instead of NLDAS2 forcings, which are globally available and were found to yield marginally 

better SWE estimates relative to ASO estimates in Tuolumne (Margulis, Liu, et al., 2019); 2) use 

of the SRTM DEM (with the ASTER DEM used for void filling) and 3) use of the globally 

available AVHRR landcover map instead of the National Land Cover Database limited in the 
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U.S. These changes are primarily made to use globally available data for extension and 

application to broad spatial domains.   

Future versions of this dataset could include: 1) use of multi-source fSCA measurements 

from Landsat, MODIS, Sentinel, and/or other sources (e.g., VIIRS) to increase the number of 

cloud-free fSCA images (especially in the Pacific Northwest); 2) examination of the impact of 

different forcings (e.g., NLDAS2, MERRA2, ERA5) and their uncertainties; 3) use of time-

varying forest cover to better reflect transient changes; 4) use of dust-on-snow measurements 

(Skiles et al., 2015) to better constrain albedo; and 5) use of multi-resolution approaches (Baldo 

& Margulis, 2018, 2017) to better capture snow estimates in complex terrain with higher 

resolution where necessary; 6) use of fSCA from Landsat 9 in the future versions. 
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CHAPTER 3  

Characterizing snow-streamflow droughts in the Western U.S. and the 

unpredictable case of water year 2021   

Ongoing drought represented as a billion-dollar natural disaster affects 75 million of 

people in the Western U.S. (WUS). Based on the newly developed snow reanalysis data and in 

situ measurements, the severity of snowmelt and streamflow droughts are quantified over study 

period Water Years (WYs) 1988 to 2021. Although snowmelt is often used as the predictor of 

streamflow historically, the severity of snowmelt and streamflow droughts are not always 

coherent. Aggregated over 20 basins in the Sierra Nevada (SN) and Upper Colorado River Basin 

(UCRB), WY 2015 and 2018 were the driest snowmelt years, respectively, whereas 2021 and 

2002 were the driest streamflow years, respectively. The aggregated-snowmelt in 2021 were at 

the 15th percentile in both SN and UCRB, whereas aggregated-streamflow was at the 3rd and 6th 

percentiles, respectively. Among snow-streamflow drought basin-years, 2021 is the only year 

that all basins overestimated streamflow percentiles by 50% based upon the respective snowmelt 

percentiles. This implies that other potential factors contribute to 2021 snow-streamflow drought. 

As selected as the study year due to the widespread unpredictive streamflow, 2021 had 

antecedent soil moisture drought over all the basins in the SN, and half of the basins in the 

UCRB. Additionally, basins to the north of Tuolumne had spring rainfall drought in 2021. 

Together, the extreme 2021 streamflow drought was a compound event modulated by 

contributors linking snow, soil moisture, and streamflow.  
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3.1 Introduction and Background 

Droughts, especially in semi-arid regions like the Western U.S. (WUS), are an ongoing 

concern (Siirila-Woodburn et al., 2021; Williams et al., 2020) that jeopardize ecosystem services 

and socioeconomics including water supply, crop growth, fish and wildlife habitats, hydropower 

generation, and water recreation (Barnett et al., 2005; Bales et al., 2006; Viviroli et al., 2011; 

Huning & AghaKouchak, 2020). In 2021, up to ~75% of the WUS suffered from “extreme or 

exceptional” drought conditions (Williams et al., 2022), which represented a billion-dollar 

natural disaster that affected approximately 75 million people (NCEI, 2022; U.S. Census Bureau, 

2020). In California, 2021 streamflow was the second lowest since 1905 (CADWR, 2021), and 

the severe drought continued in 2022. In mid-August 2021 along the Colorado River, reservoir 

storages in Lakes Mead and Powell, the largest and second largest reservoirs by capacity in the 

U.S., dropped to 30% – 40% of capacities (NASA Earth Observatory, 2021). Even worse, the 

storage of Lakes Mead by the end of August 2022 further dropped to historical low, 28% of 

capacity (NASA Earth Observatory, 2022).    

In the WUS, seasonal snowmelt in key basins historically contributes to as much as 75% 

of total available water supply (Stewart et al., 2004; Li et al., 2017; Siirila-Woodburn et al., 

2021). Hence in situ snow water equivalent (SWE; usually 1 April) is often used as a proxy for 

the total snow water resource availability (Aguado, 1990; Margulis et al., 2016; Nolin et al., 

2021) and as a key input to statistical water supply forecasts. In 2021, California water supply 

forecasts on 1 April overestimated streamflow by 45-68% in key basins (CADWR, 2021). The 

overestimation of streamflow suggests that the historical relationship among streamflow and 

predictors derived from in situ observations such as SWE and precipitation (PPT), poorly 

characterized the streamflow generation and drought in 2021 (Lapides et al., 2022). However, 
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due to the lack of spatially-distributed snow data, the role of snow and other potential causes of 

the 2021 streamflow drought have not been examined in detail. 

In this paper, we utilize a novel snow reanalysis dataset along with in situ datasets to 

quantify the spatial distribution of snow severity and its contribution to snow-streamflow 

drought. Based on the data availability, the roles of snowmelt and other contributors in 

streamflow is assessed over Water Years 1988 to 2021. The scientific questions addressed 

include: 1) What was the space-time variability of snow droughts in the WUS? 2) To what extent 

was snow drought responsible for the streamflow drought? and 3) What was the potential role of 

other contributors to the streamflow drought? The insights gained by examining the droughts 

over the past three decades can be used to understand and mitigate future anomalies, including 

the continuing effects of ongoing multi-year droughts (Williams et al., 2022).

3.2 Study domains, datasets, and methods 

3.2.1 Study domains  

Snow drought severity is examined across the WUS (Fig. 3.1a), but with a focus on 

drought-impacted basins in the Sierra Nevada (SN, Fig. 3.1b) and the Upper Colorado River 

Basin (UCRB, Fig. 3.1c). These sub-domains are chosen for their importance in water supply by 

providing water for more than half of the WUS (US Census Bureau, 2020). Basins in each sub-

domain are selected for analysis based on the availability of naturalized streamflow data.  

Among the basins analyzed, the Feather basin generates streamflow that drains to Lake 

Oroville, the second-largest reservoir in California and a key feature of the California State 

Water Project. Streamflow generated from the Kern basin drains to Lake Isabella, the second-

largest reservoir in southern California. Lake Isabella, Folsom Lake and Oroville Lake provide 
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flood protection for downstream areas in addition to key water supply for irrigation, hydropower, 

and other uses in California’s Central Valley and Sacramento Delta regions, respectively. In 

Colorado, snowmelt from the Colorado Headwaters (hereafter “Headwaters”) and Gunnison 

basins contribute ~ 22% and 10% respectively of the total streamflow above Imperial Dam. Both 

basins are part of the Colorado River Basin, which supplies drinking water for 40 million people 

across the Southwestern U.S. and Mexico and is an important water resource for regional 

irrigation and hydropower (Xiao et al., 2018). 

3.2.2 Datasets and methods 

Based on data availability, WYs 1988-2021 are chosen as the study period, with 2021 

highlighted as the extreme drought year of interest. The data-centric focus of this work is on 

understanding how OCT-JUL streamflow is impacted by snowmelt, with additional contributors 

examined including pre-snow precipitation (PPT) as a proxy for antecedent soil moisture and 

spring (APR-JUL) PPT. To acknowledge the uncertainty of data from different sources, 

percentiles are used throughout to quantify each metric relative to the longer historical record, 

with those having values less than the 30th percentile classified as “drought” conditions (Hatchett 

et al., 2022). More details on each dataset and the associated contributors are provided below. 

3.2.2.1 Snow dataset 

To better examine the role of snow on the drought, spatially continuous SWE estimates 

are taken from a newly developed Western U.S. – Snow Reanalysis dataset (WUS-SR; Fang, Liu 

and Margulis., 2022) that provides daily estimates at a spatial resolution of 16 arcseconds (~480 

m) over the WUS from WYs 1985 to 2021. The dataset is generated using a retrospective snow 

reanalysis framework that assimilates historical Landsat fractional snow-covered area estimates 

over a WY to update snow water equivalent (SWE) and other variables derived from a land 
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surface model coupled with a snow depletion curve. SWE estimates have been validated against 

over 25,000 in situ station-years of data and with an overall correlation coefficient of 0.77. The 

new dataset allows for computing spatiotemporally continuous snow drought metrics at high 

resolution. Ancillary data products of the WUS-SR include meteorological drivers (derived from 

MERRA2 with downscaling and bias-correction, Margulis et al., 2019) such as PPT, at the same 

spatial and temporal scale.  

As a proxy for snowmelt contributions to streamflow, the cumulative daily SWE losses 

(McCrary & Mearns, 2019) are computed at the pixel-scale (Fig. 3.1d) over the OCT-JUL 

integration window. Cumulative daily SWE loss that includes snowmelt and other losses in both 

the accumulation and melt seasons is defined as the snowmelt metric (Fig. 3.1d, red line). The 

OCT-JUL snowmelt proxy (hereafter simply referred to as “snowmelt”) is computed by 

integrating the SWE losses (Fig. 3.1d, yellow bars) over OCT-JUL for each pixel. This metric 

containing actual snowmelt and other losses in both the accumulation and melt seasons is 

designed to capture the integrated seasonal snow contributions to streamflow as opposed to 

traditional single-day snapshots that are sensitive to timing, such as peak SWE and 1 April SWE 

(Appendix A.1, Fig. A.1a). The use of the OCT-JUL window is meant to provide a more 

complete picture of snowmelt instead of the commonly used APR-JUL period. APR-JUL only 

partially captures the snowmelt amount in years when SWE peaks before 1 April (e.g., WY 

2015; Fig. A1b) and neglects the increasingly important contributions in winter (Musselman et 

al., 2021).  

 Other diagnostics, including an antecedent soil moisture proxy and spring rainfall are 

also derived from the WUS-SR and/or its ancillary inputs. The antecedent soil moisture proxy is 

discussed in detail in Section 2.2.3. APR-JUL PPT is aggregated over snowy domain (median 
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long-term SWE greater than 5 cm) to represent springtime PPT (mostly rainfall). All factors 

described herein are analyzed in terms of their percentiles (rank of data to total number of data) 

over the analysis period. The pixel-wise soil moisture proxy is averaged over basins while pixel-

wise OCT-JUL snowmelt and APR-JUL PPT are summed over basins. 

 

Figure 3.1 Climatological (mean over WYs 1988-2021) snowmelt distribution over (a) WUS, 

(b) Sierra Nevada, SN and (c) Upper Colorado River Basin, UCRB. (b) and (c) show in situ 

streamflow sites (gray) and soil moisture sites (red). (d) Schematic illustration of pixel-scale 

SWE, daily SWE losses, cumulative seasonal SWE losses, and OCT-JUL snowmelt (sample 

pixel: 39.98°N, 121.34°W in WY 2021). The other sub-domains in the WUS include: Pacific 

Northwest (PN), Great Basin (GB), and Lower Colorado River Basin (LCRB). 
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3.2.2.2 In situ datasets 

Streamflow data is collected from the California Data Exchange Center (daily full natural 

flow) for sites in the SN, and from the United States Geological Survey (monthly adjusted 

streamflow volumes) for sites in Headwaters and Gunnison from the Snow Telemetry network 

(SNOTEL; Appendix A.2, Table A.1, A.2). Daily naturalized flow over the SN basins is 

integrated to monthly values. A year is eliminated for analysis if more than one month has 

missing data for 15 days or more. At each streamflow gauge, OCT-JUL integrated naturalized 

streamflow is computed and expressed as percentiles to analyze streamflow conditions.  

Soil volumetric water content (VWC) at 5 cm, 20 cm, and 50 cm soil depth is collected 

from SNOTEL/Soil Climate Analysis Network (SCAN) sites with more than 15 years of soil 

moisture data (25 sites in the SN and 12 sites in the UCRB). It is assumed that VWC at 5, 10, 20 

cm represent soil water at 0 – 10 cm, 10 – 30 cm, 30 – 70 cm (Harpold et al., 2017). Depth-

weighted VWC is computed to represent the average soil moisture at each site. In situ SWE and 

precipitation at corresponding soil moisture sites are collected to develop a soil moisture proxy 

described in Section 2.2.3. Due to the limited number of in situ stations that have both soil 

moisture and downstream streamflow measurements, Forestdale (in the SN) and Berthoud 

Summit (in the UCRB) are selected as illustrative sites to demonstrate the role of antecedent soil 

moisture in modulating the snow contribution to streamflow (Section 3.3). Although Forestdale 

is stationed in an eastern-draining SN basin, it is one of the few in situ soil moisture stations with 

a nearby downstream streamflow gauge.  

3.2.2.3 Antecedent soil moisture proxy 

In situ VWC measurements are very limited in space and time in the SN and UCRB. 

Hence a proxy for antecedent (pre-snow) soil moisture is used to analyze the role of soil moisture 
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on streamflow in the basins. To estimate the antecedent soil moisture conditions more broadly 

over the SN and UCRB study regions, pre-snow PPT computed from gridded snow reanalysis is 

used as a proxy for pre-snow soil moisture. The extent to which such a proxy has useful 

information was examined by investigating the relationship between the observed pre-snow PPT 

and pre-snow soil moisture condition at in situ sites within the SN and UCRB regions. Pre-snow 

PPT is defined as the cumulative in situ PPT from 1 September (i.e., the last month in the 

previous WY) to the snow start day of the current WY, and pre-snow VWC is defined as VWC 

at the snow start day. The snow start day is defined as the first day when in situ SWE is greater 

than 2.5 mm for at least 5 continuous days. 

For each year, pre-snow PPT and soil moisture are averaged across all sites to get site-

averaged values over the data record for each region (i.e., SN and UCRB). Site-averaged pre-

snow PPT and soil moisture are further normalized by subtracting the long-term means and 

dividing by the standard deviation values across all years in each region. Linear regression is 

used to fit the normalized site-averaged precipitation and soil moisture over the data record for 

each region separately. The results and application are further discussed in Section 3.3. 

3.3 Results and discussion 

3.3.1 Interannual snow and streamflow conditions 

Based on the WUS-aggregated snowmelt computed from the snow reanalysis dataset, 

WYs 1988, 1990-1992, 1994, 2000, 2005, 2012, 2015, and 2021 are classified as snow drought 

years (Fig. 3.2a). Among the snow drought years, 2015 has the lowest WUS-wide snowmelt 

percentiles over the record. The WUS-wide snowmelt in 2021 was at the 24th percentile, the 8th 

driest year (Fig. 3.2a). Since in situ streamflow measurements are not available over the full 

WUS, only the WUS-wide snowmelt percentile is shown. In both SN and UCRB (Fig. 3.2b and 
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2c), the interannual variability in basin-averaged snowmelt and streamflow percentiles are 

generally in agreement. However, in a given WY, water conditions are not always consistent 

between SN and UCRB. In terms of snowmelt, 2015 was the driest year over the record in the 

SN, whereas 2018 was the driest year in the UCRB. The lowest streamflow occurred in 2021 and 

2002 in the SN and UCRB, respectively. The SN-wide and UCRB-wide snowmelt in 2021 were 

both at the 15th percentile, whereas streamflow was at the 3rd and 6th percentiles, respectively. 

WY 2021 was one of the only two years (1990 and 2021) where the SN and the UCRB jointly 

experienced drought (less than 30th percentile) in both streamflow and snowmelt. Moreover, 

among these joint snow-streamflow drought years, only 2021 had streamflow that is notably less 

than the snowmelt percentile in both sub-domains (Fig. 3.2b and c).  

While it is expected that the percentiles of streamflow and snowmelt will be correlated in 

the snow-dominated WUS, the annual variations in snowmelt and streamflow percentiles can be 

categorized into three cases that may occur in drought and non-drought years: 1) snowmelt and 

streamflow percentiles are comparable. 2) snowmelt is greater than streamflow percentile and 3) 

snowmelt is less than streamflow percentile streamflow percentile. Although these three cases 

can occur in any year, this work specifically focus on snow-streamflow drought years. For case 1 

(e.g., WYs 2014, 2020 in the SN, and 2002, 2012 in the UCRB), streamflow droughts are likely 

primarily driven by snow drought. For case 2 (e.g., 1988 and 2021 in the SN, 1989 and 2021 in 

the UCRB), in addition to snowmelt, other factors linked to water losses/deficits such as low 

antecedent soil moisture, a lack of spring rainfall or higher evapotranspiration are likely 

contributing to streamflow drought. Streamflow in this case may be overestimated from the 

historical snow-streamflow relationship. In contrast, for case 3 (e.g., 2012 and 2018 in the SN, 

1991 and 2015 in the UCRB), additional water inputs like high spring rainfall might off-set the 
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reduction of streamflow from low snowpacks resulting in a higher streamflow than snowmelt 

percentile. In this case, streamflow may be underestimated based on the historical snow-

streamflow relationship. Under a drought condition, an overestimation of streamflow can have 

significant consequences with respect to water supply and its downstream allocation. Therefore, 

case 2 is of primary interest in this study, where WY 2021 falls into this category. 

 
Figure 3.2 (a) Snowmelt percentile time series for the WUS domain shown in Fig. 3.1 over WYs 

1998 to 2021. (b) and (c) Streamflow (circles) and snowmelt (diamonds) percentile time series 

aggregated from basins in the Sierra Nevada (SN) and Upper Colorado River Basin (UCRB) sub-

domains shown in Fig. 3.1. The aggregated streamflow percentiles are computed from available 

streamflow data in the SN and UCRB. The aggregated snowmelt percentiles are computed from 

snow reanalysis data. Years with filled markers in SN and UCRB represent conditions of joint 

snow-streamflow drought occurring in both SN and UCRB. 
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For SN and UCRB basins with streamflow observations, linear regression was used to fit 

OCT-JUL snowmelt and streamflow percentiles over WYs 1988 to 2021 (Fig. 3.3). The simple 

linear regression model is used to quantify the relationship between snowmelt and streamflow by 

leaving out the impact of other known factors, and to identify years where the predictability of 

streamflow from snowmelt is low based on the historical relationship. Based on the derived 

relationships, snowmelt explains the majority of variance in streamflow with R2  ranging from 

0.5 at San Rafael in UCRB to 0.86 at Kings in SN. Overall, the power of snow explaining 

variations in streamflow (R2) is higher for basins in SN where snow is more dominant – such as 

the southern basins of Kern or Kings – than those in UCRB (Fig. 3.1b, c). In UCRB, snowmelt 

has a stronger relationship with streamflow for Headwaters and Gunnison basins with R2 of 0.8 

and 0.78, respectively. The relative predictive error:  

 
-

Relative Predictive Error = predicted observed

observed

Flow Flow
Flow

 (6) 

is used to quantify the degree to which streamflow is poorly predicted in any given year. Flow 

represents OCT-JUL streamflow in percentile. A positive relative predictive error represents that 

the predicted value overestimates observed streamflow. A higher relative predictive error in 

absolute value means the predicted value is further away from the observation. For example, in 

the Feather basin (Fig. 3.3), the relative predictive error in WY 2021 is computed as the 

difference of the predicted streamflow percentile (17th, black square) and the observed 

streamflow percentile (3rd, red circle), divided by the observed percentile (3rd, red circle). This 

yields a predictive relative error of 467%. 
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Figure 3.3 Scatter plot of OCT-JUL snowmelt and streamflow (percentiles over WYs 1988-

2021). The grey shaded areas represent snow-streamflow drought years with both snowmelt and 

streamflow below the 30th percentile. Solid lines are regression lines (with zero intercepts), 

where R2 is the coefficient of determination. Red circles are the observed values in WY 2021. 

The square symbol in the Feather basin represents the predicted streamflow in WY 2021. 

For each basin, the 10 driest (less than 30th percentile) streamflow and snowmelt WYs are 

highlighted separately in Fig. 3.4a and b. In the SN (14 basins), 18 years had at least one basin in 

snowmelt drought, with 9 of those years having drought across 12-14 basins, 6 years having only 
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one basin in (mild) snow drought and the other 3 years having between 3-7 basins in snow 

drought. For streamflow drought, 18 years had at least one basin in streamflow drought, with 8 

of those years having drought across 12-14 basins, 3 years having only 1 basin in (mild) snow 

drought, and the remaining years having 2-7 basins in snow drought. In the UCRB (6 basins), 22 

years and 20 years had at least one basin in snowmelt drought and streamflow drought, 

respectively. Among the snowmelt drought years in the UCRB, 8 out of 22 years had drought 

over 4 basins, 3 years had drought across 3 basins, and the rest years had drought at 1-2 basins. 

In both SN and UCRB (20 basins), 24 years had at least one basin in snowmelt drought with 2 

(2012 and 2021) of those years had snowmelt drought across 18 basins. Similarly, 24 years had 

at least one basin in streamflow drought, with 2 (1990, 1994) out of these years having 

streamflow drought across 17 basins, 1 year (2021) having streamflow across all 20 basins. 

In WY 2021, 18 out of the 20 basins across the SN and UCRB had snowmelt drought, 

with only the San Juan and San Rafael not exhibiting conditions (Fig. 3.4a). Streamflow drought 

was widespread over all sub basins in WY 2021 (Fig. 3.4b). Based on the snow-streamflow 

regression relationships, predicted streamflow percentiles were overestimated by 50% over half 

of the basins across the SN and UCRB in 1992 and 2021(Fig. 3.4c). On the contrary, in 2012 and 

2018, predicted streamflow percentiles were underestimated by 50% over half of the basins. For 

snow-streamflow drought years where snowmelt and streamflow were both less than 30th 

percentile, ~ 19% of the basin-years had negative predictive error lower than -50% and ~ 28% of 

the basin-years had positive predictive error greater than 50%. WY 2021 is the only year where 

all the basins overestimate streamflow percentiles by more than 50% based upon the respective 

snowmelt percentiles.  
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3.3.2 Severity of WY 2021 snow and streamflow drought 

WY 2021 represented a widespread low-snow year: ~ 40% of the snow-dominated WUS 

had snowmelt below the 30th percentile (Fig. 3.5a). The snow drought was especially pronounced 

over the SN (Fig. 3.5b) and the UCRB (Fig. 3.5c) with region-aggregated snowmelt 

corresponding to the 15th and 24th percentiles, respectively. Over the other basins, snowmelt was 

higher, but still below the long-term median. These results agree with other assessments that 

report 2021 as a low-snow year but not exceptionally low relative to the historical record 

(CADWR, 2021; Western Water Assessment, 2021). However, the severity of snow drought is 

spatially heterogeneous. For example, the southern part of the SN had lower snowmelt 

(compared to its long-term median) than the northern SN. In the UCRB, the Headwaters and 

Gunnison basins had more severe snow droughts than the rest of the basin.  

Streamflow scarcity in WY 2021 was more extreme than snowmelt. In the western SN, 

naturalized streamflow was below the 10th percentile in all basins, however snowmelt percentiles 

were much higher than streamflow percentiles (Fig. 3.5d). For basins to the north of San Joaquin, 

the differences between snowmelt and streamflow percentiles were more than 10% except for the 

Trinity. For example, for both the Feather and American basins in the northern SN, streamflow 

was extremely low (3rd percentile, i.e., driest over the record), in contrast to a much less extreme 

snowmelt condition (18th and 21st percentile, respectively). For those to the south of San Joaquin, 

streamflow drought was still more severe than snowmelt drought with snowmelt and streamflow 

differences ranging between 5% to 10%. Streamflow at the Kern basin (southern SN) was at the 

6th percentile (second lowest) while snowmelt was at the 12th percentile. In the UCRB (Fig. 

3.5e), snowmelt percentiles are more than 5% greater than streamflow percentiles. The Gunnison 

basin had the lowest difference in that the streamflow was at the 9th percentile, while snowmelt 
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was at the 15th percentile. In contrast, streamflow was at the 6th percentile given the same rank of 

snowmelt (15th) at the Headwaters as the Gunnison. The snowmelt percentiles at San Juan and 

San Rafael were all above the 30th percentile which are not classified as a drought condition.  

 
Figure 3.5 WY 2021 OCT–JUL snowmelt percentile (shown for snow-dominated pixels with 

long-term median peak SWE > 5 cm) in (a) WUS, (b) SN, and (c) UCRB. (d) and (e) show 

paired streamflow (black circles) and snowmelt (red diamonds) percentiles at basins in the SN 

and UCRB, respectively. 

While the snowmelt was low in WY 2021, it is higher than would be expected if it were 

the main driver of the observed low streamflow. This is evident in the high relative predictive 
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error based on the historical snow-streamflow relationship (Fig. 3.4). This suggests that other 

factors such as antecedent soil moisture and spring rainfall were at a play in leading to the low 

observed OCT-JUL streamflow. The following sections discuss the potential additional 

contributors to streamflow drought in WY 2021.     

3.3.3 Impact of antecedent soil moisture on snow contributions to streamflow 

Antecedent (pre-snow) soil moisture is an indicator for how much of the soil reservoir 

must be filled by snowmelt and/or rainfall before generating streamflow and is therefore a 

potential contributor to variations in snowmelt-driven streamflow. Streamflow is generally 

insensitive to snowmelt before soil moisture exceeds soil water storage capacity (Seyfried et al., 

2009). Therefore, the relationship between snowmelt and streamflow can be weakened by low 

antecedent soil moisture conditions that require a greater amount of snowmelt to fill up the soil 

reservoir before triggering streamflow.  

To illustrate the evolution of VWC and its impact on streamflow generation from 

snowmelt, in situ streamflow, VWC, and SWE are illustrated at two of the few sites with 

collocated data in the WUS: Forestdale (SN, Fig. 3.6) and Berthoud Summit (UCRB, Fig. 3.7). 

At Forestdale, VWC in WY 2021 began with above-median conditions but remained low during 

snow accumulation (Fig. 3.6b, 16th percentile at peak SWE day). At Berthoud Summit in the 

UCRB, VWC remained below 5% (Fig. 3.7b, 6th percentile at peak SWE day) during the entire 

snow accumulation season. Both sites show that with low antecedent VWC in 2021, it took 

longer for soil moisture to reach saturation after the peak SWE day than in the highest 

streamflow years when antecedent soil moisture was high (30 days and 11 days later at 

Forestdale and Berthoud Summit, respectively).  
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While in situ soil moisture data is limited, Fig. 3.6f and 3.7d show that the majority of in 

situ sites in both the SN (19 out of 25) and the UCRB (9 out of 12) exhibited low WY 2021 

antecedent soil moisture (less than the 30th percentile). While 2021 SWE was not extremely low, 

high antecedent soil moisture deficits may have taken up a larger fraction of snowmelt into soil 

water storage, leaving less snowmelt to generate streamflow. The low antecedent soil moisture 

indicates an outsized role of soil moisture in 2021 with respect to streamflow. This is consistent 

with other studies (e.g., Lapides et al., 2022) that show the importance of low antecedent soil 

moisture in explaining the overestimated streamflow forecast in 2021 in California.  

   
Figure 3.6 (a) in situ daily SWE, (b) depth-averaged VWC and (c) streamflow at Forestdale, for 

a WY 2021 and for the highest streamflow year on record (WY 2017). The median and 

interquartile range of VWC across all years are shown for reference. Dashed lines are dates of 

snow onset, and the ‘’ symbols indicate antecedent soil moisture. (d) and (e) locations of 

Forestdale in situ site and downstream streamflow gauge. (f) soil moisture percentiles for 2021 

(from record of WYs 2003-2021) at available sites in the SN.   



 

68 
 

 

Figure 3.7 Same as Fig. 3.6 but for Berthoud Summit site in the UCRB.   

To investigate the role of antecedent soil moisture beyond in situ sites, an antecedent soil 

moisture proxy is developed based on in situ data and snow reanalysis auxiliary data. Regression 

results (Fig. 3.8a and b) indicate that the observed site-averaged pre-snow PPT explains more 

than 68% of the observed pre-snow soil moisture variability over SN and UCRB. Based on the 

significant relationship, we used gridded pre-snow PPT computed from the WUS-SR aggregated 

over snowy domain as a proxy for antecedent soil moisture. It should be note that while pre-

snow PPT seems to reasonably represent the antecedent soil moisture condition over the SN and 

UCRB where in situ soil moisture data exists (Fig. 3.6f and 3.7d), it may not be as representative 

across the entire domain (Fig. 3.8d) because of soil heterogeneity and other factors. Here it is 

used as an indicator of relative antecedent soil moisture instead of as a quantitative metric. 
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Figure 3.8 (a) and (b) regression plot of normalized site-averaged pre-snow PPT vs. pre-snow 

soil moisture at in situ sites in the SN and the UCRB (as shown in Fig. 3.1). (c) antecedent soil 

moisture percentiles for basins and years with snow-streamflow drought conditions. Basin-years 

without snow-streamflow drought years are masked out in white background. Those with 

antecedent soil moisture greater than the 30th percentile are further masked out in gray. (d) Map 

of WY 2021 antecedent soil moisture in the WUS. Pre-snow PPT computed from snow 

reanalysis data is used as the proxy of antecedent soil moisture shown in (c) and (d). 

In the SN, snow-streamflow droughts in WY 2014 and 2021 were accompanied with 

antecedent soil moisture droughts at over 12-14 basins (Fig. 3.8c). In the UCRB, drought 

conditions in antecedent soil moisture coincided with snow-streamflow over 3 basins in 1990, 
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1992 and 2002. In 2021, antecedent soil moisture was widely and significantly low over the SN, 

whereas only 2 basins in UCRB had mild antecedent soil moisture drought (Fig. 3.8d). Low 2021 

antecedent soil moisture was observed in the Great Basin and Lower Colorado River basin 

(LCRB). The western and northeastern Pacific Northwest (PN) did not have low antecedent soil 

moisture, whereas the southeastern part had antecedent soil moisture drought in 2021. 

3.3.4 Impact of spring rainfall on snow contribution to streamflow 

Spring rainfall in snowy areas is another potential contributor to streamflow that can 

offset or enhance anomalies in snowmelt (Zheng et al., 2018). APR-JUL precipitation from the 

snow reanalysis dataset is used as the proxy of spring rainfall. Among snow-streamflow droughts 

in the SN (Fig. 3.9a), spring rainfall drought occurred at over 7 basins to the south of Feather in 

WY 2007, and to the north of Tuolumne in WY 2021. In the UCRB, 4 out of 6 basins had spring 

rainfall drought in snowy areas with the exception of New Fork and White in 2002. None of the 

basins in UCRB experienced 2021 spring rainfall drought. Fig. 3.9b confirms that 2021 spring 

rainfall is widely lower than normal in the northern SN, but higher than normal in the southern 

SN and UCRB. PN snowy areas received a very low amount of spring rainfall whereas the 

LCRB received higher than normal 2021 spring rainfall.  
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Figure 3.9 (a) spring rainfall (in snow-covered areas) percentiles for basins and years with snow-

streamflow drought conditions. Basins and years without snow-streamflow drought years are 

masked out in white background. Those with spring rainfall greater than the 30th percentile are 

further masked out in gray. (b) Map of WY 2021 spring rainfall percentile in the WUS. 

3.3.5 Characteristics of snow-streamflow droughts 

3.3.5.1 Classification of WY 2021 snow-streamflow drought 

Based on snowmelt, antecedent soil moisture proxy, and spring precipitation, WY 2021 

streamflow droughts in basins in the SN and UCRB are classified into five types. Among all the 

basins with available data, only San Juan and San Rafael did not have snowmelt drought in WY 

2021 (Fig. 3.5). Antecedent soil moisture at San Rafael was at the 6th percentile, suggesting a 
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large portion of snowmelt may have gone into soil storage. It is hypothesized (but cannot be 

confirmed due to lack of data) that high evapotranspiration also contributed to the low 

streamflow given the lack of snowmelt drought in these two basins. For the basins with snow-

streamflow drought in WY 2021, antecedent soil moisture was itself below the drought threshold 

(30th percentile), with the exception of Gunnison and White. As illustrated in Fig. 3.5, the 

percentile difference between snowmelt and streamflow was only 6% for Gunnison. The 

difference between snowmelt and streamflow, and the relative predictive error in Gunnison are 

the lowest in the UCRB. Although antecedent soil moisture is not classified as drought by 

definition in the White, it was at the 35th percentile. Only basins to the north of Tuolumne in the 

SN had spring rainfall drought. For those basins, the combination of low snowmelt, low 

antecedent soil moisture and low spring rainfall together contributed to the low 2021 streamflow.  

 
Figure 3.10 Classification of WY 2021 streamflow drought conditions based on snowmelt, 

antecedent soil moisture, and spring rainfall (over snowy regions) for basins in SN and UCRB.  



 

73 
 

3.3.5.2 Contributors of snow-streamflow drought years in example basins 

To further illustrate the roles of snowmelt, antecedent soil moisture and spring 

precipitation in streamflow droughts, the Feather, Kern, Headwaters and Gunnison are selected 

as example basins. These basins are chosen considering their importance for water resource 

supply (Section 3.2.1) and representation of different types of WY 2021 drought for each 

domain. For example, in the SN, the Feather watershed is selected to study the scenario that the 

combination of snowmelt, antecedent soil moisture and spring rainfall drought all contribute to 

WY 2021 snow-streamflow drought. The Kern and Headwaters are selected to study the scenario 

that snowmelt and antecedent soil moisture contribute to WY 2021 snow-streamflow drought in 

SN and UCRB, respectively. The Gunnison is selected to study the scenario that snowmelt was 

in drought conditions and antecedent soil moisture is close-to drought condition. To examine the 

relative role of these hydrologic contributors, percentiles of OCT-JUL streamflow, antecedent 

soil moisture proxy (pre-snow PPT), OCT-JUL snowmelt, and spring rainfall (APR-JUL PPT 

over snowy regions) are illustrated in Fig. 3.11 for each example basin. For context, to 

qualitatively assess characteristics of different drought years, the underlying contributors in WY 

2021 are compared to another extreme drought year (Fig. 3.11 a-b, e-f; i.e., WY 2015 for the 

Feather and Kern, and 2002 for the Headwaters and Gunnison).  

In the Feather basin, WY 2015 was an extreme snow drought year (Margulis et al., 2016; 

3rd percentile), yet it had a higher OCT-JUL streamflow percentile compared to 2021 (Fig. 

3.11c). This highlights that other (non-snow) contributors were at work in driving streamflow 

differences between the two drought years. Antecedent soil moisture and spring rainfall in 2015 

were much higher than 2021. Among all example basin-years shown in Fig. 3.11, 2021 in the 

Feather was the most unpredictable year. It stood out in having less antecedent soil moisture and 
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spring rainfall inputs, both of which would be consistent with lower streamflow. In the Kern 

basin, snowmelt and streamflow were lowest in 2015 and exhibited antecedent soil moisture 

drought conditions. Although spring rainfall in the snowy region was higher than normal, it did 

not offset the low snowmelt and low antecedent soil moisture. Compared to 2015, snowmelt 

drought in 2021 is less severe, however antecedent soil moisture drought is more severe and the 

spring rainfall is closer to normal (Fig. 3.11d). The significantly lower antecedent soil moisture 

in WY 2021 seems to have offset the slightly higher-than-normal spring rainfall, yielding 

streamflow close to that in 2015.     

Across the UCRB case study watersheds, the 2021 streamflow drought is extreme, but 

was even more severe in 2002. In both the Headwaters and Gunnison watersheds, 2002 had low 

antecedent soil moisture and snow (3rd to 9th percentile) and the lowest spring PPT (3rd 

percentile). Together, these contributors would be expected to contribute to low streamflow 

conditions, which is consistent with the lowest observed values. The 2021 drought was not as 

extreme as 2002: streamflow was the second and third lowest in the Headwaters and Gunnison, 

respectively, despite higher snowmelt percentiles (15th percentile). This can be explained by a 

similar pattern to 2002 in terms of low antecedent soil moisture and snowmelt. The largest 

difference between the two years was a much larger spring rainfall in 2021, which likely aided in 

preventing a much more significant streamflow drought. 
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3.4 Conclusions and Needed Future Work 

Snowmelt and streamflow drought were quantified over the study period (WYs 1988-

2021) in the WUS based on snow reanalysis estimates and in situ measurement. Based on the 

snow reanalysis dataset, WY 2015 had the lowest WUS-wide snowmelt percentiles over the 

record. Aggregated over the basins examined, 2015 and 2018 were the driest snowmelt years 

over the record in the SN and UCRB, respectively. Inconsistent with snowmelt drought years, 

2021 and 2002 were the driest streamflow years in the SN and UCRB, respectively. 2021 was a 

widespread snow drought year in the WUS, and especially pronounced in the SN and UCRB that 

18 out of 20 had snowmelt drought. However, the corresponding streamflow percentiles were 

much lower. Among snow-streamflow drought basin-years, 2021 is the only year that all 18 

basins overestimated streamflow percentiles by 50% based upon the respective snowmelt 

percentiles. Hence, while snow drought played an important role in driving the observed low 

streamflow in 2021, other contributors were also at play (i.e., antecedent soil moisture, 

springtime rainfall). 

Site-averaged pre-snow PPT explains more than 68% of the observed antecedent soil 

moisture variability over SN and UCRB. Based on the significant relationship, pre-snow PPT 

from gridded snow reanalysis dataset is used as the proxy of antecedent soil moisture. In the SN, 

2014 and 2021 had antecedent soil moisture drought across more than 13 out of 14 of basins. In 

the UCRB, 2002 had antecedent soil moisture across 4 out of 6 basins. In 2021, over 75% of SN 

and UCRB in situ sites had low antecedent soil moisture conditions. The results from antecedent 

soil moisture proxy show that all basins examined had drought in SN, and half of basins had 

drought in UCRB. 
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Beyond snow and antecedent soil moisture conditions, basins to the north of Tuolumne in 

the SN had spring precipitation drought in 2021, which reinforced low streamflow conditions. In 

contrast, in the southern SN and UCRB, above-normal spring rainfall likely offset what would 

have otherwise been an even more significant streamflow drought.  

Together, these contributors suggest that the extreme WY 2021 streamflow drought was a 

compound event modulated by 1) antecedent soil moisture (which set the stage for available soil 

water storage), 2) snowmelt and spring precipitation (as the key sources of spring runoff).  

The data-centric study conducted herein cannot fully account for the relative importance 

of these processes due to the limited extent of soil moisture observations but highlights the likely 

complexities in how drought manifests itself even in basins where snow is the dominant 

historical driver. A mechanistic modeling approach (e.g. Lapides et al., 2022) to include other 

factors such as actual evapotranspiration, which was beyond the scope of this study, could 

further quantify the various contributors.  

To examine and improve future streamflow predictive skill in snow-dominated regions, 

more widespread and collocated observations of SWE and soil moisture are needed (Seyfried et 

al., 2009; Harpold et al., 2017; Livneh & Badger, 2020). SWE and soil moisture are the two 

longest-memory states in the terrestrial water cycle and play a linked role in streamflow 

generation. Yet no direct and representative measurements are available over larger domains at 

desired resolutions (Kim et al., 2021). The need for better snow and soil moisture measurements 

are becoming more urgent as historical relationships are likely to become less robust.  

Future warming projections show declining seasonal snowpacks and shifts in streamflow 

patterns (Barnett et al., 2005; Musselman et al., 2018; Siirila-Woodburn et al., 2021) as well as 

rising frequency of consecutive snow drought years (Marshall et al., 2019). Under a warmer 
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climate with potentially more frequent rain-on-snow events (Cooper et al., 2016; Musselman et 

al., 2018), earlier snowmelt, and drier soil moisture (Cook et al., 2021; Harpold & Molotch, 

2015), the anomalous streamflow conditions caused by snowmelt-soil moisture links like those 

seen in WY 2021 may become more common. 
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CHAPTER 4  

Spatiotemporal snow water storage uncertainty in the midlatitude 

American Cordillera 

Despite the critical role of snow in terrestrial water resources, spatiotemporal snow water 

storage uncertainty remains unclear over the midlatitude American Cordillera. This work 

quantifies the uncertainty of accumulation-season peak snow storage amongst commonly used 

global and regional products over the Western U.S. (WUS) and Andes, which have similar 

hydrometeorology but are disparate with respect to amount of available in situ information. The 

recently developed WUS Snow Reanalysis (WUS-SR) and Andes Snow Reanalysis (Andes-SR) 

datasets, that have been significantly verified against in situ measurements over 30 years, are 

used as reference datasets. Intercomparison results over WUS show that climatological peak 

SWE storage averaged from high- and moderate-resolution products (284 ± 14 km3; 

overestimated by 6%) is in better agreement with WUS-SR (269 km3) than the low-resolution 

products (127 ± 54 km3; underestimated by 53%). Compared to the Andes-wide peak snow 

storage estimate from Andes-SR (29 km3), the averaged estimates from other products (19 km3 ± 

16 km3; underestimated by 35%) are less clustered by spatial resolution, have large uncertainty, 

and are mostly biased low. Only the high- to moderate-resolution SNODAS and UA products 

show comparable estimates of windward-leeward gradients with the reference dataset over a 

subdomain (Sierra Nevada) of the WUS. The other products distribute too much snow on the 

leeward side in both the Sierra Nevada and Andes, missing the orographic-rainshadow patterns 

that have important hydrological implications. The uncertainty of peak seasonal snow storage is 
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primarily explained by precipitation uncertainty in both the WUS (R2
 = 0.55) and Andes (R2

 = 

0.84). Given similar forcing inputs, snow storage can be significantly divergent in the ERA5 and 

GLDAS subsets due to resolution-induced elevation differences or distinct land surface model 

mechanisms including rain–snow partitioning and accumulation-season snowmelt generation. 

The availability and use of in situ precipitation and snow measurements (i.e., in WUS) in some 

products adds value by reducing snow storage uncertainty, however they are not applicable for 

regions with limited in situ data like the Andes. 

4.1 Background and Motivation 

Seasonal snow storage in mountains provide vital freshwater to downstream users 

estimated to be over 16.7% of the global population (Immerzeel et al., 2020; Rhoades et al., 

2022). Melt of accumulated winter snow in the spring and summer impacts agriculture, 

hydropower generation, and water supply and recreation, making it a key component of the food-

energy-water nexus in many regions of the world (Huss et al., 2017; Qin et al., 2020; Siirila-

Woodburn et al., 2021). Despite its importance, a complete understanding of regional terrestrial 

water cycles is hampered by a limited characterization of seasonal mountain snow storage 

uncertainty.   

The lack of in situ and remotely sensed measurements of mountain snow water 

equivalent (SWE), a key metric related to water availability, are primarily responsible for the 

limited characterization of seasonal snow storage in these regions. For example, in the 

midlatitude American Cordillera, where snowmelt is estimated to contribute to as much as 70% 

of total runoff in some basins (Li et al., 2017), existing in situ networks are both sparse and 

unrepresentative of the conditions spanning the larger domains in the Western United States 

(WUS) and South American Andes (Dozier et al., 2016; Molotch & Bales, 2006; Nolin et al., 
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2021; Saavedra et al., 2018). Current remotely sensed SWE estimates from passive microwave 

measurements are useful over much of the globe, but are too coarse to capture the spatial 

heterogeneity and deep snowpacks in these regions with complex terrain (Luojus et al., 2021).  

In lieu of measurements, globally available snow products, typically generated from land 

surface models (LSMs), provide the majority of large-scale estimates of the spatiotemporal 

patterns of mountain snow water storage. However, seasonal snow storage estimates from global 

snow products remain highly uncertain, which results from discrepancies in meteorological 

forcings, variations in snow process representation, and coarse spatial resolution (Broxton et al., 

2016; Cho et al., 2022; Liu et al., 2022; Wrzesien et al., 2019). The uncertainty (including bias) 

of seasonal snow storage further propagates to streamflow forecasts (Kim et al., 2021) and 

impacts water resources management. Coarse spatial resolutions smooth topography and impact 

the ability to resolve orographic features (including rainshadows) over complex terrain (Daly, 

2006). Current estimates of mountain snow water storage uncertainties in both space and time 

need to be characterized to ensure the reliability of impact studies that rely on SWE estimates 

(Mankin et al., 2015; Immerzeel et al., 2020; Huning and AghaKouchak, 2020).  

The analysis herein is applied to the snow-dominated midlatitude portions of the 

American Cordillera, which are representative of regional mountains of significant importance to 

humans. To quantify the spatiotemporal uncertainties of snow storage from commonly used 

snow products, recently-developed high-resolution snow reanalysis datasets covering the WUS 

(Fang et al., 2022) and Andes (Cortés & Margulis, 2017) are used in this work as reference 

datasets. The WUS and Andes domains have comparable atmospheric circulation patterns and 

hydrologic cycles (Rhoades et al., 2022), but are disparate with respect to the amount of 

available in situ information. The WUS has among the highest density of in situ snow 
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information, which either directly or indirectly inform SWE estimates, while the Andes has little 

to no ground measurements, making SWE estimates almost entirely model-based. This paper 

aims to assess: 1) the spatiotemporal uncertainty of SWE in the WUS and Andes over the 

accumulation season, and 2) the drivers of the SWE uncertainty. Knowledge of the uncertainty 

and its drivers will put current snow-impact studies in better context and provide a pathway for 

improving future estimates aimed at reducing snow uncertainty. 

4.2 Study Domain and Datasets 

4.2.1 Study Domain 

This study focuses on the snow-dominated midlatitude mountain ranges of the America 

Cordillera (Figure 1), where snowmelt-driven runoff serves large populations. Specifically, the 

WUS and Andes are selected as the study domains based on recently developed snow-specific 

reanalysis products (Cortés & Margulis, 2017; Fang et al., 2022). These SWE estimates have 

been significantly verified against independent in situ and airborne measurements, making them 

well-suited to being used as references for other products. The average elevation across the WUS 

is ~ 1383 m with a maximum > 4300 m, in contrast to a higher average elevation of ~ 2999 m 

with a maximum > 6800 m in the Andes. The beginning of the seasonal snow cycle starts from 

October 1st and April 1st in the WUS and Andes, respectively. Hence, a water year (WY) spans 

from October 1st to September 30th in the WUS, and April 1st to March 31st in the Andes. 

The WUS contains three major mountain ranges including the Sierra Nevada, Rocky 

Mountains and Cascades (Fig. 4.1). Amongst these, the Sierra Nevada subdomain is the closest 

analog to the Andes, sharing similar hydroclimatology and topography. Winter westerlies 

dominate precipitation timing and patterns in these two mountain ranges, leading to orographic 

gradients on the windward side of the mountains and rainshadow effects resulting in significant 
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snow differences across relatively short windward-leeward gradients. 

 

Figure 4.1 DEM and location of midlatitude American Cordillera: WUS and Andes. Bottom left 

cartoon shows that moist air rises on the windward side of the mountain, and drier air flows 

down the leeward side of the mountain creating a rainshadow effect. Arrows represent the 

generalized directions of westerlies. The Sierra Nevada (SN, sub-basin of WUS) and Andes are 

chosen to study the rainshadow effect. Windward watersheds are shown in gray boundaries and 

leeward watersheds are shown in black boundaries. Mountain ranges are based on Snethlage et 

al. (2022). 

Sierra 
Nevada 

Windward Leeward 

Rainshadow 
Effect 
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4.2.2 Datasets 

This paper intercompares data from the Andes Snow Reanalysis (Andes-SR) and WUS 

Snow Reanalysis (WUS-SR) datasets (as reference datasets), to seven global snow datasets 

(available over both domains), and two regional datasets (available only over the WUS domain) 

shown in Table 4.1. The Andes-SR (WYs 1985 to 2015; Cortés and Margulis, 2017) SWE 

estimates are at ~ 180 m resolution and the WUS-SR (WYs 1985 to 2021; Fang et al., 2022) 

SWE estimates are at ~ 480 m resolution. The Andes-SR and WUS-SR datasets were both 

generated from the Bayesian framework developed by Margulis et al. (2016, 2019) with 

assimilation of fractional snow-covered area images derived from Landsat 5, 7 and 8 using the 

Particle Batch Smoother (PBS; Margulis et al., 2015). Independent verification shows that both 

datasets are consistent with in situ peak SWE with a correlation coefficient of 0.73 over the 

Andes (Cortés & Margulis, 2017) and 0.77 over the WUS (using > 25,000 station-years of in situ 

data; Fang et al., 2022). Further verification of the WUS-SR SWE against Airborne Snow 

Observatory (ASO) SWE estimates shows consistent performance between these two spatial 

products with correlation coefficients ranging from 0.75 to 0.91. With high consistency against 

point-scale in situ and spatially-distributed airborne SWE estimates, as well as the high spatial 

resolutions specifically targeting mountainous domains, these two snow reanalysis datasets are 

used as reference SWE datasets to evaluate the snow storage of other products over the WUS and 

Andes. 

The seven global snow products include ERA5-Land, ERA5, MERRA2 and four 

GLDAS-2.1 products (Noah LSM at 0.25°: GLDAS – NOAH025; Noah LSM at 1.0°: GLDAS – 

NOAH10; VIC LSM at 1.0°: GLDAS –VIC10; Catchment LSM at 1.0°: GLDAS – CLSM10). 

The SNODAS and UA products only cover the US and therefore are not included in Andes 
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intercomparison. Following Liu et al. (2022), SWE, precipitation and snowfall were collected 

from each of the seven global products, SNODAS, and UA (including PRISM precipitation 

(Daly et al., 1994) used in the UA product). Since the reference snow reanalysis products do not 

output precipitation and snowfall, only SWE is used for reference. For the purposes of analysis 

and discussion in this work, the products described above are classified by their spatial 

resolution. Specifically, reference datasets and those products with spatial resolution less than ~1 

km are deemed “high-resolution” (HR: WUS-SR, Andes-SR, and SNODAS), those with spatial 

resolutions between ~1 km and ~10 km are deemed “moderate-resolution” (MR: UA, ERA5-

Land), and those with spatial resolutions greater than ~10 km are deemed “low-resolution” 

(“LR”: ERA5, GLDAS set). Globally and regionally availably datasets are referred to as 

“products”, and WUS-SR and Andes-SR are referred to as reference “datasets”. 

The snow reanalysis reference products are, by design, constrained by observations using 

a data assimilation approach. However, not all the other products are solely model-based. 

SNODAS uses in situ snow, airborne SWE from gamma radiation snow surveys and satellite 

snow cover, and UA uses in situ SWE as inputs to constrain estimates. Although ERA5 

assimilates snow depth, limited examples of these in situ measurements are used in the WUS and 

Andes. However, in the WUS, with its relatively high density of in situ meteorological sites, 

almost all products are based on models with meteorological forcings that include some in situ 

measurements. In contrast, due to limited in situ meteorological sites in the Andes, the quality of 

input forcings remains unclear, but is likely more uncertain than over the WUS. More details on 

the snow products used herein are given in Table 4.1 and Appendix B.1. 
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4.3 Intercomparison Methodology 

4.3.1 Intercomparison study period 

Where possible, the intercomparison study periods in the two domains are chosen as 

WYs 1985-2021 (01 October 1984 to 30 September 2021) for the WUS, and WYs 1985-2015 

(01 April 1984 to 31 March 2015) for the Andes, based on the availability of the respective snow 

reanalysis datasets. Of the products listed in Table 4.1, only GLDAS (starting in WY 2001) and 

SNODAS (starting in WY 2005) are not available over the full snow reanalysis period. For those 

products, long-term climatologies are necessarily derived over the shorter periods. Hence in the 

WUS, climatologies for the GLDAS and SNODAS products are over their available 21- and 17-

year records, while all other products span the 37-year record. In the Andes, the GLDAS 

products are over their 15-year record, while all other products span the 31-year record. Analysis 

of climatological results from the products with longer periods do not show significant 

differences when applied to the shorter study periods (not shown).  

4.3.2 Focusing on intercomparison during the snow accumulation season 

The intercomparison herein focuses on the snow accumulation season. To motivate this 

focus, the climatological (long-term average) daily time series of domain-aggregated SWE 

volume across all products are illustrated in Fig. 4.2 Two key points are evident: (i) there are 

significant discrepancies between products (that are analyzed in more detail below) and (ii) much 

of the uncertainty occurs during the accumulation season (and then propagates to the ablation 

season). An accurate characterization of peak SWE (at the end of the accumulation season) is a 

key metric of the final condition of snow accumulation processes and the initial condition 

leading into the main snowmelt season. Intercomparison of modeled snowmelt season processes 

are made more difficult when the initial conditions (i.e., peak SWE prior to the primary ablation 
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season) across models are different. Given the large uncertainties observed in domain-wide peak 

SWE climatology (Fig. 4.2), this paper focuses on the uncertainties in the accumulation season 

(as done in Liu et al., 2022) in order to better understand how and why accumulation season 

estimates diverge across products. All the analyses focus on the accumulation season using 

metrics described below. 

 
Figure 4.2 Climatology of seasonal cycle of SWE volume in the WUS and Andes domains. 

Solid lines represent high-resolution (HR) datasets and products, dashed lines represent 

moderate-resolution (MR) products, and dotted lines represent low-resolution (LR) products. 

4.3.3 Snow metrics used in the intercomparison 

The processes leading to the domain-aggregated peak SWE shown in Fig. 4.2 depend on 

pixel-scale snow mass balance processes. Hereafter, for each product, the pixel-wise processes 
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are analyzed prior to aggregating to the larger domain. The day corresponding to pixel-wise peak 

SWE (defined as tpeak) is computed for each product at their raw spatial resolution. The pixel-

wise peak SWE depth (swepeak) is aggregated to get pixel-wise peak SWE volume (SWEpeak). 

Hence in results to follow, swepeak is used to describe and analyze maps of SWE, while SWEpeak 

is used to describe spatially aggregated volumes of SWE.  

At each pixel, accumulation-season precipitation and snowfall are accumulated from the 

beginning of the WY up to tpeak, where the accumulated maps of depth can then be aggregated 

over the domain of interest. The mass balance equations relating domain-aggregated cumulative 

snowfall (Sacc), SWE (SWEpeak), cumulative ablation (Aacc), cumulative precipitation (Pacc), 

cumulative snowfall (Sacc), and cumulative rainfall (Racc) are shown below: 

 SWEpeak = Sacc - Aacc (7) 

 Sacc = 𝑃𝑃acc - Racc (8) 

where in Eq. (1) and (2), Pacc, Sacc, SWEpeak are directly computed from the snow products. Racc 

and Aacc are the residuals based on these two mass balance equations. Climatological values are 

computed as the long-term (interannual) mean of Pacc, Sacc, SWEpeak over the intercomparison 

periods.  

Persistent snow and ice areas are excluded before spatially integrating the SWE volumes, 

since most products analyzed in this work do not explicitly estimate glaciers and persistent snow. 

Such persistent snow and ice masks are first obtained from the Andes-SR and WUS-SR products 

and then aggregated to the spatial resolution of each product (as done in Liu et al., 2022). 

Domain masks in each product are also applied here, which are derived based on the reference 
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datasets using the same approach. Details of persistent snow and ice masks and domain masks 

are described in Appendix B.2 and shown in Fig. B.1 and B.2.  

Beyond domain-wide results, we choose to intercompare products and their ability to 

capture rainshadow effects, that often occur over short geographic scales, but have significant 

influence on the water availability between windward and leeward sides of mountain ranges. For 

simplicity we focus on the windward-leeward contrasts over the Sierra Nevada in the WUS and 

those over the Andes. Figure 4.1 shows the boundaries of windward basins (in gray) and leeward 

basins (in black) for both domains. The Sierra Nevada and Andes are analogs of each other due 

to the mostly north-south orientation of the mountain ranges that are relatively perpendicular to 

the mostly westerly prevailing winds. In both cases, the windward and leeward basins serve 

distinct downstream populations and so resolving those spatial variations have important 

hydrological implications. To assess the ability of products in capturing rainshadow effects, 

pixel-wise SWEpeak is aggregated over the windward (SWEpeak
wind) and leeward (SWEpeak

lee ) 

watersheds. Since MR and CR pixels may cover both windward and leeward watersheds, 

fractional swepeak is aggregated to get SWEpeak over the two types of watersheds separately (Fig. 

B.3 and B.4). The fractional swepeak is computed by multiplying pixel-wise swepeak and the 

fraction of pixel within the windward or leeward watershed. The detailed steps used to derive the 

windward and leeward watershed snow storage are described in Appendix B.2. 

4.4 Results and Discussion 

4.4.1 Climatological SWE uncertainty 

4.4.1.1 Spatial distribution of pixel-wise peak SWE 

Climatological pixel-wise swepeak maps for the WUS-SR (Fig. 4.3a) clearly show the 

highest snow storage occurring in the Sierra Nevada, Cascades, and Rocky Mountains. When 
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integrated over the whole domain, the climatological WUS SWEpeak is 269.2 km3 (Fig. 4.3k). 

Similar spatial distributions of swepeak are observed for the HR (SNODAS; Fig. 4.3b) and MR 

products (UA and ERA5-Land; Fig. 4.3c and d). However, the remaining products (ERA5, 

MERRA5 and GLDAS set; Fig. 4.3e to j) significantly underestimate swepeak and smooth out the 

spatial patterns captured by the HR and MR products. The combined HR and MR inter-product 

average of climatological WUS SWEpeak is 283.8 ± 14.4 km3, in contrast to an average of 126.7 ± 

53.7 km3 for LR products (Fig. 4.3k). This suggests large uncertainty (both bias and spread) in 

SWEpeak among LR products. Compared to WUS-SR,  SNODAS overestimates SWEpeak by 

~12% (Fig. 4.3k) and exhibits higher swepeak in the Sierra Nevada, Cascades, and Rocky 

Mountains. UA and ERA5-Land both exhibit a similar magnitude of SWEpeak (differences < 5%) 

compared to WUS-SR, both of which have higher swepeak in the Cascades. Despite similar spatial 

distribution of swepeak, ERA5-Land and ERA5 underestimate WUS SWEpeak by 21% (Fig. 4.3k) 

compared to WUS-SR. All GLDAS products severely underestimate SWEpeak compared to 

WUS-SR, where GLDAS-VIC10 shows the highest WUS SWEpeak (with a 35% underestimation 

compared to WUS-SR). 
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Figure 4.3 (a – j) Spatial distribution of climatological swepeak in the WUS. (k) shows the 

climatological WUS SWEpeak (colored bars) and the interannual inter-quartile range (IQR; black 

error bars). The bar plots are ordered by spatial resolution, with highest resolution on the left and 

lowest resolution on the right. The vertical dashed lines separate the three spatial resolution 

categories (i.e., HR < ~ 1 km, ~ 1 km < MR < ~ 10 km, LR > ~ 10 km). Glacier and permanent 

snow areas are masked out in the maps and domain aggregated volumes. 



 

97 
 

Based on the Andes-SR, the climatological SWEpeak is 28.9 km3 (Fig. 4.4i). The southern 

Andes has higher swepeak compared to the northern region (Fig. 4.4a). The spatial distribution of 

swepeak and integrated SWEpeak volumes vary much more broadly across different products (Fig. 

4.4b to k) than they do in the WUS. The MR and LR inter-product average of climatological 

SWEpeak is 19.2 ± 15.6 km3 (Fig. 4.4i). ERA5-Land and ERA5 overestimate SWEpeak by 65.6% 

and 17.6%, respectively (Fig. 4.4i). ERA5-Land significantly overestimates swepeak in the 

southern part of the Andes. Most of the LR products, including MERRA2 and the GLDAS set, 

significantly underestimate SWEpeak by as much as 79%, compared to Andes-SR (Fig. 4.4i). 

These findings for the Andes domain are qualitatively similar to Liu et al. (2022), where ERA5 

and ERA5-Land overestimate SWEpeak and MERRA2 and GLDAS underestimate SWEpeak in 

High Mountain Asia (HMA), another snow-dominated region with limited in situ measurements. 
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Figure 4.4 (a – h) Spatial distribution of climatological swepeak in the Andes. (i) shows the 

climatological Andes SWEpeak (colored bars) and the interannual inter-quartile range (IQR; black 

error bars). The bar plots are ordered by spatial resolution, with highest resolution on the left and 

lowest resolution on the right. The vertical dashed lines separate the three spatial resolution 

categories (i.e., HR < ~ 1 km, ~ 1 km < MR < ~ 10 km, LR > ~ 10 km). Glacier and permanent 

snow areas are masked out in the maps and domain aggregated volumes.  

4.4.1.2 Resolving key spatial gradients: Rainshadow effects 

In addition to the overall spatial distribution in SWE, the orographically-driven 

rainshadow (windward vs. leeward) distribution represents an example of an important spatial 
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feature in many mountain contexts. Beyond climatological biases described in Section 4.4.1.1, 

this section focuses on the relative patterns of windward vs. leeward storage. The differences in 

rainshadow storage gradients are examined in the Sierra Nevada subdomain of the WUS and 

across the Andes. While resolving rainshadow effects is challenging for narrow topographic 

regions like the Sierra Nevada and Andes, it has important hydrological implications.  

Based on the WUS-SR in the Sierra Nevada (Fig. 4.5),  the latitudinal distribution of 

SWEpeak
wind is largest in the 37°–38° N latitudinal band, while the latitudinal distribution of 

SWEpeak
lee  is largest in the 38°–39° N latitudinal band. The latitudinal windward and leeward basin 

storage of SWE decreases monotonically north and south of these maximum values. The total 

stored windward volume SWEpeak
wind is 3.74 times more than the leeward volume SWEpeak

lee . This 

ratio is the combined effect of variations in area and SWE depth between the windward and 

leeward basins and identifies that (on average) the windward basins store between 3 and 4 times 

more SWE volume than the leeward basins. Given that the windward and leeward areas across 

which SWE is integrated are effectively the same across products, any differences in ratio is 

driven by differences in SWE depth. SWE depth variations are primarily driven by resolving 

orographic enhancement of snowfall between windward and leeward slopes. In the Sierra 

Nevada, only SNODAS and UA products (spatial resolutions < ~ 4 km) exhibit comparable 

SWEpeak
wind to SWEpeak

lee  ratios. The ratios of SWEpeak
wind to SWEpeak

lee  are 4.20 (12% greater than the 

WUS-SR) for SNODAS and 3.14 (16% less than WUS-SR) for UA, suggesting a fairly good 

agreement between windward-leeward snow volume distributions in these products. However, 

resolving the pattern of windward-leeward snow distribution is significantly impaired in the 

other MR and LR products. The ratios computed from ERA5-Land, ERA5, GLDAS-NOAH025, 

MERRA2, GLDAS-VIC10, GLDAS-NOAH10, and GLDAS-CLSM10 range from 1.08-2.40 
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and are 36%, 46%, 43%, 55%, 68%, 66%, and 71% less than that in the WUS-SR, respectively. 

Hence, the MR and LR products generally have too little snow on the windward side compared 

to the leeward side. The location of the windward maximum SWEpeak is consistent in most snow 

products with the exception of the LR products (i.e., ERA5, GLDAS), which have a secondary 

maximum between 39°–40° N. The location of the leeward maximum SWEpeak is consistent in 

most of the snow products with the exception of MERRA2, which is maximum at a lower 

latitude.  

Based on the Andes-SR, the largest SWEpeak
wind is distributed between the 35°–36° S 

latitudinal band, while the distribution of SWEpeak
lee  has two peaks between the 31°–32° S and 

35°– 36° S latitudinal bands (Fig. 4.6). The ratio of SWEpeak
wind to SWEpeak

lee  is 1.58 from the Andes-

SR, which is again the combined effect of windward-leeward variations in both area and SWE 

depth. Like the Sierra Nevada, ERA5-Land and all of the CR products improperly partition 

SWEpeak over the windward vs. leeward basins in the Andes. These products have SWEpeak
wind to 

SWEpeak
lee  ratios less than 1 indicating deficient snow in the windward watersheds compared to the 

leeward watersheds. The lowest SWEpeak
wind to SWEpeak

lee  ratio of 0.72 is observed from MERRA2 

(54% less than Andes-SR). GLDAS-VIC10 has the largest SWEpeak
wind to SWEpeak

lee  ratio of 0.92 

among Andes global products, which is still 42% less than the Andes-SR. For the windward 

watersheds, SWEpeak
wind from ERA5-Land and GLDAS-CLSM10 are the highest in the same 

latitudinal band as the Andes-SR, however, the other products have an erroneous SWEpeak
wind 

distribution. None of the products resolve the SWEpeak
lee  distribution on the leeward side. 
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Figure 4.5 Latitudinal distribution of integrated SWEpeak (km3) over windward (SWEpeak
wind; light 

gray area) and leeward basins (SWEpeak
lee ; dark gray areas) in the Sierra Nevada in first and third 

columms. Text labels indicate the ratio of latitudinally-integrated SWEpeak
wind to SWEpeak

lee . The 

climatological swepeak (m) spatial patterns corresponding to the latitude band indicated by dashed 

lines are illustrated in the second and fourth columns. The red line represents the Sierra Nevada 

ridgeline separating windward (western) from leeward (eastern) basins. Note: Different swepeak 

ranges are used for each product to highlight latitudinal/spatial patterns more than absolute 

values (due to significant biases in some products).  
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Figure 4.6  Latitudinal distribution of SWEpeak (km3) over windward (SWEpeak
wind; light gray area) 

and leeward basins (SWEpeak
lee ; dark gray areas) in the Andes in first and third columms. Text 

labels indicate the ratios of latitudinally-integrated SWEpeak
wind to SWEpeak

lee . The climatological 

swepeak (m) spatial patterns corresponding to the latitude band indicated by dashed lines are 

illustrated in the second and fourth columns. The red line represents the Andes ridgeline 

separating windward (western) from leeward (eastern) basins. Note: Different swepeak ranges are 

used for each product to highlight latitudinal/spatial patterns. 

4.4.2 Interannual SWE uncertainty 

The interannual variability of SWEpeak is in general agreement (with correlation 

coefficients R > 0.86) between the WUS-SR snow reanalysis and other products shown in Fig. 

4.7. SWEpeak from UA and ERA5-Land agrees well with WUS-SR in both magnitude and 

correlation (Fig. 4.7a to 4.7c), with relative mean differences (RMD) of less than 3% in absolute 
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value and R > 0.9. While SNODAS overestimates SWE volume with a RMD of 14% (Figure 

4.7a), it shows consistent interannual variations with a high R value of 0.92. The LR products are 

generally well correlated with WUS-SR with R > 0.85, although SWEpeak from these products is 

underestimated by as much as 190 km3 (GLDAS-CLSM10), equivalent to a RMD of 71% 

compared to WUS-SR. Figure 4.7j shows that SWE percentiles computed from different 

products in the WUS are in better agreement in extreme years and in less agreement for near-

average years. For example, WY 2017 was the wettest year among all products and WY 2015 

was the driest year for all products except for SNODAS (in which WY 2005 is suspiciously 

low). WY 2014 was a normal-to-wet year with SWEpeak between the sixtieth and seventieth 

percentiles from GLDAS-NOAH025, MERRA2, GLDAS-NOAH10, and GLDAS-CLSM10, but 

a normal-to-dry year with SWEpeak less than the fiftieth percentile in the other products. 

The interannual variability of SWEpeak is in much less agreement in the Andes (Fig. 4.8; 

with R as low as 0.56) than the WUS. Fig. 4.8 shows that ERA5-Land and MERRA2 are most 

consistent with Andes-SR in terms interannual variability (R > 0.85). However, ERA5-Land 

overestimates SWEpeak by 18 km3 (RMD = 65%) and MERRA2 underestimates SWEpeak by 23 

km3 (RMD = -80%). Although ERA5 has the smallest RMD of 17%, the correlation coefficient R 

is 0.74, suggesting that SWEpeak from ERA5 is less representative of interannual variation in the 

Andes. For the GLDAS products, GLDAS-NOAH025 has R = 0.79, whereas R values for other 

GLDAS products at 1° are less than 0.65, indicating that SWE from these LR products are less 

consistent with the interannual variation from Andes-SR. Figure 8a illustrates that the SWEpeak 

percentiles computed from the common 12-year record are much less consistent in the Andes 

than in the WUS (shown in Fig. 4.7j) for both normal and extreme years. Despite good temporal 

correlation of SWEpeak (between 0.86 and 0.90) in WUS, the relatively poorer temporal 
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correlation (between 0.56 and 0.87) identified from the LR products in the Andes, indicates that 

they may be less suitable for trend or other analyses that require snow estimates with 

representative interannual variability. 

 
Figure 4.7 Scatter plots (a – i) of SWEpeak volumes between WUS-SR and other products. Each 

dot represents SWEpeak volume (km3) for each year over the study period (WYs 1985 to 2021) 

where data is available. For the SNODAS and GLDAS products, the comparison is over WYs 

2005 to 2021, and 2001 to 2021, respectively. (j) shows the SWEpeak percentiles in each WY over 

the overlapping period including all products (WYs 2005 to 2021).  
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Figure 4.8 Scatter plots (b – h) of SWEpeak volumes between Andes-SR and other products. Each 

dot represents SWEpeak volume (km3) for each year over the study period (WYs 1985 to 2015) 

where data is available. For the GLDAS products, the comparison is over WYs 2001 to 2015. (a) 

shows the SWEpeak percentiles in each WY over the overlapping period including all products 

(WYs 2001 to 2015).  

4.4.3 Drivers of SWE uncertainty 

4.4.3.1 Uncertainty in annual SWEpeak from accumulation-season precipitation and 

snowfall 

To better understand the accumulation-season SWEpeak uncertainty driven by model 

inputs, the relationship among Pacc, Sacc, and SWEpeak is quantified for all products. The data 
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points are more clustered in the WUS (Fig. 4.9a, b) than those in the Andes (Fig. 4.9c, d). 

GLDAS-CLSM10 and MERRA2 tend to have lower Pacc, Sacc and therefore SWEpeak in both the 

WUS and Andes. ERA5-Land and ERA5, on the other hand, have higher Pacc, Sacc and SWEpeak 

in both domains. For rain-snow partitioning, UA (Fig. 4.9a) tends to have more Sacc over the 

WUS compared to the other products. Given similar Sacc, SNODAS (Fig. 4.9b) is inclined to 

generate higher SWEpeak. In the Andes, GLDAS-NOAH10 and GLDAS-CLSM10 partition less 

Pacc into Sacc with circles lower than the regression line, in contrast to ERA5-Land and ERA5 that 

tend to partition more (Fig. 4.9c). SWEpeak from ERA5-Land diverges from ERA5 (Fig. 4.9d) 

given similar amount of Pacc and Sacc, presumably caused by different melt amounts between the 

two products driven by resolution-induced elevation differences. 

Annual values of Pacc and Sacc estimates from all products show that the variance in Pacc 

explains the majority of the variance in snowfall in the accumulation season with a coefficient of 

determination R2 = 0.55 in the WUS (Fig. 4.9a) and R2 = 0.84 in the Andes (Fig. 4.9c). This is 

consistent with previous findings (Broxton et al., 2016; Cho et al., 2022; Liu et al., 2022) and the 

expectation that precipitation is the major contributor to uncertainy in SWE. The lower R2 in the 

WUS compared to the Andes suggests that other factors such as air temperature plays a more 

important role in rain–snow partitioning in the WUS. Approximately 49% of Pacc falls as snow in 

the WUS, whereas, around 75% of Pacc falls as snow in the Andes (Fig. 4.9a, c). This is because 

the Andes is at higher elevation (~2999 m) with cooler temperature than the WUS (~1383 m), 

leading to more precipitation falling as snow. The variance in SWEpeak is mostly explained by the 

variance in Sacc, i.e., R2 = 0.77 in WUS (Fig. 4.9b) and R2 = 0.87 in the Andes (Fig. 4.9d). As a 

fraction of cumulative snowfall, 65% and 75% remains as SWEpeak in the WUS and Andes, 

respectively, while the rest is lost to accumulation-season ablation. 
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Figure 4.9 Left panels show scatter plots of accumulation-season Sacc (km3) vs. Pacc (km3) 

volumes over the WUS and Andes, respectively, indicating the partitioning of precipitation into 

snowfall. Right panels show scatter plots of accumulation-season SWEpeak (km3) vs. Sacc (km3) 

over WUS and Andes, respectively, indicating how much snowfall remains as SWE vs. being 

lost to ablation. Solid lines are linear regression and dashed lines are 1:1 lines. 

 

4.4.3.2 Uncertainty in climatological SWEpeak from differences in LSMs and spatial 

resolution 

To understand the impact of varying LSM mechanisms (i.e., rain–snow partitioning and 

snowmelt generation) and spatial resolution on the uncertainties in SWE, climatological 
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precipitation, snowfall, and SWEpeak for all products over the WUS and Andes are shown in Fig. 

4.10. The rainfall to precipitation ratio (Racc/Pacc, gray text) represents the impact of rain–snow 

partitioning mechanisms, and the ablation to snowfall ratio (Aacc /Sacc, black text) represents the 

impact of accumulation-season snowmelt mechanisms. It should be noted that different peak 

SWE days may impact Racc/Pacc via the accumulation window, i.e., the shorter accumulation 

season in the GLDAS subset (associated with earlier peak SWE days, tpeak, Fig. 4.10 red symbol) 

has cooler average temperature, and thus lower Racc/Pacc. However, no significant relationship 

was found between tpeak and Racc/Pacc, suggesting that Racc/Pacc is not sensitive to tpeak. The WUS, 

with relatively lower elevation, has higher precipitation in the form of rainfall and higher 

snowfall loss to ablation than the Andes at higher elevation. In the WUS, Racc/Pacc ranges from 

0.39 (UA) to 0.69 (GLDAS-CLSM10), and Aacc/Sacc ranges from 0.15 (SNODAS) to 0.56 

(MERRA2). In the Andes, Racc/Pacc ranges from 0.19 (ERA5-Land) to 0.57 (GLDAS-CLSM10), 

and Aacc/Sacc ranges from 0.13 (ERA5-Land) to 0.48 (GLDAS-CLSM10). Precipitation tends to 

fall more as snow in the HR, MR, and ERA5 products, whereas a higher fraction of precipitation 

falls as rainfall in the other products (GLDAS, MERRA2), even though lower Pacc are observed 

in both domains. The differences in melt mechanisms across product models further differentiate 

the Aacc/Sacc, and therefore SWEpeak. 



 

109 
 

 

Figure 4.10 Climatological SWEpeak, Sacc, and Pacc volumes aggregated over WUS (top panel) 

and Andes (bottom panel) in km3. Red triangles (corresponding to right y-axis) shows the tpeak 

averaged over all pixels and WYs. The horizontal dashed lines are the reference snow reanalysis 

SWE volumes from WUS-SR and Andes-SR. The vertical dashed lines group the  products by 

spatial resolution (i.e., HR, MR, LR). The black text lists the Aacc/Sacc and gray text lists the 

Racc/Pacc.  

Accumulation-season snowfall and SWEpeak are sensitive to different rain–snow 

partitioning and snowmelt generation mechanisms across products. The same precipitation inputs 

(with only minor differences caused by downscaling) are used to derive GLDAS estimates at 

1.0° from three different LSMs, making the GLDAS models a useful subset to understand the 

impact of LSM process representation on SWE estimates. Among the GLDAS subset at 1.0°, 
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Racc/Pacc and Aacc/Sacc range from 0.59-0.69 and 0.24-0.54, respectively, in the WUS (Fig. 4.11a), 

and range from 0.48-0.57 and 0.34-0.48, respectively, in the Andes (Fig. 4.11b). Compared to 

Racc/Pacc, a wider range of Aacc/Sacc values are observed in both the WUS and Andes, suggesting 

that snowmelt generation mechanism differences contribute more to the climatological SWEpeak 

uncertainties than the rain-snow partitioning differences. Given a similar amount of Pacc, 

GLDAS-VIC10 partitions the most into snowfall even with later peak days, whereas GLDAS-

CLSM10 partitions the least in both domains. The differences in Racc/Pacc are ≤ 0.1 between 

GLDAS-VIC10 and GLDAS-CLSM10, implying that the differences in snowfall caused by rain–

snow partitioning is less than 10% of precipitation inputs among GLDAS subset at 1.0°. For 

Aacc/Sacc, GLDAS-VIC10 has the lowest ratio compared to others, suggesting that VIC snowfall 

loss to ablation is the least in this domain. GLDAS-VIC10 tends to have higher Pacc, Sacc, and 

SWEpeak which are closer to those from the HR or MR snow products. In the VIC model, 

elevation bands are used to better represent sub-grid snowfall and SWE estimates. In addition to 

GLDAS-CLSM10, which has the highest Aacc/Sacc among the GLDAS subset at 1.0°, MERRA2 

has a comparably high Aacc/Sacc. Both products use the same LSM, suggesting that a larger 

portion of snowfall is lost as accumulation-season ablation in the Catchment model (Xiao et al., 

2021).  

Domains with larger variance in elevation are likely to be more sensitive to model spatial 

resolution, and therefore impact elevation-dependent mechanisms in the LSMs. ERA5-Land 

(0.1°) and ERA5 (0.25°) SWE are derived from the same LSM driven by similar forcings but 

modeled at different spatial resolutions. Similarly, GLDAS-NOAH025 (0.25°) and GLDAS-

NOAH10 (1°) SWE are derived from the same Noah model driven by similar forcings but at two 

spatial resolutions. These two groups of products (Fig. 4.11c to f) are useful to isolate the impact 



 

111 
 

of spatial resolution on SWE estimates via differences in elevation representation. The raw 

DEMs from each product are used to compute the mean and standard deviation of elevation over 

WUS and Andes. The Andes located at higher elevation also has a larger variance in elevation 

(standard deviation > 1100 m) compared to the WUS (standard deviation < 800 m) across all 

resolutions. The standard deviation varies more significantly with resolution than the mean in 

both WUS and Andes (Fig. 4.11g, h). With coarser spatial resolution, the variance in elevation 

decreases, indicating that coarse-resolution products tend to underestimate the true variance in 

elevation. The differences in elevation variance between products are larger in the Andes than 

the WUS. For example, when increasing resolution of GLDAS from 1.0° to 0.25°, the standard 

deviation of elevation increases by 14% in the Andes compared to 8% in the WUS.  

The Racc/Pacc is similar in the ERA5-Land and ERA5 for the same domains (i.e., 0.47 

from ERA5-Land and 0.46 from ERA5 in the WUS; 0.19 from ERA5-Land and 0.20 from ERA5 

in the Andes), suggesting that the rain–snow partitioning in the ERA5 models is relatively 

insensitive to the elevation differences introduced by different spatial resolutions. The Andes is 

located at a higher elevation than the WUS, resulting in lower Racc/Pacc. However, the Aacc/Sacc 

varies significantly between ERA5-Land and ERA5 in both WUS (0.32 vs. 0.44, respectively) 

and Andes (0.13 vs. 0.35, respectively). Hence, even though similar amounts of snowfall are 

generated for ERA5 and ERA5-Land, SWEpeak can be significantly different due to differences in 

ablation resulting from spatial resolution-based elevation differences. For GLDAS-NOAH025 

and GLDAS-NOAH10, Racc/Pacc and Aacc/Sacc are similar in the WUS. Large differences of both 

Racc/Pacc and Aacc/Sacc are observed between GLDAS-NOAH025 and GLDAS-NOAH10. This 

suggests that increasing spatial resolution from 0.25° to 0.1° (ERA5) significantly impact 

snowmelt generation in both Andes and WUS, whereas increasing spatial resolution from to 1° 
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to 0.25° (GLDAS) impacts rain-snow partition and snowmelt generation only in Andes with its 

larger differences in elevation standard deviation between products at two spatial resolutions.  

 
Figure 4.11 (a) and (b) Racc/Pacc and Aacc/Sacc for three GLDAS LSMs (VIC, Noah, and 

Catchment) at the same spatial resolution (~ 100 km). (c) and (d) Racc/Pacc and Aacc/Sacc for 

ERA5-Land (~ 10 km) and ERA5 (~ 25 km) using the same LSM and similar forcings, but 

different spatial resolutions. (e) and (f) Same as (c) and (d) but for GLDAS-NOAH025 (~ 25 

km) and GLDAS-NOAH10 (~ 100 km). (g) and (h) mean and standard deviation of elevation 

over WUS and Andes from the ERA5-Land and ERA5 group, and the GLDAS-NOAH025 and 

GLDAS-NOAH10 group. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) (h) 
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4.5 Conclusion 

This paper quantifies the spatiotemporal snow storage uncertainty over the midlatitude 

American Cordillera (i.e., the WUS and Andes). These two domains are both snow-dominated 

areas sharing similar hydrometeorology, however, much less in situ measurements are available 

in the Andes compared with the WUS. The uncertainties of snow water storage, spatial patterns 

(including rainshadow effect), and interannual variability are analyzed among the HR (less than 

~ 1 km), MR (between ~1 km to ~10 km) and LR (greater than ~10 km) snow products. The 

impact of forcings, LSM differences and spatial resolution on snow storage uncertainty is 

assessed to provide insights for generating future snow products especially for snow-dominated 

regions including areas with scarse in situ measurements. 

With respect to characterizing climatological and interannual storage uncertainty, the key 

conclusions are:  

1) In the WUS, HR and MR snow products are in better agreement with WUS-SR peak snow 

storage (269 km3) than the LR snow products, among which snow storage is biased low with 

large uncertainty. The climatological snow storage was found to be 284 km3 ± 14 km3 among 

HR and MR products and 127 km3 ± 54 km3 among LR products. In the Andes, MR and LR 

products exhibit much larger relative uncertainty in snow storage. The Andes-wide peak snow 

storages are less clustered by spatial resolution with climatological estimates of 19 km3 ± 16 

km3
 compared with peak snow storage of 29 km3 from Andes-SR.  

2) Beyond significant biases in overall storage, most of the global products poorly characterize 

snow storage variations related to orographically-induced rainshadow effects. Compared to the 

WUS-SR, only SNODAS and UA reasonably distribute snow storage over windward and 

leeward watersheds in the Sierra Nevada. MR and LR products partition less snow storage on 
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the windward side in both Sierra Nevada and Andes. In the Andes, global products show more 

snow water is stored on the leeward side of the mountain than the windward side, completely 

missing the orographic-rainshadow patterns. Based on these results, to accurately resolve 

topographically-driven features in snow storage likely requires spatial resolutions less than ~ 

5 km.   

3) Consistent interannual variability is observed among all products assessed in the WUS, 

whereas there is less agreement in the Andes. This suggests that snow trend studies based on 

these globally availably snow products applied in the Andes might not be as reliable as those 

applied in the WUS. 

With respect to drivers of uncertainty in snow storage estimates, the key conclusions are: 

1) Precipitation primarily explains the variance of snowfall as expected, which propagates to the 

variance of snow storage. Precipitation uncertainty accounts for a larger portion of snowfall 

uncertainty in the Andes compared with the WUS.  

2) Aside from precipitation, LSM differences result in varying rain–snow partitioning and 

snowmelt generation, that play important roles in snow storage variance. Accumulation-

season snowmelt generation mechanisms tend to contribute more to the climatological 

SWEpeak uncertainties than the rain–snow partitioning. When increasing spatial resolution, 

larger spatial variance in elevation between products in the Andes propagates to larger 

differences in precipitation falling as rainfall, snowfall loss to ablation, and thus SWEpeak 

than those in the WUS.   

Data assimilation techniques are used to constrain the SWE uncertainties in SNODAS, 

UA, WUS-SR and Andes-SR. Moreover, many products are implicitly constrained by their use 

of in situ precipitation data in some form over the WUS. With more accurate precipitation 
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estimates in the WUS, products at HR to MR show reasonable estimates of SWEpeak. However, 

ERA5-Land (MR) and CR products miss the rainshadow effect (Section 4.4.1.2). SNODAS and 

UA generate high quality SWE estimates in the WUS via inclusion of in situ SWE measurements 

that are generally unavailable for regions like the Andes. Additionally, regions like Andes do not 

have sufficient in situ forcing measurements, resulting in a large uncertainty in forcings that 

propagates to SWE.  

Although HR and MR products reasonably estimate snow storage in the WUS, 

uncertainty in snow storage from products at coarse spatial resolution in the WUS and at 

moderate and coarse spatial resolution in the Andes (where there are limited in situ 

measurements) need to be reduced to increase their utility for understanding the role of snow in 

regional water and energy cycling. For regional application, it is suggested to properly 

downscale global product to reduce the bias. Resolving orographic-rainshadow patterns is still a 

challenging task among existing products. Future work is needed to reduce the accumulation-

season snow storage uncertainty for mountainous regions with limited in situ measurements. 

Beyond the accumulation-season processes focused on herein, the snowmelt uncertainty and its 

drivers in the melt-season should be investigated to further characterize additional uncertainty in 

warm-season snowmelt rates and timing. Aiming for resolving orographic-rainshadow patterns 

and generating reliable SWE estimates globally will likely require assimilation of space-borne 

snow observations. Specifically, future spaceborne missions that can directly provide SWE 

measurements at high to moderate spatial resolution over mountainous domains would be 

extremely valuable for constraining modeled estimates and generating continuous space–time 

SWE products at high accuracy over the globe. 



 

116 
 

4.6 Bibliography 

Broxton, P. D., Zeng, X., & Dawson, N. (2016). Why Do Global Reanalyses and Land Data 

Assimilation Products Underestimate Snow Water Equivalent? Journal of 

Hydrometeorology, 17(11), 2743–2761. https://doi.org/10.1175/JHM-D-16-0056.1 

Cho, E., Vuyovich, C. M., Kumar, S. V., Wrzesien, M. L., Kim, R. S., & Jacobs, J. M. (2022). 

Precipitation biases and snow physics limitations drive the uncertainties in macroscale 

modeled snow water equivalent. Hydrology and Earth System Sciences, 26(22), 5721–

5735. https://doi.org/10.5194/hess-26-5721-2022 

Cortés, G., & Margulis, S. (2017). Impacts of El Niño and La Niña on interannual snow 

accumulation in the Andes: Results from a high-resolution 31 year reanalysis. Geophysical 

Research Letters, 44(13), 6859–6867. https://doi.org/10.1002/2017GL073826 

Daly, C. (2006). Guidelines for assessing the suitability of spatial climate data sets. International 

Journal of Climatology, 26(6), 707–721. https://doi.org/10.1002/joc.1322 

Daly, C., Neilson, R. P., & Phillips, D. L. (1994). A Statistical-Topographic Model for Mapping 

Climatological Precipitation over Mountainous Terrain. Journal of Applied Meteorology 

and Climatology, 33(2), 140–158. https://doi.org/10.1175/1520-

0450(1994)033<0140:ASTMFM>2.0.CO;2 

Dozier, J., Bair, E. H., & Davis, R. E. (2016). Estimating the spatial distribution of snow water 

equivalent in the world’s mountains. WIREs Water, 3(3), 461–474. 

https://doi.org/10.1002/wat2.1140 

Fang, Y., Liu, Y., & Margulis, S. A. (2022). A western United States snow reanalysis dataset over 

the Landsat era from water years 1985 to 2021. Scientific Data, 9(1), Article 1. 

https://doi.org/10.1038/s41597-022-01768-7 



 

117 
 

Huning, L. S., & AghaKouchak, A. (2020). Global snow drought hot spots and characteristics. 

Proceedings of the National Academy of Sciences, 117(33), 19753–19759. 

https://doi.org/10.1073/pnas.1915921117 

Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. s., Clague, J. j., Vuille, M., 

Buytaert, W., Cayan, D. r., Greenwood, G., Mark, B. g., Milner, A. m., Weingartner, R., 

& Winder, M. (2017). Toward mountains without permanent snow and ice. Earth’s Future, 

5(5), 418–435. https://doi.org/10.1002/2016EF000514 

Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, 

S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., 

Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., … 

Baillie, J. E. M. (2020). Importance and vulnerability of the world’s water towers. Nature, 

577(7790), Article 7790. https://doi.org/10.1038/s41586-019-1822-y 

Kim, R. S., Kumar, S., Vuyovich, C., Houser, P., Lundquist, J., Mudryk, L., Durand, M., Barros, 

A., Kim, E. J., Forman, B. A., Gutmann, E. D., Wrzesien, M. L., Garnaud, C., Sandells, 

M., Marshall, H.-P., Cristea, N., Pflug, J. M., Johnston, J., Cao, Y., … Wang, S. (2021). 

Snow Ensemble Uncertainty Project (SEUP): Quantification of snow water equivalent 

uncertainty across North America via ensemble land surface modeling. The Cryosphere, 

15(2), 771–791. https://doi.org/10.5194/tc-15-771-2021 

Li, D., Wrzesien, M. L., Durand, M., Adam, J., & Lettenmaier, D. P. (2017). How much runoff 

originates as snow in the western United States, and how will that change in the future? 

Geophysical Research Letters, 44(12), 6163–6172. 

https://doi.org/10.1002/2017GL073551 



 

118 
 

Liu, Y., Fang, Y., Li, D., & Margulis, S. A. (2022). How Well do Global Snow Products 

Characterize Snow Storage in High Mountain Asia? Geophysical Research Letters, 49(16), 

e2022GL100082. https://doi.org/10.1029/2022GL100082 

Liu, Y., Fang, Y., & Margulis, S. A. (2021). Spatiotemporal distribution of seasonal snow water 

equivalent in High Mountain Asia from an 18-year Landsat–MODIS era snow reanalysis 

dataset. The Cryosphere, 15(11), 5261–5280. https://doi.org/10.5194/tc-15-5261-2021 

Luojus, K., Pulliainen, J., Takala, M., Lemmetyinen, J., Mortimer, C., Derksen, C., Mudryk, L., 

Moisander, M., Hiltunen, M., Smolander, T., Ikonen, J., Cohen, J., Salminen, M., Norberg, 

J., Veijola, K., & Venäläinen, P. (2021). GlobSnow v3.0 Northern Hemisphere snow water 

equivalent dataset. Scientific Data, 8(1), 163. https://doi.org/10.1038/s41597-021-00939-2 

Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y., & Diffenbaugh, N. S. (2015). The potential 

for snow to supply human water demand in the present and future. Environmental Research 

Letters, 10(11), 114016. https://doi.org/10.1088/1748-9326/10/11/114016 

Margulis, S. A., Cortés, G., Girotto, M., & Durand, M. (2016). A Landsat-Era Sierra Nevada Snow 

Reanalysis (1985–2015). Journal of Hydrometeorology, 17(4), 1203–1221. 

https://doi.org/10.1175/JHM-D-15-0177.1 

Margulis, S. A., Girotto, M., Cortés, G., & Durand, M. (2015). A Particle Batch Smoother 

Approach to Snow Water Equivalent Estimation. Journal of Hydrometeorology, 16(4), 

1752–1772. https://doi.org/10.1175/JHM-D-14-0177.1 

Margulis, S. A., Liu, Y., & Baldo, E. (2019). A Joint Landsat- and MODIS-Based Reanalysis 

Approach for Midlatitude Montane Seasonal Snow Characterization. Frontiers in Earth 

Science, 7, 272. https://doi.org/10.3389/feart.2019.00272 



 

119 
 

Molotch, N. P., & Bales, R. C. (2006). SNOTEL representativeness in the Rio Grande headwaters 

on the basis of physiographics and remotely sensed snow cover persistence. Hydrological 

Processes, 20(4), 723–739. https://doi.org/10.1002/hyp.6128 

NOHRSC. (2004). Snow Data Assimilation System (SNODAS) Data Products at NSIDC, Version 

1. https://nsidc.org/data/g02158/versions/1 

Nolin, A. W., Sproles, E. A., Rupp, D. E., Crumley, R. L., Webb, M. J., Palomaki, R. T., & Mar, 

E. (2021). New snow metrics for a warming world. Hydrological Processes, 35(6). 

https://doi.org/10.1002/hyp.14262 

Qin, Y., Abatzoglou, J. T., Siebert, S., Huning, L. S., AghaKouchak, A., Mankin, J. S., Hong, C., 

Tong, D., Davis, S. J., & Mueller, N. D. (2020). Agricultural risks from changing 

snowmelt. Nature Climate Change, 10(5), Article 5. https://doi.org/10.1038/s41558-020-

0746-8 

Rhoades, A. M., Hatchett, B. J., Risser, M. D., Collins, W. D., Bambach, N. E., Huning, L. S., 

McCrary, R., Siirila-Woodburn, E. R., Ullrich, P. A., Wehner, M. F., Zarzycki, C. M., & 

Jones, A. D. (2022). Asymmetric emergence of low-to-no snow in the midlatitudes of the 

American Cordillera. Nature Climate Change, 12(12), Article 12. 

https://doi.org/10.1038/s41558-022-01518-y 

Saavedra, F. A., Kampf, S. K., Fassnacht, S. R., & Sibold, J. S. (2018). Changes in Andes snow 

cover from MODIS data, 2000–2016. The Cryosphere, 12(3), 1027–1046. 

https://doi.org/10.5194/tc-12-1027-2018 

Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Huning, L. S., Szinai, J., Tague, C., Nico, 

P. S., Feldman, D. R., Jones, A. D., Collins, W. D., & Kaatz, L. (2021). A low-to-no snow 



 

120 
 

future and its impacts on water resources in the western United States. Nature Reviews 

Earth & Environment, 2(11), Article 11. https://doi.org/10.1038/s43017-021-00219-y 

Snethlage, M. A., Geschke, J., Ranipeta, A., Jetz, W., Yoccoz, N. G., Körner, C., Spehn, E. M., 

Fischer, M., & Urbach, D. (2022). A hierarchical inventory of the world’s mountains for 

global comparative mountain science. Scientific Data, 9(1), Article 1. 

https://doi.org/10.1038/s41597-022-01256-y 

Wrzesien, M. L., Pavelsky, T. M., Durand, M. T., Dozier, J., & Lundquist, J. D. (2019). 

Characterizing Biases in Mountain Snow Accumulation From Global Data Sets. Water 

Resources Research, 55(11), 9873–9891. https://doi.org/10.1029/2019WR025350 

Xiao, M., Mahanama, S. P., Xue, Y., Chen, F., & Lettenmaier, D. P. (2021). Modeling Snow 

Ablation over the Mountains of the Western United States: Patterns and Controlling 

Factors. Journal of Hydrometeorology, 22(2), 297–311. https://doi.org/10.1175/JHM-D-

19-0198.1 

 

 

 

 



 

121 
 

CHAPTER 5  

Conclusion and Future Work 

5.1 Conclusion and key findings 

The key contributions and findings for each Chapter are summarized as follows. 

In Chapter 2 it was shown that: 

1) An accurate high-resolution snow reanalysis dataset over the Landsat remote sensing 

record can be derived over the WUS using a Bayesian framework in which snow is 

estimated from land surface model coupled with snow depletion curve and updated by 

assimilation of cloud-free Landsat fractional snow-covered area observations. 

2) The peak snow water equivalent (SWE) is well verified with independent in situ 

measurements with a WUS-wide correlation coefficient of 0.77, mean difference of – 

0.15 m, and root mean square difference of 0.28 m. It is well correlated with Airborne 

Snow Observatory (ASO) measurements with correlation coefficient ranging from 0.71 

to 0.91. It is noteworthy that comparing point-scale measurements with grid-scale 

estimates is less fair than the comparison between spatially distributed estimates. 

3) Considering the high-resolution (~ 480 m), temporal continuity (daily over 1985 to 

2021), and coverage of the full WUS, the dataset can be used to characterize the 

variability and uncertainty of snow water storage. 

In Chapter 3 it was shown that:  

1) WY 2021 was a widespread low-snow year where over 40% of the snow-dominated 

WUS had snowmelt below the 30th percentile. However, WY 2021 stood out as an 
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unexpected year with extremely low streamflow compared to less extreme snow 

conditions in the Sierra Nevada (SN) and Upper Colorado River Basin (UCRB).  

2) Over 75% of the in situ sites in the SN and UCRB had antecedent soil moisture drought, 

and a majority of the watersheds assessed had antecedent soil moisture drought in 

addition to snowmelt drought. The extreme 2021 streamflow drought was a compound 

event modulated by contributors linking snow, soil moisture, and streamflow. 

In Chapter 4 it was shown that: 

1) In the WUS, based on the climatological peak snow storage of 269 km3 from WUS-SR, 

averaged snow storage from high- and moderate-resolution products are only 

overestimated by 6%, whereas averaged snow storage from low-resolution products is 

underestimated by 53%. In the Andes, the peak climatological snow storage of 29 km3 

from Andes-SR is underestimated by more than 35% from global products. 

2) Mostly of the global datasets cannot resolve the orographically-induced rainshadow 

pattern in both WUS and Andes by partitioning too much snow storage on the leeward 

side of the mountain. A spatial resolution less than ~ 5 km is suggested to accurately 

resolve topographically-driven features in snow storage. 

3) Although precipitation is the primary driver of snow uncertainty in the accumulation 

season, LSM mechanisms and coarse spatial resolution contribute to the uncertainty in 

snow water storage. Specifically, snow water storage is more sensitive to accumulation-

season snowmelt-mechanisms than rain-snow partitioning. Domains with large spatial 

variance in topography (Andes) tend to be more sensitive to resolution than those with 

less spatial variance in topography (WUS).  
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5.2 Potential for Future Work 

The high-resolution WUS-SR dataset provides a valuable tool to study snow-related research in 

the WUS. To extend the dataset derived in Chapter 2 to global mountains, potential research 

directions could include: 

1) Forcing uncertainties from different sources such as MERRA2 and ERA5 on SWE 

estimates and the value of multi-forcings can be quantified to better represent a priori 

SWE uncertainty.    

2) For domains highly impacted by clouds, the limited number of cloud-free nadir fSCA 

measurements increase the uncertainty of snow estimates. To constrain the snow 

uncertainty, multi-source fSCA measurements from Landsat, MODIS, Sentinel and 

VIIRS can be used to increase the number of cloud free fSCA images. 

3) A multi-resolution scheme can be applied to resolve spatial distribution of SWE at 

topography with high variance at high resolution and vice versa. 

4) The current snow reanalysis framework uses multi-year averaged forest cover. Instead, 

time-varying forest cover can be inputted to better reflect transient changes for snow-

related studies sensitive to vegetation changes. 

5) In addition to forest coverage and number of fSCA images, the impact of summer fire on 

snow uncertainty by changing the initial conditions can be investigated.  

Based on the work in Chapter 3, future efforts to better quantify the contribution of snow to 

snow-streamflow droughts could include: 

1) The data-centric study performed in Chapter 3 cannot fully quantify the contribution of 

all possible factors. Estimates from mechanistic modeling and downscaled climate 

simulations can be used to examine factors such as evapotranspiration for historical and 



 

124 
 

future drought types like WY 2021. Downscaled soil moisture data can be used to further 

examine the temporal evolution of soil moisture and its relationship with snowmelt. 

2) Since the snow reanalysis dataset was only available up to 2021 by the time of this work, 

snow drought conditions in WY 2022 were not included. Extending the analysis to WY 

2022 would be beneficial to understand the roles of snow and other factors on low 

streamflow in a consecutive dry year. 

3) Under a warming climate, it is needed to quantify the frequency of drought types like 

WY 2021, which may significantly impact water resources management plans. 

Based on quantifying the uncertainty of snow water storage and its drivers in Chapter 4, the 

following steps could be taken to improve the future snow estimates: 

1) Large snow water storage uncertainty observed at coarse-resolution datasets in the WUS 

and all global datasets in the Andes need to be reduced, although snow water storage 

from high- and moderate-resolution datasets (< 10 km) agree with the WUS-SR. 

2) The orographic-rainshadow patterns are completely missing from datasets greater than 5 

km in both WUS and Andes. Resolving the patterns are required to correctly partition 

snow water storage between windward and leeward sides of mountain ranges for make 

right water resources decisions. 

3) Snow water storage uncertainty and its drivers in the ablation season can be investigated 

for better estimating snowmelt timing and rate. 

Aiming for resolving snow distribution over global mountains regardless of availability of in 

situ sites, snow assimilation using remote-sensed data provides a promising path forward. It 

would be beneficial to assimilate future spaceborne SWE measurements at high- to 

moderate-resolution to constrain snow estimates over the globe.  
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Appendix A  

Supporting information for Characterizing snow-streamflow droughts in the 

Western U.S. and the unpredictable case of water year 2021   

A.1 Aggregation window of snow metric 

The aggregation window of snowmelt is chosen to be OCT to JUL. Diagnosing wet/dry 

years based on peak SWE or 1 April SWE can be misleading for WYs with dramatic changes in 

snow water conditions within a WY (e.g., Figure A.1a, WY 1991). The non-negligible snowmelt 

between multiple peaks and those that occur prior to 1 April may thus not be captured from 

single-day snow metrics (e.g., Figure A.1a, WY 2021). In the example years shown, a non-

negligible amount of snowmelt and streamflow may occur prior to 1 April (Figure A.1b).  
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Figure A.1 (a) Seasonal SWE integrated across the Feather watershed in Water Years (WYs) 

1991 (late peak), 2015 (early peak), 2021 (multi-peak) and the historical median. (b) Cumulative 

streamflow at the outlet of the Feather watershed across the same years. The dashed vertical lines 

represent the 1 April. Herein SWE and streamflow are analyzed over OCT-JUL since non-

negligible snowmelt and streamflow can occur prior to 1 April (e.g., in WY 2015). 
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A.2 Datasets 

Streamflow data is collected from the California Data Exchange Center (daily full natural 

flow) for sites in the SN, and from the United States Geological Survey (monthly adjusted 

streamflow volumes) for sites in Headwaters and Gunnison from the Snow Telemetry network 

(SNOTEL; Table A.1).  

To illustrate the role of VWC in regulating snow contributions to streamflow, in situ 

VWC and SWE are collected at Forestdale (in SN) and Berthoud Summit (in UCRB) from 

SNOTEL/SCAN, and streamflow are collected at downstream sites from USGS (Table A.2). 
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Appendix B  

Supporting information for Spatiotemporal snow water storage 

uncertainty in the midlatitude American Cordillera 

B.1 Description of products compared to WUS-SR and Andes-SR 

B.1.1 HR product  

SNODAS (NOHRSC, 2004) outputs daily SWE from WY 2004 at 1 km over CONUS. 

Although SNODAS is available starting from WY 2004, data assimilation was only regularly 

performed from WY 2005. Therefore, it is suggested to exclude SNODAS data in WY 2004 for 

analysis. SNODAS SWE is generated the from NOHRSC Snow Model, an energy and mass 

balance model forced with downscaled forcings from numerical weather prediction (NWP) 

models. Assimilation of ground-based snow data, airborne SWE from gamma radiation snow 

surveys, and satellite snow cover is performed via Newtonian nudging. 

B.1.2 MR products 

The UA daily SWE dataset (P. Broxton et al., 2019; Zeng et al., 2018) at 4 km over 

CONUS is generated from analysis and interpolation of in situ measurements including SWE 

from SNOTEL, snow depth, air temperature and precipitation from COOP stations, and gridded 

estimates including air temperature and precipitation from PRISM. The ordinary kriging method 

is used for interpolating the ratio of SWE to net snowfall at in situ sites to the PRISM grid. The 

interpolated ratio is then multiplied by gridded 4-km PRISM net snowfall to get gridded SWE. 

At in situ sites, precipitation falls as snow on days when snow depth change is positive. As a 
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result, snowfall may be overestimated on rain-on-snow days when both rainfall and snowfall 

occur, but precipitation is entirely recorded as snowfall. The temperature threshold to partition 

PRISM precipitation into snowfall and rainfall is interpolated from in situ threshold determined 

by each site (P. D. Broxton, Dawson, et al., 2016; P. D. Broxton, Zeng, et al., 2016). Net 

snowfall is estimated by the difference in accumulated snowfall and accumulated ablation which 

is a function of degree days above 0 °C. A new snow density parameterization (Dawson et al., 

2017) was developed to convert snow depth at COOP stations to SWE. Precipitation and air 

temperature for UA are taken from PRISM (Daly et al., 1994). 

ERA5 (Hersbach et al., 2020) outputs hourly SWE globally at 0.25° using the H-TESSEL 

model. An optimal interpolation (OI) method is used to update the grid-averaged snow depth 

from a maximum of 50 in situ measurements within a radius of 250 km from a given grid cell. In 

situ snow depth observations from SYNOP and GTS are used as assimilated measurements, and 

4-km snow extent from NOAA/NESDIS is applied at elevation lower than 1500 m since 2004. 

However, SNOTEL/SCAN/COOP snow depth in the WUS are not currently used in the snow 

assimilation system. Though there might be some sparsely distributed in situ sites that measure 

snow depth which were assimilated in the WUS and Andes, the impact of data assimilation on 

SWE in both regions appears to be negligible. The binary snow extent is converted to snow 

depth at grids below 1500 m, assuming 5 cm of snow depth when snow cover is 1. The 

conversion is not conducted at elevations above 1500 m to avoid improper terrain information 

from coarse spatial resolution in mountainous area. SWE is set to 10 m at permanent snow and 

ice grids. Beyond snow observations, 4-km precipitation data from NCEP stage IV over the U.S. 

was assimilated in ERA5 using 4D var data assimilation method (Lopez, 2011). NCEP 

precipitation data is produced radar and gauge observations (Lin & Mitchell, 2005). Hence it is 
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reasonable to assume that ERA5 precipitation may be more accurate over the WUS than the 

Andes where such data is not assimilated. 

B.1.3 CR products 

ERA5-Land (Muñoz-Sabater et al., 2021) hourly SWE globally at 0.1° is generated from 

the same land surface model as ERA5 (with different versions) but driven by downscaled and 

lapse rate corrected forcings from ERA5 at higher spatial resolution. Specifically, shortwave, 

longwave, liquid, and solid precipitation are downscaled using a linear triangular mesh 

interpolation. Other variables such as air temperature, specific humidity, relative humidity, and 

surface pressure are adjusted to account for differences in elevations between the two spatial 

resolutions. No additional data assimilation is involved in generating the ERA5-Land SWE. 

The suite of GLDAS 2.1 products consist of daily SWE since WY 2001 from four 

globally distributed products (Rodell et al., 2004). The four products are generated from three 

LSMs and at two spatial resolutions (i.e., Noah LSM at 0.25°: GLDAS – NOAH025; Noah LSM 

at 1.0°: GLDAS – NOAH10; VIC LSM at 1.0°; GLDAS –VIC10; Catchment LSM at 1.0°: 

GLDAS – CLSM10). The same meteorological forcings from multiple sources, including 

NOAA/GDAS, GPCP1.3, and corrected AGRMET, are employed to generate the four products. 

Adjustments for forcings are conducted to account for the elevation differences between GLDAS 

at 1.0° and 0.25°. No snow data assimilation is conducted in generating the products, whereas 

input forcings include sources from in situ measurements. 

MERRA2 outputs hourly SWE globally at 0.625° x 0.5° resolution using the Catchment 

LSM (Reichle et al., 2017). The Catchment LSM is forced by bias-corrected precipitation using 

Climate Prediction Center (CPC) unified gauge-based analysis of global daily precipitation 
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products. Similar to the GLDAS set, no snow data assimilation is involved in generating the 

MERRA2 dataset, whereas in situ precipitation measurements are involved in deriving the SWE. 

B.2 Domain masks, and persistent snow and ice masks 

The domain masks (Figure B.1 and B.2, gray area) are derived based on the reference 

datasets (WUS-SR and Andes-SR) using an approach similar to Liu et al. (2022). Domain masks 

at reference resolutions are aggregated to the resolution used in each product.  

The persistent snow and ice mask for WUS-SR is derived using the same method from 

Liu et al. (2021). If the annual minimum SWE of a pixel is greater than 10% of its annual 

maximum SWE more than once over the data period, the pixel is classified as a persistent snow 

and ice pixel. The persistent snow and ice for Andes-SR is from Landsat (Cortés & Margulis, 

2017). The persistent snow and ice masks from reference datasets are then aggregated to the 

native resolution of each product (Figure B.1 and B.2, red area). 

 

Figure B.1 WUS domain masks (gray) and glacier masks (red) for each product. 
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Figure B.2 Andes domain masks (gray) and glacier masks (red) for each product. For the Andes-

SR, SWE was only estimated for locations above 1500 m. 

B.3 Windward and leeward watersheds  

For analysis related to windward-leeward SWE storage gradients, the analysis is applied 

at the relevant watershed scale. For moderate and coarse resolution products, a single pixel may 

be partially inside two different watersheds. To account for this, windward and leeward 

watershed masks are derived by intersecting the watersheds and product grids. For high 

resolution products (Andes-SR, WUS-SR and SNODAS), the centered coordinates of a pixel are 

used to determine if the pixel is inside a windward or leeward watershed. The fractional areas of 

pixel within the windward or leeward watersheds are shown in Figure B.3 and B.4. 
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Figure B.3 Fractional areas of each native pixel covering windward (red) and leeward (blue) 

watersheds in the Sierra Nevada. 
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Figure B.4 Fractional areas of each native pixel covering windward (red) and leeward (blue) 

watersheds in the Andes. 

 

 

  



 

137 
 

B.4 Bibliography 

Broxton, P. D., Dawson, N., & Zeng, X. (2016). Linking snowfall and snow accumulation to 

generate spatial maps of SWE and snow depth. Earth and Space Science, 3(6), 246–256. 

https://doi.org/10.1002/2016EA000174 

Broxton, P. D., Zeng, X., & Dawson, N. (2016). Why Do Global Reanalyses and Land Data 

Assimilation Products Underestimate Snow Water Equivalent? Journal of 

Hydrometeorology, 17(11), 2743–2761. https://doi.org/10.1175/JHM-D-16-0056.1 

Broxton, P., Zeng, X., & Dawson, N. (2019). Daily 4 km Gridded SWE and Snow Depth from 

Assimilated In-Situ and Modeled Data over the Conterminous US, Version 1. 

https://nsidc.org/data/nsidc-0719/versions/1 

Cortés, G., & Margulis, S. (2017). Impacts of El Niño and La Niña on interannual snow 

accumulation in the Andes: Results from a high-resolution 31 year reanalysis. Geophysical 

Research Letters, 44(13), 6859–6867. https://doi.org/10.1002/2017GL073826 

Daly, C., Neilson, R. P., & Phillips, D. L. (1994). A Statistical-Topographic Model for Mapping 

Climatological Precipitation over Mountainous Terrain. Journal of Applied Meteorology 

and Climatology, 33(2), 140–158. https://doi.org/10.1175/1520-

0450(1994)033<0140:ASTMFM>2.0.CO;2 

Dawson, N., Broxton, P., & Zeng, X. (2017). A New Snow Density Parameterization for Land 

Data Initialization. Journal of Hydrometeorology, 18(1), 197–207. 

https://doi.org/10.1175/JHM-D-16-0166.1 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., 

Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., 

Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J.-N. (2020). 



 

138 
 

The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 

146(730), 1999–2049. https://doi.org/10.1002/qj.3803 

Lin, Y., & Mitchell, K. E. (2005). 1.2 the NCEP stage II/IV hourly precipitation analyses: 

Development and applications. 19th Conference Hydrology, American Meteorological 

Society, 10. 

Liu, Y., Fang, Y., Li, D., & Margulis, S. A. (2022). How Well do Global Snow Products 

Characterize Snow Storage in High Mountain Asia? Geophysical Research Letters, 49(16), 

e2022GL100082. https://doi.org/10.1029/2022GL100082 

Liu, Y., Fang, Y., & Margulis, S. A. (2021). Spatiotemporal distribution of seasonal snow water 

equivalent in High Mountain Asia from an 18-year Landsat–MODIS era snow reanalysis 

dataset. The Cryosphere, 15(11), 5261–5280. https://doi.org/10.5194/tc-15-5261-2021 

Lopez, P. (2011). Direct 4D-Var Assimilation of NCEP Stage IV Radar and Gauge Precipitation 

Data at ECMWF. Monthly Weather Review, 139(7), 2098–2116. 

https://doi.org/10.1175/2010MWR3565.1 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., 

Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, 

M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., & Thépaut, J.-N. (2021). 

ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth 

System Science Data, 13(9), 4349–4383. https://doi.org/10.5194/essd-13-4349-2021 

NOHRSC. (2004). Snow Data Assimilation System (SNODAS) Data Products at NSIDC, Version 

1. https://nsidc.org/data/g02158/versions/1 



 

139 
 

Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P. P., Koster, R. D., & Lannoy, 

G. J. M. D. (2017). Assessment of MERRA-2 Land Surface Hydrology Estimates. Journal 

of Climate, 30(8), 2937–2960. https://doi.org/10.1175/JCLI-D-16-0720.1 

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., 

Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & 

Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American 

Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381 

Zeng, X., Broxton, P., & Dawson, N. (2018). Snowpack Change From 1982 to 2016 Over 

Conterminous United States. Geophysical Research Letters, 45(23), 12,940-12,947. 

https://doi.org/10.1029/2018GL079621 

 

 


	ABSTRACT OF THE DISSERTATION
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	CHAPTER 1
	1.1 Background and Motivation
	1.2 Objective and Organization of Dissertation
	1.3 Bibliography

	CHAPTER 2
	2.1 Background & Summary
	2.2 Methods
	2.2.1 Snow Reanalysis Framework
	2.2.2 Land Surface Model Inputs
	2.2.3 Assimilated Landsat fSCA Data
	2.2.4 Uncertainty Parameters and Measurement Error
	2.2.4.1 Perturbed Meteorological Forcings
	2.2.4.2 Perturbed Model Parameters
	2.2.4.3 Measurement Error


	2.3 Data Records
	2.4 Technical Verification
	2.4.1 Verification with in situ Data
	2.4.1.1 Peak SWE comparison with in situ data
	2.4.1.2 Temporal (daily) SWE comparison with in situ data
	2.4.1.3 Peak snow depth comparison with in situ data

	2.4.2 Verification with Airborne Snow Observatory (ASO) Data

	2.5 Usage Notes
	2.6 Bibliography

	CHAPTER 3
	3.1 Introduction and Background
	3.2 Study domains, datasets, and methods
	3.2.1 Study domains
	3.2.2 Datasets and methods
	3.2.2.1 Snow dataset
	3.2.2.2 In situ datasets
	3.2.2.3 Antecedent soil moisture proxy


	3.3 Results and discussion
	3.3.1 Interannual snow and streamflow conditions
	3.3.2 Severity of WY 2021 snow and streamflow drought
	3.3.3 Impact of antecedent soil moisture on snow contributions to streamflow
	3.3.4 Impact of spring rainfall on snow contribution to streamflow
	3.3.5 Characteristics of snow-streamflow droughts
	3.3.5.1 Classification of WY 2021 snow-streamflow drought
	3.3.5.2 Contributors of snow-streamflow drought years in example basins


	3.4 Conclusions and Needed Future Work
	3.5 Bibliography

	CHAPTER 4
	4.1 Background and Motivation
	4.2 Study Domain and Datasets
	4.2.1 Study Domain
	4.2.2 Datasets

	4.3 Intercomparison Methodology
	4.3.1 Intercomparison study period
	4.3.2 Focusing on intercomparison during the snow accumulation season
	4.3.3 Snow metrics used in the intercomparison

	4.4 Results and Discussion
	4.4.1 Climatological SWE uncertainty
	4.4.1.1 Spatial distribution of pixel-wise peak SWE
	4.4.1.2 Resolving key spatial gradients: Rainshadow effects

	4.4.2 Interannual SWE uncertainty
	4.4.3 Drivers of SWE uncertainty
	4.4.3.1 Uncertainty in annual SWEpeak from accumulation-season precipitation and snowfall
	4.4.3.2 Uncertainty in climatological SWEpeak from differences in LSMs and spatial resolution


	4.5 Conclusion
	4.6 Bibliography

	CHAPTER 5
	5.1 Conclusion and key findings
	5.2 Potential for Future Work

	Appendix A
	A.1 Aggregation window of snow metric
	A.2 Datasets

	Appendix B
	B.1 Description of products compared to WUS-SR and Andes-SR
	B.1.1 HR product
	B.1.2 MR products
	B.1.3 CR products

	B.2 Domain masks, and persistent snow and ice masks
	B.3 Windward and leeward watersheds
	B.4 Bibliography




