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Integrated stem cell signature and cytomo-
lecular risk determination in pediatric acute
myeloid leukemia

Benjamin J. Huang 1,2 , Jenny L. Smith 3, Jason E. Farrar 4, Yi-ChengWang5,
Masayuki Umeda6, Rhonda E. Ries 3, Amanda R. Leonti3, Erin Crowgey7,
Scott N. Furlan3,8, Katherine Tarlock3,8, Marcos Armendariz9, Yanling Liu10,
Timothy I. Shaw10, Lisa Wei11, Robert B. Gerbing5, Todd M. Cooper8,
Alan S. Gamis12, Richard Aplenc13, E. Anders Kolb7, Jeffrey Rubnitz 14, Jing Ma6,
Jeffery M. Klco 6, Xiaotu Ma 10, Todd A. Alonzo15, Timothy Triche Jr.16 &
Soheil Meshinchi3,8

Relapsed or refractory pediatric acute myeloid leukemia (AML) is associated
with poor outcomes and relapse risk prediction approaches have not changed
significantly indecades. Tobuild a robust transcriptional risk predictionmodel
for pediatric AML, we perform RNA-sequencing on 1503 primary diagnostic
samples. While a 17 gene leukemia stem cell signature (LSC17) is predictive in
our aggregated pediatric study population, LSC17 is no longer predictive
within established cytogenetic and molecular (cytomolecular) risk groups.
Therefore, we identify distinct LSC signatures on the basis of AML cytomole-
cular subtypes (LSC47) that were more predictive than LSC17. Based on these
findings, we build a robust relapse prediction model within a training cohort
and then validate it within independent cohorts. Here, we show that LSC47
increases the predictive power of conventional risk stratification and that
applying biomarkers in a manner that is informed by cytomolecular profiling
outperforms a uniform biomarker approach.

Acute myeloid leukemia (AML) remains a therapeutic challenge with
high mortality rates despite intensive and myeloablative therapies1,2.
Structural and sequence alterations have been linked to outcomes in
AML and have been used for risk-based therapy allocationwithmodest
success3–10. However, given the vast heterogeneity of AML, conven-
tional cytogenetic andmolecular (cytomolecular) biomarkers have not
yielded a robust prognostic model to date. Specifically, nearly one-
third of pediatric patients classified as “low risk” ultimately relapse.
Conversely, approximately one-third of those in “high risk” categories
have favorable outcomes. An AML study in adults previously identified
47 unique genes enriched in leukemia stem cell populations (LSC47)
and extracted an optimal 17 gene signature (LSC17) that was highly
prognostic across five independent cohorts comprised of adult
patients with diverse AML subtypes (n = 908)11. We hypothesized that

incorporating a similar scoring system in pediatric AML would lead to
improved prognostic risk models.

Here, we describe how LSC17 and related LSC signatures impact
risk prediction for de novo AML diagnosed in children, adolescents,
and young adults (n = 1503). While LSC17 has been previously studied
in pediatric cohorts12,13, these analyses were limited by relatively small
samples sizes (n = 371 and n = 368, respectively) that precluded robust
comparisons with established cytomolecular risk models and other
biomarkers. Our data supports a significant association between LSC17
and cytomolecular risk stratification and underlying gene fusions.
Additionally, we demonstrate that a “one size fits all” approach does
not capture the heterogeneity across a large cohort of pediatric AMLs
and fails to leverage the similarities within cytomolecular subgroups
that drive leukemia biology, biomarker statistical significance, and
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ultimately survival. Additionally, we propose a robust risk prediction
model that applies a pediatric LSC signature (LSC47) based on the 47
upregulated LSC gene set and informed by underlying cytomolecular
alteration, and we demonstrate that this integrated approach is
superior to either LSC17 or cytomolecular risk stratification alone.

Results
LSC17 in pediatric AML
To assess the impact of age on LSC17 scoreprediction, we analyzed the
TCGA AML patient cohort. While LSC17 scores were predictive of
survival for patients diagnosed at less than 60 years of age, they were
not predictive for those diagnosed at greater than or equal to 60 years
of age (Fig. 1a–d). While consistent with previous observations that
both age and LSC17 scores retained significant prognostic value in
multivariable survival analysis of adultAML11, thesedata also suggested
that itwouldbe valuable to systematically investigate LSC17 in younger
patients (diagnosed at less than 30 years of age). Therefore, we har-
nessed RNA-sequencing performed in diagnostic AML samples from
1,503 patients enrolled in one of four clinical trials (Fig. 1e) to perform
gene expression and LSC17 score analyses. We also divided our study
population into training (n = 753) and validation (n = 750) cohorts
(Table 1) stratified based on fusion status to generate a risk predication
model and then subsequently validate the model, respectively. In
aggregate, patients with a high LSC17 score had an event free survival
(EFS) of 36.7 ± 3.6% at 5 years from diagnosis compared to 55.1 ± 3.7%
for those with low LSC17 scores (p <0.0001) (Fig. 2a). LSC17 scores
were also associated with adverse overall survival (OS): 51.9 ± 3.9%
versus 73.7 ± 3.4% (p <0.0001) (Fig. 2b). We then evaluated
LSC17 scores in the context of established cytomolecular risk

stratification and found that LSC17 scores were no longer predictive of
survival within low, standard, or high-risk groups (Fig. 2c, d). This
observation is also true if we reassigned LSC17 category (low versus
high) based on the median score within a given cytomolecular risk
group (Supplementary Fig. 1). Additionally, the ability for LSC17 to
predict outcome decreases with increasing cytomolecular risk strati-
fication complexity that occurred over a series of clinical trials con-
ducted over the past 15 years (Fig. 2e). Since age of diagnosis plays an
important role for LSC17 within the TCGA AML patient cohort (Fig. 1a),
we asked whether age-based differences play a role within our pedia-
tric cohort. Categorizing patients based on age (children, ages 0–10
years; adolescents, ages 10–18 years; and young adults, ages 18–30
years) resulted in similar findings as Fig. 2a–d. Specifically, while
LSC17 scores were prognostic for EFS and OS in every age category,
they were no longer predictive of survival within established cytomo-
lecular risk groups (Supplementary Figs. 2–4).

Gene fusions are linked to distinct transcriptional signatures
Since cytomolecular risk stratification in pediatric AML is driven, in
large part, by recurring gene fusions, we then analyzed the impact of
fusions on leukemia stem cell signatures. We grouped patients based
on the presence of one of five gene fusion classes, which represent
55.0% of the AMLs within the overall cohort (RUNX1-RUNX1T1, CBFB-
MYH11, KMT2A partner fusions, NUP98 partner fusions, and CBFA2T3-
GLIS2) (Fig. 2f). In this analysis, LSC17 scores were only predictive of
survival in the KMT2A and “Other or No Fusion” (defined as not con-
taining one of the five gene fusion classes) AML subgroups, but not
predictive of survival in the RUNX1-RUNX1T1, CBFB-MYH11,NUP98, and
CBFA2T3-GLIS2 subgroups (Supplementary Fig. 5). A core subset of

Fig. 1 | LSC17 in TCGA AML based on age. a–d Kaplan–Meier estimates for the
probability of event free survival (EFS) andoverall survival (OS) inpatients fromThe
Cancer Genome Atlas (TCGA) AML cohort segregated based on age.
a, b LSC17 scores predict survival in younger adults (<60 years of age).
c, d Conversely, LSC17 scores do not discriminate between favorable and unfa-
vorable outcomes in older adults (≥60 years of age). Survival differences were
determined using the log-rank test (two-sided and without multiple-testing

adjustments). e Schematic diagram for our experimental design. Our data set
consists of primary samples that were obtained at the time of diagnosis after
enrollment in one of four clinical trials listed in the left panel (black). Specific data
analyses and associated figures are noted in the bottom panel (gray). Samples
underwent either polyadenylation enrichment or ribosomal RNA depletion.
Stratified randomization was performed based on fusion category to generate
two cohorts for risk model training and validation.
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genes identified using the nearest shrunken centroids approach14

clearly discriminates gene fusion positive AMLs from one another
(Fig. 2g and Supplementary Fig. 6) and 47 LSC upregulated genes
identified by Ng, et al.11 (LSC47) are enriched among more predictive
fusion class genes (Fig. 2h). Additionally, gene fusionpositive AMLs are
enriched in transcriptional signatures that mirror distinct hemato-
poietic stem cell and myeloid progenitor cell population states (Fig. 2i
and Supplementary Fig. 7), which is consistent with previous
findings15–24. Specifically, CBFA2T3-GLIS2 AMLs expressed mega-
karyocytic transcriptional signatures15–17; NUP98 partner fusion AMLs
expressed erythroid transcriptional signatures18,19, CBFB-MYH11 and
KMT2A partner fusion AMLs expressed myelomonocytic transcrip-
tional signatures20–22, and RUNX1-RUNX1T1 AMLs expressed myelo-
blastic transcriptional signatures23,24.

LSC17 Scores Cluster Based on Fusion
Since gene fusions are linked to distinct transcriptional sig-
natures, we next determined the relationship between
LSC17 scores and AML gene fusions. Intriguingly, we found that
LSC17 scores significantly cluster within fusion classes (Fig. 2j) and
that median LSC17 scores for a given fusion class closely corre-
lates with survival based on fusion status (Fig. 2k). Additionally,
while KMT2A fusion positive AMLs are associated with a large
variance, LSC17 scores also significantly cluster based on the
associated KMT2A gene partners, FLT3 internal tandem duplica-
tion (ITD) status, and cytomolecular risk group (Supplemen-
tary Fig. 8).

Cytomolecular-specific LSC signatures
Hierarchical clustering on LSC47 within our cohort differentiated the
five core fusion classes (Fig. 3a). The same study11 that experimentally
identified LSC47, which represents 47 genes differentially upregulated
in LSC+ populations, also identified a broader gene set (LSC104) that
also includes genes that are differentially downregulated in LSC+
populations. Repeating hierarchical clustering on LSC104 within our
cohort is neither more sensitive nor specific in differentiating fusion
classes (Supplementary Fig. 9). Based on our LSC47 findings, we asked
whether LSCgene expressiondata couldbeutilized to generate amore
robust risk classification schema in the context of specific structural
variants. The Children’s Oncology Group (COG) study population was
divided into training (n = 753) and validation (n = 750) cohorts strati-
fied based on fusion status (RUNX1-RUNX1T1, CBFB-MYH11, KMT2A,
NUP98, CBFA2T3-GLIS2, and Other or No Fusion) (Fig. 1e and Table 1).
To develop more predictive biomarkers related to stemness, we used
LSC47 to perform the same analysis that generated the original
LSC17 signature. Specifically, we performed linear regression based on
the LASSO algorithm to fit a Cox regression model using LSC47 within
our training cohort. This analysis revealed a distinct and more pre-
dictive gene signature for our training cohort, which we designate
LSC47 (Fig. 3b, c and Supplementary Table 1). Performing the same
analysis within each fusion class, we again identified distinct LSC gene
signatures for each class (Fig. 3d). Since gene expression variances and
t-tests differed based on fusion class (Fig. 3e), we performed internal
cross validation analysis within the training cohort fusion subgroups
by iteratively and randomly dividing subgroups in half and repeating
the LASSO Cox regression modeling analysis to determine whether
iterative gene signatures remain predictive in the non-modeled half
(Supplementary Fig. 10). LSC gene signatures specifically remained
predictive within for KMT2A and Other or No Fusion AML subgroups
(Fig. 3f, g) and the associated coefficients are included in Supple-
mentary Table 1.

Hierarchical clustering on LSC47 within AMLs within the Other or
NoFusionAML subgroup resulted in additional cytomolecular subtype
clustering in AMLs with NPM1, CEBPA, or FLT3-ITD mutations (Fig. 4a).
Again, performing LASSOCox regression using the LSC47 and internal
cross validation analysis within these subsets yielded predictive sig-
natures for CEBPA mutated, FLT3-ITD, and Other Subtype (defined as
not containing a core gene fusion, CEBPA mutation, or FLT3-ITD)
subgroups (Fig. 4b). Based on previous leukemia biology studies,
notable genes included in these gene signatures that are not included
in LSC17 are HOXA525–28, HOXA625,29, HOXA925,28–31, FLT332–35, GATA236,37,
MYCN38,39, and GUCY1A340,41 (Fig. 4c).

To differentiate favorable versus less favorable risk core-
binding factor (CBF) AMLs (i.e., RUNX1-RUNX1T1 and CBFB-MYH11),
we implemented previously published biomarkers. For RUNX1-
RUNX1T1 AMLs, a previously described RUNX1 transcriptional
signature42 was predictive within our training cohort (Supplemen-
tary Fig. 11). For CBFB-MYH11 AMLs, fusion breakpoint location21

nearly reached significance in prediction of EFS within our training
cohort (Supplementary Fig. 11) and reached significance within our

Table 1 | Patient characteristics

Characteristic Training
cohort (n = 753)

Validation
cohort (n = 750)

P-value*

Sex

Female 359 (47.7) 370 (49.3) 0.520

Male 394 (52.3) 380 (50.7)

Age

<3 years 175 (23.2) 174 (23.2) 0.985

3–5 years 60 (8.0) 63 (8.4) 0.760

5–10 years 134 (17.8) 145 (19.3) 0.443

10–18 years 323 (42.9) 318 (42.4) 0.846

>18 years 61 (8.1) 50 (6.7) 0.288

WBC Count

<100,000/µL 594 (79.0) 586 (78.1) 0.686

≥100,000/µL 158 (21.0) 164 (21.9)

Unknown 1 0

Cytomolecular risk group

Low 291 (38.6) 289 (38.5) 0.964

Standard 212 (28.2) 197 (26.3) 0.411

High 250 (33.2) 264 (35.2) 0.414

MRD at end of induction I

No 462 (68.8) 468 (69.0) 0.796

Yes 210 (31.3) 210 (31.0)

Unknown 81 72

SCT in CR1

No 650 (86.3) 659 (87.9) 0.372

Yes 103 (13.7) 91 (12.1)

CEBPA mutation

No 713 (94.7) 707 (94.3) 0.721

Yes 40 (5.3) 43 (5.7)

FLT3-ITD mutation

No 609 (80.9) 602 (80.3) 0.765

<0.1 26 (3.5) 28 (3.7) 0.770

≥0.1 118 (15.7) 120 (16.0) 0.861

Fusion category

RUNX1-RUNX1T1 101 (13.4) 101 (13.5) 0.976

CBFB-MYH11 82 (10.9) 82 (10.9) 0.978

KMT2A 158 (21.0) 157 (20.9) 0.981

NUP98 60 (8.0) 59 (7.9) 0.942

CBFA2T3-GLIS2 14 (1.9) 13 (1.7) 0.854

Other or no fusion 338 (44.9) 338 (45.1) 0.944

Demographic and molecular characteristics of our study cohort. Abbreviations includeWBC
white blood cells, CNS central nervous system, MRDminimal residual disease, SCT stem cell
transplant, CR1 first complete remission, ITD internal tandem duplication, KD kinase domain. P-
values were based on the chi-squared test.
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previously published results when the CBFB-MYH11 AML cohort was
analyzed in aggregate43.

Integrated stem cell signature and cytomolecular risk determi-
nation model
To build a robust risk prediction model for pediatric AML, we
aggregated LSC47 signatures with the “best in class” biomarkers
within each cytomolecular subtype (Fig. 5a). Since five-year EFS
probabilities for NUP98 and CBFA2T3-GLIS2 AMLs are less than 20%
in our cohort and previous studies15,17,44, no further risk stratification
was attempted. Additional cytomolecular subclasses within Other
or No Fusion AMLs class were assigned to high-risk with no further
risk stratification based on previous studies: AMLs with monosomy
7 or deletion 5q45–47, MLLT10 partner fusions48, or ETV6 partner
fusions and deletions49. Finally, LSC47 was applied to KMT2A fusion
positive, CEBPA mutated, FLT3-ITD and Other Subtype AMLs as
summarized in Figs. 3 and 4. These cytomolecular based biomarkers
were then combined to build a robust risk determination model
(Fig. 5d and Supplementary Fig. 12) that was then subsequently
validated in our independent validation cohort (Fig. 5e and Sup-
plementary Fig. 13).

We then compared our final LSC47 model with previous risk
stratification models within our pediatric AML cohort. Utilizing con-
temporary cytomolecular risk stratification to classify our entire
cohort into low, standard, and high-risk cytomolecular groups
revealed EFS proportions of 65.8 ± 4.0, 42.4 ± 5.0, and 26.2 ± 4.0%,
respectively (Fig. 5b). Segregating the same cohort into terciles based
on LSC17 scores results in low, standard, and high-risk LSC groupswith
associated EFS of 59.5 ± 4.6, 46.7 ± 4.7, and 31.6 ± 4.3%, respectively
(Fig. 5c). Finally, our combined LSC47 model identified low, standard,
and high-risk LSC47 groupswith associated EFS of 81.4 ± 8.7, 57.2 ± 5.6,
and 25.6 ± 5.0% for the training cohort (Fig. 5d). An independent ana-
lysis of the validation cohort confirmed these findings with EFS of
75.0 ± 9.2, 54.7 ± 5.7, and 28.0 ± 5.2% for low, standard, and high-risk
patients, respectively (Fig. 5e).

We then performed univariable survival analysis within
our validation cohort based on the following covariates: age;
white blood cell count; presence of FLT3-ITD, NPM1 mutation, or
CEBPA mutation; LSC17 score; LSC47 score; and fusion gene
partner (Supplementary Table 2). Covariates that were significant
(p-value ≤ 0.05) were then combined to perform multivariable
survival analysis (Supplementary Table 3). Whereas LSC17 was no

Fig. 2 | LSC17 inpediatricAML.Kaplan–Meier estimates for theprobability of a EFS
and b OS in patients within our entire cohort (n = 1503) stratified based on low
versus high LSC17 scores. LSC17 scores significantly predict survival for the entire
non-stratified cohort. Conversely, LSC17 scores do not improve upon previously
established risk stratification models based on cytogenetic and molecular altera-
tions in regards to either c EFS or d OS. e Hazard ratios with 95% confidence
intervals for EFS and OS as a function of LSC17 risk group (high versus low) across
historical clinical trial cytomolecular risk stratification schema (n = 1503 patients).
f Driver gene fusion frequencies within our entire study cohort (n = 1503).
g Uniformmanifold approximation and projection (UMAP) performed on selected
genes based on the nearest shrunken centroids approach clearly discriminates
fusion classes. h Gene set enrichment analysis on a 47 LSC gene signature reveals
that LSC genes are significantly enriched among fusion-predictive genes. GSEA
p-values are calculated by permutation (n = 1000) across the gene set of interest

combined with every gene set within the Broad Institute Molecular Signature
Database v6.2. i Normalized enrichment scores based on hematopoietic hier-
archical cell populations reveal that gene fusion transcriptional signatures align
with distinct hematopoietic stem cell and myeloid progenitor cell population
states. NES normalized enrichment score. j Box plot of LSC17 scores categorized
based on cytogenetic or fusion status reveal that LSC17 scores significantly corre-
late with underlying alteration (n = 1503 patients). Box plot data are presented as
median values with hinges corresponding to the 25th or 75th percentiles and
whiskers corresponding to 1.5 times the inter-quartile range. P-values were calcu-
lated based on two-sided t-tests. Source data are provided as a Source Data file.
k Survival outcomes stratified based on fusion status. Survival differences were
determined using the log-rank test (two-sided and without multiple-testing
adjustments).
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longer significant in multivariable analysis, LSC47 and other
additional cytomolecular-specific biomarkers either retained sig-
nificance or were superior to LSC17.

We then tested our LSC47model on an independent validation
cohort. We harnessed RNA-sequencing performed in diagnostic
AML samples from 212 patients enrolled on St. Jude’s AML08
clinical trial50. We performed gene expression, LSC17 score,

and LSC47 model analyses. Similar to our previous results,
LSC17 scores cluster within fusion classes and is not prognostic in
the context of established cytomolecular risk factors (Supple-
mentary Fig. 14). Conversely, LSC47 significantly improves upon
LSC17 stratification and remains predictive of EFS within the
KMT2A partner fusion, CEBPA mutated, and FLT3-ITD subgroups
(Supplementary Fig. 14).
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Discussion
This study demonstrates that a 47 gene LSC signature (Supplementary
Table 2) enhances risk prediction in the context of conventional
cytomolecular risk stratification and retains predictive power in mul-
tivariable analysis. We found that LSC17 remains an important tran-
scriptional signature that tracks closely with pediatric AMLs based on
underlying fusion status, but that distinct LSC signatures informed by
cytomolecular status better predict survival amongpatientswithAMLs
characterized by KMT2A fusions, CEBPA mutations, FLT3-ITDs, and
Other Subtype AMLs (with other or no identifiable cytomolecular
alteration).

Efforts to advance our understanding of molecular alterations in
pediatric AML3,4,15,17,22,44,51 have revealed profound heterogeneity and
improved understanding for howmutations and structural alterations
impact treatment outcome. In the current study, we revealed that
these molecular alterations share a close relationship with LSC gene
expression, wherein LSC genes can accurately discriminate between
AMLmolecular subtypes on the basis of unsupervised clustering alone.
While intriguing, however, this same finding best explains why LSC17
does not augment traditional cytomolecular risk stratification in
pediatric AML. Nevertheless, by harnessing the original LSC gene set
reported by Ng et al.11, we found that LSC signatures based on under-
lying molecular alterations are more impactful than a “one size fits all”
biomarker approach and remain prognostic in the setting of even
complex cytomolecular risk stratification (Fig. 5). CBFB-MYH11 fusion
breakpoint location is another prime example that emphasizes the
importance of identifying and applying biomarkers on the basis of
underlying molecular alteration.

LSC17 has been previously studied within pediatric AML
cohorts12,13 and a six gene subset signature has previously been pro-
posed (LSC6)13. While LSC6 represents a promising transcriptional
biomarker, we performed parallel analysis on LSC6 within our cohort,
as was shown for LSC17 (Fig. 2a–d) and our results suggest that
LSC6 shares similar drawbacks as LSC17. Specifically, while high
LSC6 scores were associatedwith adverse EFS andOSwithin our entire
cohort, LSC6 scores were no longer predictive of survival when eval-
uated within the context of established cytomolecular risk stratifica-
tion—with EFS in standard-risk patients being a notable exception
(Supplementary Fig. 15). Furthermore, LSC6 scores also cluster within
fusion classes (Supplementary Fig. 15) similar to LSC17 scores (Fig. 2j).
These findings overall suggest that all-encompassing transcriptional
signatures that are agnostic to pre-existing cytomolecular stratifica-
tion are at risk of encoding overlapping prognostic information with
traditional biomarkers (e.g.,mutations, copy number alterations, etc.),
particularly those that influence transcriptional states (e.g., fusions).

The prognostic implication of KMT2A fusion partners has been
well described by our group and others22,52,53. Notably, the LSC47 gene
signature performs well in multivariable survival analysis when com-
pared with KMT2A fusion partner risk (validation cohort analysis
included in Supplementary Tables 2 and 3). Additionally, LSC47 and
KMT2A fusion partner risk both remain significant when we consider
our entire cohort, suggesting that integrating the LSC47 gene sig-
nature and KMT2A fusion partner risk groups further augments the

prognostic modeling for patients with KMT2A fusion positive AML and
additional studies are underway.

As the cost of sequencing continues to improve rapidly, it has
become feasible to consider and evaluate larger (rather than smaller),
more powerful biomarker gene sets for cancer prognostication. While
LSC17 is a powerful approach to capture outcome measures across
diverse cohorts of patients diagnosedwith AML,molecularly informed
biomarkers such as LSC47 could advance the overall goal of using
personalized medicine to better inform treatment decisions.

Methods
Patient samples and RNA-sequencing
Pediatric AML biological samples were collected with informed con-
sent from patients diagnosed with de novo AML and enrolled on
Children’s Oncology Group (COG) trials CCG-2961 (NCT00002798)2,
AAML03P1 (NCT00070174)54, AAML0531 (NCT00372593)1, or
AAML1031 (NCT01371981)55. Each protocol was approved by the
National Cancer Institute’s central institutional review board (IRB)
and the local IRB at each participating institution. Patients and/or
families provided informed consent or assent as appropriate. For
CCG-2961, patients (0–21 years of age) were enrolled from 1996 to
2003 and were randomized to one of two chemotherapy regimens
and then proceeded with hematopoietic cell transplantation (HCT)
if a donor was available. For AAML03P1, patients (0–21 years of age)
were enrolled from 2003 to 2005 and non-randomly assigned
gemtuzumab ozogamicin in combination with conventional che-
motherapy and proceeded with HSCT if a donor was available. For
AAML0531, patients (0–29 years of age) were enrolled from 2006 to
2010 and then randomized to receive gemtuzumab ozogamicin in
combination with conventional chemotherapy and proceeded with
HCT in the setting of high-risk disease with an available donor. For
AAML1031, patients (0–29 years of age) were enrolled from 2011 to
2017 and then randomized to receive bortezomib in combination
with conventional chemotherapy, non-randomly assigned to receive
sorafenib in the setting of FLT3-ITD AML, and proceededwithHCT in
the setting of high-risk disease with an available donor. Total RNA
derived from peripheral blood or bone marrow diagnostic speci-
mens was purified using the QIAcube Connect automated system
with Qiagen AllPrep DNA/RNA/miRNA Universal Kits (80224). Pur-
ified RNA samples were then prepared for either strand specific
polyadenylated enriched (polyA-enriched) messenger RNA libraries
(n = 442) or strand specific ribosome RNA-depleted (rRNA-depleted)
libraries (n = 1061) by the British Columbia Genome Sciences Center
(BCGSC). Seventy-five base pair paired-end sequencing was per-
formed on Illumina HiSeq 2000/2500 platforms. Sequence reads
were aligned to the GRCh37 reference genome using BWA (v0.5.7)56.
Reads were discarded based on mapping quality or if they failed the
Illumina chastity filter and duplicate reads weremarked using Picard
(v1.11). Gene level coverage analysis was performed using the BCGSC
pipeline v1.1 with Ensembl v69 annotations and were normalized
based on RPKM (reads per kilobase per million mapped reads) or
TPM (transcripts per million). Library preparation methodology
(polyA-enriched versus rRNA-depleted) had less impact on median

Fig. 3 | Leukemia stem cell transcriptional signature for pediatric AML. a The
LSC17 gene signature was previously generated based on LASSOCox regression on
47 genes enriched in LSC AML cell populations (LSC47). Analyzing LSC47 gene
expression data within our cohort, AMLs cluster based on underlying fusion cate-
gory.bThe circos plot on the left indicates thepreviouslydescribedLSC17gene set.
Conversely, the circos plot on the right indicates the 17 most predictive genes
within our training cohort using the same LASSO based Cox regression analysis.
Subsequent risk stratification model building considers all 47 upregulated LSC
genes (LSC47). c Kaplan–Meier estimates for the probability of EFS based on LSC17
versus LSC47 gene signatures and associated area under the curve receiver oper-
ating characteristic (AUC ROC) curve plotting true positive rates versus false

positive rates as a function of LSC17 and LSC47 score thresholds. d Additionally,
when AMLs are grouped based on underlying fusion, each class is associated with a
distinct LSCgene set. e LSC47 varianceand t-tests basedon fusion category (n = 753
patients from the training cohort). Box plot data are presented as median values
with hinges corresponding to the 25th or 75th percentiles and whiskers corre-
sponding to the 10th or 90th percentiles (left panel). P-values were calculated
based on two-sided t-tests (right panel). Source data are provided as a Source Data
file. Kaplan–Meier estimates for the probability of EFS and AUC ROC curves among
f KMT2A and g Other or No Fusion AML cohorts based on LSC17 versus LSC47.
Survival differences were determined using the log-rank test (two-sided and with-
out multiple-testing adjustments).
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TPMs for LSC genes compared to the overall transcriptome (Sup-
plementary Fig. 16).

The Cancer Genome Atlas (TCGA) data processing
TCGA AML57 (LAML) RNA-sequencing data was downloaded from the
Broad Institute GDAC Firehose repository. RPKM normalized gene
level RNA-sequencing data were used in all LAML analyses.

Leukemic stem cell 17 signature score
The LSC17 risk prediction model was described previously11.
Briefly, RPKM normalized counts were log2-transformed after
incrementing by 1. LSC17 scores for the TCGA LAML and our
pediatric AML cohorts were calculated per patient as the sum of
the log2-transformed RPKM expression values for the 17 genes
weighted by the regression coefficients. High and low LSC17

Fig. 4 | Additional transcriptional biomarkers for pediatric AML. a Isolating
AMLs that did not have one of the five core fusion alterations, additional cyto-
molecular subtypes clustered with one another based on LSC47:NPM1, CEBPA, and
FLT3 internal tandemduplication (ITD)mutation. bKaplan–Meier estimates for the
probability of EFS within the training cohort for CEBPA, FLT3-ITD, and Other

Subtype AMLs. Survival differences were determined using the log-rank test (two-
sided and without multiple-testing adjustments). c Notable genes included in
LSC47 but not LSC17. Genes are connected to the cytomolecular classes based on
whether they contribute to the associated LSC signature and score.
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groups were defined as above or below the median LSC17 score for
the cohort, respectively.

Survival analysis
Event free survival andoverall survival analysiswasperformedusing the
Kaplan–Meier estimates. Event free survival (EFS) was defined as the
time fromenrollment to first event (relapse, induction failure, or death)
or last follow-up. Overall survival (OS) was defined as the time from
study enrollment to death or last follow-up. Cox proportional hazard
regression models were employed to estimate hazard ratios (HR) for
univariable andmultivariable analyses of OS and EFS. Differences in OS
and EFS between groups was determined using log-rank testing. All p-
values are two-sided and without multiple-testing adjustments.

Gene expression analysis
Principal component analysis (PCA) was performed using the
prcomp R package, which is included R core base. PCA visualization
was performed using the rgl (v0.100.54) R package. Nearest
shrunken centroid analysis was performed using the pamr (v1.56.1)
package14. Uniform manifold approximation and projection
(UMAP) was performed using the umap (v0.2.6.0) R package. Gene
set enrichment analysis (GSEA) was performed using command line
tools58. Hierarchical clustering was performed using the made4
(v.1.58.0) R package59. Circos figures were generated using the
Circos (v0.69-9) software package60.

Signature training
Of the 48 enriched LSC genes identified by Ng et al.11, FAM30A
(Entrez Gene ID 29064) and KIAA0125 (Entrez Gene ID 9834) were
merged into one Entrez Gene ID 9834 since they have since been
found to be aliases of each another, resulting in 47 enriched LSC
genes (LSC47). To extract a core subset genes from LSC47 that best
explained patient outcomes in the training cohort, we used the
same linear regression technique that formed the basis of LSC17
and is based on the LASSO (least absolute shrinkage and selection
operator) algorithm as implemented in glmnet (v4.0-2) R
package61, while enabling leave-one-out cross-validation to fit a Cox
regression model as described previously11. TPM normalized

counts were log2-transformed after incrementing by 1. A pediatric
AML-specific LSC score was calculated per patient as the sum of the
log2-transformed TPM expression values for the selected genes
weighted by the regression coefficients. High and low LSC groups
were defined as above or below the median LSC score for the
cohort, respectively. The same analysis was also performed within
each fusion training cohort to establish cytomolecular-specific
regression coefficients and LSC scores. The coefficients for the
entire cohort and cytomolecular subtypes were incorporated into a
matrix of coefficients, where a column of coefficients is applied to a
given patient based on underlying cytomolecular subtype to gen-
erate a pediatric LSC signature approach (LSC47) (Supplementary
Table 1).

Fusion calling
Fusion calls were made using CICERO (v1.8.1), STAR-Fusion (v.1.10.1),
and Trans-ABySS (v.2.0.1)62,63. With respect to CBFB-MYH11 break-
points, overlapping calls between fusions callers were concordant at
the level of exon transcript calling with each other. The remaining
CBFB-MYH11 fusions identified by RNA-sequencing were called by one
or two of the three fusion callers.

Statistics and reproducibility
Box plots were generated using ggplot2 (v.3.3.5)64. Box plots indicate
themedian and interquartile range, andwhiskers indicate 1.5 times the
interquartile range below and above the 25th and 75th percentile,
respectively. P-values were calculated based on two-sided t-tests and
the degree of significance is indicated by asterisks notation (****
<0.0001, *** ≥0.0001 and <0.001, ** ≥0.001 and <0.01, * ≥0.01 and
<0.05). No statisticalmethodwasused topredetermine sample size for
our analyses and no data were excluded from the analyses. Stratified
randomization was performed based on fusion category to generate
two cohorts for risk model training and validation.

Disclaimer
The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of
Health.

Fig. 5 | LSC47 risk stratification model. a To build a robust risk prediction model
for pediatric AML, we aggregated LSC47 based signatures with other validated
biomarkers (e.g., RUNX1-RUNX1T1 transcriptional signature and CBFB-MYH11 fusion
breakpoint location) within our training cohort. NUP98 partner fusion and
CBFA2T3-GLIS2 AMLs are associated with 5-year EFS of < 20% and were therefore

assigned to the high-risk stratum without further stratification. Kaplan–Meier
estimates for the probability of EFS based on b cytomolecular (CM) risk factors,
c LSC17, and d, e combined LSC47 model in training and validation cohorts. Sur-
vival differences were determined using the log-rank test (two-sided and without
multiple-testing adjustments).
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated for this study have been deposited in dbGaPunder
the dbGaP study ID phs000465.v21.p8 and in the TARGET Data Matrix
at the TARGET Data Coordinating Center [https://target.nci.nih.gov/
dataMatrix/TARGET_DataMatrix.html]. NIH TARGET genomic sequen-
cing data is available through controlled-access as part of the NIH
Genomic Data Sharing Policy to ensure that all approved investigators
and institutions abide by theNIHGenomicDataUser CodeofConduct,
the terms of the Data Use Certification, and the Security Best Practices
for Controlled Access Data (for more details, https://grants.nih.gov/
grants/guide/notice-files/NOT-OD-14-124.html. Data access is restric-
ted for academic use and can be requested here (https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000465.v21.
p8). Based on our own experiences and if approved, data access is
typically granted within a week of request. TCGA AML (LAML) RNA-
sequencing is available for download through the Broad Institute
GDAC Firehose repository [https://gdac.broadinstitute.org/]. The
GRCh37 reference genome is available for download through the
Michael Smith Genome Science Center [https://www.bcgsc.ca/
downloads/genomes/9606/hg19]. Source data are provided with
this paper.
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