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1. Introduction 

Chances are you're writing a lot of your programs 
the hard way. You can write smaller, more efficient 
programs with less effort by using the portable Soft
ware Tools Lex. This paper describes how to use Lex 
and why programs generated with it give excellent 
performance. 

At the lowest level, programs have to deal with 
their input on a character by character basis. Usually 
what's interesting about the input is not the individ
ual characters but the patterns they come in. For 
example, a string of digits is only meaningful when 
the digits are grouped together as a number. A group 
of characters that should be considered as a unit is 
often called a token, and recognizing tokens is called 
scanning. Almost any program whose input has some 
structure will use a scanner to recognize that struc
ture. 

Because a scanner often has to recognize a large 
number of different, complicated patterns, you can 
spend a lot of time trying to code an efficient scanner 
by hand. There are techniques for automatically con
structing highly efficient scanners given a description 
of the patterns the scanner should recognize. Using 
these techniques, Lex makes it easy for you to create 
scanners that are more efficient than those you might 
code by hand. 

2. Using Lex 

The Lex user-interface IS based on the user
interface of the UNIX 1 Lex program, which is sim
ple but powerful. The user specifies a scanner by 
a set of rules. Each rule is made up of a pattern, 
which is written using an extended set of the Software 

This work supported in part by the United States Department 
of Energy under Contract Number DE-AC03-76SF00098. 

1 UNIX is a trademark of Bell Laboratories. 

(integericharacterllogicallreal)\[Gt]+tunction { 
return(FUNCTIOHJOKEN) } 

Fig. 1: A Lex rule to recognize Ratfor function declara
tions 

Tools regular expressions, and an associated action, 
which is a sequence of Ratfor code. Lex's output is 
a Ratfor function which is compiled and linked into 
the user's program. When executed, the generated 
function reads characters from the input. Whenever 
one of the patterns is matched by a string of input 
characters, the action associated with the pattern is 
executed. 

For example, a rule specifying that whenever the 
word "FOOBAR" is seen a counter should be incre
mented would look like: 

FOOBAR { count = count + 1 } 

· The extended set of regular expressions allows 
complicated patterns to be specified. Figure 1 shows 
a Lex rule which recognizes Ratfor function declara
tions and returns an appropriate token to the caller of 
the scanning routine. The "I" (alternation) operator 
specifies that any one of the words "integer", "char
acter", "logical", or "real" may be matched. The 
parentheses group these types together so that the 
next operator, the "\" character, operates on them 
as a whole. "\" specifies that the preceding subpat
.tern is optional . This is necessary because it is legal 
in Ratfor to declare a function without specifying its 
type. The brackets (" [" and "] ") that follow indi
cate a character class that matches either a blank or 
a tab. The "+" operator is positive closure. It means 
"match one or more times". Thus " [ Cit]+" matches 
any series of one or more blanks or tabs. 

The rule will match and perform its action on 
any of the following inputs: 

real function 
integer 
function 

function 

The UNIX Lex :program also provides both a 
macro facility to ease the construction of large rules 
and two mechanisms by which rules can be selectively 
turned on or off depending on textual context. Soft
ware Tools Lex supports all of the features of UNIX 
Lex (described in [Lesk & Schmidt]). 



Fig. 3: An FA to recognize "HELLO" 

3. Generating Efficient Scanners 

While regular expressions provide a natural way 
for the user to specify a scanner, it is difficult to 
write an efficient scanner using the natural pattern
matching techniques. Given a string of text, a nat
ural way to see if it matches any one of several pat
terns is to attempt to match it against each pattern 
in turn. This method will, at best, take time propor
tional to the number of characters in the input times 
the number of characters in the patterns. There are 
often fifty or more patterns that need to be checked. 
Matching just one pattern can require several tests 
to see if all of the parts of the pattern are matched. 
For example, to test if the pattern shown in Figure 1 
is matched a scanner must test the first part of the 
input string against "integer", "character", "log
ical", and "real". Thus, a scanner which uses the 
natural pattern-matching techniques has to do a lot 
of comparisons to recognize one string of text. Since 
the scanner processes every string in the input, the 
program is going to spend a great deal of its time do
ing these comparisons. The natural pattern-matching 
techniques lead to slow programs. 

Surprisingly, there are pattern-matching tech
niques which will match an arbitrary number of pat
terns, each of arbitrary complexity, in a time that 
depends solely on the number of characters in the in
put string. These techniques are based on Finite Au
tomaton (FA) theory. In spite of their power, they 
turn out to be quite simple. An FA simply consists 
of a current state and a transition table. The FA be
gins reading input in some initial state. Given the 
current state and the next input character, the tran
sition table gives the next state the machine should 
enter. If the next input character does not match a 
pattern the FA jams, stops pattern-matching, and ex
ecutes the action associated with the longest pattern 
matched so far. 

The code to run a FA is shown in Figure 2. (The 
array nxtstate is the transition table.) Figure 3 
shows a pictorial representation of an FA which rec
ognizes the string "HELLO". The numbered nodes in 
the picture represent states. The initial state is # 1, 

2 

and the final, accepting state is #6. If the accepting 
state is entered then the pattern has been matched. 
The arrows indicate state transitions. The labels on 
the arrows indicate which input symbols trigger those 
transitions. When executing this automaton using the 
code shown in Figure 2, nxtstate (3, '1') is 4 and 
nxtstate (3, 'o') is JAM. 

Matching multiple patterns simultaneously or 
matching patterns which contain closures or alterna
tions requires something more complicated than the 
FA in Figure 3. To match either "HELLO" or "HI", 
you can construct an FA like the one shown in Fig
ure 4. This is just two simple matchers, one for 
"HELLO" and one for "HI", connected by a new tran
sition, f, which you could read as "maybe". The idea 
is that, conceptually, you have two occurrences of the 
loop in Figure 2 running simultaneously. When the 
pattern-matcher starts it might in state #2 waiting 
for an "H" or it might be in state #8 waiting for 
an "H". If an "H" is read then the pattern-matcher 
might be in state #3 waiting for an "E" or it might 
be in state #9 waiting for an "I". It keeps running 
until all of the FAs have jammed. The last one to jam 
determines which pattern was matched. 

This type of FA is called a Non-deterministic Fi
nite Automaton (NFA) because it can be in more than 
one state at any given time. There exist straight
forward algorithms for converting regular expressions 
into NFAs. 2 Figure 5 shows an NFA which recog
nizes zero or more occurrences of the string "HI". 
Such a pattern would be specified as "(HI)*" to Lex. 
Unfortunately, NFAs cannot be run using the simple 
pattern-matching code pictured in Figure 2, unless 
one has a multi-processor computer with a potentially 
infinite number of processors. 

While it is not at all obvious, any NFA can be 

2 For example, see [Aho & Ullman] p. 95. 

Fig. 4: An NFA to recognize "HELLO" and "HI" 

State #7 is an accepting state for the "HELLO" pattern. 

State #10 is an accepting state for the "HI" pattern. 
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integer nxtstate(MAXSTATES,MAXCHARS), action(MAXSTATES) 

# Data to initialize nxtstate and action go here. 

curstate = initstate 

repeat 
{ 

ch = getc( ch ) 
prevstate = curstate 
curstate = nxtstate(curstate,ch) 
} 

until (curstate == JAM) 

# Execute the action associated with the pattern matched. 

switch(action(prevstate)) 
{ 

case RULE1: 
# code for the first rule goes here. 

} 

Fig. 2: Pattern-Matching Loop for a Finite Automaton 
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Fig. 5: An NFA which recognizes "(HI)*" 

Fig. 6: A DFA to recognize "HELLO" and "HI" 

converted into an equivalent Deterministic Finite Au
tomaton (DFA) which will recognize the same set 
of patterns as the NFA but can be run on a sin
gle processor using the fast code shown in Figure 2. 
The algorithm to do the conversion is called subset 
construction. 3 The fundamental idea behind subset 
construction is that each state of the DFA represents 
a set of NFA states. For example, Figure 6 shows 
the DFA equivalent of the NFA shown in Figure 4. 
The DFA states are numbered to suggest their set 
structure. The initial state of the DFA, state #128, 
is equivalent to states #1, #2, and #8 of the NFA 
in Figure 4. Upon reading an "H", the DFA en
ters state #39, which is equivalent to the set of NFA 
states #3 and #9. state #4 of the DFA is equivalent 
to the set consisting of the singleton NFA state #4, 
and so on. In this manner, when the DFA is in a given 
state, it is identical to the NFA being in each of the 
NFA states which are members of that DFA state. So 
each DFA state corresponds to a set of NFA states 
being active at the same time. 

Since subset construction involves constructing 
and comparing a great number of sets, implementing 
it efficiently is a lot of work. Indeed, it. took us two 
complete re-designs to get Lex to perform reasonably 
well. Although the experience was painful, it might 
be instructive and we plan to discuss the details in a 
future paper. 

3 ]Aho & Ullman] discusses the algorithm on pps. 91-94. 
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Table 1: Sizes of some typical DFA transition tables 

#of #of #of Table 
Input Rules Chars States Size 

awk 89 128 202 25856 
nwords 65 128 254 32512 
rat fix 68 128 430 55040 
sh 30 128 215 27520 
typeof 13 128 215 27520 

"awk" is the scanner for the UNIX Awk tool. "nwords" 
scans English text. "ratfix" converts old-style Ratfor pro
grams to the standard Software Tools Ratfor. "sh" is a 
scanner for the Software Tools Sh program. "typeof" de
termines the type of text files (e.g., Ratfor source, Roff 
input, local operating system command file, etc.). 

4. Generating Compact Scanners 

While the pattern-matching algorithm shown in 
Figure 2 is simple and fast, it has one drawback: the 
two-dimensional array nxtstate can be very large. 
Table 1 shows the size of nxtstate for a variety of 
Lex inputs. Programs with tables this big won't fit on 
some machines that run the Software Tools. Even on 
virtual memory machines these tables would consume 
a lot of run-time resources. 

Fortunately it is possible to eliminate a great deal 
of redundancy in the transition table and use much 
less memory than the two-dimensional array requires. 
To illustrate the source of the redundancy, we con
structed a small scanner that has many of the features 
found in more complicated sets of rules. Consider the 
Lex input shown in Figure 7. These rules specify a 
scanner which will match "HELLO", "HI", and any 
string of letters. The first two patterns are keywords. 

The last pattern is a catch-ail. It will match any string 
of letters which is not a keyword. 4 Rules like these 
(several keyword rules and a few catch-all rules) are 
typical of most complicated scanners, including the 
five shown in Table 1. 

Figure 8 shows an NFA which recognizes these 

•The catch-all will also match the keywords. Lex takes care 
of this ambiguity by the convention that if a string matches 
more than one pattern, the scanner executes the action asso
ciated with the pattern that was listed first. When specifying 
scanners you always list the keyword rules before the catch-all 
rules. 



/') 

E 

Fig. 8: An NFA which recognizes keywords and a catch-all 

Transitions marked as "*" mean that the transition is made on any letter except 
the one which is explicitly shown as making another transition. For example, 
state #4 makes a transition to state #8 on any letter except "L". State #3 
makes a transition to state #8 on any letter. 

Fig. 9: The DFA equivalent 

5 



HELLO { return(HELLO_TOKEN) } 
HI { return(HI_TOKEN) } 
(A-Z] + { return (IDENTIFIER_ TOKEN) } 

Fig. 7: A set of Keyword and Catch-all Lex rules 

Table 2: Transition Table for the DFA 

Character 
Non-

&tate e h i 1 0 a b c z Letter& 
I 8 2 8 8 8 8 8 8 8 JA~1 

2 4 8 3 8 8 8 8 8 8 JA~1 

3 8 8 8 8 8 8 8 8 8 JA~1 

4 8 8 8 5 8 8 8 8 8 JA~I 

5 8 8 8 6 8 8 8 8 8 JA~I 

6 8 8 8 8 7 8 8 8 8 JA~I 

7 8 8 8 8 8 8 8 8 8 JAM 
8 8 8 8 8 8 8 8 8 8 JAM 

rules. Figure 9 shows the equivalent DFA. An example 
might clarify this somewhat elaborate diagram. H the 
characters "H", "E", and "L" have been read then the 
DFA will be in state #5. Hit reads another "L", it 
will enter state #6. H a letter other than "L" is read, 
the DFA will enter state #8 and will remain there 
as long as the input characters are letters. H a non
letter, such as a blank, is read while in state #5, the 
DFA will jam. Since state #5 is an accepting state for 
the catch-all ( [A- Z] +) rule, the scanner will execute 
the action associated with that rule. 

Table 2 clearly shows the redundancy of the 
DFA 's transition table. The first step in compressing 
this table is to note that the 21 letters which are not 
specified in the patterns (that is, all except "E", "H", 
"I", "L", and "0") are equivalent to one another (i.e., 
they have identical transitions) and can be grouped 
together. The 102 ASCII characters which are not 

letters can also be grouped together. We call these 
groups equivalence classes. In general, the members of 
an equivalence class all have identical entries in their 
column of the transition table. The rules in Figure 7 
will result in seven equivalence classes. Equivalence 
class 1 will contain only the letter "E", class 2 will 
contain only the letter "H", and so forth. Equivalence 
class 6 will contain the remaining letters, and class 7 
will contain all of the non-letters. The transition table 
can now be represented as shown in Table 3. A total 
of968 elements (121 columns of 8 elements each) have 
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Table 3: Transition Table with Equivalence Classes 

Equivalence Class 
Other Non-

state e h i 1 0 Letters Letters 
1 8 2 8 8 8 8 JAN 
2 4 8 3 8 8 8 JAN 
3 8 8 8 8 8 8 JAN 
4 8 8 8 5 8 8 JAM 
5 8 8 8 6 8 8 JAN 
6 8 8 3 8 7 8 JAN 
7 8 8 3 8 8 8 JAM 
8 8 8 3 8 8 8 JAN 

Table 4: Johnson's Representation 

Array Element Base Default Next Check 
1 0 3 3 2 

2 0 3 2 

3 6 4 2 

4 0 3 5 4 

5 3 6 5 

6 1 3 7 6 
7 0 3 8 3 

8 0 3 8 3 

9 8 3 

10 8 3 

11 8 3 

12 8 3 

13 JAN 3 

been removed. With larger sets of rules the savings 
won't be as great, but there will typically be 40-60 
equivalence classes, yielding a 50% to 70% reduction 
In SIZe. 

All of the "8" s left in Table 3 indicate that there 
is yet more redundancy. While the rows and columns 
are similar, few are identical, so we can't get a big 
savings by grouping more equivalent objects together. 
We can save more space by taking advantage of the 
similarities. S. C. Johnson of Bell Labs developed a 
way of representing the transition table which allows 

. . 5 
similar states to share data for common transitiOns. 
Figure 4 shows one way of representing the transi
tion table shown in Table 3 using Johnson's scheme. 
The two pairs of arrays are used as follows. The 
Base/Default pair is indexed by the current state. 
The Base entry gives a base index. The equivalence 

~Our source for the representation was [Aho & Ullman], p. 116. 
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integer ecmap(NAXCHARS) 

# Data to initialize ecmap, which maps characters 

# to equivalence classes, go here. 

ch getc( ch ) 
ec ecmap(ch) 

while ( Check(Base(state)+ec) != state ) 
state = Default(state) 

state = Next(Base(state)+ec) 

Fig. 10: Code to Compute Next State using Johnson·s Representation 

class of the input character is added to this base in

dex to produce an offset into the Next/Check pair. 
If the value of the Check array at the offset equals 
the current state, then the value of the Next array 
at the offset is the next state the DFA should en
ter. If the Check value is not equal to the current 
state, the Default array is indexed with the, current 
state to produce the number of another state. The 
Base-Check-Next-Default process is repeated using 
this new state instead of the current state. Figure 10 
lists the code needed to compute the next state of a 
DFA using Johnson's representation. This code is still 
fast and sacrifices little of the pattern-matching speed 
we gained by using a DFA. 

To illustrate how the code works, let's reconsider 
the previous example. H the characters "H", "E", and 
"L" have been read, the DFA is in state #5. We then 
read the next input character: 

• if the character is an "L" then ec will be set 
to 4. Then 

Check(Base(state)+ec) = Check(Base(6)+4) 
= Check(1+4) 
= Check(6) 
= 5. 

So we assign 

state +- Next (6) = 6. 

• if the character is a letter other than an "L" 
then its equivalence class is either 1, 2, 3, or 5. 
None of these values gives Check (1 +ec) = 5, 
so we will assign 

state +- Default(6) = 3. 

7 

For all of the values 1, 2, 3, and 5, 
Check(Base(3)+ec) = 3, so we then assign 

state +- Next (6+ec) = 8. 

• if the character is not a letter then it is in equiv
alence class 7. Then 

Check(Base(state)+ec) Check(1+7) 

so 

Now 

Check(8) 
3 

=I= 5. 

state +- De:t'aul t (8) = 3. 

Check(Base(3)+7) = Check(13) 
= 3 

so we assign 

state +- Next ( 13) = JAN. 

The transition table representation shown in Ta

ble 3 uses 56 array elements while the one in Fig
ure 4 uses 42, not an impressive savings. The savings, 
however, become significant as the set of rules grows 
larger. There are many subtleties involved in get

·ting a large amount of compression using Johnson's 
representation which we hope to discuss in a future 
paper. Both UNIX Lex and Software Tools Lex use 
Johnson's representation. The data tables they gen
erate are summarized in Table 5 and the relative sizes 
shown in Figure 11. Occasionally, the second imple

mentation of some piece of software improves on the 
original. We note in passing that the Software Tools 
Lex tables are smaller than the UNIX Lex tables in 
all cases and the reduction is more than 50% for large 
Lex inputs. 



Unix vs. Tools LEX Tnn;ition Table Sizes 

(Coiilpl.-ed) Table Slza U1lx 
0 

Tools 
~~-----------------------------------, 

Ill 

LEX fr1lut Flle 

Fig. 11: Compressed Table Sizes of Software Tools and Unix lex 

5. Conclusion 

One problem with writing efficient programs is 
that it's hard to write efficient scanners. · Software 

Tools Lex alleviates this problem by making scanner 
specification easy and by automatically writing scan
ners based on these specifications. Lex uses Finite 
Aut.omaton techniques to generate fast scanners and 
Johnson's representation to make these scanners com
pact. The result is that Lex provides a powerful way 
of writing very efficient scanners. 
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