
Lawrence Berkeley National Laboratory
Recent Work

Title
A PORTALBE, PUBLIC DOMAIN LEX FOR THE SOFTWARE TOOLS

Permalink
https://escholarship.org/uc/item/3z94009d

Author
Paxson, V.

Publication Date
1984-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3z94009d
https://escholarship.org
http://www.cdlib.org/

·.

\l'
•• i'

• i

:.

LBL-18246

Lawrence Berkeley Labo:c~Nr.~t
UNIVERSITY OF CALIFORNIA

Engineering & Technical
Services Division

BERKELEY LABORATORY

LIBRARY AND
. DOCUMENTS SECTION

Presented at the USENIX Association and Software
Tools User Group Summer Conference,
Salt Lake City, UT, June 12-15, 1984

A PORTABLE, PUBLIC DOMAIN LEX FOR
THE SOFTWARE TOOLS

v. Paxson

June 1984 TWO-WEEK LOAN C

This is a Library Circulating Copy
which may be borrowed for two~~e

·:sr:· ,

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

~-~

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

A Portable, Public Domain

LEX

for the Software Tools

Vern Paxson

Real Time Systems Group
Lawrence Berkeley Laboratory

University of California
Berkeley, California, 94720

1. Introduction

Chances are you're writing a lot of your programs
the hard way. You can write smaller, more efficient
programs with less effort by using the portable Soft
ware Tools Lex. This paper describes how to use Lex
and why programs generated with it give excellent
performance.

At the lowest level, programs have to deal with
their input on a character by character basis. Usually
what's interesting about the input is not the individ
ual characters but the patterns they come in. For
example, a string of digits is only meaningful when
the digits are grouped together as a number. A group
of characters that should be considered as a unit is
often called a token, and recognizing tokens is called
scanning. Almost any program whose input has some
structure will use a scanner to recognize that struc
ture.

Because a scanner often has to recognize a large
number of different, complicated patterns, you can
spend a lot of time trying to code an efficient scanner
by hand. There are techniques for automatically con
structing highly efficient scanners given a description
of the patterns the scanner should recognize. Using
these techniques, Lex makes it easy for you to create
scanners that are more efficient than those you might
code by hand.

2. Using Lex

The Lex user-interface IS based on the user
interface of the UNIX 1 Lex program, which is sim
ple but powerful. The user specifies a scanner by
a set of rules. Each rule is made up of a pattern,
which is written using an extended set of the Software

This work supported in part by the United States Department
of Energy under Contract Number DE-AC03-76SF00098.

1 UNIX is a trademark of Bell Laboratories.

(integericharacterllogicallreal)\[Gt]+tunction {
return(FUNCTIOHJOKEN) }

Fig. 1: A Lex rule to recognize Ratfor function declara
tions

Tools regular expressions, and an associated action,
which is a sequence of Ratfor code. Lex's output is
a Ratfor function which is compiled and linked into
the user's program. When executed, the generated
function reads characters from the input. Whenever
one of the patterns is matched by a string of input
characters, the action associated with the pattern is
executed.

For example, a rule specifying that whenever the
word "FOOBAR" is seen a counter should be incre
mented would look like:

FOOBAR { count = count + 1 }

· The extended set of regular expressions allows
complicated patterns to be specified. Figure 1 shows
a Lex rule which recognizes Ratfor function declara
tions and returns an appropriate token to the caller of
the scanning routine. The "I" (alternation) operator
specifies that any one of the words "integer", "char
acter", "logical", or "real" may be matched. The
parentheses group these types together so that the
next operator, the "\" character, operates on them
as a whole. "\" specifies that the preceding subpat
.tern is optional . This is necessary because it is legal
in Ratfor to declare a function without specifying its
type. The brackets (" [" and "] ") that follow indi
cate a character class that matches either a blank or
a tab. The "+" operator is positive closure. It means
"match one or more times". Thus " [Cit]+" matches
any series of one or more blanks or tabs.

The rule will match and perform its action on
any of the following inputs:

real function
integer
function

function

The UNIX Lex :program also provides both a
macro facility to ease the construction of large rules
and two mechanisms by which rules can be selectively
turned on or off depending on textual context. Soft
ware Tools Lex supports all of the features of UNIX
Lex (described in [Lesk & Schmidt]).

Fig. 3: An FA to recognize "HELLO"

3. Generating Efficient Scanners

While regular expressions provide a natural way
for the user to specify a scanner, it is difficult to
write an efficient scanner using the natural pattern
matching techniques. Given a string of text, a nat
ural way to see if it matches any one of several pat
terns is to attempt to match it against each pattern
in turn. This method will, at best, take time propor
tional to the number of characters in the input times
the number of characters in the patterns. There are
often fifty or more patterns that need to be checked.
Matching just one pattern can require several tests
to see if all of the parts of the pattern are matched.
For example, to test if the pattern shown in Figure 1
is matched a scanner must test the first part of the
input string against "integer", "character", "log
ical", and "real". Thus, a scanner which uses the
natural pattern-matching techniques has to do a lot
of comparisons to recognize one string of text. Since
the scanner processes every string in the input, the
program is going to spend a great deal of its time do
ing these comparisons. The natural pattern-matching
techniques lead to slow programs.

Surprisingly, there are pattern-matching tech
niques which will match an arbitrary number of pat
terns, each of arbitrary complexity, in a time that
depends solely on the number of characters in the in
put string. These techniques are based on Finite Au
tomaton (FA) theory. In spite of their power, they
turn out to be quite simple. An FA simply consists
of a current state and a transition table. The FA be
gins reading input in some initial state. Given the
current state and the next input character, the tran
sition table gives the next state the machine should
enter. If the next input character does not match a
pattern the FA jams, stops pattern-matching, and ex
ecutes the action associated with the longest pattern
matched so far.

The code to run a FA is shown in Figure 2. (The
array nxtstate is the transition table.) Figure 3
shows a pictorial representation of an FA which rec
ognizes the string "HELLO". The numbered nodes in
the picture represent states. The initial state is # 1,

2

and the final, accepting state is #6. If the accepting
state is entered then the pattern has been matched.
The arrows indicate state transitions. The labels on
the arrows indicate which input symbols trigger those
transitions. When executing this automaton using the
code shown in Figure 2, nxtstate (3, '1') is 4 and
nxtstate (3, 'o') is JAM.

Matching multiple patterns simultaneously or
matching patterns which contain closures or alterna
tions requires something more complicated than the
FA in Figure 3. To match either "HELLO" or "HI",
you can construct an FA like the one shown in Fig
ure 4. This is just two simple matchers, one for
"HELLO" and one for "HI", connected by a new tran
sition, f, which you could read as "maybe". The idea
is that, conceptually, you have two occurrences of the
loop in Figure 2 running simultaneously. When the
pattern-matcher starts it might in state #2 waiting
for an "H" or it might be in state #8 waiting for
an "H". If an "H" is read then the pattern-matcher
might be in state #3 waiting for an "E" or it might
be in state #9 waiting for an "I". It keeps running
until all of the FAs have jammed. The last one to jam
determines which pattern was matched.

This type of FA is called a Non-deterministic Fi
nite Automaton (NFA) because it can be in more than
one state at any given time. There exist straight
forward algorithms for converting regular expressions
into NFAs. 2 Figure 5 shows an NFA which recog
nizes zero or more occurrences of the string "HI".
Such a pattern would be specified as "(HI)*" to Lex.
Unfortunately, NFAs cannot be run using the simple
pattern-matching code pictured in Figure 2, unless
one has a multi-processor computer with a potentially
infinite number of processors.

While it is not at all obvious, any NFA can be

2 For example, see [Aho & Ullman] p. 95.

Fig. 4: An NFA to recognize "HELLO" and "HI"

State #7 is an accepting state for the "HELLO" pattern.

State #10 is an accepting state for the "HI" pattern.

,.
I

•

tJ

integer nxtstate(MAXSTATES,MAXCHARS), action(MAXSTATES)

Data to initialize nxtstate and action go here.

curstate = initstate

repeat
{

ch = getc(ch)
prevstate = curstate
curstate = nxtstate(curstate,ch)
}

until (curstate == JAM)

Execute the action associated with the pattern matched.

switch(action(prevstate))
{

case RULE1:
code for the first rule goes here.

}

Fig. 2: Pattern-Matching Loop for a Finite Automaton

3

·(

E

Fig. 5: An NFA which recognizes "(HI)*"

Fig. 6: A DFA to recognize "HELLO" and "HI"

converted into an equivalent Deterministic Finite Au
tomaton (DFA) which will recognize the same set
of patterns as the NFA but can be run on a sin
gle processor using the fast code shown in Figure 2.
The algorithm to do the conversion is called subset
construction. 3 The fundamental idea behind subset
construction is that each state of the DFA represents
a set of NFA states. For example, Figure 6 shows
the DFA equivalent of the NFA shown in Figure 4.
The DFA states are numbered to suggest their set
structure. The initial state of the DFA, state #128,
is equivalent to states #1, #2, and #8 of the NFA
in Figure 4. Upon reading an "H", the DFA en
ters state #39, which is equivalent to the set of NFA
states #3 and #9. state #4 of the DFA is equivalent
to the set consisting of the singleton NFA state #4,
and so on. In this manner, when the DFA is in a given
state, it is identical to the NFA being in each of the
NFA states which are members of that DFA state. So
each DFA state corresponds to a set of NFA states
being active at the same time.

Since subset construction involves constructing
and comparing a great number of sets, implementing
it efficiently is a lot of work. Indeed, it. took us two
complete re-designs to get Lex to perform reasonably
well. Although the experience was painful, it might
be instructive and we plan to discuss the details in a
future paper.

3]Aho & Ullman] discusses the algorithm on pps. 91-94.

4

Table 1: Sizes of some typical DFA transition tables

#of #of #of Table
Input Rules Chars States Size

awk 89 128 202 25856
nwords 65 128 254 32512
rat fix 68 128 430 55040
sh 30 128 215 27520
typeof 13 128 215 27520

"awk" is the scanner for the UNIX Awk tool. "nwords"
scans English text. "ratfix" converts old-style Ratfor pro
grams to the standard Software Tools Ratfor. "sh" is a
scanner for the Software Tools Sh program. "typeof" de
termines the type of text files (e.g., Ratfor source, Roff
input, local operating system command file, etc.).

4. Generating Compact Scanners

While the pattern-matching algorithm shown in
Figure 2 is simple and fast, it has one drawback: the
two-dimensional array nxtstate can be very large.
Table 1 shows the size of nxtstate for a variety of
Lex inputs. Programs with tables this big won't fit on
some machines that run the Software Tools. Even on
virtual memory machines these tables would consume
a lot of run-time resources.

Fortunately it is possible to eliminate a great deal
of redundancy in the transition table and use much
less memory than the two-dimensional array requires.
To illustrate the source of the redundancy, we con
structed a small scanner that has many of the features
found in more complicated sets of rules. Consider the
Lex input shown in Figure 7. These rules specify a
scanner which will match "HELLO", "HI", and any
string of letters. The first two patterns are keywords.

The last pattern is a catch-ail. It will match any string
of letters which is not a keyword. 4 Rules like these
(several keyword rules and a few catch-all rules) are
typical of most complicated scanners, including the
five shown in Table 1.

Figure 8 shows an NFA which recognizes these

•The catch-all will also match the keywords. Lex takes care
of this ambiguity by the convention that if a string matches
more than one pattern, the scanner executes the action asso
ciated with the pattern that was listed first. When specifying
scanners you always list the keyword rules before the catch-all
rules.

/')

E

Fig. 8: An NFA which recognizes keywords and a catch-all

Transitions marked as "*" mean that the transition is made on any letter except
the one which is explicitly shown as making another transition. For example,
state #4 makes a transition to state #8 on any letter except "L". State #3
makes a transition to state #8 on any letter.

Fig. 9: The DFA equivalent

5

HELLO { return(HELLO_TOKEN) }
HI { return(HI_TOKEN) }
(A-Z] + { return (IDENTIFIER_ TOKEN) }

Fig. 7: A set of Keyword and Catch-all Lex rules

Table 2: Transition Table for the DFA

Character
Non-

&tate e h i 1 0 a b c z Letter&
I 8 2 8 8 8 8 8 8 8 JA~1

2 4 8 3 8 8 8 8 8 8 JA~1

3 8 8 8 8 8 8 8 8 8 JA~1

4 8 8 8 5 8 8 8 8 8 JA~I

5 8 8 8 6 8 8 8 8 8 JA~I

6 8 8 8 8 7 8 8 8 8 JA~I

7 8 8 8 8 8 8 8 8 8 JAM
8 8 8 8 8 8 8 8 8 8 JAM

rules. Figure 9 shows the equivalent DFA. An example
might clarify this somewhat elaborate diagram. H the
characters "H", "E", and "L" have been read then the
DFA will be in state #5. Hit reads another "L", it
will enter state #6. H a letter other than "L" is read,
the DFA will enter state #8 and will remain there
as long as the input characters are letters. H a non
letter, such as a blank, is read while in state #5, the
DFA will jam. Since state #5 is an accepting state for
the catch-all ([A- Z] +) rule, the scanner will execute
the action associated with that rule.

Table 2 clearly shows the redundancy of the
DFA 's transition table. The first step in compressing
this table is to note that the 21 letters which are not
specified in the patterns (that is, all except "E", "H",
"I", "L", and "0") are equivalent to one another (i.e.,
they have identical transitions) and can be grouped
together. The 102 ASCII characters which are not

letters can also be grouped together. We call these
groups equivalence classes. In general, the members of
an equivalence class all have identical entries in their
column of the transition table. The rules in Figure 7
will result in seven equivalence classes. Equivalence
class 1 will contain only the letter "E", class 2 will
contain only the letter "H", and so forth. Equivalence
class 6 will contain the remaining letters, and class 7
will contain all of the non-letters. The transition table
can now be represented as shown in Table 3. A total
of968 elements (121 columns of 8 elements each) have

6

Table 3: Transition Table with Equivalence Classes

Equivalence Class
Other Non-

state e h i 1 0 Letters Letters
1 8 2 8 8 8 8 JAN
2 4 8 3 8 8 8 JAN
3 8 8 8 8 8 8 JAN
4 8 8 8 5 8 8 JAM
5 8 8 8 6 8 8 JAN
6 8 8 3 8 7 8 JAN
7 8 8 3 8 8 8 JAM
8 8 8 3 8 8 8 JAN

Table 4: Johnson's Representation

Array Element Base Default Next Check
1 0 3 3 2

2 0 3 2

3 6 4 2

4 0 3 5 4

5 3 6 5

6 1 3 7 6
7 0 3 8 3

8 0 3 8 3

9 8 3

10 8 3

11 8 3

12 8 3

13 JAN 3

been removed. With larger sets of rules the savings
won't be as great, but there will typically be 40-60
equivalence classes, yielding a 50% to 70% reduction
In SIZe.

All of the "8" s left in Table 3 indicate that there
is yet more redundancy. While the rows and columns
are similar, few are identical, so we can't get a big
savings by grouping more equivalent objects together.
We can save more space by taking advantage of the
similarities. S. C. Johnson of Bell Labs developed a
way of representing the transition table which allows

. . 5
similar states to share data for common transitiOns.
Figure 4 shows one way of representing the transi
tion table shown in Table 3 using Johnson's scheme.
The two pairs of arrays are used as follows. The
Base/Default pair is indexed by the current state.
The Base entry gives a base index. The equivalence

~Our source for the representation was [Aho & Ullman], p. 116.

~'

~

' I~

, ...
I i

• . ,, ,,
,fJ

., :l'y·

integer ecmap(NAXCHARS)

Data to initialize ecmap, which maps characters

to equivalence classes, go here.

ch getc(ch)
ec ecmap(ch)

while (Check(Base(state)+ec) != state)
state = Default(state)

state = Next(Base(state)+ec)

Fig. 10: Code to Compute Next State using Johnson·s Representation

class of the input character is added to this base in

dex to produce an offset into the Next/Check pair.
If the value of the Check array at the offset equals
the current state, then the value of the Next array
at the offset is the next state the DFA should en
ter. If the Check value is not equal to the current
state, the Default array is indexed with the, current
state to produce the number of another state. The
Base-Check-Next-Default process is repeated using
this new state instead of the current state. Figure 10
lists the code needed to compute the next state of a
DFA using Johnson's representation. This code is still
fast and sacrifices little of the pattern-matching speed
we gained by using a DFA.

To illustrate how the code works, let's reconsider
the previous example. H the characters "H", "E", and
"L" have been read, the DFA is in state #5. We then
read the next input character:

• if the character is an "L" then ec will be set
to 4. Then

Check(Base(state)+ec) = Check(Base(6)+4)
= Check(1+4)
= Check(6)
= 5.

So we assign

state +- Next (6) = 6.

• if the character is a letter other than an "L"
then its equivalence class is either 1, 2, 3, or 5.
None of these values gives Check (1 +ec) = 5,
so we will assign

state +- Default(6) = 3.

7

For all of the values 1, 2, 3, and 5,
Check(Base(3)+ec) = 3, so we then assign

state +- Next (6+ec) = 8.

• if the character is not a letter then it is in equiv
alence class 7. Then

Check(Base(state)+ec) Check(1+7)

so

Now

Check(8)
3

=I= 5.

state +- De:t'aul t (8) = 3.

Check(Base(3)+7) = Check(13)
= 3

so we assign

state +- Next (13) = JAN.

The transition table representation shown in Ta

ble 3 uses 56 array elements while the one in Fig
ure 4 uses 42, not an impressive savings. The savings,
however, become significant as the set of rules grows
larger. There are many subtleties involved in get

·ting a large amount of compression using Johnson's
representation which we hope to discuss in a future
paper. Both UNIX Lex and Software Tools Lex use
Johnson's representation. The data tables they gen
erate are summarized in Table 5 and the relative sizes
shown in Figure 11. Occasionally, the second imple

mentation of some piece of software improves on the
original. We note in passing that the Software Tools
Lex tables are smaller than the UNIX Lex tables in
all cases and the reduction is more than 50% for large
Lex inputs.

Unix vs. Tools LEX Tnn;ition Table Sizes

(Coiilpl.-ed) Table Slza U1lx
0

Tools
~~-----------------------------------,

Ill

LEX fr1lut Flle

Fig. 11: Compressed Table Sizes of Software Tools and Unix lex

5. Conclusion

One problem with writing efficient programs is
that it's hard to write efficient scanners. · Software

Tools Lex alleviates this problem by making scanner
specification easy and by automatically writing scan
ners based on these specifications. Lex uses Finite
Aut.omaton techniques to generate fast scanners and
Johnson's representation to make these scanners com
pact. The result is that Lex provides a powerful way
of writing very efficient scanners.

6. Acknowledgements

The general design and early work on Lex was
done by Jef Poskanzer. Van Jacobson contributed
a great number of ideas and much feedback and in
spiration throughout the entire development of Lex.
·van Jacobson, Theresa Breckon, Marshall Spight, and
John Lynch provided many helpful comments and
suggestions concerning this paper.

1. References

Alfred V. Aho and Jeffrey D. Ullman, Pnnciples of
Comptler D~sign, Addison- Wesley, April 1979.

M. E. Lesk and E. Schmidt, Lex- A Lexical Analyzer
Generator, Bell Laboratories, July 1975.

8

K. Thompson and D. M. Ritchie, UNIX Programmer's
Manual, Bell Laboratories, August 1983. See lex(l).

RTSG Software Tools Manual, Lawrence Berkeley
Laboratory, 1983. See lex(1 }, lextut(tutorial}.

Table 5: Performance of Software Tools and UNIX lex

#of Table UNIX Tools
Input ECs Size Lex Lex

awk 69 14007 860 791

nwords 56 14224 3623 1420
rat fix 59 25370 3419 1648

sh 31 6665 2750 1097
typeof 31 7843 1145 822

. "# of ECs" is the number of equivalence classes in the
input. "Table Size" is equal to the number of DFA states
times the number of equivalence classes. The columns for

"UNIX Lex" and "Software Tools Lex" give the total num-
. her of array elements needed to represent the transition

table using Johnson's representation.

....

l

~-

\
L •

,

~(
.I

· .. I ,,

·This report was done with support .from t.he. ·
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
.product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

.!

~/
' ,· .. ":::·· ... ~~

__..,..,~- ' .J
.. , .. i¥J!"__..,, J!

-""'~.: ~ ~· _,.,.. t
·~ ..)'

,.. --''. f ' -.:-.- .. -. ~
.. ~ ""'_)_,

oi' ' ~ '.,

jTECHN~CAL INFORMATION DEPARTMENT

s1 LAWRtNCE BERKI;~~y LABORATORY
UNIVERSITY OF 'CAbiFORNIA .

BERk£LEY, cALIFoR.;;V:£'t'i~i2a ,_ . ..,_

;1...-.*
·~·, I

·' . .. :~~

,-
't

~
• I

-·
.zo'"• :

;, .
..)-~' ~··
~-<~·· . ~· . __.;: -it<:~~.;~ '1 ;;r.~c-
"i\:J;". - _, • l ..

...,

)

1 .

\

,-., <- • " .. ·
--"

,...-·

:L
·~~

..
~"~-:

•. \j·~~~~

'

~ .. ·,~

·'·

'-~

~-.1.

..
~ •

:-
,- '·

" ..
'1'-

·-~ :..
~-

~-

':;···

;.}t·

0

,.,.6 .
;

.... t~ L ~~.a.:.:~ ... --··· ..

<-

,. ---~->- , .. - ' . -~-·-" ·~-~ -._
---.. """"- .• ..,

.... -! -~ .. -: .. '·•.";;t.;,.~.
I . .._~ ,..,.__C....,<i.~k_•
i·.· "'" ... ·.~,

. ~~-"
~;~-?-:

.. ., · ..

: ... ~,. "'fY1<· · -~'-""' '-~- ... ""· ~."'
. ··f

• .. ·y'· '

·'"f.···

~ .. ,.. ... ··:n-~)-.'" ... ~-~0: ~--~-~:~~~-
_,

• I

' J.¥

~

...

.:Iii;-

;:,
'?;

;'I
~ ,t

-.......
' '1-

'~: .
. ~

.tl'

·•

"'

.. ~
';1

rP

~

