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ABSTRACT OF THE DISSERTATION

New Approaches to Model Selection in Bayesian Mixed Modeling

By

Fletcher G.W. Christensen

Doctor of Philosophy in Statistics

University of California, Irvine, 2017

Professor Wesley O. Johnson, Chair

Because the marginal densities corresponding to data modeled with generalized linear mixed

models (GLMMs) usually lack closed-form expressions, model selection via existing tools

like the deviance information criterion (DIC) can yield inconsistent results. We discuss

why marginalization is preferable for the evaluation of competing mixed models, provide

a new method for fast and accurate approximation of the marginal DIC for GLMMs, and

demonstrate through simulation how numerical approximation of the DIC relative to our

marginalization scheme gives more accurate model selection results than other numerical

approximation methods for DIC. We also discuss some issues related to model selection in an

analysis of longitudinal data collected to assess the effect of polycyclic aromatic hydrocarbons

on hormone functioning in women who were attempting to get pregnant.
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Chapter 1

Introduction

This dissertation will develop methods to address two problems in Bayesian mixed modeling.

The first method concerns how to make the best use of data where covariates of scientific

interest are only available for half of response observations. The second method concerns

how to approximate a marginalized form of the deviance information criterion (DIC; D. J.

Spiegelhalter et al. 2002) for mixed models, particularly generalized linear mixed models with

normally distributed random effects. Chapter 2 will explore the first question, along with

providing a detailed, peer-reviewed analysis of environmental epidemiology data using the

method we develop. Chapters 3, 4, and 5 will deal with the second question in progressively

more general settings. Chapter 6 discusses future directions for our missing data work on

the study discussed in Chapter 2, and for our methods developed to approximate a marginal

DIC.

We begin, in Chapter 2, with a discussion of data involving environmental pollutants and the

human menstrual cycle. Our analysis of these data, published in Environment International

earlier this year, demonstrates that urinary biomarkers of environmental pollutants can

predict important clinical endpoints related to the menstrual cycle. Moreover, we use a
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marginalized definition of DIC to show that for each clinical endpoint considered, models

involving these biomarkers are preferable to models involving only demographic information

on the study participants. Our analysis substantiates the need for further investigation of

environmental pollutant biomarkers in studies of human fertility, an area that has not been

widely studied prior to our work.

Because data on environmental pollutant biomarkers are expensive to obtain and our collab-

orators were limited in their funding, the analysis we present in Chapter 2 involves method-

ological work to augment our observations that have biomarker data with other observations

on the same individuals where this data is missing. This method, which we call shared

parameter (SP) modeling and develop in the latter half of Chapter 2, uses a full model for

the observations with biomarker data and a reduced model for the observations without this

data. The method links these models by constraining them to share the same structure and

coefficient values. The biomarker data are included in the full model, and the reduced model

is augmented with an additional error term to mitigate the lack of biomarker data. Using our

environmental epidemiology data, the SP modeling structure allows us to more precisely es-

timate participant-level random effects and coefficients for demographic covariates. Through

simulation, we show that this method leads to better predictive accuracy than we would be

able to achieve by using only the complete observations.

Chapter 3 presents a detailed introduction to the use of information criteria and related

methods for statistical model selection. We focus on the DIC, and demonstrate how it is

not well-defined for hierarchical models. Using a random effects model, we demonstrate that

the complexity penalty for the DIC—a quantity called pD—depends on how one defines the

DIC relative to the random effects terms. We make the philosophical argument that the

proper definition of DIC for hierarchical models is the marginalized DIC, where nuisance

parameters from the hierarchical modeling are integrated out before DIC is computed. We

2



then show two ways this can be accomplished in the linear mixed model when random effects

are normally distributed.

Obtaining a numerical approximation to the marginalized DIC is more difficult when gen-

eralized linear mixed models (GLMMs) are considered. Chapter 4 presents a new method

for approximating the marginal density of a special case of GLMMs. Members of this spe-

cial case of GLMMs are characterized by having “repeated exchangeable observations”, and

we therefore call them REO GLMMs. A GLMM has repeated exchangeable observations

when observations within a cluster can be freely permuted without changing the resulting

inferences. REO GLMMs are GLMMs for which covariates are constant for all observations

within a cluster.

In the REO GLMM setting, we develop an approximation to the marginal density using

Taylor’s theorem and the complete-the-square formula. We prove that our approximation

to the joint density for the data and the random effects converges almost surely to the true

joint density for the data and the random effects. Through small-sample simulation, we then

show that our approximation method gives joint density values close to the truth when more

than 10 observations are available per cluster; and that our approximation to the marginal

density gives pD and DIC values close to the numerical approximations one would get using

Gaussian quadrature to approximate the true marginal density. Finally, we simulate a model

selection procedure to compare the behavior of a backwards stepwise algorithm using three

different definitions of DIC as selection criterion: our approximation to the marginal DIC,

our calculation of the joint DIC where random effects are treated as parameters, and the

DIC statistic reported by OpenBUGS. We find that using our approximation to the marginal

DIC reliably results in the selection of models more nearly matching the “true” model from

which the simulation data were generated.

Chapter 5 extends our development of the approximation to non-REO GLMMs by intro-

ducing a Newton-Rhapson step. Using this, we derive a general form for the approximate

3



marginalization that allows us to consider time-varying covariates in longitudinal models as

well as random slope models. We simulate new data including time-varying covariates and a

cluster-specific random effect. We show that our approximation still gives joint density val-

ues close to the truth, and that it results in numerical approximations to pD and DIC that

match those obtained using the Gaussian quadrature. Using a simulated model selection

procedure like the one in Chapter 4, we also show that selection based on our approximation

to the marginal DIC results in models closer to the true generating model than selection

based on the joint DIC or the DIC reported by OpenBUGS.
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Chapter 2

Environmental Effects on Human

Fertility and Shared Parameter

Modeling

In this chapter, we discuss our work on an environmental epidemiology dataset. We begin

by reviewing our previously published findings about the impact of environmental pollution

on the human menstrual cycle. This work, conducted under the guidance of Drs. Ulrike

Luderer and Wesley O. Johnson, has appeared in the peer-reviewed journal Environment

International (Luderer et al. 2017). Portions are reprinted here with the permission of the

publisher. Following this, we discuss in more detail a method we developed to analyze these

data, which we refer to as shared parameter modeling. We created this method to deal with

a complication involving the data in our study. Because of cost and funding issues, data

on key covariates of interest were only available for half of our response observations. This

forced us to ask how we could best make use of our available data, knowing that much of it

was unable to directly address the central scientific question of our study.
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We begin with work we have done to model response data when some covariate information

is missing on many of the available response observations. We believe that a scientist should

never throw away good data. In this chapter, we propose a method we call shared parameter

(SP) modeling, which combines models using full covariate information and partial covariate

information in a novel way. We begin by giving a practical example of this issue as it

arises in data from our own research, and explain more generally the reasons scientists may

encounter this problem. A technical definition follows, along with associated discussion of the

assumptions of this method and how it relates to other methods. Finally, we use simulations

to compare our method to alternative approaches scientists might use in this situation, and

discuss the method’s application in an analysis published earlier this year.

2.1 Environmental Effects on Human Fertility

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants formed

during incomplete combustion of organic materials such as wood, tobacco, fossil fuels, and

food (Li et al. 2008; ATSDR 1995). Data from the National Health and Nutrition Examina-

tion Survey on concentrations of hydroxylated PAHs in the urine of representative samples

of Americans show that essentially all Americans are exposed to PAHs (NHANES 2009).

For non-smokers who do not consume grilled or roasted foods, air pollution is the largest

source of exposure. Residents of urban areas have higher inhalation exposure to PAHs than

do residents of rural areas (Menzie et al. 1992).

Many PAHs are mutagenic and carcinogenic (IARC 2010; ATSDR 1995; IARC 1983) and are

potent ovarian toxicants and ovarian tumorigens in rodents. Neal, Zhu, and Foster (2008)

measured PAHs in human serum and ovarian follicular fluid and showed that follicular fluid of

women smokers had significantly elevated levels of the PAH benzo[a]pyrene (BaP) compared

to follicular fluid of nonsmoking women. BaP inhibits growth, survival, and estradiol and
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anti- Mllerian hormone secretion of cultured mouse secondary follicles (Neal, Zhu, Holloway,

et al. 2007; Sadeu and Foster 2011).

PAHs are readily absorbed through the lungs, gut, and skin (ATSDR 1995). To exert toxicity,

PAHs generally require metabolic activation through a process known as hydroxylation—a

detoxification process by which organisms break down organic compounds into compounds

that are more easily excreted. Hydroxylated PAHs (OH-PAHs) are PAHs that have had

a hydroxyl group (an oxygen atom bonded to a hydrogen atom, thus the notation OH for

hydroxyls) added to them. Biomonitoring of these hydroxylated PAH metabolites in urine

provides an integrated measure of PAH exposure via multiple exposure routes (Li et al.

2008).

Although the altered reproductive function observed in women who smoke or who are ex-

posed to environmental tobacco smoke (Harlow and Signorello 2000; Mattison et al. 1989)

has been postulated to be due to exposure to PAHs in tobacco smoke, no studies have directly

examined the associations between PAH exposure biomarkers and measures of hypothalamic-

pituitary-ovarian axis function in women. We hypothesized that PAH exposure causes

ovarian dysfunction manifested as altered urinary luteinizing hormone (LH) and estrogen

metabolite profiles and even anovulatory menstrual cycles.

2.1.1 Methods

2.1.1.1 Study participants

Study participants were recruited for a pilot study to lay the groundwork for a subsequent

larger, adjunct study to the planned National Children’s Study (NCS). The purpose of the

pilot study was to test the feasibility of recruiting women who were not intending to become

pregnant and not using hormonal contraception for a study of the association between urinary

7



PAH metabolites measured once per menstrual cycle and urinary reproductive hormone

concentrations measured daily using a microelectronic dipstick monitor for six menstrual

cycles.

Eligible women were between the ages of 1844, residing in Orange County California, who

were not pregnant, currently not planning to conceive, not using hormonal contraception, did

not have a history of surgical sterilization, treatment with antineoplastic drugs or radiation

therapy to the pelvis and did not have conditions known to cause infertility by mechanisms

other than ovarian failure (pelvic inflammatory disease, endometriosis). Women who had

recently been pregnant or breastfeeding were asked to delay starting the study until they

had one full menstrual cycle after the birth if not breastfeeding or after they stopped breast-

feeding.

Initially eligible women were identified and recruited by door-to-door contact in the home,

with follow-up telephone and email contact by study staff. Subsequently, when the NCS

shifted to other recruitment strategies, eligible women for the present study were recruited

at public events such as health fairs at universities and colleges, work places and events

sponsored by community groups. The current study population is thus a convenience sample.

Baseline study visits and sample collection occurred between October 2010 and July 2012.

2.1.1.2 Baseline study visit

After completing informed consent, participants were instructed to go to one of the two

Orange County locations of the UC Irvine Institute for Clinical and Translational Science

(ICTS) for their baseline visit 59 days prior to their next menses onset. Study staff ad-

ministered the standardized NCS preconception questionnaire to obtain information about

the participant’s demographics, medical history, reproductive history, tobacco smoke expo-

sure, exercise history, occupational history, residential history, housing characteristics, use

8



of chemicals (e.g. cleaning agents, pesticides) in and around the home and yard, and pets.

Questions relating to tobacco, alcohol, and illicit drug use were taken from the NCS First

Trimester Maternal In-Person Questionnaire. We refer to these variables hereafter as baseline

covariates.

ICTS nursing staff measured height, weight, and blood pressure and collected a blood sample.

Study staff gave participants urinary hormone monitors, urine collection kits, and home

pregnancy tests and provided instruction in how to use them.

2.1.1.3 Urinary reproductive endocrine testing

Participants were given a Clearblue Easy Fertility Monitor (Swiss Precision Diagnostics,

Bedford, UK) and instructed to perform daily urinary dipstick tests to measure estrone 3-

glucuronide (E13G) and LH beginning on the first day of their next menstrual cycle. The

Clearblue Easy Fertility Monitor measures daily urinary E13G and LH without any need for

collection or storage of urine samples. For each menstrual cycle, the participant pushes the

monitor M button if she had onset of menstrual bleeding during the preceding 24h (cycle day

one). The monitors request daily test sticks starting on cycle day 6 and continuing until an

LH surge has been identified or until 20 days have passed, whichever is first. In subsequent

cycles, the monitor requests tests based on the timing of the LH surges in prior cycles. To

conduct a test, the participant holds a disposable test stick in the urine stream of the first

morning void for 3s. The monitor displays a fertility status (low, high, or peak), derived

by proprietary algorithmic interpretations of the LH and E13G concentrations. Participants

were also instructed to perform a human chorionic gonadotropin Clearblue Easy Pregnancy

Test (Swiss Precision Diagnostics) if their menses onset did not begin within 10 days of their

expected date. If the pregnancy test was positive, the participants were removed from the

current study.
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The list below describes endpoints that were analyzed in this study. These endpoints are

all summaries of the data obtained from the Clearblue Easy Fertility Monitors. LH surge

onset and day of E13G peak (not listed) were used to calculate other endpoints and were

not further analyzed. Menses onset for each cycle was determined from the monitor output

and/or the daily diary. Analysis indicated that almost all quantitative endocrine endpoints

had approximately normal distributions, with the sole exception of menstrual cycle length,

which was heavily right-skewed.

Cycle Length Number of days from first day of menstrual bleeding through the

day before next onset of menstrual bleeding.

Follicular Phase Length Number of days from first day of menstrual bleeding to the day of

the LH surge onset.

Ovulatory Status Ovulatory cycle = Has a defined LH surge onset;

Anovulatory cycle = No LH surge onset for cycles with no missing

LH values from cycle day 11 through the 9th day before the next

menses onset. Must have start and end menses;

Indeterminate cycle = Cycles that are neither ovulatory nor anovu-

latory

Follicular LH Mean for all days before LH surge onset, or cycle days 6 through 10

for cycles without an LH surge. Recorded as missing if < 3 values.

Highest LH Highest LH value of the cycle that is ≥2.5-fold above the LH surge

onset baseline and ≤4 days after the LH surge onset.

Peak LH Same as highest LH surge level except it is recorded as missing if

there is a missing value on an adjacent day.
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Follicular E13G Mean for cycle day 1 through day -2 from LH surge onset, or for

E13G values on days 6 through 10 for cycles with no LH surge

onset. Recorded as missing if < 3 values.

Periovulatory E13G Mean for 7 days centered around the day of the LH surge onset.

Recorded as missing if < 3 values.

E13G Slope Slope for 3 days prior to day of E13G peak. Recorded as missing if

the first or third value is missing.

2.1.1.4 Measurement of urinary hydroxylated PAH metabolites

Participants were instructed to collect one urine sample on the 10th day after menses onset

into a polypropylene beaker and to pour 10 mL of that sample from the beaker into each of

4 cryogenic polypropylene vials to be stored in their home freezer until picked up by study

staff every month. Hydroxylated PAH (OH-PAH) metabolites were measured in the urine

samples as biomarkers of PAH exposure. We chose cycle day 10 because it is approximately

in the middle of the follicular phase days when the monitor requests test sticks.

The OH-PAH compounds measured in this study included fluorene (2FLUO, 3FLUO, 9FLUO),

phenanthrene (1PHEN , 2PHEN , 3PHEN), naphthalene (1NAP , 2NAP ), and pyrene (1PY R).

The numbering associated with these OH-PAHs refers to the bind point in the PAH where the

hydroxyl group connects. Linguistically 1NAP should be read as “1-hydroxy-naphthalene”,

with the other metabolites read similarly.

Urinary OH-PAH metabolites were measured for each subject for two cycles (3 participants)

or three cycles (48 participants) during the testing period by the California Department of

Public Health Environmental Health Laboratory using procedures developed by the Centers

for Disease Control and Prevention NHANES study (Li et al. 2008; Romanoff et al. 2006). If
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a participant only had collected two or three cycles of urinary hormone data, then OH-PAHs

were measured in all cycles. If they had collected urinary hormone data for more than three

cycles, then the first three cycles with the fewest missing days of urinary hormone data were

selected for OH-PAH measurements.

Complications caused by only having OH-PAH measurements for 2-3 cycles per woman

(approximately half of our observations) will be discussed further in Section 2.2. Note

that the missingness paradigm for these data is “missing completely at random” (MCAR).

Because 2-3 observations are available on each woman, missingness is not related to the

individual women—or, thus, to their baseline covariates which are constant throughout the

study. We assume further that missingness is not related to PAH measures or response

measures. We can think of little reason why a woman’s daily hormone levels or monthly

exposure to environmental pollutants would impact which cycles had the fewest missing

days of urinary hormone data.

A small percentage of analytes were below the limits of detection (LOD) of the assay. These

were set to LOD/
√

2 (Ogden 2010).

2.1.1.5 Statistical analysis

Descriptive statistics (arithmetic means, standard deviations and geometric means for con-

tinuous variables; and percentages in each group for categorical variables) were calculated for

demographic variables (Tables 2.1 and 2.2), endocrine endpoints (Table 2.3) and OH-PAH

concentrations (Table 2.4). To assess the collinearity among OH-PAH metabolite concen-

trations within the same urine sample, we calculated pairwise Pearson correlations (Table

2.5).

Observed metabolite concentrations were right-skewed, but were approximately normal after

a log-transformation was applied. These log transformed values were then standardized by
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subtracting the corresponding sample mean and dividing by the corresponding standard

deviation so that each new transformed variable has sample mean zero and sample standard

deviation one.

Then, in part because concentrations of metabolites of phenanthrene (1PHEN , 2PHEN ,

3PHEN) and of fluorene (2FLUO, 3FLUO, 9FLUO) can be collinear—see Table 2.5—additional

transformations were considered for each. One of these transformations, PHENsij, is a

standardized average of the three standardized phenanthrene variables for each woman i

and time j combination. Designating 1PHEN , 2PHEN , and 3PHEN as the standardized

log-transformed concentrations of 1-, 2-, and 3-hydroxy phenanthrene respectively, then this

variable is defined as

PHENsij = c0(1PHENij + 2PHENij + 3PHENij),

where c0 is a variance standardization constant. The variable FLUOs is defined analo-

gously. We define three additional transformations of the phenanthrene metabolites: d
1PHEN ,

d
2PHEN , and d

3PHEN . These are standardized differences between the concentrations of

the individual phenanthrene metabolites and the overall average PHENs. The formula for

d
1PHEN is the contrast

d
1PHENij = c1(2 1PHENij − 2PHENij − 3PHENij)

= 3c1(1PHENij −
1

3c0
PHENsij)

= 3c1(1PHENij − PHEN ij),

where PHEN ij = (1PHENij + 2PHENij + 3PHENij)/3 and c1 is a standardizing constant.

This is simply a measure of the difference between the concentration of 1-phenanthrene

and the average concentration across all phenanthrene metabolites, in terms of standard
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concentration scores. d
2PHEN and d

3PHEN are defined analogously as contrasts for 2PHEN

and 3PHEN respectively. Similar fluorene contrasts are also defined analogously.

These transformations are intended to mitigate collinearity among these measures. They

also allow for an “overall effect” measure of phenanthrene (for woman i at time j), and the

three contrasts that are based on the degree to which a woman is above/below her average

phenanthrene isomers at time j. That is, they allow us to study an “isomer specific” effect

that reflects the degree to which one particular isomer does or does not match the overall

level characterized by the combined covariate (for each woman-time combination).

The two naphthalene metabolites were not handled similarly because: (1) Table 2.5 shows

that there is very little collinearity between concentrations of these metabolites, and (2) it

is known that 1NAP and 2NAP result from the metabolizations of substantially different

environmental compounds (Hill et al. 1995).

To investigate the role of OH-PAH concentrations in predicting the aforementioned endocrine

endpoints, we performed a two-stage procedure. Models for all endpoints were constructed

in the same way using a Bayesian mixed modeling approach with subject-specific random

effects allowing each participant to act as a baseline for her set of measurements. In the

first stage we built a model involving only non-PAH baseline covariates, using a backwards

stepwise algorithm to select a parsimonious model that fit the data, explained below.

The initial baseline model included the covariates age, race, educational attainment, stress,

body-mass index (BMI), alcohol use, caffeine intake, and measures of how many minutes

the participant walked and engaged in vigorous physical activity each week. When covariate

data were missing, which happened on 0-3 individuals per baseline covariate, values were

imputed through a Bayesian modeling approach (Daniels and Hogan 2008, Ch.6). Existing

covariate/endpoint combinations were used impute the missing values in the MCMC algo-

rithm. As a result of modeling the missing values, uncertainty about their actual values is
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incorporated into the analysis. Our modeling approach for follicular phase length involves

standard linear modeling assumptions. Thus, conditional on the covariates and the random

effects, we assume independence among the response values and normal errors with constant

variance. Random effects are modeled with a normal distribution with mean zero and a

random effects variance.

Figure 2.1 shows posterior density estimates for all baseline regression coefficients in the

first phase of modeling for follicular phase length. Observe that several density plots are

centered close to zero. The corresponding covariates are candidates for removal from the

model. At the same time, other plots are concentrated below zero, indicating high posterior

probability of a negative association, while yet other plots indicate a high posterior prob-

ability of a positive association, for those variables, respectively. Our backwards stepwise

approach involved considering the posterior probabilities of coefficient values being above

zero for each covariate (or below zero if the covariate estimate is negative). We removed the

covariate with corresponding proportion closest to 0.5 (i.e. an even split between positive

and negative coefficient estimates across all simulated iteratesa good proxy for measuring

how well coefficients cluster away from zero). Next, a new regression model was fit with

the remaining covariates and the removal procedure repeated until all remaining covariates

showed non-zero coefficient proportions greater than 0.85. In the case of the Figure 2.1 ex-

ample, the walking coefficients (βW1
, βW2

, βW3
) show the smallest proportion of values away

from zero1, and walking was removed from the model as a covariate. Based on standard

epidemiological practice, age and race/ethnicity were forced into the model as known factors

of interest and were not subject to the removal procedure discussed.

We designated the model resulting from this stepwise procedure as our baseline model for

each particular endpoint. Our primary research interest is to assess the effect of PAHs on

1When dealing with covariates with multiple levels, such as walking, we based our decisions on the
coefficient whose posterior probability of being above zero was furthest from 0.5. If this coefficient had a
probability of being above zero nearer 0.5 than the coefficients for every other variable, the covariate was
dropped.
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endocrine endpoints, and so our goal in these analyses was to determine whether OH-PAHs

can provide any incremental benefit in modeling those endpoints beyond the fit we obtained

with the baseline model. Observing such an incremental benefit provides evidence not only

that PAHs relate to endocrine endpoints, but also that PAHs contribute unique information

about those endpoints that we cannot capture with our baseline covariates.

The second stage model then began from the selected baseline covariate model, adding

all of the OH-PAH variables and an indicator variable denoting whether the participant

was a smoker to that model. Smoking was only added at this stage because we believe

PAHs represent the mechanism of action for smoking on these covariates. Because OH-PAH

information was only available for 23 cycles per participant, we used a shared parameter (SP)

modeling strategy to take full advantage of our available endpoint data. This approach is

described in more detail in Section 2.2. As in the first stage, we used a backwards selection

procedure to pick a parsimonious model that fit the data well with any additional terms

that had been selected. Our primary research interest was to assess the effect of PAHs on

endocrine endpoints, and so our goal in these analyses was to determine whether OH-PAHs

could provide any incremental benefit in modeling those endpoints beyond the fit we obtained

with the baseline model.

Finally, we compared the deviance information criterion (DIC, a common Bayesian measure

of model fit) for the baseline and final models. A known concern with DIC is that the

value of the criterion depends on the collection of parameters being evaluated (Celeux et

al. 2006; D. J. Spiegelhalter et al. 2002). To address this issue, numerical approximations

to DIC for these models were based on the marginal model involving only parameters of

interest. This is an application of our “postprocessing marginalization” method for obtaining

DIC in linear mixed models, discussed in Section 3.4.1.2. Generally, a decrease of 3 or

more in DIC is suggestive that a lower-scoring model is preferred to a higher-scoring model

(D. J. Spiegelhalter et al. 2002). In this way, we addressed a primary goal of this paper
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by assessing the added benefit of OH-PAH terms over and above the model involving only

baseline characteristics.

When needed, estimates of regression coefficients were their posterior means. These were

numerically approximated using Markov Chain Monte Carlo (MCMC) simulation (R. R.

Christensen, Johnson, et al. 2010, Ch.6). This allowed us to directly examine the posterior

probability that each covariate in the model was associated with a nonzero regression coef-

ficient by determining the proportion of simulated coefficient values that were above zero.

A covariate with coefficient values clustering around zero is deemed to be unimportant in

terms of its contribution to modeling follicular phase length, whereas a covariate whose coef-

ficient values are almost all positive (or almost all negative), corresponding to high posterior

probability that the coefficient is indeed positive (or negative), demonstrates a statistically

important contribution.

Analyses were performed in WinBUGS using a Gibbs sampling procedure with 50,000 it-

erations following a 5000-iteration burn-in period to ensure convergence of the MC. The

choice of 50,000 iterations reduced the simulation error in numerical approximations of the

aforementioned proportions.

Convergence of the MC was assessed by running separate chains on multiple endpoints

during early stages of the model selection procedure. For each model so examined, all chains

showed rapid convergence to the same posterior distribution. Early models were also run

with a set of three possible priors for the regression coefficients: a skeptical N(0,9) prior that

presupposed that regression coefficients would be near 0, a diffuse N(0,10000) prior that

allowed regression coefficients to take a wide range of values, and a middle N(0,100) prior.

We found that results of our stepwise procedure were not particularly sensitive to our choice

of prior, though the skeptical prior was informative enough to depress coefficient estimates.
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Final analyses were all conducted using the N(0,100) prior on regression coefficients, which

we considered to be the most reasonable choice in terms of the magnitude of regression

coefficients we would expect to see for standardized covariates and for endpoints on the

scales reported (see Table 2.3 for information on the scale of endpoint values). Error variances

were modeled with a Gamma(0.001,0.001) prior on the precision (the inverse of the variance).

Random effects variances were modeled by putting a Uniform(0,50) prior on the standard

deviation.

2.1.2 Results

2.1.2.1 Demographics and participant characteristics

Three participants were eliminated from the analyses because they did not collect any urine

for PAH measurements (one woman) or they had performed so few urine hormone test sticks

that the no endocrine endpoints could be calculated (two women). Demographic and other

characteristics of the 51 remaining participants are shown in Tables 2.1 and 2.2. The mean

age of the participants was 29.9 years. Non-Hispanic white women made up the largest

racial/ethnic group among the participants, followed by Asian and Hispanic, in that order.

More than 92% of the participants had some education beyond high school graduation,

with 21.6% having a graduate degree. The mean BMI was 24.9.More than a third of the

participants had engaged in more than 2 h of vigorous exercise,while nearly 24% had not

engaged in any vigorous exercise, during the week prior to the baseline interview. Forty-

one percent of the participants reported walking ¿4h during the week prior to the baseline

interview. Fewer than 12% of the participants smoked, and 23.5% reported drinking alcoholic

beverages on 2 or more days per week.
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Characteristic Mean ± SD Range N
Age at baseline 29.9± 6.5 [18, 44] 51
Height (m) 1.63± 0.07 [1.50, 1.83] 48
Weight (kg) 66.6± 15.7 [49.2, 124.9] 49
BMI 24.9± 5.3 [18.6, 42.6] 48

Table 2.1: Continuous characteristics of study participants.

2.1.2.2 Menstrual cycle endpoints

We had monitor data for 305 menstrual cycles from the 51 participants. Of these, 150 cycles

had OH-PAH measurements. Representative menstrual cycle LH and E13G concentrations

for a participant with regular cycles with clearly defined LH peaks are shown in Figure

2.2a, while representative data for a participant with some anovulatory cycles are shown in

Fig. 2.2b. Both of these participants missed very few days of sampling. In contrast, some

participants had many missing days. Of 4726 potential test days recorded by the monitors,

tests were not performed on 1168 days. Most of these were because the participant did not

turn the monitor on at all that day or turned it on outside of the test window; 10 participants

had one to several cycles when they took a hiatus for travel or other reasons and resumed

thereafter.

Endocrine endpoints summarized from these data are presented in Table 2.3. This table also

shows for how many cycles each endpoint could be calculated. Cycle length was calculable

for the largest number of cycles, 297 of 305 cycles. The mean follicular phase LH and

E13G concentrations were calculable for the next largest numbers of cycles because these

variables do not depend on having identified a mid-cycle LH surge.
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Characteristic N Percent
Ethnicity/Race

Hispanic 11 21.6%
Non-Hispanic White 22 43.1%
Non-Hispanic Asian 14 27.5%
Non-Hispanic Black 4 7.8%

Education – highest level attained
High school diploma or less 3 5.9%
Some college or vocational 20 39.2%
Bachelor’s degree 16 31.4%
Graduate degree 11 21.6%

Family income/year
< $20, 000 4 7.8%
≥ $20, 000 < $50, 000 12 23.5%
≥ $50, 000 < $75, 000 10 19.6%
≥ $75, 000 < $100, 000 9 17.6%
≥ $100, 000 9 17.6%

Current smoking
Yes 6 11.8%
No 45 88.2%

Alcohol
< 1 day/month or never 21 41.2%
1− 4 days/month 16 31.4%
≥ 2 days/wk 12 23.5%

Caffeinated beverages (drink regularly)
Coffee 28 54.9%
Tea 21 41.2%
Soda 10 19.6%
Energy drinks 2 3.9%

Vigorous exercise (m in last 7 days)
0 12 23.5%
> 0 ≤ 120 22 43.1%
> 120 ≤ 390 10 19.6%
> 390 7 13.7%

Walking (h in last 7 days)
≤ 1 9 17.6%
> 1 ≤ 4 21 41.2%
> 4 ≤ 7 8 15.7%
> 7 13 25.5%

Table 2.2: Discrete characteristics of study participants.
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Figure 2.2: Representative urinary LH and E13G concentrations for two participants across
multiple menstrual cycles. A) A participant with regular cycles with clearly defined LH
peaks. B) A participant with several ostensibly anovulatory cycles without clear LH peaks.
Diamonds indicate the onset of menses. Days for which urinary OH-PAHs were measured
are indicated by an X.
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Endpoint variable Mean (SD) Geometric mean N n

Cycle length (days) 33.2 (10.7) 32.0 51 297
Follicular phase length (days) 16.3 (3.3) 16.0 47 199
Follicular LH (mIU/mL) 9.1 (2.0) 8.9 59 233
Highest LH (mIU/mL) 36.6 (10.7) 35.3 47 199
Peak LH (mIU/mL) 37.9 (12.1) 36.1 45 132
Follicular E13G (ng/ml) 20.2 (7.5) 18.7 50 219
Periovulatory E13G (ng/ml) 31.1 (10.3) 29.4 47 191
E13G slope 3.2 (3.7) 3.2 49 178

Table 2.3: Means, standard deviations, and geometric means of continuous menstrual cycle
endpoint variables averaged over within-patient averages. N refers to the number of women
for whom there was at least one cycle of data for that variable. n refers to the total number
of cycles for which each endpoint could be calculated, out of the 305 cycles observed.

2.1.2.3 PAH exposures

OH-PAHs were measured around menstrual cycle day 10 for three cycles (48 participants)

or two cycles (3 participants) per participant. Table 2.4 shows the arithmetic and geomet-

ric mean concentrations of urinary OH-PAH metabolites. All participants had detectable

concentrations of each of the measured OH-PAHs in at least one urine sample, which is

consistent with ubiquitous exposure to PAHs.

OH-PAH Mean SD Geometric mean
1-hydroxy-naphthalene 1785 1245 1387
2-hydroxy-naphthalene 6192 5037 4965
1-hydroxy-pyrene 107 64 95
1-hydroxy-phenanthrene 119 60 107
2-hydroxy-phenanthrene 33 14 31
3-hydroxy-phenanthrene 59 23 55
2-hydroxy-fluorene 209 121 184
3-hydroxy-fluorene 106 64 91
9-hydroxy-fluorene 296 259 240

Table 2.4: Means, standard deviations, and geometric means of OH-PAH concentrations
averaged over within-patient averages. Reported concentrations are all creatinine adjusted
(ng/(g creat).
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Pairwise correlations among the different OH-PAHs within urine samples are shown in Ta-

ble 2.5. All of the measured metabolites tended to have moderate correlation with each

other, with higher correlations for metabolites of the same parent compound. 2NAP was

the exception; it had relatively low correlation with the other metabolites including 1NAP .

The moderately high collinearity among metabolites of fluorene and among metabolites of

phenanthrene demonstrated in Table 2.5 provides some justification for the combination and

difference-score forms we used for these metabolites in the endocrine endpoint analyses.

2.1.2.4 Associations between OH-PAH metabolites and endocrine endpoints

Tables 2.6 and 2.7 present (1) the final OH-PAH models for each endocrine endpoint, (2)

PAH coefficient estimates, (3) the proportion of positive coefficients from the MCMC, (4)

a list of baseline covariates identified by the stepwise modeling procedure for which the

models have been adjusted, and (5) DIC scores for comparing the baseline and final models.

Creatinine-adjusted OH-PAH measurements were used for all models displayed. The models

for all endpoints were refit with unadjusted OH-PAH measurements, and the results did not

differ in any appreciable respect, and thus are not presented here.

For all eight endpoints considered, addition of OH-PAHs or smoking status improved the

model fit (decreased DIC by > 3) beyond that provided by the covariates in the baseline

models. Smoking status played a role in modeling the three E13G endpoints, but directly

measured OH-PAHs were selected into all eight models even when smoking status was ac-

counted for.

Because understanding what these models are saying can be difficult, we provide graphical

interpretations using the follicular phase length (Figure 2.3) and highest LH (Figure 2.4)

endpoints. We focus first on Figure 2.3. Consider a hypothetical participant with urinary

1PY R concentration of 85 ng/g Cr for her first menstrual cycle, and 280 ng/g Cr for her second
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Endpoint DIC (w/o PAHs) DIC (w/ PAHs)
Cycle length 1211.5 1203.3

Baseline Race + Age + Walking + Vigorous Activity
PAHs d

9FLUO β = −0.507 Pr [β < 0] = 0.960
d
2PHEN β = 0.323 Pr [β > 0] = 0.889

1PY R β = 0.728 Pr [β > 0] = 0.994

Folli. phase length 977.9 961.6
Baseline Race + Age + Stress + Vigorous Activity
PAHs d

3FLUO β = 1.040 Pr [β > 0] = 0.999

1PY R β = 0.578 Pr [β > 0] = 0.982

Follicular E13G 1428.7 1420.0
Baseline Race + Age + Caffeinea + Walking
PAHs d

2FLUO β = 1.325 Pr [β > 0] = 0.979
d
3FLUO β = −1.854 Pr [β < 0] = 0.999

1NAP β = 0.830 Pr [β > 0] = 0.924

2NAP β = −0.680 Pr [β < 0] = 0.878
d
2PHEN β = −0.613 Pr [β < 0] = 0.870

Smoking β = 4.975 Pr [β > 0] = 0.940

Periovulatory E13G 1322.9 1318.8
Baseline Race + Age + Caffeine + Alcohol + Vigorous Activity + Education
PAHs FLUOs β = 1.595 Pr [β > 0] = 0.920

2NAP β = −1.381 Pr [β < 0] = 0.954

1PY R β = −0.985 Pr [β < 0] = 0.853

Smoking β = 8.585 Pr [β > 0] = 0.969

E13G Slope 1097.7 1094.4
Baseline Race + Age + Stressa + Alcohola + Walking + Vigorous Activity
PAHs 1NAP β = 0.967 Pr [β > 0] = 0.954

2NAP β = 0.815 Pr [β > 0] = 0.944
d
1PHEN β = −0.952 Pr [β < 0] = 0.939

Smoking β = 1.809 Pr [β > 0] = 0.878

Table 2.6: Baseline and PAH models for cycle length, follicular phase length, and
E13G endpoints. Baseline covariates marked with an a were included in the baseline model
but dropped in the PAH model under our selection criteria.
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Endpoint DIC (w/o PAHs) DIC (w/ PAHs)
Follicular LH 1072.6 1068.3

Baseline Race + Age + Caffeinea + BMI + Alcohol + Vigorous Activity
PAHs 2NAP β = 0.446 Pr [β > 0] = 0.962

PHENs β = −0.963 Pr [β < 0] = 0.996

1PY R β = 0.548 Pr [β > 0] = 0.945

Highest LH 1563.2 1557.3
Baseline Race + Age + Caffeinea,b + BMIb + Alcohola + Walkinga + Educationa

PAHs d
2FLUO β = 2.057 Pr [β > 0] = 0.932
d
3FLUO β = −2.000 Pr [β < 0] = 0.941

FLUOs β = 5.308 Pr [β > 0] = 0.983

1NAP β = −1.977 Pr [β < 0] = 0.924

2NAP β = −3.143 Pr [β < 0] = 0.936

Peak LH 1055.7 1035.8
Baseline Race + Age + Caffeinea,b + BMIa,b + Alcohola + Walkinga + Educationa

PAHs d
2FLUO β = 2.755 Pr [β > 0] = 0.949
d
3FLUO β = −2.988 Pr [β < 0] = 0.981

FLUOs β = 7.262 Pr [β > 0] = 0.992

1NAP β = −3.735 Pr [β < 0] = 0.981

2NAP β = −1.823 Pr [β < 0] = 0.893
d
2PHEN β = −2.371 Pr [β < 0] = 0.950

PHENs β = −4.280 Pr [β < 0] = 0.967

Table 2.7: Baseline and PAH models for LH endpoints. Baseline covariates marked with an
a were included in the baseline model but dropped in the PAH model under our selection
criteria. Baseline covariates marked with a b were forced into the model for Peak LH because
they were also present in the model for Highest LH, which uses the same data.
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cycle. A 1PY R concentration of 85 ng/g Cr is approximately the median concentration in our

dataset, and a concentration of 280 ng/g Cr reflects a value two standard deviations higher

on the log scale. Then the expected increase in follicular phase length is 1.156 days longer

in the second cycle than in the first (Fig. 2). In addition, the graphs in Figure 2.3 show

that a shift in 2FLUO or 9FLUO from their median to their 75th percentile concentrations is

associated with approximately a half day decrease in follicular phase length, while a similar

shift in 3FLUO is associated with about a one day increase.

For a sense of the size of the effects in Figure 2.3, based on our data we find that given iden-

tical covariate values, the difference between the interquartile range for a woman’s follicular

phase length spans 3.3 days. Similarly, the interquartile range for follicular phase length

among all women spans about 3.7 days. A predicted difference of one to two days based on

OH-PAH concentration levels is less than the expected amount of cycle-to-cycle variability

within women, but it is still a noteworthy effect.

Highest LH and Peak LH were calculated from the same data when a surge was identified

with no missing data. Peak LH was not calculated when the peak of the LH surge could not

be confirmed due to missing data. Results for both endpoints are similar, as we would hope,

and show roles for all naphthalene and fluorene metabolites studied, as well as some naph-

thalene and phenanthrene metabolites. Of particular note, the coefficients corresponding to

d
2FLUO and d

3FLUO have opposite signs and similar magnitudes. Recall that these covari-

ates represent the difference between their specific metabolite and the overall shared level

of the fluorene compound across all metabolites. What we appear to see here, then, is that

highest LH increases when the d
2FLUO metabolite accounts for a greater proportion of the

total fluorene in a subject’s urine than the d
3FLUO metabolite. We also see that increasing

levels of fluorene overall are associated with an increase in the highest LH level. Figure 2.4

provides a graphical representation of the effects of changes in 1NAP , d
2FLUO, and d

3FLUO

on highest LH. We see from the graphs that highest LH decreases with increasing 1NAP . A
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Figure 2.3: Graphical representation of changes in follicular phase length with changes in
pyrene and fluorene metabolites derived from the final model. All four graphs show the
changes in follicular phase length with increasing urinary concentration of 1PY R at two dif-
ferent concentrations of 9FLUO, the study median concentration (solid line) and the 75th
percentile concentration (dotted line). 2FLUO was held constant at its study median con-
centration in the two graphs on the left and at its 75th percentile in the two graphs on the
right. 3FLUO was held constant at its study median concentration in the two upper graphs
and at its 75th percentile in the two lower graphs. The graphs show that follicular phase
length increases with increasing 1PY R. A shift in 2FLUO or 9FLUO from the median to the
75th percentile results in approximately a half day decrease in follicular phase length, while
a similar shift in 3FLUO is associated with a one day increase.
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shift in 2FLUO or 9FLUO from their medians to their 75th percentile concentrations results

in approximately a 5 and 1 mIU/mL increase in highest LH, respectively, while a similar

shift in 3FLUO is associated with about a 3 mIU/mL decrease in highest LH.

For the three follicular phase E13G endpoints, we observed positive associations with smok-

ing. On average, the slope of the estradiol rise is steeper in smokers than the slope in

non-smokers. In practical terms, for a white woman of average age (in the study) who

doesn’t walk or exercise much, the slope for nonsmokers shows an increase in E13G of about

2 ng/mL per day, and the slope for smokers shows a daily increase of about 4 ng/mL.

E13G slope also increases with 1NAP and 2NAP and decreases when 1PHEN is higher than

the other standardized phenanthrene metabolite concentrations. On average, the periovu-

latory E13G concentrations are higher for women who smoke by nearly 9 ng/mL. A white

woman of average age who doesn’t exercise much, doesn’t have a college degree, doesn’t

drink caffeinated beverages, and doesn’t drink alcohol will on average have a periovulatory

E13G of about 20 ng/mL if she doesn’t smoke and 28.5 ng/mL if she does smoke. Periovula-

tory E13G also increases with fluorene metabolites and decreases with 2NAP and 1PY R. On

average, follicular phase estradiol is higher for smokers, with our model predicting a 5-unit

increase in E13G for smokers compared to nonsmokers. A white woman of average age who

doesn’t walk much would have an average follicular phase E13G of 15 ng/mL if she doesn’t

smoke, and 20 ng/mL if she does. Follicular E13G also increases with 1NAP or 2FLUO that

is higher than the other fluorene metabolites and decreases with 2NAP or 3FLUO higher than

the other fluorene metabolites.

The final model for menstrual cycle length did not include any OH-PAHs when all cycles

were included in the models. When only cycles with length within the normative range (21

to 35 days) were analyzed, cycle length increased with 1PY R and d
2PHEN and decreased with

d
9FLUO.
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Figure 2.4: Graphical representation of changes in highest LH concentration with changes
in concentrations of naphthalene and fluorene metabolites derived from the final model. All
four graphs show the changes in highest urinary LH concentration with increasing urinary
concentration of 1NAP at two different concentrations of 9FLUO, the study median con-
centration (solid line) and the 75 percentile concentration (dotted line). 2FLUO was held
constant at its study median concentration in the two graphs on the left and at its 75th per-
centile in the two graphs on the right. 3FLUO was held constant at its study median in the
two upper graphs and at its 75th percentile in the two lower graphs. The graphs show that
highest LH decreases with increasing 1NAP . A shift in 2FLUO or 9FLUO from the median
to the 75th percentile results in approximately a 5 and 1 mIU/mL increase in highest LH,
respectively while a similar shift in 3FLUO results in about a 3 mIU/mL decrease in highest
LH.
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2.1.3 Discussion

Animal studies have clearly demonstrated that several higher molecular weight PAHs are

potent ovotoxicants that destroy ovarian follicles, causing ovarian failure (Borman et al.

2000; Mattison 1979). Cigarette smoking is associated with decreased fecundity and earlier

menopause in women, which may be due to the dozens of PAHs found in tobacco smoke

(Harlow and Signorello 2000)Mattison89. However, this is the first study that has directly

examined the associations of specific biomarkers of PAH exposure with measures of ovar-

ian function in women. We found overall positive associations of fluorene metabolites and

negative associations of naphthalene metabolites with two measures of LH surge amplitude.

We found positive associations of 2NAP and 1PY R and negative association of phenanthrene

metabolites with average follicular LH. Follicular phase length was positively associated

with d
3FLUO and 1PY R. Smoking was positively associated with follicular and periovulatory

E13G concentrations and E13G slope, and PAH metabolites were retained in these models.

A few prior studies have examined the effects of cigarette smoking on similar endpoints.

Smoking has been associated with shorter cycle and follicular phase lengths (Windham,

Elkin, et al. 1999), increased early follicular phase urinary E13G, non-significantly decreased

luteal phase urinary pregnanediol-3-glucuronide, and higher urinary FSH concentrations

during the luteal to follicular phase transition (Windham, Mitchell, et al. 2005). Similarly,

increased early follicular phase serum estradiol and follicular phase progesterone concentra-

tions have been reported in smokers compared to non-smokers (Zumoff et al. 1990). The

same study reported decreased follicular phase serum LH concentrations and no differences

in peak preovulatory LH concentrations. In contrast, another study reported that exposure

to environmental tobacco smoke was associated with decreased mid to late follicular phase

urinary E13G concentrations during non-conception cycles only (Chen et al. 2005).
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It is difficult to compare the associations between OH-PAH metabolites and endocrine end-

points in the present study with the reported associations between exposure to tobacco

smoke and similar endocrine endpoints in prior studies. Active smoking is associated with

significantly increased urinary excretion of all nine OH-PAHs measured in the present study,

while exposure to environmental tobacco smoke is associated with lesser or no increase in

excretion of these metabolites (Aquilina et al. 2010; Suwan-Ampai et al. 2009). Tobacco

smoke contains many high molecular weight PAHs, which were not directly biomonitored in

the present study because their metabolites are primarily excreted in the bile and are below

the limit of detection in urine (Li et al. 2008). Tobacco smoke also contains thousands of

other compounds (Shopland et al. 2001), and therefore observed associations with smoking

may or may not be due to the PAH content of tobacco smoke.

Smoking was retained in the second stage of modeling along with specific PAH metabolites

only for the three E13G endpoints in the present study. This indicates that the OH-PAH

metabolites contribute additional information to the models above and beyond that con-

tributed by smoking. We observe increased follicular E13G concentrations with smoking,

which is consistent with increased early follicular phase E13G in smokers reported by Wind-

ham, Mitchell, et al. (2005). We also observed associations of follicular E13G with fluorene,

naphthalene, and phenanthrene metabolite concentrations. In contrast, our finding that pe-

riovulatory E13G increases with smoking is opposite the findings of Chen et al. regarding

the association between environmental tobacco smoke exposure and mid to late follicular

phase E13G in non-conception cycles (Chen et al. 2005). We also observed that periovu-

latory E13G decreases with 2NAP and 1PY R and increases with fluorene. While we find

that peak and highest LH decreased with naphthalene and phenanthrene and increased with

fluorene, we see no effect for smoking on these endpoints, concordant with prior findings of

no effect of smoking on LH surge amplitude (Zumoff et al. 1990). While we find that both

pyrene and the fluorene metabolite profile associate with follicular phase length, we see no
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effect for smoking, which contrasts with prior findings associating shorter follicular phase

length with smoking (Windham, Elkin, et al. 1999).

For women who do not smoke, food and exposure to particulate matter air pollution are the

major sources of PAH exposures. Consumption of grilled meat is associated with greater

increases in urinary 1NAP and 2NAP than the other PAH metabolites in the NHANES data

(Suwan-Ampai et al. 2009). The OH-PAHs monitored in the present study have also been

measured in relation to exposure to wood smoke. Compared to other studies that examined

the effects of smoking on reproductive endpoints in women, the measurement of biomarkers

that integrate PAH exposures from all routes is a strength of our study, and our models

demonstrate that individual OH-PAH metabolites may have divergent associations with the

same endpoint.

While the different associations we observed between various OH-PAH metabolites and sev-

eral endocrine endpoints are interesting, we must be cautious in interpreting these associa-

tions because most of the OH-PAHs were highly correlated with one another. Only 2NAP

was not highly correlated with the other OH-PAHs. Interestingly, 2NAP was a significant

predictor for five of the eight endocrine endpoints. For the other OH-PAHs retained in seven

of the nine models, their combined effects may be considered to be representative of the

combined effects of all of the highly correlated OH-PAHs. In addition, because we examined

a large number of endpoints and PAH metabolites, some of the associations may be spurious

and should be confirmed in larger studies. It is also possible that associations were missed

because we were only able to measure biomarkers of PAH exposure once per cycle during the

follicular phase, reflecting exposures during the preceding day to a few days. In the future,

it would be ideal to conduct a similar study in which PAH metabolites are measured more

frequently during each cycle.

Another limitation of the present study is that 29% of the cycles were indeterminate for

ovulatory status due to missed testing days. As a result, we had reduced power to detect
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effects of OH-PAHs on ovulatory status. Missed test days also decreased the number of cycles

for which some of the other endpoints could be calculated. A larger study will be required

to confirm the associations between OH-PAHs and endocrine endpoints we observed.

In summary, we have demonstrated the feasibility of using urinary reproductive hormone

data obtained via microelectronic fertility monitors to calculate endocrine endpoints for

epidemiological studies of ovarian function during multiple menstrual cycles. We observed

associations between biomarkers of environmental PAH exposure and follicular phase length,

follicular phase LH and E13G concentrations, preovulatory LH surge amplitude, and peri-

ovulatory E13Gconcentration and slope. The results show that environmental exposure to

PAHs is associated with endocrine markers of ovarian function in women.

2.2 Shared Parameter Modeling

In this section, we discuss in detail the method we developed to deal with PAH data miss-

ingness in the study above, which we call shared parameter (SP) modeling. We begin by

describing our motivation—why we believed our data necessitated this approach—and some

alternative approaches to dealing with data similar to ours. We then give a detailed expla-

nation of the method, along with some simulation results to show how the method behaves

relative to two alternative approaches.

2.2.1 Background

A common problem faced by medical researchers is the expense of collecting certain types

of data, such as chemical analysis data or brain imaging data. When funding is limited and

these data are critical to a research question being pursued, researchers are often faced with

difficult choices: Should we compromise statistical power by only looking at a small number
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of expensive observational units? Should we compromise our ability to adequately address

research questions by only collecting data on a cheaper subset of the variables we consider

scientifically interesting?

In our study on the effect of environmental pollutants on the human menstrual cycle, our

ability to obtain data on environmental pollutants (specifically OH-PAHs) was limited by

grant funding. The necessary chemical testing of monthly urine samples to obtain OH-PAH

concentration data is expensive, and although urine samples were collected for this purpose

from each woman during each month of the study, our funding only permitted us to test half

of our samples.

The SP modeling approach we developed for use with these data is an attempt to make the

best use of our available data. We do not wish to throw out data corresponding to missing

PAH values—there is still useful information in these data about our endpoints, as well as

about the relationships between our baseline covariates and our endpoints. At the same

time, we prefer not to impute PAH data for missing observations. The PAHs are our main

covariates of interest, and we are missing half of the data on them. We are concerned that

the imputation structure we choose for these data might have an outsized impact on our

inferences.

The idea of SP modeling is based on a partitioning of a dataset into two subsets. The first

subset, which we will call the complete observations, contains observations on every covariate

of interest. The second subset, which we will call the incomplete observations, contains

observations on only a subset of the covariate space. We assume that incomplete observations

are all incomplete in the same way: they all include information on the same subset of

covariates and they all lack information on the same subset of covariates. As an example,

in the study we describe above, half of our observations are missing PAH information, but2

these observations all have complete data on non-PAH covariates. We call the covariates for

2With some minor, easily imputed exceptions.
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which values are recorded on each observational unit complete covariates; covariates with

missing values in the incomplete observations will be called incomplete covariates. Complete

observations have no missing covariates. Incomplete observations contain information only

on complete covariates. We further assume that data for the response variables are complete

in all observations.

Our approach builds two similar models—one for the complete observations and one for the

incomplete observations—and constrains certain parameters shared by those two models to

be equal. If we believe that these data all arise from the same generating processes and

our missing covariate data are missing at random (MAR) or missing completely at random

(MCAR), this is straightforward. For more about missing data, see Daniels and Hogan

(2008) or Little and Rubin (2002).

2.2.1.1 Existing approaches

Before we describe our SP modeling approach in detail, we review other approaches for data

like these.

Removing incomplete data

The easiest method for dealing with MCAR data—although this may be more problematic for

MAR data—is to simply ignore any incomplete data. In the scenario we describe, this could

take two forms: removing covariates where data are incomplete, or removing observations

where data are incomplete.

Removing covariates where data are incomplete is an undesirable solution. If these covariates

are assumed to be relevant predictors for some response, then not including them in models

for that response will lead to less accurate predictions. This may seem like an appealing
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strategy to some if data on a covariate are very sparse, but it is philosophically difficult to

justify excluding known information that one believes to be relevant.

Removing observations where data are incomplete is also undesirable, but less problematic.

The cost of removing incomplete observations is a loss of statistical power—there are fewer

observations in such a dataset than in a dataset where these incomplete observations are

retained. We are not using a reduced model when we believe a larger model to be better,

as we do if we remove incomplete covariates—but we are nonetheless still excluding known

information that we believe to be relevant.

Imputation

The next choice for dealing with MCAR data and the most common for MAR data is to im-

pute the missing values based on existing information about the covariates that are missing.

Imputation can be done in two ways, pointwise imputation and probabilistic imputation,

which we detail below.

Pointwise imputation methods include methods like mean substitution and regression im-

putation. In mean substitution, which is designed for MCAR data, missing observations

are replaced with the sample mean of all the other observations in the dataset on the same

variable. In regression imputation, which is designed for MAR data where mean substitu-

tion would be inappropriate, a regression model for the missing data is constructed from

the complete data and missing observations are replaced with predictions from this model.

Pointwise imputation results in reduced variability for the missing data, since missing ob-

servations are always imputed from some deterministic model and do not include measures

of uncertainty about the imputations. The SP modeling method presented below is based

on pointwise imputation, but adds a variance component to the response model to account

for this uncertainty.
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Probabilistic imputation is often Bayesian, and in this case is easily implemented using

MCMC methods. A probability distribution is assigned to missing values, and imputed values

are probabilistic predictions (rather than deterministic ones) based on these models. That

is, rather than imputing the missing data using a sample mean or a regression fitted value, at

each iteration of an MC method, a value from the predictive distribution for that covariate is

imputed. In this way, uncertainty about the imputation is automatically incorporated into

the analysis. If a poor probability model is chosen for the missing data, inferences will likely

suffer.

2.2.1.2 Motivation

In the environmental epidemiology study described above, we were confronted with a prob-

lem: our collaborators’ primary research interest was whether PAHs affect various menstrual

cycle endpoints, but PAH data were only available for half of their observations. How could

we best make use of their data to address their research interests?

We disliked both of the obvious choices: drop the observations for which PAHs were unavail-

able, or probabilistically impute the missing PAH values3. As described in Section 2.1.1.4,

our PAH data were missing completely at random, which would allow us to drop our in-

complete observations; but dropping observations meant sacrificing half of our collaborators’

data, and would have resulted in only 2-3 observations per woman. Having only 2-3 obser-

vations per woman would make it difficult to use random effects models for these data. We

also found probabilistic imputation problematic. With half of our data on PAHs missing,

and our data indicating that PAHs were approximately log-normal, we were not comfortable

basing so much of our analysis depending on our decisions about how to model this missing

data.

3Our strong preference is for probabilistic imputation over pointwise imputation.
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Our goal is to reconcile complete observations with incomplete observations. First, we as-

sumed that both models share the same structure for complete covariates (the baseline co-

variates). Next we modeled incomplete observations to estimate that model structure. And

then we look at how the inclusion of our incomplete covariates (the OH-PAH concentrations)

changes the model when they were present. Second, assuming that PAHs would be related to

our endpoints, we inferred that error variances should be smaller among observations where

the PAH data were available than among observations where these data were not available.

If the PAHs are related to the endpoints, a model that includes them should make more

accurate predictions than a reduced model without them.

Based on the first of these considerations, we recognized that we would need to center our

PAH data. Models with and without the PAH data could not share the same parameter

values for the baseline covariates unless (1) PAH data were centered, and (2) PAH data were

orthogonal to baseline covariates. We did not orthogonalize the PAH data relative to the

baseline covariates because correlations between these covariates were small, and because we

wanted to preserve the original PAH variables for interpretability. Our simulations in Section

2.2.3 consider the performance of SP modeling when correlations exist between complete and

incomplete covariates.

Based on the second of these considerations, we determined that an additional variance

component should be added to the model for observations where PAH data were missing.

2.2.2 Shared Parameter Modeling

Notationally, let YC denote the vector of responses among the complete observations and YI

denote the vector of responses corresponding to the incomplete observations. We will use

the letters X and Z to denote the complete and incomplete covariates respectively; with XC

referring to the matrix of complete covariates for complete observations, XI referring to com-
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plete covariates observed on incomplete observations, ZC referring to incomplete covariates

observed on complete observations, and ZI incomplete covariates on incomplete observations.

Note that in our treatment, all information in XC , XI , and ZC is known. ZI is unknown.

In the linear model setting, we can now give our shared-parameter model a precise notation:

Y C
Y I

 =

XC ZC

XI 0


β
γ

+

 eC

eC + eI

 , (2.1)

where β and γ are regression coefficients, and eC and eI are errors. The models for Y C and

Y I can be thought of as a full model and a reduced model, respectively. Then eC can be

thought of as the error variance when all the covariates are available, and eI as the additional

error variance when there are missing covariates. Further, if Var
[
eI
]

= 0, this means that the

incomplete covariates are not improving the model fit for the complete data.

To discuss the underlying assumptions of shared-parameter modeling, it is useful to consider

both the linear model formulation (Equation 2.1) as well as the split model formulation

below:

Y C = XCβ + ZCγ + eC , eC ∼ N(0, V C)

Y I = XIβ + eC + eI , eI ∼ N(0, V I)

(2.2)

From Equation (2.2), it is easy to see that Xβ must play an identical role in both models.

This requires that the covariates in X and Z be linearly independent, otherwise collinearity

among predictors will cause the β coefficients to differ between the two models if they are fit

separately. We examine the method’s sensitivity to violations of the independent covariates

assumption in Section 4.
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Moreover, it is necessary that either the covariates in Z be standardized to have a zero

mean, or Z include a column of ones corresponding to an intercept. Otherwise the value of

an intercept coefficient in β will be different for the two models. No further study will be

made of this assumption, because it should be straightforward for practitioners to address

it in practice. Beyond these points, the general assumptions of linear modeling apply.

If the covariates in Z are assumed to have mean zero, we recognize that the model we

describe is similar to a model using mean substitution to impute the values of the missing

data. With mean substitution, if the covariates in Z have mean zero, then we add 0γ = 0

to the incomplete data model when we impute. This is what we have done. The model for

Y C includes information on the incomplete covariates. The model for Y I differs in two ways:

(1) it does not include the incomplete covariates, which is equivalent to imputing a zero for

each missing value; and (2) it includes an additional error term to quantify the difference in

how well each model fits the response data. Point (2) provides a major distinction in the

models and mitigates the issue of substituting zeroes for ZI . We believe this is a sensible

alternative, avoiding the assumption of a structured probability model on our missing data,

50% of which was unavailable to us.

This structure is particularly useful in the mixed modeling context where we have multiple

observations within clusters, some of which include the incomplete covariates and some of

which have missing values. Let Y = {Yi} = {yij} be a vector of response data on clusters

i ∈ {1, ..., k}, with j ∈ {1, ..., NC
i , N

C
i + 1, ..., NC

i + NI
i } observations per cluster. We let NC

i be

the number of complete observations in cluster i and NI
i be the number of observations with
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missing values in cluster i. Then for each cluster we can write

Yi =

Y Ci
Y Ii

 =



yCi,1

...

yCi,NC

yIi,NC+1

...

yIi,NC+NI



.

The random effects version of the SP model is

Y Ci = XC
i β + ZCi γ + ηiJNC

i
+ eC , eC ∼ N(0, V C)

Y Ii = XI
i β + ηiJNI

i
+ eC + eI , eI ∼ N(0, V I)

(2.3)

where Jd is a d × 1 vector of ones and ηi is a cluster-specific random effect we will assume

follows a N
(
0, σ2h

)
.

SP modeling allows us to learn more about the random effects for each cluster from the

incomplete observations on that cluster. In our environmental epidemiology dataset, this

means we can learn more about individual women’s response values by analyzing the data

for which PAH values are missing. Since only 2-3 PAH values are available per woman, it

would be difficult to accurately estimate the random effects for each woman without more

information.

2.2.3 Simulation Results

To see how shared-parameter modeling can improve prediction accuracy when compared to

fitting models on only complete observations/covariates, we examined results from a variety
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of simulations. Data for the following simulations were generated from a linear mixed model

with k clusters and N observations per cluster,

Yij = Xijβ + Zijγ + ηi + eij ,

ηi ∼ N(0, τ2),

eij ∼ N(0, σ2),

(2.4)

with i ∈ {1, ..., k} and j ∈ {1, ..., N}. We will let X and Z be univariate here, so β and γ are

scalars. Further, we set the residual variance for the full model, σ2 equal to one in our

simulations, and we set γ be equal to one in our simulations.

In each simulation, we consider the difference in predictive validity between the shared-

parameter model, a simplified model using only the complete observations, and a model

where all observations are considered but covariates with some missing values are removed.

We are interested in how much information is to be gained from consideration of the incom-

plete observations. Our simulations consider the effect on predictive validity when we vary

(1) the correlation between observations on the same subject, ρ =
√

τ2

τ2+σ2 ; (2) the correlation

between X and Z, φ; (3) the ratio of the number of complete observations per cluster, NC , to

the number of incomplete observations per cluster, NI ; (4) the total number of observations,

n; (5) the number of subjects being studied, k; and (6) the strength of relationship between

the complete covariate X and the response Y .

Results presented below are based on averaging over 100 simulations. In each simulation we

randomly generate (i) kN independent values of Xij and Zij from the appropriate bivariate

normal distribution, Xij
Zij

 ∼ N


0

0

 ,
1 φ

φ 1


;

(ii) values of the k×1 vector η, (iii) values of the kN×1 error vector e, and (iv) calculating the

resulting kN×1 response vector Y . In our N observations per cluster, we include NC complete
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observations, NI incomplete observations where we will treat the Zij data as missing, and

NT = 3 out-of-sample test observations. For each simulation, model fit was assessed via

prediction error on these three test observations.

Our choice of three models is driven by what we see as relatively common choices that might

be made by researchers facing a situation like we describe: where, because of expense or

availability, data on some covariates are only available for a limited number of observations,

and data on other covariates are available on those observations as well as others. We

consider the shared-parameter model to be the most reasonable choice for this situation;

but because of the additional complexity involved in using all of the data in this setting,

we believe researchers may be likely to gravitate toward one of the other options presented.

The first option, which we call “observations removed”, fits a model based only on those

observations for which complete covariate information is available, significantly decreasing

the sample size available to the researcher. This option will lose power and information

relative to the shared-parameter model, but is not unreasonable. The second option, which

we call “covariates removed”, ignores the covariates which only appear in a subset of the

observations and models the data based only on the complete covariates. This alternative

retains the full sample size and may be attractive from a power standpoint, but should be

recognized as a poor option any time researchers believe the incomplete covariates to be

effective predictors.

Table 2.8 presents results for simulations regarding the effects of elements (1) and (2) above.

Note that prediction error under the SPM column and the observations removed column

should go no lower than 1, the error variance built into the simulation. Prediction error

under the covariates removed condition should be larger because it fails to account for the

variance in Y attributable to Zγ. As ρ—the correlation between observations on the same

subject—increases, the predictive performance of shared-parameter modeling improves rela-

tive to the two alternatives discussed. Even at ρ = 0.0, however, shared-parameter modeling
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ρ φ Shared-Parameter Model Observations Removed Covariates Removed

0.0
0.0 1.015 1.022 2.031
0.3 1.046 1.040 1.925
0.7 1.112 1.022 1.543

0.3
0.0 1.162 1.218 2.167
0.3 1.178 1.216 2.102
0.7 1.235 1.218 1.657

0.7
0.0 1.217 1.331 2.262
0.3 1.222 1.309 2.180
0.7 1.280 1.312 1.733

Table 2.8: Mean squared prediction errors in 100 simulations from the model in Equation 2.4
with k = 50 and NC = NI = 3. True parameter values β = γ = 1 were used in these simulations.

outperforms the alternatives. Conversely, as the correlation between complete and incom-

plete covariates (φ) increases, the predictive performance of shared-parameter modeling loses

ground to the observations removed alternative, although shared-parameter modeling still

performs comparably well or better whenever the covariate correlation is small. Results

regarding φ reflect the sensitivity of the shared-parameter modeling method to violations of

the assumption that the covariates be independent, as discussed in Section 2. Note also here

that the covariates removed alternative performs best when φ is large—that is when infor-

mation in the incomplete covariates is partially captured by knowing the complete covariates.

NC NI Shared-Parameter Model Observations Removed Covariates Removed

3
3 1.217 1.331 2.262
10 1.145 1.339 2.171
30 1.072 1.337 2.051

5
3 1.167 1.213 2.291
10 1.111 1.199 2.146
30 1.052 1.194 2.049

10
3 1.096 1.110 2.179
10 1.067 1.094 2.079
30 1.005 1.059 2.035

Table 2.9: Mean squared prediction errors in 100 simulations from the model in Equation
2.4 with ρ = 0.7 and φ = 0.0. True parameter values β = γ = 1 were used in these simulations.
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Table 2.9 presents results for simulations regarding the effects of elements (3) and (4) above,

the proportion of observations which are complete and the total number of observations.

As previously stated, the shared-parameter modeling method is most useful for longitudinal

data and assumes that complete and incomplete covariates are uncorrelated, so simulation

results here and later assume ρ = 0.7 and φ = 0.0. What we see here is that the predic-

tive performance of the shared-parameter model relative to the observations removed model

improves as NI increases and diminishes as NC increases. Knowing that the strength of

within-subjects correlation is related to the predictive gain of shared-parameter modeling,

the results here are intuitive. With large NI , shared-parameter modeling has more observa-

tions with which to estimate a random effect. With large NC , estimates of a random effect

in the observations removed model will already be more accurate; the additional incomplete

observations will do less to improve the precision of those estimates in the shared-parameter

model.

k β Shared-Parameter Model Observations Removed Covariates Removed

5
0.2 1.423 1.602 2.421
1.0 1.424 1.600 2.421
5.0 1.369 1.548 2.446

15
0.2 1.243 1.370 2.390
1.0 1.296 1.439 2.364
5.0 1.269 1.404 2.217

50
0.2 1.202 1.300 2.308
1.0 1.217 1.331 2.262
5.0 1.233 1.332 2.344

Table 2.10: Mean squared prediction errors in 100 simulations from the model in Equation
2.4 with ρ = 0.7 and φ = 0.0. In these simulations, NC = NI = 3 and γ = 1.

Table 2.10 presents results for simulations regarding the effects of elements (5) and (6)

above—changes in the number of subjects observed, k, and the strength of the relationship

between Y and X, summarized by β. Note that the strength of the relationship between Y

and Z is held constant in these simulations; and since φ = 0, the proportion of variability
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in Y attributable to Z remains equal to the proportion of variability in Y attributable to

unmodelable error (σ2 = 1). We chose to vary the true value of β because the largest

improvements in coefficient estimation under SP modeling occur for coefficients on complete

covariates. We see little predictive improvement in SP modeling from varying β, however—a

sign that the amount of response variability attributable to the complete covariate does not

seem to significantly effect performance. Varying k appears to show small gains in predictive

accuracy, suggesting that having more information to estimate the regression coefficients can

provide some improvement beyond what is available from modeling the correlation structure

in the data.

2.2.4 Future work

The work on SP modeling presented here has proven useful in our applied problem described

in Section 2.1. Elaborating on this work by adding more mathematical rigor, providing

clearer definitions, and more clearly explaining the interplay between the many simulation

elements described above will allow us to develop this method for a more general audience.

Moreover, our simulations have compared our method to naive removal of incomplete obser-

vations. It remains for us to compare our method’s accuracy to different imputation methods

and to two-stage regression methods.
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Chapter 3

Marginalization for DIC – Part I

After beginning with a discussion of statistical model selection, this chapter will present

technical details regarding the deviance information criterion (DIC) and explore its behavior

in the mixed modeling setting. We discuss the mathematical and philosophical differences

between using marginalized vs. unmarginalized DIC computations, and we offer two schemes

for numerical approximation of the DIC in the linear mixed model (LMM) setting.

3.1 Background

In this section, we provide an introduction to the topic of statistical model selection and we

review a number of important developments therein. We focus primarily on the class of model

selection criteria known as information criteria, based on their connection to information

theory and their interpretation as the information lost through modeling—a notion that

arises from Kullback and Leibler (1951).
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3.1.1 Philosophy of Model Selection

George Box famously said, “All models are wrong, but some are useful” (Box and Draper

1987). While this is a valuable dictum, in the area of model selection we must recognize that

stochastic objects such as experimental data must, necessarily, arise from some stochastic

process. Even if that process is unknowable, the fundamental goal of model selection is to

identify—subject to certain constraints—which class of models best matches the unknown

data-generating process.

Conceptually, we can consider that somewhere in the space of all probability distributions

there exists a unique distribution by which our data were generated. If we consider a re-

stricted subspace of probability distributions such as a parametric family, model selection

seeks to find some distribution within this subset that comes as close as possible to repli-

cating the behavior of the data-generating distribution. Following the conventions of D. J.

Spiegelhalter et al. (2002), hereafter SBCV, we refer to the former generating distribution as

the true distribution and the latter approximating distribution as a pseudo-true distribution.

For a given true distribution there may be many different pseudo-true distributions, each

corresponding to a different subspace of probability distributions. A pseudo-true distribution

is often a parametric distribution, and in this case we refer to the parameter of a pseudo-

true distribution as a pseudo-true parameter. For example, a set of data might be modeled

by either a Weibull or a log-normal distribution. A pseudo-true Weibull distribution and

a pseudo-true log-normal distribution would both exist for that data, each with their own

pseudo-true parameters. These distributions would be the closest fit in each class to the true

data-generating distribution, but neither would necessarily be that true distribution.

The fundamental goal of statistical model selection is to identify a model with good predictive

accuracy for some set of response data y. Model selection tools often marry a measure of

goodness-of-fit to a measure of desirability. For example, Akaike’s information criterion
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(Akaike 1974) uses cross entropy as a measure of goodness-of-fit and adds a complexity

penalty equal to the number of parameters in the model. In this way, the criterion tends

to pick models with fewer parameters when they yield comparable cross entropies, but if

additional complexity can result in appreciably better goodness-of-fit, a larger model may

be preferred. Note, however, that when models are picked purely through comparison of

criteria such as this, one cannot guarantee that the resulting model fits the data well—only

that it fits the data better than the other models considered.

Before we turn to our own work with the deviance information criterion (DIC), we review the

basis for information criteria beginning with the Kullback-Leibler (KL) divergence and early

information criteria. We develop and explain the ideas behind the DIC, as well as discuss

two newer information criteria that have been created to address issues related to selection

in hierarchical models. We do this to provide a fuller understanding of the framework

surrounding DIC: both its historical place and how it relates to other criteria that are

frequently used in model selection.

3.1.2 Kullback-Leibler (KL) Divergence, 1951

Of particular interest here is what it means for two distributions to be similar to one another.

Traditionally, one would use a distance metric to express this. A common method has been

to use the Kullback-Leibler (KL) divergence (Kullback and Leibler 1951).

Formally, consider two probability measures µ0 and µ1, both absolutely continuous with

respect to a third measure λ. By the Radon-Nikodym theorem, for j ∈ {0, 1} there exist

measurable functions fj such that for a measurable set E under λ,

µj(E) =

∫
E
fj(y)dλ(y).
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Kullback and Leibler define log
f0(y)
f1(y)

to be the information in y for discriminating between

the hypothesis that y was selected from a population with probability measure µ0 and the

hypothesis that y was selected from a population with probability measure µ1. The µ0-

directed KL divergence is defined as the expected amount of information for discriminating

between these hypotheses contained in an observation from µ0, namely

KL(µ0:µ1) =

∫
log

(
f0(y)

f1(y)

)
f0(y)dλ(y).

The directed KL divergence is not a distance metric—it neither satisfies symmetry nor the

triangle inequality. Even so, it is a premetric, satisfying the properties

KL(µ0:µ1) ≥ 0 ∀µ0, µ1 and KL(µ0:µ1) = 0 ⇐⇒ µ0 = µ1.

We can rewrite the formula for the directed divergence as

KL(µ0:µ1) = Eµ0 [log f0(y)]− Eµ0 [log f1(y)] . (3.1)

The term −Eµ0 [log f0(y)] is known as the entropy of µ0. The term −Eµ0 [log f1(y)] is called the

cross entropy of µ0 and µ1. Thus, the KL divergence is often conceptualized as the difference

between the cross entropy of (µ0, µ1) and the entropy of µ0 alone. The cross entropy forms

the basis for many model selection procedures as we demonstrate below.

3.1.3 Akaike’s Information Criterion (AIC), 1974

Akaike (1974) proposed an information-criterion-based model selection procedure, the AIC,

that derives its validity from the interpretation of the negative cross entropy as a measure of

the proximity between an inexact model and a true generating distribution, as demonstrated
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with the KL divergence above. Akaike considers a scenario where µ0 is the true generating

distribution and µ1 is an inexact modeling distribution whose fit we want to assess. He

rewrites (3.1) as

KL(µ0:µ1) =

∫
log[f0(y)]f0(y)dλy −

∫
log[f1(y)]f0(y)dλ(y),

additively separating the component involving the modeling distribution from the component

that involves only the generating distribution. Akaike shows how the above form can be used

to compare different models, by recognizing that they share the unknown constant

c(µ0) =

∫
log[f0(y)]f0(y)dλy

that only involves the data-generating distribution.

What we are left with is an expectation over the data-generating distribution. Consider a

set of alternate modeling distributions, µ1, ..., µM . Then the directed KL divergence for µj

relative to the generating distribution is given by

KL(µ0:µj) = c(µ0)− Eµ0
[
log fj(y)

]
j ∈ {1, ...,M}.

Approximating this expectation with a sample mean of values that are generated by the

unknown distribution µ0 allows us to use the negative cross entropy as a measure of fit that

can be compared across a range of modeling distributions.

Now assume our modeling distributions µ1, ..., µM are parametric, with parameter vectors

θ1, ..., θM respectively. Assume further that the true distribution µ0 is parametric, with θ0.

Then let a sample of data yi
iid∼ f(yi | θ0), i ∈ {1, ..., n} and a consider µj with density fj(y | θj),

θj ∈ Θj. There exists a maximum likelihood estimate (MLE) for θj based on these data, θ̂j.
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As Cavanaugh (1997) explains,

−2

n∑
i=1

log fj(yi | θ̂j)

is a biased estimator for twice the negative directed KL divergence between the true and

fitted models,

−2 Eθ0

[
KL

(θ0:θ̂j)

]
= −2c(µ0) + 2 Eθ0

[
n∑
i=1

log fj(yi | θ̂j)

]
.

Further, this bias is asymptotically equal to twice the dimension of θ̂j.

Then for this collection of models, Akaike writes

AICj = −2

n∑
i=1

log fj(yi | θ̂j) + 2kj , (3.2)

where kj is the dimension of θj—the number of parameters θj includes. He is able to ignore

c(µ0) because it constitutes a fixed adjustment to each model, and is thus not useful in making

comparing among those models.

Equation (3.2) marries a goodness-of-fit measure, the sample average cross entropy between

θ0 and θj, to a measure of model complexity, 2kj. This marriage is standard for information

criteria, and the complexity penalty guards against overfitting. Because the MLE θ̂j is

a function of the observed data, models with more parameters will tend to fit better than

submodels that include only a subset of those parameters. Together, these measures converge

to the cross entropy as long as θj is sufficiently close to θ0. Model selection is performed

by comparing AICj among a collection of models and choosing the model with the smallest

AICj.
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3.1.4 Bayes Factors (BF)

A common approach to model selection in the Bayesian setting is the Bayes factor (BF),

the ratio of marginal likelihoods for the data under two distinct models. It is most easily

understood in the context of hypothesis testing, where one of two models µ1 or µ2 is assumed

to be the true distribution for some observed data, y. Our explanation below is derived from

R. R. Christensen, Johnson, et al. (2010).

We define θ1, θ2 to be the parameters associated with µ1, µ2, and f1(y | θ1), f2(y | θ2) their

associated pdfs. In the Bayesian setting, we are also concerned with prior distributions on

these parameters, P1(θ1 | µ1), P2(θ2 | µ2); and prior probabilities for each model, q1, q2 where

q1 + q2 = 1. We will use µT to denote the true model, whichever one it is.

The Bayes factor is based on the marginal predictive density for y,

fj(y) =

∫
fj(y | θj)Pj(θj | µj)dθj j ∈ {1, 2},

and the associated marginal likelihood L(µi | y) ∝ fj(y). The posterior probability of µ1 = µT

is

Pr [µ1 = µT | y] =
q1f1(y)

q1f1(y) + q2f2(y)
.

Then the posterior odds for µ1 = µT are

Pr [µ1 = µT | y]

Pr [µ2 = µT | y]
=

q1f1(y)
q1f1(y)+q2f2(y)

q2f2(y)
q1f1(y)+q2f2(y)

=
q1f1(y)

q2f2(y)

≡ q1
q2
BF
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Thus the Bayes factor comparing µ1 to µ2 is defined as

BF1:2 =
f1(y)

f2(y)
. (3.3)

Since q1
q2

is the prior odds for µ1 = µT , we can understand the Bayes factor as the degree to

which our data change our prior beliefs about the odds. A Bayes factor above one means

that the data favor the conclusion that µ1 = µT , while a Bayes factor below one means that

the data favor µ2 = µT .

3.1.5 Bayesian Information Criterion (BIC), 1978

Schwarz (1978) provides the next major advance in the development of statistical information

criteria. He begins by giving a concise summary of the criterion proposed by Akaike—quoted

below1:

An extension of the maximum likelihood principle is suggested... for the slightly more

general problem of choosing among different models with different numbers of param-

eters. His suggestion amounts to maximizing the likelihood function separately for

each model j, obtaining, say, fj(y1, ..., yn | θ̂j), and then choosing the model for which

log fj(y1, ..., yn | θ̂j)− kj is largest, where kj is the dimension of the model.

In contrast to this, Schwarz proposes that a model should instead minimize

BICj = −2

n∑
i=1

log fj(yi | θ̂j) + kj log n, (3.4)

1It is our standard practice in this dissertation, when quoting from other sources, to match their state-
ments to our notation for the ease of the reader. We have endeavored to render the quoted material here
and elsewhere as accurately as possible.
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a value that what would later come to be called the Bayesian Information Criterion. Schwarz

reasons asymptotically from the Bayesian strategy of picking the a posteriori most probable

model from a class of models that are all given positive probability. This is very reminiscent

of Equation (3.2). The only difference is the change in penalty term from 2kj for AIC to

kj log n for BIC. The BIC penalty scales with the number of observed data values; and as

more data are observed, BIC more strongly prefers a parsimonious model.

Formally Schwarz considers exponential family data with density h(y) exp (θt(y)− b(θ)) where

θ ∈ Θ is multidimensional. Modeling distributions for these data, µ1, ..., µM depend on pa-

rameters θ1, ..., θM where θj lives in a kj-dimensional subspace of Θ. Again, let qj be the

prior probability that model µj is correct, and let Pj(θj | µj) be the prior distribution for θj

conditional on µj. Then the Bayesian choice should select j to maximize

S(j) = log
(
qjfj(y1, ..., yn)

)
= log

∫
qj

(
n∏
i=1

h(yi)

)
exp

(
θj

n∑
i=1

t(yi)− nb(θj)

)
dPj(θj | µj)

= log

(
qj

n∏
i=1

h(yi)

∫
exp

(
θj

n∑
i=1

t(yi)− nb(θj)

)
dPj(θj | µj)

)

= log

(∫
exp

(
θj

n∑
i=1

t(yi)− nb(θj)

)
dPj(θj | µj)

)
+ log qj +

n∑
i=1

log h(yi)

Schwarz shows that

S(j) =

(
θ̂j

n∑
i=1

t(yi)− nb(θ̂j)

)
− 1

2
kj log n+Rj ,

where Rj is a remainder term bounded in n. As n grows, the boundedness of Rj means it goes

away relative to S(j) as a whole. This gives an asymptotic justification for using kj log n as

a complexity penalty in Equation (3.4) rather than Akaike’s 2kj in Equation (3.2). Of note

is the fact that Schwarz’s BIC relies on an asymptotic justification to eliminate prior beliefs

about model preference—the prior model probability qj is absorbed into the remainder Rj

that is asymptotically eliminated.
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Although the argument in Schwarz (1978) assumes the data come from an exponential family

distribution, Cavanaugh and Neath (1999) show this result more generally. They let Y =

{y1, ..., yn} and let f(Y ) be the marginal density for the data over all models µ1, ..., µM ,

f(Y ) =

M∑
l=1

qlfl(y1, ..., yn | µl).

Then Cavanaugh and Neath show that

log Pr
[
µj = µT | Y

]
+ log f(Y ) '

n∑
i=1

log fj(yi | θ̂j)−
1

2
kj log n

= −1

2
BICj

Since log f(Y ) does not depend on j, choosing a model based on BIC(θj) is asymptotically the

same as choosing a model based on the posterior model probability.

From this, we can also see another interesting feature of the BIC: its asymptotic relation to

the Bayes factor and the posterior odds. Observe that

log Pr
[
µj = µT | Y

]
+ log f(Y ) = log

(
qjfj(Y | µj)

f(Y )

)
+ log f(Y )

= log qj + log fj(Y | µj)

Then using our definition of the BIC, (3.4), and the result from Cavanaugh and Neath (1999),

we have

logBFj:j′ = log fj(Y | µj)− log fj′(Y | µj′)

=
(
log fj(Y | µj) + log qj − log qj

)
−
(
log fj′(Y | µj′) + log qj′ − log qj′

)
' −1

2
(BICj −BICj′) + (log qj′ − log qj)

If we assume equal prior probabilities for µj and µj′ , then, logBFj:j′ ' −1
2 (BICj −BICj′).
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3.1.6 Log Pseudo-Marginal Likelihood (LPML), 1979

Geisser and Eddy (1979) argue that a fixed-penalty decision approach for choosing the wrong

model, as Schwarz uses in his justification of the BIC, “may be reasonable for a selection

procedure, but if the ultimate goal is prediction, then the penalty should depend both on

sample size and type of error made.” They build a predictive criterion, the log pseudo-

marginal likelihood (LPML), using conditional predictive densities where each datapoint is

fit knowing the rest of the data vector.

Let Y(i) = {y1, ..., yi−1, yi+1, ..., yn}. This is the collection of all the elements in Y except yi.

Then for a model µj, Geisser and Eddy define a conditional predictive ordinate

CPOij = fj(yi | Y(i), µj)

and a pseudomarginal likelihood

Lj =

n∏
i=1

CPOij

=

n∏
i=1

fj(yi | Y(i), µj)

A. Gelfand and Dey (1994) provide an easy method for calculating the inverses of the con-

ditional predictive ordinates from a posterior sample θ
(1)
j , ..., θ

(B)
j ,

CPO−1ij = Eθj |Y

[
1

f(yi | θj , µj)

]
.
=

1

B

B∑
s=1

1

f(yi | θ
(s)
j , µj)
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The log pseudo-marginal likelihood itself, as the name implies, is given by

LPMLj = logLj

=

n∑
i=1

logCPOij .

Although not created as an information criterion, the LPML shares many of the same model

selection uses as the common information criteria when comparing two models. It also has

a standard interpretation as a “pseudo Bayes factor” (R. R. Christensen, Johnson, et al.

2010), and thus shares a connection with BIC in that they both provide approximations to

the same quantity. Watanabe (2010a) also proves the asymptotic equivalence of LPML and

the widely applicable information criterion (WAIC) presented in Section 3.1.8.

3.1.7 Deviance Information Criterion (DIC), 2002

Whereas Akaike and Schwarz are concerned with the deviation between a known model

(expressed through θ̂) and the truth, the approach of SBCV considers an average deviation

from the truth for a possible model. As before, let Y = {y1, ..., yn} be a set of observed data,

and let µ1, ..., µM be a collection of models with associated parameters θ1, ..., θM and pdfs

f1(Y | θ1), ..., fM (Y | θM ). Instead of using the cross entropy as defined in Section 3.1.2, SBCV

consider the posterior expectation of the log density. They define

DICj = −2 Eθj |Y,µj
[
log fj(Y | θj)

]
+ pDj , (3.5)

where pDj is a penalization term that will be defined below.

SBCV frame their method around a quantity D(θj) defined as

D(θj) = −2
[
log fj(Y | θj)− log f(Y )

]
,
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where SBCV describe f(Y ) as “some fully specified standardizing term that is a function of

the data alone.” Observe that f(Y ) will play a similar role to c(µ0) in the AIC development

above—as a constant term not based on the model being evaluated. Although it appears in

the formal development of DIC, because it is an empirical function of the data alone, it will

be irrelevant in comparing DICs for different models.

Based on D(θj), SBCV then define the quantities

D(θj) = −2 Eθj |Y,µj
[
log fj

(
Y | θj

)]
+ 2 log f(Y )

D(θ̂j) = −2 log fj

(
Y | θ̂j

)
+ 2 log f(Y ).

where θ̂j is some posterior summary for θj—most commonly a posterior mean, median, or

mode. SBCV describe D(θj) as a “Bayesian measure of fit [or] perhaps better considered

a measure of ‘adequacy’.” It it the posterior expectation of their D(θj), and it quantifies

how well the model fits on average, across the posterior distribution for θj. Meanwhile, they

describe D(θ̂j) as a “classical ‘plug-in’ measure of fit,” akin to the quantities used in the AIC

and BIC.

This classical measure will tend fit be better2 than SBCV’s Bayesian measure—and in fact

this is guaranteed to be the case when fj(Y | θj) is log-concave in θj and we choose θ̂j to be

the posterior mean of θj as SBCV recommend. Then Jensen’s inequality guarantees

log fj

(
Y | Eθj |Y,µj

[
θj
])
≥ Eθj |Y,µj

[
log fj

(
Y | θj

)]
,

which is the same as saying that the log-likelihood evaluated at the estimate θ̂j is larger than

the posterior expectation of the log-likelihood function for θj.

2Because SBCV have structured their work around the idea of deviances, “better” can be difficult to
follow here. D(θ̂j) is better than D(θj) when D(θ̂j) < D(θj).
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The penalization term, pDj, is then defined as

pD = D(θj)−D(θ̂j)

= −2 Eθj |Y,µj
[
log fj

(
Y | θj

)]
+ 2 log fj

(
Y | θ̂j

)
= 2

[
log fj

(
Y | θ̂j

)
− Eθj |Y,µj

[
log fj

(
Y | θj

)]]
,

(3.6)

SBCV interpret this quantity as the degree of overfitting when a classical measure of fit,

D(θ̂j), is used in place of a Bayesian measure of fit, D(θj).

In models where the likelihood admits a normal approximation, SBCV argue that pD is ap-

proximately the number of free parameters in the model. We give a more general argument

below that also suggests an asymptotic equivalency between DICj and AICj under the con-

ditions that Lj(θj | Y ), the likelihood for θj, admit a normal approximation; and the prior

pj(θj | µj) is sufficiently diffuse.

To begin, let θ̂ML
j be the MLE for θj and let θ̂Bj be the posterior mode for θj. We repeat

Equations (3.2) and (3.5):

AICj = −2

n∑
i=1

log fj

(
yi | θ̂ML

j

)
+ 2kj

DICj = −2 Eθj |Y,µj
[
log fj(Y | θj)

]
+ pDj

Now observe that since

pDj = −2 Eθj |Y,µj
[
log fj

(
Y | θj

)]
+ 2 log fj

(
Y | θ̂Bj

)
,

we can also write

−2 Eθj |Y,µj
[
log fj

(
Y | θj

)]
= pDj − 2 log fj

(
Y | θ̂Bj

)
.
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Then

DICj = −2

n∑
i=1

log fj

(
yi | θ̂Bj

)
+ 2pDj .

To show AICj ' DICj , it is sufficient to show that θ̂ML
j

.
= θ̂Bj and kj

.
= pDj.

It is well known that when the likelihood admits a normal approximation and the prior is

sufficiently diffuse; θ̂ML
j , θ̂Bj , and Eθj |Y,µj

[
θj
]

are consistent estimators of the same quantity

(Gelman et al. 2013, p.92), so asymptotic equivalence is clear. Further, the large sample

approximation to the posterior is known to be

θj | Y, µj
·∼ N

(
θ̂Bj , 2D̈(θ̂Bj )−1

)
,

as discussed in Gelman et al. (2013, p.93).

What remains to be shown is that pDj is asymptotically equal to the number of parameters

in the model, kj. Using a second-order Taylor expansion, we observe that

D(θj) ' D(θ̂Bj ) +
1

2

(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)
,

where the first-order Taylor term is zero because our choice of θ̂Bj ensures that Ḋ(θ̂Bj ) = 0.

Then as David Hinkley would argue,

D(θj) = Eθj |Y,µj
[
D(θj)

]
' Eθj |Y,µj

[
D(θ̂Bj ) +

1

2

(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]
= D(θ̂Bj ) +

1

2
Eθj |Y,µj

[(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]

Then since D(θj) = D(θ̂Bj ) + pDj, this indicates that

pDj '
1

2
Eθj |Y,µj

[(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]
.
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We now show that

1

2
Eθj |Y,µj

[(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]
.
= kj .

Since Eθj |Y,µj

[(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]
is a scalar, we can also write

Eθj |Y,µj

[(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]
= tr

(
D̈(θ̂Bj ) Eθj |Y,µj

[(
θj − θ̂Bj

)(
θj − θ̂Bj

)T ])
.

But our large sample posterior approximation gives

Eθj |Y,µj

[(
θj − θ̂Bj

)(
θj − θ̂Bj

)T ] .
= Covθj |Y,µj

[
θj
]

.
= 2D̈(θ̂Bj )−1.

Then

pDj '
1

2
Eθj |Y,µj

[(
θj − θ̂Bj

)T
D̈(θ̂Bj )

(
θj − θ̂Bj

)]
.
=

1

2
tr
(
D̈(θ̂Bj )

(
2D̈(θ̂Bj )−1

))
= tr

(
D̈(θ̂Bj )D̈(θ̂Bj )−1

)
= kj

The interpretation of pD as the number of free parameters in a model is widely considered

to hold more generally than we argue above, but not without debate. The choice of a

posterior summary θ̂j can affect pDj, even to the point of making it negative. There is also

no guarantee that pDj will be positive when the posterior mean is chosen in cases where the

density is not log-concave in θj, as is often the case with mixture models. Further, the DIC

is not well defined in hierarchical models. Celeux et al. (2006) present eight possible DIC

constructions for hierarchical models, differing in how the latent parameters are handled by
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D(θj) and D(θ̂j). We discuss these issues further in the following sections, and we present

three DIC constructions pertaining to mixed modeling in Sections 3.3.1 below.

It is important to note also that DICj as it has been defined is not analytically tractable,

although it is simple to numerically approximate it given an MCMC sample from the poste-

rior distribution, θj, {θ
(1)
j , ..., θ

(B)
j }. Below is the standard computational form of DICj when

θ̂j is taken to be the posterior mean.

DICj ' −
4

B

B∑
s=1

log fj

(
Y | θ(s)j

)
+ 2 log fj

(
Y | 1

B

B∑
s=1

θ
(s)
j

)

3.1.8 Other Information Criteria

The Bayesian Predictive Information Criterion (BPIC; Ando 2007) and the Widely Appli-

cable Information Criterion (WAIC; Watanabe 2010b) are two newer information criteria

created to deal with the problems inherent in selection involving hierarchical models.

The first of these, the BPIC proposed by Ando in 2007, takes the form

BPICj = −2 Eθj |Y,µj
[
log fj(Y | θj)

]
+ 2nb̂θj

=
(
D(θj)− 2 log f(Y )

)
+ 2nb̂θj

where µ is a parametric model for y with parameter vector θ. Computation of the penalization

term b̂θ is quite involved, but it is meant to approximate the bias created by using D(θj) rather

than Eµ0
[
D(θj)

]
as a measure of model fit, where µ0 is the true generating distribution for

the data y as before.

Formally,

bθj =

∫ (
1

n
Eθj |Y,µj

[
log fj(Y | θj)

]
− Ez

[
Eθj |Y,µj

[
log fj(z | θj)

]])
dµ0(y),
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where µ0 is the true data-generating distribution, and where z ∼ µ0. BPIC is, thus, using the

same measure of fit—or as SBCV say, “adequacy”—as DIC, but with a different choice of

penalization term to approximate the asymptotic bias in D(θj) when the data are generated

under an unknown distribution.

WAIC, proposed by Watanabe in 2010, is an attempt to build a Bayesian criterion that does

not rely on plug-in point estimates of parameters. It depends on what Gelman et al. (2013)

call the log pointwise predictive density (LPPD) for a model µj,

LPPDj =
n∑
i=1

log fj(yi | Y, µj)

=

n∑
i=1

log

∫
fj(yi | θj)Pj(θj | Y, µj)dθj

where Pj(θj | Y, µj) is the posterior density for θj. If a sample {θ(1)j , ..., θ
(B)
j } is available from

this posterior, then LPPDj can be numerically approximated with

LPPDj '
n∑
i=1

log

(
1

B

B∑
s=1

fj(yi | θ
(s)
j )

)
.

Then WAICj is defined as

WAICj = LPPDj + pWAICj
,

where pWAICj
is an overfitting penalty. Although Gelman et al. (2013, p.173) give two versions

of this penalty, we do not intend to do an exhaustive review of the criterion here and will
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only report the first.

pWAICj
= 2

n∑
i=1

(
log fj(yi | Y, µj)− Eθj |Y,µj

[
log fj(yi | θj)

])
= 2

n∑
i=1

(
log Eθj |Y,µj

[
fj(yi | θj)

]
− Eθj |Y,µj

[
log fj(yi | θj)

])

' 2

n∑
i=1

(
log

(
1

B

B∑
s=1

fj(yi | θ
(s)
j )

)
− 1

B

B∑
s=1

log fj(yi | θ
(s)
j )

)

WAIC has a number of nice properties. Principally, it does not rely on point estimation as

AIC, BIC, and DIC do. It has also been shown to be asymptotically equivalent to LPML

(Watanabe 2010a), as well as to Bayesian leave-one-out cross-validation (Gelman et al. 2013,

p.176).

3.2 Model Selection in Mixed Models

As we mentioned in Section 3.1.7, mixed modeling is an area where the DIC is not well

defined and many competing constructions have been offered (Celeux et al. 2006). In this

section we introduce the mixed modeling framework. We then discuss how the definition of

pD in particular is complicated by these models. We close the section with an example to

demonstrate the behavior of pD in a simple random effects model.

3.2.1 The Mixed Modeling Framework

Mixed models, models that incorporate both fixed and random effects, are commonly used

in statistical analysis. To understand their appeal, consider a simple linear regression of a

response y on a covariate x.
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Let y and x both be measured at multiple times on multiple individuals. Denote as yij the

response on individual i at time j, and define xij analogously. In a simple linear regression

we may write yij = β0 + xijβ1 + eij, where β0 is the intercept of a regression line, β1 is the

slope of that line, and eij is the amount by which yij differs from the value that would be

predicted for it based on the regression line. The standard assumption is that eij
iid∼ N(0, σ2)

for some constant variance σ2 across all observations.

A linear mixed model (LMM) with random intercepts for each individual would be written

as yij = β0 + xijβ1 + γi + e∗ij. Note that both of these models can apply to the same set of

response and covariate data. In the LMM, we assume that γi
iid∼ N(0, τ2) and e∗ij

iid∼ N(0, σ2r ),

with the γ’s and e∗’s independent of each other. The total variability in the response data

around the regression line is unchanged, but now we are splitting it into two terms: one

that represents variability shared by observations on the same individual (γi) and another

that represents leftover error that can’t be attributed to individuals (e∗ij). Since the total

variability is the same, it is easy to see that σ2r ≤ σ2 and τ2 ≤ σ2. Because much of statistical

inference depends on the amount of error in a dataset, using mixed models to account for

between-subject variability allows statisticians to obtain more precise results when such

variability exists. When such variability does not exist, τ2 = 0 and σ2r = σ2, and the modeling

cost incurred is simply that of estimating one extra parameter.

We proceed to give a mathematical definition for the mixed model that we use throughout

the next three chapters.

Let Y = {Yi} = {yij} be a kn × 1 vector of response data on individuals i ∈ {1, ..., k}, with

j ∈ {1, ..., n} observations per individual. We use a balanced design with common n for all

individuals to simplify some of the following linear algebra, but the results we obtain do not

require this balance.
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Let β be a p × 1 vector of regression parameters. Let X be the kn × p design matrix for the

regression parameters, Xi be the n× p block of the X matrix corresponding to cluster i, and

Xij be the 1× p row vector corresponding to the jth observation on cluster i.

Let γ =

[
γT1 ... γTk

]T
be a kq× 1 vector of random effects, with γi the q× 1 vector of random

effects corresponding to cluster i. Let Z be the kn× kq block diagonal design matrix for the

random effects. Let Zi be the n × q submatrix of Z corresponding to its ith diagonal block,

and Zij be the 1× q row vector corresponding to the jth row of the Zi matrix.

Let ψ =

[
ψT1 ... ψTk

]T
be the mean of the random effects vector γ, and let Σ be block

diagonal Σi, i ∈ {1, ..., k} be the covariance matrix of the random effects. We assume that

γ ∼ Nkq(ψ,Σ), or equivalently here that γi
indep∼ Nq(ψi,Σi). We use θ to refer to the collection of

parameters {β,ψ,Σ}.

Then the linear mixed model can be written as

yij = Xijβ + Zijγi + eij ,

γi
indep∼ Nq(ψi,Σi),

eij
iid∼ N

(
0, σ2

)
.

(3.7)

Or equivalently

Y = Xβ + Zγ + e,

γ ∼ Nkq(ψ,Σ),

e ∼ Nkn

(
0kn, σ

2Ikn

)
.

(3.8)

3.2.1.1 The role of y and x

Both y and x are observed values gathered by researchers. As Bayesians, we consider these

values to be fixed—statheric nodes, from the Greek word for ‘constant’, as contrasted with
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the stochastic (random) nodes θ and γ. In a mixed model, we always assume some sort of

structure in the observations that allows us to account for part of the observed response

variability by grouping “like” observations together. Usually this is indicative of some type

of observational unit or cluster: individuals who have been observed repeatedly, hospitals

where data were gathered on multiple patients, nations whose economic output is observed

over a number of years.

3.2.1.2 The role of θ

We use θ here, and throughout the next two chapters, to refer to the collection of all pa-

rameters in a model. In the simple linear regression example described above, θ = {β0, β1, σ2}

before random effects are added and θ = {β0, β1, τ2σ2r} when they are included. In the general

form, θ refers to the collection of parameters {β,ψ,Σ, σ2}.

3.2.1.3 The role of γ

The random terms, γ, allow us to efficiently account for unexplained subject-level variability

without having to add a fixed-effect parameter for each individual. When random effects, γ,

are included in a model, this is tantamount to making a statement that there are individual-

level differences in the response—baseline differences and/or differences in covariate effect

on the response—that are not captured by the fixed covariate effects model. Random effects

act as a catchall for structural elements that the statistician hasn’t built into a model. They

are expressed efficiently because the only parameter they add to the model is a variance term

for the individual-level differences.

The elements of γ are not themselves parameters, but are more accurately thought of as

latent random variables. They are unknown stochastic objects whose inclusion can help

us better understand our response data. The linear mixed model can be written in such
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a way that γ is never specified—see the section below on preprocessing marginalization.

Generalized linear mixed models (GLMMs), where the response data are assumed to arise

from some non-normal distribution, do not allow for this convenient marginalization; but

the role of γ as a latent random vector is the same.

3.2.2 Complications with pD in Mixed Models

In this section, we will explain why pD is not well defined for mixed models and how this

relates to SBCV’s notion of a model “focus”, the collection of stochastic objects one is

interested in. We then give an example showing how pD can differ considerably, even in a

simple model, depending on the focus one chooses.

In their initial paper on the Deviance Information Criterion (DIC), SBCV identify a key

concern in applying DIC to mixed- and hierarchical models:

Since the complexity [penalty pD] depends on the focus, a decision must be made

whether nuisance parameters, e.g. variances, are to be included in [the collection of

model parameters] Θ or integrated out before specifying the model P (x | θ, µ). However,

such a removal of nuisance parameters may create computational difficulties.

To prevent confusion with traditional statistical notion for parameters (that do not admit

the “nuisance parameters” mentioned by SBCV), we again distinguish between stochastic

and statheric objects in a Bayesian model. Data and statically defined parameters for priors

in the model are statheric: fixed by the analyst and not subject to MCMC sampling. All

other objects—parameters for the data distribution and latent variables—are stochastic. In

the parlance of SBCV, stochastic objects include both focal parameters (objects that interest

the researcher) and nuisance parameters (objects that do not).
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The crux of this issue is embedded in the definition of θ in Equations (3.5) and (3.6). If θ

is the collection of parameters in a model, then the DIC should provide a reasonable model

selection criterion. However, if θ is defined more generally as the collection of all stochastic

objects in a Bayesian model, this becomes problematic. We demonstrate this with the

following example.

Consider a simple case discussed in Hodges and Sargent (2001), a traditional random effects

model, and see how this issue manifests. Let Y = {yij : i ∈ {1, ..., k}, j ∈ {1, ..., n}}, where yij

represents the j-th measurement of some variable on an individual i, and let N = k ∗ n. Here

and throughout this work, we use In to refer to an n-dimensional identity matrix, Jn to refer

to an n × 1 vector of 1’s, and Jnn to refer to an n × n matrix of 1’s. We write this random

effects model as

yij = γi + εij

γi ∼ N

(
ψ,

1

τg

)
εij ∼ N

(
0,

1

τe

)
,

(3.9)

or equivalently

Y ∼ NN

(
ψJN ,

(
1

τg
Ik ⊗ Jnn +

1

τe
IN

))
.

The parameters in this model are θ = {ψ, τg, τe}. As previously discussed, the k×1 vector of γ’s

can be thought of as latent variables—unknown random objects that model correlation and

extra heterogeneity in the data. By Equation (3.6), we can define a marginal pD construction

for this model:

pDm = −2
(

Eθ|y[log f(y | θ)]− log f
(
y | Eθ|y[θ]

))
= −2

(
Eθ|y

[
log

(∫
f(y | θ,γ)P (γ | θ)dγ

)]
− log

(∫
f
(
y | Eθ|y[θ] ,γ

)
p
(
γ | Eθ|y[θ]

)
dγ

))
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We use the subscript m to denote a marginalized pD and henceforward we use the subscript

j to denote what we will call a “joint” (or naive) pD construction—that is, a pD where the

focus includes γ among the stochastic nodes of interest. Unfortunately, the value of pD that

many software packages calculate assumes γ to be a stochastic vector of interest, leading to

the construction

pDj = −2
(

Eθ,γ|y[log f(y | θ,γ)]− log f
(
y | Eθ,γ|y[θ,γ]

))

As the above example makes clear, there is a fundamental difference between pDm and pDj.

Succinctly, the issues related to the application of pD and DIC in instances like this are

referred to as “the marginalization problem”—so named because the differences depend on

whether or not γ is marginalized out before calculating pD and DIC.

How big is this marginalization problem? Let us assume—uncharacteristically for this model,

but it helps us to see an analytic example of the effect—that τg and τe are known. We also

assume that ψ has an improper flat reference prior. With these assumptions, it is well known

that

E[ψ | Y] =
1

N
JTNY ≡ y··

Var[ψ | Y] =
1

Nτe
+

1

kτg
≡ b

Further, let us define

yi· =
1

n

n∑
j=1

yij

Y =

[
y1· ... yk·

]T
=

(
1

n
Ik ⊗ Jn

)T
Y
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Then we can write the distribution of the random effects, γ, when Y and θ are known.

γ | Y, ψ ∼ Nk

(
τg

τg + nτe
ψJk +

nτe
τg + nτe

Y ,
1

τg + nτe
Ik

)
.

We now give names to two quantities from the above distribution, to help us simplify our

work below:

w ≡ τg/(τg + nτe)

v ≡ 1/(τg + nτe)

This allows us to rewrite the above distribution of γ as

γ | Y, ψ ∼ Nk
(
wψJk + (1− w)Y , vIk

)
.

Then plugging into the formula for pDm, we have

Eθ|Y[log f(y | θ)]

= Eψ|Y

[
log

(
(2π)−N/2

∣∣∣∣ 1

τg
Ik ⊗ Jnn +

1

τe
IN

∣∣∣∣−1/2
)
− 1

2
(Y − ψJN )T

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
(Y − ψJN )

]

= log

(
(2π)−N/2

∣∣∣∣ 1

τg
Ik ⊗ Jnn +

1

τe
IN

∣∣∣∣−1/2
)
− Eψ|Y

[
1

2
(Y − ψJN )T

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
(Y − ψJN )

]

for the first term, and

74



log f
(
y | Eθ|Y[θ]

)
= log

(
(2π)−N/2

∣∣∣∣ 1

τg
Ik ⊗ Jnn +

1

τe
IN

∣∣∣∣−1/2
)

− 1

2

(
Y − Eψ|Y[ψ] JN

)T [ 1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1 (
Y − Eψ|Y[ψ] JN

)
= log

(
(2π)−N/2

∣∣∣∣ 1

τg
Ik ⊗ Jnn +

1

τe
IN

∣∣∣∣−1/2
)
− 1

2
(Y − y··JN )T

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
(Y − y··JN )

for the second term. Since the constants of integration are the same and the logs of those

constants cancel, combining these two terms leads to the following equation for pDm.

pDm = Eψ|Y

[
(Y − ψJN )T

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
(Y − ψJN )

]

− (Y − y··JN )T
[

1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
(Y − y··JN )

=

(
YT

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
Y −YT

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
Y

)

−

(
Eψ|Y[ψ] JTN

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
Y − y··JTN

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
Y

)

−

(
YT

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
Eψ|Y[ψ] JN −YT

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
y··JN

)

+

(
Eψ|Y

[
ψJTN

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
ψJN

]
− y··JTN

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
y··JN

)

=
(

Eψ|Y
[
ψ2
]
− y2··

)
JTN

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
JN

= Var[ψ | Y] JTN

[
1

τg
Ik ⊗ Jnn +

1

τe
IN

]−1
JN

= bτe

k∑
i=1

JTn

[
In −

τe
τg + nτe

Jnn

]
Jn

= Nτewb

= 1
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So pDm in this setting is identically equal to 1, which is what we would like. The only free

parameter in the model we have described is ψ—since τe and τg are both known; and although

the random vector γ is a stochastic node in an MCMC sampler, it is not a parameter vector.

We now turn our attention to the calculation of pDj, the pD construction with naive focus.

Again, we start by specifying the elements of the pDj formula for this problem, given above.

The first term is given by

Eθ,γ|Y[log f(y | θ,γ)]

= Eψ,γ|Y

[
log

(
(2π)−N/2

∣∣∣∣ 1

τe
IN

∣∣∣∣−1/2
)
− 1

2
(Y − γ ⊗ Jn)T

[
1

τe
IN

]−1
(Y − γ ⊗ Jn)

]

= log

(
(2π)−N/2

∣∣∣∣ 1

τe
IN

∣∣∣∣−1/2
)
− Eψ,γ|Y

[
1

2
(Y − γ ⊗ Jn)T

[
1

τe
IN

]−1
(Y − γ ⊗ Jn)

]
.

The second term is more complicated, necessitating our use of the Law of Total Expectation.

log f
(
y | Eθ,γ|Y[θ,γ]

)
= log f

(
y | Eψ|Y[ψ] ,Eψ|Y

[
Eγ|Y,ψ[γ]

])
= log

(
(2π)−N/2

∣∣∣∣ 1

τe
IN

∣∣∣∣−1/2
)

− 1

2

(
Y − Eψ|Y

[
Eγ|Y,ψ[γ]

]
⊗ Jn

)T [ 1

τe
IN

]−1 (
Y − Eψ|Y

[
Eγ|Y,ψ[γ]

]
⊗ Jn

)
= log

(
(2π)−N/2

∣∣∣∣ 1

τe
IN

∣∣∣∣−1/2
)

− 1

2

(
Y −

(
wy··JN + (1− w)Y ⊗ Jn

))T [ 1

τe
IN

]−1 (
Y −

(
wy··JN + (1− w)Y ⊗ Jn

))
.
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Once again, we recognize that these terms have equal constants of integration, and that the

logs of those constants cancel. Combining terms, we obtain the following equation for pDj.

pDj = Eψ,γ|Y

[
(Y − γ ⊗ Jn)T

[
1

τe
IN

]−1
(Y − γ ⊗ Jn)

]

−
(
Y −

(
wy··JN + (1− w)Y ⊗ Jn

))T [ 1

τe
IN

]−1 (
Y −

(
wy··JN + (1− w)Y ⊗ Jn

))
=

(
YT

[
1

τe
IN

]−1
Y −YT

[
1

τe
IN

]−1
Y

)

−

((
Eψ,γ|Y[γ]⊗ Jn

)T [ 1

τe
IN

]−1
Y −

(
wy··JN + (1− w)Y ⊗ Jn

)T [ 1

τe
IN

]−1
Y

)

−

(
YT

[
1

τe
IN

]−1 (
Eψ,γ|Y[γ]⊗ Jn

)
−YT

[
1

τe
IN

]−1 (
wy··JN + (1− w)Y ⊗ Jn

))

+ Eψ,γ|Y

[
(γ ⊗ Jn)T

[
1

τe
IN

]−1
(γ ⊗ Jn)

]

−
(
wy··JN + (1− w)Y ⊗ Jn

)T [ 1

τe
IN

]−1 (
wy··JN + (1− w)Y ⊗ Jn

)

Note that each of the first three lines of the foregoing equality are equal to 0. Then

pDj = τe

(
Eψ,γ|Y

[
(γ ⊗ Jn)Tγ ⊗ Jn

]
−
(
wy··JN + (1− w)Y ⊗ Jn

)T (
wy··JN + (1− w)Y ⊗ Jn

))
= nτe

(
Eψ,γ|Y

[
γTγ

]
−
(
wy··Jk + (1− w)Y

)T (
wy··Jk + (1− w)Y

))
= nτe

(
Eψ|Y

[
k∑
i=1

Eγi|Y,ψ
[
γ2i

]]
−

k∑
i=1

(wy·· + (1− w)yi·)
2

)

= nτe

k∑
i=1

(
Eψ|Y

[
Varγi|Y,ψ[γi] + Eγi|Y,ψ[γi]

2
]
− (wy·· + (1− w)yi·)

2
)

Recalling that γ | Y, ψ ∼ Nk
(
wψJk + (1− w)Y , vIk

)
, we can now finish simplifying the equation

for pDj in this setting.
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pDj = nτe

k∑
i=1

(
Eψ|Y

[
v + (wψ + (1− w)yi·)

2
]
− (wy·· + (1− w)yi·)

2
)

= Nτev + nτe

k∑
i=1

(
Eψ|Y

[
w2ψ2 + 2w(1− w)yi·ψ + (1− w)2y2i·

]
− (wy·· + (1− w)yi·)

2
)

= Nτev + nτe

k∑
i=1

(
w2
(

Eψ|Y
[
ψ2
]
− y2··

)
+ 2w(1− w)

(
yi· Eψ|Y[ψ]− yi·2

)
+ (1− w)2

(
yi·

2 − yi·2
))

= Nτev + nτe

k∑
i=1

(
w2 Varψ|Y[ψ]

)
= Nτe(v + w2b)

= 1 + (k − 1)
nτe

τg + nτe

As we saw, pDm is identically equal to 1 in this setting. Similarly, when τg is much larger

than nτe, pDj also approaches 1. When τg is much smaller than nτe, however, pDj approaches

k. This is reasonable given the choice of focus and the situation described. The quantity

pDm identifies a single free parameter, ψ. When τg � nτe, there is very little variability in the

random effects terms relative to the variability within individuals, and the data behave like

they come from a common population and pDj is near 1. When τg � nτe on the other hand,

the data behave like k separate populations, each having their own effect.

This, then, is the marginalization problem. Although the marginal construction gives pD = 1,

as we would expect, the naive construction gives 1 ≤ pD ≤ k. In the next section, we discuss

why we believe this inconsistency necessitates use of the marginal construction.

3.3 The Need for Marginalization

We will now endeavor to describe three distinct constructions for pD and DIC in the mixed

model setting. These are the joint and marginal constructions, as discussed above, and the
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BUGS numerical approximations. After discussing these three constructions, we proceed

to give our argument as to why we believe the marginal construction should be preferred.

Finally, we discuss some counterarguments against a preference for marginalization in model

selection.

3.3.1 Three DIC Constructions for Mixed Models

In the following three chapters, we make extended reference to three different numerical

approximations to DIC: the joint DIC, the BUGS DIC, and the marginal DIC. As explained

above, in mixed models the value of the DIC depends on the choice of focal objects. We

now explain the difference between these three approximations, and why we consider the

marginal DIC to be philosophically preferable for doing model selection in the mixed model

setting.

3.3.1.1 The joint DIC

The first construction for DIC is what one might consider the naive construction. This

construction assumes that all stochastic objects are of focal interest. It centers on what we

call a joint likelihood for both θ and γ,

L(θ, γ | y) ∝ f(y | γ, θ).
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Under the joint construction, we have the following definitions:

pDj = Eθ,γ|y[−2 logL(θ, γ | y)] + 2 logL(θ̂, γ̂ | y)

= D(θ, γ)−D(θ̂, γ̂),

DICj = 2 Eθ,γ|y[−2 logL(θ, γ | y)] + 2 logL(θ̂, γ̂ | y)

= 2D(θ, γ)−D(θ̂, γ̂).

In other words, the joint DIC treats γ as if it were a model parameter alongside θ, and uses

the posterior mean of both θ and γ to obtain the fitted deviance. Here, θ̂ = Eθ,γ|y[θ] and

γ̂ = Eθ,γ|y[γ].

The joint construction above is similar to the construction for DIC7 in Celeux et al. (2006),

with two notable differences. First, they choose θ̂ and γ̂ to be the joint maximum a posteriori

(MAP) estimates conditional on y. We choose θ̂ and γ̂ to be the posterior means. Their choice

to use joint MAP estimates is based on the poor behavior of estimators of γ in latent random

variable problems and their concern with how the DIC behaves in mixture models, where

the posterior mean may live in an area of relatively low posterior density. Our use of the

posterior mean stems from SBCV’s recommendation to use posterior means and our belief

that this construction is more likely to be used than DIC7 by others who might encounter a

mixed modeling scenario.

Second, while we call this a joint construction, Celeux et al. (2006) call it a conditional

construction. This is a fundamental difference in how we regard these constructions. We call

this a joint construction because θ and γ appear jointly in a likelihood statement, and are

considered jointly by the DIC formulae. They call this a conditional construction because

the density (as opposed to likelihood) of interest is f(y | γ, θ), where y is conditioned on γ.
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3.3.1.2 The BUGS DIC

Our information on how OpenBUGS constructs the DIC is drawn from The BUGS Book

(Lunn et al. 2013) and the OpenBUGS User Manual (D. Spiegelhalter et al. 2014). The

manual describes how OpenBUGS obtains D(θ) and D(θ̂) as follows:

D(θ): this is the posterior mean of the deviance, which is exactly the same as if the

node ‘deviance’ had been monitored. This deviance is defined as −2 logP (y|θ), where y

comprises all stochastic nodes given values (i.e. data), and θ comprises the stochastic

parents of y – ‘stochastic parents’ are the stochastic nodes upon which the distribution

of y depends, when collapsing over all logical relationships.

D(θ̂): this is a point estimate of the deviance (−2 logP (y|θ)) obtained by substituting

in the posterior means 1
B

∑B
s=1 θ

(s) of θ: thus D(θ̂) = −2 log p
(
y | 1

B

∑B
s=1 θ

(s)
)

As this construction pertains to hierarchical models, The BUGS Book describes numerical

approximations to DIC in the BUGS family of programs as follows:

WinBUGS (and OpenBUGS) separately reports the contribution to D(θ), pD, and DIC

for each differently named (scalar, vector, or array) node, together with a total. This

enables the individual contributions from different portions of data to be assessed. In

some circumstances some of these contributions may need to be ignored and removed

from the total.

This is not, unfortunately, enough information to classify OpenBUGS’s construction of the

DIC for hierarchical models into the framework provided by Celeux et al. (2006). We do not

have sufficient information on which nodes constitute stochastic parents of our data in the

mixed model. We can state, however, that for all the models considered in this dissertation,

OpenBUGS reports DIC contributions from only our data y and cannot be partialed out
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as described above. We believe, based on the information presented in the manual and

The BUGS Book, that OpenBUGS’s construction of the DIC should match our DICj, but

simulation results presented in Chapters 4 and 5 confirm that there are differences in the

numerical approximation algorithms.

We nonetheless present results for DICb and related quantities because we consider it im-

portant to compare the numerical approximations under methods we develop to what is

given by commercially available software, since numerical approximations to DIC given by

commercially available software are what practitioners are most likely to use.

3.3.1.3 The marginal DIC

Our final construction focuses only on the stochastic node θ, treating γ as a latent random

vector to be marginalized out. The marginal DIC can be expressed using three different

likelihood functions, which we briefly clarify before giving the formulae for this construction.

L(θ | y, γ) ∝ f(y, γ | θ)

L(θ, γ | y) ∝ f(y | γ, θ)

L(θ | y) ∝ f(y | θ)

=

∫
f(y, γ | θ)dγ

=

∫
f(y | γ, θ)P (γ | θ)dγ

= Eγ|θ[L(θ, γ | y)]
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Then we define the marginal construction with a few equivalent expressions:

pDm = Eθ|y[−2 logL(θ | y)] + 2 logL(θ̂ | y)

= Eθ|y

[
−2 log

∫
L(θ | y, γ)dγ

]
+ 2 log

∫
L(θ̂ | y, γ)dγ

= Eθ|y
[
−2 log Eγ|θ[L(θ, γ | y)]

]
+ 2 log Eγ|θ

[
L(θ̂, γ | y)

]
= D(θ)−D(θ̂)

DICm = 2 Eθ|y[−2 logL(θ | y)] + 2 logL(θ̂ | y)

= 2D(θ)−D(θ̂).

where

θ̂ = Eθ|y[θ]

=

∫
θP (θ | y)dθ

=

∫
θ

∫
P (θ, γ | y)dγdθ

=

∫ ∫
θP (θ, γ | y)dγdθ

= Eθ,γ|y[θ]

Note that, as shown above, the quantities in the marginal construction can be written both

as integrals of likelihoods and as expectations over the distribution P (γ | θ). These are subtly

different interpretations, and both will prove useful to us in our discussion of methods for

approximating DICm in Section 4.2.2.

This construction is given by Celeux et al. (2006) as DIC1, who refer to it as an “observed

DIC” to match their terminology for L(θ | y), which they call an observed likelihood.
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To simplify notation where necessary, we use the j subscript (e.g. pDj, DICj, Dj, D(θ̂)j) to

refer to the DIC calculations focusing on the joint distribution of θ and γ. Similarly, we use

the b subscript for the BUGS calculations and the m subscript for the marginal calculations.

3.3.2 Why Do We Prefer the Marginal DIC?

Having established that pD can depend the set of focal stochastic objects with our example

in Section 3.2.2, we now consider whether this dependence is worth our concern. We believe

so, and in the subsections below we make our case for using the marginal DIC. We give three

reasons based on: (1) the conceptual difference between adopting the marginal or the joint

foci, (2) the rise of automated model selection procedures, (3) and the interpretation of pD

in hierarchical models.

3.3.2.1 Conceptual differences between marginalized and joint foci

We begin with a discussion of what it means for the DIC to focus on θ and γ, rather than

θ alone. An individual-level random effect can, in general, be thought of as a catch-all

correction factor encapsulating all of the remaining differences among individuals that are

germane, after conditioning on every covariate already measured and included in the model.

For example, if we consider the human fertility study referenced in the preceding chapter, a

model might suggest that the probability of ovulation during a particular cycle is a function

of certain covariates: e.g. ethnicity, age, weight, average daily caffeine intake, etc. But infor-

mation on these covariates alone may not be sufficient to describe the differences observed

among individuals. There may also be additional random slopes—individual differences in

the relationships between time-varying covariates and the response of interest.
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Random effects are usually specified by a particular parametric distribution, and the random

effect for each individual is assumed to be independently drawn from this distribution. Re-

searchers may be interested in the parameters of this random effects distribution—measures

that reflect how much inter-individual variability remains in the response data that hasn’t

been captured by the covariates3. These so-called variance components are included in θ.

The (random) γ’s are the latent random effects, which under such a distribution reflect how

far an individual’s response differs from the overall population mean, adjusted for observed

covariates.

The choice of whether one is interested in making inferences for particular γ’s is essentially

a choice about whether one is concerned with the population of individuals who haven’t

been sampled, or concerned only with the individuals in the sample. Both choices can

be reasonable—but when one is concerned only with understanding the individuals in the

sample, this is more accurately reflected by considering a fixed effect for those individuals.

The choice to consider random, rather than fixed, effects is essentially a choice to prioritize

generalizability. Otherwise why would one be concerned with the distributional properties

of the random effects?

We consider that the marginalized approach to be philosophically preferable. The real dis-

tinction between fixed and random effects is whether one wants to make specific inferences

about the observed clusters in particular, or whether one wants to extrapolate to the general

population from which those clusters were sampled. If one wants to make inferences about

the observed clusters, then one should fit a fixed effects model. The usual DIC, in that

case, requires no marginalization. If one doesn’t care about observed clusters, then the only

parameter of interest should be the covariance matrix for the random effects, Σ. This leads

3Note that the example in Section 3.2.2 was developed under the assumption that these values were
known. This was done in order to provide insight about the behavior of pD as a function of the precisions
for the random effects and error distributions. SBCV consider a similar example with ψ constant and τe
unknown, obtaining analogous results.
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to the need to marginalize over the γ and simply focus on the parameters of interest, which

includes Σ as well as any other model parameters.

Suggestions have been made to us that a scientist might be concerned with both general-

izability to a wider population, and with details of individual-level effects for the sampled

clusters. Some may have such interests—but considering the role of DIC as a model selection

criterion, for it to be meaningful, a prioritization must be made. We have observed that pD

can depend on the choice of focal stochastic objects, and that the θ and (θ, γ) foci can yield

different results. A fixed-effects structure replacing random effects gives results that differ

from either of these, since the parameters of the random effects distribution are not of focal

interest when those effects are considered as fixed. What we are left with, then, is the choice

between three possible DIC calculations. A scientist whose interests are only out-of-sample

generalizability should use DICm. A scientist whose interests are only on the k sampled

clusters should use the fixed effects model and its associated DIC. We believe that the third

option, the DICj construct, is never preferable to these. It depends on the ratio of random

effects and error variances, and its meaning in the mixed model setting remains unclear.

Certainly, it does not appear possible to argue that DICj represents a principled reweighting

of DICm and the fixed effects DIC that will always reflect the inferential priorities of the

user.

3.3.2.2 Automated model selection requires carefully chosen tools

The issue of focal choice is further complicated by the increasing reliance on automated model

selection procedures. As a thought example, consider how Google places advertisements on

websites. The following information is condensed and summarized from Google’s AdSense

Help Center (Help 2017).
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When a website using Google AdSense has adspace for sale, computers at Google classify the

website according to “factors [such] as keyword analysis, word frequency, font size, and the

overall link structure of the web.” Then the Google systems search a database of advertisers

and select those whose ads are deemed relevant to the content or users of the website. Google

creates an automated auction where advertisers can bid on the available adspace in units of

cost-per-click (CPC), which is how much the advertiser is willing to pay the website owner for

each click their advertisement receives. Google combines CPC bids with a quality score—a

measure of how likely an ad is to be clicked based on its past performance and how well its

content matches the website—to decide which advertiser wins an auction. Further, Google

estimates how likely it is that an ad click will lead to a business transaction for its advertisers,

and dynamically reduces some advertiser bids. The rationale behind this practice is that

it protects advertisers from overspending on advertisements that are unlikely to result in

business transactions, and allows advertisers to bid more freely in the auctions.

A statistician will recognize many areas in this process where covariate modeling and model

selection procedures are relevant. Which website factors will best predict click-through rate

(CTR) for a particular ad or class of ads? How much should an advertiser bid in a certain

situation if that advertiser wants its ads to be seen? Which ad and advertiser characteristics

best predict that ad clicks will result in business transactions? Because of the speed and

frequency necessary for these decision-making problems, however, direct supervision is dif-

ficult if not impossible. New advertisements, and new websites, enter the marketplace too

quickly for individual analysts to study or classify them. Simplicity of classification will tend

to result in less content-specific ad placement, reducing revenue for the website owner, the

advertisers, and Google itself. Incentives are high, in this situation, to create model selection

algorithms that do not need supervision. This is an example of the discipline of machine

learning.
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Modern statisticians must anticipate encountering situations where it is necessary to choose

a principled model selection procedure that behaves in a desired fashion even without close

monitoring. With the rise of “big data,” it is now more important than ever that statisticians

and scientists have a clear understanding of their model selection tools—especially how those

tools may give different results than other model selection tools, and which tool selects

models that are preferred for a given application. Even in relatively simple settings, the

various model selection criteria discussed above can lead to considerably different model

choices. R. R. Christensen (2017) has shown that when comparing two nested linear models,

selection by Adjusted R2 is equivalent to selecting the larger model when the F statistic

is greater than 1, selection by Cp corresponds to F > 2, selection by AIC is asymptotically

equivalent to F > 2, and selection by BIC corresponds asymptotically to F > log n. For more

complicated settings like LMMs and GLMMs, good understanding of available criteria is even

more important. We consider this another reason why the marginal DIC calculations should

be preferred to other DIC calculation methods. Marginal DIC calculations are more easily

understood, because the theory surrounding them is relatively straightforward compared to

the broader theory surrounding DIC calculations for hierarchical models (c.f. Celeux et al.

2006). The asymptotic equivalence we showed between DIC and AIC in Section 3.1.7 fails

when random effects are included in the model.

3.3.2.3 Interpreting pD in hierarchical models

The problem of using DICj for model selection in hierarchical models has received consider-

able attention, especially as it relates to pD, and has already been discussed by us in Section

3.2.2. Brooks (2002) explains that “[s]adly, in many cases the calculation of pD will be im-

possible for the focus of primary interest since the deviance will not be available in closed

[form],” including in random effects and state-space models. To elucidate the behavior of

pD, Sahu (2002) provides a simpler version of our own example in Section 3.2.2 to discuss
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the fact that pD → ∞ as k → ∞ under the DICj construct. Although not related directly to

the DIC, Su and Johnson (2006) provide contributions explaining the asymptotic behavior

of random effects models with respect to the roles of large n and large k.

Celeux et al. (2006) provide a comprehensive review of a number of DIC constructions and

associated issues. As we mentioned above, our DICm corresponds directly with their DIC1,

and our DICj roughly with their DIC7. Celeux et al. are concerned with cases such as

mixture models where E[θ | y, γ] may result in poor performance of DIC leading to a negative

pD. They show that in certain problems, using the maximum a posteriori (MAP) estimates

for θ and γ can result in better behavior than the posterior mean. Celeux et al. also concur

with our assessment that constructions of the DICj form, those that treat the latent random

variable γ like a parameter vector, are unsatisfactory. They state that “this approach has

obvious asymptotic and coherency difficulties, as discussed in previous literature” and “in

the random effect model... computing the pD’s and therefore the DIC’s does not really make

sense.”

In this section, we have argued that when random effects are needed, DICm is the sensible

construct to consider because it correctly treats the random effects as “nuisance”. We have

argued that understanding the behavior of model selection criteria is especially important in

situations where model selection must be automated, and that we should avoid criteria whose

behavior is difficult to understand. And we have discussed the concerns other researchers

have expressed with the behavior of pD in hierarchical models. Neither DICj nor—based on

their reported numerical results—any of the other constructions considered by Celeux et al.

(2006) provide estimates of the number of parameters in an hierarchical model that match

the number we would expect from a marginalized model.
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3.3.3 Arguments Against Marginalization

We have made our case for why we believe the marginal definition for DIC is to be preferred.

We recognize, however, that our position is not universally held. Below, we discuss two

critiques of the marginal preference that we have encountered.

3.3.3.1 Criterion instability with variance components

We have been made aware of inconsistencies in criterion behavior when selecting among

models with different variance component structures. Specifically, Dr. Daniel Gillen of

the University of California, Irvine, has mentioned that information criteria can exhibit a

“skipping” behavior when variance components are added to or removed from a model. We

believe this may be analogous to an effect we have previously observed in our own work with

Dr. Gillen, which involved in part the simulation of a linear mixed effects models with a

LASSO penalty. The simulation behavior of LASSO models is often evaluated in terms of

out-of-sample prediction error as the LASSO penalty, λ, varies. In our work with Dr. Gillen,

we observed that in mixed effects models, the prediction error for five-fold cross-validation

as a function of λ was not a continuous function for linear mixed models; it generally does

appear as a continuous function for fixed effect models. Figure 3.1, taken from this earlier

simulation work, displays the skipping behavior we describe to help the reader envision the

phenomenon.

This skipping behavior occurs when the LASSO adds or removes a covariate. When a

covariate is added or removed, assuming this covariate relates to the response variable, the

random effect appears to lose or gain (respectively) variability to account for the change in

the fixed effects model. This assumes, of course, that the random effects are also related to

the covariates.
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Figure 3.1: “Skipping” behavior in a simulation study of LASSO use for linear mixed models.
As the LASSO penalty (λ) increases, five-fold cross-validation prediction error makes distinct
jumps at certain lambda values.
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Dr. Gillen reports that similar phenomena can be observed when information criteria are

used for model selection purposes and variance components are allowed to be added and

removed as in the marginal selection setting we describe. Our examples in this dissertation

all presuppose a cluster-level random effect and do not appear to be subject to these issues;

but studies that involve multi-level clustering (c.f. the cow abortion data of Thurmond et al.

(2005) that we will describe in Section 6.2.3) may require us to choose which clusters are

and are not modeled with random effects distributions. Above, we advocated for the use of

selection criteria whose behavior is well-understood and consistent, especially in automated

selection settings. We continue to advocate this policy here as well, and believe that further

investigation of the behavior of marginal selection criteria like DICm is warranted when

selecting among variance components.

3.3.3.2 Inferential priorities

Some statisticians suggest that model selection for mixed models should take account of both

the random effects for the observed clusters and the variance components for those random

effects. They suggest this because scientific interest can reside in both areas simultaneously:

how the model functions for new observations in the sampled clusters, as well as how it

functions for new observations on new clusters. In the Bayesian setting, fixed effects and

random effects have very similar specifications within a probability model; the primary

difference between them is how they are handled in inference, once a posterior sample has

been obtained. We agree that both the conditional effects on a response when cluster is

known, and the marginal effects on a response are legitimate areas of scientific interest, but

as discussed above we find it difficult to carefully define how model selection should proceed

when both conditional and marginal inferences are desired.

Nonetheless, the argument has been made to us that, following from the example in Section

3.2.2 one should reasonably want to penalize a model as if it has k fixed effects if data are
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sufficiently different from cluster to cluster; or that one should penalize a model as if it had

only a grand mean if data are sufficiently homogenous across clusters. “The behavior of pDj

is not a bug, it’s a feature,” one might say. This is a view we have encountered with some

frequency, though we remain troubled by the fact that this argument presumes that the

appropriate penalization of a model is in some sense dependent on the number of clusters

one happens to select, even when inference for those clusters is not itself desired.

Other statisticians suggest that DIC may not be the preferred tool for situations such as the

ones we describe. Gelman et al. (2013) place DIC in a hierarchy with AIC and BIC where

they suggest that DIC should be preferred when inference is desired for individuals within the

sampled clusters, AIC should be preferred when inference is desired for unsampled clusters

of a similar character, and BIC should be preferred when inference is desired marginally on

the population. This suggests that they consider DIC less useful for model selection relative

to marginal population-level models, though we believe the marginalization techniques we

develop in this dissertation broaden the scope of situations in which DIC may be usefully

applied.

3.4 Marginalization in the Linear Mixed Model

Our arguments in the preceding section lead to the question of why marginalization is not

performed more often when selecting a model. One answer is that marginalization is dif-

ficult, especially in the GLMM setting where closed-form marginal equations do not exist.

Marginalization is both possible and practical in the LMM setting, however, and so we begin

by explaining two marginalization approaches for the DIC. The methods explained here, par-

ticularly our approach to postprocessing marginalization, point the way toward the methods

we develop in the next two chapters for marginalization of GLMMs.
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3.4.1 Methods for Marginalization

In the linear mixed model, when a normal distribution is used for the random effects, there

are two methods for getting the marginal likelihood L(θ | y) and thus the marginal DIC

calculations. The first, which we call the preprocessing approach, involves expressing the

model directly in its marginalized form. MCMC sampling directly using the marginal model

will, obviously, yield the desired marginal DIC calculations. The second approach, which we

refer to as postprocessing marginalization, uses the complete-the-square formula (Proposition

3.1, below) after re-expressing f(y, γ | θ) as f(γ | y, θ)f(y | θ) when both γ | θ and y | γ, θ have

multivariate normal distributions.

3.4.1.1 Preprocessing marginalization

In this section we discuss MCMC sampling that is based on using the marginal likelihood

for θ, L(θ | y) ∝
∫
f(y | γ, θ)P (γ | θ)dγ. When the marginal likelihood is available in closed form,

as is the case for the LMM discussed above, it is relatively straightforward to implement

MCMC sampling to obtain iterates {θ(1), ..., θ(B)} from the posterior, P (θ | y), with the help of

packaged software like OpenBUGS, JAGS, STAN etc. This will involve monitoring D(θ) =

−2 log(L(θ | y)) in one of these packages, to obtain D(θ). Then, we use θ̂ = 1
B

∑B
s=1 θ

(s) to

numerically approximate pDm and DICm with

pDm ' −
2

B

B∑
s=1

log f
(
Y | θ(s)

)
+ 2 log f

(
Y | θ̂

)

DICm ' −
4

B

B∑
s=1

log f
(
Y | θ(s)

)
+ 2 log f

(
Y | θ̂

)

We now proceed to analytically obtain the marginal likelihood.

Refer to Equation (3.9), the matrix specification for the linear mixed model. We can rewrite

this model as Y −Xβ = Zγ + e. Recall that γ ∼ Nkq(ψ,Σ) and e ∼ Nkn
(
0kn, σ

2Ikn
)
. Then we
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can write the marginal for the data as

Y ∼ Nkn

(
Xβ + Zψ,ZTΣZ + σ2Ikn

)
. (3.10)

Since the matrix Σi is often relatively uncomplicated—in the case of a random intercepts

model, it is the scalar variance of the random intercepts—it is thus easy to write the linear

mixed model in terms of its induced marginal mean vector and covariance matrix, ignoring

γ entirely.

If this approach is used, we should be cognizant of how MCMC sampling efficiency is affected.

MCMC sampling for Bayesian models can be improved by including intermediate stochastic

nodes like γ, so avoiding them as we do in the preprocessing approach may lead to sampling

behaviors we dislike. Preprocessing ensures that the numerical DIC approximations obtained

from software like OpenBUGS are approximations to the desired DICm construct, but we

must weigh this against the potential loss of sampling efficiency under this approach.

3.4.1.2 Postprocessing marginalization

Here we begin with the full description of the model that involves γ. We sample from this

model involving γ, but then obtain an analytical form for the marginal into which we can

plug our posterior iterates to obtain our own numerical approximation to DICm.

We start by writing the joint density for the data and γ conditional on θ, f(y, γ | θ), and then

through a series of algebraic manipulations, we obtain an equivalent expression, namely

f(y, γ | θ) = f(y | θ)f(γ | y, θ), where the conditional distribution in γ is normal with parameters

depending on θ. Thus upon integrating over γ, we obtain an analytical expression for f(y | θ).

Thus given a MC sample from the posterior for θ, which is easily obtained using BUGS or

some other package, we are able to numerically approximate the marginal model based DIC.

95



Below, we develop a new expression for the marginal density f(y | θ). This is not necessary

for the LMM setting—it should be clear that the marginal form in Equation (3.10) will

serve this purpose, and in fact must be equivalent to the expression we develop below. The

work we present here is crucial to subsequent work in our development of a marginalization

approach for GLMMs during the next two chapters. In the GLMM setting, no closed-form

marginalization exists and we are unable to use a preprocessing approach. We thus consider

it preferable to introduce this work here where there are no complications.

Our alternate expression for the marginal density takes advantage of the fact that both

f(y | γ, θ) and P (γ | θ) are normal densities. Mathematically, we can use the complete-the-

square formula to combine the two and isolate the γ terms.

Following from the notation in Section 3.2.1, we assume X and Z are full rank and write the

following:

f(yij | γi, θ) =
1√

2πσ2
exp

(
−1

2

(
yij − (xijβ + zijγi)

σ

)2
)

f(Yi | γi, θ) = (2πσ2)−k/2 exp

(
−1

2
[Yi − (Xiβ + Ziγi)]

T
(
σ2In

)−1
[Yi − (Xiβ + Ziγi)]

)
f(γi | θ) = (2π)−q/2|Σi|−1/2 exp

(
−1

2
[γi − ψi]T Σ−1i [γi − ψi]

)

This gives the joint density

f(Yi, γi | θ)

= (2π)−(k+q)/2σ−k|Σi|−1/2

× exp

(
−1

2
[Yi − (Xiβ + Ziγi)]

T
(
σ2In

)−1
[Yi − (Xiβ + Ziγi)]

)
× exp

(
−1

2
[γi − ψi]T Σ−1i [γi − ψi]

)
.
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To simplify notation, define Ỹi = Yi −Xiβ. This allows us to write

[
Ỹi − Ziγi

]T (
σ2In

)−1 [
Ỹi − Ziγi

]
=
[
Ỹi − Ziγ̂i + Ziγ̂i − Ziγi

]T ( 1

σ2
In

)[
Ỹi − Ziγ̂i + Ziγ̂i − Ziγi

]
=
[
Ỹi − Ziγ̂i

]T ( 1

σ2
In

)[
Ỹi − Ziγ̂i

]
+ [Ziγ̂i − Ziγi]T

(
1

σ2
In

)
[Ziγ̂i − Ziγi]

+
[
Ỹi − Ziγ̂i

]T ( 1

σ2
In

)
[Ziγ̂i − Ziγi] + [Ziγ̂i − Ziγi]T

(
1

σ2
In

)[
Ỹi − Ziγ̂i

]
=
[
Ỹi − Ziγ̂i

]T ( 1

σ2
In

)[
Ỹi − Ziγ̂i

]
+ [γ̂i − γi]T

(
1

σ2
ZTi Zi

)
[γ̂i − γi] .

Then apply the “complete-the-square” formula below, which is proven in the appendix, to

combine the quadratic terms for γi in the exponent. This results in a Normal kernel for γi

and a second term that is free of γi, making it possible for us to easily marginalize.

Proposition 3.1. For conformable vectors X, µ1, and µ2; and for conformable symmetric

matrices A1 and A2;

(X − µ1)TA1(X − µ1) + (X − µ2)TA2(X − µ2)

= (X − µ∗)T (A1 +A2)(X − µ∗) + (µ1 − µ2)TA1(A1 +A2)−1A2(µ1 − µ2),

where µ∗ = (A1 +A2)−1(A1µ1 +A2µ2).

In our context for the linear mixed model, we substitute γi for X above. We take µ1 = ψi and

A1 = Σ−1i for the first quadratic portion. For the second, we choose µ2 = γ̂i = (ZTi Zi)
−1ZTi (Yi−

Xiβ) and A2 = σ−2ZTi Zi. Using the complete-the-square formula, we have

(γi − ψi)T Σ−1i (γi − ψi) +
1

σ2
(γi − γ̂i)T ZTi Zi (γi − γ̂i)

= (γi − γ∗i )T
(

Σ−1i +
1

σ2
ZTi Zi

)
(γi − γ∗i )

+
1

σ2
(ψi − γ̂i)TΣ−1i

(
Σ−1i +

1

σ2
ZTi Zi

)−1
ZTi Zi(ψi − γ̂i),
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where

γ∗i =

(
Σ−1i +

1

σ2
ZTi Zi

)−1(
Σiψi +

1

σ2
ZTi (Yi −Xiβ)

)
.

We use this new expression to rewrite the joint density for Yi and γi.

f(Yi, γi | θ) = (2π)−(n+q)/2σ−n|Σi|−1/2

× exp

(
− 1

2σ2

(
Ỹi − Ziγ̂i

)T (
Ỹi − Ziγ̂i

))
× exp

(
− 1

2σ2
(ψi − γ̂i)TΣ−1i

(
Σ−1i +

1

σ2
ZTi Zi

)−1
ZTi Zi(ψi − γ̂i)

)

× exp

(
−1

2
(γi − γ∗i )T

(
Σ−1i +

1

σ2
ZTi Zi

)
(γi − γ∗i )

)

Note that γ only appears in the final term, which has the form of a Normal kernel. This

allows us to rewrite the joint density as follows:

f(Yi, γi | θ) = (2πσ2)−n/2|Σi|−1/2
∣∣∣∣Σ−1i +

1

σ2
ZTi Zi

∣∣∣∣−1/2
× exp

(
− 1

2σ2

(
Ỹi − Ziγ̂i

)T (
Ỹi − Ziγ̂i

))
× exp

(
− 1

2σ2
(ψi − γ̂i)TΣ−1i

(
Σ−1i +

1

σ2
ZTi Zi

)−1
ZTi Zi(ψi − γ̂i)

)

× (2π)−q/2
∣∣∣∣Σ−1i +

1

σ2
ZTi Zi

∣∣∣∣1/2 exp

(
−1

2
(γi − γ∗i )T

(
Σ−1i +

1

σ2
ZTi Zi

)
(γi − γ∗i )

)
= f(Yi | θ)× f(γi | Yi, θ)

Since observations on different clusters are assumed to be conditionally independent, the

marginal for the entire data set is just
∏k
i=1 f(Yi | θ), and we thus obtain a numerical approx-
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imation to DICm using the marginal density:

f(Y | θ) = (2πσ2)−kn/2|Σ|−1/2
∣∣∣∣Σ−1 +

1

σ2
ZTZ

∣∣∣∣−1/2
× exp

(
− 1

2σ2

(
Ỹ − Zγ̂

)T (
Ỹ − Zγ̂

))
× exp

(
− 1

2σ2
(ψ − γ̂)TΣ−1

(
Σ−1 +

1

σ2
ZTZ

)−1
ZTZ(ψ − γ̂)

)
,

where γ̂ = (ZTZ)−1ZT (Y −Xβ).

We remind the reader that, given a sample from the joint posterior, P (θ, γ | y), the iterates

for θ are from the marginal posterior P (θ | y), say {θ(s) : s = 1, 2, ...B}. Then

pDm
.
= − 2

B

B∑
s=1

log f
(
Y | θ(s)

)
+ 2 log f

(
Y | θ̂

)

DICm
.
= − 4

B

B∑
s=1

log f
(
Y | θ(s)

)
+ 2 log f

(
Y | θ̂

) (3.11)

The MCMC sample can be obtained using OpenBUGS, JAGS, STAN or any other available

sampling software.

In the next chapter, we will consider a special case of the generalized linear mixed model

(GLMM), where closed-form marginalization is not possible, but where the expression we

have here derived points the way toward a new method for approximate marginalization.
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Chapter 4

Marginalization for DIC – Part II

In the previous chapter, we presented an overview of mixed modeling focusing on the simplest

case: the linear mixed model. We discussed various DIC calculation methods and argued for

a marginalized approach. We presented two methods for marginalizing linear mixed models

in the Bayesian setting: (1) the preprocessing approach, which involves MCMC sampling

based on the marginal likelihood L(θ | y) ∝
∫
f(y | θ, γ)f(γ | θ)dγ when an analytical form exists,

and allows us to directly monitor the posterior deviance in packaged software; and (2) the

postprocessing approach, which uses an analytical form for L(θ | y) or numerical methods to

approximate the DIC based on existing samples for (θ, γ) that were not generated from the

marginal distribution.

In this chapter, we expand the concept of marginalization to generalized linear mixed

models—a wider class where the response data y are assumed to come from an exponen-

tial family, but not necessarily the normal family. We begin with a discussion of generalized

linear mixed models (GLMMs) and an explanation of why the methods in the previous

chapter won’t work to marginalize this class. We then introduce a new method to efficiently

approximate the marginal density for a special case of GLMMs. This special case—which
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will call “repeated exchangeable observations (REO) GLMMs”—arises when response data

within each cluster can be permuted without changing the resulting inferences. Chapter 5

shows how to extend the method to a broader class of GLMMs.

4.1 Generalized Linear Mixed Models

This section provides a short introduction to generalized linear mixed models. We re-

view their history and provide a technical definition. We then discuss the two contexts—

overdispersion and correlation—that most frequently prompt their use. Finally, we present

the logistic (binomial) and log-linear (Poisson) GLMM models with normal random effects,

which we use extensively throughout the chapter.

4.1.1 Development

Nelder and Wedderburn (1972) proposed the framework for the generalized linear model

(GLM), in which a linear component Xβ is equated, through some invertible function q(·),

with the mean of the response variable Y. We repeat our notation from Section 3.2.1, with

i serving as a cluster index and j serving as an observation index. Then

E
[
yij
]

= q−1(Xijβ) or equivalently q(E
[
yij
]
) = Xijβ.

Work in the early 1980s began to incorporate random effects into this type of modeling (e.g.

Williams 1982; Breslow 1984), primarily as a way to handle overdispersion in generalized

linear models. This culminated in the development of the GLMM as an extension of the

GLM structure.
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In general, a GLMM is a model of the form:

yij | Xij , γi
iid∼ exponential family

E
[
yij
]

= µij

q(µij) = Xijβ + Zijγi

γi
iid∼ f(θ0)

(4.1)

Here yij, Xij, β, and q(·) are defined as in the GLM, except that now we add γi, a vector of

random effects that is specific to cluster i with some distribution that depends on parameter

vector θ0. Zij specifies a row from the Zi design matrix for random effects on cluster i, and

Zi is often a submatrix of Xi—that is, each column of Zi is also a column of Xi. We refer

the reader to Section 3.2.1 if more notational detail is needed.

We assume a standard multivariate normal distribution for the random effects, γi
iid∼ N(0,Σ),

with θ0 = Σ. Other common distributions used for γi involve non-zero-mean normals and

mixtures of normals. One particular alternative deserves special note.

When Zij is a submatrix of Xij, a centering parametrization can be used, and can often

improve MC sampling efficiency. To understand how this alternative parametrization is

structured, assume Xij can be partitioned into two sets of columns as

Xij =

[
X

(1)
ij X

(2)
ij

]
,

with the submatrix Zij = X
(1)
ij . Assume, further, that we partition β as

β =

β(1)
β(2)



102



so that

Xijβ =

[
X

(1)
ij X

(2)
ij

]β(1)
β(2)

 .
Then let ξi

iid∼ N(0,Σ) be the random effects under the standard parametrization. We write

q(µij) = Xijβ + Zijξi

= X
(1)
ij β

(1) +X
(2)
ij β

(2) + Zijξi

= Zijβ
(1) + +X

(2)
ij β

(2) + Zijξi

= X
(2)
ij β

(2) + Zij

(
β(1) + ξi

)
≡ X(2)

ij β
(2) + Zijγi.

Then γi
iid∼ N

(
β(1),Σ

)
, and θ0 = {β(1),Σ}. This is the aforementioned centering parametrization

for the GLMM. A. E. Gelfand et al. (1996) demonstrate that this parametrization often

improves convergence in the GLMM setting.

4.1.2 Use

One use for GLMMs, as mentioned above, is with exponential-family response data that ex-

hibit overdispersion. The most common forms of GLMM—the binomial and Poisson—both

involve distributions that exhibit a mean-variance relationship. Even when these distribu-

tions for the data might seem like a natural fit, it is not uncommon to find that the data

exhibit more variability than would be expected.

The other primary use for GLMMs is to provide correlation structure for repeated response

data and/or clustered data. Modeling correlation is generally required for data with a

hierarchical structure—e.g. when there are multiple observations within clusters, and where

observations taken on the same cluster are expected to share similarities not fully captured
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by knowing the model covariates. This is the same philosophical context in which linear

mixed models are useful, but now applied to a wider range of possible response data.

4.1.3 The Binomial and Poisson GLMMs

Throughout this chapter and the next, we focus attention on the binomial (logistic) and

Poisson (log-linear) GLMMs. The terms logistic and log-linear stem from the choice of

link function, q(·), used for response data of the corresponding type1. These are the most

commonly used GLMMs, so we pay special attention to them throughout the dissertation—

both by providing specific methodological details and by focusing on them in simulations.

We do not provide details for alternative binomial link functions such as the probit and

clog-log, but adapting the general form of the methods we develop to these link functions

should be straightforward.

Here we present standard GLMMs for the logistic and log-linear links. These have been writ-

ten in sufficient generality to (1) allow for either a standard or a centering parametrization

through ψi and (2) deal with observation-specific differences in binomial trials or Poisson

interval sizes through mij. We discuss the use of ψi below, after presenting the models.

Binomial (logistic):

Yij ⊥⊥ Bin
(
mij , πij

)
q
(
πij
)

= log

(
πij

1− πij

)
= Xijβ + Zijγi

γi ⊥⊥ N(ψi,Σ)

(4.2)

1Technically, the link function q(·) for the logistic model is known as the logit function; and the logistic
function, also known as the expit function, is its inverse. The use of ‘logistic’ as the name for the model is,
nonetheless, standard practice.
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Poisson (log-linear):

Yij ⊥⊥ Pois
(
mijλij

)
q
(
λij
)

= log
(
λij
)

= Xijβ + Zijγi

γi ⊥⊥ N(ψi,Σ)

(4.3)

Here and elsewhere in the dissertation, we write our random effects as γi ⊥⊥ N(ψi,Σ). This is

done to ensure that expressions and methods can be used with both a standard parametriza-

tion and a centering parametrization (c.f. Section 4.1.1) for the random effects. When a

standard parametrization is used, ψi ≡ 0 for all i, and no further discussion is necessary.

If a centering parametrization is used, however, we must be cognizant of identifiability issues.

For example, let β1 be a grand mean term, present in the model for each datapoint yij; and

let ψi be equal to a non-zero constant for all i. Then only the sum β1 + ψ is identifiable–

the components β1 and ψ themselves are not identifiable. Our description in Section 4.1.1

indicates how the model is constructed if a centering parametrization is to be implemented.

Partition the fixed effects design matrix, X, into: X(1), those columns shared by the random

effects design matrices, Zi, i ∈ {1, ..., k}; and X(2), those columns not shared by the Zi’s.

Partition β similarly into β(1) and β(2). Then the centering parametrization uses ψi = β(1).

Note also that

Xβ = X(1)β(1) + X(2)β(2).

Then X(1)β(1) is removed from the fixed effects portion of the linear model to avoid non-

identifiability. Therefore, when using the centering parametrization, Xijβ in the above ex-

pressions must be replaced with X
(2)
ij β

(2), since Zijγi will already contain the redundant part

of the model.
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4.2 Marginalization in GLMMs

Our goal with GLMMs is to obtain a numerical approximation to the DICm for use in model

selection. Following our discussion in the preceding chapter, we believe model selection in

mixed modeling should use DICm. Unfortunately, our methods for obtaining DICm in the

LMM setting do not extend to the GLMM, as we now discuss. We will also discuss how the

available tools for tackling this problem in the GLMM setting are computationally expensive

and become intractable when more than two random terms are used. In the following section

we explain: the difficulties we encounter in seeking to marginalize GLMMs, techniques that

are currently available for GLMM marginalization, and related work.

4.2.1 Preprocessing Won’t Work

As we discussed in Section 3.4.1.1, the goal of preprocessing marginalization is to conduct

MCMC sampling that is based on an analytically tractable marginal likelihood for θ, i.e.

L(θ | y) ∝
∫
f(y | γ, θ)p(γ | θ)dγ. The deviance, D(θ), is monitored for posterior inference.

In the linear mixed model, it is possible to write the marginal density for the data conditional

on the parameters in closed form. This results in Equation (3.7), a multivariate normal model

for the data vector Y with a mean given by the linear model and a structured covariance

matrix. No such closed form solution exists for marginalization in the GLMM setting.

The preprocessing approach will not work. We thus consider options for postprocessing—

approximation methods that can be used when a posterior sample is available.
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4.2.2 Postprocessing Is Difficult

In this subsection, we consider the postprocessing approach to marginalizing GLMMs. Our

goal, as in Section 3.4.1.2, is to sample from the full model involving γ, and to obtain an

approximate expression for the marginal density. We use posterior iterates in connection

with this expression to obtain a numerical approximation to DICm. Below, we discuss how

this can be done with two numerical integration methods: MC integration and Gaussian

quadrature.

A significant advantage to the postprocessing approach is that our expression for the marginal

density need not be analytic. As we stated above, no analytic expression exists for marginal-

izing GLMMs. If there were, we would be able to use the simple form of the marginal DIC

formulae from Section 3.3.1.3:

pDm = Eθ|y[−2 logL(θ | y)] + 2 logL(θ̂ | y),

DICm = 2 Eθ|y[−2 logL(θ | y)] + 2 logL(θ̂ | y).

Since there is no closed form marginal likelihood, we instead consider the following formulae:

pDm = Eθ|y
[
−2 log Eγ|θ[L(θ, γ | y)]

]
+ 2 log Eγ|θ

[
L(θ̂, γ | y)

]
= Eθ|y

[
−2 log

∫
L(θ | y, γ)dγ

]
+ 2 log

∫
L(θ̂ | y, γ)dγ

DICm = 2 Eθ|y
[
−2 log Eγ|θ[L(θ, γ | y)]

]
+ 2 log Eγ|θ

[
L(θ̂, γ | y)

]
= 2 Eθ|y

[
−2 log

∫
L(θ | y, γ)dγ

]
+ 2 log

∫
L(θ̂ | y, γ)dγ

where θ̂ = Eθ,γ|y[θ] as in Section 3.3.1.3.
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These expressions can be approximated by numerical integration methods—though such

approximation is computationally expensive. The most natural approaches involve MC inte-

gration and Gaussian quadrature. We provide two expressions for pDm and DICm, one based

on MC integration and the other based on Gaussian quadrature.

Monte Carlo integration (Hammersley and Handscomb 1964) over γ begins by taking an

MC sample of size Bt from the joint posterior for θ and γ: {(θ(1), γ(1)), ..., (θ(Bt), γ(Bt))}. Then

for each θ(t) and for θ̂, we draw an additional MC sample of size Bg from the conditional

posterior p(γ | y, θ(t)). We denote these additional γ’s as γ
(s)
(t)
∈ {γ(1)

(t)
, ..., γ

(Bg)
(t)
}, where the (t)

subscript denotes the posterior iterate θ(t) that γ is conditioned on, and the (s) superscript

denotes that this is the sth of Bg observations on that conditional posterior.

Then we can numerically approximate pDm and DICm as:

pDm
.
= − 2

Bt

Bt∑
t=1

log

 1

Bg

Bg∑
s=1

f
(
y | γ(s)

(t)
, θ(t)

)+ 2 log

 1

Bg

Bg∑
s=1

f
(
y | γ(s)

θ̂
, θ̂
)

DICm
.
= − 4

Bt

Bt∑
t=1

log

 1

Bg

Bg∑
s=1

f
(
y | γ(s)

(t)
, θ(t)

)+ 2 log

 1

Bg

Bg∑
s=1

f
(
y | γ(s)

θ̂
, θ̂
)

This is a costly solution to the marginalization problem. We must produce (Bt+1)Bg separate

MCMC samples in order to approximate DICm. The time it takes to run a chain for a GLMM

is non-ignorable, and the MC integration approach to marginalization effectively multiplies

that time by Bt. With Bt = 5000 and 1s MCMC processing time for a model, marginalization

by MC integration takes about an hour and a half. With Bt = 5000 and 60s MCMC processing

time, this approach takes around 3.5 days. Some of the simulations we conducted for this

work involved MCMC chains that took more than two days to run; MC integration for these

simulations could potentially take longer than the professional lifetime of the author.

108



A more appealing solution is offered by Gaussian quadrature (Smith et al. 1985). Here,

instead of sampling from γ | y, θ(t), we evaluate L(θ(t) | y, γ) ∝ f(y, γ | θ(t)) over a pre-specified

grid of γ values, weight the resulting values according to pre-specified weights, and sum them

to obtain a numerical approximation to the marginal likelihood L(θ(i) | y). Approximating

DICm still requires (Bt + 1)Bn evaluations of the likelihood function, where Bn is the number

of quadrature nodes in the grid over which the function is evaluated. This is similar to

the (Bt + 1)Bg evaluations necessary for MC integration except that Bn � Bg in general and

there is no additional computationally expensive simulation involved with the quadrature

approach.

Mathematically, let u(s), s ∈ {1, ..., Bn} be the pre-specified grid of values at which our function

will be evaluated. Let v(s), s ∈ {1, ..., Bn} be the pre-specified weights associated with those

nodes. Then for a function, f(x), the idea is that

∫
f(x)dx =

Bn∑
s=1

f(u(s))v(s).

In truth, the method is a little more complicated, as we explain below.

Quadrature usually necessitates a change of variables in the joint density, f(y, γ | θ). The

most common quadrature method, Gauss-Legendre, requires that the integrated variable live

on the interval (−1, 1). Consider the case where the dimensionality of γi, q, is 1. We adopt

our formal mixed modeling notation (Section 3.2.1) here, to make it clearer how quadrature

works the mixed modeling setting. Since we assume γi to be univariate normal, this requires

a transformation in scale. A modified logistic transformation works well, where

νi = 2

(
exp(γi)

1 + exp(γi)
− 1

2

)
, γi = log

(
1 + νi
1− νi

)
.
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Then our joint density for an individual i, in (Yi, νi) as opposed to (Yi, γi), is given by

fνi(Yi, νi | θ) = fγi

(
Yi, log

(
1 + νi
1− νi

)
| θ
)

2

1− ν2i

and

L(θ | Y,ν) ∝
∏

fν(Yi, νi | θ).

Formally, let u(s)L and v
(s)
L be defined as above, using the pre-specified nodes and weights for

Gauss-Legendre quadrature, which are based on Legendre polynomials. Then the Gauss-

Legendre quadrature approximation to f(Y | θ) is given by

f(Y | θ) =

k∏
i=1

f(Yi | θ)

=

k∏
i=1

∫
fνi(Yi, νi | θ)dνi

=

k∏
i=1

∫
fγi(Yi,

νi+1
2

1− νi+1
2

| θ) 2

1− ν2i
dνi

.
=

k∏
i=1

Bn∑
s=1

fγi

Yi, u
(s)
L +1
2

1− u
(s)
L +1
2

| θ

 2

1− (u
(s)
L )2

v
(s)
L

(4.4)

Note that Gaussian quadrature approximates univariate integration. Multivariate integra-

tion is possible by creating a multidimensional grid of nodes and performing nested quadra-

ture steps on each dimension. Thus, if the solution to a three-dimensional integral is required

and 20 nodes are used for evaluation in each dimension, the resulting procedure considers

the function at 203 = 8000 unique points. Fortunately, because of the independence between

clusters we assume in the above example, we do not have to use multivariate quadrature to

deal with the clusters simultaneously. The multivariate integral over γ is equal to the prod-

uct of the individual integrals over the γi’s. However if q, the dimensionality of γi, increases,

computing time will also increase exponentially.
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Other Gaussian quadrature methods, most notably Gauss-Hermite, require less reformu-

lation of the joint density. Gauss-Hermite quadrature approximates integrals of the kind∫∞
−∞ e−x

2
f(x)dx, which is naturally appealing since f(Yi, γi | θ) includes a normal kernel for

γi. Details of the Gauss-Hermite method are similar to the Gauss-Legendre method above.

They are provided in detail in the appendix—both to let the reader see how quadrature

works for multivariate γi and because we will make use of the Gauss-Hermite method in a

small number of simulations.

Consideration of alternative quadrature methods, however, leads to one of the significant

complications with these approaches: deciding on the number of nodes, Bn. Quadrature

rules are designed to give exact results for polynomials of order 2Bn − 1 or less. Because

every continuous function can be approximated by a polynomial of sufficiently high order,

we know the quadrature approach gives us good results when Bn is large enough—but how

large is large enough? The answer to this question depends on the type of quadrature

method (e.g. Gauss-Legendre, Gauss-Hermite), as well as the characteristics of the likelihood

function itself. The order of polynomial required to sufficiently approximate a function

will depend on its characteristics such as its peakedness; and since the function employs

different transformations depending on the quadrature method chosen, these characteristics

will depend on that choice of method.

This means that an accurate numerical approximation to the integral depends on choosing

a grid that includes enough points to capture behavior near the peak. Although not very

computationally efficient, perhaps the best way to determine whether enough nodes have

been used is to perform repeated quadrature approximations at an increasing number of

nodes, observing when the results appear to converge to a stable answer to the numerical

integral.
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4.2.3 Other Approaches Involving Hierarchical Models

A frequentist method for longitudinal GLM data is the generalized estimating equation

approach (GEE; Liang and Zeger 1986). The GEE approach provides consistent estimates

of the regression parameters, β, and their covariance structure in the scenario considered

in this chapter. The GEE approach only provides estimates of β and its covariance, and

inferences rely on asymptotic normality. We are thus not able to use this approach for

making posterior inferences— which do not rely on asymptotics, nor are they limited to

point and interval estimates of regression coefficients.

Work on model selection for GLMMs, beyond what we have already discussed, has largely

been directed at different model selection criteria and selection paradigms—see, e.g. Saefken

et al. (2014) for work on the conditional AIC in GLMMs; or Overstall and Forster (2010) and

Sinharay and Stern (2005) for work on the Bayes factor in GLMMs. When these methods deal

with marginalization relative to the random effects, Sinharay and Stern suggest numerical

integration as discussed above, or importance sampling methods for high-dimensional γi.

Although they do not specify what constitutes high dimensionality, based on our own work

we believe the numerical integration methods we describe should be avoided for dim(γi) ≥ 3.

Cai and Dunson (2006) provide a marginalization formula for GLMMs based on a second-

order Taylor expansion of L(θ|y, γ) around Eγ|θ[γ]. This is done to provide a Bayesian variable

selection procedure based on the use of mixture priors (e.g. spike-and-slab). We consider

this approach of special note, because it is the closest method we found to our own—which

also uses a Taylor expansion involving the random effects as one step in approximating a

marginal density for GLMMs. However, our method takes advantage of having random

effects that are modeled with a multivariate normal distribution to yield a notably simpler

approximation. We discuss this method after we have developed our method in Section 4.3.1.
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4.3 A Limited Marginalization Approach

Our goal in this chapter is to develop a computationally efficient method for approximating

DICm. Posterior samples provided by most Bayesian analysis programs make the approxima-

tion to DICj straightforward, but approximating DICm requires either additional numerical

integration or some form of analytic approximation.

The simplest way to obtain DICm would be to adopt the quadrature approach: applying

Equation (4.4) to each element of the posterior sample θ(s), s ∈ {1, ..., Bt}, and to the posterior

mean2 θ = 1
Bt

∑
s θ

(s), and then substituting the resulting values for f(Y | θ) into Equation

(3.11) to obtain the approximation to DICm. As discussed above, this can create an enormous

computing burden. A good marginalization approach will involve a reduced computational

burden so that approximation can be done quickly and accurately.

Further, one of the central appeals of DIC as a Bayesian model selection criterion is the ease

with which it can be calculated from an MCMC sample (SBCV; R. R. Christensen, Johnson,

et al. 2010; Gelman et al. 2013). We believe a good marginalization approach will retain

this feature: it should be calculable based on existing MCMC output, rather than requiring

it be built into the MCMC procedure itself.

4.3.1 Approximate Marginalization through Taylor Expansion

We begin this section by reviewing Taylor’s method for function approximation. We then

outline our methodological development to highlight key points for the reader, and discuss

the REO special case of GLMMs. We follow this with a formal statement of our method,

which proceeds from the application of Taylor’s theorem, Proposition 3.1, and a discussion

2Or whatever point estimate of θ is preferred; though like SBCV, we focus our attention on the posterior
mean of θ.
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of approximation error under our method. Finally, we conclude this section by giving the

functional form of our approximation in both binomial and Poisson GLMMs.

4.3.1.1 Taylor expansion

Taylor’s theorem is a method for functional approximation that dates back to the invention

of calculus. It is named for Brook Taylor who derived it in 1712—although it was known

by others as early as 1670, and explicit definition of the approximation error would not

be specified until Lagrange in 1772 (Kline 1972). We refer to the formulation given by

R. R. Christensen (1997), which states that for some function g(·) with at least second-order

derivatives, and with x and a in the domain of g,

g(x) = g(a) + ġ(a) (x− a) +
1

2
(x− a)T g̈(a) (x− a) + r(g, x, a), (4.5)

where

ġ(x) ≡ ∂

∂x
g(x) and g̈(x) ≡ ∂2

∂x∂xT
g(x).

We use dot notation for derivatives commonly appearing throughout this work. In this

chapter, where we will only be concerned with univariate derivatives, we also use g(3)(·)

for the 3rd derivative of g(·). We occasionally use d/dx notation as well when we think the

additional clarity will help the reader.

The function r(g, x, a) here is the remainder for the second-order Taylor approximation, which

is of order o(||x− a||2), meaning that

∀ε∃δ s.t. ||x− a|| < δ ⇒ |r(g, x, a)| ≤ ε(x− a)T (x− a).
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We also consider the Lagrange form of the second-order remainder when the third derivative

exists,

r(g, x, a) =
g(3)(ξL)

3!
(x− a)3, (4.6)

where ξL is some real number between x and a. This is a mean-value form for the Taylor

remainder, and can help us gain insight into the behavior of the approximation.

In the following sections, we provide a novel application of this formula for GLMM models

when random effects are assumed to have a normal distribution, and we show how this can

be used to obtain a new approximate marginal form.

4.3.1.2 An outline of our development

The marginalization approach that we develop below is designed for use with a subset of

GLMMs where each cluster is associated with multiple observations and all covariates are

constant within clusters—that is, random intercept models with repeated exchangeable ob-

servations (REO) on each individual. Chapter 5 details a more general marginalization

approach that extends this work and can be used for all GLMMs.

Our marginalization approach makes use of the exponential family form of GLMM models.

This lets us write a joint density for data y and normally-distributed random effects γ where

γ’s are isolated inside an exponential function. The conditional density of y given γ and θ is

f(y | γ, θ) = h∗(y) exp (g∗(y | γ, θ)) ,
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where g∗(y | γ, θ) is the exponential component of the pdf (or pmf) for y. Recall that our

concern in marginalization focuses on the integral

∫
L(θ | y, γ)dγ = Eγ|θ[L(θ, γ | y)] =

∫
f(y | γ, θ)p(γ | θ)dγ.

We then focus on the interpretation of f(y | γ, θ) as a function of γ for fixed θ. This allows us

to write ∫
L(θ | y, γ)dγ = h(y, θ)

∫
exp (g(γ | y, θ)) p(γ | θ)dγ,

which is possible because f(y | γ, θ) depends on γ only through the exponent. For brevity, we

use g(γ) ≡ g(γ | y, θ), except where the longer form is necessary for the reader’s understanding.

We use a second-order Taylor approximation for g(γ) centered on some γ̂. In the instance

described, where multiple observations are obtained for each individual, and with a single

set of individual level covariates that correspond to all of their observations, it turns out

that γ̂ can be taken to be the average across repeated observations. Crucially, this average

is the solution to ġ(γ̂) = 0. As we will see, the Taylor expansion involves a quadratic form

in γ, which can then combined with the quadratic form in the model for γ | θ by using the

complete-the-square formula (Proposition 3.1). The resulting approximation makes it easy

to analytically integrate γi out of the approximation to f(Yi, γi | θ).

Our objective is to approximate, along the lines just discussed,

L(θ | y) ∝ f(y | θ)

=

∫
f(y, γ | θ)dγ

=

∫
f(y | γ, θ)p(γ | θ)dγ.
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If we could obtain a closed form expression for f(y, γ | θ) = f(γ | y, θ)f(y | θ), as in the LMM

case, the problem would be immediately solved. This, then, is our strategy: to find an

approximation to f(y, γ | θ) that permits this factorization.

4.3.1.3 Repeated exchangeable observations (REO)

In the previous section, we mentioned that the method we develop here is for random inter-

cept models with repeated exchangeable observations (REO) on each individual/cluster. We

will discuss the nature of the REO special case further, focusing on the differences between

REO and non-REO settings, in Section 5.1.1.

Having repeated exchangeable observations allows us to “estimate” the random effects using

within-cluster averages of the response data. The ability to do this simplifies our method,

which is why we first deal with this special case before moving onto a more general method

in the next chapter.

In the setting described, we have Xi =

[
xi1 ... xip

]
⊗ Jn and Z = Jn ⊗ Ik. That is, covariates

x vary between clusters but not within them, and γi’s are a constant random effect for each

cluster. Then

Xiβ + Ziγi =

([
xi1 ... xip

]
β + γi

)
Jn,

and we can write

Y i =
1

n
Y Ti Jn = q−1

(
γ̂i +

p∑
t=1

xitβt

)
.

From here, we solve for γ̂i, which is a function of Yi.

γ̂i(Yi) = q(Y i)−
p∑
t=1

xitβt. (4.7)

This choice of γ̂i(Yi) maximizes f(Yi | γi, θ) in γi, and thus maximizes g(γi). For brevity, we

use γ̂i instead of γ̂i(Yi) through most of this text, except in places where it is important to
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the reader’s understanding to explicitly recognize that γ̂i is a function of Yi (e.g. Proposition

4.1).

Note that as the number of observations per cluster, n, increases, γ̂i
a.s.−→ γi. Since our

observations are conditionally independent within clusters, the Strong Law of Large Numbers

applies and we have Yi
a.s.−→ q−1 (γi +

∑
t xitβt). Using Slutsky’s Theorem, if we assume that β

is known, then

q(Y i)
a.s.−→ γi +

p∑
t=1

xitβt ⇐⇒

q(Y i)−
p∑
t=1

xitβt
a.s.−→ γi ⇐⇒

γ̂i
a.s.−→ γi.

Applying Equation (4.5), the Taylor expansion of g(γi) around γ̂i gives

g(γi) = g(γ̂i) + ġ(γ̂i)(γi − γ̂i) +
1

2
g̈(γ̂i)(γi − γ̂i)2 + r(g, γ, γ̂).

But because γ̂i maximizes g(γi), we know ġ(γ̂i) = 0 and the above expression simplifies to

g(γi) = g(γ̂i) +
1

2
g̈(γ̂i)(γi − γ̂i)2 + r(g, γi, γ̂i). (4.8)

This analytic removal of ġ(γ̂i)(γi − γ̂i) is what simplifies the REO GLMM special case.

Further note that g̈(γi) is the same as ∂2

∂γ2i
`(γi, θ | Yi), where `(γi, θ | Yi) ∝ log f(Yi | γi, θ). This

relates our approximation to the Fisher information for γi contained in Yi, with known θ.
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4.3.1.4 Approximate joint and marginal densities

Now that we have outlined the important elements of our method, we proceed to formally

develop our marginal approximation for the REO GLMM setting.

Substituting Equation (4.7) into f(y, γ | θ) gives us an approximation to the joint density.

Formally, following the definition of the GLMM used in Section 4.1 with Σ = [σ2], we have

f(Yi, γi | θ) = h(Yi, θ) exp

(
g(γ̂i)−

1

2

[
−g̈(γ̂i) (γi − γ̂i)2

]
+ r(g, γi, γ̂i)

)
× 1√

2πσ2
exp

(
−1

2

(
γi − ψi
σ

)2
)

=
h(Yi, θ)√

2πσ2
exp

(
g(γ̂i)−

1

2

[
−g̈(γ̂i) (γi − γ̂i)2 +

1

σ2
(γi − ψi)2

]
+ r(g, γi, γ̂i)

)
= f̂(Yi, γi | θ) exp (r(g, γi, γ̂i)) . (4.9)

where f̂(Yi, γi | θ) is our approximate joint density for the data and the random effects, if we

drop the remainder term.

Proposition 4.1. Assume γi is q dimensional. Then if g̈(·) is continuous on a closed ball

around γi,

f̂(Yi, γi | θ)− f(Yi, γi | θ)
a.s.−→ 0 n→∞.

Proof. By assumption, there ∃ δ such that g̈(t) is continuous over the closed ball Bδ = {t :

||t− γi|| ≤ δ}.

Since γ̂i
a.s.−→ γi, Pr [ω : limn→∞ γ̂i(ω) = γi] = 1. Denote as Ω the set of ω where this happens.

Then ∀ω ∈ Ω, ∃N(ω) such that n ≥ N(ω) =⇒ ||γ̂i(ω)− γi|| ≤ δ.
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According to A Course in Large Sample Theory by Ferguson (1996), if g̈(t) is continuous over

Bδ, then Taylor’s theorem indicates that, for ||s|| < δ,

g(γ̂i(ω) + s) = g(γ̂i(ω)) + ġ(γ̂i(ω))s+ sT
(∫ 1

0

∫ 1

0
vg̈ (γ̂i(ω) + uvs) dudv

)
s.

Let s = s(ω) = γi − γ̂i(ω) for ω ∈ Ω. We thus have

g(γi)− g(γ̂i(ω)) = s(ω)T
(∫ 1

0

∫ 1

0
vg̈ (γ̂i(ω) + uvs(ω)) dudv

)
s(ω),

since ġ(γ̂i(ω)) = 0 by construction.

Then for this choice of s, and with n > N(ω), we must have ||s(ω)|| < δ. We know ||g̈(t)||

is bounded (in each component of the q × q matrix) on the closed ball Bδ, because it is

continuous on that closed ball. Then since ||γ̂i(ω) + uvs(ω) − γ̂i(ω)|| = ||uvs(ω)|| < ||s(ω)|| < δ,

for all (u, v) ∈ [0, 1]× [0, 1], the integrand above is uniformly bounded and consequently by the

Dominated Convergence Theorem, we can take the limit as n→∞ inside the integral. Thus

we have

g(γi)− ĝ(γi) = s(ω)T
(∫ 1

0

∫ 1

0
vg̈ (γ̂i(ω) + uvs(ω))− 1

2
g̈ (γi(ω)) dudv

)
s(ω)

= o(||s(ω)||)→ 0 n→∞

This implies that

f̂(Yi, γi | θ)− f(Yi, γi | θ)
a.s.−→ 0.
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Further discussion of the approximation error on this density are given Appendix A.3. Sim-

ulated results regarding the approximation error in the joint density are given below, in

Section 4.4.2.

In this approximate form, we recognize that the second-order Taylor term for g(γi) and the

kernel for the density of γi|θ, p(γi | θ), are both quadratic forms for γi. This allows us to apply

the complete-the-square formula and rewrite the approximate joint density as

f̂(Yi, γi | θ) =
h(Yi, θ)√

2πσ2
exp

(
g(γ̂i)−

1

2

(
−g̈(γ̂i) (γi − γ̂i)2 +

1

σ2
(γi − ψi)2

))
=
h(Yi, θ) exp (g(γ̂i))√

2πσ2
exp

(
−1

2

((
1

σ2
− g̈(γ̂i)

)
(γi − γ∗i )2 + u(Yi, θ) (γ̂i − ψi)2

))
,

where

γ∗i =
ψi − σ2g̈(γ̂i)γ̂i

1− σ2g̈(γ̂i)
,

and

u(Yi, θ) = (−g̈(γ̂i))

(
1

σ2
− g̈(γ̂i)

)−1( 1

σ2

)
=

−g̈(γ̂i)

σ2
(

1
σ2 − g̈(γ̂i)

)
=

−g̈(γ̂i)

1− σ2g̈(γ̂i)

We have now isolated γi into the term exp
(
−1

2

(
1
σ2 − g̈(γ̂i)

)
(γi − γ∗i )2

)
. We recognize this as

the kernel of a normal density with mean γ∗i and variance

1
1
σ2 − g̈(γ̂i)

=
σ2

1− σ2g̈(γ̂i)
.

Then under our approximation, we say

γi | Yi, θ ∼ N

(
γ∗i ,

σ2

1− σ2g̈(γ̂i)

)
.
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We are now in a position to approximate our marginal likelihood.

Revisiting our approximation to the joint density, we have

f̂(Yi, γi | θ) =
h(Yi, θ) exp (g(γ̂i))√

2πσ2
exp

(
−1

2

(
−g̈(γ̂i)

1− σ2g̈(γ̂i)

)
(γ̂i − ψi)2

)
× exp

(
−1

2

((
1

σ2
− g̈(γ̂i)

)
(γi − γ∗i )2

))
=
h(Yi, θ) exp (g(γ̂i))√

2πσ2
exp

(
−1

2

(
−g̈(γ̂i)

1− σ2g̈(γ̂i)

)
(γ̂i − ψi)2

)

×


√

2π
(

σ2

1−σ2g̈(γ̂i)

)
√

2π
(

σ2

1−σ2g̈(γ̂i)

)
 exp

(
−1

2

((
1

σ2
− g̈(γ̂i)

)
(γi − γ∗i )2

))

=

h(Yi, θ)

√
2π
(

σ2

1−σ2g̈(γ̂i)

)
exp (g(γ̂i))

√
2πσ2

exp

(
−1

2

(
−g̈(γ̂i)

1− σ2g̈(γ̂i)

)
(γ̂i − ψi)2

)
× 1√

2π σ2

1−σ2g̈(γ̂i)

exp

(
−1

2

(
1

σ2
− g̈(γ̂i)

)
(γi − γ∗i )2

)

=
h(Yi, θ) exp (g(γ̂i))√

1− σ2g̈(γ̂i)
exp

(
−1

2

(
−g̈(γ̂i)

1− σ2g̈(γ̂i)

)
(γ̂i − ψi)2

)
× 1√

2π σ2

1−σ2g̈(γ̂i)

exp

(
−1

2

(
1

σ2
− g̈(γ̂i)

)
(γi − γ∗i )2

)

= f̂(Yi | θ)× f̂(γi | Yi, θ).

Here f̂(γi | Yi, θ) is the exact density for a N
(
γ∗i ,

σ2

1−σ2g̈(γ̂i)

)
random variable. Then

f(Yi | θ) =

∫
f(Yi, γi | θ)dγi

=

∫
f̂(Yi, γi | θ) exp (r(g, γi, γ̂i)) dγi

=

∫
f̂(Yi | θ)f̂(γi | Yi, θ) exp (r(g, γi, γ̂i)) dγi

= f̂(Yi | θ)
∫
f̂(γi | Yi, θ) exp (r(g, γi, γ̂i)) dγi

' f̂(Yi | θ)
∫
f̂(γi | Yi, θ)dγi

= f̂(Yi | θ).
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This, finally, yields our approximate marginal density for REO GLMMs with a single random

effect:

f̂(Yi | θ) =
h(Yi, θ) exp (g(γ̂i))√

1− σ2g̈(γ̂i)
exp

(
−1

2

[
−g̈(γ̂i)

1− σ2g̈(γ̂i)
(γ̂i − ψi)2

])
. (4.10)

Earlier, we mentioned the approach of Cai and Dunson (2006). They approximate the

marginal by taking a second-order Taylor series expansion of L(θ,γ | Y) ∝ f(Y | γ, θ) in γ

around γ = 0qk. They then take the expectation of their Taylor expansion over the modeled

random effects distribution. Their method results in an approximation of the form

L̃(θ | Y) = f(Y | 0qk, θ) +
1

2
f(Y | 0qk, θ) tr

(
ZTV ZΣ

)
,

where η = Xβ + Zγ and

V =
∂2

∂η∂ηT
log f(Y | 0qk, θ) + Diag

(
∂2

∂η∂ηT
log f(Y | 0qk, θ)

)
.

The precise analytic statements of their approximation for the binomial and Poisson are

mysterious and complex.

In contrast, we approximate the marginal for each cluster by taking a second-order Taylor

expansion of g(γi), the exponential part of f(Yi | γi, θ). This expansion is taken around an

offset GLM estimate for γi, treating it as if it were a parameter with β fixed (see Section

5.2.1.1). This is likely to be much closer to the true value of γi for a cluster than the Cai

and Dunson pivot, the zero vector. We marginalize over γ by recognizing that, with normal

random effects, the approximate conditional distribution of γ is multivariate normal when

the Taylor remainder is ignored. The integral of this density is necessarily 1, and so it is

easily removed, leaving us with an approximate marginal.
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Cai and Dunson (2006) also assume their random effects follow a normal distribution, so

they and we consider marginalizing within the same class of models. Our methods, in this

chapter and the next, give substantially simpler computational forms. In Chapter 6, we

discuss our plans to directly compare our approximation to theirs.

4.3.2 The Binomial and Poisson Approximations

In this subsection, we give precise specifications of key results from Section 4.3.1 as they

pertain to the binomial and Poisson GLMMs, with some discussion of hypothetical scenarios

in which these models can be used.

4.3.2.1 Binomial data

An REO binomial model is, in essence, just a model where each binomial observation with

its collection of covariates is given an individual random effect. Since the sum of iid bino-

mial random variables is a binomial random variable with the same success probability, our

scenario of having multiple iid observations within each cluster is the same as having one

observation on a larger binomial. Having only one binomial observation is not a hindrance

to the use of this model, as long as mij, the number of observed Bernoulli trials for the

ith cluster is sufficiently large. In this case, by sufficiently large we mean that (1) we have

enough data for the Taylor remainder term to be small, and (2) for all i,
∑n
j=1 yij must not

be equal to 0 or
∑n
j=1mij, otherwise the approximation for GLM-type models will fail.

In our work on this method, we assume mij = 1 and n large instead of assuming mij large

and n = 1. We do this because we find that this helps us think about the role the REO

constraint plays here. The model must have multiple response observations where covariate

combinations are constant within each cluster.
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By way of example, consider a longitudinal data set in which ovulation status is recorded on

k women over n menstrual cycles. If covariate data include only demographic information

on the participants (e.g. race, educational attainment), the REO binomial model would be

a reasonable approach to these data. If observation-related covariates were also desired (e.g.

pollutant exposure levels during cycle), it would be inappropriate to use the marginalization

approximation below.

We begin by defining a number of the key quantities in the approximation for binomial data.

yij ∼ Bin
(
mij , pi

)
pi =

exp (xiβ + γi)

1 + exp (xiβ + γi)

h(Yi, θ) =

n∏
j=1

(
mij

yij

)

γ̂i = log

( ∑n
j=1 yij∑n

j=1

(
mij − yij

))− xiβ

We further define the total number of Bernoulli trials in cluster i, mi· =
∑n
j=1mij, and the

total number of observed events in cluster i, yi· =
∑n
j=1 yij. This allows us to simplify the

definition of γ̂i to

γ̂i = log

(
yi·

mi· − yi·

)
− xiβ.
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The functions g(γ̂i) and g̈(γ̂i), and their simplifications, require a bit more algebra. First,

g(γ̂i) is given by

g(γ̂i) = (xiβ + γ̂i)

n∑
j=1

yij − log (1 + exp (xiβ + γ̂i))

n∑
j=1

mij

= log

(
yi·

mi· − yi·

)
yi· − log

(
1 +

(
yi·

mi· − yi·

))
mi·

= log

(
yi·

mi· − yi·

)
yi· − log

(
mi·

mi· − yi·

)
mi·

= log (yi·) yi· − log (mi·)mi·

− (log (mi· − yi·) yi· − log (mi· − yi·)mi·)

= yi· log yi· + (mi· − yi·) log (mi· − yi·)−mi· logmi·

Then g̈(γ̂i) is given by

g̈(γ̂i) = −
(

exp (xiβ + γ̂i)

1 + exp (xiβ + γ̂i)

)(
1

1 + exp (xiβ + γ̂i)

) n∑
j=1

mij

= −

( yi·
mi·−yi·

1 + yi·
mi·−yi·

)(
1

1 + yi·
mi·−yi·

)
mi·

= −

( yi·
mi·−yi·
mi·

mi·−yi·

)(
1
mi·

mi·−yi·

)
mi·

= −
(
yi·
mi·

)(
mi· − yi·
mi·

)
mi·

= −yi· (mi· − yi·)
mi·
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Finally, plugging into Equation (4.8) gives us an approximate marginal density for the REO

binomial GLMM.

f̂(Y | θ)

=

k∏
i=1

[
h(Yi, θ) exp (g(γ̂i))√

1− σ2g̈(γ̂i)
exp

(
−1

2

[
−g̈(γ̂i)

1− σ2g̈(γ̂i)
(γ̂i − ψi)2

])]

=

k∏
i=1


(∏n

j=1

(mij
yij

))
exp (yi· log yi· + (mi· − yi·) log (mi· − yi·)−mi· logmi·)√

1 +
σ2yi·(mi·−yi·)

mi·


× exp

−1

2

k∑
i=1

 yi·(mi·−yi·)
mi·

1 +
σ2yi·(mi·−yi·)

mi·

(
log

(
yi·

mi· − yi·

)
− (xiβ + ψi)

)2


=

k∏
i=1


(∏n

j=1

(mij
yij

))
exp (yi· log yi· + (mi· − yi·) log (mi· − yi·)−mi· logmi·)√

mi·+σ2yi·(mi·−yi·)
mi·


× exp

(
−1

2

k∑
i=1

[
yi· (mi· − yi·)

mi· + σ2yi· (mi· − yi·)

(
log

(
yi·

mi· − yi·

)
− (xiβ + ψi)

)2
])

4.3.2.2 Poisson data

As with the binomial model above, the REO Poisson model is functionally equivalent to a

model where each Poisson observation has its own set of covariates and an individual random

effect. This results from the fact that the sum of iid Poisson random variables is itself a

Poisson random variable; and for our purposes, no information is being lost by combining

them in this scenario3. One must still have sufficient data for the method to work, however.

Just as the binomial GLMM fails when either all trials are successes or all trials are failures

for a particular individual i, the Poisson GLMM fails when no events are observed for a

particular individual.

Once again, we find it easier to consider the data in a separated form: where counts are

recorded independently over fixed intervals, rather than being totaled across one larger in-

3Fisher information loss is historically an area of significant concern with the Poisson distribution—
especially to French statisticians. It is the French who coined the famous phrase, “Only a Fisher understands
the behavior of the Poisson.”
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terval. We do this by assuming n > 1 responses come from a Pois (λi) distribution, rather

than assuming n = 1 response comes from a Pois
(
mijλi

)
distribution. This framework makes

it easier to understand the role of repeated exchangeable observations in the model.

Consider data on hospital-acquired infections (HAIs) taken at k hospitals over a period of

n months. The framework below provides approximate marginalization for a model where

HAIs are predicted on the basis of hospital-level characteristics only (e.g. nurse-to-patient

ratio, socioeconomic status of surrounding community); but will not provide approximate

marginalization when observation-related covariates are also desired (e.g. month of observa-

tion).

For the REO Poisson GLMM, we define the following:

yij ∼ Pois
(
mijλi

)
λi = exp (xiβ + γi)

h(Yi, θ) =

n∏
j=1

m
yij
ij

yij !

γ̂i = log

( ∑n
j=1 yij∑n
j=1mij

)
− xiβ

We define the totals yi· and mi· as in the previous section. The total number of observed

events in cluster i is yi· =
∑n
j=1 yij. The total number of intervals observed in cluster i is

mi· =
∑n
j=1mij. This allows us to simplify the definition of γ̂i to

γ̂i = log

(
yi·
mi·

)
− xiβ.
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Then g(γ̂i) is given by

g(γ̂i) = (xiβ + γ̂i)

n∑
j=1

yij − exp (xiβ + γ̂i)

n∑
j=1

mij

= log

(
yi·
mi·

)
yi· −

yi·
mi·

mi·

=

(
log

(
yi·
mi·

)
− 1

)
yi·

And g̈(γ̂i) is given by

g̈(γ̂i) = − exp (xiβ + γ̂i)

n∑
j=1

mij

= − yi·
mi·

mi·

= −yi·

This gives us an approximate marginal density for the REO Poisson GLMM of

f̂(Y | θ) =

k∏
i=1

[
h(Yi, θ) exp (g(γ̂i))√

1− σ2g̈(γ̂i)
exp

(
−1

2

[
−g̈(γ̂i)

1− σ2g̈(γ̂i)
(γ̂i − ψi)2

])]

=

k∏
i=1


(∏n

j=1
m

yij
ij

yij !

)
exp

((
log
(
yi·
mi·

)
− 1
)
yi·
)

√
1 + σ2yi·


× exp

(
−1

2

k∑
i=1

[
yi·

1 + σ2yi·

(
log

(
yi·
mi·

)
− (xiβ + ψi)

)2
])
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4.4 Simulation Results

In this section, we describe small-sample simulation results for our marginal approxima-

tion. We begin by describing our simulation procedures in detail. We then report results

on approximation error for the joint distribution and for the marginal DIC calculations. Fi-

nally, we present results for a simulated variable selection task using a minimum DIC model

selection criterion based on DICb, DICj, and DICb.

4.4.1 Description of Simulation Procedures

We conducted two sets of simulations to test our approximate marginal method for calcu-

lating the DIC. The first was designed to assess how accurate our marginalization method

was in small samples. Because our approximation is only expected to behave well asymp-

totically, we must investigate how it behaves without large n. The second set of simulations

was designed to assess the performance of the various DIC computation methods in an au-

tomated stepwise regression procedure, following from our argument in Section 3.3.2.2 that

it is important to understand how a selection criterion performs in an unsupervised setting.

In the first simulation set for assessing approximation accuracy, data were generated under

a range of choices for k (number of clusters) and n (number of observations per cluster). For

a given k, a set of γ’s were sampled from the quantiles of a standard normal distribution for

the Bernoulli, and from a N
(
0, 1/4

)
for the Poisson. Quantile sampling for the γ’s followed

the scheme

γi = Φ−1
(

2i− 1

2k

)
, i ∈ {1, ..., k}.

We also sampled x(i)’s from the quantiles of a standard normal, in the same fashion. The

order of the x(i)’s was then randomized and each individual i paired with one value to give

us xi, the covariate value measured on that individual. These were used to assemble Xi

130



matrices for each individual, with Xi = Jn ⊗ [ 1 xi ], a vector of 1’s for a grand mean and a

vector of shared covariate values for each observation on an individual. We then generated

response data, y, using quantiles of the Bernoulli4 and Poisson distributions. For Bernoulli

simulations yij ∼ Bern (pi), with pi = expit (β1 + xiβ2 + γi) and (β1, β2) = (0, 1). For Poisson

simulations yij ∼ Pois (λi), with λi = exp(β1 + xiβ2 + γi) and (β1, β2) = (3, 1/4). Within each

individual i, response data were generated using a modified quantile method. For Bernoulli

data,

Yi =

{
0, F−1

Bern(pi)

(
3

2n

)
, F−1

Bern(pi)

(
5

2n

)
, ..., F−1

Bern(pi)

(
2n− 3

2n

)
, 1

}
,

and for Poisson data,

Yi =

{
0, F−1

Pois(λi)

(
3

2n

)
, F−1

Pois(λi)

(
5

2n

)
, ..., F−1

Pois(λi)

(
2n− 3

2n

)
, F−1

Pois(λi)

(
2n− 1

2n

)}
.

For each choice of k and n, data were simulated five times with random seeds selected by the

authors for repeatability. This was done because, although the quantile method was used for

most simulations here, pairings of γi’s and xi’s remain random. Results for these simulations

are presented in Sections 4.4.2 and 4.4.3.

In the second simulation set for assessing automated model selection behavior, we chose

distinct (k, n) combinations after seeing our results from the first simulation set. Choices of k

and n were made based on what we thought reasonable real-world data sets might look like;

computational feasibility for repeated MCMC sampling; and our beliefs about how large

k and n would need to be in order to obtain reasonable inferences for the model parame-

ters. Automated model selection simulations were performed for Bernoulli response data

with (k = 20, n = 15) and (k = 30, n = 15); and for Poisson response with (k = 15, n = 10) and

(k = 20, n = 10). For each simulation, we created a design matrix including five covariates and

an intercept: call them {x0 ≡ 1, x1, x2, x3, x4, x5}. For the Binomial simulations, we chose β =

4All quantiles of the Bern (p) are either 0 or 1, with quantiles up to 1 − p all equal to 0 and quantiles
greater than 1 − p all equal to 1. Sampling n quantiles from a Bernoulli thus has the effect of giving the
“correct” number of 0’s and 1’s that would be expected in n independent trials.
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[ 1/2 1 1/2 0 0 0 ]T ; and for the Poisson simulations, we chose β = [ 2 1/2
1/4 0 0 0 ]T .

For each individual the covariate data were generated from a multivariate normal distribu-

tion, 

x1

x2

x3

x4

x5


∼ N5





0

0

0

0

0


,



1 0 0 0 0

0 1 0 0 0

0 0 1 1/3 0

0 0 1/3 1 0

0 0 0 0 1




.

Values of the random effect γi were generated from a N
(
0, 1/4

)
distribution in all cases. Re-

sponse data were generated randomly according to Bernoulli and Poisson distributions. As

before, data were simulated with a new deterministic random seed in each simulation, to

ensure that we obtained new-but-repeatable datasets each time.

Once the data were generated, OpenBUGS was used to obtain posterior samples of θ and γ

under the full model where all covariates were included, as well as a DICb score for that model.

Based on these posterior samples, joint and marginal DICs were then calculated in R. We

performed a backwards stepwise procedure using DICb as a selection criterion. Beginning

with the full model, at each step DICb scores were calculated for the current model and

for each model where one covariate was removed5. The model with the smallest DICb was

selected as a new current model, the associated covariate removed, and this process was

repeated. The stepwise procedure was stopped when either the DIC for all reduced models

exceeded the DIC of the current model, or when we reached a model containing only the

intercept term. We logged the order of removal, the final model selected, and posterior means

and standard deviations on the β coefficients for the final model. Then we performed the same

procedure, beginning again from the full model, using a numerical approximation of DICj

as a selection criterion. Finally, we performed the same procedure with our approximation

5We only considered the removal of x2 through x6. The intercept analogue covariate, x1, was forced into
each model.

132



to DICm as a selection criterion. Results for the automated model selection simulation are

presented in Section 4.4.4.

All Bernoulli simulations and the first set of Poisson simulations in the stepwise variable

selection task were performed with three chains, each with a burn-in period of 1000 iterations

and included 5000 iterations in the posterior sample. Chains were thinned by a factor of

dn/10e (for Bernoulli) or n (for Poisson) to reduce autocorrelation. This was done because

our DIC methods rely on performing calculations on each of the posterior iterates; and

having fewer, more nearly independent iterates improves the computational efficiency of our

calculation methods. With Bt = 5000 posterior iterates, to numerically approximate DICm

we must perform 5000 computations, be they quadrature or approximate marginalization.

Not thinning gives us more information about the posterior distribution, but then requires

more computation to obtain our DICm approximations.

The second set of Poisson simulations for the variable selection task was performed in the

same way but using only one chain to increase the speed with which results could be obtained.

We examined the convergence of three chains on a subset of the simulations we performed

(2-3 combinations of k and n for each of the Bernoulli and Poisson schemes). Our thinning

factor and number of burn-in iterations were chosen to ensure good convergence properties,

based on the simulations examined.

4.4.2 Pseudo-KL Results

In Table 4.1, we present results showing how close our approximation of the joint distribution

comes to the true joint distribution, using a measure we call the pseudo-Kullback-Leibler

(pKL) divergence. Recall from Equation (3.1) that the generic µ0-directed KL divergence is

defined as

KL(µ0:µ1) = Eµ0 [f0(y)]− Eµ0 [f1(y)] .
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In our case, we know the true joint posterior for γ and θ, P (γ, θ | Y). We also have a random

sample from this posterior, {(γ(1), θ(1)), ..., (γ(Bt), θ(Bt))}. Thus for arbitrary µ, say P ∗(γ, θ | Y),

we can use

1

Bt

Bt∑
s=1

(
log p(γ(s), θ(s) | Y)− log p∗(γ(s), θ(s) | Y)

)
to approximate the corresponding KL divergence.

In our case, we wish to assess to what extent our approximation of the joint posterior,

P̂ (γ, θ | Y), diverges from the true joint posterior. Our approximation simply replaces the

exponent of f(Y | γ, θ) with the second-order Taylor approximation, dropping the remainder.

Performing this approximation without adjusting the constant of integration, however, means

that P̂ (·) is not a proper probability density. As we discuss in Appendix A.3, we cannot be

sure that these approximate joint densities are always integrable in small samples, though

we would be very surprised to find that they weren’t.

This is important because P̂ (·) not being a probability density function means the KL diver-

gence is no longer guaranteed to be non-negative. Because of this, a simple average of the

difference in log densities6 does not necessarily indicate how close the approximation comes to

the truth. Instead, we use a measure of our own devising, the pKL, defined computationally

as follows:

pKL(p, p̂) =
1

Bt

Bt∑
s=1

∣∣∣log p(γ(s), θ(s) | Y)− log p̂(γ(s), θ(s) | Y)
∣∣∣ .

It is difficult to know what constitutes a large pKL score. As explained in the preceding

chapter, the Kullback-Leibler divergence is closely related to information criteria for model

selection, however, and so rules of thumb about what constitutes a large difference in AIC or

DIC are likely to be reasonable here as well. SBCV suggest that a difference in DIC scores

6We use the word ‘density’ loosely here. In nearly all respects we treat P̂ (·) as if it were a real density,
and will refer to it as such. The distinction is primarily of interest in relation to the KL divergence alone,
owing to the fact that since our approximation is so similar to the true joint density, it is easy to obtain
negative values here because of the small error in constant of integration. In no other area of our work have
we found it necessary to treat p̂(·) as anything but a probability density.
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Bernoulli Poisson

2pKL/
D(θ)j

2pKL/
D(θ)jk n pKL k n pKL

10

5 0.584 1.51%

10

5 0.555 0.79%
10 0.508 0.71% 10 0.416 0.30%
15 0.441 0.43% 15 0.345 0.17%
25 0.330 0.20% 25 0.281 0.08%
50 0.223 0.07%

20

5 0.768 0.54%

20

5 1.124 1.71% 10 0.697 0.25%
10 1.329 0.93% 15 0.586 0.14%
15 1.078 0.53% 25 0.467 0.07%
25 0.671 0.21%
50 0.465 0.08%

30

5 1.009 1.10%
10 2.306 1.14%
15 1.413 0.47%
25 1.066 0.22%
50 0.688 0.08%

Table 4.1: Pseudo-Kullback-Leibler divergences between p(γ,θ | Y) and p̂(γ, θ | Y), for simu-
lated Bernoulli and Poisson response data.

of less than 3 has questionable utility. What pKL gives us can be thought of as a quick-and-

dirty estimate of how much error we may be introducing into our DIC scores through our

method of approximation. Notably, pKL is smaller than 3 in all cases, usually smaller than

1.5, and generally decreases as more observations are taken on each cluster.

Another useful way to think about pKL is in relation to the size of p(γ, θ | Y). Recall that

the joint calculation of D(θ) is given by

D(θ)j = − 2

Bt

Bt∑
s=1

log p(γ(s), θ(s) | Y).
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Then the fraction

2pKL(p, p̂)

D(θ)j
=

2
Bt

∑Bt
s=1

∣∣∣log p(γ(s), θ(s) | Y)− log p̂(γ(s), θ(s) | Y)
∣∣∣

− 2
Bt

∑Bt
s=1 log f(γ(s), θ(s) | Y)

=

∑Bt
s=1

∣∣∣log p(γ(s), θ(s) | Y)− log p̂(γ(s), θ(s) | Y)
∣∣∣

−
∑Bt
s=1 log p(γ(s), θ(s) | Y)

gives pKL as a proportion of the average joint deviance. Using this, we can see that the

approximation error relative to the average deviance decreases quickly as n increases, and is

never above 2% of the average deviance, even in the smallest datasets we simulate.

Results in this section and the next are based on only five simulations, but our simulation

design discussed above ensures perfect simulation of all relevant quantities. The only places

where randomness occurs in these simulations are (1) in the pairing of an Xi value with a

true γi value, and (2) in the OpenBUGS posterior sampling of the parameters. Standard

deviations across these five simulations, for all quantities reported in this section and the

next, are very small.

4.4.3 Comparing the Approximation to Numerical Integration

Of particular interest to us is how well our method approximates a true marginal DIC

value for REO GLMMs. Clearly, if such a marginal DIC were easy to obtain, our method

would have little value. Our comparisons focus on our approximation method and Gaus-

sian quadrature. Approximation through MCMC integration was attempted, but proved so

computationally prohibitive that we do not report results from that method.

We determined that Gauss-Legendre quadrature performed better than Gauss-Hermite quadra-

ture in our simulations (i.e. required calculation of fewer nodes before the integral approx-

imation converged). As discussed in Section 4.2.2, Gauss-Legendre quadrature is designed

for integrating functions on the range (−1, 1) and uses Legendre polynomials to appropriately
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weight the information from different nodes. Because of the integration range for the Gauss-

Legendre approach, it was necessary for us to use a change-of-variables substitution for γ.

Properly, we replaced each γi with νi where

νi = 2

(
exp(γi)

1 + exp(γi)
− 1

2

)
, γi = log

(
1 + νi
1− νi

)
.

Then our joint density for an individual i, in (Yi, νi) as opposed to (Yi, γi), is given by

fν(Yi, νi | θ) = fγ

(
Yi, log

(
1 + νi
1− νi

)
| θ
)

2

1− ν2i
.

Tables 5.2 and 5.3 give results for pD, D(θ), and DIC for each of four different computation

methods. These are the: the native computations provided by OpenBUGS7, computations

based on the joint likelihood for θ and γ, quadrature calculations for the marginal likelihood

of θ, and calculations based on our approximation to the marginal likelihood. Table 5.2

provides simulation results for the Bernoulli GLMM described above, and Table 5.3 gives

those for the Poisson GLMM.

Of primary interest in these tables are the columns representing marginal computations

using quadrature and using our approximation. We see that results are inconsistent when

n is very small, especially in the computation of pD, for both the Bernoulli and the Poisson

simulations. Computations of pD under our approximation are stable as n changes, however.

This suggests that the differences between quadrature and approximation methods in these

cases may depend more on issues with the quadrature computations. Quadrature methods

are guaranteed to converge to the true integral of a function as the number of nodes increases,

for all polynomial functions; and since g(·) is continuous in γ, it is well approximated by an

arbitrarily large polynomial function. Thus, the quadrature method works if enough nodes

are used—but the behavior of the quadrature computations in these settings suggests one

7Specifically OpenBUGS version 3.2.3 rev 1012.
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of the problems with using quadrature-based marginalization. The number of quadrature

nodes necessary to give a good approximation to the marginal depends on the dataset and

the log-likelihood function.

Because of the inconsistency in marginalized results for very small n, we are unable to say

whether our approximation is accurate in those cases. We are also not able to say whether

our approximation is inaccurate, because these comparisons are between our approximation

and approximation by quadrature. No gold standard is available; we only know that the

two approximations do not agree for n = 5. Regardless of where the inaccuracies arise from,

we do not recommend that our approximation be used when five or fewer observations are

available per cluster.

For n ≥ 15, we see very good agreement between our method and quadrature for approxi-

mating all of pDm, D(θ)m, and DICm. In the Bernoulli simulations, differences in D(θ)m and

DICm are rarely greater than 3—and as Figure 4.1 shows below, those differences become

very small relative to the overall size of the DICm statistic. In the Poisson simulations, very

good agreement is also achieved at n = 10, and DICm differences are rarely more than 0.5.

Also of interest here is how the BUGS and joint DIC computations compare to the marginal

computations. We are unsurprised to see that both BUGS and joint computation methods

give a higher value for pD than our method, based on our demonstration in Section 3.2.2. Of

perhaps more interest is the behavior we see in D(θ). The model fit value as assessed by this

quantity varies as a function of k and n, as well as varying by computation method. It is not

clear how best to compare D(θ) across computation methods, meaning that while we can in

some sense understand the meaning of the pD differences, we cannot necessarily understand

the D(θ) differences except in the relative sense of how the various criteria perform at a model

selection task. The important feature of these DIC computation methods is how well they

function for model selection, and we cannot understand the differences between them except

in the context of such a task. We return to this question in Section 4.4.4.
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Figure 4.1: Absolute percentage difference in DICm under approximation and quadrature,
relative to quadrature DICm.

Figure 4.1 shows the percentage difference in DICm computations, of the form

∣∣∣∣DICm,A −DICm,QDICm,Q

∣∣∣∣ ∗ 100%,

where DICm,A is DICm computed using our approximation and DICm,Q is DICm computed

using Gaussian quadrature. Note that the percentage difference in the computations gener-

ally decreases as n increases, for all choices of k. From this figure, we can see that for n > 10

with Bernoulli response data, there is less than 0.75% difference in our computations. The

Poisson response data shows even less relative difference in DICm computations, with no ap-

preciable error as early as n = 10. As previously discussed, inconsistencies in the quadrature

computations at n = 5 make it difficult to interpret the differences shown at that level.

8The simulations giving these values were run on home laptop computers. We have no information about
the provenance of this number, but we assume it must have occurred because the laptop running these
simulations suspended the simulation process for around 4 hours and 37 minutes.
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Bernoulli Poisson
k n BUGS Joint Q-50 Appx k n BUGS Joint Q-200 Appx

10

5 15 1 18 1

10

5 67 1 226 2
10 26 1 19 1 10 279 1 227 2
15 67 1 19 1 15 655 1 227 2
25 159 1 18 1 25 2056 1 232 2
50 523 1 19 2

20

5 1121 1 445 3

20

5 53 1 37 2 10 5996 1 451 3
10 99 1 37 2 15 17287 1 170738 3
15 279 1 37 2 25 77155 1 455 4
25 687 1 36 2
50 2336 2 37 3

30

5 123 1 54 2
10 245 1 54 2
15 704 2 54 3
25 1734 2 54 4
50 6863 3 55 6

Table 4.4: Runtimes (in seconds) for DIC approximations. Since joint, quadrature, and
approximation calculations are based on existing MCMC samples, each of these columns
reports the additional time necessary for these calculations after the BUGS runtime has
already elapsed.
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Table 4.4 reports the runtimes of the various DIC calculation methods. Note that the number

of quadrature nodes used for the Bernoulli simulations were Bn = 50, and for the Poisson

we used Bn = 200. These were chosen based on our observations of how many nodes were

required to achieve convergence to the integral in a subset of cases considered. We see

that the joint and approximate marginal calculations execute very quickly, requiring only

one algebraic calculation for each posterior iterate θ(s). The quadrature calculations take

appreciably longer, requiring Bn calculations per posterior iterate. BUGS runtimes are the

longest for each of the scenarios presented, but these runtimes represent a fixed cost. The

joint, quadrature, and approximate marginal calculations all require MCMC output, and

so runtimes listed for them are additional runtimes necessary to get these values once the

MCMC has been completed.

Because of the above results, as well as the necessity to transform g(·) for use with quadrature,

and the longer runtime necessary for quadrature methods, we feel that our method provides

a preferable alternative for marginalization in the REO setting. Implementing it is not

appreciably more difficult, pDm,A and DICm,A are close to pDm,Q and DICm,Q respectively,

and our approximation method takes less time for a computer to execute.

4.4.4 Simulated Stepwise Variable Selection

Our second set of simulations is intended to compare the behavior of an automated model

selection procedure based on a minimum-DIC criterion using DICb, DICj, and DICm as

defined in Section 3.3.1. Table 4.5 presents results for backwards stepwise procedures using

100 simulations of Bernoulli repeated-observations data with k = 20 and n = 15; 100 Bernoulli

simulations with k = 30 and n = 15; 5 Poisson simulations with k = 15 and n = 10; and 8

Poisson simulations with k = 20 and n = 10.

We consider a number of metrics we think users may find useful:
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Pr(Correct) The proportion of times the stepwise procedure includes precisely the vari-

ables in the correct (i.e. generating) model,

Pr(No O-Errors) The proportion of times the procedure includes each variable in the gen-

erating model, regardless of whether other variables are included,

O-Errors The average number of omission errors—how many variables in the gener-

ating model are not included in the final model,

I-Errors The average number of inclusion errors—how many variables not in the

generating model are included in the final model.

GMR What we term the good model rate (GMR) for this problem—the pro-

portion of times the final model includes less than two errors of either

type.

From this table, we observe that DICb and DICm pick the correct model more often than

DICj for the Bernoulli simulations, with DICm correct slightly more often than DICb as

well. In the Poisson simulations, DICj and DICm are about equally successful, and both

are better than DICb—though we must note that computation time for these models was

high, and our results are based on only a small number of simulated stepwise procedures.

Each DIC criterion is likely to lead to a model that includes all the relevant covariates. The

average number of relevant covariates missed is low, regardless of criterion. We find, however,

that the average number of spurious covariates included in the selected model tends to be

lowest across all simulations for DICm. Our criterion, DICm, picks the correct model as or

more often than either DICb or DICj, shows little drop-off in its tendency to pick relevant

covariates, and shows appreciably less tendency to pick spurious covariates.

In assessing overall model quality, we find that the GMR tends to be highest for models cho-

sen using our method. That is, in our simulations where the response-generating covariates
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are known, the DICm criterion is more likely to pick the correct set of covariates than either

competitor criterion, and it is more likely to pick a set of covariates near to the correct set

than either competitor criterion.

4.5 Discussion

Based on the above results, we have argued that our method for marginal approximation in

a GLMM with repeated measures data may be more likely to pick the correct model in an

automated backwards stepwise model selection procedure. We do not think this should sur-

prise our readers. As we discussed in the preceding chapter, when considering mixed models,

the DIC makes the clearest sense when looking at a marginalized model. Standard BUGS

DICs and joint DICs incorporate information on nuisance variables and artificially inflate

the pD component of DIC. Even in small samples, true distributions are well approximated

by our method—both for the joint posterior of θ and γ (Table 4.1), and for the marginal

distribution of y given θ (Tables 4.2 and 4.3).

Still, this method is somewhat limited because it requires us to have repeated exchangeable

observations within each cluster and does not allow us to consider observation-level covari-

ates. We address these issues in the next chapter, by introducing new tools that broaden

our method to be used with all GLMMs.
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Chapter 5

Marginalization for DIC – Part III

In Chapter 3 we introduced the mixed model, discussed three numerical approximation

methods for the DIC (DICj, DICb, and DICm), and presented methods for marginalizing

linear mixed models in the Bayesian setting. In chapter 4, we developed a novel method

for approximate marginalization in repeated exchangeable observations (REO) GLMMs—

GLMMs where only cluster-level covariates are considered. We explained the asymptotic

behavior of our approximation and used simulations to examine its behavior in small samples.

We found that our approximation is fast; gives an approximate joint density that is close to

the true joint density; and results in numerical pDm and DICm approximations that are close

to what we’d expect from other, more computationally intensive marginalization methods.

We also found that, in an automated stepwise variable selection procedure, a criterion based

on our DICm approximation resulted in preferable behavior relative to criteria based on

numerical approximations to DICj and DICb.

Chapter 5 presents a modification of the Chapter 4 method that can be used to approximate

DICm for the general class of GLMMs, not just REO GLMMs. We begin with an explanation

of why our method from Chapter 4 is insufficient to deal with the general case. Development
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of the general approximation method follows, along with a discussion of approximation error

and specific formulas for the Binomial (logistic) and Poisson GLMMs. Our small-sample

simulations focus on the case where a subject-level random effect is modeled, since the class

of GLMMs with such effects is sufficiently broad to be interesting while still computationally

tractable.

5.1 New Considerations

In Section 4.3 we presented a limited marginalization approach based on an approximation

method for use with REO GLMMs. In this section, we discuss the differences between REO

and non-REO GLMMs and explain why our limited approach from Chapter 4 is insufficient

to approximate the joint and marginal densities in non-REO GLMMs.

5.1.1 REO vs. Non-REO GLMMs

Our developments in the last chapter focused on repeated exchangeable observations (REO)

GLMMs. These are GLMMs for which covariate data is constant within clusters. An example

of cluster-level covariate data are long-term demographic information on individuals (e.g.

educational attainment, race, marital status), with those individuals acting as our clusters.

These cluster-level covariates may change over time, but they are often treated as constant

because it is assumed that they won’t change over the course of the study. Because REO

GLMMs include only cluster-level covariates, response values within clusters (e.g. yi1, ..., yin)

can be permuted without changing any aspect of the resulting inference. This is the origin

of the “repeated exchangeable observations” nomenclature.

Methodological work on the special case of REO GLMMs has a long history in statistics.

Breslow and Clayton (1993) discuss the development of frequentist estimation methods in
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this context, mentioning especially the work of Hinde (1982) on the Poisson REO GLMM and

Crouch and Spiegelman (1990) on the binomial REO GLMM. As we discussed in Section

4.3.2, the Poisson and binomial REO GLMMs are equivalent to allowing each Poisson or

binomial observation to have its own random effect. In effect, because sums of independent

Poissons and independent binomials with equal probabilities are also Poisson and binomial,

respectively, we can consider every cluster to have size one. These models allow us to consider

a wide range of possible data, but they do not allow us the ability to consider more complex

structure in the data.

Non-REO GLMMs are those GLMMs for which observations on a cluster cannot be con-

sidered repeated exchangeable observations. These models include covariates whose values

vary within clusters. Since GLMMs are frequently used for longitudinal data analysis where

observations within a cluster are taken at different times, this type of covariate is often called

a time-varying covariate. An example of time-varying covariate data is short-term health

information (e.g. heart rate, blood pressure, blood oxygenation). We expect these covari-

ates to fluctuate over time, and some response measurements may be influenced by those

fluctuations. If response measurements are influenced by these covariates, then the repeated

observations within a cluster cannot be considered exchangeable.

With non-REO GLMMs, we move beyond equivalence to size-one clusters. We can now

consider clusters where observations share some inherent similarity but are not composed

of fully exchangeable observations, as in the case of time-varying covariates or multi-level

clustering.

5.1.2 Why the Limited Approach Fails

Recall that our approximate marginalization method uses a Taylor expansion of the function

g(γi) around some value γ̂i. A second-order Taylor polynomial gives us a quadratic function
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for γi, which can be combined with P (γi | θ) using the complete-the-square formula. Our

objective is to isolate γi in the kernel of a normal density so that it can be easily separated

from the rest of the approximate joint density.

Isolating γi in this way depends on having γi appear only in the quadratic term and in the

remainder. Under Taylor’s theorem, however,

g(γi) = g(γ̂i) + ġ(γ̂i)(γi − γ̂i) +
1

2
g̈(γ̂i)(γi − γ̂i)2 + r(g, γ, γ̂).

We see that γi also appears in the first-order linear term. In the REO GLMM setting, we

can easily choose γ̂i satisfying ġ(γ̂i) = 0, eliminating this term. Elimination of the linear term

is more difficult in the non-REO GLMM setting, as we will now explain.

To understand the difficulty, it is instructive to look at what happens when we attempt to

set ġ(γ̂) = 0 in the binomial-logistic GLMM. We continue to use our earlier notation, but

we now let Xij refer to a row vector from the fixed-effect design matrix associated with

response observation j on unit i. Analogously, Zij will refer to a row vector from the cluster

i submatrix of the random-effect design matrix1.

Under the logistic model, the function g(γi) is given by

g(γi) =

n∑
j=1

(
yij
(
Xijβ + Zijγi

)
−mij log

(
1 + exp

(
Xijβ + Zijγi

)))
.

Then taking a derivative with respect to γi gives

ġ(γi) =

n∑
j=1

Zij

(
yij −mij

exp
(
Xijβ + Zijγi

)
1 + exp

(
Xijβ + Zijγi

)) .
1We hope that this explanation is sufficient for the reader to understand the structure of Zij—but if it is

not, we refer the reader to Section 5.2.1 where our notation is defined in greater detail.
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Setting ġ(γ̂i) = 0 in the context of the previous chapter’s scenario allows for a substantial

simplification. Assume constant covariate values within clusters, namely Xi∗ = Xi1 = ... = Xin

and Zi∗ = Zi1 = ... = Zin. Then setting the above expression to zero and solving, we obtain

expit (Xi∗β + Zi∗γi)mi· = yi·.

Taking the logit function of both sides gives

Xi∗β + Zi∗γi = logit

( yi·
mi·

1− yi·
mi·

)
,

which can be rewritten as

Zi∗γi = logit

(
yi·

mi· − yi·

)
−Xi∗β.

This leads to our development shown in the previous chapter.

If we do not have this simplification, solving for γ̂i is more involved. Instead of the reduced

form above, we need to solve the following equation for γi:

n∑
j=1

mij
exp

(
Xijβ + Zijγi

)
1 + exp

(
Xijβ + Zijγi

) =

n∑
j=1

yij .

This expression involves the sum of many expit functions, each containing γi. The above

approach fails to result in a simple expression. We need to find some other way to obtain γ̂i

satisfying ġ(γ̂i) = 0.

5.2 A General Marginalization Approach

This section presents our general method for approximate marginalization of non-REO

GLMMs, including a discussion of root-finding. We also discuss the amount of approx-
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imation error created through the non-REO GLMM approximation method. Finally, we

present formulas for non-REO GLMM approximation for binomial and Poisson response

data.

5.2.1 Approximate Marginalization through Root-Finding and Tay-

lor Expansion

As discussed in the preceding section, in order to choose γ̂i satisfying ġ(γ̂i) = 0 in the non-

REO setting, it is necessary to use a numerical root-finding method. We choose the Newton-

Rhapson algorithm because of its connection to the iteratively reweighted least squares

method of model fitting for GLMs.

5.2.1.1 The Newton-Rhapson Algorithm

The Newton-Rhapson (NR) algorithm, also known as Newton’s method, is a numerical

method for finding the root of an equation. For our method, we will be concerned with

finding γ̂ satisfying ġ(γ̂) = 0, the conditional maximizer of the g(γ | y, θ) function. For the

exponential family likelihoods we consider, g̈(·) will be strictly negative definite, ensuring

that γ̂ is a maximizer.

As explained in R. R. Christensen (1997), Newton’s method proceeds by taking successive

approximations to the root. Let f(·) be a scalar function for which the root x is desired—

that is, we seek a solution to f(x) = 0. An initial value is chosen, x(0). Then, given x(i), the

algorithm calculates x(i+1) through the formula

x(i+1) = x(i) −
[
ḟ
(
x(i)
)]−1

f
(
x(i)
)
. (5.1)
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This formula is obtained by observing that if x(i) and x(i+1) are close to each other, with

x(i+1)− x(i) = δi, then f
(
x(i+1)

)
will be approximately equal to f

(
x(i)
)

plus δi times the slope

(gradient) of f(·) evaluated at x(i+1). That is,

f
(
x(i+1)

)
.
= f

(
x(i)
)

+ ḟ
(
x(i)
)
δi. (5.2)

Since we are seeking the root of f(·), we set the left hand side of Equation 5.2 equal to 0 and

solve for δi. Then δi = −
[
∂
∂xf

(
x(i)
)]−1

f
(
x(i)
)

is the iterative adjustment we apply to x(i) in

Equation 5.1 above.

Applying this to the problem of root-finding for ġ(·), we add a small step-size adjustment fac-

tor as described by Wolfe (1969). This method, sometimes called relaxed Newton’s method,

is common in vector-valued applications as a way of protecting against “overshooting”. The

iterative equation we use for root-finding is then

γ(i+1) = γ(i) − ζ
[
g̈
(
γ(i)
)]−1

ġ
(
γ(i)
)
, (5.3)

where ζ ∈ (0, 1] is our step-size adjustment factor.

Note that in our setting, this maximization problem can be restated in the form of a GLM

model with an offset. In the next section, we explain this restatement of the problem and

discuss why it is useful to our approximate marginalization method.

5.2.1.2 Newton-Rhapson through iteratively reweighted least squares

R. R. Christensen (1997) points out that fitting a GLM model with iteratively reweighted

least squares (IRLS) is simply an application of the Newton-Rhapson algorithm to maximize

the log-likelihood function for the model parameters. In this section, we explain how this
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applies to our maximization problem. We begin by repeating our notation from previous

chapters for clarity.

Let Y = {Yi} = {yij} be a kn×1 vector of response data on clusters i ∈ {1, ..., k}, with j ∈ {1, ..., n}

observations per cluster. We use a balanced design with common n for all clusters to simplify

some of the following linear algebra, but the results we obtain do not require this balance.

Let β be a p × 1 vector of regression parameters. Let X be the kn × p design matrix for the

regression parameters, Xi be the n× p block of the X matrix corresponding to cluster i, and

Xij be the 1× p row vector corresponding to the jth observation on cluster i.

Let γ =

[
γT1 ... γTk

]T
be a kq× 1 vector of random effects, with γi the q× 1 vector of random

effects corresponding to cluster i. Let Z be the kn× kq block diagonal design matrix for the

random effects. Let Zi be the n × q submatrix of Z corresponding to its ith diagonal block,

and Zij be the 1× q row vector corresponding to the jth row of the Zi matrix.

Let ψ =

[
ψT1 ... ψTk

]T
be the mean of the random effects vector γ, and let Σ be block diagonal

Σi, i ∈ {1, ..., k} be the covariance matrix of the random effects. We assume that γ ∼ Nkq(ψ,Σ),

or equivalently γi
indep∼ Nq(ψi,Σi). We use θ to refer to the collection of parameters {β,ψ,Σ}.

We assume that the elements of Y follow an exponential family distribution with pdf

f(Yi|γi, θ) = h(Yi) exp (g∗(Yi | γi, θ)) .

Although g∗(Yi | γi, θ) is a function of Yi, we treat it as a function of γi. We write

g(γi | Yi, θ) ∝ g∗(Yi | γi, θ).

We further simplify our notation by abbreviating g(γi) ≡ g(γi | Yi, θ). We define g(γ) ≡ g(γ | Y, θ)

analogously relative to the full density f(Y | γ, θ).
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Observe that within a cluster i, finding γ̂i such that ġ(γ̂i) = 0 is equivalent to finding the MLE

for a GLM model for the data Yi where Xiβ is a known offset to the linear term and Ziγi act

as the design matrix and parameter vector for a fixed effects model. It does not make sense

to talk about an “MLE” for our random effects γi, but the γ̂i solution that maximizes g(·) is

precisely the same as what we would obtain as an MLE in this offset fixed effects model.

As an example, consider a binomial GLM for each Yi with covariates Xi and Zi, and known

β. Then

yij
iid∼ Bin

(
mij , pij

)
log

(
pij

1− pij

)
−Xijβ = Zijγi

We have simply changed the link function for logistic model to accommodate a known linear

offset Xijβ for each observation, but we are still in the GLM setting. We are seeking to

maximize the log-likelihood `(γi | Yi, β), where

L(γi | Yi, β) =

n∏
j=1

(
mij

yij

)
expit

(
Xijβ + Zijγi

)yij +
(
1− expit

(
Xijβ + Zijγi

))mij−yij .

NR is a natural choice for finding the γ̂i’s we wish to use. Moreover, because of the IRLS

fitting method used for GLMs and the equivalence between γ̂i and the MLE for the offset

GLM we have discussed, NR estimates can be obtained from any conventional software

that computes MLEs for generalized linear models. Essentially, we are finding γ̂i by using

standard frequentist computational methods.

Other root-finding methods could be used instead of Newton-Rhapson. We prefer the NR

algorithm, however, because IRLS methods are already well known in the GLM setting and

the functionality to compute MLEs for a GLM model with an offset is widely available in

current statistical software packages.
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5.2.1.3 Approximate Joint and Marginal Densities

Having discussed obtaining the γ̂i’s, we now derive the general form of the approximate

marginalization for mixed effects models. Our goal is to approximate g(γ) using Taylor’s

method, and thus to approximate the entire joint pdf f(Y,γ|θ). Observe that since we’ve

assumed (Yi, γi) ⊥⊥ (Yi′ , γi′) when i 6= i′, we can write:

f(Y,γ | θ) =

k∏
i=1

f(Yi, γi | θ)

=

k∏
i=1

f(Yi | γi, θ)f(γi | θ)

=

k∏
i=1

h(Yi) exp (g(γi)) (2π)−q/2|Σi|−1/2
(
−1

2
(γi − ψi)TΣ−1i (γi − ψi)

)

=

k∏
i=1

h(Yi) exp

(
g(γ̂i) + ġ(γ̂i)(γi − γ̂i) +

1

2
(γi − γ̂i)T g̈(γ̂i)(γi − γ̂i) + r(g, γi, γ̂i)

)

× (2π)−q/2|Σi|−1/2 exp

(
−1

2
(γi − ψi)TΣ−1i (γi − ψi)

)

Where γ̂i is the pivot point for the Taylor approximation and r(g, γi, γ̂i) is the remainder term

after a second-order Taylor approximation to g(γi). Then, we can apply Proposition 3.1, the
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matrix complete-the-square formula, to combine the quadratic terms for γi. Applying this

formula to our expression for f(Y,γ | θ) gives:

f(Y,γ|θ) =

k∏
i=1

h(Yi)

(2π)q/2
|Σi|−1/2 exp (g(γ̂i) + ġ(γ̂i)(γi − γ̂i) + r(g, γi, γ̂i))

× exp

(
−1

2
(γ̂i − ψi)T (−g̈(γ̂i))

(
Σ−1i − g̈(γ̂i)

)−1
Σ−1i (γ̂i − ψi)

)
× exp

(
−1

2
(γi − γ∗i )T

(
Σ−1i − g̈(γ̂i)

)
(γi − γ∗i )

)
(5.4)

We highlight two considerations from Equation (5.4) before moving forward.

First, note that the product −g̈(γ̂i)
(

Σ−1i − g̈(γ̂i)
)−1

Σ−1i simplifies to −g̈(γ̂i)
(
Iq − Σig̈(γ̂i)

)−1. Ad-

ditionally, if g̈(γ̂i) is invertible, this simplifies further to (Σi−g̈(γ̂i)
−1)−1. The first simplification

can be useful for numerical calculations, since it only involves one matrix inversion. The sec-

ond simplification helps us understand better what this term represents. This is (the inverse

of) the sum of the covariance matrix for γi and—when γ̂i is considered as an MLE to the

regression parameters from the offset GLM, as described in Section 5.2.1.1—the asymptotic

variance estimate for γ̂i.

Finally, recognize that the final line of Equation (5.4) is the kernel of a multivariate normal

distribution for γi with covariance matrix
(

Σ−1i − g̈(γ̂i)
)−1

and mean vector

γ∗i = −g̈(γ̂i)
(

Σ−1i − g̈(γ̂i)
)−1

γ̂i +
(
Iq − g̈(γ̂i)Σi

)−1
ψi.

Then define:
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f̂(γi | Yi, θ) = (2π)−q/2|Σ−1i − g̈(γ̂i)|1/2 exp

(
−1

2
(γi − γ∗i )T

(
Σ−1i − g̈(γ̂i)

)
(γi − γ∗i )

)
f̂(Yi | θ) = h(Yi)|Σi|−1/2|Σ−1i − g̈(γ̂i)|−1/2 exp

(
g(γ̂i) +

1

2
(γ̂i − ψi)T g̈(γ̂i)

(
Iq − Σig̈(γ̂i)

)−1
(γ̂i − ψi)

)
f̂(Yi, γi | θ) = f̂(γi|Yi, θ)f̂(Yi|θ)

and observe that

f(Y,γ | θ) =

k∏
i=1

f̂(γi | Yi, θ)f̂(Yi | θ) exp (ġ(γ̂i)(γi − γ̂i) + r(γi, γ̂i)) .

Then clearly, since f̂(γi | Yi, θ) has the form of a proper density, if ġ(γ̂i)(γi − γ̂i) + r(γi, γ̂i) is

zero or near-zero, f̂(Yi | θ) can act as an approximation to the difficult-to-find true marginal

density f(Yi|θ).

5.2.2 The Binomial and Poisson Approximations

In this subsection, we give precise specifications of key results from Section 5.2.1 as they

pertain to the binomial and Poisson GLMMs.

5.2.2.1 Binomial Data

In the binomial model, we follow the same notation and assumptions outlined above. Crit-

ically, assume that clusters are independent, but observations within a cluster share a de-
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pendence structure modeled by the random effects terms Ziγi. Let

yij ∼ Bin
(
mij , pij

)
,

pij =
exp

(
Xijβ + Zijγi

)
1 + exp

(
Xijβ + Zijγi

) ,
γi ∼ Nq(ψi,Σi).

Then we can write the principal elements of our approximation as

h(Yi) =

n∏
j=1

(
mij

yij

)
,

g(γi) =

n∑
j=1

(
yij(Xijβ + Zijγi)−mij log

(
1 + exp

(
Xijβ + Zijγi

)))
,

g̈(γi) = −ZTi VBi
Zi,

where VBi
is the diagonal matrix of binomial variances for each observation, mijpij(1 − pij).

With t an n×1 vector, we use the matrix notation D(t) to refer to the n×n diagonal matrix with

the elements of t on the diagonal. Then VBi
= D(Mi)D(Pi)(In−D(Pi)), where Mi = {mi1, ...,min}

and Pi = {pi1, ..., pin}.

This results in an approximate marginal pdf for Yi given θ in the Binomial case of

f̂(Yi|θ) = h(Yi)|Σi|−1/2|Σ−1i − g̈(γ̂i)|−1/2 exp

(
g(γ̂i) +

1

2
(γ̂i − ψi)T − g̈(γ̂i)

(
Iq − Σig̈(γ̂i)

)−1
(γ̂i − ψi)

)

=

 n∏
j=1

(
mij

yij

) |Σi|−1/2 ∣∣∣Σ−1i + ZTi V̂Bi
Zi

∣∣∣−1/2

× exp

 n∑
j=1

(
yij(Xijβ + Zij γ̂i)−mij log

(
1 + exp

(
Xijβ + Zij γ̂i

)))
× exp

(
−1

2
(γ̂i − ψi)TZTi V̂Bi

Zi

(
Iq + ΣiZ

T
i V̂Bi

Zi

)−1
(γ̂i − ψi)

)
,
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where V̂Bi
= D(Mi)D(P̂i)(In −D(P̂i)) and

P̂i = {p̂i1, ..., p̂in} =

{
exp (Xi1β + Zi1γ̂i)

1 + exp (Xi1β + Zi1γ̂i)
, ...,

exp (Xinβ + Zinγ̂i)

1 + exp (Xinβ + Zinγ̂i)

}
.

5.2.2.2 Poisson Data

Next consider the Poisson model. We use the above notation and assume independence

between clusters and structured dependence within clusters. Let

yij ∼ Pois
(
mijλij

)
,

λij = exp
(
Xijβ + Zijγi

)
,

γi ∼ Nq(ψi,Σi).

Under the Poisson model, this gives

h(Yi) =

n∏
j=1

m
yij
ij

yij !
,

g(γi) =

n∑
j=1

(
yij(Xijβ + Zijγi)−mij exp(Xijβ + Zijγi)

)
,

g̈(γi) = −ZTi VPi
Zi,

where VPi
= D(Mi)D(λi). Mi is defined as for the binomial, and λi = {λi1, ..., λin}.

Then we have an approximate marginal pdf for Yi given θ in the Poisson case,
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f̂(Yi|θ) = h(Yi)|Σi|−1/2|Σ−1i − g̈(γ̂i)|−1/2 exp

(
g(γ̂i) +

1

2
(γ̂i − ψi)T g̈(γ̂i)

(
Iq − Σig̈(γ̂i)

)−1
(γ̂i − ψi)

)

=

 n∏
j=1

m
yij
ij

yij !

 |Σi|−1/2 ∣∣∣Σ−1i + ZTi V̂Pi
Zi

∣∣∣−1/2

× exp

 n∑
j=1

(
yij(Xijβ + Zij γ̂i)−mij exp

(
Xijβ + Zij γ̂i

))
× exp

(
−1

2
(γ̂i − ψi)TZTi V̂Pi

Zi

(
Iq + ΣiZ

T
i V̂Pi

Zi

)−1
(γ̂i − ψi)

)
,

where V̂Pi
= D(Mi)D(λ̂i) and

λ̂i = {λ̂i1, ..., λ̂in} = {exp (Xi1β + Zi1γ̂i) , ..., exp (Xinβ + Zinγ̂i)} .

5.3 Simulation Results

In this section, we present small-sample simulation results for our marginal approximation.

We begin by describing our simulation procedures in detail. We then report results on

approximation error for the joint distribution and for the marginal DIC calculations. Fi-

nally, we present results for a simulated variable selection task using a minimum DIC model

selection criterion based on DICb, DICj, and DICb.

5.3.1 Description of Simulation Procedures

As in the previous chapter, we conducted two sets of simulations to test our method.

These correspond directly to the methods detailed in the previous chapter: the first assesses

marginalization accuracy in the general setting, when both NR and Taylor approximation

methods are being used; and the second examines the behavior of the method in a variable
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selection task like the one presented in Chapter 4. The simulation examples detailed below

are for models of the form

yij |Xij , γi
iid∼ exponential family

E
[
yij
]

= µij

q(µij) = Xijβ + γi

γi
iid∼ N(0, σ2).

This is the prototypical longitudinal GLMM with time-varying2 covariates and a single clus-

ter effect. In Chapter 6, we will discuss extensions of this work to look at how our approxi-

mation fares when multiple random effects are used in a model.

In the first simulation set, data were again generated under a range of choices for k (number

of observational units) and n (number of observations per unit). For a given k, a set of γ∗’s

were sampled from the quantiles of a standard normal distribution according to the scheme

γ∗i = Φ−1
(

2i− 1

2k

)
, i ∈ {1, ..., k}.

Under the binomial scenario, we used γi = γ∗i ; while under the Poisson scenario, γi = γ∗i /2.

This was done because responses from the Poisson model are more sensitive to perturbations

in the linear term Xijβ+Zijγi than responses from the binomial model due to the exponential

link function.

The covariate matrix X consisted of two columns—the first a column of ones, and the second

a vector of time-varying covariates. For each cluster, values of the second covariate were

obtained using a random walk with random bias. Figure 5.1 displays time-varying covariates

generated under our method with n = 20 observations for four example individuals.

2We use the term time-varying to mean any covariates that change between observations taken on the same
cluster, though we acknowledge that such changes do not always involve a difference in time of observation.
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Figure 5.1: Example time-varying covariate data generated for four individuals with n = 20

observations, under the random walk simulation scheme described in this section.

Formally we denote as xi,j,l the lth covariate measured on the jth observation from the ith

cluster. Then xi,j,1 ≡ 1 ∀ i, j, as described.

For each cluster i, an initial value of the second covariate xi,1,2 was randomly selected from

the quantiles of a N
(
0, σ20

)
distribution. Then a random walk was used to obtain the remaining

xi,1,2 values, where

xi,j,2 = xi,j−1,2 + eij j ∈ {2, ..., n},

where eij ∼ N
(
si, σ

2
e

)
are the steps of the random walk and si ∼ N

(
0, σ2s

)
is the random bias

for cluster i. Values of si and eij were all chosen using the quantile sampling method and

permuted into random order using a known random seed that changed for each simulation.

Values of σ20, σ2s , and σ2e were chosen to give xi,j,2 a total sample variance near 1.

We then generated response data, y. For Bernoulli simulations yij values were randomly

sampled from the corresponding Bern
(
pij
)

distributions, with pij = expit
(
β1 + xi,j,2β2 + γi

)
and
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(β1, β2) = (0, 1). For Poisson simulations yij’s were generated from Pois
(
λij
)

distributions, with

λij = exp(β1 + xi,j,2β2 + γi) and (β1, β2) = (3, 1/4).

For each choice of k and n, data were simulated with random seeds selected by the authors

for repeatability. A proportion of simulations failed due to extreme response data3 and

numerical instabilities in NR calculations. We present the number of successful simulations

on which summary statistics are based in Table 5.1 below. Full results for these simulations

are presented in Sections 5.3.2 and 5.3.3.

The second simulation set assesses automated model selection behavior. It is conducted in

a similar fashion to the one from Chapter 4. We chose distinct (k, n) combinations based

on what real-world data sets might look like; computational feasibility for repeated MCMC

sampling; and our beliefs about how large n would need to be in order to obtain reasonable

inferences for the model parameters. Automated model selection simulations were performed

for five-trial binomial response data with (k = 15, n = 20) and (k = 20, n = 10); and for Poisson

response data with (k = 15, n = 10) and (k = 20, n = 5).

For each simulation run, we created a design matrix including five covariates and an in-

tercept: call them {x1, x2, x3, x4, x5, x6}. On the Binomial simulations, we again chose β =

[ 1/2 1 1/2 0 0 0 ]T ; and on the Poisson simulations, we chose β = [ 2 1/2
1/4 0 0 0 ]T .

Covariate data were generated as a mix of cluster-level and observation-level variables.

Specifically, x1 was a column of 1’s; x2 and x4 were cluster-level covariates chosen from

quantiles of the N(0, 1) distribution; and x3, x5, and x6 were time-varying covariates gener-

ated using the profile method discussed above. For the binomial response data, γis were

generated from a N(0, 1) distribution, while under the Poisson scenario they came from a

N
(
0, 1/4

)
distribution. Response data were generated randomly according to Bernoulli and

3We refer to entire clusters where (binomial) every observation was a failure, or where every observation
was a success, or (Poisson) where no events were observed. This problem becomes more severe as k increases,
because there are more clusters in which extreme response data can occur.
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Poisson distributions. As before, data were simulated with a new deterministic random seed

in each simulation, to ensure that we obtained new-but-repeatable datasets each time.

Once the data were generated in each simulation, OpenBUGS was used to obtain posterior

samples for θ and γ under the full model where all covariates were included, as well as a DICb

score for that model. Based on these posterior samples, joint and marginal DICs were then

computed in R.

We performed a backwards stepwise procedure using DICb as a selection criterion. Beginning

with the full model, at each step DICb scores were obtained from OpenBUGS for the current

model and for each model where one covariate was removed4. The model with the smallest

DICb was selected as a new current model, the associated covariate removed, and this process

was repeated. The stepwise procedure was stopped when either the DIC for all reduced

models exceeded the DIC of the current model, or when we reached a model containing

only the intercept term. We logged the order of removal, the final model selected, and

posterior means and standard deviations on the β coefficients for the final model. Then

we performed the same procedure, beginning again from the full model, using a numerical

approximation to DICj as a selection criterion. Finally, we performed the same procedure

with our approximation to DICm as a selection criterion. Results for the automated model

selection simulation are presented in Section 5.3.4.

All Bernoulli simulations and the first set of Poisson simulations were performed on a single

chain, each with a burn-in period of 1000 iterations and 5000 iterations included in the

posterior sample. Chains were thinned by a factor of dn/10e (for Bernoulli) or n (for Poisson)

to reduce autocorrelation. This was done because our DIC methods rely on performing

computations on each of the posterior iterates, so having more posterior iterates during these

computations incurs a greater computational cost. Thinning allows us to use fewer, more

4We only considered the removal of x2 through x6. The intercept analogue covariate, x1, was forced into
each model.
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nearly independent iterates for these computations and improves our overall computational

efficiency. We examined the convergence of three chains on a subset of the simulations we

performed (2-3 combinations of k and n for each of the Bernoulli and Poisson schemes). Our

thinning factor and number of burn-in iterations were chosen to ensure good convergence

properties, based on the simulations examined.

All simulations were performed on a Linux server using OpenBUGS 3.2.3.

5.3.2 Pseudo-KL results

Table 5.1 displays pseudo-Kullback-Leibler information, as defined in the previous chapter,

on the approximation accuracy of our method when time-varying covariates are included.

Despite the addition of a new source of approximation error, the Newton-Rhapson root-

finding step necessary to compute γ̂, we see that pKL and relative pKL remain very small.

Bernoulli Poisson

2pKL/
D(θ)j

2pKL/
D(θ)jk n m pKL Sims k n pKL Sims

10

5 5 0.544 0.67% 43
10

5 0.149 0.10% 11
5 20 0.192 0.17% 95 25 0.067 0.01% 11
25 1 0.381 0.24% 31

30
5 0.291 0.06% 10

25 5 0.164 0.05% 94 25 0.127 0.01% 10
25 20 0.080 0.02% 95

30

5 5 1.352 0.57% 32
5 20 0.492 0.14% 93
25 1 1.670 0.36% 24
25 5 0.429 0.04% 90
25 20 0.170 0.01% 94

Table 5.1: Pseudo-Kullback-Leibler divergences between f(γ,θ|Y) and f̂(γ,θ|Y), for simulated
binomial and Poisson response data. The simulations column gives the number of successful
simulations from which means of these values were computed.

Within the binomial simulations, we see that approximation error decreases as the number of

observations per unit (n) increases. Similarly, as the number of binomial trials per observation
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(m) increases, the approximation error decreases. Few simulations were successful with

n = 25, m = 1 cases. This appears to relate to numerical singularities that occur if there

exists p̂ij very near zero or one. Essentially, this means that marginalization can fail when

response data do not include enough information about both successes and failures for each

individual.

In the binomial simulations, we do not see an appreciable change in pKL as k increases. The

table shows that pKL increases in absolute terms, but relative pKL tends to remain similar

except in the n = 25, m = 1 case where our simulation data are sparse.

The Poisson simulations we report have m = 1 only. This is because of the role m, the

adjustment factor for the Poisson observational window size, plays in the likelihood equations.

Whereas the shape of the distribution changes with m in the binomial response setting, in

the Poisson setting m acts as a constant adjustment factor and is not of interest in examining

approximation accuracy.

Among the Poisson simulations, we see similar results to those discussed above. Increasing n

reduces pKL, in both absolute and relative terms. Increasing k increases pKL, but appears

to have little effect on relative pKL. An extremely small number of Poisson simulations

are unsuccessful compared with the binomial response simulations—computation only failed

once, out of all the Poisson simulations we attempted in this simulation set.

5.3.3 Comparing the Approximation to Numerical Integration

For each of the scenarios presented in Table 5.1, Table 5.2 displays the average values of

OpenBUGS DICb computations, our numerical approximations to DICj, and our approxi-

mating computation to DICm under both quadrature and our approximation method. Once

again, both Gauss-Legendre and Gauss-Hermite quadrature were examined initially to assess
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the number of nodes needed for convergence. Results presented below are for Gauss-Legendre

quadrature, both for the binomial and the Poisson simulations. For the binomial simulations,

100 quadrature nodes were used for marginalization; and for the Poisson simulations, 200

were used. See the preceding chapter for further discussion of Gaussian quadrature and its

application to GLMM marginalization.

Once again, we see that pDm and D(θ)m are very similar, whether computed using quadrature

or using our approximation. And again, we see clear differences between these quantities,

and BUGS and joint computations. There are surprising differences between computations

for our approximation and for quadrature in the Binomial n = 25, m = 20 cases; but we note

that these differences again appear to be due to a change in the quadrature calculations.

Our approximations to pDm are relatively stable across all simulation designs, but quadrature

approximations to pDm look very different in the Binomial n = 25, m = 20 simulations. We

believe this is because of the choice of quadrature nodes, and because of the shape of the

functions being numerically integrated. If not enough nodes are chosen and a function is very

spiky, it is possible for the grid of quadrature nodes to miss the spike and fail to include the

most important part of the distribution in their weighted averaging. Note that we do not

observe these quadrature-approximation differences in our calculations of D(θ), indicating

that they are specific to the calculation of D(θ̂), not the average of D
(
θ(s)

)
’s for the posterior

iterates. Here, the D(θ̂) function specifically is failing to be well-covered by our quadrature

grid.

Obviously this issue is correctable by taking a larger grid, but we leave these points of

disagreement in our work for pedagogical purposes. The three main difficulties of quadrature

marginalization are the time quadrature takes, the functional transformations necessary to

use quadrature approaches, and picking a sufficiently dense grid of quadrature nodes. This

final issue complicates the use of quadrature for GLMM marginalization because the number
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of nodes necessary for correct computation depends on the dataset being analyzed and cannot

be chosen in an ad hoc manner.

Results relative to DICb and DICj computations are much as we saw in the preceding chapter.

We recognize that pD is smaller for the marginal computation methods than for either the

BUGS or joint computations. There is no clear relationship between D(θ) under the BUGS,

joint, and marginal computation methods. We will need to turn our attention to a model

selection task to better understand how these criteria behave relative to one another.

Bernoulli Poisson
k n m BUGS Joint Q-100 Appx k n BUGS Joint Q-200 Appx

10

5 5 7 1 342 17
10

5 22 3 921 12
5 20 6 1 343 11 25 891 11 983 60
25 1 75 1 378 70

30
5 1329 8 2745 68

25 5 76 1 378 58 25 118343 33 2875 1002
25 20 76 2 379 53

30

5 5 51 2 1014 139
5 20 51 2 1005 71
25 1 663 3 1128 3167
25 5 674 3 1124 1252
25 20 683 4 1119 1039

Table 5.3: Runtimes (in seconds) for DIC calculations. Since joint, quadrature, and approxi-
mation calculations are based on existing MCMC samples, each of these columns reports the
additional time necessary for these calculations after the BUGS runtime has already elapsed.

Table 5.3 reports the runtimes of the various DIC computation methods. The number of

quadrature nodes used for the Bernoulli simulations were Bn = 100, and for the Poisson we

used Bn = 200. The joint computations execute very quickly, requiring only one algebraic

computation for each posterior iterate θ(s). The quadrature computations take appreciably

longer, requiring Bn computations per posterior iterate. In contrast to Table 4.4, we find

that the approximate marginal computations take considerably longer than the joint com-

putations here, although they are still shorter than the quadrature computations in nearly

every case. The increased runtimes for the approximate marginal computations are caused

by the addition of the Newton-Rhapson root-finding step, which must be performed for ev-
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ery posterior iterate θ(s). In most cases, this is still faster than performing quadrature’s Bn

computations per posterior iterate. Runtimes for the approximate marginal computations in

the k = 30, n = 25,m = 1 case are especially long, however. These suggest issues in our imple-

mentation of the Newton-Rhapson algorithm, though more investigation is needed. We do

not believe our implementation is especially efficient, and we expect there is room for future

research on speeding up our marginal computations.

BUGS runtimes here tend to be shorter than quadrature computations in the binomial case,

but longer in the Poisson case. We expect the long Poisson runtimes for BUGS to be an effect

of our thinning of the posterior iterates to deal with very strong autocorrelation. We remind

the reader that we choose to thin our posterior samples because all numerical approximation

methods to DICj and DICm require us to perform computations involving each posterior

iterate. The computational cost of approximating DIC on unthinned, highly autocorrelated

posterior observations can be extreme. We, therefore, need to run many more iterations

of a Gibbs sampler on the Poisson to reach our desired Bt = 5000 samples. Since thinning

ratios are smaller for the Binomial, less iterations (and less computational time) is required

to reach 5000 posterior samples.

We believe adopting a centering parametrization for these models, as discussed in Section

4.1.1, may result in posterior sampling that requires less thinning. This would reduce the

BUGS runtimes and allow for further analysis of the behavior of the various numerical

approximation methods for DIC in the Poisson setting.

As in the previous chapter, the results presented above make the case for why we consider

our marginal approximation superior to an approach like Gaussian quadrature. We have

provided a closed-form expression for an approximate marginal density of the GLMM. This

approximate marginal density can be used in DICm computations and gives very similar

results to those obtained with quadrature methods, while not requiring evaluation over a

grid of points of unknown size. We also find that our approximation method generally take
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considerably less time to run than quadrature, despite the inclusion of a Newton-Rhapson

step to find γ̂.

5.3.4 Simulated Stepwise Variable Selection

Results from our simulated stepwise variable selection task are presented in Table 5.3. The

list of criteria we consider for assessing the results of the stepwise algorithm are the same

as those used in the preceding chapter: proportion of times the correct model is chosen,

proportion of times no omission errors are committed, average number of omission errors,

average number of inclusion errors, and our good model rate (GMR).

As before, we see that across nearly every metric, model selection by DICm outperforms

selection by DICb or DICj. An interesting point to note, however, is that the BUGS DIC

performs consistently worse than even the joint-distribution DIC when considering mixed

effects models with random subject effects and time-varying covariates. We are not sure what

causes this discrepancy—as previously discussed, we are not able to examine the technical

details of OpenBUGS’s DIC calculation algorithm—but the rate at which stepwise-by-DICb

commits both omission and inclusion errors is surprising, when compared to the alternatives

we considered.

5.4 Discussion

In this chapter, we have discussed the difference between REO and non-REO GLMMs and

explained why the approximate marginalization developed in Chapter 4 is inappropriate

for use with non-REO GLMMs. We have shown how the addition of a Newton-Rhapson

step, equivalent to IRLS estimation of a generalized linear model with offset, allows us to

extend our method to non-REO GLMMs. Section 5.2 presents computational formulas for
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an approximate marginal density in the logistic and Poisson GLMM settings, as well as a

general expression that can be used for other GLMMs. A simulation-based small sample

analysis in a common setting, the longitudinal model with time-varying covariates, has been

provided.

The next chapter will propose a number of extensions to this research that we plan to pursue

after the dissertation. We believe the approximate marginalization method we’ve developed

for DICm has considerable potential for broader application in the area of longitudinal and

hierarchical modeling.
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Chapter 6

Future Directions

This brings us to the conclusion of the dissertation. In Chapter 1, we introduced our philos-

ophy of statistics and the major themes of the dissertation. Chapter 2 presented previously

published material on an application of mixed modeling in environmental epidemiology, as

well as methodological work we undertook for that project. Chapters 3 through 5 examined

the use of the deviance information criterion (DIC) in mixed models. We began with a dis-

cussion of information criteria for model selection and proceeded to discuss how marginal-

ization affects the DIC and why we think the marginal DIC, DICm, is the quantity that

should be considered for selection in mixed models. In Chapter 3, we provided two equiva-

lent marginal expressions for the linear mixed model, the second arising from an application

of the complete-the-square method. In Chapter 4, we used Taylor’s theorem to develop an

approximation to the marginal density for generalized linear mixed models (GLMMs) with

repeated exchangeable observations (REO) and proved that our approximation converges

almost surely to the true marginal density. Chapter 5 extended this method to a larger

class of GLMMs by showing how root-finding methods could be incorporated to obtain the

necessary pivots for Taylor’s theorem.
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In this chapter, we discuss our plans for future research on these topics.

6.1 Future Research on Missing Data Methods

In our work with Dr. Ulrike Luderer examining the effect of environmental pollutants on

the human menstrual cycle, discussed in Chapter 2, we were unable to examine one of the

response variables of interest: ovulation. This is a particularly interesting missing data

problem we intend to return to after the dissertation. Ovulation status in these data is

assessed based on monthly hormone profiles. If an “LH surge”—a one-day-long spike in

luteinizing hormone levels—is observed, we determine that ovulation occurred. If such a

surge is not observed, the question of ovulation status is more complicated.

Failing to observe an LH surge can happen in two ways: (1) an LH surge did not occur during

a given menstrual cycle, or (2) an LH surge occurred but data were not collected on the day

it occurred. Few of the cycles in our dataset have LH data for every day1 during that cycle.

“Successes” (cycles in which ovulation occurred) in our dataset are clear. “Failures” (cycles

in which ovulation did not occur) are hard to distinguish from cycles in which ovulation

occurred but was not observed. This is an example of missing not at random (MNAR) data.

Ovulation status in these data can be viewed as trinomial response data, with individual

cycles being classified as ovulatory, anovulatory, or unknown. Some cycles are clearly anovu-

latory: if data are available for every day of a menstrual cycle and no LH surge is detected,

we can reasonably state that ovulation did not occur. Some cycles are clearly unknown:

if data were not collected on any day in the cycle, we can know nothing about whether

ovulation occurred. Most cycles where ovulation isn’t observed are hard to classify: we have

seen that the LH surge did not happen on many days during the cycle, but we are missing

data on a few days and cannot conclusively state that the cycle is anovulatory.

1During the follicular phase. Refer back to Section 2.X for a discussion of data-gathering procedures.
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Bayesian methods work well for data of this sort, allowing us to probabilistically model

whether each cycle should be classified as ovulatory, anovulatory, or unknown. This approach

will let us address the question of whether environmental pollutants affect the probability of

ovulation in humans, an important contribution to the emerging literature on environmental

effects on fertility.

6.2 Future Research on GLMM Marginalization

Below, we detail areas for continued research based on our approximate marginalization

method for GLMMs. The first two areas deal with technical aspects of our method and its

implementation in computer software. The latter two extend the work in this dissertation

to more general models than we have yet been able to consider.

6.2.1 Properties of the Marginal Approximation

As we discuss briefly in Chapter 4, Cai and Dunson (2006) have also provided an approxi-

mation to the marginal distribution for GLMMs, using some of the same tools as us. It is

not clear how their approximation compares to ours. We believe both should be similarly

accurate, although ours provides a more concise approximate expression. We intend to fur-

ther investigate how these two approximations compare, both mathematically and through

simulation.

Further, as discussed in the appendix, we have proven a proposition about the integrability of

our marginal approximation, f̂(y | θ). This result, Proposition A.1, establishes that if a certain

expectation related to the Taylor remainder exists, our approximations will be integrable.

We know they are integrable at the limit because of Proposition 4.1, which establishes that

our joint approximation converges almost surely to the true joint density f(y, γ | θ) in the
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REO case, when γ̂
a.s.−→ γ. Thus far, Proposition A.1 has not been enough to allow us to state

definitively that our small-sample marginal approximations are integrable—but if further

research lets us establish this, we believe we can use our marginal approximation to define

a closed-form approximate marginal distribution for REO GLMMs (where γ̂ is an analytic

function of the data), and possibly to define useful approximate marginal distributions for

non-REO GLMMs as well. We also plan to prove the comparable result to Proposition 4.1

for the marginal approximation used in Chapter 5, where γ̂ is obtained by approximation

and convergence is more nuanced.

6.2.2 Methods for Achieving Greater Computational Efficiency

Simulations presented in Chapter 5 of this dissertation use a basic Newton-Rhapson function

coded by the author based on convenience and not computational efficiency. Although

the computational time required by our method was generally shorter than the quadrature

alternative presented, we expect that this time can be substantially reduced. Two strategies

for this are particularly promising.

The first is to use one-step or two-step Newton-Rhapson rather than the method we imple-

mented, which iterated until either our iterated approximation to γ converged (||γ[i]−γ[i−1]|| <

10−8) or 30 steps were completed without convergence. Our NR algorithm benefits from hav-

ing good initial values in the Bayesian setting: when we calculate γ̂(s) for some θ(s) sampled

from the posterior, it is reasonable to start our Newton-Rhapson algorithm from γ(s), the

sampled posterior value associated with θ(s). Because we have good initial guesses through

our posterior sample, it may be possible to use only one or two steps of the NR algorithm and

still be accurate. A one-step or two-step algorithm would greatly reduce the computational

burden of the method, and may still result in γ̂ satisfying ġ(γ̂)
.
= 0, close enough that our

approximation works well. Other initial values will also be investigated.
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The second promising strategy, discussed in Section 5.2.1.2 but not yet implemented for

our simulations, is to use the equivalence of our root-finding problem and existing methods

for maximum likelihood estimation in a generalized linear model (GLM) with an Xβ offset.

There are two major advantages to this strategy. First, it takes advantage of well developed

computational methods for improving GLM-fitting. Second, it simplifies obtaining the γ̂’s

for our non-REO GLMM approximation. If these values can be obtained existing statistical

software, our method will be easier for broad scientific use.

6.2.3 Small-Sample Results When q > 1

In Chapter 5, we developed an approximate marginalization method for GLMMs that permits

multiple random effects—that is, the random effects vector for cluster i, γi, is a random vector

of length q. To date, our simulation work (Sections 4.4 and 5.3) has only involved adding

time-varying covariates, not multivariate random effects. This is the first intended extension

of our method.

Multivariate random effects can take many forms. The two most common are random

slope models and multi-level mixed effects models, where more than one type of clustering is

present in the dataset. Approximate marginalization of random slope models is necessarily an

extension of our non-REO GLMM method from Chapter 5, since random slopes presuppose

time-varying covariates. Multi-level mixed effects models, however, may still permit us to

use our REO GLMM marginalization method. We have begun working on this problem, but

further investigation is necessary. Below, we provide some initial notes on the marginalization

of nested multi-level random effects based on Thurmond et al. (2005)’s cow abortion dataset.

This dataset assumes that the probability of a cow having an abortion (miscarriage) during

a given pregnancy involves both a herd-level and a cow-level random effect.
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Similar to before, let Y = {Yi : i ∈ 1, ..., I} be our response data, consisting of Bernoulli random

variables indicating whether a given pregnancy ended in abortion2. Here Yi is a vector of

such observations on the entire herd i. Within each herd we assume that there are Ji cows

and we write the vector Yij to represent repeated responses in time on cow j in herd i. We

assume that there are Kij pregnancies on cow j in herd i, and that yijk denotes whether

pregnancy k on cow j in herd i ended in abortion.

A simple model for these data can be written as

yijk ∼ Bern
(
pij
)

logit
(
pij
)

= µ+ γi + ηij

γi
iid∼ N

(
0, σ2h

)
ηij

iid∼ N
(

0, σ2c

)
,

where γi is the random effect for herd i and ηij is the random effect for cow j in herd i.

We use θ to represent the parameter vector {µ, σ2h, σ
2
c}. We use γ and η to represent the full

vectors of herd and cow random effects respectively. We ignore time dependent covariates

for this present development, though we will include them in the later research.

Then the joint density for these data, conditional on the parameters and the random effects,

is

f(Y | γ,η, θ) =

I∏
i=1

Ji∏
j=1

Kij∏
k=1

[(
exp(µ+ γi + ηij)

1 + exp(µ+ γi + ηij)

)yijk ( 1

1 + exp(µ+ γi + ηij)

)1−yijk
]

=

I∏
i=1

Ji∏
j=1

Kij∏
k=1

[
exp(µ+ γi + ηij)

yijk

(
1

1 + exp(µ+ γi + ηij)

)]

= exp

 I∑
i=1

Ji∑
j=1

Kij∑
k=1

(
yijk(µ+ γi + ηij)− log

(
1 + exp(µ+ γi + ηij)

)) .
2We now adopt the convention that i runs from 1 to I, because we want to make k available for another

level of indexing on our data. We similarly change index bounds for j.
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For a given herd i, we write our g(·) function as

g(γi, ηi1, ..., ηiJi) =

Ji∑
j=1

Kij∑
k=1

(
yijk(µ+ γi + ηij)− log

(
1 + exp(µ+ γi + ηij)

))
=

Ji∑
j=1

(
yij·(µ+ γi + ηij)−Kij log

(
1 + exp(µ+ γi + ηij)

))
.

where yij· =
∑
k yijk.

In order to use our approximation to the marginal density, then, we need to find γ̂i, η̂i1, ..., η̂iJi

satisfying ġ(γ̂i, η̂i1, ..., η̂iJi) = 0. This means solving the for the simultaneous roots of the system

of equations

∂

∂γi
g(γi, ηi1, ..., ηiJi) = yi·· −

Ji∑
j=1

Kij
exp(µ+ γi + ηij)

1 + exp(µ+ γi + ηij)
= 0

∂

∂ηi1
g(γi, ηi1, ..., ηiJi) = yi1· −Ki1

exp(µ+ γi + ηi1)

1 + exp(µ+ γi + ηi1)
= 0

...

∂

∂ηiJi
g(γi, ηi1, ..., ηiJi) = yiJi· −KiJi

exp(µ+ γi + ηiJi)

1 + exp(µ+ γi + ηiJi)
= 0.

We show below that a set of simultaneous roots are obtained with the expressions

γ̂i = c− µ and η̂ij = log

(
yij·

Kij − yij·

)
− c,

where c is an arbitrary constant. Note that log
(
yij·/(Kij−yij·)

)
is the sample log odds for

abortions in cow j of herd i. We prefer to choose

c = log

(
yi··

JiKi − yi··

)
,

because this is our usual choice for γ̂i when the cow-level random effects, ηij, are ignored.

This is the sample log odds for abortions in all cows of herd i.
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Then ∂
∂γi

g(γ̂i, η̂i1, ..., η̂iJi) is equal to zero because

∂

∂γi
g(γ̂i, η̂i1, ..., η̂iJi) = yi·· −

Ji∑
j=1

Kij
exp(µ+ γ̂i + η̂ij)

1 + exp(µ+ γ̂i + η̂ij)

= yi·· −
Ji∑
j=1

Kij
exp

(
log
(

yij·
Kij−yij·

))
1 + exp

(
log
(

yij·
Kij−yij·

))
= yi·· −

Ji∑
j=1

Kij

(
yij·

Kij−yij·

)
1 +

(
yij·

Kij−yij·

)
= yi·· −

Ji∑
j=1

Kij

(
yij·

Kij−yij·

)
(

Kij

Kij−yij·

)
= yi·· −

Ji∑
j=1

Kij

(
yij·
Kij

)

= yi·· −
Ji∑
j=1

yij·

= 0.

And for each j, ∂
∂ηij

g(γ̂i, η̂i1, ..., η̂iJi) is also equal to zero,

∂

∂ηij
g(γ̂i, η̂i1, ..., η̂iJi) = yij· −Kij

exp(µ+ γ̂i + η̂ij)

1 + exp(µ+ γ̂i + η̂ij)

= yij· −Kij
exp

(
log
(

yij·
Kij−yij·

))
1 + exp

(
log
(

yij·
Kij−yij·

))
= yij· −Kij

(
yij·

Kij−yij·

)
1 +

(
yij·

Kij−yij·

)
= yij· −Kij

(
yij·
Kij

)
= yij· − yij·

= 0.
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This gives us a choice of γ̂i, η̂i1, ..., η̂iJi satisfying ġ(γ̂i, η̂i1, ..., η̂iJi) = 0, which means we are able

to use Chapter 4’s REO GLMM approximation to the marginal. Note, however, that there

are infinitely many such solutions, based on one’s choice of c above. We do not yet know

how the choice of c affects our approximation.

Further work is needed with this problem, and with the approximate marginalization of

other multivariate mixed effects models. As we stated above, the non-REO marginalization

method we developed in Chapter 5 applies when q > 1; and our asymptotic convergence

result, Proposition 4.1, applies when q > 1 as well, as in the herds-and-cows example above.

Simulating these scenarios to look at small-sample convergence properties and elaborating

the REO method to handle multi-level REO situations like the one described above are our

first priorities, moving forward.

6.2.4 More Random Effects Distributions

Another extension, which can be applied to both the REO and non-REO approximations, is

to expand the classes of random effects distributions that can be used with our approximation

to the marginal. Our marginal approximation relies on the normality of the random effects

to combine the random effects density, P (γ | θ) with the conditional density for the data,

f(y | γ, θ). The Taylor approximation we introduce in Chapters 4 and 5 allows us to use the

complete-the-square formula to algebraically isolate γ in a normal kernel for easy integration.

Subject to “the devil is in the details,” our method will in theory extend to GLMMs where

random effects are modeled with a mixture-of-normals distribution. Random effects following

a mixture-of-normals distribution can be handled similarly to the method we developed,

resulting in an approximate conditional density for γ, f̂(γ | y, θ) that will also be a mixture of

normals. As long as f̂(γ | y, θ) is analytically obtainable and a fully specified density function,

our marginal approximation method should stay relatively unchanged.
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Extending our method to handle random effects with mixture-of-normals distributions also

opens the way for us to look at nonparametric random effects distributions. If we can show

our method works for mixture-of-normals random effects, it should be straightforward to

show that it works for random effects distributed as Dirichlet process mixtures (DPMs) of

normals. This raises a secondary question of whether it is sensible to consider DIC for model

selection in models like the GLMM with DPM random effects distributions, which we will

duly investigate. Irrespective of this, however, we believe an approximate marginal form for

DPM GLMMs is of interest in and of itself.
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Appendix A

Appendix

A.1 Complete the Square

Proposition 3.1. For conformable vectors X, µ1, and µ2; and for conformable symmetric

matrices A1 and A2;

(X − µ1)TA1(X − µ1) + (X − µ2)TA2(X − µ2)

= (X − µ∗)T (A1 +A2)(X − µ∗) + (µ1 − µ2)TA1(A1 +A2)−1A2(µ1 − µ2),

where µ∗ = (A1 +A2)−1(A1µ1 +A2µ2).
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Proof. Let µ∗ = (A1 +A2)−1(A1µ1 +A2µ2). Then

(X − µ1)TA1(X − µ1) + (X − µ2)TA2(X − µ2)

= XT (A1 +A2)X + µT1 A1µ1 + µT2 A2µ2 −XT (A1µ1 +A2µ2)− (A1µ1 +A2µ2)TX

+ µ∗T (A1 +A2)X − µ∗T (A1 +A2)X

+XT (A1 +A2)µ∗ −XT (A1 +A2)µ∗

+ µ∗T (A1 +A2)µ∗ − µ∗T (A1 +A2)µ∗.

Now observe that

µ∗T (A1 +A2)X + +XT (A1 +A2)µ∗

= (A1µ1 +A2µ2)T (A1 +A2)−1(A1 +A2)X +XT (A1 +A2)(A1 +A2)−1(A1µ1 +A2µ2)

= (A1µ1 +A2µ2)TX +XT (A1µ1 +A2µ2).

This allows us to simplify the original equation to

(X − µ1)TA1(X − µ1) + (X − µ2)TA2(X − µ2)

= (X − µ∗)T (A1 +A2)(X − µ∗) + µT1 A1µ1 + µT2 A2µ2 − µ∗T (A1 +A2)µ∗.

It is sufficient, then, to show that

µT1 A1µ1 + µT2 A2µ2 − µ∗T (A1 +A2)µ∗ = (µ1 − µ2)TA1(A1 +A2)−1A2(µ1 − µ2).

First, observe that

µ∗T (A1 +A2)µ∗ = µ∗T (A1µ
∗ +A2µ

∗) = µ∗TA1µ
∗ + µ∗TA2µ

∗.
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Then we can write

µT1 A1µ1 + µT2 A2µ2 − µ∗T (A1 +A2)µ∗

= (µ1 − µ∗)TA1(µ1 − µ∗) + (µ2 − µ∗)TA2(µ2 − µ∗).

But

µ1 − µ∗ = (A1 +A2)−1(A1µ1 +A2µ1)− (A1 +A2)−1(A1µ1 +A2µ2)

= (A1 +A2)−1A2(µ1 − µ2),

µ2 − µ∗ = (A1 +A2)−1(A1µ2 +A2µ2)− (A1 +A2)−1(A1µ1 +A2µ2)

= (A1 +A2)−1A1(µ2 − µ1).

This allows us to rewrite as follows.

µT1 A1µ1 + µT2 A2µ2 − µ∗T (A1 +A2)µ∗

= (µ1 − µ2)TA2(A1 +A2)−1A1(A1 +A2)−1A2(µ1 − µ2)

+ (µ1 − µ2)TA1(A1 +A2)−1A2(A1 +A2)−1A1(µ1 − µ2)

= (µ1 − µ2)T
[
A2(A1 +A2)−1A1(A1 +A2)−1A2 +A1(A1 +A2)−1A2(A1 +A2)−1A1

]
(µ1 − µ2).
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But

A2(A1 +A2)−1A1(A1 +A2)−1A2 +A1(A1 +A2)−1A2(A1 +A2)−1A1

= A1(A1 +A2)−1A2(A1 +A2)−1A1 +A2(A1 +A2)−1A1(A1 +A2)−1A2

+A1(A1 +A2)−1A2(A1 +A2)−1A2 −A1(A1 +A2)−1A2(A1 +A2)−1A2

= A1(A1 +A2)−1A2(A1 +A2)−1(A1 +A2)

+A2(A1 +A2)−1A1(A1 +A2)−1A2 −A1(A1 +A2)−1A2(A1 +A2)−1A2

= A1(A1 +A2)−1A2 +
(
A2(A1 +A2)−1A1 −A1(A1 +A2)−1A2

)
(A1 +A2)−1A2

= A1(A1 +A2)−1A2

+
(
A2(A1 +A2)−1A1 −A1(A1 +A2)−1A2

)
(A1 +A2)−1A2

+
(
A1(A1 +A2)−1A1 −A1(A1 +A2)−1A1

)
(A1 +A2)−1A2

= A1(A1 +A2)−1A2 +
(

(A1 +A2)(A1 +A2)−1A1 −A1(A1 +A2)−1(A1 +A2)
)

(A1 +A2)−1A2

= A1(A1 +A2)−1A2 + (A1 −A1) (A1 +A2)−1A2

= A1(A1 +A2)−1A2.

Therefore

µT1 A1µ1 + µT2 A2µ2 − µ∗T (A1 +A2)µ∗ = (µ1 − µ2)TA1(A1 +A2)−1A2(µ1 − µ2).

A.2 Gauss-Hermite Quadrature

Let Y = {Yi} = {yij} be a kn×1 vector of response data on clusters i ∈ {1, ..., k}, with j ∈ {1, ..., n}

observations per cluster. We use a balanced design with common n for all clusters to simplify

some of the following linear algebra, but the results we obtain do not require this balance.
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Let β be a p × 1 vector of regression parameters. Let X be the kn × p design matrix for the

regression parameters, Xi be the n× p block of the X matrix corresponding to cluster i, and

Xij be the 1× p row vector corresponding to the jth observation on cluster i.

Let γ =

[
γT1 ... γTk

]T
be a kq× 1 vector of random effects, with γi the q× 1 vector of random

effects corresponding to cluster i. Let Z be the kn× kq block diagonal design matrix for the

random effects. Let Zi be the n × q submatrix of Z corresponding to its ith diagonal block,

and Zij be the 1× q row vector corresponding to the jth row of the Zi matrix.

Let ψ =

[
ψT1 ... ψTk

]T
be the mean of the random effects vector γ, and let Σ be block

diagonal Σi, i ∈ {1, ..., k} be the covariance matrix of the random effects. We assume that

γ ∼ Nkq(ψ,Σ), or equivalently here that γi
indep∼ Nq(ψi,Σi). We use θ to refer to the collection of

parameters {β,ψ,Σ}.

Gauss-Hermite quadrature requires transforming γi to a multivariate standard normal dis-

tribution. Define, therefore,

νi = Σ
−1/2
i (γi − ψi), γi = Σ

1/2
i νi + ψi.

Then the joint density of Yi and νi is

fνi(Yi, νi | θ) = fγi

(
Yi, (Σ

1/2
i νi + ψi) | θ

)
|Σi|−1/2

where νi is also a q × 1 vector, like γi. We will further write

νi =


νi1

...

νiq


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Let u(s)H , s ∈ {1, ..., Bn} be the roots of the nth degree Hermite polynomial—the nodes on which

the function will be evaluated. Let v(s)H , s ∈ {1, ..., Bn} be their associated weights. Then the

Gauss-Hermite quadrature approximation to f(Y | θ) is given by

f(Y | θ) =

k∏
i=1

f(Yi | θ)

=

k∏
i=1

∫
fνi(Yi, νi | θ)dνi

=

k∏
i=1

∫
fγi

(
Yi, (Σ

1/2
i νi + ψi) | θ

)
dνi |Σi|−1/2

.
=

k∏
i=1


Bn∑
s1=1

· · ·
Bn∑
sq=1

f

Yi,
Σ

1/2
i


u
(s1)
H

...

u
(sq)
H

+ ψi

 | θ
 |Σi|

−1/2 v(s1)H . . . v
(sq)
H



These approximations to the marginal density can then be applied to a posterior sample θ(s),

s ∈ {1, ..., Bt} and used with the equations

pDm
.
= − 2

B

B∑
s=1

log f
(
Y | θ(s)

)
+ 2 log f

(
Y | θ̂

)

DICm
.
= − 4

B

B∑
s=1

log f
(
Y | θ(s)

)
+ 2 log f

(
Y | θ̂

)

to obtain numerical approximations for pDm and DICm.
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A.3 Taylor Approximation Error in REO GLMMs

Of interest when approximating a quantity is the degree to which the approximation diverges

from the actual quantity. As we see in Equation (4.8),

f(Yi, γi | θ) = f̂(Yi, γi | θ) exp (r(g, γi, γ̂i)) ,

where r(g, γi, γ̂i) = o(||γi− γ̂i||2) as n→∞. If the log-likelihood ` (γi, θ | Yi) is thrice-differentiable

in γi, as is true for all common exponential family densities, then we can further express the

remainder in the Lagrange mean-value form, Equation (4.6),

r(g, γi, γ̂i) =
g(3)(ξL)

3!
(γi − γ̂i)3 ,

where ξL is some real number between γi and γ̂i.

In large samples, the behavior of the remainder is governed by Proposition 4.1. Under mild

conditions—for each cluster i, the elements of Yi must be conditionally independent and

have an expected value, and g̈(t) must be continuous on a closed neighborhood near γi—

f̂(Yi, γi | θ)
a.s.−→ f(Yi, γi | θ). Further, we know f̂(γi | Yi, θ) is a Normal density. Unfortunately

we have no guarantee that f̂(Yi, γi | θ) and f̂(Yi | θ) are proper densities, or even that they

correspond to finite measures, except at the limit. Proposition 4.2 below gives conditions

sufficient for us to know that the approximate marginal density corresponds to a finite

measure. Corollary 4.3 establishes that f̂(Yi | θ) corresponds to a finite measure iff f̂(Yi, γi | θ)

does as well; and that they share the same constant.

Proposition A.1.

F̂ (c | θ) =

∫ c

−∞
f̂(t | θ)dt

199



is a finite measure if real-valued functions M1(θ) and M2(θ) exist such that

0 ≤M1(θ) ≤ Eγi|Yi,θ[exp (r(g, γi, γ̂i(Yi)))] ≤M2(θ).

Proof. Observe that

f(Yi, γi | θ) = f̂(γi | Yi, θ)f̂(Yi | θ) exp (r(g, γi, γ̂i(Yi)) .

Then

1 =

∫ ∫
f(t, s | θ)dsdt

=

∫ ∫
f̂(s | t, θ)f̂(t | θ) exp (r(g, s, γ̂i(t)) dsdt

=

∫
f̂(t | θ)

(∫
f̂(s | t, θ) exp (r(g, s, γ̂i(t)) ds

)
dt

=

∫
f̂(t | θ) Eγi|Yi,θ[exp (r(g, γi, γ̂i(t)))] dt,

since f̂(γi | Yi, θ) is a proper Normal density.

Then since M1(θ) ≤ Eγ|Yi,θ[r(g, γi, γ̂i(Yi)] ≤M2(θ) and f̂(Yi | θ) is strictly positive,

M1(θ)

∫
f̂(Yi | θ)dYi ≤

∫
f̂(Yi | θ) Eγ|Yi,θ[r(g, γi, γ̂i(Yi)] dYi ≤M2(θ)

∫
f̂(Yi | θ)dYi,

and thus

1

M2(θ)
≤
∫
f̂(Yi | θ) ≤

1

M1(θ)

since the middle integral evaluates to 1.

Corrolary A.2. F̂ (Yi | θ) is a finite measure iff

F̂ (Yi, γi | θ) =

∫ Yi

−∞

∫ γi

−∞
f̂(t, s | θ)dsdt
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is also a finite measure. Further, F̂ (Yi | θ) and F̂ (Yi, γi | θ) share the same normalizing

constant.

Proof. Set w =
∫
f̂(t | θ)dt. Then, since f̂(γi | Yi, θ) is a Normal density, we have

w =

∫
f̂(t | θ)

(∫
f̂(s | t, θ)ds

)
dt

=

∫ ∫
f̂(t | θ)f̂(s | t, θ)dsdt

=

∫ ∫
f̂(t, s | θ)dsdt.

Simulations have shown that f̂(Yi | θ) and f̂(Yi, γi | θ) are well behaved relative to the true

joint and marginal densities (see Section 4.4.2). We have not, however, been able to show

that the condition for Proposition A.1 holds in general for exponential family distributions or

specifically for the binomial or Poisson. This is an element of future work we intend to pursue.

Even if we cannot prove that these functions are guaranteed to have finite measure, the results

we obtain in simulations show that our approximation is reasonably accurate. Further, that

Edgeworth expansions are not guaranteed to yield probability measures. Although we would

prefer to know that our approximations correspond to finite measures, we do not consider

our inability to achieve this result especially limiting.
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