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Abstract

Statistical Machine Learning for Reliable Hypothesis Generation in Biomedical Problems

by

Tiffany Tang

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Bin Yu, Chair

Given the ever-growing volume and variety of biomedical data, principled analyses of these
rich datasets offer an exciting opportunity to accelerate the scientific discovery process.
Here, we advance our goal of extracting reliable scientific hypotheses from such data through
(I) the in-context development of interpretable statistical machine learning methods, (II) the
demonstration of responsible data science in practice, and (III) the dissemination of open-
source software and data for reliable data science.

Throughout this dissertation, we build heavily upon the Predictability, Computability, and
Stability (PCS) framework and documentation for veridical (trustworthy) data science (Yu
and Kumbier, 2020) to improve the reliability of our scientific conclusions. This framework
advocates for the use of predictability as a reality check, computability as an important con-
sideration in algorithmic design and data collection, and stability as a minimum requirement
for reproducibility and interpretability in knowledge-seeking and decision-making. Moreover,
it calls on the need for transparent documentation of decisions made throughout the data
science pipeline.

In Part I, we highlight two statistical machine learning methods, developed within the con-
text of grounded biomedical problems and guided by the PCS framework. First, in Chap-
ter 2, we investigate genetic and epistatic drivers of cardiac hypertrophy in hope of obtain-
ing a more complete understanding of the disease architecture. To this end, we develop a
data-driven recommendation system, named the low-signal signed iterative random forest
(lo-siRF), to identify candidate genes and gene-gene interactions that are both predictive
and stable across various model and data perturbations. We then phenotypically validate
these genes and gene-gene interactions via gene-silencing experiments and investigate poten-
tial mechanistic explanations for the demonstrated epistases. This leads to a hypothesis in
which the identified genes interact through mediating the variable binding of transcription
factors that are essential for cardiac contractile function and metabolism. Second, the prac-
tical utility of random forests and interpretability tools, not only in the search for epistasis
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but in a wide range of scientific problems, motivates the need for reliable tree-based feature
importance measures. In Chapter 3, we demonstrate that the mean decrease in impurity
(MDI), arguably the most popular random forest feature importance measure, suffers from
well-known biases including against highly-correlated and low-entropy features. To overcome
these drawbacks, we develop a novel feature importance framework, MDI+, which leverages
a connection between MDI and the R2 value from linear regression. We show that MDI+ im-
proves the reliability and stability of feature importance rankings across an extensive range
of data-inspired simulations and two real-data case studies on drug response prediction and
breast cancer subtype prediction.

In Part II, we further expand on the theme of reliable data science and demonstrate it in
practice through two collaborative projects in cancer -omics. In Chapters 4 and 5, we incor-
porate principles from the PCS framework while working in close collaboration with scientists
and clinicians to identify stable and predictive biomarkers in drug response prediction and
the early detection of pancreatic cancer, respectively.

Finally, in Part III, we introduce open-source software and data to promote and facilitate
the broader adoption of reliable, transparent data science for statisticians and substantive
researchers. In particular, we highlight three tools that support our goals: (1) simChef, an
R package to simplify the creation of tidy, high-quality simulation studies (Chapter 6); (2)
vdocs, an interactive virtual lab notebook in R to seamlessly implement, document, and
justify human judgment calls throughout the data science pipeline in accordance with the
PCS framework (Chapter 7); and (3) a COVID-19 data repository that aided community-
wide data science efforts during the height of the pandemic (Chapter 8).
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Chapter 1

Overview

Rapid technological advances in recent years have led to an unprecedented growth of data in
the biomedical sciences. These advances in combination with large-scale coordinated efforts
have led to the creation of vast biobanks, such as the UK Biobank (Sudlow et al., 2015)
and Japan Biobank (Nagai et al., 2017), as well as comprehensive data consortiums, such
as ENCODE (Consortium et al., 2012) and the Cancer Cell Line Encyclopedia (Barretina
et al., 2012), among many others. This influx of data not only provides statisticians and data
scientists with a vast playground to explore, but also a unique opportunity to collaborate
with domain experts on complex scientific problems that could have significant impact.

For instance, in precision medicine, there has been widespread interest in developing in-
creasingly powerful prediction models for tasks such as predicting the risk of a particular
disease (Fröhlich et al., 2018; Johnson et al., 2021; Faizal et al., 2021). These models can
help clinicians to identify high-risk individuals who should be prioritized for screening, more
frequent follow-ups, and other preventative care measures. However, in this example and
many other biomedical applications, it is critical to not only build accurate prediction mod-
els, but to be able to extract reliable interpretable insights from these models. In the clinic,
a physician must be able to intelligibly explain their decision-making to the patient (Vellido,
2020). Likewise, for laboratory scientists, pinpointing the important features in the predic-
tion model is key to generating scientific hypotheses that may inform future experiments
(Chen and Ishwaran, 2012; Basu et al., 2018; Behr et al., 2020).

Given the potentially high impact and high-stakes decision-making in biomedical ap-
plications, it is thus worrisome that a scientific reproducibility crisis has loomed over the
field and is currently ongoing (Chalmers and Glasziou, 2009; Begley and Ellis, 2012; Stupple
et al., 2019). Notably, in a 2016 survey of over 1500 scientists, more than 70% of researchers
reported that they have tried and failed to reproduce another scientist’s experiments, and
more than 50% have failed to reproduce even their own experiments (Baker, 2016). These
findings combined with the potentially high stakes in the biomedical sciences underscore the
need for reliable and veridical (trustworthy) data science (Yu and Kumbier, 2020) in practice.

To this end, the Predictability, Computability, and Stability (PCS) framework and doc-
umentation (Yu and Kumbier, 2020) was recently proposed to establish three core principles
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to facilitate veridical data science in every step of the data science life cycle – namely, (1)
predictability as evidence for whether or not the model is an accurate representation of
reality; (2) computability as an important practical consideration in algorithmic design as
well as data collection; and (3) stability of conclusions across reasonable data perturbations
and human judgment calls as a minimum requirement for interpretability, reproducibility
necessary for decision making, and new scientific knowledge. In addition, Yu and Kumbier
(2020) call on the need for transparent documentation of the many human judgment calls
that are inevitably made in the data science life cycle as they may substantially impact con-
clusions. These principles were originally motivated by extensive interdisciplinary research
(Wu et al., 2016; Basu et al., 2018). It has since demonstrated a strong track record, driving
scientific discoveries such as novel gene-gene interactions that drive the red-hair phenotype
(Behr et al., 2020), clinically-interpretable subgroups in a randomized drug trial (Dwivedi
et al., 2020), and a robust clinical-decision instrument for children after blunt torso trauma
(Kornblith et al., 2022).

Rooted in the PCS framework for veridical data science, this dissertation works towards
extracting reliable interpretations and generating reliable hypotheses from biomedical data.
Here, we emphasize the task of reliable hypothesis generation, in particular, since available
data is often noisy and imperfectly-positioned to solve the scientific problem under study
outright. We thus view the scientific discovery process as an incremental process, where
we first generate reliable scientific hypotheses from data and then subject these hypotheses
to further validation (e.g., follow-up laboratory experiments). More often than not, several
iterations of this process and numerous forms of validation are required before confidently
claiming a scientific discovery.

In this dissertation, we advance our goal of conducting reliable data science and extracting
reliable scientific hypotheses from biomedical data via the following three parts:

• Part I: We develop new interpretable machine learning methods while grounded in
real-world biomedical problems.

• Part II: We demonstrate the practice of responsible data science under the PCS
framework in two cancer -omics collaborations.

• Part III: We disseminate open-source software and data to facilitate reliable data
science across the broader community of statisticians and substantive researchers.

We summarize our contributions for each part next.

1.1 Part I: In-context development of interpretable
machine learning methods guided by PCS

To advance the boundaries of our scientific understanding, it is becoming increasingly impor-
tant to develop statistical machine learning methods within the context of grounded scientific
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problems. This in-context development ensures that the proposed methods are well-equipped
to tackle the real-world complications that inevitably arise in these problems, such as low
signal-to-noise ratios, complex correlation structures, and high-dimensional features.

Low-signal iterative random forests (lo-siRF) for epistasis discovery

In Chapter 2, we discuss one instance of this in-context methodological development for
identifying epistatic gene-gene interactions that drive cardiac hypertrophy. Cardiac hyper-
trophy is a common heart disease characterized by an enlargement and thickening of the
heart wall and carries significant risk for heart failure and sudden cardiac death. Currently,
only a small fraction of the disease risk can be explained the known regulating genes. As
such, knowledge of new epistatic drivers would not only provide clinicians with more refined
understanding of the genetic architecture of cardiac hypertrophy, but also pave the way for
more accurate diagnoses, preventative care, and new treatments.

Motivated by this, we develop an end-to-end pipeline for identifying genetic and epistatic
drivers of cardiac hypertrophy in this highly-interdisciplinary work, which is joint with
Qianru Wang, PIs Bin Yu and Euan Ashley, and many others (Nathan Youlton, Chad
Weldy, Ana Kenney, Omer Ronen, Weston Hughes, Elizabeth T. Chin, Shirley C. Sutton,
Abhineet Agarwal, Xiao Li, Atul J. Butte, Rima A. Arnaout, James B. Brown, James Priest,
and Victoria N. Parikh). This pipeline consists of three major phases. First, using large-
scale genetic and cardiac MRI data from the UK Biobank, we identify candidate genes and
gene-gene interactions via a novel data-driven recommendation system, the low-signal signed
iterative random forest (lo-siRF). At a high level, lo-siRF builds upon the computationally-
tractable interaction search engine of signed iterative random forests (Basu et al., 2018;
Kumbier et al., 2018), but has been tailored to address major practical challenges inherent
with the UK Biobank data and cardiac phenotype — namely, the low signal-to-noise ratio,
high-dimensionality, and high correlation between features. To overcome these challenges,
lo-siRF leverages (1) deep learning and binarization to extract a refined, denoised phenotype
from cardiac MRIs, (2) a genome-wide association study to perform dimension reduction
in a domain-inspired manner, and (3) a new feature importance score to exploit the known
correlation structure between single nucleotide polymorphisms within a gene locus. Further-
more, building on the PCS framework, we incorporate a prediction screening step to ensure
that the learned model fits the data well. We also conduct extensive stability analyses to
ensure the robustness of our gene-gene interactions to arbitrary human judgment calls (e.g.,
the choice of binarization).

Combining the lo-siRF recommendations with prior domain expert knowledge, we then
chose a subset of the genes and gene-gene interactions to phenoytpically validate in the sec-
ond phase via microfluidics-enabled gene-silencing experiments in high-throughput. These
gene-silencing experiments demonstrate that cardiac hypertrophy is influenced by the lo-
siRF-recommended genes and gene-gene interactions through an epistatic (i.e., non-additive
interaction) model, expanding the scope of the genetic regulation of cardiac structure. In
the final and third phase, we conclude with an investigation into possible mechanistic expla-
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nations for the demonstrated epistases. This leads to a hypothesis in which the identified
genes (CCDC141, TTN, and IGF1R) interact through mediating the variable binding of
transcription factors that are essential for cardiac contractile function and metabolism.

MDI+: A flexible random forest-based feature importance
framework

Inspired by both the need for trustworthy experimental recommendations and the effec-
tiveness of random forests (RF) in the aforementioned work, we explore the reliability of
popular RF feature importances in Chapter 3. In particular, mean decrease in impurity
(MDI) (Breiman et al., 1984) is arguably the most popular choice for measuring feature
importance for RFs, serving as the default RF feature importance method in scikit-learn.
However, MDI is known to yield inaccurate feature importance rankings when there exists
highly correlated features or features of varying entropy levels (Strobl et al., 2007, 2008;
Nicodemus and Malley, 2009; Nicodemus, 2011). These complications with correlation and
entropy are ubiquitous in practice (Nicodemus and Malley, 2009; Boulesteix et al., 2012).

To help explain these drawbacks of MDI, we draw a new connection between MDI and the
R2 value from linear regression. Moreover, we build upon this R2 reinterpretation of MDI to
develop MDI+, a new feature importance framework which generalizes MDI and overcomes
its drawbacks. In short, MDI+ allows the analyst to (1) replace the linear regression model
and/or R2 metric with regularized generalized linear models (GLMs) and metrics better
suited for the given data structure and (2) incorporate additional features or knowledge to
mitigate known biases of decision trees such as their inefficiency in fitting additive or smooth
models. Given the many choices that can be made within the MDI+ framework, we also
provide guidance on how practitioners can choose the appropriate GLM and metric using
the PCS framework. We demonstrate the effectiveness of MDI+ across an extensive range of
data-inspired simulations as well as two real-world case studies on drug response prediction
and breast cancer subtype prediction. In both case studies, MDI+ identifies well-established
predictive genes and yields the most similar feature importance rankings across RFs trained
on different train-test splits, compared to existing feature importance measures. Given that
it is highly undesirable for findings to change due to an arbitrary choice such as the train-
test split (Yu and Kumbier, 2020), the improved stability of MDI+ is a significant practical
advantage and a promising step towards extracting more reliable hypotheses from biomedical
data. This work is joint with Abhineet Agarwal, Ana Kenney, Yan Shuo Tan, and Bin Yu.

1.2 Part II: Responsible data science in real-world
biomedical problems applying PCS

As advocated by the PCS framework (Yu and Kumbier, 2020; Yu, 2013), a crucial prereq-
uisite for new scientific knowledge is stability, not only across reasonable model and data
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perturbations (e.g., using different random seeds) but also across human judgment calls
(e.g., choices in data collection, data preprocessing/cleaning, modeling, evaluation metrics).
If not carefully chosen, arbitrary human judgment calls made throughout the data science
pipeline can substantively impact findings and result in spurious downstream conclusions.
Aligning ourselves with the PCS framework, we thus emphasize the need to (1) collabo-
rate closely with interdisciplinary researchers to make these human judgment calls in an
informed manner, (2) justify these human judgement calls, when possible, via transparent
documentation, and (3) conduct rigorous stability analyses to help ascertain the impact of
these decisions on conclusions. To exemplify these principles in practice, we highlight two
biomedical collaborations in cancer -omics.

A stability-driven protocol for drug response interpretable
prediction

In Chapter 4, we present a collaboration with Xiao Li, Xuewei Wang, Jean-Pierre Kocher, and
Bin Yu, focusing on drug response prediction. Our goal is to predict the response (or efficacy)
of a cancer drug given an individual’s molecular -omics profile and to identify the important
biomarkers that are most predictive of the drug’s response. However, the high heterogeneity
and noise in cancer -omics and pharamacological data pose severe practical challenges. One
main challenge is that these drug response prediction models and interpretations thereof
are often volatile and depend heavily on arbitrary modeling decisions and other human
judgment calls. We hence develop a transparent stability-driven pipeline for drug response
interpretable predictions, or staDRIP, which builds upon the PCS framework in order to
mitigate the impact of human judgment calls on downstream conclusions. This approach
places greater weight on the -omics features that were stably important across multiple
machine learning models and across reasonable perturbations of the data. In doing so, we
identified proteins that have been associated with the drug response in the previous literature
at an approximately 20% higher rate than previous methods.

Contribution of the microbiome to a metabolomic signature
predictive of risk for pancreatic cancer

Following a similar spirit in Chapter 5, we detail a collaboration with Ehsan Irajizad, Ana
Kenney, Bin Yu, Sam Hanash, Johannes Fahrmann, and others, focusing on the early de-
tection of pancreatic cancer. In this work, we investigate whether increases in circulating
microbial-related metabolites are associated with pancreatic cancer risk. Using metabolomics
profiling of participants in the Prostate, Lung, Colorectal and Ovarian (PLCO) cohort, we
develop a three-marker microbial-related metabolite panel, which is predictive of pancreatic
cancer up to five years prior to diagnosis (test AUC: 0.64). To enhance the reproducibil-
ity and reliability of our finding, we stress-test this 3-marker microbial panel and conduct
numerous stability analyses in accordance with the PCS framework. We finally validate
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this 3-marker microbial panel using samples from three different PLCO centers and an in-
dependent cohort of newly-diagnosed pancreatic cancer cases and controls, demonstrating it
achieves similar prediction performance.

1.3 Part III: Open-source software and data

In the last part of this dissertation, we highlight several efforts on the open-source software
and data front to facilitate reliable, transparent data science in practice.

simChef: An R package for high-quality data science simulations
using PCS

First, we develop an R package, simChef, to empower data scientists with an intuitive,
extensible, and reusable framework for data science simulations. By removing many of the
administrative burdens of simulation design, simChef allows data scientists to focus their
attention on scientific best practices. In particular, to facilitate high-quality simulations,
guided by the PCS framework, simChef makes it very easy to vary the data-generating
processes, methods, and perturbations thereof in the simulation study. In Chapter 6, we
highlight simChef’s main features, including (1) its intuitive Tidyverse-inspired grammar
for running simulations, (2) its automated documentation and visualization of results, and
(3) its flexible utilities for efficient distributed computation, caching, and checkpointing.
This work is joint with James P. Duncan, Corrine F. Elliott, Philippe Boileau, and Bin Yu.
GitHub code is available at https://github.com/Yu-Group/simChef.

vdocs: An R package for rigorous and transparent PCS
documentation

In Chapter 7, we introduce vdocs, an R package to facilitate transparent PCS documentation
for applied scientific research. vdocs provides practitioners with an interactive platform
(currently, an interactive R Markdown notebook) to seamlessly implement, document, and
justify human judgment calls throughout an analysis. This virtual lab notebook is akin to a
scientist’s physical lab notebook and walks users through a series of questions and stability
checks to enhance the reliability of the analysis. This work is joint with Ana Kenney, Ehsan
Irajizad, and Bin Yu. GitHub code is available at https://github.com/Yu-Group/vdocs.

Curating a COVID-19 data repository

Lastly, we curated and maintained a large open-source COVID-19 data repository to aid
community-wide data science efforts during the COVID-19 pandemic. This data repository,
detailed in Chapter 8, laid the foundation for our highly collaborative COVID-19 severity
prediction work in Altieri et al. (2020) as well as other COVID-19 research efforts from the

https://github.com/Yu-Group/simChef
https://github.com/Yu-Group/vdocs
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broader community. At its peak, we attracted around 12,000 visits, 1,100 unique visitors,
and 108 clones on GitHub over the span of two weeks. Though no longer under-going active
development, the data repository is open-source on GitHub at https://github.com/Yu-Gr
oup/covid19-severity-prediction. This work is joint with Yu Wang, Chandan Singh,
Bin Yu, and many others (Nick Altieri, Rebecca L. Barter, James P. Duncan, Raaz Dwivedi,
Karl Kumbier, Xiao Li, Robert Netzorg, Briton Park, Yan Shuo Tan, and Chao Zhang).

https://github.com/Yu-Group/covid19-severity-prediction
https://github.com/Yu-Group/covid19-severity-prediction


8

Part I

In-context development of interpretable
machine learning methods guided by

PCS
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Chapter 2

Low-signal iterative random forests
(lo-siRF) for epistasis discovery

2.1 Introduction

Cardiac function and cardiac disease risk are intricately linked to the structure of the heart
(Weldy and Ashley, 2021). In particular, heart failure is influenced by structural features
including ventricular size and wall thickness (Sharir et al., 1994; Bastos et al., 2019; Udel-
son et al., 1988; Burkhoff et al., 2005). Left ventricular hypertrophy (LVH) — increased
thickness of the left ventricular (LV) wall — is a complex phenotypic trait influenced by
multiple factors, particularly afterload (Lazzeroni et al., 2016). Progressive LVH further
carries significant independent risk for incident heart failure, atrial arrhythmia, and sudden
death (Haider et al., 1998; Chrispin et al., 2014; Kawel-Boehm et al., 2019; Bluemke et al.,
2008), highlighting the need to understand the genetic determinants of cardiac structure.

Importantly, recent discoveries leveraging cardiac magnetic resonance imaging (MRI) in
the UK Biobank have revealed that cardiac structure is in part determined by complex
genetics (Pirruccello et al., 2020; Meyer et al., 2020; Harper et al., 2021). Common ge-
netic variants, many located near genetic loci associated with dilated cardiomyopathy and
heart failure, have been found to influence LV size and systolic function (Pirruccello et al.,
2020). Further, specific genetic variants that influence the amount of LV trabeculation have
been shown to affect LV systolic function and overall risk of cardiomyopathy (Meyer et al.,
2020). These pivotal findings underscore the importance of complex genetics in cardiac struc-
ture and disease risk and have resulted in the discovery of novel gene functions. However,
these identified genetic variants remain inadequate to explain the total heritable disease risk
(O’Sullivan et al., 2022). Indeed, common genetic variants rarely act independently and
additively as modeled by many genome-wide association studies (GWAS) (Guindo-Martínez
et al., 2021). There is growing evidence to support a disease risk model in which multiple
genes interact non-additively with each other through epistasis (Zeng et al., 2022; Li et al.,
2020). LVH is not only a complex phenotypic trait influenced by common gene variation,
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but also a distinguishing clinical feature of hypertrophic cardiomyopathy (HCM), which is
driven by rare pathogenic monogenic variants in sarcomere genes (Marian and Braunwald,
2017). Recent work has shown that common genetic variation influences HCM susceptibility
and expressivity, demonstrating that common genetic variation affecting LVH further im-
pacts Mendelian HCM disease penetrance (Harper et al., 2021). This raises the fascinating
possibility that common gene-gene epistatic interactions drive cardiac phenotype, holding
enormous potential for uncovering disease mechanisms and developing potential therapeutic
strategies.

However, several computational and experimental challenges need to be resolved to ensure
robust identification of epistasis. First, detecting epistasis can be computationally prohibitive
due to the combinatorial nature of possible interactions. To reduce the computational bur-
den, iterative random forests (iRF) were developed to discover reliable higher-order (not
only pairwise) nonlinear interactions in a computationally-tractable manner (Basu et al.,
2018). Second, many studies on epistasis were not replicated, raising concerns over the lack
of scientific reproducibility (Reimherr and Nicolae, 2011; Murk et al., 2015). To achieve
more trustworthy results, a new framework (Yu and Kumbier, 2020) for veridical data sci-
ence advocates for three core principles - predictability, computability, and stability (PCS)
- and calls on the need for transparent documentation of decisions made in data analysis
pipelines. Another challenge is the generally small effect size of common genetic variants
(O’Sullivan et al., 2022; Koch and Sunyaev, 2021) and the large phenotypic diversity of
cardiac hypertrophy, which impedes both the data-driven discovery and functional valida-
tion of epistatic interactions. In human biobanks, recent advances in deep-learning-enabled
phenotyping (Bai et al., 2018) using cardiac MRI images have led to more refined pheno-
types at larger scales than were previously possible. At the cellular level, high-throughput
microfluidic technologies (Wang et al., 2019; Di Carlo, 2009; Guan et al., 2013) have been
integrated with AI-based image analysis of single-cell morphology (Wu et al., 2020) and
human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (hiPSC-CMs) (Dainis
et al., 2020), opening up new possibilities for label-free and rapid detection of phenotypic
consequences of genetic perturbation.

In this study, we leveraged large-scale genetic and cardiac MRI data from the UK Biobank
(Bycroft et al., 2018) and identified a novel role of epistasis in regulating cardiac hypertro-
phy. More specifically, we innovated an iRF-based pipeline (Figure 2.1), rooted in the new
PCS framework for veridical data science. This pipeline integrated a deep-learning-based
LV structural analysis (Bai et al., 2018) to identify candidate epistatic drivers from low-
signal (noisy) genomics data. This allowed us to identify previously unreported epistatic
pairwise interactions between gene loci that mediate LVH. Using image-based microfluidics
in combination with a high-throughput single-cell morphology analysis and hiPSC-CMs har-
boring RNA silencing of selected putative epistatic interactions, we showed that specific
pairwise interactions between CCDC141 and two other genes (TTN and IGF1R) can rescue
the pathologic cardiomyocyte hypertrophy caused by a Mendelian HCM risk variant. We
further investigated these genes in transcriptional regulation networks and weighted gene
co-expression networks built from more than 300 human heart tissues (Cordero et al., 2019).
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Figure 2.1: Data of genotype and cardiac MRI-derived left ventricular mass indexed to
body surface area (LVMi) from 30,000 UK Biobank participants were inputted into an itera-
tive random forest-based search engine to predict genes and epistatic gene-gene interactions
that drive left ventricular hypertrophy (LVH). Identified genes and pairwise interactions
were silenced in Day 40 cardiomyocytes differentiated from human induced pluripotent stem
cells (hiPSCs) derived from healthy donors and patients with hypertrophic cardiomyopathy
(HCM). Size and shape features of single cardiomyocytes were imaged and evaluated using
an advanced microfluidic technique to validate the impact of hypothesized epistatic interac-
tions between identified genes on cardiomyocyte hypertrophy.

This analysis led to a hypothesis in which the identified genes interact through mediating
the variable binding of transcription factors (TFs) that are essential for cardiac contractile
function and metabolism. These results demonstrate a complex paradigm for the integration
of gene-phenotype associations in cardiac health and disease: common genetic variants af-
fect cardiac hypertrophy through a mechanism of epistasis, and these gene-gene interactions
impact rare variant effects on cardiomyocyte phenotype.
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2.2 Results

Veridical machine learning enables search for epistatic drivers of
left ventricular hypertrophy in low-signal data

We analyzed single-nucleotide polymorphism (SNP) and cardiac MRI data from 30,000 un-
related White British individuals in the UK Biobank (Figure 2.2a, Table A.1). To reliably
infer epistatic drivers of LVH from this data, we developed a data-driven pipeline, the low-
signal signed iterative random forest (lo-siRF), which builds upon an enhanced version of
iRF (Basu et al., 2018; Kumbier et al., 2018) and is heavily guided by the PCS framework
for veridical (trustworthy) data science (or machine learning) (Yu and Kumbier, 2020). As
a veridical machine learning strategy, lo-siRF aims to extract trustworthy gene-gene inter-
actions by: ensuring that the learned model fits the data well; aligning statistical modeling
decisions with the scientific phenomena under study; and conducting stability analyses to
improve the robustness of our gene-gene interactions.

More specifically, to first quantify LVH, lo-siRF begins with a careful choice of phenotypic
data for LVH by leveraging recent advances in deep learning (Bai et al., 2018) to extract
the LV mass indexed to body surface area (LVMi) from cardiac MRIs (Figure 2.2a and
Figure A.1, details in Methods). lo-siRF then takes several steps to obtain trustworthy gene-
gene interactions given the low phenotypic signal, which arises from the small effect size of
common genetic variants and phenotypic diversity of cardiac hypertrophy. Namely, lo-siRF
incorporates the following steps (details in Methods), rooted in the PCS framework:

1. A biologically-inspired dimension reduction step: we use GWAS to mitigate challenges
when searching across millions of possible SNPs (Figure 2.2b and Figure A.2);

2. A binarization step: we binarize the LVMi phenotype measurements into a high and
low LVMi category to denoise and facilitate model checking (Figure 2.2c);

3. A prediction step: we fit an enhanced version of iRF, namely, signed iRF (siRF) (Basu
et al., 2018; Kumbier et al., 2018), a stable and powerful nonlinear interaction search
engine that yields a competitive classification accuracy of 55% relative to other common
machine learning prediction algorithms (Figure 2.2d); and

4. An interpretation step: we develop a novel stability-driven feature importance score
(Figure A.3), which leverages the siRF fit and a permutation test, to finally rank the
gene-gene interactions (Figure 2.2e). This feature importance score provides the nec-
essary new interpretable machine learning ingredient to complete the lo-siRF discovery
pipeline.

A more detailed documentation and justification of our modeling decisions can be found
in the supplementary PCS documentation.
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Figure 2.2: (a) Cardiac MRIs and SNP data were pulled from the UK Biobank, and LVMi was
derived from the cardiac MRIs via deep learning31. (b) Dimension reduction was performed
via GWAS to concentrate the analysis on a smaller set of SNPs. (c) LVMi was binarized
into high and low LVMi categories according to three different binarization thresholds (rep-
resented by the stacked boxes). (d) For each of the three binarization thresholds, signed
iRF was fitted using the GWAS-filtered SNPs to predict the binarized LVMi phenotype,
and the validation prediction accuracy was assessed. (e) Genes and gene-gene interactions
were ranked according to their importance across the three iRF fits, as measured by a novel
stability-driven importance score.
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Low-signal signed iterative random forests identify novel epistasis
between four genomic loci

lo-siRF identified pairwise epistasis between SNPs at four genomic loci that exhibited stable
and reliable associations with LVMi (highlighted in blue in Figure 2.3a). Specifically, an
interaction between the CCDC141 and IGF1R loci (denoted as CCDC141 -IGF1R in Fig-
ure 2.3a) showed the strongest association to LVMi, followed by an interaction between the
CCDC141 and TTN loci (CCDC141 -TTN ), and then an interaction between the CCDC141
locus and the LOC157273 ;TNKS intergenic region (CCDC141 -LOC157273 ;TNKS ). lo-siRF
provides additional information regarding the sign (or direction) of these interactions; how-
ever, given our primary goal of recommending candidates for experimental validation, we
omit the signs here and discuss it further in the online PCS documentation.

Interestingly, all of these interactions involved the CCDC141 locus. Furthermore, the
CCDC141 and TTN loci exhibit genomic proximity (Figure 2.3b-f). Their interaction,
however, does not appear to stem from this proximity. Though previous GWAS studies
(Verweij et al., 2018; Thorolfsdottir et al., 2021) have identified missense and intronic variants
in CCDC141 in high linkage disequilibrium (LD) with loci in TTN, CCDC141 and TTN have
also been marginally associated with LVM/LVMi separately (Khurshid et al., 2023; Aung
et al., 2019). Moreover, our lo-siRF results show that all the identified SNPs in CCDC141
were in low LD with their interacting SNPs found in TTN (R2 < 0.6), suggesting independent
roles of each genetic locus in their epistasis. Data from GTEx (GTEx Consortium, 2013) also
reveal that the 5 SNPs in the CCDC141 locus with the highest occurrence frequency in lo-
siRF (Figure 2.3b), are expression quantitative trait loci (eQTLs) for CCDC141, indicating
their effects on regulating CCDC141 gene expression levels. Of the 51 SNPs identified by
lo-siRF at the TTN locus, 20 are splicing quantitative trait loci (sQTLs) for TTN, suggesting
their impact on the alternative splicing of TTN pre-mRNA. Some of these identified SNPs
(e.g., rs7591091 and rs12465459) are eQTLs for both CCDC141 and TTN (Figure 2.3h&j),
indicating that these SNPs may regulate the expression of both genes. In contrast, some
SNPs (e.g., rs7573293), are eQTLs for CCDC141 alone and do not appear to impact TTN
expression (Figure 2.3i). These findings possibly suggest both independent roles of CCDC141
and TTN and their potential interaction in the regulation of cardiac hypertrophy, which we
corroborate via mechanistic experiments discussed in the following section.

Beyond this interaction with the TTN locus, lo-siRF suggests that the CCDC141 locus
interacts with the IGF1R locus and the LOC157273 ;TNKS intergenic region. Data from
GTEx show that all six SNPs identified at the IGF1R locus are eQTLs for IGF1R in left
ventricles. In addition, lo-siRF identified five loci that exhibited strong marginal associations
with LVMi (Figure 2.3a). Three of these identified loci (near IGF1R, TTN, and CCDC141 )
were involved in the interactions discussed. The remaining two loci are LSP1 and the
intergenic region between MIR588 and RSPO3. LSP1 encodes the lymphocyte specific
protein 1 and has been associated with hypertension and systolic blood pressure (Kanai
et al., 2018; Ehret et al., 2016). RSPO3 encodes R-spondin3, which has been reported to
modulate Wnt-signaling and promotes coronary artery formation (Da Silva et al., 2017).
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Figure 2.3 (previous page): (a) Top genes and gene-gene interactions (highlighted in blue),
along with the SNP(s) most frequently occurring in lo-siRF. Semicolon indicates intergenic
regions. Lo-siRF captures associations that GWAS failed to identify (e.g., IGF1R and its in-
teraction with CCDC141 ). Chr, chromosome; SE, standard error. Other lo-siRF-prioritized
SNPs and SNP-SNP interactions are shown in Figure A.3. (b) Top 50 lo-siRF-prioritized
interactions identified between CCDC141 and TTN SNPs. The height of each ellipse indi-
cates the occurrence frequency of the corresponding SNP-SNP interaction in lo-siRF averaged
across the three LVMi binarization thresholds (Figure 2.2b). Also shown is a heatmap of
the number of interactors for each SNP. These interacting SNPs are overlapped in the ge-
nomic context with (c) a comprehensive GTEx dataset from human left ventricle tissues,
including H3K27ac Chip-seq and peak tracks, WGBS DNA methylation, RNA-seq coverage,
and GWAS catalogs. These interacting SNPs are also overlapped with human heart regula-
tory regions from (d) Ensembl regulatory build (Martin et al., 2023) and recently published
data of (e) transcribed regulatory elements (TREs) and (f) active enhancers (Spurrell et al.,
2022). (g) Manhattan plots of PheWAS results (p < 0.05) stratified by phenotypic domains
for two CCDC141 SNPs (top, rs7591091, middle, rs7573293) and a TTN SNP (bottom,
rs12465459) that frequently appear in lo-siRF. Associations with cardiovascular phenotypes
are highlighted in blue, green, and orange for these three SNPs, respectively. Red dashed
lines represent Bonferroni corrected p values of 2.98E-4, 3.55E-4, and 2.45E-4, respectively.
(h) Violin plots of CCDC141 (left) and TTN (right) expression for rs7591091 in GTEx
(release v8) indicate that this SNP is an eQTL for both CCDC141 and TTN. In contrast,
the other CCDC141 SNP, rs7573293 (i), is an eQTL for CCDC141 only. (j) Violin plots of
CCDC141 (left), TTN (middle), and RP11-171I2.2 (right, a novel transcript antisense to
titin) expression for eQTL rs12465459 in GTEx. Box plots in (h)-(j) show the allelic effects
of the given SNP on normalized expression levels of a given gene, and white lines represent
the median values.

Disrupting putative interactions in hiPSC-CMs reveals the
epistatic regulation of cardiomyocyte hypertrophy

To phenotypically characterize the identified epistatic interactions, we interrogated how dis-
rupting these putative interaction candidates can affect single cell hypertrophy. We elected
to use a genetic model of hypertrophy: hiPSC-CMs derived from patients with and without
the foundational Mendelian variant associated with hypertrophic cardiomyopathy (MYH7
p.R403Q) (Dainis et al., 2020). MYH7 encodes the cardiac myosin heavy chain 7, a key
component of the cardiac sarcomere, which is among the most common genes known to
cause this disease (Dainis et al., 2020). Typically, a family history of arrhythmic sudden
death and heart failure is seen across multiple generations. This was the case in this family
where echocardiography demonstrated severe LVH and a small LV cavity (Dainis et al., 2020).
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At the cellular level, hiPSC-CMs carrying the MYH7 -R403Q mutation showed an elevated
mean cell size and prolonged size distribution on the larger side relative to the unaffected
control (Figure 2.5a), which concords with reported enlargement of cell size (Eschenhagen
and Carrier, 2019) in HCM lines.

To determine if CCDC141 can act both independently and in epistatic interactions with
other genes to attenuate the pathologic cellular hypertrophy caused by MYH7 -R403Q, we
silenced genes CCDC141, IGF1R, TTN, and gene pairs CCDC141 -IGF1R and CCDC141 -
TTN using siRNAs (220 ∼ 316 kbps in length and incorporating locked nucleic acids for
specificity, details in Methods) in both healthy and MYH7 -R403Q variant hiPSC-CMs with
high efficiency (Figure 2.5b). The resulting cell suspensions were focused into fluid streams
using a spiral inertial microchannel (Figure 2.4b and Figure A.5), and photographed to derive
cell size and morphology information using a customized image analysis pipeline (Figure 2.4c)
in high-throughput. Because the large variety in cardiomyocyte diameters (Figure 2.5a) can
lead to differential cell focusing positions (Hood et al., 2016) and thus poor imaging resolution
(Stavrakis et al., 2019) of flowing cells, we used inertial microfluidics to address this problem
and adopted the Dean flow focusing principle (Guan et al., 2013) to bifurcate the randomly
dispersed cardiomyocytes into two streams of large and small cells (Figure 2.4b). These
sorted cells were further focused in separate channels to allow high-resolution imaging and
rapid extraction of single cell morphology features (details in Figure A.5 and Methods).

We analyzed the relative differences between size of cells with silenced genes or pair-
wise gene interactions compared to their scrambled controls (Figure 2.5c). Bootstrapped
hypothesis tests were performed to compare medians and quantiles, for which the p-values
are capped below by p < 10−4. Additional analyses were performed to ensure that our
conclusions are robust against human judgment calls (see Methods and Appendix A).

Our results show an epistatic interaction between CCDC141 and IGF1R in reducing
hiPSC-CM cell size. More specifically, silencing IGF1R alone reduces the median cell size by
5.3% ± 0.4% (p < 10−4) in MYH7 -R403Q variant hiPSC-CMs and 6.6% ± 0.5% (p < 10−4)
in healthy cells. Silencing CCDC141 alone also decreases median cell size relative to the
scrambled control by 3.2% ± 0.5% (p < 10−4) in MYH7 -R403Q variant cells, but indicates no
significant impact on healthy cells. Digenic silencing of CCDC141 -IGF1R shows a synergic
effect on attenuating the pathologic cell hypertrophy in MYH7 -R403Q variant cells, resulting
in an 8.5% ± 0.3% (p < 10−4) decrease in the median cell size. This is consistent with the
case of healthy cells, for which although silencing CCDC141 alone appears not to affect cell
size, the median cell size decreases by 9.3% ± 0.5% (p < 10−4) when silencing the additional
gene IGF1R. Moreover, this effect from silencing CCDC141 -IGF1R appears to be non-
additive for both healthy and MYH7 -R403Q variant cells (p < 10−4 for non-additivity),
suggestive of an epistatic mechanism. These findings agree with the strongest association of
the CCDC141 -IGF1R interaction identified by lo-siRF (Figure 2.3a).

Similarly, for both healthy and disease samples, digenic silencing of CCDC141 -TTN
leads to the most pronounced reduction in median cell size (by 5.8% ± 0.6% for healthy
cells and 3.3% ± 0.4% for MYH7 -R403Q variant cells, p < 10−4) relative to monogenic
silencing. This effect on reducing cell size appears to be non-additive for both healthy
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Figure 2.4: (a) Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)
with and without hypertrophic cardiomyopathy (carrying an MYH7 -R403Q mutation) were
transfected with scramble siRNA or siRNAs specifically targeting single (CCDC141, IGF1R,
and TTN ) or combined (CCDC141 -IGF1R and CCDC141 -TTN ) regions recommended by
lo-siRF (Figure 2.3b). (b) Gene-silenced hiPSC-CMs were detached from culture dishes
and loaded into a spiral microfluidic device using a syringe pump. Interplay of inertial
forces focused randomly dispersed large and small cells into the top or bottom microchannel
outlets (cell focusing mechanism illustrated in Figure A.4), respectively, which enables high-
resolution imaging of flowing cells. (c) Workflow of the image analysis process. Time-lapse
image sequences of single cells passing through the top and bottom microchannel outlets
were fed into a customized MATLAB-based program that extracts cell size/shape features
via a sequential process of bright field background correction, cell boundary detection, cell
tracking and stuck cell removal, cell feature extraction, data postprocessing, and data analy-
sis. Extracted cell size/shape features for each gene-silencing condition were compared with
their scramble controls to validate the potential role of epistasis in the genetic regulation of
cardiomyocyte hypertrophy.
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Figure 2.5 (previous page): (a) Violin plots of cell diameters of unaffected (blue) and MYH7 -
R403Q variant (red) hiPSC-CMs indicate a heavily positive-skewed size distribution of car-
diomyocytes. Solid and dashed lines in box plots represent median and mean values, respec-
tively. Asterisks indicate significant difference (∗∗∗p < 1E-36, Wilcoxon signed rank test).
(b) Gene-silencing efficiency in unaffected (blue, n = 5 to 9) and MYH7 -R403Q variant (red,
n = 3) hiPSC-CMs based on RT-qPCR analysis (details in Methods). Error bars indicate
standard deviations. (c) Fractional change in median cell diameter of gene-silenced hiPSC-
CMs relative to scramble control values (relative size difference) indicates that CCDC141
interacts with IGF1R to correct cardiomyocyte hypertrophy. Relative size differences were
averaged across data from two to four independent batches of cells. Error bars indicate stan-
dard deviations computed on 1000 bootstrap samples of these batches with the following
sample size: n = 13147 (TTN ), 19460 (IGF1R), 45304 (CCDC141 ), 19979 (CCDC141 -
TTN ), and 26135 (CCDC141 -IGF1R) for unaffected cells and n = 22134 (TTN ), 33801
(IGF1R), 21158 (CCDC141 ), 39515 (CCDC141 -TTN ), and 52049 (CCDC141 -IGF1R) for
MYH7 -R403Q variant cells. Asterisks indicate significant difference between gene-silencing
and scramble control conditions based on the maximum p-values of Wilcoxon signed rank
test across all batches of cells (∗p < 0.05, ∗∗p < 0.001, and ∗∗∗p < 10−4). (d) A heatmap of
relative differences of cell size quantiles at various levels between gene-silencing and scramble
control conditions. Dark color indicates strong reduction of size quantiles in gene-silenced
cells thereby a narrower size distribution relative to the scramble control. The correspond-
ing statistical differences (e) were evaluated by the maximum p-values across all batches
of cells using a bootstrap quantile test (1000 sample size). (f) Representative QQ-plots
of cell size quantiles comparing between gene-silenced cells and scramble controls for both
unaffected (top) and MYH7 -R403Q variant (bottom) hiPSC-CMs indicate a clear size-bias
in the effect of silencing CCDC141 -IGF1R on correcting cardiomyocyte hypertrophy. (g)
CCDC141 non-additively interacts with IGF1R (left) and TTN (right) to modify boundary
and texture features of unaffected (blue) and MYH7 -R403Q variant (red) hiPSC-CMs. Cell
boundary waveness and texture irregularity were measured by the roundness error (h, top)
and normalized peak number (h, bottom), respectively. (i) Representative single-cell images
overlapped with detected cell boundaries (red lines) show that a higher roundness error in-
dicates increased irregularity of the cell boundary. (j) Representative single-cell images with
detected peaks (blue plus signs) of the brightfield intensity distribution enclosed within the
cell boundaries (red lines) indicate a varying level of cell textural irregularity.

and disease cells (p < 10−4 for non-additivity). In addition, CCDC141 and TTN show
distinctive independent roles in repressing cardiomyocyte hypertrophy. In healthy cells,
monogenic silencing of TTN leads to a larger reduction in the median cell size compared to
the case of silencing CCDC141. In contrast, MYH7 -R403Q variant cells display a larger size
reduction in response to monogenic silencing of CCDC141. Given the diverse expressivity of
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cellular hypertrophy among MYH7 -R403Q variant cells (indicated by the heavily positively-
skewed size distribution in Figure 2.5a), we further analyzed size changes of large and small
cells focused into different microchannels separately. Our results show that silencing TTN
(p = 0.001) or CCDC141 -TTN (p = 0.005) predominantly targets cells that exhibit cellular
hypertrophy (gray bars in Figure A.6a, right) but has a trivial impact on small cells.

To explore this diverse expressivity further, we evaluated how gene silencing reshapes the
cell size distribution (Figure 2.5d and p-values in e). QQ-plots showcasing the quantiles of
gene-silenced cells against their scrambled controls suggest that digenic gene silencing leads to
a stronger effect on larger cells (indicated by the larger deviation of points from the solid black
line in Figure 2.5f). For example, the upper quantiles of MYH7 -R403Q variant cells silencing
CCDC141 -IGF1R are much lower (the 0.9 quantile decreased by 14.4%, p < 10−4) than
the corresponding scrambled quantiles (Figure 2.5d&f), indicating that this variant favors
rescuing hypertrophic cells over small cells. However, this size-dependent effect is mitigated
in cells with monogenic silencing of CCDC141 or IGF1R. This discrepancy in how these two
genes affect cell size reinforces the hypothesized non-additive interaction between CCDC141
and IGF1R (e.g., p < 10−4 for nonadditivity, 0.9 quantile, Figure 2.5f). Importantly, stable
non-additive interaction effects for hypertrophic cells (quantile levels higher than 0.6) are
also observed for the CCDC141 -TTN pair in both cell lines. Overall, these experimental
results suggest both an epistatic interaction between CCDC141 and the other two genes
(IGF1R and TTN ) as well as independent effects on modifying cardiomyocyte hypertrophy.

Additionally, recent studies have shown that other cellular morphology features, such as
cell boundary and textural irregularities, are informative readouts of cytoskeletal structure,
which is highly associated with disease state (Wu et al., 2020; Alizadeh et al., 2019). We
analyzed relative changes in cell shape and texture (Figure 2.5g and Figure A.6b) by mea-
suring the counts of peak intensities normalized to the total number of pixels enclosed by
the cell boundary (Figure 2.5h). Cells with a high normalized peak number display a ruffled
texture, which is manifested by an unevenly distributed 2D intensities (Figure 2.5j). Our
analysis shows that silencing both CCDC141 and IGF1R (circles in Figure 2.5g, left) yields
a larger increase in intensity peak number than the case of silencing IGF1R alone (triangles
in Figure 2.5g, left) for both cell lines. Specifically in both healthy and disease cells, the
CCDC141 -IGF1R interaction (p < 10−4 for non-additivity) exhibits a synergistic epistasis
between gene interactors on increasing intensity peak number. We also analyzed cell round-
ness error, a measure of how far radii measured on the cell outline deviate from the scenario
of a circular shape (Figure 2.5h). This parameter increases with an increasing cell boundary
waviness or elongation (Figure 2.5i). We show that the silencing of CCDC141 and IGF1R
synergistically interact to increase roundness error of HCM cardiomyocytes (p < 10−4 for
non-additivity, Figure 2.5g, left). In addition, CCDC141 and TTN display antagonistic
epistasis and synergistic epistasis in their impact on roundness error for healthy and MYH7 -
R403Q variant cells (p < 10−4 for non-additivity, Figure 2.5g, right). Plotting cell roundness
error against normalized peak number highlights the non-additive interaction in both gene
pairs (CCDC141 -IGF1R and CCDC141 -TTN ) on modulating cell textural and boundary
irregularity (Figure 2.5g).
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CCDC141 may interact with IGF1R and TTN through
transcription factor-DNA binding

We explored potential mechanisms for identified epistatic gene interactions. Although the
non-coding nature of the discovery SNVs implied it was unlikely protein-protein interaction
was responsible for our findings, we first queried the BioGRID (version 4.4.213) (Oughtred
et al., 2021) and IntAct (Hermjakob et al., 2004) databases and found no reported protein-
protein interactions between CCDC141, IGF1R, and TTN.

We next investigated whether these three genes share transcription factor (TF) DNA
binding. We scanned all SNVs that passed the lo-siRF GWAS filter using the Ensembl
2023 database (Martin et al., 2023). Within each of the three genes, we found SNVs that
co-occur in regulatory regions harboring a shared set of transcription factor binding motifs
(TFBMs) (Figure 2.6a-c). One TFBM binds to a complex formed between two TFs, TEAD4
and GATA3 (denoted as TEAD::GATA motif in Figure 2.6). TEAD4 plays a key role
in heart morphogenesis by recruiting a variety of transcriptional co-activators (e.g., YAP,
TAZ and VGLLs) that regulate cell proliferation (Currey et al., 2021). A recent study
has shown that TFBMs for TEAD4 and other TEAD TFs are significantly enriched in
enhancers upregulated in both fetal human hearts and heart tissues from patients with
dilated cardiomyopathy (Spurrell et al., 2022), suggesting an important regulatory role of
TEAD TFs in activating heart development and disease-specific pathways. In particular,
we found that both a CCDC141 SNP (rs62177296) and an IGF1R SNP (rs55686521) reside
directly in this TEAD::GATA TFBM. These genetic variants alter the consensus DNA-
binding sequences recognized by GATA (5’-GATAAG-3’) and TEAD (5’-GGAATG-3’) TFs,
respectively (Figure 2.6d), suggesting their direct impact on DNA binding affinity (Yang
et al., 2022).

In addition to these motif-disrupting variants, several SNPs are located close to (less than
420 bps from) two other TFBMs that are often found to be adjacent to the TEAD::GATA
motif. One motif (denoted as GATA motif) is bound by GATA3/4/5 TFs that are critically
involved in heart development and cardiac hypertrophy (Hong and Zhang, 2022). GATA4
regulates a spectrum of key cardiac genes, including NPPA, NPPB, MYH7, MYH6, TNNC1,
TNNI1, and MLC1/365. The other motif (denoted as AP-1 motif) is bound by several
important TFs that affect the regulation of cardiac hypertrophy and myocardial infarction,
such as members of the AP-1 (e.g., FOS, JDP2, and JUN) and bZIP TF family (XBP1 and
CREB3). Indeed, previous studies have shown that many TFs can interdependently bind to
DNA, with their individual motifs either packed together (e.g., the TEAD::GATA motif) or
proximally separated from each other (Deplancke et al., 2016) (e.g., the cluster of motifs in
Figure 2.6a-c). For instance, the collaborative binding of AP-1 (FOS/JUN) and TEAD TFs
to separated motifs has been reported in human tumor cells and mouse embryonic fibroblasts
(Yang et al., 2022). In addition to the proximal collaborative TF-DNA binding, long-range
binding of TF pairs can connect two distant genes in the process of DNA or chromatin looping
(Deplancke et al., 2016). The aforementioned TFBM analysis thus suggests one hypothesis
in which the demonstrated epistatic effects can be explained by the co-regulation of gene
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Figure 2.6: (a)-(c), Interacting SNPs identified in CCDC141 (a), TTN (b), and IGF1R
(c) co-occur in regulatory regions involving TEAD, GATA, and AP-1 transcription factor
binding motifs (TFBMs), with their DNA sequences and locations shaded in different colors.
The TEAD::GATA TFBM (light orange) is co-bound by TEAD4 and GATA3. The GATA
TFBM (light blue) is bound by GATA3/4/5. The AP-1 TFBM (mint green) is bound by
XBP1, CREB3, BATF3, JDP2, FOS, ATF7, and JUN. The TALE TFBM (purple gray) is
bound by MEIS2, MEIS3, TGIF1, TGIF2, TGIF2LX, PKNOX1, and PKNOX2. d, Motif
matrices for TEAD::GATA, GATA, AP-1, and TALE TFBMs. TFBMs were experimentally
verified based on the Ensembl 2023 database (Martin et al., 2023).

expression through shared TFs essential for cardiac development (e.g., TEAD, GATA, and
AP-1).

To further investigate this hypothesis, we verified the statistical significance of TF overlap
between CCDC141 and TTN using known TF enrichment data from Enrichr (Kuleshov
et al., 2016). We performed all possible permutations of gene pairs from the GWAS-filtered
SNPs and evaluated the degree of overlap in their associated TFs. We found that the TF
overlap between CCDC141 and TTN significantly exceeds the TF overlap between random
gene pairs (empirical p = 0.013, Figure 2.7a-b). On the other hand, CCDC141 and IGF1R
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Figure 2.7 (previous page): (a) Number of transcription factors (TFs) that interact with
CCDC141, IGF1R, TTN, or any of their combinations reported by Enrichr (Kuleshov
et al., 2016). (b) Permutations of all possible gene pairs show that the TF overlap be-
tween CCDC141 and TTN significantly exceeds the TF overlap between random gene pairs
that pass the GWAS filter (Figure 2.2b). (c) Enrichr reported gene ontology (GO) overlap
evaluated using all permutations of gene pairs passing the GWAS filter (Figure 2.2b). The
heatmap of empirical p-values indicates significant GO overlaps for CCDC141–IGF1R and
IGF1R–TTN interactions relative to random gene pairs. (d)-(f), Distributions of connectiv-
ity score between all possible combinations of genes for the control (d) and heart failure (e)
networks and the connectivity difference between these two networks (f) established from
Weighted Gene Co-expression Network Analysis (WGCNA) using failing and non-failing hu-
man heart tissues (Cordero et al., 2019) CCDC141 and TTN show a significant connectivity
in the control and heart failure networks and a significant difference in connectivity between
these two networks. (g)-(f), Dendrograms from WGCNA control (g) and heart failure (h)
networks.

did not show a significant TF overlap in our analysis (Figure 2.7b). This can be explained by
the lack of associated TFs identified for CCDC141 relative to that for IGF1R (Figure 2.7a).
However, these two genes show a significant overlap in the gene ontology (GO) of neuron
projection (empirical p = 0.043, Figure 2.7c), which indicates that these two genes are
involved in the same downstream biological processes or pathways.

CCDC141 and TTN interact in gene co-expression networks from
healthy and failing human hearts

We next explored how the demonstrated epistases contribute to the progression of a failing
human heart from its normal state. We compared the difference in connectivity of all the
possible gene pairs between two weighted gene co-expression networks established using 177
failing hearts and 136 non-failing hearts (Cordero et al., 2019), respectively. We found
a strong connection between CCDC141 and TTN in the healthy control network (p =
0.0026, Figure 2.7d). Even though the connectivity is statistically significant (p = 0.006,
Figure 2.7e) in the heart failure (HF) network, it is substantially weakened (p = 0.002, two-
tailed empirical for the difference in connectivity, Figure 2.7f). This weakening suggests a
potential role of attenuating the CCDC141 -TTN interaction in the process of heart failure.
Comparing gene module memberships of CCDC141, TTN, and IGF1R between the control
and HF networks shows that CCDC141 and TTN are co-associated with the module of
electron transport chain/metabolism in the control network while IGF1R is associated with
the module of unfolded protein response (Figure 2.7g). In the HF network, TTN and
IGF1R are co-associated with the module of muscle contraction/cardiac remodeling, whereas



CHAPTER 2. LOW-SIGNAL ITERATIVE RANDOM FORESTS (LO-SIRF) 26

CCDC141 remains associated with the metabolism module (Figure 2.7h). This indicates that
the epistatic effect of CCDC141 and TTN on the progression of heart failure may be related
to the dependence of contractile function on metabolic efficiency. Although this analysis did
not prioritize a direct pairwise interaction between CCDC141 and IGF1R, they may interact
through a third gene, such as TTN, to contribute to the progression of heart failure.

2.3 Discussion

We have demonstrated evidence for epistasis in the regulation of cardiac hypertrophy through
data-driven veridical machine learning recommendations and gene-silencing experiments.
Although polygenic and epistatic contributions to disease have been supported by com-
putational models (Zeng et al., 2022; Li et al., 2020), experimental confirmation of these
interactions is rare, with notable exceptions including work revealing the oligogenic inheri-
tance of human heart disease (Gifford et al., 2019). Our strategy integrated a deep-learning
LV structural analysis and an iRF-based model (lo-siRF), rooted in the PCS framework for
veridical data science (or machine learning). This approach allowed us to identify epistatic
interactions between CCDC141 and other two genes (IGF1R and TTN ) that drive cardiac
hypertrophy, highlighting the applicability and efficacy of lo-siRF for reliable detection of
epistatic drivers of human complex traits. In addition, we phenotypically validated the effect
of disrupting putative epistatic gene-gene interactions on cellular morphology in healthy and
HCM hiPSC-CMs. We show that high-throughput microfluidics employing imaged-based
single cell morphology analysis can rapidly and precisely capture small changes in cellular
morphology features, providing a useful approach to assess the phenotypic consequences of
common genetic variants with small effect size at scale. This platform can be further in-
tegrated with high-dimensional single-cell morphology profiling (Wu et al., 2020) to reveal
epistatic effects on hundreds of single-cell morphological features simultaneously that are
invisible from single or a few readouts. In addition, a variety of high-throughput cell sort-
ing applications are unlocked by integrating image-based flow cytometry (Schraivogel et al.,
2022).

Our mechanistic exploration using bioinformatics databases (e.g., BioGRID (Oughtred
et al., 2021), IntAct (Hermjakob et al., 2004), Ensembl (Martin et al., 2023), and Enrichr
(Kuleshov et al., 2016)) leads to a hypothesis that CCDC141, IGF1R, and TTN interact
through mediating transcriptional regulations rather than physical protein-protein interac-
tions. Since the identified SNPs in our lo-siRF pipeline in each of the three genes co-occur
in regulatory regions consisting of similar TF binding motifs, it is possible that variants in
these genes interdependently affect the binding affinity of the respective TFs. In other words,
regulatory variants in one gene may enhance or repress the expression of the other gene in
the demonstrated epistases, and thereby exert non-additive effects on the downstream phe-
notypic consequences. This hypothesized transcriptional interdependency between genes can
partly explain our findings that CCDC141 synergistically interacts with TTN and IGF1R
to reduce cardiomyocyte hypertrophy (Figure 2.5c). Another possibility is that these three
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genes are co-regulated by the same sets of TFs and involved in similar biological processes or
pathways. However, due to the complexity of TF-DNA binding and limited data of recog-
nized motifs, further comprehensive analysis is needed to capture different types of genomic
data, such as DNA methylation, chromatin states, and DNA structural conformation and
its steric characteristics. In addition, CCDC141 appeared in all the epistatic interactions
prioritized by our model. Although CCDC141 is known to be highly expressed in heart
muscle and has been associated with heart rate (Den Hoed et al., 2013; Verweij et al., 2018)
and QRS duration on electrocardiogram (Norland et al., 2019), few functional studies exist
to elucidate its specific role in cardiac structures (Verweij et al., 2018). CCDC141 has been
hypothesized to act as a regulator of the myosin II pathway, by which the encoded protein
interacts with the disrupted-in-schizophrenia 1 (DISC1)-centrosome complex (Fukuda et al.,
2010) to control the cortical neuron migration. Therefore, it is possible that CCDC141 plays
a similar role in regulating the myosin II pathway in cardiomyocytes. This hypothesis agrees
with our results of weighted gene co-expression network analysis (WGCNA) based upon more
than 300 human heart tissues (Cordero et al., 2019). Our analysis suggested that CCDC141,
TTN, and IGF1R are associated with gene modules of muscle contraction or metabolism,
which are key components of the myosin II pathway.

In summary, this study expands the current scope of the genomic architecture of com-
plex traits, highlighting the importance of epistasis on cardiac structure. The integration
of lo-siRF, MRI-based LV structure analysis, and high-throughput microfluidic single-cell
phenotyping provides a powerful approach for reliable epistasis discovery. This study also
unlocks a number of future research directions, such as the identification of allele-specific
binding sites in the demonstrated epistasis and the exploration of higher-order epistatic
interactions among more than two genes. Our study also provides important insights for
predicting polygenic disease risk as well as suggesting potential therapeutic targets in non-
coding regions for diseases with complex traits.

2.4 Methods

Study participants

The UK Biobank is a biomedical database with detailed phenotypic and genetic data from
over half a million UK individuals between ages 40 and 69 years at recruitment (Bycroft
et al., 2018). In the LVH study, we restricted our analysis to 29,661 unrelated White British
individuals (Table A.1) from the UK Biobank cohort with both genetic and cardiac MRI
data. More specifically, we considered only those individuals from the UK Biobank cohort
who self-reported as White British and have similar genotypic backgrounds based on prin-
cipal components analysis as done in prior work (Bycroft et al., 2018). We also identified
related individuals (i.e., third-degree relatives or closer) via genotyping and omitted all but
one individual from each related group in the analysis. Details regarding this cohort refine-
ment have been described and implemented previously (Bycroft et al., 2018; Morgan et al.,
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2018). This resulted in a cohort of 337,535 unrelated White British individuals from the
UK Biobank, of which 29,661 have both genetic and cardiac MRI data. We randomly split
this data into training, validation, and test sets of size 15,000, 5,000, and 9,661 individuals,
respectively.

Genotyping and quality control

For the study cohort of 30,000 individuals described above, we leveraged genotype data from
approximately 15 million imputed autosomal SNPs. These have been imputed from 800,000
directly assayed SNPs (obtained by the UK Biobank from one of two similar Affymetrix
arrays) using the Haplotype Reference Consortium and UK10K reference panels (Bycroft
et al., 2018). Imputed variants were subject to several quality-control filters, including
outlier-based filtration on effects due to batch, plate, sex, array, and discordance across con-
trol replicates. Further, we excluded variants due to extreme heterozygosity, missingness,
minor allele frequency (< 10−4), Hardy-Weinburg equilibrium (< 10−10), and poor imputa-
tion quality (< 0.9). Further details can be found in previous studies (Bycroft et al., 2018;
Morgan et al., 2018).

Quantification of left ventricular hypertrophy

We retrieved 44,503 cardiac MRI studies from the UK Biobank taken during imaging visits
and first follow-up imaging visits. Using a previously described segmentation algorithm (Bai
et al., 2018), we determined areas of the LV cavity and myocardium from each short axis
frame, from which we computed the volume of the LV myocardium at the end diastole. After
quality control, 44,220 segmentations remained. This volume was then converted to a mass
(LVM) using a standard density estimate of 1.05 g/mL (Grothues et al., 2002). The LVMi
was computed by dividing the LVM by an estimate of body surface area based on height
and body weight calculated using the Du Bois formula (Du Bois and Du Bois, 1916). From
the 44,220 segmentations, we refined the analysis to LVMi measurements for 29,661 White
British unrelated individuals using the measurements from their most recent imaging visit
if multiple imaging visits were recorded.

Low-signal iterative random forests (lo-siRF)

Step 1. Dimension reduction of SNPs via GWAS

As the first step in the lo-siRF pipeline, we performed a GWAS on the training data for the
rank-based inverse normal-transformed LVMi using two algorithms, PLINK (Chang et al.,
2015) and BOLT-LMM (Loh et al., 2015), and filtered the number of features by p-value
ranking in a domain-inspired dimension reduction step (Figure 2.2b). This step is akin to
typical preprocessing phases in fine-mapping (Schaid et al., 2018). Since BOLT-LMM and
PLINK rely on different statistical models, we employ both software packages to mitigate
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the dependence of downstream conclusions on this arbitrary choice. Specifically, for the first
GWAS run, we fitted a linear regression model, implemented via glm in PLINK (Chang
et al., 2015). For the second GWAS run, we used BOLT-LMM (Loh et al., 2015), a fast
Bayesian-based linear mixed model method, to assess the association between each SNP and
the LVMi phenotype. Each GWAS was adjusted for the first five principal components of
ancestry, gender, age, weight, and height. After ranking the SNPs by significance (i.e., the
GWAS p-value) for each GWAS run separately, we took the union of the top 1000 SNPs
(without clumping) from each of the two GWAS runs and proceeded with this resulting
set of 1405 SNPs for the remainder of the lo-siRF pipeline. We chose to use the top 1000
SNPs per GWAS method (without clumping) as it (1) struck a balance between the amount
of information loss and the computational cost of downstream modeling and (2) yielded
the highest validation prediction accuracy compared to choosing other possible thresholds
(500 and 2000 SNPs per GWAS) with and without clumping. We note that these 1405
SNPs strictly contain the SNPs that passed the genome-wide GWAS significance threshold
(p = 10−8).

Step 2. Binarization of the LVMi phenotype

Next, we binarized the raw (continuous) LVMi phenotype into a low and a high LVMi group
before fitting siRF (Figure 2.2c). That is, for a given threshold x, we took the individuals
in the top and bottom x% of LVMi values into two classes with the high and low LVMi
values, respectively, while omitting the individuals in the middle quantile range. Due to
the sex-specific biological variation of LVMi (see PCS documentation), we performed the
binarization for males and females separately. For males, low and high LVMi was considered
under 43.8-46.0 g/m2 and above 55.4-58.5 g/m2, respectively, depending on the choice of
binarization threshold. For females, low and high LVMi was defined as under 35.1-36.8
g/m2 and above 43.8-46.1 g/m2, respectively (Table A.2). This binarization simplified the
original low-signal regression problem into a relatively easier classification task: to predict
whether an individual has a very high or very low LVMi, in essence, denoising the LVMi
signal in the data. Moreover, as we will see in the next section, this binarization helped
us more readily interpret and assess the performance of the prediction method with respect
to the prediction screening step of the PCS framework (Yu and Kumbier, 2020). Since the
specific threshold choice is arbitrary, we ran the remainder of the lo-siRF pipeline using three
different binarization thresholds (15%, 20%, 25%) that balance the amount of denoising and
data lost. In the end, we consolidated the results that were stable across all three binarization
thresholds, described in 4.3. Gene and gene-gene interaction rankings.

Step 3. Prediction

3.1. Fitting siRF on the binarized LVMi phenotype. For each binarization thresh-
old, we trained the signed version of iRF (siRF) (Kumbier et al., 2018) using the SNPs that
passed the GWAS filter to predict the binarized LVMi phenotype and generate candidate
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interactions for further investigation (Figure 2.2c). Briefly, siRF iteratively re-weights fea-
tures in a random forest to stabilize decision paths with an added outer loop of bootstrap
and extracts nonlinear higher-order interactions based on commonly co-occurring features
on a decision path, provided that the siRF model gives good prediction performance. In
addition to giving a computationally-tractable interaction search engine, part of the attrac-
tion of siRF for detecting gene-gene epistatic interactions is the resemblance between the
thresholding behavior of its decision trees and the thresholding (or switch-like) behavior
frequently observed in biomolecular interactions (Nelson et al., 2008). In siRF, we not only
keep track of which features are on the decision path, but also the direction of the feature
split, i.e., whether low values (denoted feature−) or high values (denoted feature+) of
the feature, appear on the decision path. Thus, a signed interaction consists of two or more
signed features appearing on the same decision path. Note when applying siRF to SNP data,
SNP+ typically represents a heterozygous or homozygous mutation and SNP− typically
represents no mutation at the locus. The following hyperparameters were used to train siRF
using the iRF2.0 R package: number of iterations = 3, number of trees = 500, number of
bootstrap replicates = 50, depth of random intersection tree (RIT) = 3, number of RIT =
500, number of children in RIT = 5, and minimum node size in RIT = 1. To fit siRF, we
used 10,000 training samples (randomly sampled out of the 15,000 total training samples)
and reserved the remaining 5,000 training samples for selecting genes and gene-gene inter-
actions for the permutation test (see 4.2. Permutation test for difference in local stability
importance scores).

3.2. Prediction check. Per the PCS framework for veridical data science (or machine
learning) (Yu and Kumbier, 2020), we next checked the validation prediction accuracy of
siRF, which serves as one indication of whether the learnt model is capturing some phenotypic
signal, relevant to reality, rather than simply noise. We observed that the predictive power
of siRF for the binarized LVMi, though weak (∼ 55% balanced classification accuracy), was
greater or on par with other commonly used prediction methods (i.e., LASSO, ridge, RF,
and support vector machines) across a variety of metrics including classification accuracy,
area under the receiver operator curve (AUROC), and area under the precision-recall curve
(AUPRC) (Table A.3). Given that siRF performed better than random guessing (i.e., > 50%
balanced classification accuracy, which is not guaranteed given the high phenotypic diversity
and complexity of the LVMi trait) and yielded the best prediction power compared to these
alternative, common prediction methods (except for the 15% binarization threshold where
it performed on par with respect to classification accuracy), we deemed that the siRF fit
for LVMi passed the prediction screening step of the PCS framework and hence proceeded
to interpret this siRF model to extract candidate interactions. We further note that this
prediction check played a key role in our choice of phenotypic data. Prior to studying LVMi,
we attempted to run a similar analysis to predict HCM diagnosis, defined as any ICD10
billing code diagnosis of I42.1 or I42.2 in the UK Biobank data. However, neither siRF nor
the other aforementioned prediction methods passed the 50% balanced classification accuracy
requirement for predicting HCM diagnosis. We thus chose not to proceed with the HCM
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analysis given the poor prediction accuracy and uncertain connection between the prediction
models and the underlying biological processes. This failed prediction check demonstrated
a need for a more refined phenotypic measure of cardiac hypertrophy, which ultimately led
to the automated extraction of cardiac MRI-derived LVMi, our final choice of phenotype in
this work. Further discussion of the HCM analysis can be found in the PCS Documentation.

Step 4. Interpretation

4.1. Local stability importance score. To interpret the siRF fit for LVMi, we devel-
oped a new local (i.e., on a per-individual basis) stability importance score that aggregates
weak, unstable SNP-level importances into stronger, more stable gene-level importances
(Figure A.3). This gene-level aggregation, which takes advantage of local feature importance
scores to account for genes of varying lengths, is necessary since the individual SNP-level
importances are incredibly unstable given the weak phenotypic signal and high correlation
between SNPs (see PCS documentation for additional discussion). Specifically, given the
fitted siRF, we used Annovar (Wang et al., 2010) to map each SNP in the fitted forest to
its corresponding gene region according to the hg19 refGene annotations (i.e., given by the
Gene.refGene column in the Annovar output). Note that using these annotations, each SNP
gets mapped to exactly one gene region and that this region may correspond to an intergenic
region between two genes. Then, given this forest T , for each individual i and signed gene or
gene-gene interaction G, we computed a quantity named the local stability importance score,
LSIT (G, i), which measures how important the signed gene or gene-gene interaction G is for
making the prediction for individual i. Put concretely, the local stability importance score,
LSIT (G, i), is defined as DT (G, i) / (# trees in the forest T), where DT (G, i) is the number
of decision paths in the forest T such that individual i appears in its terminal node and at
least one signed SNP from each signed gene g ∈ G was used in a decision split along the
path. In other words, LSIT (G, i) is the proportion of trees in the forest for which at least one
SNP from each signed gene in the signed gene or gene-gene interaction was used in making
the prediction for individual i. Consequently, a higher score indicates greater importance of
the signed gene or gene-gene interaction for individual i’s prediction (Figure A.3).

4.2. Permutation test for difference in local stability importance scores. Once we
obtained the local stability importance scores for each individual, we performed a two-sample
permutation test to assess whether the local stability importance scores (i.e. the importance)
for a given signed gene or gene-gene interaction, G, are different between individuals with
high and low LVMi (conditioned on the rest of the fitted forest). More formally, the proposed
permutation test tests the null hypothesis L = H versus the alternative hypothesis L ̸= H,
where L and H are the distributions of local stability importance scores for individuals
with low and high LVMi, respectively. If the local stability importance scores are indeed
different between high and low LVMi individuals (which corresponds to a small p-value from
the proposed permutation test), then this suggests that G is able to differentiate between
individuals with high versus low LVMi and hence may be an important gene or gene-gene
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interaction for LVMi. We performed this permutation test using the 5,000 validation data
(which were not used in training siRF), the difference in means as the test statistic, and
10,000 permutations. To reduce the large multiple testing and computational burden, we
tested only the top 25 genes, ranked by their average local stability importance scores across
5,000 samples. These 5,000 samples were previously set-aside from within the 15,000 training
samples and were not used in fitting the siRF (see 3.1. Fitting siRF on the binarized LVMi
phenotype). Furthermore, we tested all signed gene-gene interactions picked up by siRF that
were “stable” across 50 bootstrap replicates. Here, a “stable” interaction is defined as one that
passed the following siRF stability metric thresholds: stability score > 0.5, stability score
for mean increase in precision > 0, and stability score for independence of feature selection
> 0 (Table A.4) (Basu et al., 2018; Kumbier et al., 2018). Details on the siRF interaction
and stability metrics can be found in previous work (Kumbier et al., 2018).

4.3. Gene and gene-gene interaction rankings. Finally, to obtain the top lo-siRF
recommendations for follow-up experiments, we considered only those signed genes and gene-
gene interactions that passed the aforementioned siRF stability filters (see 4.2. Permutation
test for difference in local stability importance scores) and underwent the permutation test
in all three binarization runs. For these signed genes and gene-gene interactions that were
stably identified by siRF and yielded a p-value < 0.1 in all three binarization runs, we fi-
nally ranked them by their mean permutation p-value, averaged across the three binarization
thresholds (Table A.5). Because of our emphasis on recommending candidates for experi-
mental validation, if both the + and − version of the signed gene appear, the final gene
recommendations (Figure 2.3a) are ranked according to the smaller one of the two p-values.
We note that though the signed information is not pertinent to our goal of recommending
candidates for experiments, the signed information from siRF provides more granular infor-
mation that can improve our interpretation of the fit, and we discuss this further in the PCS
documentation.

lo-siRF PCS documentation and additional stability analyses

In an effort to facilitate transparency of human judgment calls that are inevitably made
here and throughout our veridical machine learning analysis, we provided extensive doc-
umentation of code and more importantly, justification of these human judgment calls in
the supplementary PCS documentation. We also performed additional stability analyses in
accordance with the PCS framework (Yu and Kumbier, 2020) to ensure that our findings
are robust to these human judgment calls (e.g., the choice of GWAS method, binarization
threshold) and to bolster the reproducibility of our findings (see the supplementary PCS
documentation for details).
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hiPSC-cardiomyocyte differentiation

The studied patient-specific hiPSCs were derived from a 45 yr old female proband with a
heterozygous MYH7 -R403Q mutation. Derivation and maintenance of hiPSC lines was per-
formed following Dainis et al. (2020). Briefly, hiPSCs were maintained in MTeSR (StemCell
Technologies) and split at a low density (1:12) onto fresh 1:200 matrigel-coated 12 well plates.
Following the split, cells were left in MTeSR media supplemented with 1 µM Thiazovivin.
hiPSCs were maintained in MTeSR until cells reached 90% confluency, which began Day 0
of the iPSC-CM differentiation protocol. Cardiomyocytes were differentiated from hiPSCs
using small molecule inhibitors. For Days 0-5, cells were given RPMI 1640 medium + L-
glutamine and B27 - insulin. On Days 0 and 1, the media was supplemented with 6 µM of
the GSK3β inhibitor, CHIR99021. On Days 2 and 3, the media was supplemented with 5 µM
of the Wnt inhibitor, IWR-1. Media was switched to RPMI 1640 medium + L-glutamine
and B27 + insulin on Days 6-8. On Days 9-12, cells were maintained in RPMI 1640 medium
+ L-glutamine - glucose, B27 + insulin, and sodium lactate. On Day 13, cells were detached
using Accutase for 7-10 minutes at 37◦C and resuspended in neutralizing RPMI 1640 medium
+ L-glutamine and B27 + insulin. This mixture was centrifuged for 5 minutes at 1000 rpm
(103 rcf). The cell pellet was resuspended in 1 µM thiazovivin supplemented RPMI 1640
medium + L-glutamine and B27 + insulin. For the rest of the protocol (Days 14-40), cells
were exposed to RPMI 1640 medium + L-glutamine - glucose, B27 + insulin, and sodium
lactate. Media changes occurred every other day on Days 14-19 and every three days for
Days 20-40. On Day 40, cardiomyocytes reached maturity.

hiPSC-cardiomyocyte siRNA gene silencing

Mature hiPSC-derived cardiomyocytes were transfected with Silencer Select siRNAs (Ther-
mofisher) using TransIT-TKO Transfection reagent (Mirus Bio). Cells were incubated for
48 hours with 75 nM siRNA treatments. Four wells of cells were transfected with each of
the six siRNAs: scramble, CCDC141 (ID s49797), IGF1R (ID s223918), TTN (ID s14484),
CCDC141 and IGF1R, and CCDC141 and TTN. After 2 days, hiPSC-CMs were collected
for RNA extraction.

RT-qPCR analysis for siRNA gene silencing efficiency

Following cell morphology measurement, all cells for each condition were centrifuged for 5
minutes at 1000 rpm (103 rcf). Cell pellets were frozen at -80◦C prior to RNA extrac-
tion. RNA was extracted using Trizol reagent for RT-qPCR to confirm gene knockdown
occurred. Reverse Transcription of RNA was done using High-Capacity cDNA Reverse
Transcription Kit (Thermofisher). qPCR of the single stranded cDNA was performed us-
ing TaqMan Fast Advanced MM (Thermofisher) with the following annealing temperatures:
95◦C 20” and 40 cycles of 95◦C 1” and 60◦C 20”. qPCR of the silenced genes was performed
using TaqMan® Gene Expression Assays, including CCDC141 (Hs00892642_m1), IGF1R
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(Hs00609566_m1), and TTN (Hs00399225_m1). For gene silencing efficiency analysis, the
gene RPLP0 (Hs00420895_gH) was used as a reference gene. Data were analyzed using the
delta-delta Ct method.

Cell sample preparation for cell morphology measurement

Following siRNA treatments, cells were detached for microfluidic single cell imaging using a
mixture of 5 parts Accutase and 1 part TrypLE for 6 minutes at 37◦C. Cells were then added
to the neutralizing RPMI 1640 medium + L-glutamine and B27 + insulin. These mixtures
were centrifuged for 5 minutes at 1000 rpm (103 rcf). For each gene silencing condition, the
four wells of cells were resuspended in 4 mL of the MEM medium, which is composed of
MEM (HBSS balanced) medium, 10% FBS, and 1% Pen Strep (Gibco). Cells were filtered
with 100 µm strainers (Corning) before adding into the microfluidic devices.

Microfluidic inertial focusing device

We developed a new spiral inertial microfluidics system on the basis of the study by Guan
et al. (2013) to focus randomly suspended cells into separate single streams based on cell
size for high-resolution and high-throughput single cell imaging. The microfluidic device
(Figure A.5) contains 5 loops of spiral microchannel with a radius increasing from 3.3 mm to
7.05 mm. The microchannel has a cross-section with a slanted ceiling, resulting in 80 µm and
150 µm depths at the inner and outer side of the channel, respectively. The channel width is
fixed to 600 µm. The 495 µm wide slanted region of the channel ceiling is composed of ten
7 µm deep stairs. This particular geometry induces strong Dean vortices in the outer half
of the channel cross-section, leading to high sensitivity of size separation and cell focusing.
The device has two inlets at the spiral center to introduce cell suspensions and sheath flow
of fresh medium. At the outlet region, the channel is expanded in width and split into two
outlet channels with a width of 845 µm for the top outlet and 690 µm for the bottom outlet.
Depths of the two outlet channels are designed to create equal hydraulic resistance. The top
and bottom outlet channels are connected to 80 µm and 50 µm deep straight observation
channels for high-throughput cell imaging.

Microdevice fabrication

The spiral microchannel was fabricated by CNC micromachining a piece of laser-cut poly
(methyl methacrylate) (PMMA) sheet, which was bonded with a PMMA chip machined
only with the inlet channels and another blank PMMA chip using a solvent-assisted thermal
binding process to form the enclosed channel (Wang et al., 2019). Before bonding, PMMA
chips were cleaned with acetone, methanol, isopropanol and deionized water in sequence.
Droplets of a solvent mixture (47.5% DMSO, 47.5% water, 5% methanol) were evenly spread
over the cleaned chips. The PMMA chips were assembled appropriately and clamped using
a customized aluminum fixture, and then heated in a ThermoScientific Lindberg Blue M
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oven at 96◦C for 2 hrs. After bonding, fluid reservoirs (McMaster) were then attached to
the chips using a two-part epoxy (McMaster). Microchannels were flushed with 70% ethanol
followed by DI water for sterilization.

High-throughput single cell imaging

Before each experiment, microchannels were flushed with 3 mL of the MEM medium. Pre-
pared cell samples and fresh MEM medium were loaded into 3 mL syringes, which were
connected to the corresponding microchannel inlets using Tygon PVC tubing (McMaster).
Both cells and the fresh MEM medium were infused into the microchannel using a Pico Plus
Elite syringe pump (Harvard Apparatus) at 1.2 mL/min. Microscope image sequences of
cells focused to the top and bottom observation channels were captured using a VEO 710S
high-speed camera (Phantom) with a sampling rate of 700 fps and a 5 µsec light exposure.

Image analysis for cell feature extraction

For each gene silencing condition of each biological repeat, 21,000 images were processed to
extract cell morphology features. To analyze cell size and shape changes induced by gene
silencing, we developed a MATLAB-based image analysis pipeline, which includes three ma-
jor steps: image preparation, feature extraction, and image postprocessing (Figure 2.4c). In
step one, image sequences were fed into our program and subtracted from the corresponding
background image to correct any inhomogeneous illumination. The program automatically
generates background images, in which each pixel value is computed as the mode pixel
intensity value among the same pixel of the entire corresponding image sequence. After
illumination correction, step two detects cell edges by looking for the local maxima of the
bright field intensity gradient, following which the program closes edges gaps, removes cells
connected to the image borders, cleans small features (noise), and then fills holes to generate
binary images and centroid positions for each single cell. Cell locations were then traced and
stuck cells were removed by the double-counts filter if in presence. The double-counts fil-
ter excludes measurements collected around the same location with similar cell sizes using a
Gaussian kernel density method (bandwidth = 0.09) when the estimated density for a certain
location and size exceeds a particular threshold. The maximal density value for experimental
runs where no repeated measurements were observed was used as the threshold. This proce-
dure was validated using visual inspection of the removed cells. Binary images passing the
double-counts filter were used to create coordinates (X, Y ) of cell outlines, which leads to a
range of cell size and shape parameters, including cell diameter and area, solidity, roundness
error, circularity, and intensity spatial relationship enclosed within the cell. Cell area was
computed as the 2D integration of the cell outline, and the cell diameter was computed as
2
√

Area/π. Solidity is the ratio of cell area to the area of the smallest convex polygon that
can contain the cell region. Roundness error was computed as the ratio between the stan-
dard deviation and mean of radii on the cell outline measured from the centroid. Circularity
was calculated as 4 ·Area · π/Perimeter2. The 2D intensity distributions within cell outlines
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were used to derive peak locations and count peak numbers, which is a measure of intensity
spatial relationship and a gating parameter to remove clumped cells. In the postprocessing
step, data were cleaned using three filters with the following gating threshold. To remove
large clumps, the peak-solidity filter removes data fall out of the polygonal region defined by
(0.9, 0), (0.9, 3.2), (0.934, 8.26), (1, 28), (1, 0) in the (solidity, peak No.) space. Then, the
roundness filter removes cells with weird shapes by excluding data with a roundness error
higher than 0.3 or a circularity lower than 0.6. Finally, the small size filter removes cell
debris whose major diameter is lower than 15 µm (12 µm) or minor diameter is lower than
12 µm (10 µm) for images photographed at the top (bottom) outlet microchannels.

Post-iRF analysis on co-associated transcription factors and gene
ontologies between gene pairs

To explore whether the iRF-identified SNPs have any regulatory effects, we searched the
Ensembl 2023 Regulatory Build database (Martin et al., 2023), and aligned the iRF-identified
loci with known regulatory regions and motif features (Figure 2.6), downloaded from ht
tps://ftp.ensembl.org/pub/release-109/regulation/homo_sapiens/. This database
provides increased strictness of motif feature annotation and only displays motif features that
overlap a ChIP-seq peak in at least one cell type. This enhances the confidence that the used
motifs have biological significance. We next evaluated the degree of overlap in co-associated
transcription factors (TFs) and gene ontology (GO) terms between the demonstrated genes in
epistasis. To this end, we used Enrichr (Kuleshov et al., 2016) to search for the enriched TFs
and GOs for all the genes prioritized by GWAS (see Step 1. Dimension reduction of SNPs
via GWAS in the Low-signal iterative random forests (lo-siRF) methods section). For each
possible combination of gene pair (gene A and gene B), we measured the degree of overlap in
shared TFs or GOs by Roverlap = N(A∩B)/N(A∪B). Here, N(A∩B) is the number of TFs or GOs
shared between gene A and gene B, and N(A∪B) is the number of TFs or GOs associated
with either gene A or gene B. For cases where N(A∪B) = 0, we define Roverlap = 0 to indicate
that no common TFs or GOs were found between the respective gene-gene combinations. All
possible permutations of gene pairs were performed to generate the distributions of Roverlap

for TFs (Figure 2.7b) and GOs in different categories (Figure 2.7c). Empirical p-values
represent the number of random gene pairs with an Roverlap higher than the value for the
respective epistatic gene-gene interaction.

Disease-state-specific gene co-expression network analysis

In order to evaluate the connectivity between genes and their potential roles in the transition
from healthy to failing myocardium, we compared gene-gene connectivity and changes in the
topological structure between the gene co-expression networks for healthy and failing human
heart tissues. To construct the gene co-expression networks, cardiac tissue samples from
177 failing hearts and 136 donor, non-failing (control) hearts were collected from operating
rooms and remote locations for RNA expression measurements. We performed weighted

https://ftp.ensembl.org/pub/release-109/regulation/homo_sapiens/
https://ftp.ensembl.org/pub/release-109/regulation/homo_sapiens/
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gene co-expression network analysis (WGCNA) on the covariate-corrected RNA microar-
ray data for the control and heart failure networks separately (Figure 2.7g-h). Detailed
steps for generating these co-expression networks, which included calculating the correla-
tion matrix, TOM transformation, and Dynamic Tree Cut module finding, are described
in our previous study (Cordero et al., 2019), and data for these networks is available at
https://doi.org/10.5281/zenodo.2600420. To evaluate the degree of connectivity be-
tween interacting genes in each of the networks, we compared the edge weights between the
interacting genes demonstrated in this study relative to the distribution of all possible pair-
wise combinations of genes (Figure 2.7d-e). We also evaluated the difference of edge weights
(Z-score normalized) between the control and heart failure networks to understand how these
gene-gene interactions change between non-failing and failing hearts (Figure 2.7f). The two-
tailed empirical p-value represents the proportion of the absolute difference in edge weights
of all gene pairs that exceed the absolute difference score for the gene pairs of interest. We
then compared the structure of modules derived from dendrograms on the WGCNA control
and heart failure networks (Figure 2.7g-h). Modules were labeled according to Reactome
Enrichment analysis of genes within each module. The full gene module descriptions and
Benjamini-Hochberg-adjusted enrichment p-values can be found in the Supplementary Data
5 and 6 in the study by Cordero et al. (2019).

Statistical analysis of experimental results

All statistical analysis involved in the lo-siRF pipeline has been elucidated in the corre-
sponding lo-siRF Methods sections. For experimental results, we compared differences in
cell size/shape parameters between cells with silenced genes or gene pairs and their scram-
ble controls using various summary statistics. To study the centers of the distributions,
we compared the medians using a traditional Wilcoxon signed rank test (Figure 2.5c) and
a bootstrap quantile test at the 0.5 quantile level. We also performed a bootstrap-t for
trimmed means of cell size distributions and evaluated the stability of results by varying the
amount of trimming (ranging from 0-0.3) to ensure that outliers (e.g., from large clumps of
cells) do not drive the conclusions (data not shown). In addition to comparisons of central
behavior, we performed the bootstrap quantile test across increasing quantile levels (ranging
from 0.5-0.9) to study size changes (Figure 2.5d-e) that favor hypertrophic cells, which is
more relevant to the pathologic phenotype of cardiac hypertrophy. All tests are performed
on each experimental batch, and the maximum p-value across batches are reported in the
main text. To formally quantify whether interactions are non-additive, for each interaction
(i.e.,CCDC141 -TTN and CCDC141 -IGF1R), we tested whether the interaction effect is sig-
nificant when regressing cell size on the interaction and main effects for each relevant gene.
In accordance with the PCS framework, we performed a stability analysis by comparing
results across different regression parameters — namely, quantile regression with increas-
ing quantile levels (ranging from 0.5-0.8). In each regression, percentile bootstrap t-tests
were used to compute p-values. Traditional t-test p-values support these results and are
provided in Appendix A. Since these regressions require comparisons between gene silencing

https://doi.org/10.5281/zenodo.2600420
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experiments (e.g., silencing CCDC141 and TTN vs only silencing CCDC141 ), and the gene
silencing efficiency varied across experiments, batches were merged based on those with the
highest efficiency for each regression.

Data and code availability

All genotype and cardiac MRI data used as input to the lo-siRF pipeline are available from
the UK Biobank (https://www.ukbiobank.ac.uk/). This work was conducted under the
UK Biobank application 22282. The lo-siRF pipeline was performed using R version 3.6.1 and
iRF2.0 (https://github.com/karlkumbier/iRF2.0) with code available via GitHub (ht
tps://github.com/Yu-Group/epistasis-cardiac-hypertrophy). The LVMi derivation
from cardiac MRI images and corresponding code have been published elsewere (https:
//github.com/baiwenjia/ukbb_cardiac) (Bai et al., 2018). ANNOVAR (https://anno
var.openbioinformatics.org/en/latest/) was used to map each SNP to its associated
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Chapter 3

MDI+: A flexible random forest-based
feature importance framework

3.1 Introduction

Random forests (RFs) (Breiman, 2001) are amongst the most popular supervised learning
algorithms. They achieve state-of-the-art prediction performance over a wide class of learn-
ing problems (Caruana et al., 2008; Fernández-Delgado et al., 2014; Olson et al., 2018),
often outperforming deep learning methods on small or moderately-sized tabular datasets
(Shwartz-Ziv and Armon, 2022). These types of datasets frequently arise in high-stakes
applications such as biology, medicine, and the social sciences due to high costs of data
collection.

Given their strong predictive performance in these settings, practitioners are also keen
on using RFs to extract new scientific insights (Basu et al., 2018; De Rosa et al., 2022). To
illustrate the utility of RFs in real-world scientific problems, we focus on the two following
case studies: (i) predicting the efficacy of cancer drugs given a patient’s genetic information
in The Cancer Cell Encyclopedia (CCLE) (Atlas, 2012), and (ii) classifying breast cancer
subtypes using gene expression data catalogued in the Cancer Genome Atlas (TCGA) (Parker
et al., 2009). In both problems, RFs have not only shown strong predictive performance
(Costello et al., 2014; Wan and Pal, 2014; List et al., 2014), but have also been used to
understand the genetic risk factors that drive drug response or are predictive of a particular
breast cancer subtype.

Determining these genetic risk factors via RFs is done via feature importance measures,
which summarize each feature’s contribution to a model’s predictions. Mean decrease in
impurity (MDI) (Breiman et al., 1984) is arguably the most popular feature importance
method for RFs, serving as the default measure in scikit-learn (Pedregosa et al., 2011).
It measures the importance for a given feature Xk by tallying up the decrease in variance
associated to each split on Xk in the ensemble. Scientists have used MDI in both case
studies to pinpoint genes predictive of a drug’s response on cancer cell lines (Wan and
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Pal, 2014; Lind and Anderson, 2019) and to identify chemical pathways that differentiate
between metaplastic and luminal breast cancer subtypes (List et al., 2014). Using feature
importance measures to identify these biological factors provides a pathway to use powerful
machine learning (ML) techniques such as RFs for improved diagnosis, early prevention, and
development of novel therapeutics.

Despite these successes, MDI suffers from notable “biases” when used to identify impor-
tant features. It favors features with higher entropy (e.g., continuous variables) or lower
correlation with other features, and does so in a way that is independent of their relation-
ship with the response function (Strobl et al., 2007; Nicodemus, 2011; Strobl et al., 2008;
Nicodemus and Malley, 2009; Nembrini, 2019). This is unfortunate, because causal genes
with low entropy or whose expression is strongly correlated with other nearby genes are
commonly observed in datasets such as CCLE and TCGA. Consequently, MDI may produce
inaccurate and misleading feature importance rankings, often leading to large downstream
costs when used in high-stakes decisions such as deciding which genes to prioritize for future
investigation.

Separately, Tan et al. (2021) established that trees are statistically inefficient at fitting
regression functions with additive components. Such structure is ubiquitous in many scien-
tific problems (Friedman and Popescu, 2008) including genomics, as seen by the prevalent
use of linear models not only in both case studies (Jang et al., 2014; Parker et al., 2009), but
also in other genomics applications such as understanding complex autoimmune conditions
(Visscher et al., 2017). Since MDI is based on the fitted model, its fidelity to the true feature
importances degrades when there is poor model fit (Murdoch et al., 2019; Yu and Kumbier,
2020).

To address these challenges, we propose a new framework for feature importance measures
known as MDI+. The starting point of our framework is a recently discovered connection
between decision trees and linear models (Klusowski, 2021; Agarwal et al., 2022). That is,
a decision tree is the best fit linear model on a collection of engineered features associated
with splits (i.e., local decision stumps) from the tree. Building on this connection, we
establish a new interpretation of MDI as an R2 value in this linear regression, and use this
interpretation to explain the drawbacks listed above as well as to reveal several new ones.
MDI+ then leverages this interpretation to overcome these shortcomings and generalize MDI
by:

1. Using more flexible models (e.g., regularized generalized linear models (GLMs)) and
similarity metrics in place of linear regression and R2.

2. Appending smooth, linear features (e.g., the raw feature) and possibly other features
(e.g., engineered from prior knowledge) to the nonlinear local decision stump represen-
tation.

3. Introducing computationally-efficient sample splitting for evaluating similarty metrics
such as R2.



CHAPTER 3. MDI+ 41

As will be explained in subsequent sections, regularization and sample splitting helps to
overcome the known biases of MDI, while appending linear features helps to overcome the
model mismatch between trees and additive regression functions. The increased flexibility
provided by the MDI+ framework offers practitioners the ability to tailor the feature im-
portance computation to the problem structure and include any prior information via the
choice of GLM, similarity metric, and expanded feature representation. To further assist
practitioners with these choices, we provide a data- and stability-driven procedure to guide
model selection and aggregation (i.e., combining importance rankings from multiple mod-
els). Additionally, we recommend that a practitioner investigate feature rankings produced
by different MDI+ models in order to gain possible additional scientific insight. This proce-
dure and holistic approach of investigating the output of different models is grounded in the
Predictability, Computability, and Stability (PCS) framework for veridical data science (Yu
and Kumbier, 2020). The PCS framework builds upon the three core principles in its name
to bridge, unify, and expand on the best ideas from machine learning and statistics for the
entire data science life cycle. Moreover, as a by-product of our MDI+ framework, the flexible
use of GLMs and expanded feature representations yields a new class of powerful prediction
models, RF+, which often improves upon the prediction performance of RFs and provides a
bridge between classical statistical models (i.e., GLMs) with modern ML.

To demonstrate the effectiveness of MDI+, we conduct an extensive data-inspired simu-
lation study, showing that MDI+ significantly outperforms other popular feature importance
measures (e.g., TreeSHAP) in its ability to identify signal features. These data-inspired
simulations were carefully designed to reflect a diverse range of problem structures (e.g.,
regression/classification, linear/non-linear) and challenges (e.g., low signal-to-noise, outliers,
omitted variables, small sample sizes) commonly encountered in the real world. We also es-
tablish that MDI+ overcomes the biases of MDI through simulations with highly correlated
features and features with varying levels of entropy. Finally, we return to the two motivating
case studies and show that MDI+ feature rankings concur with established domain knowledge
with significantly greater stability than other feature importance measures. As advocated by
the PCS framework (Yu and Kumbier, 2020), methods that are more trustworthy when they
are stable to reasonable perturbations. We also provide further evidence for the features
selected by MDI+ by examining the predictive power of the top-ranked features. Further-
more, RF+ increases prediction accuracy over RF in these case studies by approximately 5%,
further enhancing the credibility of the feature ranking from MDI+. The strong predictive
performance of RF+ and stability of MDI+ in both case studies thus demonstrate its utility
as a powerful and practical tool to extract reliable scientific insights in real-world problems.

Organization In Section 3.2 we review other popular feature importance measures. In
Section 3.3, we establish our connection between MDI and R2 values, and discuss how this
interpretation explains new drawbacks, and reveals new ones. In Section 3.4, we introduce
MDI+ and RF+. In Section 3.5, we run data-inspired simulations that show the efficacy
of MDI+ in identifying relevant features. In Section 3.6, we show that MDI+ is able to to
overcome the biases of MDI against highly correlated and low entropy features. In Section
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3.7, we apply MDI+ to both of our motivating case studies, and investigate the stability
and accuracy of its feature rankings in comparison with other feature importance measures.
Finally, we conclude with a discussion in Section 3.8.

3.2 Related Work

In this section, we briefly review existing approaches to combat the known biases of MDI as
well as other RF feature importance measures that are commonly used in practice.
MDI. Previous work (Strobl et al., 2007; Nicodemus, 2011) establish that MDI is biased to-
wards high entropy features (e.g., continuous features). Many strategies have been proposed
to mitigate this bias. Sandri and Zuccolotto (2008) proposed creating artificial uninforma-
tive features to evaluate bias, and Nembrini et al. (2018) created a fast implementation of
this computationally intensive procedure. Zhou and Hooker (2021) and Li et al. (2019) pro-
posed UFI and MDI-oob respectively, which both use out-of-bag samples to evaluate MDI
in slightly different ways. Additionally, a penalized framework which combines in-bag and
out-of-bag samples has been shown to debias MDI (Loecher, 2022a,b). Researchers have
also tried to understand MDI theoretically by analyzing the population MDI values under
some distributional assumptions (Louppe et al., 2013; Scornet, 2020) as well as obtaining
consistency guarantees (Scornet, 2020). In particular, Scornet (2020) shows that the nor-
malized sum of the MDI values of a single tree is the global R2 (total variance explained) of
the model, but does not connect individual MDI values to linear regression R2 values. Fi-
nally, Klusowski and Tian (2021) show a connection between MDI and linear correlation for
decision stump models and prove nonparametric variable selection consistency under some
assumptions on the data-generating process.
MDA. In addition to MDI, Breiman (2001) proposed a permutation-based feature impor-
tance measure called Mean Decrease in Accuracy (MDA). To measure the importance of a
feature Xk, MDA permutes the values of Xk marginally for out-of-bag samples, and calcu-
lates the excess prediction loss incurred on these samples. Recent work has studied MDA
and variants thereof both empirically (Strobl et al., 2008; Genuer et al., 2008; Grömping,
2009; Genuer et al., 2010; Hooker and Mentch, 2019) and theoretically (Zhu et al., 2015;
Gregorutti et al., 2017; Ramosaj and Pauly, 2019; Bénard et al., 2021).
TreeSHAP. Unlike MDI and MDA, SHAP (SHapley Additive exPlanations) (Lundberg and
Lee, 2017) is a model-agnostic feature attribution procedure that provides local (i.e, sample-
specific) feature importance scores. SHAP uses Shapley values from economic game theory to
compute the contribution of each feature to a prediction for any given sample. These values
can be summarized into a global feature importance measure by taking a mean over the
samples. TreeSHAP (Lundberg et al., 2020) is a computationally-efficient implementation
of SHAP values for tree-based methods.
Other feature importance methods and comparisons. To the best of our knowledge,
MDI, MDA, and TreeSHAP are the most popular feature importance measures for RFs,
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although both global and local scores can be defined in other ways (Ishwaran, 2007; Ishwaran
et al., 2010; Kazemitabar et al., 2017; Epifanio, 2017; Saabas, 2022; Sutera et al., 2021;
Klusowski and Tian, 2021). Also related are model-agnostic conditional dependence scores
(Azadkia and Chatterjee, 2021; Zhang and Janson, 2020), model-agnostic confidence intervals
for feature importances (Gan et al., 2022), and importance measures for interactions, such
as via iterative random forests that have been widely adopted in the genomics community
(Basu et al., 2018; Kumbier et al., 2018; Behr et al., 2020).
Dealing with correlated features. Empirical studies show that neither MDI nor MDA
work well when features are highly correlated (Strobl et al., 2008; Nicodemus and Malley,
2009; Nicodemus, 2011; Nembrini, 2019). In particular, permutation-based measures such as
MDA have been criticized because permutations break dependencies between features in the
dataset (Hooker and Mentch, 2019). Hence, they result in evaluations of the model out-of-
distribution, i.e., on regions of the covariate space with little or no data. These scores may
have little connection to the underlying data-generating process because RFs are known to
extrapolate to such regions in unreliable ways. This problem of out-of-distribution evaluation
also affects TreeSHAP. To overcome this, variants of permutation scores have been proposed
(Strobl et al., 2008; Hooker and Mentch, 2019) while other works have investigated altering
the RF algorithm altogether (Hothorn et al., 2006).

3.3 Connecting MDI to R2 Values from Linear
Regression

Assume we are given a dataset Dn = {(xi, yi)}ni=1, with covariates xi ∈ Rp and responses
yi ∈ R. An RF is an ensemble of classification or regression trees (CART) (Breiman et al.,
1984; Breiman, 2001) that are fitted independently of one another on bootstrapped versions
D∗

n of Dn. Each CART model is fit by performing recursive axis-aligned splits according to
a minimum impurity decrease criterion.

In more detail, a potential split s of a node t partitions it into two children nodes tL =
{x0 ∈ t : x0,k ≤ τ} and tR = {x0 ∈ t : x0,k > τ} for some feature index k and threshold τ .
The impurity decrease of s is defined as

∆̂(s,D∗
n) := N (t)−1

(∑
xi∈t

(yi − ȳt)
2 −

∑
xi∈tL

(yi − ȳtL)
2 −

∑
xi∈tR

(yi − ȳtR)
2

)
, (3.1)

where all summations are over samples in D∗
n, N(t) represents the number of bootstrap

samples in node t, and ȳt, ȳtL , ȳtR are the mean responses in each node. Starting with the
entire covariate space as the root node and until it reaches a stopping condition, CART
recursively splits each node by picking and actualizing the potential split with the largest
impurity decrease. When CART is used as part of RF, a random subset of features is chosen
at each node and the best split is chosen from within this subset. This is to introduce
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further diversity amongst the trees in the ensemble. Finally, at prediction time, a CART
model identifies the unique leaf node containing the query point and predicts the mean
response over that node.

To define the MDI values for a CART model, first let S = {s1, . . . , sm} denote all the
splits it contains and call this its tree structure. For each k = 1, . . . , p, the MDI of feature
Xk is defined as

MDIk(S,D∗
n) :=

∑
s∈S(k)

n−1N (t(s)) ∆̂(s,D∗
n), (3.2)

where S(k) is the subset of splits in S that split on the feature Xk and t(s) is the node being
split by a split s. For RFs, the MDI of feature Xk is the mean of these values across all
CART trees in the ensemble.

Now to build the connection between MDI and R2 values given a tree structure S and
data Dn, we associate to each split s ∈ S the local decision stump function

ψ(x; s,Dn) =
N (tR)1{x ∈ tL} −N (tL)1{x ∈ tR}√

N (tL)N (tR)
. (3.3)

Intuitively, ψ is a tri-valued function that indicates whether the sample x lies to the left of
the threshold, lies to the right of the threshold, or is not contained in node t at all. If S
has m splits, concatenating these m functions yields the learned feature map Ψ(x;S,Dn) :=
(ψ(x; s1,Dn), . . . , ψ(x; sm,Dn)) and its corresponding transformed dataset Ψ(X;S,Dn) ∈
Rn×m, where X ∈ Rn×p is the original data matrix. Klusowski (2021) showed that the
CART model f̂(−;S,Dn) is equivalent to the best fit linear model of the responses y on
the transformed dataset Ψ(X;S,Dn). We further note that there is a natural partition of
decision stumps according to the (original) feature that they split on. That is, we have
S = S(1) ⊔ · · · ⊔ S(p), and can write Ψ(x;S,Dn) =

(
Ψ(x;S(1),Dn), . . . ,Ψ(x;S(p),Dn)

)
. One

can check that the corresponding blocks of Ψ(X;S,Dn) are orthogonal, enabling us to extend
Klusowski (2021)’s result and derive the following new connection between MDI and R2

values.

Theorem 1. Assume we have a tree structure S and a dataset Dn = (X,y), with X denoting
the matrix of covariates and y denoting the response vector. For any feature Xk, we have
the following identity:

MDIk(S,Dn)

n−1
∑n

i=1(yi − ȳ)2
= 1−

∑n
i=1

(
yi − ŷ

(k)
i

)2
∑n

i=1(yi − ȳ)2
=: R2(y, ŷ(k)), (3.4)

where ŷ(k) =
(
ŷ
(k)
1 , ŷ

(k)
2 , . . . , ŷ

(k)
n

)
is the vector of fitted response values when regressing y ∼

Ψ(X;S(k),Dn).1

1If S(k) = ∅, the fitted model is the constant intercept model, and both the MDI and the R2 value of
this regression are equal to 0.
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Here, the fitted values ŷ(k), or partial model predictions, are the resulting model predic-
tions using only those decision stumps that split on Xk. Theorem 1 thus formalizes the
intuition that a more important feature Xk leads to more accurate predictions based solely
on Xk and hence a larger MDI.

We also note that the partial model predictions ŷ(k) are precisely the Saabas (2022) local
feature importance scores for Xk. As such, Theorem 1 is implied by but also helps to clarify
Proposition 1 in Li et al. (2019), which equates the MDI of Xk to the sample covariance
between the Saabas scores and the responses but does not derive this in a linear regression
setting. We prove Theorem 1 directly in Appendix B.1.

Reinterpreting MDI via OLS

Theorem 1 enables us to reinterpret the computation of MDI for a single tree in an RF
via the following procedure (Figure 3.1, left). Given a fitted tree, which was trained on a
bootstrapped dataset D∗

n = (X∗,y∗) and has the tree structure S = S(D∗
n), MDI can be

computed by:

Step 1: Obtain transformed dataset on in-bag samples. Construct the feature map Ψ(x;S,D∗
n)

and use it to obtain the transformed in-bag dataset:

Ψ(X∗;S,D∗
n) = [Ψ(X∗;S(1),D∗

n), . . . ,Ψ(X∗;S(p),D∗
n)].

For ease of notation, we will henceforth suppress the dependence on S and D∗
n when describ-

ing the MDI procedure, and denote Ψk(−) = Ψ(−;S(k),D∗
n).

Step 2: Fit linear model. Fit an ordinary least squares (OLS) model for y on Ψ(X∗),
obtaining the estimated regression coefficient β̂.

Step 3: Make partial model predictions. For each k = 1, . . . , p, obtain the partial model
predictions ŷ(k). Due to the orthogonality and centering of Ψ(X∗), ŷ(k) as defined in Theorem
1 is equivalent to imputing the mean value for all stump features in Ψ(X∗) that do not split
on Xk and then multiplying this modified matrix by β̂. Formally,

ŷ(k) = [Ψ̄1(X∗), . . . , Ψ̄k−1(X∗),Ψk(X∗), Ψ̄k+1(X∗), . . . , Ψ̄p(X∗)]β̂,

where Ψ̄j(X∗) = 1
n
1n1

T
nΨ

j(X∗) and 1n is an n× 1 vector of all ones.

Step 4: Evaluate predictions via R2. For each k = 1, . . . , p, the MDI for feature k in the
given tree is precisely the unnormalized R2 value between the observed responses y and the
partial model predictions ŷ(k), as shown by Theorem 1.

Drawbacks of MDI

Viewing MDI via this new linear regression lens allows us to explain known drawbacks as well
as reveal new challenges. We consolidate these into two main issues, differential optimism
bias and model mismatch, and then discuss possible ways to overcome them.
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Differential Optimism Bias.

For a fixed design with homoskedastic noise, it is known that the average difference between
training and held-out test mean-squared error (i.e. the optimism bias) for linear models is
twice the number of degrees of freedom scaled by the noise variance (Hastie et al., 2009).
Combining Theorem 1 with a similar set of calculations leads to the following optimism bias
of MDI.

Proposition 1. Suppose Dn is generated according to a fixed design with fixed covariate
vectors x1, . . . ,xn and responses yi = f(xi) + ϵi with ϵ1, . . . , ϵn independent and satisfying
V ar(ϵi) = σ2 for i = 1, . . . , n. Let D0

n = {(xi, f(xi))} denote the noiseless dataset. Then for
any fixed tree structure S, we have

E{MDIk(S,Dn)} = MDIk(S,D0
n) +

σ2
∣∣S(k)

∣∣
n

.

The noiseless MDI value, MDIk(S,D0
n), is the proportion of variance in f(x) explained

by Ψ(x;S(k),Dn). Proposition 1 reveals that MDI(k;S,Dn) is optimistic for MDI(k;S,D0
n)

and, further that the optimism bias is larger for features Xk that have more splits, leading
to a differential optimism bias. This differential optimism is problematic because the split
frequency of a featureXk reflects not only the feature’s inherent influence on the response, but
also some biases due to the tree-growing process of CART. In particular, CART’s splitting
rule results in highly-correlated and low-entropy features receiving fewer splits (see Section
3.6). Signal features with these characteristics hence often have undesirably lower MDI than
non-signal features without these characteristics, as a result of the differential optimism bias.

Though Proposition 1 requires a fixed tree structure, when S is random, the result above
can be applied conditionally on S, as long as it is independent of Dn. This independence
can be achieved if out-of-bag samples are used to compute MDI, as is sometimes done in
practice. However, Proposition 1 shows that this does not resolve the differential optimism
bias. More commonly, in-bag samples are used to both generate S and compute MDI. In this
case, Proposition 1 does not apply directly, but because the splits S tend to be correlated
with the noise, the amount of overfitting (i.e., differential optimism bias) should be worse.

Mitigating Differential Optimism Bias. To remedy the differential optimism bias, we
can (1) replace OLS (i.e., step 2 of MDI procedure) with a regularized regression algorithm
such as ridge (Hoerl and Kennard, 1970) or LASSO (Tibshirani, 1996) to reduce the effective
degrees of freedom (i.e., number of splits) and stabilize the feature importance calculation.
(2) Traditionally, MDI is evaluated on the same data (i.e., in-bag) used to train the tree,
thereby amplifying biases in the learned model. To overcome this issue, Li et al. (2019)
proposed a sample-splitting technique, known as MDI-oob, which computes the covariance
between the out-of-bag (OOB) partial model predictions ŷ(k) and OOB responses y. This is
equivalent to computing the R2 value for the fitted linear model (trained on in-bag samples)
when evaluated on OOB samples. That is, sample-splitting approaches mitigate differential
optimism bias by using one portion of the data (e.g., in-bag data) to learn the linear model,
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and the other (out-of-bag data) to evaluate its generalization error. However, this comes at
the cost of using fewer samples to both fit OLS and estimate its out-of-sample error. To more
efficiently use samples, one can instead use a leave-one-out (LOO) scheme that leverages the
entire dataset (in- and out-of-bag samples) to both learn the linear model and estimate its
out-of-sample error.

Model Mismatch

While RF is a nonparametric method that can in principle approximate any functional
structure, it comes with a set of inductive biases that allow it to adapt better to some
types of structure rather than others. First, trees are statistically inefficient at estimating
smoothly-varying functions (Tsybakov, 2004) and additive generative models (Tan et al.,
2021), which are ubiquitous in real-world datasets (Hastie and Tibshirani, 1986). This
inefficiency results from the local decision stump features being poorly adapted to fit smooth
or additive functions. Specifically, their piecewise constant nature makes them inefficient at
representing smooth relationships, while their locality makes them inefficient at representing
additive structure. Second, our reinterpretation shows MDI implicitly relies on OLS and R2

to measure feature importance. However, OLS and R2 may not be well-suited for all problem
structures (e.g., in situations with a categorical response or gross outliers).

Mitigating Model Mismatch. To alleviate the inductive biases of RFs against additive
or smooth structures, we can perform more flexible feature engineering by augmenting the
kth block of local decision stump features Ψ(k)(X) with other engineered features based on
Xk. In particular, simply augmenting Xk itself can help bridge the gap between RFs and
linear models. Secondly, we can replace OLS and the R2 metric with prediction models and
metrics that may be better suited for the given problem and data structure. For example,
logistic regression with negative log-loss or Huber regression with negative Huber loss might
be more appropriate for classification problems or problems with outliers, respectively.

3.4 Introducing MDI+

In this section, we build upon the ideas introduced in the previous section to develop our
feature importance framework, MDI+.

The MDI+ Framework

MDI+ improves upon MDI by directly addressing its drawbacks described in the previous
section and by offering practitioners a flexible and adaptable framework for computing fea-
ture importances. In particular, within this framework, practitioners are allowed several
choices (i.e., the choice of feature augmentation, GLM, and similarity metric) that can be
tailored to the data or problem structure. We discuss how these choices can be made in a
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principled manner in more detail in Section 3.4 and proceed now to introduce the overarching
MDI+ framework for a given choice of feature augmentation, GLM, and similarity metric.

As a reminder of relevant notation, the original dataset is denoted by Dn = (X, y),
and each tree is fitted on a bootstrapped dataset D∗

n = (X∗, y∗). Also, recall we denote
the tree structure as S = S(D∗

n), and the feature map as Ψ(x; S, D∗
n). We next introduce

MDI+ for a single tree in an RF (Figure 3.1, right) using an analogous scaffolding as MDI
(see Section 3.3) but with the main differences highlighted in bold.

Step 1: Obtain augmented transformed dataset on in- and out-of-bag samples. For
features k = 1, . . . , p, construct an augmented feature map Ψ̃(x; S(k),D∗

n) by append-
ing the raw feature Xk to the feature map Ψ(x;S(k),D∗

n).2 That is, let Ψ̃(x; S(k),D∗
n) =

[Ψ(x; S(k),D∗
n), xk]) if S(k) ̸= ∅. Let Ψ̃(x; S, D∗

n) =
(
Ψ̃(x; S(1), D∗

n), . . . , Ψ̃(x; S(p), D∗
n)
)
,

and apply Ψ̃(x; S, D∗
n) to the entire dataset (in- and out-of-bag samples) to get Ψ̃(X; S, D∗

n).
Henceforth, we denote Ψ̃(X) = Ψ̃(X; S, D∗

n) and Ψ̃(k)(X) = Ψ̃(X; S(k); D∗
n).

Step 2: Fit regularized generalized linear model (GLM). Fit a regularized GLM M with
link function g and penalty parameter λ for y using Ψ̃(X) to obtain the estimated regression
coefficients β̂λ and intercept α̂λ. We tune λ via the approximate leave-one-out (LOO) method
described in Rad and Maleki (2020), which does not require re-fitting the GLM n times. Note
that we use the full dataset (X, y) comprising both in- and out-of-bag samples to perform
this as well as subsequent steps.

Step 3: Make partial model prediction via LOO. For a feature Xk, impute the mean value
for all features in Ψ̃(X) not derived from Xk. Then, for each feature k = 1, . . . , p, and each
sample i = 1, . . . , n, obtain the LOO partial model predictions:

ŷki = g−1
([

¯̃Ψ1(X), . . . , ¯̃Ψk−1(X), Ψ̃k(X), ¯̃Ψk+1(X), . . . , ¯̃Ψp(X)
]
β̂−i,λ + αλ

)
, (3.5)

where ¯̃Ψj(X) = 1
n
1n1

T
n Ψ̃

j(X), 1n is an n×1 vector of all ones, and β̂−i,λ is the LOO coefficient
vector learnt without using sample xi. Again, we use the approximate LOO method of Rad
and Maleki (2020) to obtain β̂−i,λ without refitting the GLM. Denote the LOO partial model
predictions for feature k by ŷ(k) =

(
ŷk1 , . . . , ŷ

k
n

)
.

Step 4: Evaluate predictions via similarity metric. Pick a similarity metric m and use it
to evaluate the similarity3 between the true responses and the partial model predictions. In
other words, given the tree structure S, dataset D∗

n, together with choices of Ψ̃, M and m
for Steps 1, 2 and 4, we define, for each k = 1, . . . , p, the MDI+ for feature k as

MDI+k (S,D∗
n, Ψ̃,M,m) := m

(
y, ŷ(k)

)
. (3.6)

For a RF, the MDI+ of a feature k can be computed by taking the average across the trees.4

2More generally, we can augment this feature map with any number of engineered features derived from
Xk.

3The metric should attain larger values on closer arguments.
4If a feature is never split on amongst all trees in the RF, we set its MDI+ to be −∞.
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Figure 3.1: Overview of MDI+ for a single tree. For each tree S in the random forest, Step
1: Obtain the transformed dataset on the in- and out-of-bag samples using stumps from
the tree and append the raw and/or any additional (possibly engineered) features. Step
2: Fit a regularized GLM. Step 3: Using the fitted GLM, make partial model predictions
ŷ(k) for each feature k = 1, . . . , p (stacked boxes) using a leave-one-out (LOO) data splitting
scheme. Step 4: For each k = 1, . . . , p, evaluate partial model predictions via any user-
defined similarity metric to obtain the MDI+ for feature k in tree S.
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RF+. The GLM M fitted on the augmented transformed dataset Ψ̃(X) serves as a new class
of prediction models, which we refer to as RF+. RF+ can be viewed as a generalization of RFs
that furthermore provides a natural link between classical statistical models (i.e., GLMs) and
modern ML (i.e., RFs). In Section 3.7 and Appendix B.7, we show that RF+ improves upon
prediction performance of RFs by approximately 5% across a variety of real-world datasets
in the regression and classification settings. Though the main focus of this work is feature
importance, the strong prediction performance of RF+ suggests that it better captures the
underlying data-generating process, giving additional credence to MDI+ (Murdoch et al.,
2019; Yu and Kumbier, 2020).

PCS-Informed Model Recommendation

One rarely has sufficient prior knowledge of the problem structure in order to make definitive
choices for Ψ̃, M and m. Further, even if there is prior information, a practitioner might be
left with multiple choices (e.g., using lasso or ridge for M). To address this challenge, we
briefly discuss two approaches inspired by the PCS framework (Yu and Kumbier, 2020) to
make these modeling choices in a data-driven manner, and defer details to Appendix B.6.

Stability-based selection for Ψ̃, M, m. Let h =
(
Ψ̃(X),M,m

)
denote an MDI+ model

defined by the choices of augmented feature representation, GLM, and similarity metric,
respectively. Accordingly, let H = {h1, . . . , hN} denote the set of possible MDI+ models
under consideration.

Step 1: Prediction Screening. For each h ∈ H, evaluate the prediction performance of M
on a held-out test set, and filter out all h whose prediction performance is worse than that
of RF. This prediction check ensures that the interpreted model is a reasonably faithful
approximation of the underlying data generating process (Murdoch et al., 2019; Yu and
Kumbier, 2020).
Step 2: Stability Selection. Generate B bootstrapped samples of the fitted trees in the en-
semble. For each h that passed the prediction screening, evaluate MDI+ for each of the B
bootstrapped samples, and choose the h which yields the most similar (or stable) feature
rankings across the B bootstrapped samples. We measure the similarity between differ-
ent bootstrap samples via Rank-based Overlap (Webber et al., 2010). While we measure
stability via bootstrap sampling, one can also measure stability over different algorithmic
perturbations (e.g., random seeds used to train the RF).

Model aggregation via PCS principles. Instead of choosing a single best model for
MDI+, it may make sense to compare and ensemble multiple models that have similar pre-
dictive performance with respect to the criteria identified above, as it can be argued that
they all provide competing descriptions of reality that have approximately equal statistical
evidence (Murdoch et al., 2019; Rudin et al., 2021). Further, investigating and comparing
the feature rankings of different predictive-screened MDI+ models might be of independent
scientific interest.
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In Appendix B.6, we perform a preliminary simulation study to establish the efficacy of
both approaches. In particular, we show that the GLM and metric selected by the stability-
based procedure leads to the best feature ranking performance across different candidate
MDI+ models. While the model aggregation approach does not lead to the best feature
ranking performance, it performs competitively, and we present it here since both approaches
might be useful in practice. However, we leave a more thorough investigation of these model
recommendation techniques to future work.

3.5 Data-Inspired Feature Ranking Simulations

In this section, we describe a number of simulations that illustrate the effectiveness of
MDI+ to identify signal features in three common statistical settings: regression, classifi-
cation, and robust regression (i.e., presence of outliers). In all settings, we highlight the
flexibility of MDI+ choosing the appropriate GLM and evaluation metric for the data at
hand. For all of our simulations in this section, we use covariate matrices coming from real-
world datasets to capture naturally occurring structure. Using these covariate matrices, we
simulate responses with analytical functions that depend on a sparse set of features. These
response functions were chosen to reflect both canonical forms as well as domain knowledge.
Then, we measure the ability of MDI+ and other feature importance methods to recover
these signal features, with the specific metric for recovery discussed below. Additional sim-
ulations under varying sparsity levels, number of features, and misspecified model settings
with omitted variables are provided in Appendix B.3, further supporting the strong empirical
performance of MDI+.

Simulation Setup

Real-world datasets used. For our covariate matrices, we use the following datasets: (i)
Juvenile dataset (n = 3640, p = 277) (Osofsky, 1997); (ii) a subset of the Cancer Cell Line
Encyclopedia (CCLE) RNASeq gene expression dataset (n = 472, p = 1000) (Barretina
et al., 2012); (iii) Enhancer dataset (n = 7809, p = 41) (Basu et al., 2018); and (iv) Splicing
dataset (n = 23823, p = 264) (Basu et al., 2018).
Simulated responses. Using each dataset above as the covariate matrix X, we consider
the following response functions.

1. Linear model: E[Y | X] =
∑5

j=1Xj;

2. Locally-spiky-sparse (LSS) model (Behr et al., 2021): E[Y | X] =
∑3

m=1 1(X2m−1 >
0)1(X2m > 0);

3. Polynomial interaction model: E[Y | X] =
∑3

m=1X2m−1 +
∑3

m=1X2m−1X2m.

4. Linear + LSS model: E[Y | X] =
∑3

m=1X2m−1 +
∑3

m=1 1(X2m−1 > 0)1(X2m > 0);
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These regression functions were chosen to reflect several archetypes of real DGPs. (1) and
(3) reflect well-studied models in the statistics literature. (2) exhibits the discontinuous
interactions observed in biological processes (Nelson et al., 2008; Behr et al., 2021). (4)
reflects a combination of linear and discontinuous interactions also thought to be prevalent
in genomics. For our classification simulations, we pass the mean response function (i.e.,
E[Y | X]) through a logistic link function to convert the responses to be binary.
Feature importance methods under consideration. We compare MDI+ to a number
of popular feature importance methods for RFs: MDI (Breiman et al., 1984), MDI-oob (Li
et al., 2019), MDA (Breiman, 2001), and TreeSHAP (Lundberg and Lee, 2017).
RF settings. For the regression (Section 3.5) and robust regression (Section 3.5) settings,
we train a RF regressor using scikit-learn (Pedregosa et al., 2011) with n_estimators=100
(i.e., number of trees), max_features=p/3 (i.e., proportion of features subsampled at each
node), and min_samples_leaf =5 alongside other default parameters. In the classifica-
tion setting (Section 3.5), we use scikit-learn’s RF classifier with n_estimators=100,
max_features=√

p, and min_samples_leaf =1 alongside other default parameters.
Feature Ranking Performance Metric. As in previous work (Li et al., 2019; Yu and
Kumbier, 2020), we evaluate the performance of each feature importance method by how
well it can be used to classify features used in the regression function (signal) vs. those that
are not (non-signal). Each set of feature importance scores induces a ranking of the features,
which can then be evaluated for this classification problem using AUROC. A high AUROC
scores indicates that the signal features are ranked higher (i.e., more important) than the
non-signal features. The performance of each feature importance method is averaged across
50 simulation replicates. In each simulation replicate, we choose the signal features randomly
from X.

Regression Simulations

We simulate responses as discussed above, but introduce additive Gaussian noise. That is, we
simulate responses as Y = E[Y | X]+ ϵ, where ϵ ∼ N(0, σ2) We examine performance across
various signal-to-noise ratios as measured by the proportion of variance explained,5 defined as
PV E = Var{E{Y |X}}/Var{Y }. More specifically, we vary across PV E in {0.1, 0.2, 0.4, 0.8}
(or equivalently, signal-to-noise ratio in {0.11, 0.25, 0.66, 4}) and across a range of sample
sizes n. For CCLE, we vary across n in {100, 250, 472}, and for the other three datasets,
we vary across n in {100, 250, 500, 1000, 1500}. We use l2-regularized regression (i.e., ridge
regression) as the GLM, and R2 as our metric of choice.

We display our results for the Splicing dataset for the LSS, and polynomial interaction
model (See Section 3.5 for details) in Figure 3.2. Results for other datasets and regression

5PV E is a monotone transformation of the signal-to-noise ratio (SNR) such that its range is bounded
between 0 and 1 and thus more interpretable. It is also a standard measurement of noise used in many fields
(e.g., it is often called heritability in genomics). PVE in genomics is estimated to range from between 0.05
to 0.4 (Wang et al., 2020).
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functions are deferred to Appendix B.2 for brevity, but are similar to those displayed in Fig-
ure 3.2. Across all simulation scenarious, MDI+ produces more accurate feature rankings,
often enjoying more than a 10% improvement in AUROC over its closest competitor (typ-
ically MDI-oob or MDA). In particular, MDI+ produces the most significant improvement
for low PVEs, which is especially important since real-world data in fields such as biology,
medicine, and social sciences have low SNRs. The strong performance of MDI+ relies on a
number of choices made to mitigate the aforementioned biases such as: using l2 regulariza-
ton, including the raw feature, and evaluating predictions via LOO. In Appendix B.4, we
provide simulations that show how each of these choices individually leads to an increase in
the ranking accuracy of MDI+.

PV E = 0.1 PV E = 0.2 PV E = 0.4 PV E = 0.8
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Figure 3.2: MDI+ outperforms all other feature importance methods for the data-inspired
regression simulations described in Section 3.5 using the Splicing dataset. This pattern
is evident across various regression functions (specified by row), proportions of variance
explained (specified by column), and sample sizes (on the x-axis). In all subplots, the
AUROC has been averaged across 50 experimental replicates, and error bars represent ±
1SE.

Classification Simulations

We simulate responses according to the response functions defined in Section 3.5, and
introduce noise by randomly flipping a percentage of the binary response labels to the
opposite class. We measure AUROC as we vary the percentage of corrupted labels in
{0%, 5%, 15%, 25%} and the number of samples as before. To tailor MDI+ to the classi-
fication setting, we use l2-regularized logistic regression and negative log-loss as our choice
of GLM and metric, respectively. We compare these choices to those used in the regression
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setting (i.e., ridge regression and R2). Henceforth, we shall refer to these particular settings
as MDI+ (logistic) and MDI+ (ridge), respectively.

We display results for the CCLE dataset for the linear, and linear + LSS model (See Sec-
tion 3.5 for details) in Figure 3.3. We defer results for other datasets and regression functions
to Appendix B.2, but are similar to those displayed in Figure 3.2. Both MDI+ (logistic) and
MDI+ (ridge) outperform competitors by over 10% across most simulation scenarios Further,
we see that MDI+ (logistic) improves upon MDI+ (ridge), indicating the benefit of tailoring
GLMs and metric to the statistical problem at hand. Exploring other GLMs and error
metrics may further improve performance.
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Figure 3.3: Both MDI+ (ridge) and MDI+ (logistic) outperform all other feature importance
methods for the data-inspired classification simulations described in Section 3.5 using the
CCLE RNASeq dataset. Furthermore, MDI+ (logistic) slightly outperforms MDI+ (ridge)
in the majority of settings, indicating the benefit of tailoring the choices of MDI+ to the
data at hand. This pattern is evident across various regression functions (specified by row),
proportions of corrupted labels (specified by column), and sample sizes (on the x-axis). In
all subplots, the AUROC has been averaged across 50 experimental replicates, and error bars
represent ± 1SE.

Robust Regression Simulations

We illustrate another use-case of our framework by showing how MDI+ can be tailored to
account for presence of outliers. We simulate responses as done in the regression setting, and
introduce outliers as follows. We first select samples in the top and bottom select samples
in the top and bottom q/2% quantiles for a randomly chosen non-signal feature. For the
selected samples, we corrupt their responses by drawing their responses from N(µcorrupt, 1)
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and N(−µcorrupt, 1) for the bottom and top quantile samples respectively. In our simulations,
we vary across q in {0, 1, 2.5, 5} and µcorrupt in {10, 25} for a variety of sample sizes n. We
tailor MDI+ to this setting by using a robust version of ridge regression (Owen, 2007) as our
choice of regularized GLM, and negative Huber loss as our similarity metric. We compare
these choices to those used in the regression setting (ridge regression and R2). We shall refer
to these particular settings as MDI+ (Huber) and MDI+ (ridge).

Simulation results for the Enhancer dataset are shown in Figure 3.4, with responses sim-
ulated via the LSS function (see Section 3.5 for details). Results for other datasets and
regression functions are shown in Appendix B.2. We observe that MDI+ (Huber)’s perfor-
mance is more robust than competing methods including MDI+ (ridge) and often remains
accurate as both µcorrupt and the percentage of outliers increase.
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Figure 3.4: Under the LSS with outliers regression setting using the Enhancer dataset,
MDI+ (Huber)’s performance remains suffers far less than other methods including
MDI+ (Ridge) as the level of corruption µcorrupt (specified by row) and the proportion of
outliers (specified by column) grow. This pattern also holds across sample sizes (on the
x-axis). In all subplots, the AUROC has been averaged across 50 experimental replicates,
and error bars represent ± 1SE.

3.6 MDI+ Overcomes Biases of MDI

As established in the literature and further discussed in Section 3.3, MDI is biased against
highly-correlated and low-entropy features, which are commonly found in practice. In this
section, we run simulations showing that MDI+ overcomes these biases.
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Correlated Feature Bias

Experimental details. We draw xi ∼ N(0,Σ), where xi ∈ R100 and Σ ∈ R100×100 has
the following block-covariance structure: Features X1, . . . , X50 have pairwise correlation ρ,
and features X51, . . . , X100 are independent of all other features. We then simulate responses
from the linear+LSS model: Y =

∑3
m=1X2m−1 +

∑3
m=1 1(X2m−1 > 0)1(X2m > 0) with

PV E in {0.1, 0.4}. Denote the group of signal features (i.e., X1, . . . , X6) as Sig, the non-
signal features that have non-zero correlation with the signal features (i.e., X7, . . . , X50) as
C-NSig, and the non-signal uncorrelated features (i.e., X51, . . . , X100) as NSig. We generate
n = 250 samples, and vary the correlation across ρ in {0.5, 0.6, 0.7, 0.8, 0.9, 0.99}. For all
feature importance methods used in our simulation study in Section 3.5, we compute the
average ranks for features within each group (Sig, C-NSig, and NSig).

Results. The results for the average ranks of features per group are shown in Figure 3.5.
Across all levels of correlation and PV Es, MDI+, MDI-oob, and MDA rank the true signal
features (Sig, dark green) as the most important feature group and the uncorrelated non-
signal group (NSig, red) as the least important feature group by a sizeable margin. MDI’s
behavior can be explained by Proposition 1, and Figure B.23, which displays the average
percentage of RF splits per feature in each group. As ρ increases, Figure B.23 shows the
percentage of splits on NSig features increases, while that of Sig and C-NSig decreases.
Intuitively, this occurs because Sig and C-NSig features, being correlated with each other,
result in similar decision stump functions and must compete over splits. Since MDI grows
with the number of splits as established in Proposition 1, this leads to an overestimate
of MDI for the NSig features. Moreover, MDI and TreeSHAP are measured on in-bag
(training) samples, thereby amplifying biases that are learned during the tree construction.
In contrast, MDI+, MDI-oob, and MDA use sample-splitting, which helps to mitigate this
overfitting issue. A direct comparison between MDI+ with LOO sample splitting versus no
sample splitting in Appendix B.5 (Figure B.22) helps to confirm this intuition.

Entropy Bias

Experimental details. Following the simulation setup proposed in Li et al. (2019), we
sample 5 features: X1 from a Bernoulli distribution with p = 0.5, X2 from a standard
Gaussian distribution, and X3, X4, and X5 from a uniform discrete distribution with 4, 10,
and 20 categories, respectively. To investigate entropy bias, we simulate the response as a
function of only the lowest entropy feature, X1, under (1) the regression setting via Y = X1+
N(0, σ2) where σ2 is chosen to achieve PV E = 0.1 and (2) the binary classification setting
via P(Y = 1 | X) = 1+X1

3
. We vary the number of samples n ∈ {50, 100, 250, 500, 1000} and

measure the rank and proportion of splits in RF for each feature across 50 replicates.

Results. Figures 3.6 and B.23 display the results for the feature rankings and proportion
of RF splits per feature respectively. Only MDI is able to identify X1 as the signal features.
This occurs because X1 has the lowest entropy relative to other features, and is hence split
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Figure 3.5: MDI+ improves upon the bias that MDI has against selecting features that are
highly correlated. We show the average ranks (±1SE) within feature groups (Sig, C-NSig,
NSig) for various correlation (ρ) levels over 50 replicates. When the signal is moderate-to-
high (PV E = 0.4, bottom), all methods rank the true signal features (Sig, dark green) as
more important than the non-signal features (NSig, red) for all ρ; however, the gap is small
for MDI and TreeSHAP. When the signal is low (PV E = 0.1, top), MDI+ , MDI-oob, and
MDA are still able to identify the true signal features (Sig, dark green) as most important.
In contrast, MDI and TreeSHAP rank the non-signal features (NSig, red) as more important
than the true signal (Sig, dark green) and the correlated, non-signal (C-NSig, light green)
feature groups when the ρ is large.
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Figure 3.6: MDI+ improves upon the bias that MDI has against selecting features with lower
entropy in both the regression (left) and classification (right) simulation settings described in
Section 3.6. The feature ranking of the solo signal feature, X1, averaged across 50 replicates,
is shown on the y-axis. Here, a lower value indicates greater importance.
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upon the least (Figure B.23). As a result of Proposition 1, this leads to an overestimate of
MDI for high-entropy features X2, . . . , X5 that are split upon more often. To combat this,
MDI+ employs regularization to control the effective degrees of freedom and sample-splitting
to mitigate biases learned during the tree construction. A direct comparison of MDI+ with
and without ridge regularization and LOO sample-splitting in Figure B.24 helps confirm
this.

3.7 Case Studies

In this section, we revisit our two driving case studies and use MDI+ as well as other feature
importance measures to identify important features in predicting drug responses and breast
cancer subtypes. In both case studies, we show that RF+ increases the prediction accuracy
over RF and that the feature rankings from MDI+ agree with established domain knowledge
with significantly greater stability (i.e., across different train-test splits and random seeds
used to train the RF) than other feature importance measures. Given that both predictability
and stability are important prerequisites for interpretability (Murdoch et al., 2019; Yu and
Kumbier, 2020), these findings showcase the effectiveness of MDI+ for extracting reliable
interpretations in real-world scientific problems.

Case Study I: Drug Response Prediction

Accurately predicting a cancer drug’s efficacy for a patient before prescribing it can tremen-
dously improve both the patient’s health and financial well-being given the exorbitant costs
of many cancer drugs. Moreover, identifying the important biological predictors, such as
genes, that are influential of the drug response can provide valuable insights into potential
targets and novel candidates for future preclinical research. Towards this end, we leverage
data from the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012) to build ac-
curate drug response models and identify genes whose expression levels are highly predictive
of a drug’s response.

Data and Methods. More specifically, we have gene expression data X ∈ R472×5000,
measured via RNASeq, from n = 472 cell lines and p = 5000 genes after filtering. For each
cell line, the response of 24 different drugs was measured, yielding a multivariate response
matrix Y ∈ R472×24. We split the data into 80% training and 20% test. Details regarding
the data and preprocessing can be found in Appendix B.8. Using the training data, we fit 24
separate RFs, one to predict the response for each drug using the gene expression data X,
and investigate the gene importance rankings for each drug. We repeat this for 32 different
train-test splits. Here, the RF settings and feature importance methods used are the same
as those in Section 3.5 for regression.

Prediction accuracy. For 23 out of the 24 drugs, the test R2, averaged across the 32
train-test splits, was higher for RF+ than RF. Furthermore, RF+ improved the test R2 by an



CHAPTER 3. MDI+ 59

average of 4% across the 18 drugs with RF test R2 > 0.1. We use this threshold of R2 > 0.1
to focus on models that have non-trivial predictive power; however, the improvement from
RF+ is even higher without this filter. Details and the full prediction results can be found
in Appendix B.7.

Accuracy of gene importance rankings. In addition to the increase in prediction accu-
racy from RF+, MDI+ was able to identify several well-known genes that have been previously
identified as drug targets in the previous literature. In particular, every known gene expres-
sion predictor of drug response identified in the original work on CCLE (Barretina et al.,
2012), except for one, was ranked in the top 5 by MDI+ for their respective drugs. The one
gene outside of the top 5 was MDM2, a known predictor for the drug Nutlin-3 (Barretina
et al., 2012). Still, MDI+ ranked MDM2 17th, which is higher than the rankings given by its
competitors (MDI-oob: 22nd, TreeSHAP: 30th, MDI: 35th, MDA: 53rd). A full list of the top
5 genes for each drug using various feature importance methods is provided in Appendix B.8.

To provide another assessment of the gene importances beyond evidence from the scien-
tific literature, we also evaluated the predictive power of the top 10 genes from each feature
importance method. We found that the top 10 genes from MDI+ were often more predic-
tive than that from other feature importance methods. Per the predictability principle of
the PCS framework, strong prediction performance suggests that the model (and in this
case, the top-ranked features) may better capture the underlying data-generating process.
For brevity, we defer details and additional discussion regarding this prediction analysis to
Appendix B.8.

Stability of gene importance rankings. Lastly, for each feature importance method, we
investigated the stability (or similarity) of gene importance rankings across the 32 train-test
splits. Methods that exhibit greater stability are highly advantageous in practice since it is
undesirable for interpretations to change due to arbitrary choices like train-test splits and
random seeds. In Figure 3.7a, we display one measure of stability, namely, the number of
distinct genes ranked in the top 10 across the 32 train-test splits. For 22 out of the 24
drugs (the exceptions being PD-0325901 and Panobinostat), MDI+ had the fewest number
of distinct genes that were ranked in the top 10 across the 32 train-test splits. Moreover,
for all 24 drugs, we found that MDI+ had the highest number of genes that were always
ranked in the top 10 across all train-test splits. Interestingly, sample-splitting techniques
such as MDA and MDI-oob were significantly less stable than other methods, highlighting the
downside of using fewer samples to measure feature importances. On the other hand, MDI+,
which leverages LOO and regularization, overcomes this drawback. To further establish the
stability of MDI+, we also examined the distribution of feature rankings of each method for
the five most important genes across the 32 splits. As visualized in Figure 3.7b (results for all
drugs in Figures B.28 and B.29), feature rankings of MDI+ tend to have smaller variance as
compared to other methods. This remains true for PD-0325901 and Panobinostat, for which
MDI+ did not perform optimally according to the aforementioned top 10 stability metric. A
similar improvement in stability is also seen when fixing the training data and only altering
the random seed used for fitting the RF (see Appendix B.8). This improved stability of
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MDI+, in addition to the increase in prediction performance from RF+, demonstrate the
practical advantages of MDI+ in this real-data case study on drug response prediction.

Case Study II: Breast Cancer Subtype Prediction

Breast cancer is known to be a heterogeneous disease (Atlas, 2012) and is thus often classified
into various molecular subtypes. PAM50 is one prominent breast cancer subtyping method,
which is frequently used to inform treatment plans (Parker et al., 2009). PAM50 divides
breast cancers into five intrinsic subtypes: Luminal A, Luminal B, human epidermal growth
factor receptor 2 (HER2)-enriched, Basal-like, and Normal-like. Each subtype differs based
upon their biological properties and generally corresponds to a different prognosis. Luminal
A typically has the best prognosis while HER2-enriched and Basal-like are more aggressive
(Caan et al., 2014). In this study, we aim to predict the PAM50-defined breast cancer
subtypes using gene expression data from The Cancer Genome Atlas (TCGA) and more
importantly, identify the genes that heavily determine the breast cancer subtype.

Data and Methods. Using data from the TCGA, we have RNASeq gene expression data
from n = 1083 individuals and p = 5000 genes after filtering (details in Appendix B.8).
We also have the PAM50-defined breast cancer subtype for each of these individuals, giving
rise to a multi-class classification problem with five classes. As in Section 3.7, we split the
data into 80% training and 20% test and evaluate results across 32 train-test splits. The
RF settings and feature importance methods used are the same as those in Section 3.5
for classification. Note however that MDI-oob has not been implemented for multi-class
classification and is thus omitted from this analysis.

Prediction accuracy. Comparing RF and RF+ across the 32 train-test splits, we found
that RF+ (logistic) yielded the best prediction performance over a variety of metrics (see
Table B.3). In particular, RF+ (logistic) yielded an average classification accuracy of 88.4%,
compared to 86.1% from RF. RF+ (ridge) also improved the prediction performance over
RF (accuracy: 87.3%), but was slightly worse than RF+ (logistic). The improvement of
RF+ (logistic) over RF+ (ridge) provides further evidence of the benefit of tailoring the GLM
to the problem structure.

Accuracy of gene importance rankings. With respect to the gene importance rankings,
both MDI+ (ridge) and MDI+ (logistic) produced the same set of top 10 genes, albeit in a
different ranking order. For each of these 10 genes (Table B.4), there is significant literature,
supporting the gene’s involvement in the development and progression of breast cancer.
For example, ESR1, the top-ranked gene across all feature importance methods, has been
widely studied over the last decade due to its prominent role in the pathogenesis of breast
cancer (Toy et al., 2013; Chandarlapaty et al., 2016) as well as in novel promising therapies
(Brett et al., 2021). ESR1 encodes the estrogen receptor-α protein and is known to cause
increased resistance to standard-of-care endocrine therapy (Brett et al., 2021). Several other
genes in the top 10, namely, FOXA1, FOXM1, and MLPH, are also associated with estrogen
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(a) Stability of Features Ranked in Top 10

(b) Stability of Top 5 Ranked Features
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Figure 3.7: In the CCLE drug response and TCGA breast cancer (TCGA-BRCA) subtype
case studies, MDI+ provided the most stable feature importance rankings across 32 train-test
splits. Specifically, (a) for 22 out of the 24 drugs in the CCLE case study (the exceptions
being PD-0325901 and Panobinostat, highlighted in blue) and in the TCGA-BRCA case
study, MDI+ had the fewest number of distinct features that were ranked in the top 10 across
the 32 train-test splits. Note that the outlined points denote ties and that MDI+ (logistic)
is only used in the classification setting (i.e., for TCGA-BRCA). Moreover, (b) for the top
five features as ranked by their average ranking across the 32 train-test splits, the standard
deviation of the feature importance rankings across the 32 train-test splits is smaller for
MDI+ compared to other competitor methods. We provide the results for three CCLE drugs
and the TCGA-BRCA subtypes here. MDI-oob is also omitted due to its high instability.
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receptor-positive breast cancer and increased resistance to endocrine therapy (Fu et al.,
2019; Bergamaschi et al., 2014; Thakkar et al., 2010). Beyond this, GATA3 (ranked 2nd

in MDI+ (logistic) and 4th in MDI+ (ridge)) was shown to control luminal breast cancer
predominantly through differential regulation of other genes including THSD4 (Cohen et al.,
2014) while FOXC1 can counteract GATA3 binding and impact endocrine resistance (Yu-
Rice et al., 2016). Finally, TPX2 and TBC1D9 have been found to be over and under-
expressed in triple-negative breast cancer patients respectively (Jiang et al., 2019; Kothari
et al., 2020), and at the protein level, AGR3 is over-expressed in human breast tumors
(Garczyk et al., 2015).

In addition to this supporting literature evidence, we further show in Figure B.33 that the
top 25 genes from MDI+ (logistic) and MDI+ (ridge) are more predictive of the PAM50 breast
cancer subtypes than the top 25 genes from other feature importance measures. This top 25
from MDI+ includes genes such as RRM2 and SFRP1 that are not in the top 25 from any of
the competing feature importance methods. However, these genes are known to play roles in
breast cancer. For instance, up-regulation of RRM2 was shown to enhance breast cancer cell
proliferation (Liang et al., 2019), while loss of SFRP1 expression is associated with breast
tumor stage and poor prognosis when present in early stage breast tumors (Klopocki et al.,
2004).

Stability of gene importance rankings. As in the previous CCLE case study, we evalu-
ated the stability of the gene importance rankings across 32 train-test splits and found that
MDI+ gave the most stable rankings. In particular, in Figure 3.7a, MDI+ (ridge), followed
by MDI+ (logistic), yielded the smallest number of distinct features in the top 10 across
the 32 train-test splits. Moreover, for the top five features, the variability of the feature
importance rankings across the 32 train-test splits is much smaller for MDI+ (ridge) and
MDI+ (logistic) compared to its competitors (Figure 3.7b). Given the need for reproducibil-
ity in high-stakes applications where feature importances are commonly used, this increased
stability of MDI+, demonstrated in realistic settings such as the TCGA and CCLE case
studies, is a vital practical advantage over other feature importance measures.

3.8 Discussion

Feature importance measures are used not only to describe how complicated ML models
make predictions, but also to identify features that are most relevant to the underlying data-
generating process. MDI+ provides a novel feature importance framework that generalizes
the popular MDI importance measure. Specifically, MDI+ builds upon a recent interpreta-
tion of decision trees as a representation learning algorithm and connects MDI to the R2

value from a linear regression on this learned representation. Leveraging this interpretation,
MDI+ allows one to (1) replace the regression model and/or R2 metric with other models
and/or metrics that are tailored to a given data structure and (2) incorporate additional
features or knowledge to mitigate the known biases of decision tree-based techniques. Fur-
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thermore, MDI+ adds regularization and efficient sample-splitting to overcome known biases
of MDI against correlated features and features with low entropy.

We demonstrate the utility of MDI+ via a wide array of data-inspired simulations de-
signed to reflect a number of real-world scenarios, and via two real-world case studies on
drug response prediction and breast cancer subtype prediction. Our simulation studies show
that tailoring MDI+ to different problem structures results in more accurate feature rankings,
compared to other popular feature importance measures. Moreover, applying MDI+ to both
case studies shows the robustness of our method to different data perturbations (e.g., different
train-test splits and random seeds) as well as its ability to identify predictive features. How-
ever, given the potentially high-stakes and downstream impacts of using feature importance
measures in real-world scientific problems, our data-inspired simulations and real-world case
studies only represent a first step in establishing the trustworthiness of MDI+, or any feature
importance measure. Towards this end, developing a formal protocol and benchmarks to
evaluate the effectiveness of feature importance measures will have a significant impact on
the applicability of these methods in practice. One possible pathway to constructing this
protocol is via the PCS framework. In particular, the PCS framework advocates for holistic
evaluation of feature importances including its predictability, and stability, as we have begun
to explore in our case studies. We leave it as important future work to formalize and expand
these ideas.

Beyond this, MDI+ opens the door to many other natural directions for future work.
First, MDI+ need not be limited to RFs and can be defined for any tree ensemble, and in
particular, XGBoost (Chen and Guestrin, 2016). Second, as we illustrated in Section 3.5,
exploiting the flexibility of MDI+ can substantially improve performance. Though we demon-
strated this in classification and robust regression settings, there are many other contexts to
consider such as multitarget prediction, survival analysis, longitudinal data analysis, etc. In
addition, while we have provided practitioners with a PCS-based approach to assist practi-
tioners with modeling choices in the MDI+ framework, further investigation is needed (e.g.,
different approaches to combining scores from different MDI+ models). Thirdly, the con-
nection to linear models, and now GLMs, can also be further utilized to adapt traditional
hypothesis testing tools so as to convert our importance measures into significance scores.
Finally, the flexibility of RF+ as a general prediction method may be of significant inde-
pendent interest. Beyond fitting GLMs on the augmented transformed dataset, RF+ allows
practitioners to fit any machine learning algorithm on the augmented transformed dataset.
This provides a novel avenue to incorporate the advantages of tree-based methodology and
other modern machine learning tools for prediction.
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Part II

Responsible data science in real-world
biomedical problems applying PCS
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Chapter 4

A stability-driven protocol for drug
response interpretable prediction
(staDRIP)

4.1 Introduction

A critical goal in precision medicine oncology revolves around predicting a patient’s re-
sponse to therapeutic drugs given the patient’s unique molecular profile (Rubin, 2015; Ko-
hane, 2015). Accurate personalized drug response predictions can immediately shed light
on therapies that are likely to be ineffective or toxic and aid clinicians in deciding the most
promising treatment for their patients (Azuaje, 2016). Moreover, interpreting these drug
response prediction models can help to improve recommendations of compounds and target
genes to prioritize in future preclinical research (Caponigro and Sellers, 2011).

While several community-wide, public efforts (Barretina et al., 2012; Costello et al., 2014)
and many other works have made progress towards improving the predictive accuracy of drug
response predictions, identifying the important disease signatures (i.e., proteins, genes, and
other biomarkers) that drive the drug response prediction models has received less attention.
To date, previous works have typically focused on feature selection within one specific model
such as elastic nets (Jang et al., 2014; Barretina et al., 2012) and random forest (Riddick
et al., 2011). However, because molecular profiling data is often heterogeneous, noisy, and
high-dimensional, these results are highly sensitive to modeling decisions made by humans
including the type of model, the amount of training data, and the choice of algorithm.

In this work, we focus on this goal of detecting stable, interpretable, and predictive
-omic signatures that drive a cell line’s drug response. To overcome the aforementioned
challenges, we develop a transparent stability-driven pipeline for drug response interpretable
prediction called staDRIP that is rooted in the PCS framework for veridical data science
(Yu and Kumbier, 2020). At its core, the PCS framework builds its foundation on three
principles: predictability as a reality check, computability as an important consideration in
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algorithmic design and data collection, and stability as an overarching principle and minimal
requirement for scientific knowledge extraction. These principles were motivated by extensive
interdisciplinary research such as Wu et al. (2016), which analyzed the gap-gene network of
Drosophila, and Basu et al. (2018), which discovered stable transcription factor interactions
in Drosophila embryos. Since its conception, the PCS framework has further demonstrated
a strong track record of driving many scientific discoveries including novel gene-gene inter-
actions for the red-hair phenotype (Behr et al., 2020) and clinically-interpretable subgroups
in a randomized drug trial (Dwivedi et al., 2020).

Here, using integrative -omics and drug response data from the Cancer Cell Line Encyclo-
pedia (CCLE)1 (Barretina et al., 2012), we employ the PCS framework to develop staDRIP
and provide extensive documentation2 of our modeling choices to arrive at stable biologi-
cal discoveries of proteins and genes that are predictive of cancer drug responses. Unlike
previous works whose results depend heavily on human decisions, staDRIP finds predictive
-omic features that are stable across various models and data perturbations, thus mitigating
the impact of human judgment calls. We further show that 18 of the top 24 -omic features
identified by staDRIP have been previously implicated in the scientific literature, and in
doing so, hint at novel candidates for future preclinical research.

4.2 Results

Prediction Accuracy

Building on the PCS framework, staDRIP first uses predictive accuracy as a reality check to
filter out models that are poor fits for the observed data before turning to our primary goal
of identifying important biomarkers for drug response prediction. Specifically, we define drug
response as the area under the fitted dose-response curve of growth inhibition (see Section
4.4 for details). For each of the available 24 anticancer drugs, we divide the data into a
50-25-25% training-validation-test split and use the training data to fit (1) an elastic net
tuned with cross-validation (CV), which has been widely used and advocated by previous
studies (Barretina et al., 2012; Jang et al., 2014), (2) Lasso tuned with CV, (3) Lasso
tuned with ESCV, an alternative CV metric that incorporates stability to yield more stable
estimation properties with minimal loss of accuracy (Lim and Yu, 2016), (4) Gaussian kernel
ridge regression, and (5) random forest to predict the drug response given the miRNA,
RNASeq, methylation, and protein expression profiles separately. We also fit several data
integration methods including concatenated versions of the aforementioned methods, the

1The CCLE is one of the most comprehensive public databases for developing detailed genetic and
pharmacologic characterizations of human cancer cell lines. After preprocessing (see Section 4.4), we arrive
at a panel of 370 human cancer cell lines that have both high-throughput molecular profiling of RNASeq
gene expression (5000 genes), microRNA expression (734 miRNAs), DNA methylation (4000 transcription
start sites), and protein expression (214 proteins) as well as pharmacological data for 24 anticancer drugs.

2PCS documentation can be found at https://github.com/Yu-Group/staDRIP.

https://github.com/Yu-Group/staDRIP
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recently proposed X-shaped Variational Autoencoder (X-VAE) (Simidjievski et al., 2019),
and the winner of the DREAM 7 challenge,3 the Bayesian multi-task multiple kernel learning
method (BMTMKL) (Costello et al., 2014).

For each of these fits, we report in Table C.1 the average validation accuracy across all 24
drugs as measured by the R2 value and the WPC-index, a weighted probabilistic concordance
index, which has been used in previous studies and measures how well the predicted rankings
agree with the true responses (Costello et al., 2014). From Table C.1, we see that kernel ridge
regression trained only on the RNASeq data yields the best predictive performance. However,
considering that our primary goal is not purely prediction, the differences between model
prediction accuracies shown in Table C.1 are relatively small from a practical viewpoint. In
our inferential procedure discussed next, we will see that leveraging the stability across these
methods with similar predictive accuracies is key to our staDRIP pipeline for identifying
genes and proteins that are stable predictive features underlying the drug response models.

Nonetheless, for completeness, we report the test accuracy from the best model, the
RNASeq-based kernel ridge regression, to have an R2 (±1SD) of 0.204 (± 0.038) and WPC-
index of 0.620 (± 0.0075) across the 24 drugs. For brevity, we leave more detailed individual
drug-level prediction results to Appendix C.

Identifying predictive -omic features with PCS inference

Beyond predictability, the PCS framework emphasizes stability throughout the data science
life cycle so as to reduce reliance on particular human judgment calls. Accordingly, we
leverage and quantify the stability of important features under numerous data and model
perturbations in staDRIP as follows: for each of the 24 drugs separately,

1. Use predictability as reality check: select a set M of models with high predictive
accuracy across a variety of metrics on the validation data.

2. Compute stability of predictive features across data perturbations: for each
model M ∈ M, refit the model M to B bootstrap replicates of the data, and compute
the stability score of each feature as the proportion of B bootstrap samples where the
feature is selected (details in Section 4.4). Let FM denote the subset of features with
high stability scores (e.g., top 10).

3. Select predictive features that are stable across model perturbations: take
the intersection ∩M∈MFM as the stable predictive -omic features across data and model
perturbations.

In our work, we are primarily interested in identifying proteins and genes that are pre-
dictive of drug responses as many drugs are directly related to known proteins and genes.
Hence, considering the five models trained on the RNAseq and protein data separately, we
take M = {RF,Lasso (ESCV),Elastic Net}. Note that while kernel ridge has the highest

3The DREAM 7 challenge was a public competition where teams were tasked to integrate multiple –omics
measurements and predict drug sensitivity in cancer cell lines.
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accuracy, it is omitted from M since there is no straightforward, computationally efficient
method to select features from kernel ridge to the best of our knowledge. We also omit the
Lasso from M as it generally has the worst predictive accuracy. For each remaining model
in M, we then take FM to be the 10 features with the highest stability scores and list those
genes and proteins in the top 10 most stable features across all three models in Table C.4 in
Appendix C.

In Table 4.1, we provide our main evidence for the utility of staDRIP, listing the single
most stable protein for each drug along with independent publications that support these
findings. Specifically, of the 24 proteins identified as most stable by staDRIP, 18 have been
associated with the drug sensitivity or identified as a known or possible drug target in prior
preclinical studies. See Section 4.4 for details of this literature evidence.

Now in contrast to staDRIP, which finds stable predictive features across models with
similar predictive accuracies, previous state-of-the-art methods (Barretina et al., 2012; Jang
et al., 2014) use only an elastic net to identify predictive -omics features of drug responses.
To compare staDRIP to this elastic net approach, we extract the proteins with the highest
stability score for each drug when taking M = {Elastic Net}. Repeating the same literature
search procedure as we did for the proteins identified by staDRIP, we found only 14 of the 24
proteins identified by the elastic net are known from previous clinical studies (see Table C.5
in Appendix C). Detailed comparisons of the results of our method, staDRIP, and that of
the elastic net can be found in Section 4.4.

Table 4.1: Most stable protein associated with each drug, as identified by staDRIP, along
with literature that supports the association between the protein and drug sensitivity.

Drug Protein Supporting Literature Drug Protein Supporting Literature

17-AAG Bax He et al. (2013) PD-0332991 Bcl-2 Chen and Pan (2017)
AEW541 Akt Attias-Geva et al. (2011) PF2341066 c-Met Camidge et al. (2014)
AZD0530 p38 Yang et al. (2010) PHA-665752 MEK1 –
AZD6244 PI3K-p85 Balmanno et al. (2009) PLX4720 MEK1 Emery et al. (2009)
Erlotinib EGFR McDermott et al. (2007) Paclitaxel Src Le and Bast (2011)
Irinotecan MDMX_MDM4 Ling et al. (2014) Panobinostat VEGFR2 Strickler et al. (2012)
L-685458 YAP – RAF265 PI3K-p85 Mordant et al. (2010)
LBW242 ASNS – Sorafenib Bcl-2 Tutusaus et al. (2018)
Lapatinib HER2 Esteva et al. (2010) TAE684 PTEN –
Nilotinib STAT5 Warsch et al. (2011) TKI258 CD49b –
Nutlin.3 Bcl-2 Drakos et al. (2011) Topotecan – –

PD-0325901 MEK1 Henderson et al. (2010) ZD-6474 c-Kit Yang et al. (2006)

4.3 Discussion

Rooted by the PCS framework, we emphasize the importance of predictability, (computabil-
ity), and stability as minimum requirements for extracting scientific knowledge throughout
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the staDRIP pipeline. We show that, guided by good prediction performance, incorporating
a number of stability checks and extracting the stable parts of top-performing models can
help to avoid the poor generalization exhibited by existing methods and can successfully
identify candidate therapeutic targets for future preclinical research. We also acknowledge
that while many stability considerations are built into staDRIP, there are inevitably human
judgment calls that still impact our analysis. For example, we make a number of judgement
calls in the data preprocessing stage, which we detail in Section 4.4. Additionally, many
other reasonable models such as ridge regression and gradient boosting could be consid-
ered in the staDRIP pipeline. We thus provide transparent and extensive documentation at
https://github.com/Yu-Group/staDRIP to justify these decisions using domain knowledge
when possible.

4.4 Methods

Data

To begin building the personalized drug response models, we leverage data from a panel of
397 human cancer cell lines that have both high-throughput molecular profiling and phar-
macological data for 24 anticancer drugs from the Cancer Cell Line Encyclopedia (CCLE)
project (Barretina et al., 2012). Specifically, -omics data from the CCLE was downloaded
from DepMap Public 18Q3 (https://depmap.org/portal/download/). These cell lines
encompass 23 different tumor sites and have been profiled for gene expression, microRNA
expression, DNA methylation, and protein expression. Note that though the CCLE contains
data from 947 cell lines, only 397 of these cell lines had data from all four molecular profiles
of interest and pharmacological profiling.

In addition to these molecular profiles, we obtained pharmacological profiling of 24
chemotherapy and target therapy drugs from the CCLE (Barretina et al., 2012). For each cell
line-drug combination, the CCLE incorporated a systematic framework to measure molecular
correlates of pharmacological sensitivity in vitro across eight dosages. We refer to Barretina
et al. (2012) for details on this procedure, but given the fitted dose-response curves of growth
inhibition from these experiments, we took the activity area, or AUC, to be the primary re-
sponse of interest in this work. The AUC is defined as the area between the response curve
and 0 (i.e., the no response reference level) and is a well-accepted measure of drug sensitivity
(Jang et al., 2014; Barretina et al., 2012). In this case, the AUC is measured on an 8-point
scale with 0 corresponding to an inactive compound and 8 corresponding to a compound
with 100% inhibition at all 8 dosages.

In Figure 4.1, we provide a graphical summary of the raw molecular and pharmacological
profiling data sets.

https://github.com/Yu-Group/staDRIP
https://depmap.org/portal/download/
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Figure 4.1: A graphical overview of the raw CCLE molecular profiling data sets, which are
used to predict the drug responses of 24 therapeutic drugs, as measured via the drug response
AUC.

Data preprocessing

Given the raw data described above, there are a couple areas of initial concern that warrant
preprocessing. First, the cancer cell lines encompass 23 different tumor sites, and cell lines
from the same tumor site tend to have more similar expression profiles than cell lines from
different sites. To illustrate, we observe clusters of cell lines by tumor site when performing
both hierarchical clustering and PCA on the RNASeq profile in Figure C.1. Due to these
inherent differences between tumors, we chose to omit the cell lines from tumor sites with
< 8 cell lines. This reduces our sample size to 370 cell lines from 16 tumor sites. Here, we
chose the threshold 8 to ensure we have at least 2 cell lines from each tumor site in each of
the training, validation, and test splits (using a 50-25-25% partitioning scheme).

In addition to reducing the number of samples in our analysis, we reduced the number
of features to more manageable sizes before continuing with our analyses. Originally, the
molecular profiling data consisted of 734 miRNAs, 50114 genes, 20192 TSS, and 214 proteins.
With only 370 cell lines, we aggressively preprocessed the number of genes and TSS by taking
the top 10% of genes (or 5000 genes) and top 20% of TSS (or 4000 TSS) with the highest
variance. We also transformed the miRNA and RNASeq expression values using the log-
transformation log(x+1) in order to mitigate potential problems with highly skewed positive
count values.

We recognize however that there were many other reasonable ways to preprocess this
data. For instance, we could have taken the top 20% of genes and top 40% of TSS with
the highest variance. Another common alternative would have been to filter features using



CHAPTER 4. STADRIP 71

marginal correlations with the response or using a multivariate prediction model (e.g., the
Lasso). To assess robustness to these choices, we reran our prediction analysis using these
alternative preprocessing procedures and saw that the prediction accuracies are higher using
the variance-filtering preprocessing pipelines, as compared to the correlation-filtering and
Lasso-filtering pipelines (see PCS documentation at https://github.com/Yu-Group/staD
RIP). Further, the smaller variance-filtered model gives similar prediction accuracies as
the larger variance-filtered model. Thus, for simplicity moving forward, we use and focus
primarily on the initially proposed variance-filtering procedure as it is less computationally
expensive than the model with twice as many features and maintains similarly high accuracy.

To summarize, after this preprocessing, we have 370 cell lines with data across the
four molecular profiles of interest with 734 miRNAs (log-transformed), 5000 genes (log-
transformed), 4000 TSS, and 214 proteins and pharmacological data, measured via the AUC
drug response scores, for 24 anticancer compounds. We provide a visual summary of the
preprocessed data and plot the overall distribution of features in the four molecular profiles
as well as the distribution of the 24 drug responses in Figure C.2.

Prediction Models

Like in data preprocessing, human judgment calls play a significant role in the modeling
stage, including the decision of which methods to fit. Ideally, the chosen methods should
have some justified connection to the biological problem at hand, but in our case, it is
unclear which models or assumptions best fit the biological drug response mechanism a
priori. Nevertheless, we have reasons to believe that the Lasso, elastic net, RF, and kernel
ridge regression are particularly appealing fits for this problem.

First, the Lasso assumes a sparse linear model, meaning that the effect of each feature
is additive and only a sparse number of the features contribute to the drug sensitivity.
The simplicity and interpretability of the Lasso makes it a popular tool for bioinformatics
prediction tasks, so we choose to use the Lasso as a baseline model for our analysis. The
elastic net is perhaps even more popular than the Lasso in drug response prediction studies
(Jang et al., 2014; Barretina et al., 2012). Similar to the Lasso, the elastic net assumes
linearity and some sparsity but is also able to better handle correlated features. Beyond
linearity, kernel ridge regression with a Gaussian kernel allows for more flexible, but less
interpretable, functional relationships that are not necessarily linear. Kernel methods have
been applied in previous case studies with great success (Costello et al., 2014) and are
hence promising candidates for our study as well. Lastly, random forest can be viewed as
a collection of localized, non-linear thresholded decisions rules (like on-off switches), which
are well-suited for many biological processes that match the combinatorial thresholding (or
switch-like) behavior of decision trees (Nelson et al., 2008). Random forests are also invariant
to the scale of the data. This is especially advantageous for integrating different data sets
with varying scales and domain types (e.g., count-valued RNASeq expression, proportion-
valued methylation data, continuous-valued protein expression).

https://github.com/Yu-Group/staDRIP
https://github.com/Yu-Group/staDRIP
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In addition to fitting the aforementioned methods on each of the molecular profiles sep-
arately, we also tried fitting various data integration methods since incorporating multiple
sources of -omics data can sometimes result in more accurate predictions than models built
using only a single -omics sources (Costello et al., 2014; Güvenç Paltun et al., 2019; Simid-
jievski et al., 2019). The most natural integration idea is to concatenate the -omics data sets
together and to fit a single model (e.g., the elastic net) on the concatenated data. When
fitting models like the Lasso, elastic net, and kernel ridge regression which are not scale-
invariant, the molecular profiles are scaled to have columns with mean 0 and variance 1 to
allow for fair comparisons between molecular types. We refer to this method as the concate-
nated data approach and use this as a baseline for evaluating data integration methods. More
sophisticated methodology has also been proposed to integrate -omics data, including recent
work using the X-VAE, a variational autoencoder for cancer data integration (Simidjievski
et al., 2019), and the BMTMKL, a Bayesian multitask multiple kernel learning method which
won the NCI-DREAM 7 challenge (Costello et al., 2014).

Note that though an alternative approach would have been to develop new methodology,
we instead leverage these existing machine learning methods that have been rigorously vetted
and have been shown to work well in many related problems. In fact, by examining the stable
properties across these existing methods, we obtain high-quality scientific findings, as made
evident by the abundance of supporting literature (see Table 4.1).

Model hyperparameters

To select hyperparameters in each of these methods, we use 5-fold cross validation, where
the folds are stratified by tumor type. We also investigate using the estimation stability
cross validation (ESCV) metric for selecting the Lasso’s hyperparameter. This ESCV metric
combines a stability measure within the cross-validation framework to yield more stable
estimation properties with minimal loss of accuracy when using the Lasso (Lim and Yu,
2016).

For the X-VAE model, we adapt an X-shaped network architecture to train a variation
autoencoder that learns joint representation of the RNAseq and protein data. In particular,
we take the 2,000 RNAseq features with highest variance, since the number of cell lines is
too small compared with the original number of RNAseq features. In our experiment, both
the encoder and the encoder have one hidden layer. There are 128 neurons corresponding
to the RNAseq protein in the hidden layer of the encoder and the decoder, and 32 neurons
corresponding to the protein features. The latent representation has a dimension of 32. The
dimension of the hidden layers and the latent representation are based on the recommenda-
tion of (Simidjievski et al., 2019), and are not tuned. We used ELU activation and employed
batch normalization and a dropout component with rate 0.2, as recommended by (Simid-
jievski et al., 2019). The models were trained for 500 epochs using an Adam optimizer with
a learning rate of 0.001.
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Evaluation metrics

We primarily consider two evaluation metrics for prediction accuracy as each captures a
different aspect of prediction: (1) R2 value and (2) probabilistic concordance-index (PC-
index). R2 is defined as 1 − MSE(Y,Ŷ )

Var(Y )
, where Var(Y ) denotes the variance of the observed

responses, and MSE(Y, Ŷ ) denotes the mean sum of squared errors between the predicted
responses Ŷ and observed responses Y . R2 is a rescaling of the MSE that accounts for the
amount of variation in the observed response and thus allows us to easily compare accuracies
between drug response models with different amounts of variation in the observed response,
but as with the MSE, R2 can be heavily influenced by outliers. PC-index is a measure of how
well the predicted rankings agree with the true responses. This metric takes into account the
variance of the drug responses but it also assumes that the drug responses follow a Gaussian
distribution, which may not be true in some cases. We consider this metric because it is
the primary method of evaluation in the NCI-DREAM 7 competition (Costello et al., 2014).
Given the large scale and breadth of this challenge, we compare our results to this work. For
further details on the PC-index, we refer to Costello et al. (2014).

In each of the evaluation metrics above, we receive a separate score for each of the 24
drug response models. It may also be beneficial to aggregate the 24 scores into a single
number for concrete evaluation. In particular, Costello et al. (2014) used a weighted average
of the PC-indices to compare various models and referred to this evaluation metric as the
weighted PC-index (WPC-index). To compare our results with the benchmark in Costello
et al. (2014), we also consider the WPC-index in evaluating our models.

PCS Inference

Detailed description on the computation of stability scores

We next describe in detail how to compute the stability scores in the PCS-driven disease
signature identification pipeline. Note that the following procedure is repeated for each of
the 24 drugs.

We randomly drawB = 100 bootstrap samples D(b), b = 1, . . . , 100 from the training data.
Then, for each bootstrap sample, we fit (1) an elastic net with tuning parameter selected
by CV (2) a Lasso with tuning parameter selected by ESCV and (3) a random forest.
Each model is fitted using the protein and RNAseq data separately since the integration
approaches did not improve the prediction accuracy over simply using the RNASeq data
only (see Table C.1). Next, for each feature Xj from either the protein or RNAseq data
set, let ω(b)

j be defined in the following way: for the Lasso and elastic net, ω(b)
j = 1 if the

coefficient of Xj is non-zero, and ω
(b)
j = 0 otherwise; for the random forest, ω(b)

j is the MDI
feature importance of Xj. We then define the stability score sta(Xj) of each feature Xj as
sta(Xj) =

1
B

∑B
b=1 ω

(b)
j and rank the proteins and genes separately by the stability scores of

the features.
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Discussion on the disease signatures identified by the PCS pipeline

In Table C.4, we list the proteins and genes which we found to be stable and among the top
10 features for all three methods. Among these stable features, we list them in decreasing
order by the sum of stability score rankings. Though we identify fewer stable genes, this
is most likely due to two reasons. First, there are 5000 genes in the model, compared to
only 214 proteins, so thresholding at the top 10 genes is extremely conservative. Secondly,
the average correlation between genes is higher than that between proteins, adding to the
instability.

With regards to the identified protein signatures, we can roughly classify them into three
categories. The first category contains those that are known targets of the corresponding
target therapy drugs. For example, Erlotinib is a medication used to treat non-small cell
lung cancer (NSCLC) and pancreatic cancer. It is an EGFR inhibitor and is specifically
used for NSCLC patients with tumors positive for EGFR exon 19 deletions (del19) or exon
21 (L858R) substitution mutations. Correspondingly, EGFR is ranked in the top ten stable
proteins in all three models. Other such examples include the drug Lapatinib and its target
HER2, PD-0325901 and its target MEK, PHA-665752 and its target c-Met, and ZD-6474
and its target c-Kit.

The second category contains those that are not known to be direct targets of the drug but
have been shown in preclinical studies to be potential therapeutic targets or are associated
with drug resistance. For example, Ling et al. (2014) identified a potential application of the
drug Irinotecan as an MdmX inhibitor for targeted therapies, and in our pipeline, MdmX
had the highest stability score for all three models. As another instance, we identified MEK1
as a top protein signature, ranked by stability score, for the drug PLX4720 while Emery et al.
(2009) showed that MEK1 mutations confer resistance to PLX4720.

The third category are proteins that do not belong to the two categories above. Still, these
biomarkers are predictive of the drug response under various model and data perturbations.
Given the evidence in the scientific literature that supports many of our identified features,
the proteins in this category may be potential candidates for future preclinical investigation.

Among the list of overlapping stable features in Table C.4, we list in Table 4.1 the one
with the highest stability score ranking along with recent biomedical publications, supporting
the association between the protein and the drug. The procedure of this literature search is
as follows: we first searched for papers where the protein and the drug co-occurs. Then for
each paper, we read the introduction section to understand their main conclusions. Each of
the 18 papers listed in Table 4.1 includes sentences such as “our findings suggest that the
over-expression of this protein will increase drug sensitivity/resistance” or “this protein is
a potential (or known) therapeutic target for the drug”. Out of the 24 predictive protein
signatures that we identify as most stable, 18 of them have existing preclinical studies that
confirm the effectiveness of our stability analysis.

In Table C.5, we list the protein with the highest stability score when fitting an elastic
net to 100 bootstrap samples of the training data for each of the 24 drugs. This approach of
finding predictive -omics features was previously used in (Barretina et al., 2012; Jang et al.,



CHAPTER 4. STADRIP 75

2014). Compared with staDRIP, which searches for stable features across different models,
this approach only uses a single model (i.e, an elastic net) for feature selection. We repeat
the same literature search procedure as we did for our findings and found that among the 24
most stable protein features identified by elastic net, only 14 are known from previous clinical
studies. For 10 drugs, the most stable protein from elastic net and that from staDRIP is the
same, and among these 10 proteins, 9 are implicated in the existing literature. For the other
14 drugs, 5 proteins identified by elastic net are implicated in the existing literature, while
9 protein features identified by staDRIP are implicated in the existing literature.
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Chapter 5

Contribution of the microbiome to a
metabolomic signature predictive of risk
for pancreatic cancer

5.1 Introduction

Pancreatic cancer is highly lethal and is projected to become the second-leading cause of
death in the United States by 2040 (Rahib et al., 2021). Surgical resection of localized
disease represents the greatest chance for curative therapy. Unfortunately, only a minority
(15 − 20%) of patients present with surgically resectable disease (Kleeff et al., 2016; Ryan
et al., 2014).

The low incidence of pancreatic cancer in the average-risk population (approximately
8−12 per 100, 000) (Bray et al., 2018; Rawla et al., 2019) makes it challenging to implement
effective screening programs for pancreatic cancer. The United States Preventative Services
Task Force (USPSTF) currently recommends against screening for pancreatic cancer in the
general population using any method (Force, 2019). Yet, the USPSTF recognizes that screen-
ing in persons who are at an increased risk may be warranted (Force, 2019). There remains
an opportunity to develop blood-based signatures that can identify individuals at increased
risk who would benefit from screening and potentially from preventive interventions.

The microbiota is a complex ecosystem integral to human health. Microbial diversity is
site-specific and varies depending on the organ location (Consortium, 2012). Increasing evi-
dence suggests that alterations in the microbiome are associated with risk for certain cancers,
including pancreatic cancer (Huybrechts et al., 2020). Studies suggest that loss of microbial
diversity and community stability coupled with increases in pathogenic microbes increase
cancer susceptibility (Bhatt et al., 2017). In the context of pancreatic cancer, the compo-
sition of the microbiome has been linked to alterations in the local microenvironment and
to promotion of oncogenesis through immune suppression (Barbour et al., 1997; Pushalkar
et al., 2018; Riquelme et al., 2019) with implications for response to therapy and survival
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(Zhang et al., 2020).
Microbiome colonization has been associated with metabolic changes that can perpetuate

inflammation and increase an individual’s risk of developing cancer (Brennan and Garrett,
2016; Consortium, 2012; Risch, 2012; Wei et al., 2019). Microbiome-related metabolites
include short-chain fatty acids, butyrate and acetate, secondary bile acids, indole-derivatives,
cadaverine, trimethylamine N-oxide (TMAO), and lipopolysaccharides (Kiss et al., 2020). A
study of serum methionine-related metabolites identified elevated serum levels of TMAO, a
gut microbiota-derived metabolite (Yang et al., 2019), as associated with pancreatic cancer
(Huang et al., 2020; Mayers et al., 2014). Other metabolites consisting of indoleacrylic acid
and indole-3-acetate have been shown to differentiate newly-diagnosed pancreatic cancer
cases from controls (Xie et al., 2015).

We designed our study to quantify the extent to which microbiome-related and other
metabolites in circulation are elevated among subjects that were subsequently diagnosed with
pancreatic cancer using sera collected from participants in the Prostate, Lung, Colorectal,
and Ovarian (PLCO) Cancer Screening Trial. Using a training and testing approach, we
established a microbial-related metabolite panel for 5-year risk assessment of pancreatic
cancer. The performance of the microbiome metabolite panel for risk prediction of pancreatic
cancer was further evaluated in an independent cohort of newly-diagnosed pancreatic cancer
patients compared to non-cancer controls. The complementary value of other non-microbial-
related metabolites as well as CA19-9 was also determined.

5.2 Results

Quantification of microbial-related metabolites

Using untargeted metabolomics, we screened for microbial-derived metabolites in sera from
172 cases diagnosed within 5 years of blood draw and 863 non-case participants from the
PLCO screening trial (Table 5.4). A total of 14 microbial-related metabolites were detected
and quantified across all specimens, including 9 indole-derivatives (Jaglin et al., 2018; Lee
and Lee, 2010), two secondary bile acids (Hylemon et al., 2018; Ridlon et al., 2014), 5-
hydroxy-tryptophan (Stoll et al., 2016), acetylcadaverine (Pugin et al., 2017), and TMAO
(Brunt et al., 2021; Xu et al., 2015). Of the 14 metabolites, indoleacrylic acid, TMAO,
and indole-derivative_2 had adjusted odds ratios (ORs) per unit standard deviation (SD)
increase ≥ 1.2 for risk of pancreatic cancer (Supplementary Figure D.2; Supplementary Fig-
ure D.3). Elevated levels of TMAO and indoleacrylic acid have been associated with phyla
of Bacillota, Bacteroidota, Actinomycetota, and Pseudomonadota (species of Clostridium
sporogenes (Cs), Eubacterium rectale (Er), Bacteroides thetaiotaomicron (Bt), Parabac-
teroides distasonis (Pd), Collinsella aerofaciens (Ca), and Edwardsiella tarda (Et)) (Han
et al., 2021), all of which have relevance to pancreatic cancer (Figure 5.1A-B) (Half et al.,
2019; Kamiyama et al., 2019; Matsukawa et al., 2021; Zhou et al., 2021).
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Figure 5.1: Relationship between TMAO and indoleacrylic acid and microbial species. (A)
Association between TMAO and indoleacrlyic acid with different microbial species. Data was
derived from the Metabolomics Data Explorer database (see Methods) (Han et al., 2021).
(B) Association between referenced microbial species and pancreatic cancer.
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Model Hyperparameters AUC (95% CI) Adj OR‡

Logistic regression – 0.57 (0.46-0.67) 1.30 (0.85-2.02)
Logistic regression with ridge
(L2) regularization

Penalty weight = 0.22 0.58 (0.48-0.68) 1.32 (0.87-2.05)

Logistic regression with LASSO
(L1) regularization

Penalty weight = 0.023, number
of selected features = 3

0.64 (0.54-0.73) 1.42 (0.94-2.13)

Iterative Random Forest Number of iterations = 4 0.52 (0.41-0.62) 1.28 (0.80-1.77)
Deep neural network model Number of cross-validation folds

= 4, hidden layers = 2 with 64
nodes in each layer

0.55 (0.45-0.65) 1.17 (0.75-1.80)

GBM Number of trees = 36, max
depth= 6

0.53 (0.41-0.65) 1.12 (0.76-1.58)

Auto ML Selected model = randomized
trees

0.57 (0.45-0.68) 1.04 (0.64-1.63)

Table 5.1: Performance of microbial-related metabolites panels in different learning models
in the PLCO Validation Set. ‡Age, sex, BMI, and smoking status were included as covariates
in adjusted odds ratios (ORs).

Model building and testing of microbial-related metabolite panel

To establish a combination rule, all 14 microbial-related metabolites were considered. Seven
different models were trained and optimized in the Development Set (Figure 5.4). LASSO
regression with three selected features achieved the highest prediction performance amongst
all models in the Validation Set, yielding an AUC of 0.64 (95% CI: 0.54 − 0.73) and an
adjusted OR of 1.42 (95% CI 0.94 − 2.13) per unit SD increase for 5-year probability of
pancreatic cancer (Table 5.1; Supplementary Table D.2). To verify the reproducibility of
our finding, we adhered to the predictability, computability and stability (PCS) framework
(Yu and Kumbier, 2020) and stress-tested the 3-marker microbial panel to assure its reli-
ability. Stable performance in terms of AUC and adjusted odds ratio across various data
perturbations and stability checks demonstrated robustness of the 3-marker microbial panel
(Supplementary Table D.3).

Performance of the 3-marker microbial panel in the Test Set

In the Test Set, the 3-marker microbial panel yielded an AUC of 0.64 (95% CI: 0.53-0.76)
and an adjusted OR of 1.72 (95% CI: 1.25-2.37) per unit SD increase for 5-year probabil-
ity of pancreatic cancer (Table 5.2). When considering cases diagnosed within 2 years of
blood draw, the 3-marker microbial panel yielded an AUC of 0.61 (95% CI: 0.48-0.74) and
an adjusted OR of 1.43 (95% CI: 0.98 – 2.03) per unit SD increase for risk prediction of
pancreatic cancer. (Table 5.2). Prediction performance of the 3-marker microbial panel for
risk assessment of pancreatic cancer was similar among diabetic and non-diabetic individuals
(Supplementary Table D.5).
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Set-aside Test Set

3-marker microbial panel 3-marker microbial panel
+ 5-marker non-microbial panel

Time
to Dx

Cases
N

Non-cases
N

AUC
(95% CI)

Adj. OR†

(95% CI) P-value AUC
(95% CI)

Adj. OR†

(95% CI) P-value

[0-5) 37 225 0.64
(0.53 - 0.76)

1.72
(1.25 - 2.37) <0.001 0.79

(0.71-0.88)
3.13

(2.08-4.98) <0.001

[0-2) 24 225 0.61
(0.48 - 0.74)

1.43
(0.98 - 2.03) 0.04 0.82

(0.72-0.93)
3.8

(2.33-6.74) <0.001

[2-5) 13 225 0.70
(0.50 - 0.90)

2.11
(1.33 - 3.43) <0.001 0.74

(0.60-0.86)
1.90

(1.08-3.37) 0.02

Entire Set

3-marker microbial panel 3-marker microbial panel
+ 5-marker non-microbial panel

Time
to Dx

Cases
N

Non-cases
N

AUC
(95% CI)

Adj. OR†

(95% CI) P-value AUC
(95% CI)

Adj. OR†

(95% CI) P-value

[0-5) 172 861 0.62
(0.57 - 0.67)

1.50
(1.28 - 1.76) <0.001 0.76

(0.72-0.80)
2.75

(2.25-3.38) <0.001

[0-2) 92 861 0.60
(0.54 - 0.67)

1.43
(1.18 - 1.74) <0.001 0.81

(0.76-0.86)
3.66

(2.81-4.84) <0.001

[2-5) 80 861 0.64
(0.57 - 0.70)

1.53
(1.28 - 1.87) <0.001 0.69

(0.63-0.75)
1.92

(1.51-2.44) 0.02

Table 5.2: Performance estimates of the 3-marker microbial panel and a combined 3-marker
microbial panel + 5-marker non-microbial panel for 5-year risk prediction of pancreatic cancer
in the set-aside Test Set and the entire PLCO specimen set. †Age, sex, bmi and smoking
status were included as co-variables in adjusted odd ratios.

Prediction performance of the 3-marker microbial panel in an
independent newly-diagnosed PDAC cohort

We further assessed the prediction performance of the 3-marker microbial panel in an inde-
pendent set of samples from 99 newly diagnosed, resectable PDAC cases, 50 patients with
CP, and 100 healthy controls. Compared to healthy controls, the 3-marker microbial panel
had an OR of 1.55 (95% CI: 1.13-2.23) per unit SD increase for probability of pancreatic
cancer and an OR of 2.07 (95% CI: 1.45-3.18) for pancreatic disease (cancer or chronic
pancreatitis) (Figure 5.2).
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Odds Ratio (95% CI)
PDAC/CP vs 

healthy controls
Individuals with CP vs 

healthy controls
Resectable PDAC cases vs 

healthy controls
2.07 (1.45-3.18)2.83 (1.83-4.82)1.55 (1.13-2.23)

Figure 5.2: Predictive performance of the 3-marker microbial panel in the independent newly-
diagnosed PDAC cohort. Abbreviation: CP- chronic pancreatitis. A subset samples were
excluded due to insufficient sample volume or not having passed quality control criteria.

Contributions of non-microbial metabolites for improved risk
prediction of pancreatic cancer

We assessed the contribution of non-microbial metabolites for pancreatic cancer risk assess-
ment. A total of 1,009 non-microbial metabolites were quantified in the PLCO specimen set.
Five non-microbial metabolites (cholesterol glucuronide, 2-hydroxyglutarate, galactosamine,
glucose, and erythritol) exhibited statistically significant adjusted OR in the Development
Set (Supplementary Table D.4). We subsequently applied the PCS framework to develop
and stress-test a model based on the five non-microbial metabolites. A logistic regression
model was selected based on exhibiting the highest predictive performance in the Validation
Set, with a resultant AUC of 0.72 (95% CI: 0.65-0.97) and an adjusted OR of 2.10 (95% CI:
1.04-2.80) for 5-year risk prediction of pancreatic cancer (Supplementary Table D.6-D.7). In
the set-aside Test Set, the 5-marker non-microbial panel yielded an AUC of 0.74 (95% CI:
0.65-0.83) and an adj OR of 2.72 (95% CI: 1.83-4.24) for 5-year risk prediction of pancreatic
cancer.

To assess the contributions of the 3-marker microbial panel and the 5-marker non-
microbial panel, we fitted a logistic regression with the 3-marker microbial panel scores and
the 5-marker non-microbial panel scores as two separate predictors. The combined metabo-
lite panel yielded an AUC of 0.79 (95% CI: 0.71-0.88) and an adj OR of 3.13 (95% CI:
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2.08-4.98) per unit SD increase for 5-year probability of pancreatic cancer in the set-aside
Test Set (Table 5.2, Supplementary Table D.8-D.9). When considering cases diagnosed
within 0-2 years and 2-5 years of blood draw, the combined metabolite panel had respective
AUCs of 0.82 (95% CI: 0.72-0.93) and 0.74 (95% CI: 0.60-0.86) (Table 5.2, Supplementary
Table D.8-D.9).

Contribution of the combined metabolite panel with CA19-9 for
pancreatic cancer risk assessment

We previously demonstrated that levels of CA19-9 were increased in PDAC cases in the
PLCO cohort with an exponential rise starting two years prior to diagnosis (Fahrmann et al.,
2021). We therefore assessed whether the combined metabolite panel (3-marker microbial
panel plus the 5-marker non-microbial panel) would be complementary with CA19-9 for risk
prediction of pancreatic cancer. In the set-aside Test Set, the combined metabolite panel
+ CA19-9 had an AUC of 0.84 (95% CI: 0.76-0.91) and an adj OR of 9.67 (95% CI: 4.56-
23.30) per unit SD increase for 5-year probability of pancreatic cancer (Table 5.3). For cases
diagnosed within 2 years after blood draw, the combined metabolite panel + CA19-9 yielded
an AUC of 0.86 (95% CI: 0.77-0.95), which was markedly improved compared to CA19-9
alone (AUC: 0.70 (0.57-0.82), comparison of AUCs p-value: 0.006) (Table 5.3, Supplementary
Table D.10).

Performance of the combined metabolite panel plus CA19-9 for
5-year risk assessment of pancreatic cancer in the entire PLCO
specimen set

In the entire PLCO specimen set, the combined metabolite panels + CA19-9 had an AUC
of 0.80 (95% CI: 0.75-0.83) and an adjusted OR of 8.44 (95% CI: 5.80-12.20) for 5-year
probability of pancreatic cancer and an AUC of 0.87 (95% CI: 0.83-0.91) with an adjusted
OR of 20.02 (95% CI: 11.51-36.97) per unit SD increase for 2-year probability of pancreatic
cancer (Table 5.3; Supplementary Table D.10).

5-year absolute risk estimates adjusted for prevalence of disease based on the entire
intervention arm of the PLCO population (Anderson et al., 2012; Prorok et al., 2000) for
individuals with combined metabolite panel + CA19-9 model scores in the 80th, 90th, and
95th percentile was 1.07%, 2.05%, and 4.52%, respectively (Figure 5.3).

5.3 Discussion

Meaningful reductions in pancreatic cancer-related mortality may be realized through ef-
fective screening programs for earlier detection of disease. The low incidence of pancreatic
cancer necessitates that a screening test for the general population yield adequate sensitivity
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5-year absolute risk (%)
Combined Metabolite 

Panel + CA19-9
Combined 

Metabolite PanelCA19-9Percentiles

0.2270.2620.45020.0%
0.3500.4250.51740.0%
0.5280.6520.60960.0%
1.0661.2450.87080.0%
2.0491.8901.38990.0%
4.5212.8802.15995.0%
13.3304.74010.06097.5%

Figure 5.3: Absolute 5-year risk estimates for individuals with CA19-9 + 3-marker microbial
panel+ 5-marker non-microbial panel scores. Vertical lines represent 20, 40, 60, and 80
percentiles values. Table beneath provides absolute 5-year risk estimates for individuals
with CA19-9, combined metabolite panel (3-marker microbial metabolite panel + 5-marker
non-microbial metabolite panel) and the combined metabolite panel + CA19-9 scores.
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at exceptionally high specificity. No such tests yet exist that meet performance criteria neces-
sary for implementation for pancreatic cancer screening in the general population. However,
the USPSTF has recognized that high-risk individuals, such as those with inherited risk or
individuals with a history of chronic pancreatitis, may benefit from screening (Force, 2019).
Enriching for individuals who are at high-risk of pancreatic cancer increases the positive
predictive value of pertinent tests while reducing the number of false-positive tests. Here, we
performed a metabolite screen for reported microbial-related metabolites in the blood and
evaluated their association with pancreatic cancer risk by following the PCS framework for
reliable and reproducible data analysis. The predictive performance of this microbial-related
metabolites panel was assessed and corroborated on an independent newly-diagnosed cohort
of pancreatic cancer. A broader metabolite screen resulted in a blood-based metabolite panel
consisting of microbial and non-microbial metabolites that yielded further improvements for
5-year risk assessment of pancreatic cancer. We further showed that the combined (microbial
+ non-microbial) metabolite panel is additive to CA19-9 for improved pancreatic cancer risk
prediction. Such a test may enrich for individuals at increased risk of pancreatic cancer that
would benefit from inclusion in screening programs.

The microbial-related metabolite panel includes indoleacyrlic acid, an indole-derivative,
and TMAO. TMAO and indoleacrylic acid producing bacteria include those in the phyla
of Bacillota, Bacteroidota, Actinomycetota, and Pseudomonadota. Bacillota species such
as Clostridium sporogenes, Eubacterium rectale and Bacteriodota species including Bac-
teroides thetaiotaomicron and Parabacteroides distasonis have been shown to be increased
in fecal samples of PDAC patients compared to controls (Half et al., 2019; Matsukawa et al.,
2021; Zhou et al., 2021). Relative abundances of fecal Collinsella aeofaciens, a species of
Actinomycetota, is associated with poor prognosis in PDAC (Matsukawa et al., 2021).

Indole and associated derivatives are derived through the catabolism of tryptophan via
the microbiome that may serve as ligands for the aryl hydrocarbon receptor (AHR) to mod-
ulate the immune and inflammatory response (Hezaveh et al., 2022; Hubbard et al., 2015;
Wlodarska et al., 2017). Notably, indole and indole-derivatives are thought to be largely
derived from commensal microbes with reported anti-inflammatory properties (Roager and
Licht, 2018).

TMAO is a gut microbiota-derived metabolite of dietary choline, betaine, and L-carnitine
that has been reported to be associated with increased risk of several cancer types including
pancreatic cancer (Huang et al., 2017, 2020; Jaglin et al., 2018; Jiao et al., 2019). Prior
studies have shown that TMAO is elevated in pancreatic cystic fluid of individuals present-
ing with high-risk IPMN or pancreatic cancer compared to those harboring non-cancerous
cysts (Morgell et al., 2021). Moreover, levels of TMAO in cystic fluid were positively corre-
lated with bacterial clusters corresponding to Enterobacteriacea, Granulicatella, Klebsiella,
Stenotrophomonas, Streptococcus, Haemophilus, and Fusobacterium (Morgell et al., 2021),
which have previously been reported to be associated with pancreatic cancer (Rogers et al.,
2017; Wei et al., 2019). Mechanistically, studies have shown that TMAO induces activation of
inflammatory pathways, including the NF-Kappa B pathway and the thioredoxin-interactive
protein (TXNIP)-NLRP3 inflammasome, resulting in increased oxidative stress, DNA dam-
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age, and release of inflammatory cytokines that may potentiate cancer development (Arlt
et al., 2012; Missiroli et al., 2021; Seldin et al., 2016; Sun et al., 2016). We observed TMAO to
also be particularly elevated in patients presenting with chronic pancreatitis, further suggest-
ing a relationship between TMAO, inflammation of pancreas tissues and pancreatic cancer
risk (Farrow and Evers, 2002; Whitcomb, 2004).

Non-microbial metabolites in the metabolite panel included 2-hydroxyglutarate, choles-
terol glucuronide, galactosamine, glucose, and erythritol. Production of the oncometabolite
2-hydroxyglutarate that is largely associated with mutations in isocitrate dehydrogenase 1
(IDH1) and IDH2, neomorphic enzymes that convert α-ketoglutarate to 2-hydroxyglutarate
(Dang et al., 2009). 2-hydroxyglutarate can also be produced through alternative metabolic
pathways with pro-tumoral effects. For instance, recent data also suggests that, under hy-
poxic conditions, lactate dehydrogenase produces 2-hydroxyglutarate to maintain stemness
and facilitate immune evasion in pancreatic cancer (Gupta et al., 2021). Cholesterol glu-
curonide is a natural metabolite of cholesterol generated in the liver by UDP glucuonyltrans-
ferase. Prior studies have shown that elevated levels of cholesterol glucuronide is prognostic
for poor survival in patients with pancreatic cancer (Chen et al., 2021).

The onset of diabetes is often a manifestation that precedes diagnosis of pancreatic cancer
and new-onset glucose intolerance is a frequent and characteristic feature of pancreatic cancer
(Pannala et al., 2009; Sharma et al., 2018). To this end, in a prior population-based case-
control study of 736 pancreatic cancer cases and 1,875 age- and sex-matched controls, 40.2%
of pancreatic cancer cases had diabetes (Pannala et al., 2009). In another study, 50% of
patients with stage I and II pancreatic cancer had diabetes (Pannala et al., 2008, 2009;
Sharma et al., 2018). Thus, elevated levels of glucose and galactosamine, a hexosamine
derived from galactose (Theocharis et al., 2000), likely reflect an onset of diabetes that
temporally occurs with the development of pancreatic cancer.

There are some considerations to our study. 16S sequencing data to assess stool or
tissue-level microbial diversity and composition was not available for analyzed samples, thus
preventing direct correlative studies between specific microbial species and the established
microbial-related metabolite panel. Time-dependent performance estimates were derived
based on availability of serum samples at various time points preceding cancer diagnosis from
individual patients. Availability of serial samples would allow for development of longitudinal
algorithms for assessment of pancreatic cancer risk. Whether the metabolite panel to inform
on risk of other cancer types warrants consideration. Specificity of the metabolite panel for
risk of pancreatic cancer can be improved through testing of recognized high-risk populations,
including those with inherited risk (Canto et al., 2018; Petersen, 2016), mucinous cysts of the
pancreas (Ohno et al., 2018), or individuals older than 50 with new onset diabetes (Pannala
et al., 2009; Sharma et al., 2018).

In conclusion, the metabolite panel has potential to identify individuals at high risk of
pancreatic cancer who may benefit from screening for earlier detection. Integration of the
panel with other risk models of pancreatic cancer may yield further improvements for risk
assessment.
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5.4 Methods

PLCO Cohort

The PLCO Cancer Screening Trial is a randomized multicenter trial in the United States
that aimed to evaluate the impact of early detection procedures for prostate, lung, colorectal
and ovarian cancer on disease-specific mortality. Detailed information regarding the PLCO
cohort is provided elsewhere (Fahrmann et al., 2021; Prorok et al., 2000). The study in-
cluded 173 pancreatic cancer cases that were diagnosed within 5 years of blood draw and
863 matched non-cases from 10 participating PLCO study centers (Table 5.4). Pancreatic
cancer cases were identified by self-report in annual mail-in surveys, state cancer registries,
death certificates, physician referrals and reports from next of kin for deceased individuals.
All medical and pathologic records related to pancreatic cancer diagnosis and supporting doc-
umentation were obtained and confirmed by PLCO staff. Pancreatic cancers were classified
as localized, regional, distant, or unstaged using the National Cancer Institute Surveillance,
Epidemiology, and End Results (SEER) historic staging system. Non-cases, alive at the time
when the index case was diagnosed, were matched to cases at a ratio of 5:1 (non-case:case)
based on the distribution of age, race, sex, and calendar date of blood draw in 2-month
blocks within the case cohort.

Newly diagnosed pancreatic cancer cohort

An independent test set consisted of plasma samples from 99 patients with resected pancre-
atic ductal adenocarcinoma (PDAC), 50 patients with chronic pancreatitis, and 100 healthy
controls as previously described (Supplemental Table D.1) (Fahrmann et al., 2021). Patients
with pancreatic cancer provided informed written consent to blood collection pretreatment
and to clinical data abstraction. Patients with PDAC were recruited from cancer clinics
at Dana-Farber Cancer Institute/Brigham and Women’s Hospital (DFCI/BWH), Beth Is-
rael Deaconess Medical Center (BIDMC), and Columbia University Irving Medical Center
(CUIMC). Healthy controls were recruited from DFCI/BWH and CUIMC and consisted of
subjects undergoing screening colonoscopy or accompanying a non–blood-related patient to
an appointment at a gastrointestinal cancer clinic. Healthy controls had no history of cancer
in the 5 years before sample collection. Patients with pancreatic cancer and healthy con-
trols were matched on gender and age at the time of blood collection. Patients with chronic
pancreatitis (CP) were recruited from gastroenterology clinics at DFCI/BWH, BIDMC, and
CUIMC. Patients were included if clinic notes from a gastroenterologist indicated a diagnosis
of CP. Patients with pancreatic cancer or CP were not gender or age matched. Clinical data
abstraction was performed identically across the sites with data uploaded to a password-
protected REDCap database. All plasma samples were collected and processed according to
a uniform, standardized protocol across the sites and patient groups.
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Case/Control Status
Non-Case Case
N % N %

Total 863 100 173 100
Gender

Female 357 41.4 72 41.6
Male 506 58.6 101 58.4

Age At Randomization
<= 59 183 21.2 37 21.4
60-64 206 23.9 41 23.7
65-69 321 37.2 64 37
>= 70 153 17.7 31 17.9

Race
White 783 90.7 157 90.8
Black 30 3.5 6 3.5
Other 50 5.8 10 5.9
Cigarette Smoking Status

Never Smoked Cigarettes 420 48.7 63 36.4
Current Cigarette Smoker 74 8.6 36 20.8
Former Cigarette Smoker 369 42.8 74 42.8

BMI at Baseline (In kg/m2)
Not Answered 7 0.8 0 0

0-18.5 8 0.9 3 1.7
18.5-25 300 34.8 56 32.4
25-30 365 42.3 71 41
30+ 183 21.2 43 24.9

Diabetic Status
Unknown 1 0.1 0 0

Yes 55 6.4 22 12.7
No 807 93.5 151 87.3
SEER Staging (cases only)

Unknown - - 15 8.7
Localized - - 35 20.2
Regional - - 33 19.1
Distant - - 90 52

Table 5.4: Patient and tumor characteristics for PLCO cohort.
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Metabolomic analysis

Sample Extraction

Serum and plasma metabolites were extracted from pre-aliquoted biospecimen (15 µL) with
45 µL of LCMS grade methanol (ThermoFisher) in a 96-well microplate (Eppendorf). Plates
were heat sealed, vortexed for 5 min at 750 rpm, and centrifuged at 2000 × g for 10 minutes
at room temperature. The supernatant (30 µL) was carefully transferred to a 96-well plate,
leaving behind the precipitated protein. The supernatant was further diluted with 60 µL
of 100 mM ammonium formate, pH3 (Fisher Scientific). For Hydrophilic Interaction Liquid
Chromatography (HILIC) positive ion analysis, 15 µL of the supernatant and ammonium
formate mix were diluted with 195 µL of 1:3:8:144 water (GenPure ultrapure water system,
Thermofisher): LCMS grade methanol (ThermoFisher): 100 mM ammonium formate, pH3
(Fisher Scientific): LCMS grade acetonitrile (ThermoFisher). For C18 analysis, 15 µL of the
supernatant and ammonium formate mix were diluted with 90 µL water (GenPure ultrapure
water system, Thermofisher) for positive ion mode. Each sample solution was transferred to
384-well microplate (Eppendorf) for LCMS analysis.

Untargeted Metabolomic Analyses

Untargeted metabolomics analysis was conducted on Waters Acquity™ UPLC system with 2D
column regeneration configuration (I-class and H-class) coupled to a Xevo G2-XS quadrupole
time-of-flight (qTOF) mass spectrometer as previously described (Fahrmann et al., 2019,
2021, 2020; Johannes et al., 2021). Chromatographic separation was performed using HILIC
(Acquity™ UPLC BEH amide, 100 Å, 1.7 µm, 2.1× 100 mm, Waters Corporation, Milford,
U.S.A) and C18 (Acquity™ UPLC HSS T3, 100 Å, 1.8 µm, 2.1×100 mm, Water Corporation,
Milford, U.S.A) columns at 45◦C.

Quaternary solvent system mobile phases were (A) 0.1% formic acid in water, (B) 0.1%
formic acid in acetonitrile and (D) 100 mM ammonium formate, pH 3. Samples were sepa-
rated on the HILIC using the following gradient profile at 0.4 mL/min flow rate: (95% B,
5% D) linear change to (70% A, 25% B and 5% D) over 5 min; 100% A for 1 min; and 100%
A for 1 min. For C18 separation, the chromatography gradient was as follows at 0.4 mL/min
flow rate: 100% A with a linear change to (5% A, 95% B) over 5 min; (95% B, 5% D) for 1
min; and 1 min at (95% B, 5% D).

A binary pump was used for column regeneration and equilibration. The solvent system
mobile phases were (A1) 100 mM ammonium formate, pH 3, (A2) 0.1% formic in 2-propanol
and (B1) 0.1% formic acid in acetonitrile. The HILIC column was stripped using 90% A2
for 5 min at 0.25 mL/min flow rate, followed by a 2 min equilibration using 100% B1 at
0.3 mL/min flow rate. Reverse phase C18 column regeneration was performed using 95%
A1, 5% B1 for 2 min followed by column equilibration using 5% A1, 95% B1 for 5 min at
0.4 mL/min flow rate.
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Mass Spectrometry Data Acquisition

Mass spectrometry data was acquired using ‘sensitivity’ mode in positive electrospray ion-
ization mode within 50-800 Da range. For the electrospray acquisition, the capillary voltage
was set at 1.5 kV (positive), sample cone voltage 30 V, source temperature at 120◦C, cone gas
flow 50 L/h and desolvation gas flow rate of 800 L/h with scan time of 0.5 sec in continuum
mode. Leucine Enkephalin; 556.2771 Da (positive) was used for lockspray correction and
scans were performed at 0.5 sec. The injection volume for each sample was 6 µL. The acqui-
sition was carried out with instrument auto gain control to optimize instrument sensitivity
over the samples acquisition time.

Data Processing

LC-MS and LC-MSe data were processed using Progenesis QI (Nonlinear, Waters). Peak
picking and retention time alignment of LC-MS and MSe data were performed using Progen-
esis QI software (Nonlinear, Waters). Data processing and peak annotations were performed
using an in-house automated pipeline as previously described (Fahrmann et al., 2019, 2021,
2020; Vykoukal et al., 2020). Annotations were determined by matching accurate mass and
retention times using customized libraries created from authentic standards and by matching
experimental tandem mass spectrometry data against the NIST MSMS, LipidBlast or HMDB
v3 theoretical fragmentations. To correct for injection order drift, each feature was normal-
ized using data from repeat injections of quality control samples collected every 10 injections
throughout the run sequence. Measurement data were smoothed by Locally Weighted Scat-
terplot Smoothing (LOESS) signal correction (QC-RLSC) as previously described. Values
are reported as ratios relative to the median of historical quality control reference samples
run with every analytical batch for the given analyte (Fahrmann et al., 2019, 2021, 2020;
Vykoukal et al., 2020).

Microbial-associated Metabolite Database

To evaluate the association between the microbial-associated metabolites identified in the
PLCO specimen sets with distinct microbial species, we used the Metabolomics Data Ex-
plorer database1 developed by Han et al. (2021). The database reports the metabolic profiles
of 178 gut microorganism strains; microbiota-dependent metabolites were established in di-
verse biological fluids from gnotobiotic and conventionally colonized mice and traced back
to the corresponding metabolomic profiles of cultured bacteria (Han et al., 2021).

Statistical analysis

Predictive performance estimates for individual microbial-related metabolites identified and
quantified through metabolomic profiling of sera were assessed using receiver operating char-

1https://sonnenburglab.github.io/Metabolomics_Data_Explorer/#/invivo

https://sonnenburglab.github.io/Metabolomics_Data_Explorer/#/invivo
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acteristic curve (ROC). Time-dependent ROC analyses were performed using pROC (version
1.15.3) in the R software environment (version 3.6.1, The R Foundation, https://www.r-
project.org). The 95% confidence intervals (CI) for AUCs were estimated using the Delong
method (DeLong et al., 1988). Corresponding 95% confidence intervals for odds ratios, ad-
justed odds ratios, specificity, sensitivity and the difference measurements were calculated
using 1,000 bootstrap samples. Age, sex, BMI, and smoking status were included as covari-
ates in the adjusted odds ratio.

Throughout the statistical analysis, we adhered to the PCS (Predictability, Computabil-
ity and Stability) framework for veridical (trustworthy) data science (Yu and Kumbier, 2020),
which has proven valuable in many previous scientific discoveries including novel gene-gene
interaction for the red-hair phenotype (Behr et al., 2020), clinically-relevant subgroups in a
randomized drug trial (Dwivedi et al., 2020), and interpretable drug response prediction (Li
et al., 2020). For the modeling stage as in this paper, the PCS framework uses predictability
as a reality check, and for reproducibility, it advocates for a stability analysis across different
reasonable perturbations of the data and models that pass the prediction check. Under this
framework, the entire PLCO specimen set was divided into (1) a Development Set that was
used for training and tuning the models (Training Set) and model selection (Validation Set)
and (2) a set-aside Test Set for obtaining an unbiased evaluation of the selected final model
(Figure 5.4). The Development Set consisted of case and non-case sera from seven of the
ten PLCO study centers; the set-aside Test Set consisted of case and non-case sera from the
remaining three PLCO study centers.

Seven different learning algorithms were evaluated including a deep learning model (fully-
connected feed-forward network), gradient boosting machine, auto-machine learning, itera-
tive random forest, logistic regression with LASSO (L1) regularization, logistic regression
with ridge (L2) regularization, and logistic regression models. Deep neural network, extreme
gradient boosting, and auto machine learning algorithms were performed using the h2o pack-
age in R (Candel et al., 2016). Iterative random forest was run using the iRF package in
R (Basu et al., 2018). To further evaluate model stability in accordance with PCS frame-
work, data perturbations (e.g. via random selection and replacement) were introduced to
the Development Set and the performance re-assessed. Based on AUC, a LASSO regression
model was selected for subsequent testing in the set-aside Test Set as well as the independent
newly-diagnosed PDAC cohort.

To select the non-microbiome metabolites, the adjusted odds ratio and corresponding p-
value for each feature were calculated and corrected using Benjamini-Hochberg in the training
set in which 12 metabolites showed an adjusted odds ratio greater than 1 with adjusted p-
value less than 0.05. Five out of 12 features yielded significant p-values and adjusted odds
ratio greater than 1 in the Validation Set. The prediction performance of the combined five
non-microbiome features trained in the training set using logistic regression was evaluated
against the microbiome metabolite panel and CA19-9 in the testing set.

For the combination of 3-marker microbial-related metabolite panel, non-microbiome
metabolite panel and CA19-9, we fit a logistic regression with three separate predictors,
one corresponding to each of the aforementioned features. This model was developed in the
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Pre-diagnostic sera from 175 PDAC cases diagnosed within 5 years of blood collection 
and 875 non-case participants from 10 independent PLCO Participating Centers across the 

U.S. 

Training Set 
(5 centers)
# of case: 102
# of non-cases: 494

Validation set 
(2 centers)
# of cases: 33
# of non-cases: 142 

Test set 
(3 centers)
# of cases: 37
# of non-cases: 225

Splitting of the dataset by 
Centers

Performance of 7 different models 
evaluated in validation set for 

each panel separately:
1- Logistic regression
2- Ridge regression
3- Lasso regression
4- Iterative Random Forest
5- Deep learning model
6- GBM
7- Auto ML

Best performing model 
applied to Set-aside Test Set

Microbial metabolites: 
Logistic regression

Non-microbial metabolites:
Lasso regression 
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P
C

S
 F

ra
m

ew
or

k
(P

re
di

ct
ab

ili
ty

, C
om

pu
ta

bi
lit

y,
 a

nd
 S

ta
bi

lit
y

Feature selection:
Microbial metabolites:

Predefined metabolites with known 
association with microbiome
Non-microbial metabolites:

Statistically significantly adjusted 
odds ratio greater that 1 in both 
Training Set and Validation Set

Logistic regression combination of Microbial-related metabolites panel + 
Non-microbial-related metabolites panel + CA19-9 trained in the 

Training Set were evaluated in the Set-aside Test Set

Figure 5.4: Workflow of analyses.
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Development Set and validated in the set-aside Test Set.
Samples assayed via metabolomics herein reflect a nested case-control cohort that enriches

for cases and, therefore, do not reflect the true risk of pancreatic cancer in the general
population. In order to determine the 0.5%, 1%, 1.5% and 2% 5-year risk of pancreatic
cancer, we thus adjust the estimates to reflect the entire PLCO study population using the
approach of Prentice and Pyke (1979). In this approach, a prospective logistic model is
estimated from the case-control study that includes an offset term to the logistic model. The
offset term is the logit of the prevalence in the population minus the logit of the prevalence
in the analyzed dataset. Briefly, absolute risk values for each biomarker were estimated by
calculating coefficients of a logistic regression in the training set and the intercept adjusted
using the following equation:

Risk =
exp (β′

0 + β1 × (model))
1 + exp(β′

0 + β1 × (model))
,

where

β′
0 = β0 − log

(
Pdata

1− Pdata

)
+ log

(
PPopulation

1− PPopulation

)
.

In this equation, β0 is the intercept derived from logistic regression in the nested case-
control within a cohort, Pdata is the prevalence of the disease in our case-enriched dataset,
PPopulation is the prevalence of the disease in the general population, model represents the
predicted score derived from the selected model and β1 is the corresponding coefficient for
the model score.
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Part III

Open-source software and data
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Chapter 6

simChef: An R package for high-quality
data science simulations using PCS

Data science simulation studies occupy an important role in data science research as a means
to gain insight into new and existing statistical methods. Whether as a means to establish
comprehensive benchmarks of existing procedures for a common task, to demonstrate the
strengths and weaknesses of novel methodology applied to synthetic and real-world data,
or to probe the validity of a theoretical analysis, simulations serve as statistical sandboxes
that open a path toward otherwise inaccessible discoveries. Yet creating high-quality sim-
ulation studies typically involves a number of repetitive and error-prone coding tasks, such
as implementing data-generating processes (DGPs) and statistical methods, sampling from
these DGPs, parallelizing computation of simulation replicates, summarizing metrics, and
visualizing, documenting, and saving results. While this administrative overhead is neces-
sary to reach the end goals of a given data science simulation, it is not sufficient, as the data
scientist must navigate a number of important judgment calls such as the choice of data
settings, baseline statistical methods, associated parameters, and evaluation metrics for sci-
entific relevancy. The scientific context varies drastically from one study to the next while
the simulation scaffolding remains largely similar; yet simulation code repositories often lack
the flexibility to easily allow for reuse in novel settings or even simple extension when new
questions arise in the original context.

simChef addresses the need for an intuitive, extensible, and reusable framework for data
science simulations. Drawing substantially from the Predictability, Computability, and Sta-
bility (PCS) framework (Yu and Kumbier, 2020), simChef empowers data scientists to focus
their attention toward the scientific best practices encompassed by PCS by removing many
of the administrative burdens of simulation design with an intuitive tidy grammar1 of data
science simulations and automated interactive R Markdown documentation.

1https://design.tidyverse.org/

https://design.tidyverse.org/
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Figure 6.1: simChef provides four classes which implement distinct simulation objects in an
intuitive and modular manner: DGP, Method, Evaluator, and Visualizer.

6.1 Core abstractions of data science simulations

At its core, simChef breaks down a simulation experiment into four modular components
(Figure 6.1), each implemented as an R6 class (Chang, 2022):

1. DGP: the data-generating processes from which to generate data

2. Method: the methods (or models) to fit in the experiment

3. Evaluator: the evaluation metrics used to evaluate the methods performance

4. Visualizer: the visualization functions used to visualize outputs from the method fits
or evaluation results (can be tables, plots, or even R Markdown snippets to display)

Using these classes, users can create or reuse custom functions (i.e., dgp_fun, method_fun,
eval_fun, and viz_fun in Figure 6.1) aligned with their scientific goals. The custom func-
tions are then optionally parameterized and encapsulated in one of the corresponding classes
via a create_* method together with optional constant parameters.
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Figure 6.2: The Experiment class handles relationships between the four classes portrayed
in Figure 6.1. Experiments may have multiple DGPs and Methods, which are combined
across the Cartesian product of their varying parameters (represented by ). Once computed,
each Evaluator and Visualizer takes in the fitted simulation replicates, while Visualizer
additionally receives evaluation summaries.

A fifth R6 class, Experiment, unites the four components above and serves as a concrete
implementation of the user’s intent to answer a specific scientific question. Specifically, the
Experiment stores references to the DGP(s), Method(s), Evaluator(s), and Visualizer(s)
along with the DGP and Method parameters that should be varied and combined during the
simulation run.

6.2 A powerful grammar of data science simulations

Inspired by the tidyverse (Wickham et al., 2019), simChef develops an intuitive grammar for
running simulation studies using the aforementioned R6 classes. We provide an illustrative
example in Figure 6.3.

In Figure 6.3, DGP(s), Method(s), Evaluator(s), and Visualizer(s) are first created via
create_*(). These simulation objects can then be combined into an Experiment using
either create_experiment() and/or add_*().

In an Experiment, DGP(s) and Method(s) can also be varied across one or multiple pa-
rameters via add_vary_across(). For instance, in the example Experiment, there are
two DGP instances, both of which are varied across three values of n and one of which
is additionally varied across two values of sparse. This effectively results in nine dis-
tinct configurations for data generation. For the single Method in the experiment, we use
three values of scalar_valued_param, two of vector_valued_param, and another two of
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Figure 6.3: Example usage of simChef.



CHAPTER 6. SIMCHEF 99

list_valued_param, giving 12 distinct configurations. Hence, there are a total of 108 DGP-
method-parameter combinations in the Experiment.

Thus far, we have simply instantiated an Experiment object (akin to creating a recipe for
an experiment). To compute and run the simulation experiment, we call run_experiment
with the desired number of replicates. As summarized in Figure 6.2, running the experiment
will (1) fit each Method on each DGP (and for each of the varying parameter configurations),
(2) evaluate the experiment according to the given Evaluator(s), and (3) visualize the
experiment according to the given Visualizer(s). Furthermore, the number of replicates
per combination of DGP, Method, and parameters specified via add_vary_across is deter-
mined by the n_reps argument to run_experiment. Because replication happens at the
per-combination level, the effective total number of replicates in the Experiment depends on
the number of DGPs, methods, and varied parameters. In the given example, there are 108
DGP-method-parameter combinations, each of which is replicated 100 times. To reduce the
computational burden, the Experiment class flexibly handles the computation of simulation
replicates in parallel using the future package (Bengtsson, 2021). Figure 6.4 provides a
detailed schematic of the run_experiment workflow, along with the expected inputs to and
outputs from user-defined functions.

6.3 Additional Features

In addition to the ease of parallelization, simChef enables caching of results to further
alleviate the computational burden. Here, users can choose to save the experiment’s results to
disk by passing save = TRUE to run_experiment. Once saved, the user can add new DGP and
Method objects to the experiment and compute additional replicates without re-computing
existing results via the use_cached option. Considering the example above, when we add
new_method and call run_experiment with use_cached = TRUE, simChef finds that the
cached results are missing combinations of new_method, existing DGPs, and their associated
parameters, giving nine new configurations. Replicates for the new combinations are then
appended to the cached results.

simChef also provides users with a convenient API to automatically generate an R Mark-
down document. This documentation gathers the scientific details, summary tables, and
visualizations side-by-side with the user’s custom source code and parameters for data-
generating processes, statistical methods, evaluation metrics, and plots. A call to init_docs
generates empty markdown files for the user to populate with their overarching simulation
objectives and with descriptions of each of the DGP, Method, Evaluator, and Visualizer ob-
jects included in the Experiment. Finally, a call to render_docs prepares the R Markdown
document, either for iterative design and analysis of the simulation or to provide a high-
quality overview that can be easily shared. We provide an example of the simulation docu-
mentation at https://philboileau.github.io/simChef-case-study/results/empiric
al-fdr-comparison/empirical-fdr-comparison.html. Corresponding R source code is
available on GitHub at https://github.com/PhilBoileau/simChef-case-study.

https://philboileau.github.io/simChef-case-study/results/empirical-fdr-comparison/empirical-fdr-comparison.html
https://philboileau.github.io/simChef-case-study/results/empirical-fdr-comparison/empirical-fdr-comparison.html
https://github.com/PhilBoileau/simChef-case-study
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Figure 6.4: Detailed schematic of the run_experiment workflow. Expected inputs to and
outputs from user-defined functions are also provided.
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Chapter 7

vdocs: An R package for rigorous and
transparent PCS documentation

In Part II, we detailed two collaborative projects, which were heavily driven by the need
for stable, reliable conclusions and the PCS framework for veridical data science. These
projects also illustrated the necessity for transparent documentation of the many human
judgment calls and choices that are inevitably made throughout the data science pipeline.
For example, what models were tried and why? How was the data cleaned and why? Which
evaluation metrics are used, and why? Being transparent about these decisions is critical for
scientific reproducibility (Yu and Kumbier, 2020). However, creating such documentation
often requires a considerable amount of work and effort and is thus not common practice.

To lower the activation barrier for creating rigorous and transparent documentation, we
developed an R package named vdocs. vdocs provides a beautiful, user-friendly R Markdown
template to facilitate PCS-style documentation and encourage more veridical data science
in practice. A snapshot of this template is shown in Figure 7.1. Like scientists with their
lab notebooks, data scientists should provide a narrative of their discoveries and justification
for human judgment calls made along the way in a lab notebook designed for veridical data
science. vdocs makes this documentation via a PCS lab notebook quick and easy with the
click of a button and minimal code.

vdocs is still under active development. We detail its currently available features in
Section 7.1 and provide a brief roadmap of features planned for the future in Section 7.2.

7.1 Core Features

The main feature of vdocs is the PCS lab notebook template. In RStudio, the easiest way
to create a new PCS lab notebook is to open a new R Markdown file from template: go to
File > New File > R Markdown... > From Template > PCS Lab Notebook > OK (see
Figure 7.2). A directory, whose name was specified in the “Name” dialog box, is then created
and contains the .Rmd PCS lab notebook template.
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Figure 7.1: Snapshot of the vdocs PCS lab notebook template.

Figure 7.2: Steps to create a new PCS Lab Notebook in RStudio: go to File > New File
> R Markdown... > From Template > PCS Lab Notebook > OK.
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This PCS lab notebook template features:

1. A basic checklist of questions that should be considered and documented throughout
the analysis pipeline

2. Interactive textboxes to easily record responses to these questions and document other
human judgment calls

3. Additional tips when performing the analysis in order to comply with principles from
the PCS framework

4. Starter code to run a PCS-style analysis with basic prediction and stability checks

We note that the provided PCS lab notebook template has been auto-populated with R
code to perform a PCS-style analysis for a basic supervised learning task However, any or
all of the R code can be changed. The PCS lab notebook still adds much-needed value by
providing a checklist of questions that initiates further discussions and thinking of the PCS
principles throughout the data analysis. While responding to these questions takes time,
we highly encourage every data scientist or practitioner to put in this extra effort as a step
towards our greater goal of ensuring scientific reproducibility.

Details on how to use or modify the PCS lab notebook can be found in our vignette
found at https://yu-group.github.io/vdocs/articles/vdocs.html. We also provide
an example usage at https://yu-group.github.io/vdocs/TCGA-BRCA-Example.html. In
this example, we walk through an analysis using real-world breast cancer data from The
Cancer Genome Atlas (Atlas, 2012). The goal in this example analysis is to (1) predict
the breast cancer subtype (known as the PAM50 subtype (Parker et al., 2009)) using gene
expression data and (2) to identify the important genes that lead to these predictions.

7.2 Future Roadmap

Currently, the main limitation of vdocs is its accessibility. As is, the PCS lab notebook is
an R Markdown template and hence most accessible to users who are familiar with R. To
broaden the reach of vdocs, we plan to build a Shiny counterpart, which shares many of
the features of the R Markdown PCS lab notebook template. This Shiny application would
provide a more interactive, click-and-point interface, tailored for practitioners with little to
no coding experience. Other planned improvements to vdocs include the following:

• Expand the code scaffolding to accommodate tasks beyond prediction and basic inter-
pretations of these prediction models

• Provide additional case studies and examples of PCS-style analyses using the vdocs
template

https://yu-group.github.io/vdocs/articles/vdocs.html
https://yu-group.github.io/vdocs/TCGA-BRCA-Example.html
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• Migrate from R Markdown to Quarto to leverage the more flexible capabilities of
Quarto for generating production quality output
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Chapter 8

Curating a COVID-19 data repository

At the height of the COVID-19 pandemic (around March 2020), we began curating a large
open-source data repository on GitHub with COVID-19-related data. The goal of this
COVID-19 data repository was to aid community-wide data science efforts by providing
easy access to a large corpus of cleaned COVID-19-related data. In particular, our COVID-
19 data repository laid the foundation for highly-collaborative work on COVID-19 severity
prediction (Altieri et al., 2020). This work was used to allocate over 65,000 face shields to
twenty-five recipients in fifteen states through the non-profit organization, Response4Life.
The data repository is open-source on GitHub at https://github.com/Yu-Group/covid19-
severity-prediction.

8.1 Overview of the COVID-19 data repository

As of June 20, 2020, the COVID-19 data repository consists of both hospital-level and
county-level data from over twenty public data sources, highlighted next.

Hospital-level data

At the hospital-level, our data repository covers over 7000 US hospitals and over 30 features
including the hospital’s CMS certification number (a unique ID of each hospital used by
Centers for Medicare and Medicaid Services), the hospital’s location, the number of ICU
beds, the hospital type (e.g., short-term acute care and critical access), and numerous other
hospital statistics. We provide a feature-level snapshot of the different types of hospital-level
data available in our repository in Table 8.1. Alternatively, in Table 8.2, we provide an
overview of the hospital-level data sources in our repository, organized by the dataset.

County-level data

There are more than 3,100 counties in the US. At the county-level, our repository includes:

https://github.com/Yu-Group/covid19-severity-prediction
https://github.com/Yu-Group/covid19-severity-prediction
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Description of Hospital-level Fea-
tures

Data Source(s)

CMS certification number Centers for Medicares & Medicaid Services (2018)
(Case Mix Index File)

Case Mix Index Centers for Medicares & Medicaid Services (2018)
(Case Mix Index File); Centers for Medicares &
Medicaid Services (2020) (Teaching Hospitals)

Hospital location (latitude and longitude) Homeland Infrastructure Foundation-Level Data
(2020); Definitive Healthcare (2020)

# of ICU/staffed/licensed beds and beds utilization rate Definitive Healthcare (2020)
Hospital type Homeland Infrastructure Foundation-Level Data

(2020); Definitive Healthcare (2020)
Trauma Center Level Homeland Infrastructure Foundation-Level Data

(2020)
Hospital website and telephone number Homeland Infrastructure Foundation-Level Data

(2020)

Table 8.1: A list of select relevant features from across all hospital-level datasets contained
in our COVID-19 repository. See Table 8.2 for an overview of each hospital-level dataset.

Hospital-level Dataset Description
Homeland Infrastructure Foundation-Level Data

(2020)
Includes number of ICU beds, and location for US hospitals

Definitive Healthcare (2020) Provides data on number of licensed beds, staffed beds, ICU beds,
and the bed utilization rate for hospitals in the US

Centers for Medicares & Medicaid Services
(2018) (Case Mix Index File)

Reports the Case Mix Index (CMI) for each hospital

Centers for Medicares & Medicaid Services
(2020) (Teaching Hospitals)

Lists teaching hospitals along with address (2020)

Table 8.2: A list of hospital-level datasets contained within in our COVID-19 repository.
Currently, all hospital-level sources are static. See Table 8.1 for an overview of select features
from these hospital-level datasets.
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(i) daily recorded COVID-19-related case count and (recorded) death count by The New
York Times (2020) (hereafter NYT (2020)) and USAFacts (2020);

(ii) demographic features such as population distribution by age and population density;

(iii) socioeconomic factors including poverty levels, unemployment, education, and social
vulnerability measures;

(iv) health resource availability such as the number of hospitals, ICU beds, and medical
staff;

(v) health risk indicators including heart disease, chronic respiratory disease, smoking,
obesity, and diabetes prevalence;

(vi) mobility measures such as the percent change in mobility from a pre-COVID-19 base-
line; and

(vii) other relevant information such as county-level presidential election results from 2000 to
2016, county-level commute data that includes the number of workers in the commuting
flow, and airline ticket survey data that includes origin, destination, and other itinerary
details.

In total, there are over 8000 features in the county-level dataset. We provide a feature-level
snapshot of the different types of county-level data available in our repository in Table 8.3.
Alternatively, in Table 8.4, we provide an overview of the county-level data sources in our
repository, organized by the dataset.

Table 8.3: A list of select relevant features from across all county-level datasets contained in
our COVID-19 repository grouped by feature topic. See Table 8.4 for an overview of each of
the individual county-level datasets.

Description of County-level
Features

Data Source(s)

COVID-19 Cases/Deaths
Daily # of COVID-19-related recorded cases by
US county

USAFacts (2020); The New York Times (2020)

Daily # of COVID-19-related deaths by US
county

USAFacts (2020); The New York Times (2020)

Demographics
Population estimate by county (2018) Health Resources and Services Administration

(2019) (Area Health Resources Files)
Census population by county (2010) Health Resources and Services Administration

(2019) (Area Health Resources Files)
Age 65+ population estimate by county (2017) Health Resources and Services Administration

(2019) (Area Health Resources Files)
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Table 8.3: (continued)

Description of County-level
Features

Data Source(s)

Median age by county (2010) Health Resources and Services Administration
(2019) (Area Health Resources Files)

Population density per square mile by county
(2010)

Health Resources and Services Administration
(2019) (Area Health Resources Files)

Socioeconomic Factors
% uninsured by county (2017) County Health Rankings & Roadmaps (2020)
High school graduation rate by county (2016-17) County Health Rankings & Roadmaps (2020)
Unemployment rate by county (2018) County Health Rankings & Roadmaps (2020)
% with severe housing problems in each county
(2012-16)

County Health Rankings & Roadmaps (2020)

Poverty rate by county (2018) United States Department of Agriculture, Eco-
nomic Research Service (2018)

Median household income by county (2018) United States Department of Agriculture, Eco-
nomic Research Service (2018)

Social vulnerability index for each county Centers for Disease Control and Prevention et al.
(2018) (Social Vulnerability Index)

Health Resources Availability
# of hospitals in each county Kaiser Health News (2020)
# of ICU beds in each county Kaiser Health News (2020)
# of full-time hospital employees in each county
(2017)

Health Resources and Services Administration
(2019) (Area Health Resources Files)

# of MDs in each county (2017) Health Resources and Services Administration
(2019) (Area Health Resources Files)

Health Risk Factors
Heart disease mortality rate by county (2014-
16)

Centers for Disease Control and Prevention (2018)
(Interactive Atlas of Heart Disease and Stroke)

Stroke mortality rate by county (2014-16) Centers for Disease Control and Prevention (2018)
(Interactive Atlas of Heart Disease and Stroke)

Diabetes prevalence by county (2016) Centers for Disease Control and Prevention et al.
(2016) (Diagnosed Diabetes Atlas)

Chronic respiratory disease mortality rate by
county (2014)

Institute for Health Metrics and Evaluation (2017)

% of smokers by county (2017) County Health Rankings & Roadmaps (2020)
% of adults with obesity by county (2016) County Health Rankings & Roadmaps (2020)
Crude mortality rate by county (2012-16) United States Department of Health and Human

Services et al. (2017)

Mobility
Start date of stay at home order by county Killeen et al. (2020)
% change in mobility at parks, workplaces, tran-
sits, groceries/pharmacies, residential, and re-
tail/recreational areas

Google LLC (2020)
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Table 8.4: A list of county-level datasets contained within in our COVID-19 repository
grouped by data category. Several datasets are relevant to multiple categories and are thus
listed multiple times. See Table 8.3 for an overview of select features from these county-level
datasets.

County-level Dataset Description

COVID-19 Cases/Deaths Data
USAFacts (2020) Daily cumulative number of reported COVID-19-

related death and case counts by US county,
dating back to Jan. 23, 2020

The New York Times (2020) Similar to the USAFacts dataset, but includes ag-
gregated death counts in New York City with-
out county breakdowns

Demographics and Socioeconomic Factors
Health Resources and Services Administration

(2019) (Area Health Resources Files)
Includes data on health facilities, professions, re-

source scarcity, economic activity, and socioe-
conomic factors (2018-2019)

County Health Rankings & Roadmaps (2020) Estimates of various health behaviors and socioe-
conomic factors (e.g., unemployment, educa-
tion)

Centers for Disease Control and Prevention
et al. (2018) (Social Vulnerability Index)

Reports the CDC’s measure of social vulnerability
from 2018

United States Department of Agriculture, Eco-
nomic Research Service (2018)

Poverty estimates and median household income
for each county

Health Resources Availability
Health Resources and Services Administration

(2019) (Area Health Resources Files)
Includes data on health facilities, professions, re-

source scarcity, economic activity, and socioe-
conomic factors (2018-2019)

Health Resources and Services Administration
(2020) (Health Professional Shortage Areas)

Provides data on areas having shortages of pri-
mary care, as designated by the Health Re-
sources & Services Administration

Kaiser Health News (2020) # of hospitals, hospital employees, and ICU beds
in each county

Health Risk Factors
County Health Rankings & Roadmaps (2020) Estimates of various socioeconomic factors and

health behaviors (e.g., % of adult smokers, %
of adults with obesity)

Centers for Disease Control and Prevention
(2018) (Interactive Atlas of Heart Disease
and Stroke)

Estimated heart disease and stroke death rate per
100,000 (all ages, all races/ethnicities, both
genders, 2014-2016)

Centers for Disease Control and Prevention
et al. (2016) (Diagnosed Diabetes Atlas)

Estimated percentage of people who have been di-
agnosed with diabetes per county (2016)

Institute for Health Metrics and Evaluation
(2017)

Estimated mortality rates of chronic respiratory
diseases (1980-2014)
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Table 8.4: (continued)

County-level Dataset Description
Centers for Medicare & Medicaid Services

(2017) (Chronic Conditions)
Prevalence of 21 chronic conditions based upon

CMS administrative enrollment and claims
data for Medicare beneficiaries

United States Department of Health and Hu-
man Services et al. (2017)

Overall mortality rates (2012-2016) for each
county from the National Center for Health
Statistics

Mobility
Killeen et al. (2020) (JHU Date of Interventions) Dates that counties (or states governing them)

took measures to mitigate the spread by re-
stricting gatherings

Google LLC (2020) (Google Community Mobil-
ity Reports)

Reports relative movement trends over time
by geography and across different cate-
gories of places (e.g., retail/recreation, gro-
ceries/pharmacies)

Apple Inc (2020) (Apple Mobility Trends) Uses Apple maps data to report relative (to Jan.
13, 2020) volume of directions requests per
country/region, sub-region or city

Miscellaneous
United States Census Bureau (2018) (County

Adjacency File)
Lists each US county and its neighboring counties;

from the US Census
Bureau of Transportation Statistics (2020) (Air-

line Origin and Destination Survey)
Survey data with origin, destination, and itinerary

details from a 10% sample of airline tickets in
2019

MIT Election Data and Science Lab (2018)
(County Presidential Data)

County-level returns for presidential elections
from 2000 to 2016 according to official state
election data records

8.2 Discussion

The full corpus of data, along with further details and extensive documentation, are available
on GitHub. In particular, we have created a comprehensive data dictionary with the available
data features, their descriptions, and source dataset for ease of navigation.1 We have also
provided a quick-start guide for accessing the unabridged county-level and hospital-level
datasets with a single Python code line.

While the COVID-19 data repository was originally created to facilitate our work with
Response4Life to aid medical supply allocation efforts, the data repository has continually
grown over time. Consequently, our COVID-19 data repository supports investigations into a
wide range of COVID-19-related questions. For instance, using the breadth of travel informa-

1https://github.com/Yu-Group/covid19-severity-prediction/blob/master/data/list_of_col
umns.md

https://github.com/Yu-Group/covid19-severity-prediction/blob/master/data/list_of_columns.md
https://github.com/Yu-Group/covid19-severity-prediction/blob/master/data/list_of_columns.md
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tion in our repository, including (aggregated) air travel and work commute data, researchers
can investigate the impact of both local and between-city travel patterns on the spread of
COVID-19. Our repository also includes data on the prevalence of various COVID-19 health
risk factors, including diabetes, heart disease, and chronic respiratory disease, which can be
used to stratify counties. Furthermore, our data enables an investigation into the connec-
tion between socioeconomic and demographic information with health resource data (e.g.,
number of ICU beds, medical staff) to gain a deeper understanding of the severity of the
pandemic at the county-level. Stratification using these covariates is particularly crucial for
assessing the COVID-19 status of rural communities, which are not directly comparable,
both in terms of people and resources, to the larger cities and counties that have received
more attention.

Beyond research, our COVID-19 data repository was widely used by researchers at other
universities and classrooms for final projects (e.g., a graduate-level machine learning course
at the University of Illinois Urbana-Champaign, DATA100 at the University of California,
Berkeley with over 1000 students). At its peak, we had around 12,000 visits, 1,100 unique
visitors, and 108 clones on GitHub over the span of two weeks.
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Appendix A

Low-signal iterative random forests
(lo-siRF) for epistasis discovery

A.1 Supplementary Figures

Figure A.1: Left ventricular mass (LVM, a) and LVM indexed to body surface area (LVMi,
b) measurements were extracted from cardiac MRIs for 30,000 White British unrelated in-
dividuals via deep learning (Bai et al., 2018). (c) A high Pearson correlation of 0.92 was
observed between these LVM and LVMi measurements.
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Figure A.2: GWAS using BOLT-LMM (a) and PLINK (b) identified associations with LVMi,
of which TTN and CCDC141 show the highest significance and stability. Loci meeting the
genome-wide significance (p < 5E-8, red dashed line) are annotated in red. Loci, ranked in
the top 10 by average p-value from BOLT-LMM and PLINK, are annotated in dark gray.
Suggestive significance (p < 1E-5) is given by the gray dashed line.
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Figure A.3: (a) Schematic of local stability importance score computation. Given a gene
(light blue transcript), the local stability importance score for an individual is defined as
the proportion of trees for which at least one SNP (shaded black region) in the gene is
used in the individual’s decision path. This computation (top) was performed for each
individual (denoted by the stacked boxes). Then, a permutation test was conducted to
assess the difference in these local stability importance scores between the low and high LVMi
individuals (bottom). (b) Differences in the distribution of local stability importance scores
suggest that the identified gene-gene interactions are important for differentiating individuals
with high (dark blue) and low (orange) LVMi in the iRF fit. This result, evaluated on the
validation data, is stable across the three binarization thresholds and is quantified by a
permutation p-value given in the top right corner of each subplot.
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Figure A.4: The most important SNPs and SNP-SNP interactions, as measured by their
frequency of occurrence in the siRF fit (binarization threshold = 0.2), are annotated for the
top lo-siRF-recommended gene-gene interactions in (a) and top genes in (b). In each of the
interactions, the SNP rs7591091 in CCDC141 appears most frequently, suggesting a key role
in cardiac hypertrophy.
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Figure A.5: (a) Schematic of an inertial microfluidic cell focusing device. Cell suspensions
and fresh medium were introduced into the microfluidic device through the cell and sheath
flow inlets, respectively, using a syringe pump and flowed down the 5-loop spiral microchannel
with the same flow rate (1.2 mL/min). Inserted microscopy images show that randomly
dispersed cells were separated by size and bifurcated into the top (large cells) or bottom
(small cells) outlets. Scale bar, 10 µm. Outlet channels are connected to straight observation
channels where flowing cells were further focused in the channel height direction and imaged
using a high-speed camera for cell feature extraction (Figure 2.4c). (b) Schematic of the
cell focusing principle. The spiral microchannel has a cross-section with a slanted ceiling,
resulting in different depths at the inner and outer side of the microchannel. This geometry
induces strong Dean vortices (counter rotating vortices in the plane perpendicular to the main
flow direction) in the outer half of the microchannel cross-section. The interplay between
drag forces (FD) induced by Dean vortices and lift forces (FL) due to shear gradient and
the channel wall drives cell transverse migration towards equilibrium positions where the
net force is zero. As a result, large cells in a heterogeneous population progressively migrate
closer to the inner channel wall, while smaller cells move towards the outer channel wall.
Details about microchannel dimensions can be found in Methods.



APPENDIX A. LOW-SIGNAL ITERATIVE RANDOM FORESTS (LO-SIRF) 144

Figure A.6: Relative differences in median cell size (a), normalized peak number (b), and
roundness error (c) of gene-silenced hiPSC-CMs compared to scramble controls computed for
cells in the top (gray), bottom (white), or both (black) outlets. Error bars indicate standard
deviation calculated from bootstrapping samples of 2 to 4 batches of cells. Asterisks indicate
significant differences compared to the scramble control based on the maximum p-values of
Wilcoxon signed rank test across all batches of cells (∗p < 0.05, ∗∗p < 0.001, and ∗∗∗p < 1E-
4).
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A.2 Supplementary Tables

Table A.1: Summary statistics of the 30,000 White British unrelated individuals analyzed
in this study. Means and standard deviations (in parentheses) are reported for continuous
measurements (iLVM, LVM, age, height, and weight) alongside the percentage of individuals
with various cardiac hypertrophy-related diseases or on blood pressure medication.

Female Male

N 15394 14606
LVMi (g/m2) 40.7 (5.7) 51.3 (7.8)

LVM (g) 70.7 (12.3) 102.6 (18.7)
Age (y) 63.5 (7.5) 64.9 (7.7)

Height (cm) 162.9 (6.2) 176.2 (6.6)
Weight (kg) 69.0 (13.0) 83.7 (13.3)

Hypertensive Diseases 20.2% 29.8%
Aortic Stenosis 0.1% 0.2%
Heart Failure 0.1% 0.6%

Type II Diabetes 1.6% 3.2%
Blood Pressure Medication 12.1% 19.9%

Table A.2: For each of the three binarization thresholds used in lo-siRF (corresponding to
the bottom/top 15th, 20th, and 25th quantiles), we provide the gender-specific LVMi cutoffs
for the low and high LVMi groups. All thresholds were measured in g/m2.

Male Female

Binarization
Threshold

Low LVMi
Threshold

High LVMi
Threshold

Low LVMi
Threshold

High LVMi
Threshold

0.15 43.8 58.5 35.1 46.1
0.20 45.1 56.8 36.0 44.9
0.25 46.0 55.4 36.8 43.8
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Table A.4: Though prediction accuracy is weak (indicated by precision scores close to 0.5),
the lo-siRF-recommended interactions are stable across binarization thresholds and across
bootstrap replicates (indicated by all types of stability scores being close or equal to 1).
Here, prevalence measures the proportion of high LVMi individuals for which the interaction
appears. Precision measures the probability of having high LVMi given that the interaction
is active. The class difference in prevalence is the prevalence of the interaction in high LVMi
individuals minus the prevalence in low LVMi individuals. Independence of feature selection
evaluates whether the interaction is collectively or individually associated with the responses.
The stability of each of these metrics evaluates how stable the respective scores are across
50 bootstrap replicates. The overall stability score (last column) is the proportion of times
that the interaction is identified by iRF across 50 bootstrapped runs. Higher scores for each
listed metric indicate greater importance.
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Table A.5: A list of the top signed genes and gene-gene interactions, recommended by lo-
siRF, that were stably important across all three binarization thresholds. These genes and
gene-gene interactions are ranked by the mean p-value, averaged across the three binarization
thresholds.

A.3 Supplementary Notes

Definition of medical conditions in Table A.1. In Table A.1, we define hypertensive
diseases as self-reported hypertension, high blood pressure as diagnosed by a doctor, or any
ICD10 billing code diagnosis in I10-I16; aortic stenosis as self-reported aortic stenosis or an
ICD10 billing code diagnosis of I35; heart failure as self-reported heart failure or an ICD10
billing code diagnosis of I50; and type II diabetes as self-reported type II diabetes or an
ICD10 billing code diagnosis of E11.
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Appendix B

MDI+: A flexible random forest-based
feature importance framework

B.1 Proofs

Proof of Theorem 1

Using the law of total variance, we may rewrite the formula for impurity decrease for a node
t via

∆̂(t) = N (t)−1

(∑
xi∈t

(yi − ȳt)
2 −

∑
xi∈tL

(yi − ȳtL)
2 −

∑
xi∈tR

(yi − ȳtR)
2

)

=
N (tL)N (tR)

N (t)2
(ȳtL − ȳtR)

2 .

Note that we use a binary indicator of a sample lying in the right child node as the condi-
tioning variable. Next, using equation (3.3) and using ψ(t) to denote the resulting feature
vector on the training set, we compute

ψ(t)Ty =
N(tR)

∑
xi∈tL yi −N(tL)

∑
xi∈tR yi√

N(tL)N(tR)

=
√
N(tL)N(tR)(ȳtL − ȳtR).

By combining the above two equations, we obtain the formula

∆̂(t) =

(
ψ(t)Ty

)2
N(t)2

. (B.1)
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Now, let t1, . . . , tm denote the nodes splitting on feature Xk, which means that we have
Ψk = [ψ(t1), · · · , ψ(tm)]. We may then compute∥∥∥Ψk(X)

(
Ψk(X)TΨk(X)

)−1
Ψk(X)Ty

∥∥∥2
2
= yTΨk(X)

(
Ψk(X)TΨk(X)

)−1
Ψk(X)Ty

=
m∑
i=1

(
ψ(ti)

Ty
)2

N(ti)

=
m∑
i=1

N(ti)∆̂(ti),

where the second equality comes from recognizing that
(
Ψk(X)TΨk(X)

)−1 is a diagonal
matrix with i-th diagonal entry equal to N(ti)

−1, and the third equality comes from plugging
in (B.1). Recognizing that the right-hand side is simply nMDI(f̂ , k) completes the proof of
the left equality in (3.4). The right equality follows from the definition of training R2 as
measuring the fraction of variance in the responses explained by the fitted values.

Proof of Proposition 1

Denote P := Ψk(X)
(
Ψk(X)TΨk(X)

)−1
Ψk(X)T . We have shown in the proof of Theorem 1

that
MDIk(S,Dn) =

1

n
∥Py∥22. (B.2)

Now write y = f + ϵ where f = (f(x1), . . . , f(xn))
T and ϵ = (ϵ1, . . . , ϵn)

T . Under a fixed
design, f is deterministic while ϵ is random. Taking expectations therefore gives

E{MDIk(S,Dn)} = E
{
1

n
∥P(f + ϵ)∥22

}
=

1

n
∥Pf∥22 +

1

n
E
{
∥Pϵ∥22

}
=

1

n
∥Pf∥22 +

σ2Trace(P)

n
. (B.3)

By orthogonality of local decision stumps, Ψk(X) has full rank, and Trace(P) is just the
number of columns, which is equal to

∣∣S(k)
∣∣. Finally, notice that

MDIk(S,D0
n) =

1

n
∥Pf∥22. (B.4)

B.2 Feature Ranking Performance Simulations

In this section, we provide additional simulation experiments to supplement those already
provided in Section 3.5. Unless specified otherwise, we follow the simulation protocol de-
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scribed in Section 3.5, and all plots show the mean evaluation metric, averaged across 50
experimental replicates, with error bars denoting ± 1SE.

Data and Code Availability

The Juvenile dataset can be downloaded using the imodels python package (Singh et al.,
2021). The Enhancer and Splicing datasets were taken from (Basu et al., 2018). The CCLE
dataset can be downloaded from DepMap Public 18Q3 (https://depmap.org/portal/do
wnload/).

Data Preprocessing. We performed basic data cleaning on these datasets before using
them as covariate matrices in the simulation study. Specifically, for all four datasets, we
removed constant and duplicated columns. We also applied a log(x + 1) transformation
to all values in the Enhancer and CCLE datasets as these are count-valued and highly
right-skewed. For the Enhancer dataset, the raw data contained repeated measurements
(i.e., multiple feature columns) for the same transcription factor; we thus removed all but
one measurement (i.e., column) for each transcription factor. Note finally that the CCLE
dataset contains 50114 features, but we chose a random subset of 1000 features to use in the
covariate matrix in each simulation replicate.

Code to run all simulations can be found on GitHub at https://github.com/Yu-Grou
p/imodels-experiments.

Regression Simulations

Following the simulation set-up discussed in Sections 3.5 and 3.5 , we provide the results
for all datasets and regression functions in the regression setting. We show the results for
all datasets for the linear function in Figure B.1, lss function in Figure B.2, polynomial
interaction in Figure B.3, and the linear + LSS function in Figure B.4.

https://depmap.org/portal/download/
https://depmap.org/portal/download/
https://github.com/Yu-Group/imodels-experiments
https://github.com/Yu-Group/imodels-experiments
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Figure B.1: MDI+ (ridge) outperforms other feature importance methods for the linear re-
gression function described in Section 3.5. This pattern is evident across various datasets
(specified by row), proportions of variance explained (specified by column), and sample sizes
(on the x-axis). In all subplots, the AUROC has been averaged across 50 experimental
replicates, and error bars represent ± 1SE
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LSS
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Figure B.2: MDI+ (ridge) outperforms other feature importance methods for the LSS func-
tion described in Section 3.5. This pattern is evident across various datasets (specified by
row), proportions of variance explained (specified by column), and sample sizes (on the x-
axis). In all subplots, the AUROC has been averaged across 50 experimental replicates, and
error bars represent ± 1SE
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Polynomial Interaction
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Figure B.3: MDI+ (ridge) outperforms other feature importance methods for the polynomial
interaction regression function described in Section 3.5. This pattern is evident across various
datasets (specified by row), proportions of variance explained (specified by column), and
sample sizes (on the x-axis). In all subplots, the AUROC has been averaged across 50
experimental replicates, and error bars represent ± 1SE
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Linear + LSS
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Figure B.4: MDI+ (ridge) outperforms other feature importance methods for the linear +
LSS regression function described in Section 3.5. This pattern is evident across various
datasets (specified by row), proportions of variance explained (specified by column), and
sample sizes (on the x-axis). In all subplots, the AUROC has been averaged across 50
experimental replicates, and error bars represent ± 1SE

Classification Simulations

Following the simulation set-up discussed in Sections 3.5 and 3.5 , we provide the results for
all datasets and regression functions in the classification setting. We show the results for
all datasets for the linear function in Figure B.1, LSS function in Figure B.2, polynomial
interaction in Figure B.3, and the linear + LSS function in Figure B.4. All regression
functions in the classification setting were passed through the logistic link function to ensures
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that the responses are binary.
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Figure B.5: Both MDI+ (ridge) and MDI+ (logistic) outperform all other feature importance
methods for the logistic linear regression function described in Section 3.5. This pattern
is evident across various regression functions (specified by panel), datasets with different
covariate structures (specified by row), proportions of corrupted labels (specified by column),
and sample sizes (on the x-axis). Furthermore, MDI+ (logistic) outperforms MDI+ (ridge)
for some datasets, indicating the benefit of tailoring the choices of MDI+ to the data at hand.
In all subplots, the AUROC has been averaged across 50 experimental replicates, and error
bars represent ± 1SE.
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Logistic LSS
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Figure B.6: Both MDI+ (ridge) and MDI+ (logistic) outperform all other feature importance
methods for the logistic LSS regression function described in Section 3.5. This pattern
is evident across various regression functions (specified by panel), datasets with different
covariate structures (specified by row), proportions of corrupted labels (specified by column),
and sample sizes (on the x-axis). Furthermore, MDI+ (logistic) outperforms MDI+ (ridge)
for some datasets, indicating the benefit of tailoring the choices of MDI+ to the data at hand.
In all subplots, the AUROC has been averaged across 50 experimental replicates, and error
bars represent ± 1SE.
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Logistic Polynomial Interaction
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Figure B.7: Both MDI+ (ridge) and MDI+ (logistic) outperform all other feature importance
methods for the logistic polynomial interaction regression function described in Section 3.5.
This pattern is evident across various regression functions (specified by panel), datasets with
different covariate structures (specified by row), proportions of corrupted labels (specified
by column), and sample sizes (on the x-axis). Furthermore, MDI+ (logistic) outperforms
MDI+ (ridge) for some datasets, indicating the benefit of tailoring the choices of MDI+ to
the data at hand. In all subplots, the AUROC has been averaged across 50 experimental
replicates, and error bars represent ± 1SE.
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Logistic Linear + LSS
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Figure B.8: Both MDI+ (ridge) and MDI+ (logistic) outperform all other feature importance
methods for the logistic polynomial interaction regression function described in Section 3.5.
This pattern is evident across various regression functions (specified by panel), datasets with
different covariate structures (specified by row), proportions of corrupted labels (specified
by column), and sample sizes (on the x-axis). Furthermore, MDI+ (logistic) outperforms
MDI+ (ridge) for some datasets, indicating the benefit of tailoring the choices of MDI+ to
the data at hand. In all subplots, the AUROC has been averaged across 50 experimental
replicates, and error bars represent ± 1SE.

Robust Regression Simulations

Following the simulation set-up discussed in Sections 3.5 and 3.5 , we provide the results for
the Enhancer and CCLE datasets and regression functions in the robust regression setting.
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We show the results for these two datasets for the linear function in Figure B.9, lss function
in Figure B.10, polynomial interaction in Figure B.11, and the linear + LSS function in
Figure B.12.

Linear with Outliers
5% Outliers 2.5% Outliers 1% Outliers 0% Outliers

E
n
h
an

ce
r

µ
co
r
r
u
p
t
=

10

0.7

0.8

0.9

400 800 1200

A
U

R
O

C

0.7

0.8

0.9

1.0

400 800 1200

0.8

0.9

1.0

400 800 1200

0.8

0.9

1.0

400 800 1200

MDI+ (ridge)
MDI+ (Huber)
MDA
MDI
MDI−oob
TreeSHAP

E
n
h
an

ce
r

µ
co
r
r
u
p
t
=

25

0.7

0.8

0.9

400 800 1200
Sample Size

A
U

R
O

C

0.7

0.8

0.9

1.0

400 800 1200
Sample Size

0.8

0.9

1.0

400 800 1200
Sample Size

0.8

0.9

1.0

400 800 1200
Sample Size

5% Outliers 2.5% Outliers 1% Outliers 0% Outliers

C
C

L
E

µ
co
r
r
u
p
t
=

10

0.7

0.8

0.9

100 200 300 400

A
U

R
O

C

0.7

0.8

0.9

100 200 300 400

0.7

0.8

0.9

100 200 300 400

0.7

0.8

0.9

100 200 300 400

MDI+ (ridge)
MDI+ (Huber)
MDA
MDI
MDI−oob
TreeSHAP

C
C

L
E

µ
co
r
r
u
p
t
=

25

0.6

0.7

0.8

0.9

100 200 300 400
Sample Size

A
U

R
O

C

0.6

0.7

0.8

0.9

100 200 300 400
Sample Size

0.7

0.8

0.9

100 200 300 400
Sample Size

0.7

0.8

0.9

100 200 300 400
Sample Size

Figure B.9: Under the Linear model with outliers regression setting (See Sections 3.5 and 3.5
for simulation details) using the Enhancer and CCLE dataset, MDI+ (Huber)’s performance
remains suffers far less than other methods including MDI+ (Ridge) as the level of corruption
µcorrupt (specified by row) and the proportion of outliers (specified by column) grow. This
pattern also holds across sample sizes (on the x-axis). In all subplots, the AUROC has been
averaged across 50 experimental replicates, and error bars represent ± 1SE.
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LSS with Outliers
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Figure B.10: Under the LSS model with outliers regression setting (See Sections 3.5 and 3.5
for simulation details) using the Enhancer and CCLE dataset, MDI+ (Huber)’s performance
remains suffers far less than other methods including MDI+ (Ridge) as the level of corruption
µcorrupt (specified by row) and the proportion of outliers (specified by column) grow. This
pattern also holds across sample sizes (on the x-axis). In all subplots, the AUROC has been
averaged across 50 experimental replicates, and error bars represent ± 1SE.
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Polynomial Interaction with Outliers
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Figure B.11: Under the polynomial interaction model with outliers regression set-
ting (See Sections 3.5 and 3.5 for simulation details) using the Enhancer and CCLE
dataset, MDI+ (Huber)’s performance remains suffers far less than other methods includ-
ing MDI+ (Ridge) as the level of corruption µcorrupt (specified by row) and the proportion
of outliers (specified by column) grow. This pattern also holds across sample sizes (on the
x-axis). In all subplots, the AUROC has been averaged across 50 experimental replicates,
and error bars represent ± 1SE.
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Linear + LSS with Outliers
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Figure B.12: Under the linear + LSS model with outliers regression setting (See Sections
3.5 and 3.5 for simulation details) using the Enhancer and CCLE dataset, MDI+ (Huber)’s
performance remains suffers far less than other methods including MDI+ (Ridge) as the level
of corruption µcorrupt (specified by row) and the proportion of outliers (specified by column)
grow. This pattern also holds across sample sizes (on the x-axis). In all subplots, the
AUROC has been averaged across 50 experimental replicates, and error bars represent ±
1SE.
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B.3 Additional Data-Inspired Feature Ranking
Simulations

In this section, we describe other data-inspired simulations we perform to establish the
efficacy of MDI+ in a number of settings. Specifically, we perform simulations under a
misspecificied setting (e.g., presence of unobserved features), as we vary the sparsity of the
generating function, and as we vary the number of features.

Misspecified Regression Simulations

In practice, we are often unable to observe all covariates that are relevant for the response (Yu
and Kumbier, 2020). To investigate the performance of MDI+ under this type of misspecified
model scenario, we consider the following simulation setup.

Experimental details. We simulate data according to the four regression functions de-
scribed in Section 3.5 (i.e., linear, LSS, polynomial interaction, and linear+LSS) but omit
the first two signal features (i.e., X1, X2) from the covariate matrix X before fitting the RF
and feature importance method under study. For example, in the linear regression simula-
tion, we simulate the response y via Y =

∑5
j=1Xj + ε, where ε iid∼ N(0, σ2); however, we fit

the RF and compute the feature importance measure using only y and X3, . . . , Xp. The rest
of the experimental details are identical to those described previously.

Results. For each of the four regression functions, the AUROC results under the misspecified
model regime are summarized in Figures B.13-B.16. In terms of the AUROC, MDI+ improves
the ranking performance compared to the existing methods under this misspecified model
scenario across a variety of regression functions, datasets with different covariate structures,
proportions of variance explained, and sample sizes. Note here that the AUROC is computed
with respect to only the observed covariates and ignore the omitted variables X1 and X2.
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Misspecified Linear
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Figure B.13: MDI+ (ridge) outperforms other feature importance methods across almost all
misspecified linear regression simulations described in Appendix B.3. This pattern is evident
across various datasets with different covariate structures (specified by row), proportions of
variance explained (specified by column), and sample sizes (on the x-axis). In all subplots,
the AUROC has been averaged across 50 experimental replicates, and error bars represent
± 1SE
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Misspecified LSS
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Figure B.14: MDI+ (ridge) outperforms other feature importance methods across almost all
misspecified LSS regression simulations described in Appendix B.3. This pattern is evident
across various datasets with different covariate structures (specified by row), proportions of
variance explained (specified by column), and sample sizes (on the x-axis). In all subplots,
the AUROC has been averaged across 50 experimental replicates, and error bars represent
± 1SE
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Misspecified Polynomial Interaction
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Figure B.15: MDI+ (ridge) outperforms other feature importance methods across almost all
misspecified polynomial interaction regression simulations described in Appendix B.3. This
pattern is evident across various datasets with different covariate structures (specified by
row), proportions of variance explained (specified by column), and sample sizes (on the x-
axis). In all subplots, the AUROC has been averaged across 50 experimental replicates, and
error bars represent ± 1SE
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Misspecified Linear + LSS
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Figure B.16: MDI+ outperforms other feature importance methods for the linear + LSS
regression function described in Section 3.5. This pattern is evident across various datasets
(specified by row), proportions of variance explained (specified by column), and sample sizes
(on the x-axis). In all subplots, the AUROC has been averaged across 50 experimental
replicates, and error bars represent ± 1SE

Varying Sparsity Simulations

In this section, we compare the performance of MDI+ against its competitors as we vary the
sparsity of the regression function.

Experimental details. Using the Juvenile and Splicing datasets as the covariate matrices
X, we simulate the responses y according to the four regression functions described in Section
3.5 (i.e., linear, LSS, polynomial interaction, and linear+LSS), and we vary the sparsity
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level of the regression function. Specifically, for the linear regression function, we vary S,
which denotes the number of signal features used in the regression function. For the LSS,
polynomial interaction, and linear+LSS models, we vary M , which represents the number of
interaction terms. For the simulations described in this section, we take n = 1000 samples
and evaluate the performance across varying proportions of variance explained (PV E =
0.1, 0.2, 0.4, 0.8).

Results. Our results are summarized in Figure B.17, which shows that MDI+ significantly
outperforms competitors across various sparsity levels, as measured by AUROC.
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(B) LSS
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(C) Polynomial Interaction
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(D) Linear + LSS
PV E = 0.1 PV E = 0.2 PV E = 0.4 PV E = 0.8
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Figure B.17: In the regression simulations described in Appendix B.3, MDI+ outperforms
other feature importance methods across a variety of sparsity levels (specified on the x-axis).
This pattern is evident across various regression functions (specified by panel), datasets
with different covariate structures (specified by row), and proportions of variance explained
(specified by column).

Varying Number of Features Simulations

In this section, we compare the performance of MDI+ against its competitors under a variety
of real data-inspired simulations as we vary the number of features in the covariate matrix
X.
Experimental details: Using the CCLE gene expression dataset as the covariate matrix,
we simulate the responses y according to the four regression functions described in Section 3.5
(i.e., linear, LSS, polynomial interaction, and linear+LSS), and we vary the number of fea-
tures p in the covariate matrix X. Specifically, for each choice of p = 10, 25, 50, 100, 250, 500,
1000, 2000, we subsample the desired number of columns from the full CCLE gene ex-
pression dataset, which originally consists of 51, 658 genes (or features). For the simula-
tions described in this section, we take the max number of samples in the CCLE dataset
(n = 472) and evaluate the performance across varying proportions of variance explained
(PV E = 0.1, 0.2, 0.4, 0.8).
Results: Our results are summarized in Figure B.18, which shows that MDI+ significantly
outperforms competitors in terms of AUROC, regardless of the number of features in the
covariate matrix X.
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Figure B.18: In the regression simulations described in Appendix B.3, MDI+ (ridge) outper-
forms other feature importance methods regardless of the number of features in the covariate
matrix X (specified on the x-axis). This pattern is evident across various regression functions
(specified by row) and proportions of variance explained (specified by column).

B.4 Justifying MDI+ Choices

In this section, we provide justification for a number of MDI+ choices: regularization, includ-
ing the raw feature, and evaluating predictions via LOO. That is, we provide simulations
that show how inclusion of each of these choices in MDI+ leads to an increase in feature
ranking AUROC. Our experimental details and results are as follows.
Experimental details. We use the Enhancer and CCLE gene expression datasets as our
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covariate matrix X, and simulate responses y according to the linear and polynomial inter-
action function described in Section 3.5. As in Section 3.5, we vary the number of samples n
across {100, 250, 500, 1000, 1500} for the Enhancer dataset and {100, 250, 472} for the CCLE
gene expression dataset. We also vary PV E in {0.1, 0.2, 0.4, 0.8}. In order to illustrate the
impact of the MDI+ modeling choices, we consider the following sequence of models:

1. MDI: equivalent to MDI+ using OLS as the GLM without the raw feature and evalu-
ating R2 on the in-bag samples.

2. MDI-oob: equivalent to MDI+ using OLS as the GLM without the raw feature and
evaluating R2 on the out-of-bag samples.

3. MDI+ (raw only): MDI+ using OLS as the GLM with the raw feature and in-bag
evaluation

4. MDI+ (loo only): MDI+ using OLS as the GLM without the raw feature but using
LOO evaluation on the entire dataset

5. MDI+ (raw+loo only): MDI+ using OLS as the GLM with the raw feature and LOO
evaluation on the entire dataset

6. MDI+ (ridge+raw+loo): MDI+ using ridge as the GLM with the raw feature and
LOO evaluation (i.e., the default MDI+ settings described in Section 3.5).

We perform the simulation with a RF regressor using min_samples_leaf = {1, 5} alongside
other default parameters and average the performance of each feature importance method
across 50 simulation replicates. The results for min_samples_leaf = {1, 5} are displayed
in Figures B.20 and B.19 respectively.

Results. From Figures B.19 and B.20, MDI+ with the default regression settings, la-
beled in black as MDI+ (ridge+raw+loo), most consistently outperforms MDI, MDI-oob,
and other MDI+ configurations in terms of the AUROC across the various regression func-
tions, datasets, proportions of variance explained, and choices of min_samples_per_leaf.
Moreover, when using a RF regressor with min_samples_per_leaf =5 in Figure B.19, we
see the added benefits of including the raw feature and/or using LOO evaluation within the
MDI+ framework, compared to MDI which does not include the raw feature and uses in-bag
evaluation. This point becomes more obscure when using a RF regressor trained to purity
with min_samples_per_leaf =1. Here, MDI outperforms MDI-oob, MDI+ (loo only), and
MDI+ (raw+loo only) on the CCLE gene expression dataset, that is, in a small n, large p
setting. We hypothesize that this is due to overfitting and thus high instability given that the
trees are being grown to purity. By incorporating shrinkage using ridge regression (Agarwal
et al., 2022) as opposed to OLS as the GLM within the MDI+ framework, we are able to
mitigate this instability and regain the added benefits of including the raw feature and LOO
evaluation, as illustrated by the strong performance of MDI+ (ridge+raw+loo).
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(A) Linear with min_samples_per_leaf =5
PV E = 0.1 PV E = 0.2 PV E = 0.4 PV E = 0.8
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(B) Polynomial Interaction with min_samples_per_leaf =5
PV E = 0.1 PV E = 0.2 PV E = 0.4 PV E = 0.8
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Figure B.19: We illustrate the impact of various MDI+ choices, namely, regularization (via
ridge regression), including the raw feature, and evaluating predictions via LOO, applied to
a RF regressor with min_samples_per_leaf =5. MDI+ with ridge (i.e., shrinkage), including
the raw feature, and LOO evaluation (black) consistently outperforms or is on par with other
MDI+ modeling choices for random forests across various regression functions (specified by
panel), datasets with different covariate structures (specified by row), and proportions of
variance explained (specified by column).
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(A) Linear with min_samples_per_leaf =1
PV E = 0.1 PV E = 0.2 PV E = 0.4 PV E = 0.8
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(B) Polynomial Interaction with min_samples_per_leaf =1
PV E = 0.1 PV E = 0.2 PV E = 0.4 PV E = 0.8
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Figure B.20: We illustrate the impact of various MDI+ choices, namely, regularization (via
ridge regression), including the raw feature, and evaluating predictions via LOO, applied to
a RF regressor with min_samples_per_leaf =1. MDI+ with ridge (i.e., shrinkage), including
the raw feature, and LOO evaluation (black) consistently outperforms or is on par with other
MDI+ modeling choices for random forests across various regression functions (specified by
panel), datasets with different covariate structures (specified by row), and proportions of
variance explained (specified by column).
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B.5 MDI Biases Simulations

In this section, we provide additional simulations regarding the biases of MDI against highly-
correlated and low-entropy features, as well as the ability of MDI+ to overcome these biases.
Throughout this section, we follow the simulation set-up discussed in Section 3.6.

Correlation Bias

In Figure B.21, we display average percentage of RF splits per feature in each group (i.e., Sig,
CSig, and NSig). Further, in Figure B.22 we examine the performance of MDI+ with and
without the LOO data splitting scheme. As seen in Figure B.22, for both PV E = 0.1, 0.4,
LOO sample-splitting overcomes the correlation bias that using in-bag samples induces.
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Figure B.21: As the correlation increases, the percentage of splits in the RF that are made
using features from the correlated group (Sig or C-NSig) decreases. This pattern is true
for both PV E = 0.1 (left) and PV E = 0.4 (right) under the correlation simulation setup
described in Section 3.6.
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Figure B.22: While MDI+ using the LOO partial model predictions is able to mitigate the
correlated feature bias, MDI+ without the LOO scheme suffers from the correlated feature
bias like MDI. This pattern holds for both the PV E = 0.1 (top) and the PV E = 0.4
(bottom) simulation settings described in Section 3.6.

Entropy Bias

In Figure B.23, we display average percentage of RF splits per feature in both the regression
and classification setting. Further, in Figure B.24 we examine the performance of MDI+ with
and without ridge regularization and the LOO data splitting scheme in both the regression
and classification setting. As seen in Figure B.24, LOO sample-splitting overcomes the
entropy bias in both settings. In the regression setting, l2 regularization also helps to mitigate
the entropy bias of MDI.
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Figure B.23: Noisy features with higher entropy are inherently split on more frequently
in the RF. This pattern is true across various sample sizes under both the regression and
classification simulation settings described in Section 3.6.
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Figure B.24: While MDI+ using the LOO partial model predictions is able to mitigate the
entropy bias, MDI+ without the LOO scheme suffers from the entropy bias like MDI. This
pattern holds for both the regression (left) and the classification (bottom) simulation settings
described in Section 3.6.

B.6 PCS Model Recommendations

In this section, we provide further details on the stability-driven selection and model aggre-
gation procedure discussed in Section 3.4. We also establish the efficacy of both approaches
through a data-inspired simulation study.

For both approaches, the first step is to evaluate the prediction performance of each h ∈ H
on an independent test set (obtained from a train-test split). Filter out all h whose predictive
performance is worse than that of RF. Given this set of screened models {h1, . . . , hM}, we
propose the following two approaches to compute feature rankings.
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Stability-based selection. Let T = {S1, . . . ,ST} denote the fitted trees of the RF trained
on the data Dn. Generate bootstrap samples of the fitted trees Tb, b = 1, . . . , B. For each
bootstrap sample, Tb, compute feature rankingsRb(hi) for the MDI+ model hi. Denote the set
of feature rankings generated by hi as Ri = {R1(hi), . . . , RB(hi)}. To evaluate the stability
of hi, we measure the similarity between rankings from all pairs of the B bootstraps, and
take the average across these

(
B
2

)
similarity scores. To measure this similarity between two

ranked lists, we use Rank-based Overlap (RBO) (Webber et al., 2010). RBO measures how
frequently two ranked lists agree on ordering of items, weighing agreement between higher
ranks more heavily than lower ranks. This makes it appropriate for feature importance
rankings where we are often concerned with the most important features (i.e., the highest
ranking features). Finally, we choose h∗ to be the h ∈ {h1, . . . , hM} with the highest RBO
score averaged across all

(
B
2

)
pairs of bootstraps.

Model aggregation. While the approach above results in feature importance rankings
that correspond to a single MDI+ model, it is sometimes desirable to obtain rankings that
do not depend on a single choice of MDI+ model. Hence, we propose an ensemble ap-
proach where we rank features based upon the median ranking of each feature Xk across all
prediction-screened MDI+ models h ∈ {h1, . . . , hM}. We refer to this as MDI+ (ensemble).
Other ways of aggregating feature importances can also be performed; we leave this to future
work.

Simulation Study. We evaluate the effectiveness of these two PCS model selection tech-
niques for feature importance ranking via the following simulation study. We follow the
simulation set-up described in Section 3.5. We consider ridge and LASSO as the two (reg-
ularized) GLMs, and R2 and mean absolute error (MAE) as the two metrics, producing a
total of four candidate MDI+ models. We present here the results using the CCLE dataset
with responses generated by a linear and polynomial interaction model as described in Sec-
tion 3.5. We note that all four MDI+ models passed the predictive check. In Figure B.25,
we thus plot the RBO for all four MDI+ models, where a higher RBO indicates greater
ranking stability. Additionally, we display the feature ranking performance (as measured by
AUROC) for these four MDI+ models, the ensemble approach (MDI+ (ensemble)), as well
as MDI and MDI-oob. As seen in Figure B.25, MDI+ (ridge, R2) has the highest stability
score, which often translates to the best feature ranking performance across various sample
sizes and PV Es. MDI+ (ensemble) also performs reasonably well, typically yielding an AU-
ROC for feature ranking accuracy in between the different MDI+ versions and better than
the baselines of MDI and MDI-oob. Despite approach 1 providing the best feature ranking
accuracy in these simulations, these simulations may not capture all subtleties of applying
these methods in practice. Thus, MDI+ (ensemble) may prove useful in practice.
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(A) CCLE RNASeq Linear
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(B) CCLE RNASeq Polynomial Interaction
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Figure B.25: In each panel, the top row shows the accuracy of the feature importance
rankings using various methods, and the bottom row shows the stability scores, as measured
by RBO, for each choice of GLM and metric used in MDI+. The GLM and metric yielding the
most stable feature rankings generally gives the most accurate feature importance rankings.
MDI+ (ensemble) typically falls in between the different MDI+ versions and outperforms
existing methods (MDI and MDI-oob) in terms of feature importance ranking accuracy.
These patterns hold across various choices of sample sizes (specified on the x-axis) and
regression functions (specified by panel).
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B.7 RF+ Improves Prediction Performance

In this section, we show that RF+ increases prediction performance for various real-world
datasets. Alongside stability, predictability is a crucial pre-requisite for interpretation (Mur-
doch et al., 2019). The improved predictive performance of RF+ suggests it better fits the
underlying DGP, giving additional credence to MDI+.
Regression. We use the CCLE RNASeq gene expression data described in Section 3.7 to
predict the response for 24 drugs, each independently in separate regression problems. We
split the data into 80% training and 20% testing. The prediction models under study are
the default scikit-learn RF regressor and RF+ using ridge regression as the GLM and the
R2 metric. We evaluate the relative difference in prediction performance as measured by the
R2 between RF+ and RF for each drug averaged across 32 different random train-test splits.
We present the results for drugs, where the vanilla RF yielded an average test-set R2 > 0.1
in Figure B.26(A). We use this prediction screening threshold to focus on models that have
non-trivial predictive power. Here, RF+ increases R2 performance for 17 out of 18 drugs.
Averaged across all drugs, RF+ increases performance by an average of 4.4% relative to RF.
The full results including all drugs can be found in Figure B.27.
Classification. We use the Enhancer, Splicing and Juvenile datasets described in Sec-
tion 3.5. Additionally, we use gene expression data from The Cancer Genome Atlas (TCGA)
to predict the PAM50 breast cancer subtypes (a multiclass classification problem with five
different subtype labels) (Atlas, 2012). We split the data into 80% training and 20% test-
ing. We use the default scikit-learn RF classifier and RF+ using l2-regularized logistic
regression as the GLM with the log-loss metric. We evaluate the relative difference in predic-
tion performance as measured by the F1 score and AUPRC between RF+ and RF, averaged
across 32 different random train-test splits. The results are displayed in Figure B.26(B).
RF+ increases the F1 score for three of the four datasets and has approximately the same
F1 score for the splicing dataset. On average, RF+ increases F1 score by an average of 3.6%
relative to RF. RF+ also increases the AUPRC score for all four datasets, and on average by
2.3% relative to RF.
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(A) Regression (B) Classification
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Figure B.26: Relative Performance of RF+ (ridge) as compared to RF in both the (A)
regression and (B) classification settings. In the regression setting, RF+ (ridge) increases
performance by an average of 4% averaged across all 18 drugs that have test set R2 > 0.1.
In the classification setting, RF+ (logistic) increases performance according to F1 score for
three of the four datasets, and on average by 3.75%. RF+ (logistic) increases AUPRC for all
datasets, and on average by 2.5%.
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Figure B.27: Relative performance of RF+ (ridge) as compared to RF for all 24 CCLE drugs
in the regression setting. Here, we measure prediction performance using the test set R2.
Averaged across 32 train-test splits, RF+ (ridge) yields higher test prediction performance
than RF for 23 out of 24 drugs.
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B.8 Case Studies

In this section, we provide additional background and results regarding the two case studies
on drug response prediction and breast cancer subtype prediction.

Drug Response Prediction

Data preprocessing. Originally, the CCLE RNASeq gene expression data set consisted of
50114 genes. To reduce the number of features to a more manageable size for our analysis,
we took the top 5000 genes with the highest variance. Filtering the number of features in
this way is both common and often beneficial especially in this ultra-high-dimensional regime
(Fan and Lv, 2008). The unprocessed CCLE data can be downloaded from DepMap Public
18Q3 (https://depmap.org/portal/download/).

Details of drug response outcome variable. In this case study, the outcome of interest
is the efficacy, or response, of a drug. To obtain a measure of the drug response for each cell
line, the CCLE project measured the pharmacological sensitivity of each drug in vitro across
eight different dosages and quantified this using the activity area, or area under the dose-
response curve. This activity area is measured on an 8-point scale with 0 corresponding to
an inactive compound (i.e., a drug that did not inhibit the growth of the cancer cells across
all 8 dosages) and 8 corresponding to a compound with 100% inhibition of cancer cell growth
at all 8 dosages. Further details on the CCLE data can be found in Barretina et al. (2012).

Results. To supplement the discussion in Section 3.7, we provide additional tables and
figures below.

In Table B.1, we list the top 5 gene expression predictors for each drug according to
various feature importance methods. Since we evaluated the feature importance methods
across 32 train-test splits (details in Section 3.7), the genes are ranked according to their
average feature importance ranking across the 32 splits.

We also provide the stability distribution plots for all 24 drugs in Figure B.28. Specifically,
for the top 5 genes using each feature importance method under study (i.e., those listed
in Table B.1), we plot the standard deviation of the gene’s feature importance rankings
across the 32 train-test splits. A small standard deviation indicates a more stable feature
importance measure. For many drugs, these stability distribution plots are skewed by the
high instability of MDI-oob and MDA. We thus show the same plot in Figure B.29, excluding
MDI-oob and MDA. Across all drugs, we see that MDI+ generally yields the most stable
rankings for the top 5 features across the 32 train-test splits.

To further evaluate the stability of MDI+ across only the randomness in the RF training,
we performed an analogous stability analysis in Figures B.30 and B.31, where we varied the
random seed used to train the RF but kept the training data fixed. Specifically, we trained
32 RFs on the full CCLE data, each RF using a different random seed. We then evaluate
the stability of the feature rankings across these 32 RF fits. We see in Figures B.30 and
B.31 that MDI+ remains the most stable across the different RF fits. This highlights another

https://depmap.org/portal/download/
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practical advantage of MDI+, as it is highly undesirable for the feature importance rankings
to change due to an arbitrary choice such as the random seed used in training the RF.

Lastly, in Figure B.32, we evaluated the predictive power of the top k genes from each
feature importance method across the 32 train-test (80-20%) splits. Specifically, for each
k and each feature importance method, we took the top k ranked genes from the given
feature importance method and trained an RF using the training data, restricted to only
these k features. We then evaluated the prediction accuracy of the fitted RF on the test set
and average these results across the 32 train-test splits. While evidence from the existing
scientific literature remains the main source of validation, supporting the top-ranked genes
from MDI+, the prediction accuracy of the top-ranked genes (as shown in Figure B.32) can
provide another check. In Table B.2, we summarize the prediction results when k = 10
by counting the number of drugs, for which each feature importance method gave the best
test R2, second-best test R2, etc. We see that for 12 out of the 24 drugs, the top 10 genes
from MDI+ (ridge) generally had the highest prediction power compared to other methods.
In accordance with the predictability principle of the PCS framework, strong prediction
performance suggests that the model (and in this case, the top-ranked features) may better
capture the underlying data-generating process.

It is important to note, however, that correlated variables can pose subtle issues when
interpreting these top k prediction results. For concreteness, consider the scenario where the
top k ranked features from Method A tend to be independent while the top-ranked features
from Method B tend to be highly-correlated. It is likely that the predictive power from
the top k features from Method A is higher than that from Method B simply because the k
independent features from Method A inherently contain more information than the k highly-
correlated features from Method B. That is, the prediction accuracies from these two sets of k
features are not directly comparable and requires additional investigation into the correlation
structure of X. From preliminary explorations, this complication is typically most apparent
for small values of k. Intuitively, when k is small, correlation structures between two sets
of features can be very different. As k grows, the two correlation structures tend to become
most similar to each other. This motivated our choice of k = 10 in Table B.2. However,
further investigation is warranted, and we leave a deeper investigation of this phenomenon
to ongoing and future work.

Table B.1: Top 5 most important genes for each drug’s response according to various feature
importance methods. Genes are ranked by their average feature importance ranking across
32 train-test splits (shown in parentheses).

MDI+ MDI TreeSHAP MDI-oob MDA

17-AAG
1 PCSK1N (1.47) PCSK1N (2.19) PCSK1N (2.19) PCSK1N (2.5) PCSK1N (9.16)
2 MMP24 (3.41) MMP24 (4.97) MMP24 (4.06) NQO1 (9.03) MMP24 (194.5)
3 RP11-109D20.2 (4.59) ZSCAN18 (6.94) ZSCAN18 (8.56) ZNF667-AS1 (26.59) ZNF667-AS1 (241.38)
4 ZSCAN18 (8.09) RP11-109D20.2 (7.41) RP11-109D20.2 (10.09) ZSCAN18 (44.03) RP11-109D20.2 (525.22)
5 NQO1 (8.84) NQO1 (9.53) NQO1 (11.81) TST (49.38) SH3BP1 (587.94)
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Table B.1: (continued)

MDI+ MDI TreeSHAP MDI-oob MDA

AEW541
1 TXNDC5 (1.41) TCEAL4 (1.62) TXNDC5 (1.75) TXNDC5 (1.5) TCEAL4 (5.59)
2 ATP8B2 (4.34) TXNDC5 (3.53) ATP8B2 (3.84) ATP8B2 (4.69) IQGAP2 (238.8)
3 VAV2 (6.03) ATP8B2 (8.38) VAV2 (5.41) VAV2 (5.84) RP11-343H19.2 (303.25)
4 TNFRSF17 (8.53) VAV2 (10.47) TCEAL4 (9.44) TCEAL4 (6.5) TXNDC5 (312.62)
5 TCEAL4 (9.03) PLEKHF1 (19.25) TNFRSF17 (9.69) TNFRSF17 (13.56) ATP8B2 (318.59)

AZD0530
1 PRSS57 (5.16) SYTL1 (17.62) PRSS57 (7.69) PRSS57 (12.09) VTN (105.69)
2 SYTL1 (12.31) PRSS57 (32.5) SYTL1 (42.94) DDAH2 (440.16) SYTL1 (216.62)
3 STXBP2 (15.38) SFTA1P (36.5) NFE2 (43.06) SLC16A9 (484.34) STXBP2 (245.31)
4 NFE2 (23.12) STXBP2 (62.59) STXBP2 (61.62) STXBP2 (486.09) ZBED2 (466.48)
5 THEM4 (34.41) CLDN16 (67.28) SLC16A9 (61.81) RAPGEF3 (514.2) DDAH2 (472.06)

AZD6244
1 LYZ (1.66) TOR4A (2.31) LYZ (1.72) LYZ (2.53) LYZ (2.09)
2 SPRY2 (2.34) SPRY2 (3.31) RP11-1143G9.4 (3.59) SPRY2 (2.59) RP11-1143G9.4 (3.59)
3 RP11-1143G9.4 (2.84) LYZ (3.69) SPRY2 (3.91) TOR4A (3.25) TOR4A (3.66)
4 ETV4 (5.22) ETV4 (5.19) TOR4A (6.41) RP11-1143G9.4 (4.75) SPRY2 (4.5)
5 TOR4A (6.41) RP11-1143G9.4 (6.84) RNF125 (6.66) ETV4 (6.91) ETV4 (6.34)

Erlotinib
1 CDH3 (1.47) CDH3 (1.84) CDH3 (2.03) CDH3 (1.97) CDH3 (1.88)
2 RP11-615I2.2 (2.28) RP11-615I2.2 (3.28) RP11-615I2.2 (2.88) RP11-615I2.2 (3.53) RP11-615I2.2 (3.16)
3 EGFR (4.34) SPRR1A (3.97) EGFR (3.97) SPRR1A (6.25) SPRR1A (3.84)
4 SPRR1A (4.44) SYTL1 (7.84) SPRR1A (4.19) GJB3 (8.78) EGFR (8.31)
5 GJB3 (7.44) EGFR (8.69) KRT16 (11.41) EGFR (9.31) SYTL1 (8.72)

Irinotecan
1 SLFN11 (1) SLFN11 (1) SLFN11 (1) SLFN11 (1) SLFN11 (1)
2 S100A16 (4.12) S100A16 (3.75) S100A16 (3.84) S100A16 (3.25) WWTR1 (6.03)
3 IFITM10 (4.19) IFITM10 (4.09) WWTR1 (4.28) WWTR1 (4.12) TRIM16L (150.38)
4 WWTR1 (4.94) WWTR1 (4.78) IFITM10 (8.03) RP11-359P5.1 (8.22) IFITM10 (163.44)
5 PPIC (7.81) PPIC (10.22) RP11-359P5.1 (8.47) IFITM10 (8.41) S100A16 (182.19)

L-685458
1 PXK (2.03) DEF6 (4.62) PXK (2.03) PXK (3) PXK (2.94)
2 DEF6 (4.28) PXK (4.94) DEF6 (4.38) IKZF1 (3.44) CXorf21 (4.62)
3 CXorf21 (4.84) CXorf21 (5.44) CXorf21 (5.62) CXorf21 (5.75) DEF6 (4.66)
4 IKZF1 (6.03) IKZF1 (5.75) IKZF1 (7.91) DEF6 (10.31) IKZF1 (5.47)
5 RP11-359P5.1 (9.09) RP11-359P5.1 (9.94) RP11-359P5.1 (12.81) CTNNA1 (13.88) RP11-359P5.1 (10.06)

LBW242
1 SERPINB6 (1.12) SERPINB6 (1) SERPINB6 (1.66) SERPINB6 (1.31) SERPINB6 (1.56)
2 RGS14 (5.12) RGS14 (6.66) RGS14 (3.66) GPT2 (45.62) HERC5 (54.31)
3 HERC5 (5.41) MAGEC1 (7.5) MAGEC1 (5.53) GBP1 (179.28) ITGA1 (73.34)
4 MAGEC1 (7.62) ITGA1 (10.53) GBP1 (5.78) ZNF32 (222.03) PTGS1 (296.62)
5 GBP1 (8.22) HERC5 (12.41) CCL2 (13.5) IGSF3 (257.88) GPT2 (316.12)

Lapatinib
1 ERBB2 (1.06) ERBB2 (1.5) ERBB2 (1.41) ERBB2 (1.69) ERBB2 (1.47)
2 PGAP3 (3.09) NA (6.81) PGAP3 (3.44) PGAP3 (8.03) NA (4.31)
3 NA (5.03) PGAP3 (12.41) IKBIP (6.19) C2orf54 (13.09) PGAP3 (14.03)
4 C2orf54 (6.91) DPYSL2 (16.16) NA (6.22) DPYSL2 (15.41) PKP3 (20.31)
5 IKBIP (8.28) PKP3 (16.47) C2orf54 (7.41) EMP3 (20.47) EMP3 (22.38)

Nilotinib
1 SPN (1.25) SPN (1.81) SPN (1.62) SPN (1.47) SPN (3.59)
2 GPC1 (3.5) GPC1 (4.38) GPC1 (3.5) GPC1 (3.44) SELPLG (9.03)
3 TRDC (6.62) SELPLG (7.5) TRDC (10.16) SELPLG (9.97) KLF13 (26.22)
4 SELPLG (6.78) KLF13 (16.97) LMO2 (10.44) TRDC (10.22) BCL2 (51.09)
5 LMO2 (9.44) TRDC (20.22) CISH (11.03) LMO2 (10.75) GPC1 (166.19)

Nutlin-3
1 RP11-148O21.4 (1.41) MET (2.53) RP11-148O21.4 (1.59) RP11-148O21.4 (1.72) RAPGEF5 (37)
2 MET (2.53) RP11-148O21.4 (4.75) MET (4.06) LRRC16A (9.56) G6PD (63.53)
3 BLK (5.12) LAYN (6.41) BLK (5.25) BLK (10.97) MET (147.78)
4 LRRC16A (5.16) RPS27L (12.94) LRRC16A (5.97) MET (26.09) BLK (160.06)
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Table B.1: (continued)

MDI+ MDI TreeSHAP MDI-oob MDA

5 LAT2 (7.34) ADD3 (21.03) LAT2 (7.78) LAYN (138.84) RP11-148O21.4 (164.94)

PD-0325901
1 SPRY2 (1.16) SPRY2 (1.53) SPRY2 (1.75) SPRY2 (1.19) SPRY2 (1.75)
2 LYZ (2.72) ETV4 (2.88) LYZ (2.09) LYZ (2.88) LYZ (2.62)
3 ETV4 (2.72) LYZ (3.59) ETV4 (3.66) ETV4 (3.38) ETV4 (3.47)
4 RP11-1143G9.4 (4.34) TOR4A (4.56) RP11-1143G9.4 (4.53) TOR4A (4.72) TOR4A (4.88)
5 PLEKHG4B (5.62) PLEKHG4B (4.66) PLEKHG4B (5.31) RP11-1143G9.4 (5.38) PLEKHG4B (5.5)

PD-0332991
1 SH2D3C (4.31) SH2D3C (6.81) SH2D3C (4.56) SH2D3C (8) KRT15 (10.56)
2 FMNL1 (6.56) FMNL1 (8.38) HSD3B7 (6.75) AL162151.3 (9.62) HSD3B7 (14.5)
3 HSD3B7 (6.59) AL162151.3 (11.59) FMNL1 (7.09) HSD3B7 (11.03) SEPT6 (16.44)
4 KRT15 (7.19) TWF1 (12.03) KRT15 (7.78) KRT15 (11.97) PPIC (17.03)
5 AL162151.3 (8.84) KRT15 (12.56) TWF1 (8.97) FMNL1 (16.34) AL162151.3 (18.34)

PF2341066
1 ENAH (1.03) ENAH (1) ENAH (1.31) ENAH (1.12) ENAH (1.06)
2 SELPLG (2.09) SELPLG (2.81) SELPLG (2.06) SELPLG (2.28) SELPLG (2.47)
3 HGF (3.62) HGF (3.94) MET (5.44) HGF (7.03) CTD-2020K17.3 (10.31)
4CTD-2020K17.3 (9.72)CTD-2020K17.3 (9.41) HGF (6) MET (10.69) HGF (14.06)
5 MET (10.53) MET (11.5) MLKL (12) CTD-2020K17.3 (11.88) DOK2 (14.41)

PHA-665752
1 ARHGAP4 (1) ARHGAP4 (1.06) ARHGAP4 (1.06) ARHGAP4 (1.09) ARHGAP4 (1)
2CTD-2020K17.3 (2.88)CTD-2020K17.3 (2.66) CTD-2020K17.3 (4.25) CTD-2020K17.3 (2.56) FMNL1 (4.22)
3 FMNL1 (4.88) FMNL1 (7.44) PFN2 (10.84) PFN2 (24.31) CTD-2020K17.3 (5.44)
4 PFN2 (8.06) PGPEP1 (13.28) FMNL1 (11.78) FMNL1 (33.12) INHBB (216.5)
5 PGPEP1 (10.12) INHBB (18.88) FDFT1 (18.66) MICB (59.69) PGPEP1 (335.97)

PLX4720
1 RXRG (1) RXRG (1.16) RXRG (1) RXRG (1) RXRG (1.03)
2 MMP8 (5.19) MMP8 (3.97) MMP8 (5.16) MMP8 (5.56) MMP8 (4.88)
3 RP11-164J13.1 (6.28) RP11-599J14.2 (7.22) MYO5A (7.09) MYO5A (6.81) MYO5A (8.75)
4 RP11-599J14.2 (7) AP1S2 (8.47) LYST (7.97) LYST (11.31) AP1S2 (10.53)
5 RP4-718J7.4 (7.84) LYST (9.34) RP11-599J14.2 (8.41) RP4-718J7.4 (13.22) RP11-599J14.2 (12.69)

Paclitaxel
1 MMP24 (1.09) MMP24 (1.28) MMP24 (1.22) MMP24 (2.38) SH3BP1 (10.38)
2 AGAP2 (3.16) SH3BP1 (2.75) AGAP2 (3.44) SH3BP1 (2.88) PRODH (60.41)
3 SH3BP1 (3.5) AGAP2 (4.06) SH3BP1 (3.78) SLC38A5 (3.84) AGAP2 (157.41)
4 SLC38A5 (4.34) SLC38A5 (4.22) PTTG1IP (3.91) AGAP2 (5.88) SLC38A5 (179.34)
5 PTTG1IP (4.72) PTTG1IP (4.34) SLC38A5 (4.31) PTTG1IP (6.97) MMP24 (308.66)

Panobinostat
1 AGAP2 (1.12) AGAP2 (1.56) AGAP2 (1.81) AGAP2 (2.16) CYR61 (2.56)
2 CYR61 (2.44) CYR61 (2.09) CYR61 (2.16) CYR61 (2.78) AGAP2 (3.25)
3 RPL39P5 (4.19) RPL39P5 (4.41) RPL39P5 (3.75) RPL39P5 (3.88) RPL39P5 (152.44)
4 WWTR1 (5.16) WWTR1 (5.78) WWTR1 (5.94) WWTR1 (6.53) S100A2 (316.66)
5 MYOF (6.56) MYOF (6.16) IKZF1 (12.41) IKZF1 (9.72) MYOF (366.28)

RAF265
1 CMTM3 (1.34) CMTM3 (1.5) CMTM3 (1.69) SH2B3 (34) CMTM3 (7.06)
2 SYT17 (5.69) SYT17 (5.66) SYT17 (7.69) CMTM3 (155.25) SH2B3 (470.66)
3 SH2B3 (6.03) SH2B3 (8.91) SH2B3 (17.5) SLC29A3 (159) SYT17 (652.84)
4 EMILIN2 (11.94) SLC29A3 (11.84) STAT5A (19.66) PRKCQ (235) RGS16 (713.47)
5 STAT5A (12.47) NA (19.91) SLC29A3 (22.22) LCP2 (259.7) AC007620.3 (1087.11)

Sorafenib
1 PXK (4.47) TP63 (6.72) PXK (4.12) FAM212A (6.41) PXK (9.34)
2 P2RX1 (4.62) P2RX1 (7.78) FAM212A (5.75) P2RX1 (8) ARHGAP9 (34.25)
3 FAM212A (4.69) PXK (8.88) STAC3 (7.16) SEC31B (41.69) P2RX1 (156.91)
4 STAC3 (5.16) FAM212A (16.97) P2RX1 (7.25) ARHGAP9 (43.19) FAM212A (187.31)
5 ARHGAP9 (7.91) STAC3 (20.16) TP63 (40.97) CXCL8 (57.72) SEC31B (222.41)

TAE684
1 SELPLG (1.09) SELPLG (1.06) SELPLG (1.12) SELPLG (1.03) SELPLG (1.34)
2 IL6R (3.19) ARID3A (8.12) IL6R (3.34) IL6R (6.41) ARID3A (18.31)
3 NFIL3 (6.34) GALNT18 (8.62) NFIL3 (6.25) NFIL3 (8.06) FMNL1 (25.25)
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Table B.1: (continued)

MDI+ MDI TreeSHAP MDI-oob MDA

4 ARID3A (7) IL6R (10.16) RRAS2 (10.19) ARID3A (16.38) RP11-334A14.2 (144.34)
5 RRAS2 (8.66) PPP2R3A (15.69) FMNL1 (10.19) RRAS2 (17.97) PPP2R3A (165.84)

TKI258
1 TWF1 (2.44) TWF1 (3.31) TWF1 (2.41) TWF1 (2.28) LAPTM5 (20.84)
2 SLC43A1 (2.88) GPR162 (3.75) PRTN3 (3.31) LAPTM5 (5.34) SLC43A1 (156.12)
3 PRTN3 (5.25) SLC43A1 (6.84) SLC43A1 (6.06) PRTN3 (6.12) TWF1 (163.78)
4 LAPTM5 (5.78) TTC28 (8.94) LAT2 (6.62) SLC43A1 (14.91) GPR162 (169.66)
5 LAT2 (5.94) LAPTM5 (11.53) LAPTM5 (8.19) LAT2 (17.41) LYL1 (387.97)

Topotecan
1 SLFN11 (1) SLFN11 (1) SLFN11 (1) SLFN11 (1) SLFN11 (1)
2 HSPB8 (2.16) HSPB8 (2.28) HSPB8 (2.84) HSPB8 (2.06) HSPB8 (2.62)
3 PPIC (5.69) OSGIN1 (5.28) OSGIN1 (5.31) PPIC (7.81) OSGIN1 (7.19)
4 OSGIN1 (5.88) AGAP2 (8.81) PPIC (6.81) RP11-359P5.1 (10.75) AGAP2 (15.25)
5 AGAP2 (6.53) PPIC (8.91) RP11-359P5.1 (8.25) CORO1A (12.06) HMGB2 (21.53)

ZD-6474
1 MAP3K12 (1) MAP3K12 (1) MAP3K12 (1) MAP3K12 (1.09) MAP3K12 (1)
2 PIM1 (5.47) CTSH (21.88) PIM1 (10.28) PIM1 (31.44) SCD5 (339.58)
3 PRKCQ (9.03) TIMP1 (26.31) PRKCQ (15.28) DYNLT3 (192.12) ITGA10 (527.41)
4 CTSH (12.91) PRKCQ (26.47) CTSH (18.16) TIMP1 (211.25) TIMP1 (569.81)
5 ITGA10 (20.81) PIM1 (33.81) ANXA5 (78.78) EPHA1 (320.22) CTSH (631.5)
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Figure B.28: Stability of top 5 genes for each drug response prediction model across 32 train-
test splits. The x-axis corresponds to the top 5 features for each method, ranked according
to their average feature ranking across 32 train-test splits. On the y-axis, we provide one
measure of stability – namely, the standard deviation of the feature rankings across the 32
train-test splits. MDI+ generally provides the most stable feature importance rankings for
these top 5 genes. Results from all feature importance methods under study are shown here.
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Figure B.29: Stability of top 5 genes for each drug response prediction model across 32 train-
test splits. The x-axis corresponds to the top 5 features for each method, ranked according
to their average feature ranking across 32 train-test splits. On the y-axis, we provide one
measure of stability – namely, the standard deviation of the feature rankings across the 32
train-test splits. MDI+ generally provides the most stable feature importance rankings for
these top 5 genes. Results from the feature importance methods under study, excluding
MDI-oob and MDA, are shown here.
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Figure B.30: Stability of top 5 genes for each drug response prediction model across 32 RF
fits, trained using different random seeds. The x-axis corresponds to the top 5 features for
each method, ranked according to their average feature ranking across the 32 RF fits. On the
y-axis, we provide one measure of stability – namely, the standard deviation of the feature
rankings across the 32 RF fits. MDI+ generally provides the most stable feature importance
rankings for these top 5 genes. Results from all feature importance methods under study
are shown here.
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Figure B.31: Stability of top 5 genes for each drug response prediction model across 32 RF
fits, trained using different random seeds. The x-axis corresponds to the top 5 features for
each method, ranked according to their average feature ranking across the 32 RF fits. On the
y-axis, we provide one measure of stability – namely, the standard deviation of the feature
rankings across the 32 RF fits. MDI+ generally provides the most stable feature importance
rankings for these top 5 genes. Results from the feature importance methods under study,
excluding MDI-oob and MDA, are shown here.
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Figure B.32: RF prediction performance, measured via test R2, using the top k features
from each feature importance methods across the 24 drugs in the CCLE case study. Results
are averaged across 32 train-test data splits.
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Table B.2: Summary of prediction power using the top 10 features from each feature im-
portance method in the CCLE drug response case study. For each drug, we evaluated the
average test R2 (averaged across 32 train-test splits) from an RF trained using only the top
10 features from each feature importance method. We then rank the feature importance
methods by this average test R2 (1 = best test R2, 5 = worst test R2) and display the
number of drugs, for which that rank was achieved. In particular, taking the top 10 genes
from MDI+ (ridge) gave the best prediction performance for 12 out of the 24 drugs.

Rank MDI+ (ridge) TreeSHAP MDI MDI-oob MDA

1 12 5 3 3 1
2 6 6 6 3 3
3 2 6 6 4 6
4 3 5 5 5 6
5 1 2 4 9 8

Breast Cancer Subtype Prediction

Data preprocessing. We pulled data from the TCGA breast cancer project using the
TCGAbiolinks R package. This gene expression dataset originally consisted of 19,947 genes.
As before, we reduced the number of features under consideration by taking only the top
5000 features with the highest variance.

Results. In Table B.3, we summarize the test prediction performance for RF, RF+ (ridge),
and RF+ (logistic), applied to the TCGA case study. We show the average test classification
accuracy, AUROC, and area under the precision recall curve (AUPRC), averaged across 32
train-test splits. In Table B.4, we list the top 25 gene expression predictors according to
each feature importance method. These genes are ranked according to their average feature
importance ranking across the 32 train-test splits. We also show the RF predictive power of
the top k genes from each feature importance method in Figure B.32. Details and discussion
on this procedure were provided in the previous section. As discussed, correlated features can
make it challenging to directly compare the prediction accuracy using the top k genes from
various feature importance methods. However, it is worth noting that the top 15 features
from MDI+ (ridge) and MDI+ (logistic) yield a higher test prediction performance (in terms of
both AUROC and classification accuracy) as the top 25 features from the other competing
feature importance methods. This improvement in predictive power further supports the
practical utility of MDI+ for feature ranking (Yu and Kumbier, 2020).
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Table B.3: Test prediction performance for various methods, averaged across 32 train-test
splits, on the TCGA case study. Standard errors are shown in parentheses.

Model Classification Accuracy AUROC AUPRC

RF+ (logistic) 0.884 (0.003) 0.981 (0.001) 0.895 (0.004)
RF+ (ridge) 0.873 (0.003) 0.981 (0.001) 0.892 (0.004)

RF 0.861 (0.003) 0.978 (0.001) 0.878 (0.005)

Table B.4: Top 25 most important genes for predicting breast cancer subtype according to
various feature importance methods. Genes are ranked by their average feature importance
ranking across 32 train-test splits (shown in parentheses).

Rank MDI+ (ridge) MDI+ (logistic) MDA TreeSHAP MDI

1 ESR1 (1.91) ESR1 (1.91) ESR1 (4.5) ESR1 (7.62) ESR1 (13.91)
2 FOXA1 (4.25) GATA3 (4.5) GATA3 (6.38) TPX2 (10.41) TPX2 (15.34)
3 FOXC1 (6.12) FOXA1 (5.09) FOXA1 (8.11) GATA3 (19.62) FOXM1 (22.84)
4 GATA3 (6.97) TPX2 (6.81) TPX2 (10.12) FOXM1 (20.06) MLPH (24.97)
5 AGR3 (7.94) AGR3 (10.22) MLPH (10.16) FOXA1 (20.72) FOXA1 (25.66)
6 MLPH (8.16) FOXC1 (12.94) AGR3 (12.94) CDK1 (22.38) GATA3 (30.44)
7 TPX2 (11.03) MLPH (15.69) TBC1D9 (14.22) MLPH (22.53) CDK1 (31.41)
8 TBC1D9 (14.44) FOXM1 (18.12) FOXC1 (15.09) AGR3 (25.88) THSD4 (34.69)
9 FOXM1 (18.66) TBC1D9 (21.03) FOXM1 (19.88) PLK1 (28.47) FOXC1 (35)
10 THSD4 (21.78) THSD4 (23.66) THSD4 (21.28) TBC1D9 (29.84) TBC1D9 (35.44)
11 SPDEF (25.81) CDK1 (24.44) CDK1 (21.77) FOXC1 (30.44) AGR3 (36.44)
12 CA12 (29.44) MYBL2 (25.34) XBP1 (24.88) MYBL2 (33.06) PLK1 (36.81)
13 CDK1 (36.09) RACGAP1 (26.81) KIF2C (27.95) THSD4 (33.53) MYBL2 (45.22)
14 GABRP (36.72) ASPM (27.56) PLK1 (28.58) KIF2C (35.56) KIF2C (46.22)
15 PLK1 (37.97) PLK1 (28.84) MYBL2 (30.97) ASPM (40.59) ASPM (49.72)
16 FAM171A1 (38.59) UBE2C (30.41) GABRP (31.94) GMPS (41.41) GMPS (52.03)
17 ASPM (39.5) SPAG5 (31.81) ASPM (35.97) XBP1 (50.44) SPDEF (58.88)
18 SFRP1 (40.25) GMPS (35.34) FAM171A1 (38.55) CENPF (56.69) FAM171A1 (68.56)
19 XBP1 (40.44) KIF2C (36.03) CA12 (40.16) MKI67 (59.69) CA12 (69.59)
20 MYBL2 (43.12) CA12 (37.31) CDC20 (48.45) CA12 (59.91) UBE2C (69.78)
21 TFF3 (43.12) RRM2 (46.09) SPDEF (53.05) RACGAP1 (60.53) TFF3 (70)
22 KIF2C (44.62) CENPF (46.31) UBE2C (54.27) SPAG5 (61.94) CENPF (70.31)
23 PRR15 (44.88) GABRP (47.59) ANXA9 (55.41) FAM171A1 (63) RACGAP1 (70.94)
24 AGR2 (45) SFRP1 (49.34) C1orf64 (57.22) KIF11 (63.56) SPAG5 (71.81)
25 MIA (45.31) XBP1 (49.78) RACGAP1 (57.97) ANLN (64.28) KIF11 (73.12)
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Figure B.33: RF prediction performance, measured via test AUROC and classification ac-
curacy, using the top k features from each feature importance methods in the TCGA case
study. Results are averaged across 32 train-test data splits.
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Appendix C

A stability-driven protocol for drug
response interpretable prediction
(staDRIP)

C.1 Supplementary Figures

Figure C.1: We apply (A) PCA and (B) hierarchical clustering (with Ward’s linkage) to the
log-transformed RNASeq data set and color the samples by their tumor site. For simplicity,
we use color to distinguish between five prominent tumor sites and show the remaining tumor
sites in grey. We also show the proportion of variance explained by each principal component
in the subplot titles of (A). In both the PC plots and the hierarchical clustering dendrogram,
we can see clusters of tumor sites, illustrating the inherent differences between tumor sites.
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C.2 Supplementary Tables

In Table C.1, for various methods, we summarize the validation accuracy across all 24 drugs
as measured by the average R2 value and WPC-index. In Tables C.2 and C.3, we provide
additional insights into the drug response prediction accuracies at the individual drug level.
In Table C.2, we see that the best model depends on the particular drug, but the kernel
ridge regression model works best on average. In Table C.3, we show the test errors from
the kernel ridge regression fit for each drug separately.

Table C.1: Validation WPC-index and average R2 across all 24 drug response models for
various methods trained on each molecular profile separately and together. Higher values of
R2 and WPC-index indicate better fits.

Validation Set WPC-Index Validation Set R2

Methyl. miRNA Protein RNASeq Integrated Methyl. miRNA Protein RNASeq Integrated

Kernel Ridge 0.600 0.603 0.617 0.631 0.624 0.111 0.104 0.168 0.231 0.200
Elastic Net 0.602 0.606 0.608 0.626 0.625 0.102 0.124 0.126 0.183 0.162
Lasso 0.597 0.605 0.609 0.620 0.620 0.117 0.105 0.121 0.172 0.176
Lasso (ESCV) 0.600 0.601 0.609 0.623 0.618 0.114 0.113 0.129 0.195 0.141
RF 0.599 0.594 0.606 0.626 0.622 0.124 0.088 0.123 0.214 0.196
X-VAE – – – – 0.617 – – – – 0.188
BMTMKL – – – – 0.613 – – – – 0.179

Table C.2: For each molecular profile (or the integrated profile) used for training, we count
the number of drugs (out of 24) for which each method performed the best and gave the
highest validation R2 compared to its six other competitors.

Methyl. miRNA Protein RNASeq Integrated

Kernel Ridge 7 5 16 12 6
RF 9 5 2 6 5
Elastic Net 1 8 1 1 2
Lasso (ESCV) 4 4 3 4 0
Lasso 3 2 2 1 5
X-VAE – – – – 2
BMTMKL – – – – 2
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Table C.3: Test error for each drug using the RNASeq-based kernel ridge regression model

Drug R2 PC-Index

17-AAG 0.000 0.574
AEW541 0.034 0.558
AZD0530 0.037 0.560
AZD6244 0.425 0.675
Erlotinib 0.254 0.615
Irinotecan 0.307 0.644
L-685458 0.210 0.624
LBW242 -0.001 0.511
Lapatinib 0.208 0.607
Nilotinib 0.258 0.590
Nutlin-3 0.022 0.549

PD-0325901 0.543 0.701
PD-0332991 0.218 0.596
PF2341066 0.091 0.564

PHA-665752 0.115 0.559
PLX4720 0.305 0.585
Paclitaxel 0.369 0.670

Panobinostat 0.446 0.679
RAF265 0.215 0.625
Sorafenib 0.242 0.567
TAE684 0.024 0.576
TKI258 0.183 0.585

Topotecan 0.240 0.630
ZD-6474 0.155 0.591
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Figure C.2: Left: Distribution of features in each of the four molecular profiles. Right:
Distribution of the drug responses for each of the 24 drugs.
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Table C.4: Stable protein and RNAseq signatures. A feature is included if it is among the
top 10 most stable features under 3 different machine learning models (i.e., elastic net, Lasso
(ESCV), and random forests). The stability of the features are computed from the PCS
inference framework in staDRIP. Blank cells indicate that no features appeared among the
top 10 most stable features for all three models.

Drug name Protein signature RNAseq Signature

17-AAG Bax, p53, Caspase-7, eIF4E CTD, AP2S1, BZW2
AEW541 Akt, Smad1, p27, PTEN, RAD51 B4GALT3, SEMA3B
AZD0530 p38, c-Kit HPGD
AZD6244 PI3K-p85, TFRC, Bax SPRY2, RP11, LYZ, DUSP6, PRSS57
Erlotinib EGFR, Beclin, P-Cadherin PIP4K2C, SEC61G
Irinotecan MDMX_MDM4, Src
L-685458 YAP, VEGFR2, Src
LBW242 ASNS MRPL24
Lapatinib HER2, HER3, EGFR, Rab25, Heregulin STARD3
Nilotinib STAT5, c-Kit, SHP-2, Src, p27
Nutlin.3 Bcl-2, Bax

PD-0325901 MEK1, Bax, TFRC, PI3k SPRY2, DUSP6, ETV4
PD-0332991 Bcl-2, MDMX_MDM4, Src
PF2341066 c-Met CAPZA2

PHA-665752 MEK1, c-Met FMNL1
PLX4720 MEK1, Bax, PREX1, Beclin FABP7
Paclitaxel Src, beta-Catenin ORMDL2

Panobinostat VEGFR2, Src
RAF265 PI3K-p85, FOXO3a, eEF2K RETN
Sorafenib Bcl-2, Src
TAE684 PTEN, Akt, p70S6K, Bcl-2 H1FX
TKI258 CD49b, C-Raf

Topotecan c-Met OSGIN1
ZD.6474 c-Kit, STAT5-alpha

Table C.5: Most stable protein associated with each drug, as identified by the elastic net,
along with preclinical evidence that supports the association between the listed protein and
drug sensitivity.

Drug Protein Supporting Literature Drug Protein Supporting Literature

17-AAG p53 Naito et al. (2010) PD-0332991 Bcl-xL Chen and Pan (2017)
AEW541 Akt Attias-Geva et al. (2011) PF2341066 PEA15 –
AZD0530 p38 Yang et al. (2010) PHA-665752 MEK1 –
AZD6244 CD20 – PLX4720 MEK1 Emery et al. (2009)
Erlotinib P-Cadherin – Paclitaxel Src Le and Bast (2011)
Irinotecan RAD51 Shao et al. (2016) Panobinostat Src –
L-685458 VEGFR2 – RAF265 PI3K-p85 Mordant et al. (2010)
LBW242 Caspase-7 – Sorafenib 14-3-3 epsilon Wu et al. (2015)
Lapatinib HER2 Esteva et al. (2010) TAE684 Akt –
Nilotinib p27 Liu et al. (2011) TKI258 14-3-3 epsilon –
Nutlin.3 Bcl-2 Drakos et al. (2011) Topotecan 14-3-3 epsilon –

PD-0325901 MEK1 Henderson et al. (2010) ZD-6474 c-Kit Nishioka et al. (2007)
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Appendix D

Contribution of the microbiome to a
metabolomic signature predictive of risk
for pancreatic cancer

D.1 Supplementary Figures
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Figure D.1: Distribution plots for detected microbial-related metabolites across analytical
batches in the PLCO specimen set. X-axis represents individual specimens.
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Figure D.2: Odds ratios and adjusted odds ratios for individual microbial-related metabolites
for risk of pancreatic cancer in the Training Set. Sex, age, smoking status, and BMI were
included as covariates in adjusted odds ratios.
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Figure D.3: Spearman correlation heatmap for microbiome-related metabolites in the Train-
ing Set.
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D.2 Supplementary Tables

Table D.1: Patient and tumor characteristics for the newly-diagnosed PDAC cohort.
DF/BWCC: Dana-Farber/Brigham and Women’s Cancer Center; BIDMC: Beth Israel Dea-
coness Medical Center; CUMC: Columbia University Medical Center. AJCC: American Joint
Committee on Cancer, PDAC: Pancreatic ductal adenocarcinoma, BMI: Body mass index.
aPatients who underwent up-front surgical resection. bPatients who received neoadjuvant
treatment and then underwent surgical resection. cThe median (IQR) follow-up time was
15.0 (7.2-23.2) months for patients without cancer recurrence.

Variable PDAC Case
(N=99)

Chronic Pancreatitis
(N=50)

Healthy Control
(N=100)

No. % No. % No. %
Institution
DF/BWCC 69 70% 30 60% 94 94%

BIDMC 15 15% 15 30% 0 0%
CUMC 15 15% 5 10% 6 6%

Age (year), median (IQR) 69.8 (62.5-74.8) 65.4 (54.7-72.2) 63.7 (55.7-70.6)
Gender

Male 51 52% 33 66% 51 51%
Female 48 48% 17 34% 49 49%
Race
White 94 95% 42 84% 84 86%

Black/African-American 0 0% 5 10% 5 5%
Asian 1 1% 0 0% 2 2%
Other 4 4% 3 6% 7 7%

Blood collection year
2015-2016 19 19% 2 4% 0 0%
2017-2019 80 81% 48 96% 100 100%

Smoking Status
Current Smoker 6 6% 11 22% 4 4%

Past smoker 50 51% 17 34% 42 42%
Never smoker 43 43% 22 44% 54 54%

BMI (kg/m2), Meidan (IQR) 27.4 (24.0-30.0) 25.0 (22.8-27.6) 27.5 (24.3-32.0)
Diabetes

No 64 65% 23 46% 93 93%
Yes 35 35% 27 54% 7 7%

Etiology of chronic pancreatitis
Alcohol - - 16 32% - -

Autoimmune - - 2 4% - -
Congenital anatomical

variant - - 3 6% - -

Duct stricture or stones - - 7 14% - -
Idiopathic - - 21 42% - -

Other - - 1 2% - -
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Table D.1: (continued)

Variable PDAC Case
(N=99)

Chronic Pancreatitis
(N=50)

Healthy Control
(N=100)

No. % No. % No. %
AJCC 8th edition
staging pTNMa

T0-2N0M0 15 24% - - - -
T3-4N0M0 2 3% - - - -
T1-4N1M0 28 45% - - - -
T1-4N2M0 17 28% - - - -

AJCC 8th edition
staging ypTNMb

T0-2N0M0 24 64% - - - -
T3-4N0M0 1 3% - - - -
T1-4N1M0 7 19% - - - -
T1-4N2M0 5 14% - - - -

PDAC recurrence
Noc 56 57% - - - -
Yes 43 43% - - - -

Table D.2: Selected microbial-associated metabolites and corresponding model coefficients
in LASSO regression.

Development Set
Training Set Validation Set Set-Aside Test Set

Non-cases Cases Non-cases Cases Non-cases Cases
Total 494 102 142 33 225 37
Gender, N (%)
Female 204 (41) 41 (40) 61 (43) 17 (52) 91 (40) 13 (35)
Male 290 (59) 61 (60) 81 (57) 16 (48) 134 (60) 24 (65)
Age At
Randomization,
N (%)
<= 59 116 (23) 21 (21) 22 (15) 11 (33) 45 (20) 5 (14)
60-64 108 (22) 24 (24) 34 (24) 3 (9) 63 (28) 14 (38)
65-69 192 (39) 41 (40) 50 (35) 9 (27) 79 (35) 13 (35)
>= 70 78 (16) 16 (16) 36 (25) 10 (30) 38 (17) 5 (14)
Race, N (%)
White 463 (94) 99 (97) 107 (75) 24 (73) 211 (94) 33 (89)
Black 22 (4) 3 (3) 2 (1) 1 (3) 6 (3) 2 (5)
Other 9 (2) 0 (0) 33 (23) 8 (24) 8 (4) 2 (5)
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Table D.3: Stability check of the LASSO regression using perturbed training data and eval-
uated on the Validation Set for the 3-marker microbial panel. †Age, sex, BMI, and smoking
status were included as covariates in adjusted odds ratios (ORs).

Perturbations AUC (95% CI) Adj OR†

Lasso regression
with 3 selected

features

2 randomly selected centers 0.63 (0.44-0.82) 1.37 (0.89-2.09)
2 randomly selected centers 0.73 (0.60-0.86) 2.33 (1.52-3.77)
2 randomly selected centers 0.54 (0.41-0.68) 1.25 (0.90-1.73)
2 randomly selected centers 0.55 (0.45-0.63) 1.27 (0.92-1.72)
3 randomly selected centers 0.64 (0.54-0.73) 1.65 (1.23-2.24)
300 random samples 0.60 (0.51-0.68) 1.40 (1.02-1.90)

Table D.4: Selected non-microbial metabolites. †Age, sex, BMI, and smoking status were
included as covariates in adjusted odds ratios (ORs); odds ratio per unit SD increase.
‡Benjamini and Hochberg-adjusted p-values. £Raw p-values.

Training - 5 centers Validation- 2 centers

Name Adj. Odds
Ratio†

P-value‡

(FDR)
Adj. Odds

Ratio† P-value£

Cholesterol glucuronide 1.735 <0.001 1.72 0.006
Galactosamine 1.749 <0.001 1.514 0.035

2-Hydroxyglutarate 1.857 <0.001 1.738 0.006
Erythritol 1.688 <0.001 1.532 0.03
Glucose 1.744 <0.001 1.662 0.018
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Table D.6: Performance of different learning models based on non-microbial metabolites in
the PLCO Validation Set. †Age, sex, BMI, and smoking status were included as covariates
in adjusted odds ratios (ORs); odds ratio per unit SD increase.

Model Hyperparameters AUC
(95% CI)

Adj OR†

(95% CI)
Logistic regression - 0.72 (0.63-0.81) 2.10 (1.04-2.90)
Logistic regression
with ridge (L2)
regularization

Penalty weight = 0.18 0.69 (0.58-0.78) 1.74 (1.20-2.25)

Logistic regression
with LASSO (L1)
regularization

Penalty weight = 0.01, num-
ber of selected features = 4

0.71 (0.54-0.73) 2.08 (0.94-2.83)

Iterative Random
Forest

Number of iterations = 3 0.60 (0.49-0.72) 1.44 (0.90-1.90)

Deep neural net-
work model

Number of cross-validation
folds = 6, hidden layers = 3
with 32 nodes in each layer

0.59 (0.48-0.68) 1.43 (0.95-2.10)

GBM Number of trees = 42, max
depth= 5

0.58 (0.46-0.67) 1.30 (0.93-1.87)

Auto ML Selected model = randomized
trees

0.66 (0.52-0.72) 1.85 (1.50-2.02)

Table D.7: Stability check of the 5-marker non-microbial panel using perturbed training
data and evaluated on the PLCO Validation Set. †Age, sex, BMI, and smoking status were
included as covariates in adjusted odds ratios (ORs); odds ratio per unit SD increase.

Perturbations AUC (95% CI) Adj OR†

Logistic regression
with 5 selected

features

2 randomly selected centers 0.71 (0.52-0.87) 2.10 (1.10-2.94)
2 randomly selected centers 0.74 (0.61-0.91) 2.33 (1.42-4.10)
2 randomly selected centers 0.69 (0.59-0.80) 2.11 (0.90-2.73)
2 randomly selected centers 0.67 (0.45-0.85) 1.90 (1.12-2.72)
3 randomly selected centers 0.60 (0.52-0.68) 1.65 (1.23-2.24)

300 random samples 0.64 (0.55-0.71) 1.73 (1.52-2.20)
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Table D.8: Performance of the 5-marker non-microbial panel in the PLCO set-aside Test
Set and the entire specimen set. †Age, sex, BMI, and smoking status were included as
covariates in adjusted odds ratios (ORs); odds ratio per unit SD increase. N0: number
of non-cases. N1: number of cases. aNon-microbial-related metabolite signature includes
cholesterol glucuronide, hydroxyglutarate, galactosamine, glucose, and erythritol.

Set-aside Test Set
5-marker non-microbial panela

Time to Dx Sample Size AUC
(95% CI)

Adj. OR†

(95% CI) P-value

[0-5) N0 = 225
N1 = 37

0.74
(0.65 - 0.83)

2.72
(1.83 - 4.24) <0.001

[0-2) N0 = 225
N1 = 24

0.82
(0.72 - 0.92)

4.03
(2.41 - 7.32) <0.001

[2-5) N0 = 225
N1 = 13

0.59
(0.44 - 0.72)

1.32
(0.71 - 2.41) 0.36

Entire Set (Development + Set-aside Test Set)
5-marker non-microbial panela

Time to Dx Sample Size AUC
(95% CI)

Adj. OR†

(95% CI) P-value

[0-5) N0 = 861
N1 = 172

0.74
(0.67 - 0.77)

2.59
(2.13 - 3.18) <0.001

[0-2) N0 = 861
N1 = 92

0.8
(0.75 - 0.85)

3.69
(2.83 - 4.91) <0.001

[2-5) N0 = 861
N1 = 80

0.65
(0.59 - 0.72)

1.74
(1.37 – 2.21) <0.001
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