Lawrence Berkeley National Laboratory

Recent Work

Title

THE EXCITATION OF UNNATURAL-PARITY STATES IN 24Mg,20Ne AND 16O BY INELASTIC a SCATTERING.

Permalink https://escholarship.org/uc/item/3z23p6hm

Author Reed, Mary.

Publication Date 1968-08-01

<u>eScholarship.org</u>

UCRL-18414

University of California

Ernest O. Lawrence Radiation Laboratory

THE EXCITATION OF UNNATURAL-PARITY STATES IN $^{24}\mathrm{Mg},$ $^{20}\mathrm{Ne}$ and $^{16}\mathrm{O}$ by inelastic a scattering

Mary Reed (Ph.D. Thesis) August 1968

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California

OCT 21 1968

LIBRARY AND DOCUMENTS SECTION

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

THE EXCITATION OF UNNATURAL-PARITY STATES IN 24 Mg,

 $^{20}\mathrm{Ne}$ and $^{16}\mathrm{O}$ by inelastic α scattering

Mary Reed .

(Ph. D. Thesis)

August 1968

UCRL-18414

THE EXCITATION OF UNNATURAL-PARITY STATES IN $^{24}M_{g}$,

 $^{20}\mathrm{Ne}$ and $^{16}\mathrm{O}$ by inelastic α scattering

-iii-

Contents

T

8

Absti	ract	· · · · · · · · · · · · · · · · · · ·
I.	Int	roduction
	A.	Inelastic α Scattering
	в.	Unnatural-Parity States 6
	C.	Previous Data
II.	Expe	erimental Procedures
	A.	Beam Optics
	Β.	Scattering Chamber
	C.	Targets
	D.	Detectors
	E.	Electronics
	F.	Data Analysis
	G.	Energy Resolution
III.	Expe	chinental Results
	Α.	24 Mg
	В.	²⁰ Ne
	С.	¹⁰ 0
	D.	Discussion
IV.	Cald	culations
	Α.	Compound Nucleus
	В.	Multiple Excitations
. V .	Cond	clusions
Ackno	wled	lgements
Apper	ndix	•••••••••••••••••••••••
Refei	ence	es

I. INTRODUCTION

An opportunity to study processes that are normally neglected in direct reaction models is found in the excitation of unnatural-parity states in even-even nuclei by inelastic α scattering. (An unnatural-parity state in an even-even nucleus is one in which the parity $\pi \neq (-)^J$, where J is the spin of the state. For example a 2- or a 3+ state would be of unnatural parity.) The study of the excitation of these states by α particles is particularly useful in the study of reaction mechanisms because the excitation is forbidden under the assumptions that are often made in direct reaction models -- a single scattering involving a central interaction with a welldefined transfer of angular momentum.¹ Spin and parity considerations forbid simple one-step direct interaction mechanisms. Therefore, if these unnatural-parity states are excited it must be by more complicated processes. Since in the excitation of natural-parity states (states in which $\pi = (-)^{J}$) both simple and complicated processes are involved, the study of unnaturalparity levels will yield a better understanding of inelastic scattering in general. The subject of this research is the study of the excitation of these states with the goal of understanding the reaction mechanisms involved.

Previous work²⁻⁸ has shown that the unnatural-parity 2- levels in ¹⁶0 and ²⁰Ne and the 3+ levels in ²⁴Mg and ²⁸Si are sometimes made with relatively large cross sections in inelastic scattering of α -particles, even though their excitation by simple single-step interactions is forbidden. The average differential cross sections are a few tenths of millibarns to a few millibarns per steradian. In fact, for large-angle scattering the magnitudes of the differential cross sections are about equal to those of the elastic and natural-parity states. These experimental cross sections and angular distributions have been interpreted by means of various reaction mechanism models. For example, some experimental results suggested that compound nucleus effects dominated the excitation while other experiments indicated a multiple excitation mechanism that seemed to explain all the data. In some cases the results suggested that competing reaction mechanisms were involved.

All of these previous experiments were carried out at incident α particle energies of 42 MeV or below. In the present series of experiments the bombarding energy range was increased in several steps to 80 MeV for 16 O and 20 Ne and to 120 MeV for 24 Mg, in order to gain further information of the means of excitation of unnatural-parity states.

-2-

A. Inelastic α Scattering

Inelastic α scattering is of particular interest as a spectroscopic tool for studying excited nuclear energy levels because of its special reaction properties. α particles are spinless projectiles. They are strongly absorbed by the nucleus and thus can lead to compound nucleus reactions. They can also participate in direct surface reactions. (A direct nuclear reaction is one in which the interaction between the projectile and the target takes place in the time necessary for the projectile to travel through the nucleus, or approximately 10⁻²² seconds.) A direct reaction can be contrasted with a compound nucleus reaction, in which the projectile enters the nucleus, shares its energy with the target nucleons, and then the nucleus reemits a particle. Since in direct reactions only one or a few of the degrees of freedom of the nucleus are altered, they are particularly useful in studying low energy nuclear states--states which differ from the ground state in one or a few simple ways.

If the excitation producing a certain state is a simple, one-step mechanism, the spin and parity of the state can often be determined from the angular distribution.⁹ For a α scattering at energies well above the Coulomb barrier, the angular distributions are characterized over a large part of the angular range by strong, regular oscillations which arise because α particles are strongly absorbed by the nucleus. The particles that are scattered must therefore have been involved in <u>surface</u> interactions, and the oscillations produced in the angular distributions are analogous to the interference effects seen when light is scattered from the edge of a black disk. A model of inelastic diffraction scattering based on these ideas has been developed by Drozdov¹⁰ and Inopin¹¹ and extended by Blair.⁹

In Blair's model⁹ the differential cross sections for the first few levels are as follows:

$$\begin{split} \frac{d\sigma}{d\Omega}(\text{elastic}) &= \frac{(\mathbf{k} \ \mathbf{R}_{0}^{2})^{2} \left[\frac{J_{1}(\mathbf{x})}{\mathbf{x}} \right]^{2}}{\frac{d\sigma}{d\Omega}(0 \rightarrow 0^{+})} &= \left(\mathbf{k} \ \mathbf{R}_{0}^{2}\right)^{2} \ \frac{\beta_{0}^{2}}{4\pi} \ J_{0}(\mathbf{x})^{2} \\ \frac{d\sigma}{d\Omega} \ (0 \rightarrow 2^{+}) &= \left(\mathbf{k} \ \mathbf{R}_{0}^{2}\right)^{2} \ \frac{\beta_{2}^{2}}{4\pi} \left\{ \frac{1}{4} \ J_{0}(\mathbf{x})^{2} + \frac{3}{4} \ J_{2}(\mathbf{x})^{2} \right\} \\ \frac{d\sigma}{d\Omega}(0 \rightarrow 3^{-}) &= \left(\mathbf{k} \ \mathbf{R}_{0}^{2}\right)^{2} \ \frac{\beta_{2}^{2}}{4\pi} \left\{ \frac{3}{8} \ J_{1}(\mathbf{x})^{2} + \frac{5}{8} \ J_{3}(\mathbf{x})^{2} \right\} \\ \frac{d\sigma}{d\Omega} \ (0 \rightarrow 4^{+}) &= \left(\mathbf{k} \ \mathbf{R}_{0}^{2}\right)^{2} \ \frac{\beta_{4}^{2}}{4\pi} \left\{ \frac{9}{64} \ J_{0}(\mathbf{x})^{2} + \frac{20}{64} \ J_{2}(\mathbf{x})^{2} + \frac{35}{64} \ J_{4}(\mathbf{x})^{2} \right\} \end{split}$$

where k is the wave number, $R_{\!_{O}}$ the effective radius, the β 's are deformation parameters, the J's are cylindrical Bessel functions and $x = kR\theta$, or more accurately $x = QR_0$, with $Q = |\vec{k}_i - \vec{k}_f|$. The excitation of 1- states by inelastic scattering is forbidden by selection rules. Figure 1 shows these angular distributions. At large angles the odd and even J's approach sines and cosines and thus give rise to different phases in the differential cross sections. If the maxima of the oscillations in the angular distributions for one level correspond to the maxima in another, the distributions are said to be "in-phase". If the maxima of one correspond to the minima of another, the distributions are "out-of-phase." All the positive parity levels will be "in-phase" with each other and "out-of-phase" with the negative parity levels. This is basically a small angle model: nevertheless it still gives good qualitative results even at fairly large angles. It also makes use of the adiabatic assumption. Q is taken to be the same for all energy levels. Thus if the energy of the level is not very small compared with the beam energy, the model will not be applicable without modification.

In the asymptotic region the phase behaviour of the angular distribution can sometimes be used to determine the parity of a level. Blair⁹ has pointed out that the differential cross section for a positive parity level produced by a single scattering will oscillate "out-of-phase" with the cross

Fig. 1. Blair's inelastic diffraction model cross sections.

-4--

section for elastic scattering, and a negative parity level will be "inphase" with the elastic. If the reaction mechanism is more complicated than a single scattering, these phase relationships will not hold. For light elements, the asymptotic region is not really reached, so the phase behavior will only approach that described above. Also in light elements these pure distributions are even less valid because the adiabatic assumption (here meaning degenerate energy levels) is not well met.

The angular momentum transfer involved in exciting a state can sometimes be determined by the behavior of the first few oscillations in the differential cross section. For a simple, single scattering on an eveneven target nucleus this angular momentum transfer will be equal to the spin of the state. In the special case of a medium weight or heavier target, $E_{\alpha} \geq 30$ MeV, and not too strong coupling between states, the first few oscillations in the differential cross section will behave as follows: The region where the first minimum in the cross section would be expected to fall will be filled for a 2+ state. For a 4+ state the first and second minima positions will be filled in with the cross section breaking into regular oscillations at larger angles. Similar differences at small angles occur between negative parity states of different spins.

Austern and Blair¹² have developed a generalized diffraction model that treats both single and double excitation. This theory is applicable if the projectile is strongly absorbed by the target nucleus and if the angular momentum transfers are much smaller than the angular momenta that are important for the partial wave expansions. Thus it should be a good model for lpha scattering at medium energies. However in this model the excitation of unnatural-parity states is forbidden to all orders. This model makes an assumption that leads to this selection rule. It approximates the successive steps of angular momentum transfer to the nucleus as taking place at the same angular location. For spinless projectiles it has the consequence that for double excitation as well as for single excitation, only states of natural-parity may be excited. This selection rule results from the fact that the momentum transfer in the first scattering is $|\vec{k}_i - \vec{k'}|$, where k_i is the initial wave number, and k' is the intermediate wave number. The momentum transfer in the second scattering is $|\vec{k'} - \vec{k_p}|$, where k_p is the final wave number. Since both scatterings occur at the same radius R, the degrees

-5-

of freedom allowed in the scattering are limited. The two angular momenta in the double scattering can add only in such a way as to give natural-parity states.

-6-

Rost and Austern¹³ and Bassel et al.¹⁴ have interpreted the inelastic scattering of medium energy α particles as a direct reaction using the distorted waves theory. They found that a deformed potential-well interaction based on the collective model of the nucleus gives results in good agreement with experiment. The parameters of the potential well are determined by fitting the elastic scattering. The multipole deformations are then obtained from the magnitudes of the inelastic cross sections. This model describes simple one-step processes. It treats the elastic scattering as the dominant process, and inelastic events are treated as perturbations.

It has been shown by Cohen¹⁵ and many others that inelastic α scattering preferentially excites states which involve collective motions of many nucleons. These are states which involve rotations or vibrations of the nuclear surface. The moment of inertia of the best rotational case is much less than that of a solid body implying that not all of the nucleons take part in the deformation or rotation. A rotation in this sense is a wave of nuclear matter moving around a central core of the nucleus. The type of vibration of interest here is a motion of the nuclear surface. McDaniels et al.¹⁷ have shown that vibrational levels are excited when a nucleus is bombarded with α particles. Experimentally Harvey et al.¹⁶ have shown that rotational levels in ¹⁵²Sm and ¹⁵⁴Sm are excited by inelastic α scattering.

In deformed even-even nuclei the first few levels will correspond to a rotational band having a level sequence 0+, 2+, 4+, etc. with energies approximately proportional to J(J + 1).¹⁸ Rotational bands can also be built on vibrational levels or levels involving the excitations of single nucleons.

B. Unnatural-Parity States

As was mentioned previously, states of unnatural-parity are of particular interest because they cannot be produced in inelastic α scattering by a simple single scattering interaction. This can be illustrated in the following way: The conservation of parity and angular momentum lead to the relationship

$$\pi_{\mathbf{f}} = (-)^{\mathrm{L}} \pi_{\mathbf{i}}$$

where the π 's refer to the parity of the initial and final states, and L is the angular momentum transfer. The total spin of the final nucleus, J_{f} , will be the vector sum of the transferred angular momentum and the spins of the incident particle and target nucleus,

$$\overline{J}_{f} = \overline{L} + \overline{J}_{\alpha} + \overline{J}_{t}$$

Both the α particle and an even-even target nucleus have 0+ (J) ground states. Therefore, $J_{\mu} = L$, and the parity of the final state will be

$$\pi_{f} = (-)^{J} f$$

giving a natural-parity state.

The cross sections of the unnatural-parity states that have been measured show that sometimes they are produced with fairly large amplitudes. How can this be explained? Eidson and Cramer¹ have pointed out that an unnatural-parity state could theoretically be produced by any mechanism involving the interplay of two different angular momenta. This can be illustrated in the following way. If L_1 and L_2 are the two transfers of angular momentum involved, for an α particle incident on an even-even target nucleus, the final spin and parity will be

$$\overline{J_{f}} = \overline{L_{l}} + \overline{L_{2}}$$
 and $\pi_{f} = (-)^{L_{l}+L_{2}}$

For example if $L_1 = 2$ and $L_2 = 3$, possible J_f values will be 5, 4, 3, 2 and 1, and the parity would be $(-)^5 = (-)$. In this way a 2- or a 4- unnatural-parity state could be produced.

Eidson and Cramer¹ have suggested several possible processes for the production of unnatural-parity states involving the coupling of two angular momenta:

(1) <u>Double scattering</u>. The two angular momenta would be the angular momentum transfers in the two scatterings. It has been found experimentally that for levels that are known to be made primarily by double excitation the envelope of the angular distribution falls off more slowly with scattering angle than that of the elastic angular distribution or that for a single excitation process. There is also a phase reversal for each simple excitation. (2) <u>Compound Nucleus</u> formation and decay. Here it would be the initial and final relative orbital angular momenta which are separated in time that could couple to produce the unnatural-parity state. Compound nucleus processes would be expected to give total cross sections and angular distributions that vary greatly with small changes in incident α -particle energy. (3) <u>A spin-orbit interaction</u>. In this case the coupling would be between the orbital angular momentum of the incident α particle and the spin of one or more of the target nucleons. For example a proton spin flip of $\Delta s = 1$ resulting from a change of orbital of the proton from $d_{5/2}$ to $d_{3/2}$ could couple with an orbital angular momentum $\ell = 1$ or 3 to produce a 2unnatural parity state in the following way:

 $\vec{\mathbf{J}}_{\mathbf{f}} = \vec{l} + \vec{s} = 2$ and $\pi_{\mathbf{f}} = (-)^{l} = (-)$.

(4) An exchange process, e.g. knock-out or target-stripping. Knock-out can be thought of as a coupling of the relative angular momentum of the knocked-out α particle with the angular momentum of the initial system to give the final unnatural-parity state. This would be expected to give a forward peaking in the angular distribution. For target-stripping it would be the angular momentum of the stripped core and α particle which couples with that of the initial system to produce the unnatural-parity state. A target stripping interaction would be expected to give backward peaking for the scattered α particles. Honda and Ui¹⁹ have discussed the exchange effects in the scattering of α particles by light nuclei. They found a weakly angle dependent contribution to the scattering amplitude from heavy particle stripping which would tend to fill in the valleys in the oscillations in the differential cross section and would cause the diffraction peaks to alternate in magnitude.

C. Previous Data

Until recently experimental results have been available at only a few incident α -particle energies, with the work being done at 42 MeV and below. A short summary of this previous work follows: The states of interest will be

2- at 8.875 MeV in ¹⁶0.

2- at 4.969 MeV in ²⁰Ne,²⁰ 3+ at 5.228 MeV in ²⁴Mg, 3+ at 6.27 MeV in ²⁸Si.²¹

(1) Braithwaite et al.² have studied ²⁴Mg between $E_{\alpha} = 15.0$ and 24.5 MeV. Their results show widely varying angular distribution shapes and large fluctuations in the excitation function indicating possible compound nucleus contributions.

(2) Eidson and Cramer¹ studied ²⁴Mg and ²⁸Si at 22.5 MeV incident α -particle energy. Their angular distributions indicated interference effects, suggesting contributions from both multiple excitation and exchange processes. (3) Bingham³ studied ²⁸Si at $E_{\alpha} = 16.2$ to 27.0 MeV and his results suggested that a knock-out mechanism may be important in the production of the unnaturalparity state.

(4) Kokame et al.⁴ studied all the levels at $E_{\alpha} = 28.5$ MeV. Their results indicate multiple excitation in the reaction mechanism.

(5) For ²⁴Mg Vincent, Boschitz and Priest⁵ at $E_{\alpha} = 42$ MeV found a diffraction pattern in the angular distribution and an enhanced cross section for large angle scattering, suggesting that exchange effects may play a role in this excitation. Recently, a theoretical analysis of their data leads them to consider a multiple excitation process.⁶

(6) Malmin et al.⁷ also studied the ²⁴Mg state at 40.175 MeV and found that the angular distribution had pronounced diffraction peaks consistent with the data of Vincent et al.⁵

(7) Work by Blair et al.⁸ on ¹⁶O suggests large compound nucleus contributions for $E_{\alpha} = 35.4$ to 41.0 MeV.

In all cases in this previous work to produce unnatural-parity states by α scattering, the angular distributions showed oscillatory behavior with periods approximately the same as those of the oscillations in the elastic and natural-parity state angular distributions, although the phase relationships were, in general, not clear or consistent at all angles. In order to gain further information on the mechanism of these reactions a study of the unnatural-parity levels in 24 Mg, 20 Ne and 16 O at higher α -particle energies was undertaken.

-9-

II. EXPERIMENTAL PROCEDURES

In these experiments the 88-inch Variable Energy Cyclotron at the Lawrence Radiation Laboratory in Berkeley was used to accelerate α particles to the desired energy.²²

A. Beam Optics

These experiments were done in the 36-inch scattering chamber. Figure 2 shows a layout of the cyclotron and beam transport system. The beam was extracted from the cyclotron and focused at a point midway between the cyclotron and switching magnet by adjusting the currents in a quadrupole doublet magnet. For the quadrupole doublets used in these experiments the first element was radially focusing and vertically defocusing, and the second element was radially defocusing and vertically focusing, giving an overall focusing effect in both planes. The beam was then bent through 57 degrees by the switching and analyzing magnet and focused at the analyzing slit. The switching magnet is a circular pole, uniform field magnet with normal entry and exit. A quartz plate was placed in the beam line at the analyzing slit position, and the fluorescent glow produced when the beam hit it was displayed on a television screen in the cyclotron control room. This made it possible to obtain a good focus at the analyzing slit. The slit was set to a width of approximately 0.060 inches allowing passage of a nearly monoenergetic beam (approximately $0.1\% \Delta E/E$).

The beam then went down the beam pipe through the concrete shielding into Cave 1. A radial focus was then made at the center of the scattering chamber by adjusting the currents in a second quadrupole doublet magnet. The fluorescence of a quartz plate was used to determine the quality of the focus at the target position. The beam was steered to the center of rotation of the scattering chamber by means of a very small correcting field in a magnet placed between the analyzing slit and the quadrupole lens.

The scattering chamber was aligned so that the centered beam fell upon the center of a split Faraday cup approximately four feet beyond the target position. The current readings on each side of the Faraday cup were balanced and held constant during the experiments to minimize any shifts in the beam

-10-

Fig. 2. Diagram of the 88-inch Cyclotron and Cave 1.

-11-

angle in passing through the target at the center of the scattering chamber. The effective source has the following characteristics:²³

Radial

73.5" upstream from quadrupole 1 (Q1) ~0.016" = 0.41 mm full width at half maximum intensity 0.034 radians full angle of divergence

Vertical

0.45" = 11.4 mm full height

~61" upstream from Q1

0.0088 radians full angle of divergence.

The beam leaves the cyclotron and is transported down a beam pipe to Q1.

Beam optics calculations are handled by matrix algebra.^{24,25} Multiplying the matrix for the beam transport element times the column vector representing the particle will give the new representation of the position and angle of the particle.

The quadrupole excitation ϕ is defined as

$$\phi = L \left((dB/dx)/B_{\rho} \right)^{1/2}$$

where Bp = momentum of particle charge of particle

and dB/dx = Field gradient in gauss/inch.

To account for the fringing field of the elements of the quadrupole doublet the magnetic field was assumed to extend one inch on either side of each element. For the switching magnet the field was assumed to extend 2.5 inches beyond the physical pole edge on either side.

The matrices representing the first quadrupole doublet, Ql, with the quadrupole excitations $\phi_1 = 0.667$ and $\phi_2 = 0.580$ are, in the radial plane (r)

M _r =	.0014	28.40
	0351	1.531

and in the vertical plane (v)

 $M_{v} = \begin{pmatrix} 1.882 & 30.92 \\ -.0143 & .2964 \end{pmatrix}$

The matrices for the switching magnet are

Ŷ

UCRL-18414

 $M_{r} = \begin{pmatrix} .5446 & 34.64 \\ -.0203 & .5446 \end{pmatrix}$ $M_{v} = \begin{pmatrix} 1 & 41.09 \\ 0 & 1 \end{pmatrix}$

and

The overall matrices from the effective sources to the focus near the analyzing slit are

.1974	1.906	8	M r	
.5267	.0382			
.260	-1.773	=	M _v	
5616	0143			

and

and

The top right hand elements should be zero for a focus; however these calculations were carried out by hand and represent only an approximate fit to the physical situation. This accounts for the small, but non-zero values in the matrices. These elements give a magnification of 1.906 in the radial plane and -1.773 in the vertical plane.

The matrices for the quadrupole doublet in Cave 1, Ql1, with the excitations $\phi_1 = 0.494$ and $\phi_2 = 0.496$ are

$$M_{r} = \begin{pmatrix} .4385 & 29.88 \\ -.0098 & 1.463 \end{pmatrix}$$
$$M_{v} = \begin{pmatrix} 1.456 & 29.83 \\ -.0102 & .4777 \end{pmatrix}$$

The matrices from the focus near the analyzing slit to the focus in the scattering chamber are

M _r =	-1.379	290
	0098	7273
M _v =	584	.700
	0102	-1.700

The overall matrices from the source to the focus in the scattering chamber are

M _r =	-2.639	4249
	0465	3850
M _v =	1.025	5449
	.0424	.9520

These give magnifications at the target of -2.639 in the radial plane and 1.025 in the vertical plane. Figure 3 shows the results of the beam optics calculations.

In phase space the particles can be characterized by an emittance, e, which is equal to 4rr' in the radial plane, where r is the particle's distance from the optic axis and r' is the angle it makes with the axis. In the vertical plane the emittance is 4vv' where the v's have similar definitions. At the source we have

 $e_r = 13.8$ mm-mradians.

and

$$e_{rr} = 100.7 \text{ mm-mradians}.$$

Using a radial collimator width of 3/4 inch 65 inches from the effective radial source and a vertical collimator 1 inch in height 110 inches from the radial source gives the radial emittance at the target

$$e_{r} = 3.17 \text{ mm-mradians.}$$

The vertical collimator does not limit the beam so its emittance remains the same as that at the source

$$e_{-} = 100.7 \text{ mm-mradians}.$$

The energy resolution of the beam can be calculated using the formula $^{24}_{\mbox{mula}}$

$$\frac{\Delta E}{E} = \frac{2MS}{R(1 - \cos \theta) + d \sin \theta}$$

where M is the magnification from the effective source to the analyzing slit, S is the radial width of the effective source, R is the radius of curvature of the trajectory in the analyzing magnet, θ is the angle of

é ti

deflection through the magnet and d is the distance from the magnet to the analyzing slit. Substituting in the numbers used in these experiments gives

or

$$\frac{\Delta E}{E} = \frac{2 \times 1.906 \times .016}{41.3(1 - .5446) + 125 \times .8390} = 4.931 \times 10^{-4}$$
$$\frac{\Delta E}{E} = .0493\%$$

This gives 25 keV resolution for a 50 MeV α -particle beam. Experimentally, a resolution better than 0.08% has never been observed for the Cave 1 beam. Almost certainly the discrepancy is due to the large uncertainty in the width of the effective radial source.

B. Scattering Chamber

The scattering chamber was 36 inches in diameter and approximately 12 inches high. A diagram of it and associated equipment is shown in Figure 4. Either a solid target holder or a gas target could be placed at the center of the chamber. The detectors were in boxes that were clamped to a circular ring on the floor of the chamber which rotated about the center of the chamber. The detector boxes were thermally connected to a freon refrigeration system with the expansion tube in the scattering chamber. The compressor and the remainder of the system were outside the chamber, and the freon was fed into the expansion tube by flexible hoses. The target height and angle and the counter angle could be changed by remote controls from the counting area. The monitor detector was placed in a port in the equatorial plane at an angle of 20° to the beam direction. A foil wheel in the beam line between the scattering chamber and the Faraday cup was used to determine the beam energy by measuring the ranges of the α particles in aluminum. The range was taken to be the thickness of aluminum where the beam transmitted through the absorbers was one-half of its maximum value. The range-energy tables of Williamson, Boujot and Picard²⁶ were used. The tables were considered accurate to 2%.

C. Targets

For the ²⁴Mg experiments the targets were self-supporting foils of

XBL688- 3768

Fig. 4. Diagram of the 36-inch scattering chamber and equipment.

13

41

isotopically enriched (to 99.96%) ²⁴Mg from .4 to 1.6 mg/cm² thick prepared at our laboratory by evaporation techniques. The separated isotope was obtained from Oak Ridge. For the ²⁰Ne and ¹⁶O experiments gas targets were used. The neon was isotopically enriched (99.2% ²⁰Ne), obtained from Mound Laboratories, and the oxygen was reagent grade natural oxygen (99.8% ¹⁶O), obtained from the Linde Company. The gas target assemblies were cylindrical. They consisted of a stainless steel frame surrounded by 0.0001" thick havar foil.* The pressure of the gas in the cell could be controlled from outside the scattering chamber. Typically a pressure of 1/3 atmosphere was used. Four solid targets or one gas target and one solid target could be placed in the chamber at one time. These different targets could be placed in the beam at the center of the chamber by means of remote controls in the counting area. The major impurities in the gases were carbon and oxygen; however, their peaks in the energy spectra could be separated from the target peaks at most angles.

D. Detectors

The angular distributions of the α particles scattered from the target were measured by using lithium-drifted silicon detectors.^{27,28} They were mounted on a table in the chamber which could be rotated to any desired angle. A single collimator near the detector was used in the solid target experiments, while a double collimator was used with the gas target system. The detectors were cooled to -25° C during the experiments with the freon refrigeration system. Lithium-drifted silicon detectors produce a pulse proportional to the energy of the particle they absorb; thus they give a measure of both the scattering angle and the energy of the particle. The detectors used varied in thickness from 1.5 - 3.0 mm depending on the energy of these experiments at our laboratory.²⁹ Two detectors 20° apart were used simultaneously in the chamber for the gas target experiments, and four detectors 2° apart were used for the ²⁴Mg experiments.

*Hamilton Watch Company

-18-

E. Electronics

Figure 5 is a block diagram of the electronics system. The pulses produced in the detector were amplified first by a pre-amplifier inside the scattering chamber, then they were amplified further by a linear amplifier. They were then put through a biased amplifier where the bottom of the signal was cut off and they were amplified five times, increasing the sensitivity of the system. The linear amplifier was an $11 \times 1980P$ -2 Goulding-Landis system.³⁰ Since more than one detector was in use, the signals were fed through a mixer and then routed into one of the 1024 channel groups of a 40% Channel Nuclear Data 160 pulse height analyzer. Thus four energy spectra (data for four angles) could be measured simultaneously. The dead time in the detector and electronics system was measured by feeding pulses from a pulser into each preamplifier. The pulser was triggered by the monitor detector, and the percent dead time was determined by summing the number of counts in the pulser peaks in the spectrum and comparing this to the number of pulses put into the system, recorded by a scaler.

F. Data Analysis

The spectra were then transferred from the pulse height analyzer into a small computer -- a PDP-5 manufactured by Digital Equipment Corporation. The memory size was 8000 12-bit words. Once the data were transferred to the computer the pulse height analyzer was free to accumulate further data while initial data reduction was carried out with the computer. A Cal-Comp plotter was used in connection with the computer to plot the energy spectra. The computer also displayed the spectra on an oscilloscope screen, and a light pen was used to sum the counts in the individual peaks and to type out the number of counts in the separate channels. The differential cross sections in the center-of-mass system were obtained from the number of counts in an individual peak and the number of microcoulombs collected in the Faraday cup by using the formula

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{C.M.}} = \frac{\mathrm{counts}}{\mu\mathrm{coulomb}} \times \mathrm{J} \times \mathrm{G} \quad \mathrm{mb/sr}$$

where J is the Jacobian for the transformation from the laboratory to the

X B L 688 - 3769

Fig. 5. Block diagram of electronics system used in α -scattering experiments.

-20-

center-of-mass system and G is the geometry and target thickness factor. (1) Solid target. The geometry factor is given by

$$G = 5.32 \times 10^{-7} \left(\frac{1}{\Omega}\right) \frac{A \cos \phi}{T}$$

where Ω is the solid angle of the counter collimator, A is the atomic weight of the target, ϕ is the angle of the target with respect to the beam direction, and T is the target thickness in mg/cm².

(2) Gas target. The geometry factor is given by

У

$$G = 3.32 \times 10^{-6} \frac{(t + 273)(l_1 + l_2)^2 \sin \theta}{\Pr w_1 w_2 h_2 (1 + l_1/l_2)}$$

where t is the gas temperature in degrees Centigrade, l_1 is the distance from the center of the gas target to the rear of the front collimator, l_2 is the distance from the rear of the front collimator to the front of the counter collimator, θ is the laboratory scattering angle, P is the pressure in cm of mercury, n is the number of target atoms per molecule, w_1 and w_2 are the widths of the front and rear collimators and h_2 is the height of the rear collimator.

The approximations made in the derivation of the gas target geometry factor are (1) that the widths of the two collimators are approximately equal, (2) that the lengths l_1 and l_2 are approximately equal and much larger than the collimator widths and thicknesses, (3) that the scattering angle θ is much greater than $\tan^{-1} \frac{w_1 + w_2}{2 l_0}$ which is itself greater than

 $\tan^{-1} \frac{w_2 - w_1}{2\ell_2}$ and that (4) $\ell_1 \sin\theta$ is much greater than $\ell_1 \cos\theta$.³¹

Using these approximations in the exact formula reduces it to that given above.

Fortran programs were used to calculate these differential cross sections on the computer. If the peaks were not fully resolved an IBM-7094 computer program³² was used to fit Gaussian peaks to the components and obtain the number of counts in each peak. By plotting the differential cross sections at the various angles, angular distributions of the scattered α particles were obtained.

G. Energy Resolution

There are many factors which influence the energy resolution obtained in an experiment. Moss and Ball have discussed most of them and given formulas for their calculation.³³ The factors which were taken into account in these calculations were the spread in the beam energy obtained from the cyclotron (see section IIA), beam convergence and beam width at the target, counter collimator slit width, target thickness, energy straggling in the target, multiple scattering and electronic noise. Of these beam convergence, beam width, collimator slit width and target thickness depend upon kinematics. For thin solid targets the contributions from target thickness introducing an angular spread at the detector is negligible.

Comparisons of theoretical contributions to energy resolution and experimentally determined values for both 50 and 120 MeV α particles are given in Table 1. In calculating the energy spread of the beam the best experimental value for the resolution, 0.08%, was used. The contributions from the different sources were added as the sum of their squares. The square root was then assumed to be the theoretical value. Since all of the contributions are not gaussian this method introduced errors in the calculated energy resolution. The rather large discrepancies found between the theoretical values and the experimental values could arise from several factors. In the 120 MeV experiment two 3 mm silicon detectors in series were used to measure the energy of the scattered α particles. The particles had to pass through the dead layer of the first counter to reach the sensitive region of the detectors. The dead layer has been estimated to be 0.015 - 0.030 mm in thickness. Undoubtedly the energy straggling and multiple scattering in this dead layer are the major factors in the large discrepancies between experimental and theoretical energy resolution for the 120 MeV case. The quality of the beam in a particular experiment may not have been as good as the best obtained value. The beam width may have been larger than the calculated value. The 120 MeV experiment was done in a different beam line. An additional bend and a closer quadrupole doublet magnet gave a larger value for the beam convergence and a correspondingly larger energy spread. The counting rate may have been high enough to give pile-up of pulses in the electronics system and subsequent loss of

1	2	3	4
50	50	120	120
90	45	90	60
1.62	2.29	1.62	1.8
30	76	30	76
40	40	96	96
36	57	87	182
24	51	58	123
3 8	60	91	144
~0	~0	~0	~0
53	63	53	57
17	33	17	30
50	50	70	70
103	136	191	295
1.15	162	305	456
	1 50 90 1.62 30 40 36 24 38 ~0 53 17 50 103 115	1 2 50 50 90 45 1.62 2.29 30 76 40 40 36 57 24 51 38 60 ~0 ~0 53 63 17 33 50 50 103 136 115 162	12 3 5050120904590 90 4590 1.62 2.29 1.62 30 76 30 40 40 96 36 57 87 24 51 58 38 60 91 -0 -0 -0 53 63 53 17 33 17 50 50 70 103 136 191 115 162 305

IJ

Table I. Contributions to energy resolution.

resolution. The detectors used could have been of poor quality. A bad detector can cause as many as several hundred keV spread in the peaks in an energy spectrum.

III. EXPERIMENTAL RESULTS

A. ²⁴Mg

The reaction 24 Mg(α, α') 24 Mg* was studied at α -particle energies of 50.0, 65.7, 81.0 and 119.7 MeV. Figure 6 shows the energy level diagram for the low-lying states of ²⁴Mg.^{34,35} A typical energy spectrum for the 50 MeV case can be seen in Figure 7. The peaks can be seen to be fairly well resolved. The energy resolution is 180 keV full-width-at-half-maximum. The experimental angular distributions for the lowest-lying energy levels at the various energies are shown in Figures 8 to 11. The 50 MeV data of Hendrie et al.³⁶ are included. They used a thin target (~350 μ g/cm²) and were able to separate the 2+, 4+ doublet at 4.12 and 4.23 MeV. In the experiments described here a thick target (1.62 mg/cm^2) was used to obtain the necessary statistics for the weakly excited unnatural-parity 3+ state. The cross sections for scattering particles of the various energies to the elastic, first 2+, second 4+ and unnatural-parity 3+ are shown in Figures 10-13 plotted versus momentum transfer times the interaction radius, $|\vec{k}_{i} - \vec{k}_{e}|$ \times R, or QR. In Blair's formulas⁹ for the differential cross sections for single excitation α scattering, the argument of the Bessel function is QR. (See section II.A.) The oscillatory behavior of the cross section is determined completely by the Bessel functions. If the differential cross sections to make the same final state for different α particle bombarding energies are plotted versus QR, the oscillations in the cross section should lie at the same values of QR. Thus compatible curves will be obtained. In this way different incident α -particle energy results can be compared directly. Figure 12 shows that the elastic angular distributions line up very well when plotted in this way. Figure 13 shows that similar agreement is obtained for a natural-parity level that is made primarily by a simple singlestep interaction. For a 4+ state which is expected to be made primarily by double excitation the oscillations also line up very well as can be seen in Figure 14. However, for the 3+ state, Figure 15, no such agreement is found. The 42 MeV data of Vincent, Boshitz and Priest⁵ are also included here. It can be seen that the rather pronounced large-angle oscillations at 42 MeV tend to become damped out and then two very broad peaks appear

-26-

XBL688-3770

Fig. 6. ²⁴Mg energy level diagram.

X

s.

ď

Fig. 7. ${}^{24}Mg(\alpha, \alpha'){}^{24}Mg^*$ energy spectrum for $E_{\alpha} = 50$ MeV.

ð

Fig. 10. ${}^{24}Mg(\alpha, \alpha'){}^{24}Mg^*$ 81 MeV angular distribution.

Fig. 11. ${}^{24}Mg(\alpha, \alpha'){}^{24}Mg^*$ 119.7 MeV angular distribution.

-31-

Fig. 12. ${}^{24}Mg(\alpha, \alpha'){}^{24}Mg^*$ elastic angular distributions plotted versus QR.

Fig. 14. ${}^{24}Mg(\alpha, \alpha'){}^{24}Mg$ second 4+ angular distributions versus QR.

-34-

UCRL-18414

5

X BL689-3980

-35-

UCRL-18414

XBL688-3782

Fig. 17.
$${}^{20}\text{Ne}(\alpha, \alpha'){}^{20}\text{Ne}^*$$
 energy spectrum.

Fig. 18. 20 Ne(α, α') 20 Ne 33 MeV angular distributions.

÷

0

-40-

UCRL-18414

Fig. 19. 20 Ne(α, α') 20 Ne 50 MeV angular distributions.

XBL689-3976

-42-

Fig. 22. ${}^{20}\text{Ne}(\alpha, \alpha'){}^{20}\text{Ne}^*$ 2+ angular distributions versus QR.

-43-

UCRL-18414

_44.

Fig. 23. $Ne(\alpha, \alpha^{*})^{20}Ne^{*}$ 2- angular distributions versus QR.

-45-

X BL688 - 3778

0

Fig. 24. ¹⁶0 level diagram.

0+.

0⁸8

UCRL-18414

XBL688-3815

Fig. 25. ¹⁶0 energy spectrum.

-46-

UCRL-18414

Fig. 26. $16_{0(\alpha,\alpha')} = 50$ MeV angular distributions.

XBL688-3819

Fig. 27. ${}^{16}O(\alpha, \alpha'){}^{16}O^*$ 80.7 MeV angular distributions.

UCRL-18414

Fig. 28. $16_{0(\alpha,\alpha')}16_{0}^{*}$ elastic angular distribution versus QR.

-49-

Fig. 29. $16_{0(\alpha,\alpha')} = 0^*$ 3- angular distribution versus QR.

-50-

ġ.

Fig. 30. ${}^{16}0(\alpha,\alpha^{*}){}^{16}0^{*}$ 2- angular distribution versus QR.

-51-

the cross sections show behavior very similar to that found for naturalparity states.

D. Discussion

The low-lying states of ²⁴Mg can be interpreted as members of two rotational bands. The first 2+ and 4+ levels are described as members of the ground state rotational band. Kuehner and Almquist⁴¹ used coincidence γ -ray spectra to locate the high spin members of the collective bands in ²⁴Mg by the reaction ¹²C(¹⁶0, $\alpha\gamma$)²⁴Mg and ²⁵Mg(³He, $\alpha\gamma$)²⁴Mg. Their results suggested that the 8.12 and 13.2 MeV levels are the 6+ and 8+ members of the ground state rotational band. They found that the levels at 8.81 and 9.52 MeV are the 5+ and 6+ members of the K = 2 rotational band based on the 2+ level at 4.23 MeV. The unnatural-parity 3+ at 5.22 MeV is the second member of this band. Further evidence for the existence of rotational bands in ²⁴Mg has been put forth by Cohen and Cookson⁴². They found that the ground state and first two excited states obey the relationship

 $E_{T} = AJ(J + 1) - B(J(J + 1))^{2}$

with A = 237 keV and B = 1.56 keV. They also found that the observed decay modes indicate that the band mixing is less than about 2%.

Litherland et al.⁴³ divided the low-lying energy levels of ²⁰Ne into several rotational bands by using the relationship

$$E_{T} \propto J(J + 1).$$

The unnatural-parity 2- level is the first member of a K = 2 negative parity rotational band.

Brink and Nash⁴⁴ have classified the low-lying excited states of ¹⁶O by the SU3 coupling scheme. The O+ state at 6.06 MeV and the 2+ state at 6.91 MeV are interpreted as being the two lowest-lying states of a rotational band. The 3-, 1- and 2- states at 6.14, 7.12 and 8.87 MeV are classified as a rotational band strongly distorted by a decoupling effect. Alternatively, the unnatural-parity state at 8.87 MeV is described in terms of the shell model as a $(p_{1/2}^{-1} d_{5/2})_{2-}$ configuration.⁴⁵

Another indication of the degree of collectively of a nucleus is the

value of the reduced transition probability, $B(E2)/e^2$, for the excitation of the first 2+ level. These $B(E2)/e^2$ values are related to the deformation parameter for the nucleus by the formula⁴⁶

$$B(E2)/e^2 = \beta_2^2 \left[3ZR_0^2/4\pi \right]^2.$$

Table 2 gives the values for the reduced transition probabilities and the deformation parameters for the nuclei of interest here. Values of the $B(E\lambda)/e^2$'s and the B_{λ} 's for some of the other low-lying levels are also included here. The values for both $B(E2)/e^2$ and β_2 for 16 O are much smaller than those of 24 Mg and 20 Ne. These results are in accord with the idea that 20 Ne and 24 Mg are highly deformed nuclei, while 16 O is close to spherical in its ground state.

A possible mechanism is multiple excitation. The small slopes of the envelopes of the experimental angular distributions are indicative of this process, which would be expected to be enhanced in a deformed nucleus where the coupling strengths and $B(E\lambda)$'s between levels are quite large. Since ¹⁶O is nearly spherical in its ground state and has small $B(E\lambda)$ values, while ²⁴Mg and ²⁰Ne are deformed nuclei, a multiple excitation process would be expected to differentiate between the two cases.

	Level	Spin	$\frac{1}{e^2}$ fermi ^{2λ}	β _λ
160	6.923	2+	2.15 ± .54 ^a	0.084
	6.131	3-	630 [°]	
20 _{Ne}	1.63	2+	480 ± 90 ^a	0.87
	4.25	4+	56700 ^b	0.10
	5.63	3-	3150 ^b	0.23
	7.17	3-	3150 ^b	0.23
24 Mg	1.368	2+	510 ± 80 ^a	0.65

Table II. Values for the reduced transition probabilities and deformation parameters.

. .

IV. CALCULATIONS

Calculations assuming the compound nucleus and multiple excitation mechanisms have been carried out for the 3+ state in 24 Mg at the various α -particle energies. No theory has yet been formulated for the spin-flip mechanism.

A. Compound Nucleus

A Hauser-Feshbach computer code ${}^{47-49}$ was used to calculate differential cross sections for the ${}^{24}Mg(\alpha,\alpha'){}^{24}Mg^*$ reaction assuming the compound nucleus mechanism. In these calculations it is assumed that the compound nucleus is sufficiently excited so that the statistical model may be applied. Only a few levels of the residual nucleus are assumed to be excited. In this case the angular distributions will be anisotropic and symmetric about 90°.

The scattering process can be considered in two parts, first, the formation of the compound nucleus by the incoming projectile and the target nucleus, and then the decay of the compound nucleus by particle emission. The compound nuclear state exists long enough for the energy of the incident particle to be shared with the target nucleons.

The Hauser-Feshbach integrated cross section 47 is calculated as follows:

$$\sigma = \frac{\pi A_0}{k^2 (2J_1 + 1)(2s_1 + 1)}$$

where

$$\mathbf{A}_{0} = \sum_{\mathbf{J}\pi} \frac{(2\mathbf{J}+1)}{\mathbf{D}_{\mathbf{J}\pi}} \left[\sum_{\ell_{1}\mathbf{j}_{1}} \mathbf{T}_{\ell_{1}\mathbf{j}_{1}} \right] \left[\sum_{\ell_{2}\mathbf{j}_{2}} \mathbf{T}_{\ell_{2}\mathbf{j}_{2}} \right]$$

and

$$D_{J_{\mathcal{T}}} = \sum_{k, \ell_k, j_k} T_{\ell_k j_k}.$$

The subscript k = 1 refers to the incoming channel and k = 2 to the observed outgoing channel. J is the compound nucleus spin, s is the particle spin, and $T_{\ell_k j_k}$ is the penetrability in channel k for the partial wave ℓ_k and the

UCRL-18414

total spin j_k .⁵⁰ $D_{J\pi}$ is the sum over all penetrabilities with subscripts which can be coupled to form a compound state with spin J and parity π . The penetrability $T_{\ell_k j_k}$ is the probability that the particle of angular momentum ℓ_k enters into the nucleus forming a compound system. The influence of the potential barrier, centrifugal and Coulomb, is included in the penetrability. The formula for $T_{\ell_k j_k}$ is

$$\mathbb{T}_{\ell_{k}j_{k}} = \frac{4\rho X |A_{\ell}|^{-2}}{X^{2} + (2\rho X + \rho X^{2} |A_{\ell}|^{2}) |A_{\ell}|^{-2}}$$

where $\rho = kR$ and X = KR and the incident wave has the form e^{ikz} . While inside the nucleus the wave is of the form e^{iKr} , where K is the wave number corresponding to the kinetic energy in the interior of the nucleus, $K \approx 10^{13}$ cm⁻¹. Also $A_{\ell} = G_{\ell} + iF_{\ell}$ where F_{ℓ} is the regular coulomb wave function and G_{ℓ} is the irregular wave function, and A_{ℓ}^{\prime} is the derivative of A_{ℓ} with respect to kr.

The differential cross section is given by

$$\frac{d\sigma}{d\Omega} = \frac{1}{4k^2(2J_1+1)(2s_1+1)} \sum_{\nu} A_{\nu} P_{\nu}(\cos \theta)$$

where

$$\mathbf{A}_{v} = \sum_{\mathbf{J}\pi} \frac{(2\mathbf{J}+1)}{\mathbf{D}_{\mathbf{J}\pi}} \left[\sum_{\ell_{1}j_{1}} \beta_{v}^{j_{1}s_{1}} (\ell_{1}j_{1}J) \mathbf{T}_{\ell_{1}j_{1}} \right] \left[\sum_{\ell_{2}j_{2}} \beta_{v}^{J_{2}s_{2}} (\ell_{2}j_{2}J) \mathbf{T}_{\ell_{2}j_{2}} \right]$$

The $\beta_v^{J_k}{}^{s_k}(\ell_k j_k J)$'s are angular momentum coupling coefficients which are calculated by means of a recursion relation for Racah coefficients and an explicit expression for Clebsch-Gordan coefficients. The $P_v(\cos \theta)$ are the Legendre Polynomials.

The calculations were carried out with the Fortran computer program Liana written by W. R. Smith⁴⁹ which was modified for the Control Data Corporation-6600 computer. Twenty-five open channels were assumed for the nuclear reaction. These included the (α,p) , (α,n) , $(\alpha,^{3}\text{He})$, (α,t) and (α,α') reactions to the first five excited states of the product nuclei. Figure 31 shows the results for the 3+ state in ²⁴Mg at $E_{\alpha} = 50$ MeV. The

Fig. 31. ${}^{24}Mg(\alpha,\alpha'){}^{24}Mg^*$ 3+ state with compound nucleus cross section.

calculated number of channels that should be open at this excitation energy for the decay of the compound nucleus is 10^6 . This number was obtained by integrating the formula for level density⁵¹

$$w(E) = C e^{2\sqrt{aE}}$$

where C and a are constants with the values 0.5 and 0.45 MeV⁻¹ for the 24 Mg case. The average number of energy levels with energies up to the excitation energy of the compound nucleus in a nucleus with atomic weight equal to approximately 24 was calculated to be 1.7×10^5 . The channels considered included the emission of several particle types. Thus the number of open channels for particle emission by the compound nucleus is approximately 10^6 . The actual cross section to any given state should therefore be much less than that calculated using only 25 open channels. The small calculated cross sections indicate that this mechanism does not play an important role in the excitation of this unnatural-parity state at 50 MeV. Also the relatively smooth transition in the shape of the QR plot with increasing energy is indicative that the compound nucleus mechanism is not important. Direct reactions for small changes in incident particle energy.

The number of open channels in the scattering of α particles from ²⁰Ne and ¹⁶O is of the same order of magnitude as those for ²⁴Mg. Even if this number is overestimated, it is still so large that the compound nucleus mechanism should play a very small role in the excitation of states at α -particle energies of 50 MeV or greater.

B. Multiple Excitations

The multiple excitation mechanism was investigated by means of a coupled-channel computer code written by Glendenning.⁵² The coupled-channel formalism corresponds to the physical situation in which a nuclear level is produced by both single excitation, if allowed, and all the possible combinations of multiple excitations, both nuclear and Coulomb.⁵³ For example, the 2- states in ¹⁶O and ²⁰Ne may be made by l = 2 plus l = 3 double excitation, while the 3+ in ²⁴Mg may be l = 2 plus l = 2 excitation, since quadrupole and octupole transitions would be expected. Coupled-channel

-58-

calculations have been carried out for the deformed nucleus ^{24}Mg .

For the purpose of this calculation, the low-lying states of 24 Mg are assumed to belong to a ground state (K = 0) rotational band and to a second band based on a static non-axially symmetric deformation. This second band is usually described as a rotational band based on a quadrupole γ -vibration.⁴¹ However Glendenning's code treats K as a good quantum number, as it should for a vibration but should not for a non-axially symmetric deformation. Since α -scattering differential cross sections and angular distributions are determined almost entirely by the coupling strengths and by the angular momentum transfers respectively, it is quite unlikely that this unusual and self-inconsistent model used for the levels of the second rotational band will introduce more than minor errors.

The nucleus is assumed to be a perfect rotor. The wave functions are taken as an internal nuclear part, which is the same for all members of the same rotational band, and a D function which describes the state of rotation of the nucleus.⁵⁴ The model assumes the scattering is from a nonaxially symmetric deformed complex well. The calculation is an exact solution of the Schrödinger equation within the number of channels considered. The coupled channel formalism is not as restricted as the Austen-Blair Model, and the excitation of unnatural parity states is allowed to second and higher order.

The physical process involved in exciting rotational states in deformed nuclei is an interaction with the part of the nuclear field arising from the deformation. The scattering problem is defined by the Schrödinger equation

$$(H - E) \Psi (\overline{r}, \overline{A}) = 0$$

The solution will be in the form of an expansion in terms of the nuclear wave functions $\Phi_{\alpha J}(\vec{x})$, where

$$(H_{A} - E_{\alpha J}) \Phi_{\alpha J}(\vec{A}) = 0$$

and H_{Λ} is the nuclear rotor model Hamiltonian.

Let Ψ be the wave function of the particle. For a particular channel with total angular momentum I and parity π the wave function will be -60-

 $\phi = \left[\Psi \Phi_{\alpha J} \right]_{M}^{T}$

Let c denote the collection of quantum numbers which define the intrinsic state of the nucleus and particle and their relative angular momenta before the collision, and let c' denote some other state of intrinsic or relative motion resulting from the collision. The solution for the Schrödinger equation will be

$$\Psi(\vec{r},\vec{A}) = \frac{1}{r} \sum_{c'} u_{c'}(r) \phi$$

where u(r) is a radial wave function.

Inserting Ψ into the Schrödinger equation gives a set of coupled equations for each channel c' for the radial wave functions of the scattered particle.

$$(\mathbb{T}_{c'} + \mathbb{V}_{c'c'} - \mathbb{E}_{c'}) u_{c'}(r) = -\sum_{c'' \neq c'} \mathbb{V}_{c'c''} u_{c''}(r)$$

where

$$T_{c} = \frac{\hbar^{2}}{2m} \left(-\frac{d^{2}}{dr^{2}} + \frac{\ell(\ell+1)}{r^{2}} \right)$$

and

$$E_c = E - E_{\alpha J}$$

when E is the bombarding energy. Also

$$\nabla_{\mathbf{c}^{\dagger}\mathbf{c}^{\prime\prime}} = \langle \phi_{\mathbf{c}^{\dagger}} | \nabla(\vec{\mathbf{r}}, \vec{\mathbf{A}}) | \phi_{\mathbf{c}^{\prime\prime}} \rangle$$

To make the number of equations finite, consider only those terms corresponding to the lowest-lying states of the target nucleus. When certain boundary conditions are met the set of coupled equations can be solved. They are (1) each u_c must vanish at the origin and (2) in the exterior region, where the nuclear potentials have fallen to zero, the equations become uncoupled

$$u_c \rightarrow \alpha F_c + \beta G_c$$

where F and G are the regular and irregular Coulomb functions. Instead of F and G the combinations of these functions which behave asymptotically like outgoing and incoming spherical waves, $\mathbf{O}_{\textit{l}}$ and $\mathbf{I}_{\textit{l}}$, are used.

$$\mathbf{I}_{\ell}^{\star} = \mathbf{O}_{\ell} = \mathbf{G}_{\ell} + \mathbf{i}\mathbf{F}_{\ell}$$

In the channel c there are both incoming and outgoing spherical waves at infinity, corresponding to the fact that there is an incident wave in this channel. In all other channels there are only outgoing waves.

$$u_{c}$$
, $\rightarrow \delta_{c'c} I_{c} - \left(\frac{k_{c}}{k_{c'}}\right)^{1/2} S_{c'c} O_{c'}$

where $S_{c'c}$ is the scattering matrix element. Because the integration had to be started at the origin, in general the integrated solutions will have both incoming and outgoing waves in all channels at infinity. Therefore a linearly independent set of solutions must be generated. Number the various channels c' by 1, 2, ..., N with 1 the target channel c. Place 2 subscripts on each solution, u_{kp} where k is the channel and p is the boundary condition with respect to which the system is solved. By solving the system N times with boundary conditions p = 1, ..., N gives N distinct sets of solutions, some linear combination of which satisfies the required boundary conditions at an arbitrary exterior point R. The linear algebraic equations are

$$a_{1}u_{11} + a_{2}u_{12} + \cdots + a_{N}u_{1N} + S_{1}u_{1} + 0 + \cdots + 0 = I_{\ell_{1}}$$

$$a_{1}u_{21} + a_{2}u_{22} + \cdots + a_{N}u_{2N} + 0 + S_{2}u_{\ell_{2}} + \cdots + 0 = 0$$

$$\vdots$$

$$a_{1}u_{N1} + a_{2}u_{N2} + \cdots + a_{N}u_{NN} + 0 + \cdots + S_{N}u_{\ell_{N}} = 0$$

where all functions are evaluated at R. These equations and their derivatives give 2N equations which can be solved for the a's and the S's, the scattering matrix elements. Thus we have for the asymptotic behavior of the wave function for one channel

$$\Psi \rightarrow \frac{1}{r} \sum_{\mathbf{c}'} \phi_{\mathbf{c}'} \left\{ \delta_{\mathbf{c}'\mathbf{c}} (\mathbf{I}_{\mathbf{c}} - \mathbf{0}_{\mathbf{c}}) + \left(\frac{\mathbf{k}_{\mathbf{c}}}{\mathbf{k}_{\mathbf{c}'}} \right)^{1/2} (\delta_{\mathbf{c}'\mathbf{c}} - \mathbf{S}_{\mathbf{c}'\mathbf{c}}^{\mathbf{I}}) \mathbf{0}_{\mathbf{c}'} \right\}$$

The total wave function is

 $\Psi_{\rm T} = \sum A \Psi$

-62-

where the A's are chosen so that there is a plane (or Coulomb distorted) wave in the target channel. Including the Coulomb field and the asymptotic expressions for O_c and I_c gives the general form

$$\Psi_{\rm T} \to \Psi_{\rm c}^{\rm M,m} + \sum_{\alpha', J', M',m'} \frac{e^{i(k'r - \eta' \ln(2kr))}}{r} f^{\rm N} \Phi \Psi$$

where the first term has a Coulomb scattered wave and the second represents the scattered waves arising from the nuclear interactions.

The flux through the surface $r^2 d\Omega$ in the direction Ω is $|f|^2 v d\Omega$ and the incident flux is v, so that the differential cross section is

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{2(2J+1)} \left(\frac{\nu}{\nu}\right) \sum_{\mathrm{MmM'm'}} |\mathbf{f}|^2$$

where

 $f = f^{c} + f^{N}$

with f^{c} the Coulomb amplitude and f^{N} the nuclear amplitude.

A modification of the optical model computer program SEEK⁵⁵ was used to fit the elastic angular distribution in order to obtain the starting optical model parameters. These were V, the real potential well depth, W the imaginary potential well depth, r and r_i the real and imaginary radii, r_c the Coulomb radius and a and a the real and imaginary diffuseness parameters.

The nuclear shape was defined by

$$R = R_0 \left[1 + \sum_{\substack{\lambda=2, \\ K \text{ even}}} \alpha_{\lambda K} Y_{\lambda K}(\theta', \phi') \right] = R_0 + \delta R$$

where the prime refers to the body-fixed axis. Five independent α 's can be written in terms of the constants $\hat{\beta}_{\lambda}$.

$$\alpha_{2,0} = \hat{\beta}_2 \cos \hat{\beta}_1$$

$$\alpha_{2,2} = \alpha_{2,-2} = \sqrt{\frac{1}{2}} \hat{\beta}_2 \sin \hat{\beta}_1$$

$$\alpha_{4,0} = \hat{\beta}_4 \cos \hat{\beta}_3$$

where $\hat{\beta}_2$ and $\hat{\beta}_4$ are the deformation parameters, $\hat{\beta}_1$ corresponds to γ , which describes the deviation from rotational symmetry and $\hat{\beta}_3$ and $\hat{\beta}_5$ are azimuthal asymmetry parameters in the $\lambda = 4$ deformations.

Expanding the potential in a Taylor series about the spherical shape gives \sim

$$V(r-R) = V(r-R_0) + \sum_{s=1}^{\infty} \frac{(-\delta R)^s}{s!} \frac{\delta^s v}{\delta r^s}$$

The first term is merely a spherical optical potential giving rise only to elastic scattering and the second, non-spherical part, gives rise to excitations of the nucleus from one rotational state to another.

With the nuclear shape parameterized as above, the α 's that contribute to the in-band transitions between the 0+ and the 2+ states will be $\alpha_{2,0}, \alpha_{2,0}^2, \alpha_{4,0}^2, \alpha_{2,0}^2, \alpha_{4,0}^2$ and higher order terms. The expansion was carried to eighth order. For the l = 4 transition to the 4+ state in the ground state rotational band the major contributions will be from the $\alpha_{4,0}, \alpha_{2,0}^2, \alpha_{2,0}^2, \alpha_{4,0}^2$ and the $\alpha_{4,0}^2$. For the interband transitions to the K = 2 rotational band 2+ level the main contributing terms will be $\alpha_{2,2}^2$ and $\alpha_{2,-2}^2$. Since the unnatural-parity 3+ state cannot be made by a direct transition, the terms contributing will be those that go through the various possible intermediate states.

The optical model parameters as well as the nuclear shape parameters were then put into the coupled-channel program and adjusted as necessary to give the best overall fit to both the shapes and magnitudes of the experimental angular distributions. The code calculates absolute cross sections. The results obtained for the 50 MeV case are shown in Figure 32. The results for the higher energies are given in Figures 33 to 35. Figure 36 shows the shape of the nucleus with the given $\hat{\beta}_{2}$ and $\hat{\beta}_{4}$ values.

Table 3 gives the optical model parameters obtained in fitting the elastic angular distributions with the program SEEK⁵⁵ and the parameters

Table III. ${}^{24}Mg(\alpha, \alpha'){}^{24}Mg.*$

		1	Optical Mo	del Para	meters			
			Elast	ic Fits*				
E	v	W	r	r	rc	a	a _.	
50	100	27.6	1.47	1.6	1.3	.58	•57	,
65.7	100	40.1	1.44	1.6	1.3	.66	.48	
81	1.00	31.7	1.38	1.6	1.3	.69	.58	
119.7	100	23.8	1.28	1.6	1.3	. 78	•71	
	•		Coupled	Channel 1	Fits			
E	v	W	r	r i	rc	a	a i	
50	100	16	1.38	1.45	1.3	.69	• 58	
65.7	100	18	1.38	1.45	1.3	.69	.58	
81	100	17	1.38	1.6	1.3	.69	• 58	
119.7	100	23	1.38	1.6	1.3	.69	.58	
E	β _l	β ₂	β ₃	р				
50	.29	•35	1.571	.12				
65.7	.29	•35	1.571	.12				
81	.29	•35	1.571	.12				
119.7	.29	•35	1.571	.12				

*Ref. 56.

10²

Fig. 36. Diagram of nuclear shape using given β_2 and β_4 values.

obtained in the coupled-channel fits. The major change in the parameterization when the excited states are coupled to the ground state is a decrease in W, the imaginary potential well depth. This is as would be expected since W measures the nuclear reactions taking place, and in the coupledchannel calculation, some of these reactions are inserted explicitly through the $\hat{\beta}_{\lambda}$'s. The table shows that a consistent set of optical model and coupling parameters can be obtained with the coupled-channel program.

To show that the 3+ excitation is explained by the multiple excitation process, the parameters used in the calculations must also reproduce the cross sections to the states which can be produced through single excitation processes. The figures show that the fits to all the levels are quite good.

Cohen and Cookson⁴² found a value of .38 for γ . This should be compared to our $\hat{\beta}_1$ value of .29. The values for the $\alpha_{\lambda\mu}$'s corrected for nuclear radius correspond to the β_{λ} 's used by other authors in the expansion of the nuclear shape. Table 4 compares these values. My values include only first order effects while those of other workers include higher order terms. This can be seen in the expansion of the nuclear shape:

 $\beta_2 Y_2^0 + (\beta_2 Y_2^0)^2 + \dots = \beta_2 Y_2^0 + \beta_2^2 (Y_0^0 + Y_2^0 + Y_{l_1}^0) + \dots$

My value is the β_2 in the first term. Other authors use the sum of all the β_2 terms. Thus my values would be expected to be smaller. It can be seen that in general the agreement is fairly good, and the nuclear model used in the coupled-channel program gives parameters consistent with those found by other authors using different methods. Some of the other values were obtained by coulomb excitation studies; however Naqib⁵⁷ obtained his from inelastic α scattering at 42 MeV.

The parameters used in the coupled channel program were such that $\alpha_{4,0}$ equaled zero, eliminating any direct component in the excitation of the first 4+ state. $\alpha_{4,2}$ was non-zero giving some direct excitation to the K = 2 band 4+ state, as was found necessary by Naqib in his work. This direct component to the 4+ in the γ band indicates some band mixing.

The lifetimes of the states and the branching ratios for γ -decay were

Ievel	Spin	K	Present Work ${{}^{\!$	Other Work β_{λ}^{b}	Reference
1.368	2+	0	•39	.65	46
1.368	2+	0	•39	.48	57
4.12	4+	0	0		
4.23	2+	2	.082		
6.00	4+	2	.098	.17	57
6.44	0+	0		.12	57
$a_{\beta_{\lambda}} = \alpha_{\lambda \mu}$	× 1.38A ¹ / 1.20A ¹ /	^{'3}			,
${}^{b}\beta_{\lambda} = \frac{\delta}{1.2\times}$	λ (A ^{1/3}	where & referenc	λ is the deform e 57.	ation distance	e reported in

Table IV. ²⁴Mg deformation parameters.
calculated using a β value of .42. This value includes the higher order contributions to the deformation parameter. The lifetimes and branching ratios obtained in this way give fairly good agreement with values obtained by other experimenters. In these calculations only the major components of the wave functions were used. Other reasons for discrepancies include the fact that K is not a good quantum number in this case and that there is mixing between the K = 0 and K = 2 bands.

The shapes and magnitudes for the 3+ angular distributions are fit well enough to suggest very strongly that a multiple excitation mechanism is able to account for the experimental results. Tamura⁵⁸ used the ²⁴Mg data of Kokame et al.⁴ at 28.5 MeV in similar calculations and concluded that the multiple excitation process can account for the excitation of the unnaturalparity state. Vincent, Boschitz and Priest⁶ have also used this formalism for comparison to their 42 MeV data and found fairly good agreement. Thus these results allow us to conclude that the multiple excitation process accounts for the major part of the excitation of the unnaturalparity state in ²⁴Mg at these α -particle energies.

V. CONCLUSIONS

The good agreement obtained using the coupled-channel program of Glendenning ⁵² allows us to conclude that the multiple excitation mechanism does account for the production of the 3+ state in ²⁴Mg at medium and high α -particle energies.

The strange behavior of the 24 Mg 3+ QR plots at the different energies is reproduced by the coupled-channel program. It seems likely that it arises from a change with energy of the major excitation path for the production of the unnatural-parity state. For instance the excitation may be mainly through the first 2+ at lower α -particle energies and mainly through the K = 2 2+ at higher energies. There may be interference effects between these two paths giving rise to the moving peaks on the QR plots. Unfortunately it is not possible to select the path and use only this in the coupled-channel program. Gruhn and Wall⁵⁹ have studied the energy dependence of elastic scattering of α 's by ⁴⁰Ca. They found that for the large angle data the last few maxima in the oscillatory pattern remained relatively fixed in angle as the α -particle energy was changed. The intermediate angular region appeared to result from an interference between the large angle oscillatory pattern and the forward angle diffraction pattern. This type of interference effect may give rise to the observed behavior in 24 Mg and 20 Ne.

The small compound nucleus cross sections calculated for the 24 Mg 50 MeV incident α -particle energy make it unlikely that this mechanism makes an important contribution to the reaction mechanism at this energy or above. At the α -particle energies studied, the number of open channels for all the nuclei studied is so large that decay to any one state is very unlikely. The compound nucleus mechanism can therefore be ruled out for the production of states in the nuclei studied here.

The similar behavior of the 2+ QR plots for 20 Ne as for the 24 Mg case suggests that the multiple excitation mechanism will also be able to explain the excitation in the 20 Ne case. The different behavior of the 2- QR plots for 16 O make it unlikely that the reaction mechanism is the same. Unfortunately the wave functions of 20 Ne and 16 O are not of a form that can be used in the coupled-channel program at this time. The actual mechanisms for the excitation of the unnatural-parity states in these nuclei therefore remain to be investigated. The spin-flip mechanism, where the orbital angular momentum of the incoming α particle couples with a spin-flip of one or more of the target nucleons may be an important mechanism in the 16 O case. The 2- state is described as a $p_{1/2}$ hole and a $d_{5/2}$ particle. When the particle is promoted to the $d_{5/2}$ orbital a spin flip may occur.

The knock-out or target-stripping mechanisms seem unlikely because in all the cases studied the angular distributions for the unnaturalparity states are not strongly forward or backward peaked. Also the large angle behavior described by Honda and Ui¹⁹ is not observed in these cases.

ACKNOWLEDGMENTS

I would like to thank my research director, Dr. Bernard G. Harvey, for suggesting this topic and for all his help during the experiments and the writing of this thesis. I would also like to thank Dr. David L. Hendrie for his help with the calculations and thesis, Dr. John R. Meriwether for his help in the initial stages of the experiments, and Dr. Norman K. Glendenning for the use of his computer code.

I would like to thank my fellow graduate students, Mr. Joel Moss, Dr. Arthur Springer, Dr. Nolan Mangelson, Dr. Chi Chang Lu and Mr. Michael Zisman, for their help in the execution of these experiments.

I would also like to thank Dr. Joseph Cerny III, Dr. Gilbert Butler, Mr. Creve Maples, Mr. John Esterl, Mr. George Goth, and Mr. Gordon Wazniak.

I am extremely grateful to the entire crew of the 88-inch cyclotron, especially to Mr. John Bowen and the operators and to Mr. John Meneghetti and his crew.

This work was done under the auspices of the U.S. Atomic Energy Commission. -76-

APPENDIX

 ${
m Mg}^{24}(lpha,lpha')$

50 MeV

			Elas	tic			
θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	θ _L (deg)	θ (deg)	dσ/dΩ (mb/sr)	△ (mb/sr)
$\begin{array}{c} 10.8\\ 12.8\\ 14.8\\ 17.7\\ 28.7\\ 29.7\\ 31.7\\ 758.6\\ 60.6\\ 66.6\\ 66.5\\ 55.5\\ 72.55\\ 80.4\\ 84.4\\ 88.9\\ 92.3\\ 94.2\\ 29.6\\ 104.1\end{array}$	12.6 14.9 17.3 20.6 32.2 33.3 34.5 35.6 37.7 40.1 64.6 69.0 73.3 75.3 77.5 79.6 81.7 83.8 89.9 92.0 94.0 97.9 100.0 101.9 103.9 105.8 107.8 109.8 113.5	1127 106.5 337.9 338.6 50.32 34.96 25.69 12.33 6.95 4.73 9.31 $.667$ $.606$ $.705$ $.686$ $.681$ $.526$ $.440$ $.381$ $.405$ $.440$ $.381$ $.405$ $.447$ $.392$ $.303$ $.260$ $.223$ $.201$ $.198$ $.157$ $.124$ $.099$ $.072$ $.034$	3 .8 1.4 1.4 .32 .08 .23 .05 .12 .03 .04 .011 .010 .011 .005 .005 .004 .011 .010 .011 .010 .011 .010 .011 .010 .011 .005 .005 .008 .008 .005	106.1 108.1 108.1 110.1 112.1 114.1 116.0 120.0 120.0 122.0 122.0 122.0 122.0 122.0 133.9 135.9 135.9 135.9 135.9 135.9 135.9 135.9 141.9 145.9 145.9 147.9 149.9 155.9 155.9 155.9 155.9 155.9 155.9 155.9 155.9 155.9 155.9 155.9 157.	115.4 117.3 117.3 117.3 119.1 121.0 122.9 124.7 126.5 128.4 130.2 135.7.4 139.8 142.6 135.7.4 139.8 142.6 144.4 147.8 159.8 155.7 156.4 155.6 155.7 156.4 155.6 155.7 156.4 155.6 155.7 156.4 155.6 155.7 156.4 155.6 155.7 156.2 171.9 173.5	.033 .037 .027 .027 .027 .022 .017 .016 .011 .0086 .011 .012 .013 .014 .015 .016 .024 .023 .019 .018 .014 .013 .017 .024 .023 .019 .018 .014 .013 .017 .024 .028 .026 .020 .013 .011 .027	.002 .002 .002 .002 .002 .001 .001 .001

1.368	MeV 2+			
∆ (mb/sr)	$\theta_{\rm L}$ (deg)	θ . (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)
.8	106.1	115.5	.441	.009
.64	106.1	115.5	•491	.008
• 48	108.1	117.4	.401	.008
•35	108.1	117.4	• 443	.008
.18	110.1	119.3	.410	.008
.22	112.1	121.2	.366	.003
.08	114.1	123.1	.306	.002
.03	116.0	124.8	.273	.002
.14	118.0	126.6	.228	.005
.05	120.0	128.5	.199	.005
.02	120.0	128.5	.207	.005

50 MeV (continued)

10.8	12.6	104.1	.8	106.1	115.5	441	.009
12.8	15.0	71.20	.64	106.1	115.5	.491	.008
13.8	16.1	40.92	48	108.1	117.4	.401	.008
14.8	17.3	21.60	.35	108.1	117.4	.443	,008
15.8	18.5	6.04	.18	110.1	119.3	.410	.008
17.7	20.7	8.94	.22	112.1	121.2	.366	.003
27.7	32.3	3,53	.08	114.1	123.1	.306	.002
28.7	33.4	5,98	.03	116.0	124.8	.273	.002
29.7	34.6	9.63	.14	118.0	126.6	.228	.005
30.7	35.7	11.67	.05	120.0	128.5	.199	.005
56.6	64.7	1.91	.02	120.0	128.5	.207	.005
58.6	66.9	1.47	.02	122.0	130.3	.198	.005
60.6	69.1	1.03	.01	122.0	1.30.3	.207	.005
60.6	69.1	1.00	.01	124.0	132.1	.189	.005
62.6	71.3	•775	.005	128.0	135.8	.150	.005
64.6	73.4	• 745	.005	130.0	137.5	.139	.004
66.5	75.5	•790	.005	132.0	139.3	.114	.004
68.5	77.6	.884	.016	133.9	141.0	.092	.003
70.5	79.7	·957	.017	135.9	142.7	.089	.003
72.5	81.8	• 908	.017	137.9	144.5	•082	.003
74.5	83.9	•799	.016	139.9	146.2	.069	.003
76.5	86.0	• 773	.011	141.9	147.9	.059	.002
78.4	88.0	.814	.012	143.9	149.7	.056	.002
80.4	90.0	.848	.012	145.9	151.4	.058	.002
82.4	92.1	.893	.012	147.9	153.1	.064	.003
84.4	94.2	•946	.010	149.9	154.8	.065	.003
86.4	96.2	•982	.010	151.9	156.5	.060	.003
88.3	98.1	•897	.010	153.9	158.2	.055	.002
90.3	100.1	.800	.009	155.9	159.9	.038	.002
92.5	102.1	• (52	.009	159.9	103.3	.050	.005
94.5	104.0	.007	.000	101.9	164.9	•070	.005
90.2 08 0	108.0	• OUL	.000	168 0	170.0	•094 087	.005
100 0	110.0	-051 601	•000	170.2	171 O	.007	-005
101 1		.004	.000	170.2	⊥(⊥•9 177 5	.009	.004 007
T04•T	112.0	• 200	•009	116.6	エロ・フ	• 044	•005

-77-

5...

 $\theta_{\rm L}$ (deg)

 $\theta_{\rm cm}$ d $\sigma/{\rm d}\Omega$ (deg) (mb/sr)

UCRL-18	414
---------	-----

50 MeV (continued)

	4.12 MeV 4+				4.23	3 MeV 2+	
$\theta_{\rm L}$ (deg)	$\theta_{\texttt{cm}}$ (deg)	dσ/dΩ (mb/sr)	Δ (mb/sr)	θ _L (deg)	θ _{cm} (deg)	$d\sigma/d\Omega$ (mb/sr)	Δ (mb/sr)
10.8 12.8 13.8 14.8 15.8 17.7	12.7 15.0 16.2 17.4 18.6 20.8	.753 .910 .786 .837 .850 1.01	.065 .072 .066 .069 .068 .08	10.8 12.8 13.8 14.8 15.8 17.7	12.7 15.0 16.2 17.4 18.6 20.8	8.39 6.36 4.18 2.57 1.28 .636	.22 .19 .15 .12 .08 .059
						(c	ontinued)

50 MeV (continued)

			5.22 Me	eV 3+	s		<u> </u>
$\theta_{\rm L}$ (deg)	θ (deg)	dσ/dΩ (mb/sr)	Δ (mb/sr)	θ _L (deg)	θ _{cm} (deg)	$d\sigma/d\Omega$ (mb/sr)	∆ (mb/sr)
$12.8 \\ 14.8 \\ 27.7 \\ 28.7 \\ 29.7 \\ 30.7 \\ 31.7 \\ 32.7 \\ 34.7 \\ 56.6 \\ 60.6 \\ 62.6 \\ 64.6 \\ 58.5 \\ 70.5 \\ 76.5 \\ 76.5 \\ 78.4 \\ 84.4 \\ 86.4 \\ 88.3 \\ 90.3 \\ 92.3 \\ 94.2 \\ 98.2 \\ 100.2 \\ 104.1$	$15.1 \\ 17.4 \\ 32.5 \\ 33.6 \\ 34.8 \\ 35.9 \\ 37.1 \\ 405.1 \\ 67.5 \\ 69.5 \\ 71.7 \\ 73.9 \\ 75.9 \\ 70.8 \\ 82.5 \\ 80.6 \\ 92.6 \\ 94.6 \\ 98.6 \\ 102.6 \\ 104.5 \\ 108.4 \\ 110.3 \\ 114.1 $.116 $.064$ $.063$ $.041$ $.042$ $.049$ $.056$ $.052$ $.066$ $.037$ $.049$ $.065$ $.064$ $.073$ $.092$ $.135$ $.161$ $.232$ $.180$ $.177$ $.176$ $.196$ $.225$ $.217$ $.195$ $.146$ $.143$ $.138$ $.135$ $.125$ $.086$.026 .019 .011 .003 .009 .003 .011 .003 .004 .003 .003 .003 .003 .003 .003 .002 .002 .002 .002 .002 .002 .002 .002 .002 .005 .004 .004 .004 .004	106.1 106.1 108.1 108.1 110.1 112.1 114.1 116.0 120.0 122.0 122.0 122.0 122.0 122.0 122.0 122.0 122.0 122.0 122.0 122.0 122.0 122.0 122.0 123.0 137.9 135.9 137.9 137.9 147.9 145.9 147.9 149.9 145.9 147.9 149.9 155.9 155.9 155.9 155.9 155.9 155.9 155.9 155.9 155.9 155.9 155.9 155.9 161.9 163.8 168.2 172.2	116.0 117.9 117.9 117.9 121.6 125.3 127.1 128.9 130.7 132.5 137.9 136.2 137.9 139.6 141.3 144.8 143.1 144.8 149.9 151.7 155.0 155.7 156.7 158.4 165.1 166.6 172.0 173.6	.055 .074 .060 .070 .070 .070 .070 .079 .039 .028 .031 .027 .049 .063 .058 .047 .031 .017 .018 .035 .067 .082 .094 .035 .067 .082 .094 .078 .042 .019 .018 .017 .018 .027 .031 .017 .018 .035 .067 .082 .094 .019 .018 .017 .019 .017 .018 .042 .019 .018 .017 .019 .018 .017 .019 .018 .017 .019 .019 .018 .017 .059 .078 .019 .019 .018 .017 .019 .019 .018 .017 .019 .019 .019 .019 .019 .019 .019 .019 .019 .017 .019 .019 .019 .019 .019 .019 .019 .019 .019 .019 .019 .019 .019 .019 .017 .019 .017 .019 .019 .019 .019 .017 .007	.003 .003 .003 .003 .001 .001 .001 .001

50 MeV (continued)

6.00 MeV 4+											
θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	$ heta_{ m L}^{ m heta}$ (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	Δ (mb/sr)				
12.8 13.8 14.8 15.8 17.7 27.7 29.7 32.7 34.7 56.6 60.6 64.6 55.5 74.5 76.5 80.4 88.3 92.3 94.2 98.2 104.1 106.1	$15.1 \\ 16.3 \\ 17.5 \\ 18.6 \\ 20.9 \\ 32.5 \\ 33.7 \\ 34.9 \\ 36.0 \\ 37.2 \\ 38.2 \\ 40.5 \\ 65.2 \\ 67.4 \\ 69.6 \\ 71.8 \\ 74.0 \\ 76.0 \\ 78.1 \\ 80.3 \\ 82.4 \\ 84.5 \\ 86.6 \\ 88.6 \\ 90.7 \\ 98.7 \\ 100.7 \\ 102.7 \\ 104.7 \\ 106.6 \\ 108.5 \\ 110.5 \\ 114.2 \\ 116.1 \\ 116.1 \\ 106.1 $	$\begin{array}{c} 4.18\\ 4.62\\ 5.22\\ 5.42\\ 4.88\\ 1.54\\ 1.49\\ 1.46\\ 1.24\\ 1.04\\ .686\\ .313\\ .410\\ .352\\ .303\\ .283\\ .277\\ .222\\ .174\\ .150\\ .140\\ .117\\ .081\\ .064\\ .053\\ .027\\ .031\\ .029\\ .049\\ .052\\ .073\\ .058\\ .055\end{array}$.15 .16 .17 .17 .17 .16 .05 .02 .05 .02 .05 .01 .008 .009 .008 .009 .008 .009 .008 .009 .008 .003 .003 .003 .003 .003 .003 .003	106.1 108.1 108.1 108.1 110.1 112.1 114.1 116.0 120.0 120.0 122.0 122.0 122.0 122.0 122.0 122.0 122.0 122.0 122.0 122.0 122.0 123.0 135.9 137.9 135.9 137.9 137.9 137.9 137.9 147.9 145.9 147.9 145.9 147.9 145.9 147.9 145.9 155.9 155.9 155.9 155.9 159.9 161.9 163.8 168.2 170.2 172.2	116.1 118.0 118.0 119.9 121.7 123.6 125.4 127.2 129.0 130.8 130.8 130.8 132.6 136.3 138.0 139.7 141.4 143.1 144.9 146.6 148.3 150.0 151.7 153.4 155.1 156.8 158.5 165.1 165.1 165.1 165.1 165.1 165.1 165.1 165.1 172.0 173.6	.055 .039 .050 .047 .045 .059 .077 .081 .063 .066 .062 .051 .065 .069 .062 .051 .065 .069 .062 .051 .045 .051 .045 .051 .045 .051 .063 .083 .100 .107 .113 .106 .114 .122 .088 .082 .115	.003 .003 .003 .001 .001 .001 .003 .003				

50 MeV (continued)

6.44 MeV O+										
$\theta_{\rm L}^{\rm deg}$	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	$ heta_{ m L}^{ heta}$ (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)			
12.8 27.7 31.7 32.7 34.7 58.6 60.6 60.6 64.6 66.5 60.5 70.5 74.5 76.5 78.4 82.4 94.3 96.2 98.2 100.2	$15.1 \\ 32.6 \\ 37.2 \\ 38.2 \\ 40.5 \\ 67.5 \\ 69.7 \\ 71.8 \\ 74.0 \\ 76.1 \\ 78.2 \\ 80.4 \\ 82.5 \\ 84.6 \\ 86.7 \\ 90.7 \\ 92.8 \\ 104.8 \\ 106.6 \\ 108.6 \\ 110.5 \\ $	2.17 .385 .531 .403 .200 .118 .097 .091 .087 .072 .058 .068 .055 .050 .041 .031 .029 .020 .013 .013 .019 .016	.11 .027 .032 .009 .006 .005 .004 .002 .002 .002 .002 .002 .002 .004 .004	104.1 106.1 106.1 108.1 108.1 110.1 112.1 116.0 120.0 120.0 120.0 122.0 122.0 122.0 124.0 133.9 135.9 135.9 135.9 137.9 139.9 141.9 143.9 149.9 151.9 153.9	114.2 116.1 116.1 118.0 118.0 119.9 121.8 125.4 129.1 129.1 130.9 130.9 130.9 132.6 141.4 143.2 144.9 146.6 148.3 150.1 155.1 156.8 158.5	.016 .010 .014 .012 .014 .012 .010 .0048 .0074 .0084 .012 .011 .010 .0023 .0028 .0044 .0051 .0022 .0017 .0028 .0006 .0048	.002 .001 .001 .002 .001 .001 .001 .001			

 ${\rm Mg}^{24}(\alpha, \alpha')$

65.7 MeV

Elastic										
θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	$ heta_{ m L}^{ heta}$ (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)			
$\begin{array}{c} 16.1\\ 18.1\\ 20.1\\ 22.1\\ 24.1\\ 24.1\\ 26.1\\ 26.1\\ 26.1\\ 26.1\\ 26.1\\ 26.1\\ 26.1\\ 26.1\\ 26.1\\ 26.1\\ 26.1\\ 26.1\\ 26.1\\ 26.1\\ 25.1\\ 155.1\\ 155.1\\ 57.1\\ 59.1\\ 62.1\\ 64.1\\ 68.1\\ 70.1\\ 74.1\\ 74.1\\ \end{array}$	$18.8 \\ 21.1 \\ 25.7 \\ 25.0 \\ 30.2 \\ 30.2 \\ 30.3 \\ 31.1 \\ 44.4 \\ 44.5 \\ 55.5 \\ 57.7 \\ 8.9 \\ 1.2 \\ 34.5 \\ 55.7 \\ 55.6 \\ 66.6 \\ 66.6 \\ 66.7 \\ 72.4 \\ 77.7 \\ 81.2 \\ 83.4 \\ 83$	$\begin{array}{c} 243.1\\ 31.44\\ 17.89\\ 64.35\\ 65.27\\ 66.59\\ 67.51\\ 30.69\\ 31.04\\ 9.189\\ 9.984\\ 14.67\\ 11.55\\ 5.675\\ 2.615\\ 2.572\\ 3.054\\ 1.227\\ 1.264\\ 1.275\\ 1.378\\ 1.226\\ 1.226\\ 1.275\\ 1.378\\ 1.226\\ 1.224\\ .971\\ .945\\ .746\\ .434\\ .363\\ .282\\ .224\\ .169\end{array}$.3 .12 .09 .10 .11 .10 .11 .07 .08 .037 .026 .03 .026 .03 .020 .013 .013 .013 .014 .014 .014 .014 .012 .010 .009 .009 .009 .009 .009 .009 .008 .009 .008 .008	$\begin{array}{c} 76.1\\ 78.1\\ 80.1\\ 82.1\\ 84.1\\ 86.1\\ 82.1\\ 94.1\\ 90.1\\ 92.1\\ 94.1\\ 96.1\\ 98.1\\ 100.1\\ 102.1\\ 104.1\\ 106.1\\ 104.1\\ 106.1\\ 104.1\\ 106.1\\ 104.1\\ 106.1\\ 110.1\\ 112.1\\ 114.1\\ 114.1\\ 114.1\\ 114.1\\ 114.1\\ 114.1\\ 114.1\\ 114.1\\ 116.1\\ 117.9\\ 119.9\\ 123.9\\ 124.9\\ 123.9\\ 126.1\\ 138.1\\ 136.1\\ 138.1\\ 140.1\\ \end{array}$	85.5 87.6 89.6 91.7 93.7 95.8 97.8 99.8 101.8 103.8 105.7 107.7 109.6 111.6 113.5 117.3 119.2 121.1 122.9 124.8 124.8 124.8 124.8 124.8 124.8 125.7 137.5 139.3 141.0 142.8 144.5 146.3	.127 .111 .098 .079 .065 .046 .040 .039 .035 .036 .024 .024 .022 .020 .019 .019 .016 .017 .013 .016 .017 .013 .016 .017 .013 .016 .017 .013 .016 .012 .014 .010 .008 .009 .007 .006 .005 .005	.003 .002 .002 .002 .002 .001 .001 .001 .001			

65.7 MeV (continued)

	1.368 MeV 2+										
θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	Δ (mb/sr)	θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)				
$\begin{array}{c} 14.1\\ 16.1\\ 18.1\\ 22.1\\ 24.1\\ 24.1\\ 26.1\\ 26.1\\ 28.1\\ 26.1\\ 26.1\\ 28.1\\ 26.1\\ 26.1\\ 28.1\\ 26.1\\ 28.1\\ 26.1\\ 28.1\\ 26.1\\ 28.1\\ 26.1\\ 28.1\\ 26.1\\ 28.1\\ 26.1\\ 27.1\\ 25.1\\$	16.5 18.1 25.8 22.2 28.1 25.8 22.2 28.1 22.2 28.1 22.2 28.1 22.2 28.1 22.2 28.1 22.2 28.1 22.2 28.1 22.2 28.1 2.2 27.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	3.295 21.65 37.94 8.397 8.517 7.413 7.532 16.22 16.44 17.80 6.209 5.249 6.308 5.988 4.117 2.421 2.665 2.665 2.254 2.140 2.277 2.106 2.338 2.144 2.370 2.149 2.278 2.140 2.278 2.149 2.278 2.149 2.278 2.338 2.144 2.370 2.149 2.278 2.338 2.144 2.370 2.149 2.278 2.338 2.144 2.370 2.149 2.278 2.338 2.144 2.370 2.149 2.278 2.351 1.229 1.351 1.229 1.259 1.259 1.259 1.259 1.259 1.294	.039 .10 .13 .035 .039 .033 .037 .05 .06 .05 .021 .019 .021 .020 .017 .013 .012 .013 .014 .012 .013 .014 .012 .011 .012 .011 .013 .012 .011 .012 .011 .012 .011 .012 .011 .012 .011 .012 .011 .012 .011 .012 .011 .012 .011 .012 .011 .012 .011 .012 .011 .012 .011 .012 .011 .012 .011 .013 .011 .012 .011 .013 .011 .012 .011 .013 .011 .012 .011 .013 .011 .013 .011 .012 .011 .013 .011 .013 .011 .013 .011 .013 .011 .013 .011 .013 .011 .013 .011 .013 .011 .003 .001 .001	78.1 80.1 82.1 84.1 84.1 90.1 92.1 94.1 96.1 98.1 100.1 102.1 104.1 106.1 106.1 106.1 106.1 106.1 106.1 106.1 106.1 110.1 112.1 114.1 114.1 114.1 114.1 114.1 114.1 115.1 123.9 123.9 126.1 138.1 138.1 140.1	87.7 89.8 91.8 93.8 95.9 97.9 99.9 103.9 103.9 105.8 107.8 109.7 111.7 113.6 115.5 117.4 119.3 121.2 123.0 124.9 124.9 126.5 139.3 121.2 123.0 124.9 126.5 139.3 134.0 135.8 137.6 139.3 141.1 142.9 144.6 146.4	$\begin{array}{c} .801\\ .681\\ .572\\ .480\\ .422\\ .384\\ .338\\ .278\\ .240\\ .206\\ .179\\ .154\\ .132\\ .119\\ .106\\ .094\\ .074\\ .073\\ .066\\ .067\\ .058\\ .048\\ .048\\ .048\\ .048\\ .048\\ .048\\ .048\\ .048\\ .048\\ .048\\ .048\\ .031\\ .048\\ .034\\ .031\\ .028\\ .024\\ .021\\ .020\\ .021\\ .017\end{array}$.005 .005 .005 .004 .003 .003 .003 .002 .002 .002 .002 .002				

(continued)

-83**-**

	4.12	MeV 4+			4.23	MeV 2+	
θ _L (deg)	θ (deg)	$d\sigma/d\Omega$ (mb/sr)	Δ (mb/sr)	$\theta_{\rm L}$ (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	Δ (mb/sr)
14.1 16.1 18.1 20.1 22.1 24.1 24.1 24.1 26.1 26.1 28.1 40.1 42.1 44.1 46.1 48.1 50.1 52.1 58.1 60.1	16.5 18.9 21.2 23.5 25.9 28.2 30.5 30.5 32.8 46.6 48.8 51.1 53.6 57.8 60.0 66.6 68.8	1.483 1.593 1.716 1.429 1.125 1.142 $.625$ $.630$ $.553$ $.565$ $.863$ $.914$ $.808$ $.675$ $.555$ $.505$ $.548$ $.593$ $.632$ $.637$.026 .027 .028 .026 .013 .014 .011 .011 .009 .010 .011 .008 .007 .007 .006 .006 .006 .006 .006 .006	14.1 16.1 18.1 20.1 22.1 24.1 24.1 26.1 26.1 26.1 28.1 40.1 42.1 44.1 46.1 48.1 50.1 52.1 58.1 60.1	16.5 18.9 21.2 23.5 25.9 25.9 28.2 30.5 30.5 32.8 46.6 48.8 51.1 53.5 57.8 60.0 66.6 68.8	.874 1.564 3.165 2.767 1.431 1.454 .579 .590 .676 .680 .904 .313 .253 .159 .156 .189 .213 .228 .133 .102	.020 .027 .039 .036 .014 .016 .009 .010 .010 .010 .010 .011 .012 .005 .004 .003 .004 .004 .004 .004 .003 .002

65.7 MeV (continued)

65.7 MeV (continued)

	5.22 MeV 3+										
θ (deg)	θ (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	θ _L (deg)	θ _{cm} (deg)	$d\sigma/d\Omega$ (mb/sr)	∆ (mb/sr)				
18.1 20.1 22.1 24.1 24.1 26.1 26.1 26.1 26.1 32.1 34.1 46.1 46.1 46.1 46.1 52.1 53.1 54.1 57.1 56.1 57.1	21.2 23.2 25.2 28.2 28.2 29.2 28.2 29.2 28.2 29.2 29	.057 .060 .058 .059 .050 .048 .025 .022 .022 .022 .026 .036 .063 .092 .147 .177 .214 .243 .253 .264 .294 .272 .264 .294 .272 .258 .231 .239 .210 .155 .121 .097 .077 .059 .041 .033	.005 .003 .003 .003 .003 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .003 .003 .004 .002 .002 .002 .002 .002 .002 .002 .001 .001	80.1 82.1 84.1 86.1 90.1 92.1 94.1 96.1 98.1 100.1 102.1 104.1 106.1 106.1 106.1 106.1 106.1 106.1 106.1 106.1 110.1 112.1 114.1 114.1 114.1 114.1 114.1 116.1 117.9 119.9 123.9 126.1 130.1 132.1 134.1 136.1 138.1 140.1	$\begin{array}{c} 90.1\\ 92.2\\ 94.2\\ 96.2\\ 98.3\\ 100.3\\ 102.3\\ 104.2\\ 106.2\\ 108.2\\ 110.1\\ 112.0\\ 115.9\\ 117.8\\ 119.6\\ 121.5\\ 123.4\\ 125.2\\ 126.9\\ 130.5\\ 132.3\\ 136.1\\ 137.9\\ 141.4\\ 143.1\\ 144.9\\ 146.6\end{array}$.021 .015 .013 .012 .010 .009 .010 .014 .014 .015 .016 .017 .015 .016 .017 .015 .019 .018 .016 .017 .015 .019 .018 .016 .015 .015 .015 .015 .020 .012 .016 .013 .014 .013 .015 .015 .015 .015 .015 .015 .015 .010	.001 .001 .001 .001 .001 .001 .001 .001				

65.7 MeV (continued)

	6.00 MeV 4+									
θ _L (deg)	θ (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	$ heta_{ m L}^{ m (deg)}$	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)			
$\begin{array}{c} 14.1 \\ 16.1 \\ 20.1 \\ 24.1 \\ 26.1 \\ 24.1 \\ 26.1 \\ 24.1 \\ 26.1 \\ 24.1 \\ 26.1 \\ 24.1 \\ 26.1 \\ 26.1 \\ 27.1 \\ 37.1 \\ 37.1 \\ 37.1 \\ 37.1 \\ 42.1 \\ 48.1 \\ 57.1 \\ 57.1 \\ 59$	16.6 18.9 23.6 28.3 30.6 25.5 8 14.7 02.7 92.3 45.6 66.9 2.5 7 9.1 35.7 9.1 34.5 55.7 9.1 34.5 55.7 9.1 34.5 55.7 9.1 35.7 9.1 35.7 9.1 35.7 9.1 35.7 9.1 35.7 9.1 34.5 55.7 9.1 34.5 55.7 9.1 34.5 55.7 9.1 35.7 9.1 35.7 9.1 35.7 9.1 35.7 9.1 35.7 9.1 35.7 9.1 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.2 34.5 55.7 9.7 9.2 34.5 55.7 9.2 34.5 55.7 9.1 35.7 7 9.1 35.7 7 9.1 35.7 7 9.1 35.7 7 9.1 35.7 7 9.1 8 35.7 7 9.1 8 35.7 7 9.1 8 35.7 7 9.1 8 35.7 7 9.1 8 35.7 7 9.1 8 35.7 7 9.1 8 35.7 7 9.1 8 35.7 7 9.1 8 35.7 7 9.1 8 35.7 7 9.1 8 1 8 19.5 7 7 9.1 8 1 8 1 8 19.5 7 7 9.1 8 1 8 19.5 7 7 9.1 8 1 8 19.5 7 7 9.1 8 1 8 1 8 19.5 7 7 9.7 8 1 8 1 8 19.5 19.5 19.5 19.5 19.5 10 10 10 10 10 10 10 10 10 10 10 10 10	5.411 4.332 1.858 .561 1.453 1.475 1.207 1.219 .679 .560 .793 .967 .857 .680 .532 .460 .417 .272 .198 .154 .153 .151 .135 .142 .130 .127 .108 .092 .089 .092 .086	.050 .045 .029 .016 .015 .016 .013 .015 .010 .006 .007 .008 .007 .008 .007 .008 .007 .008 .007 .006 .007 .006 .005 .004 .005 .004 .003 .003 .003 .003 .003 .003 .003	78.1 80.1 82.1 84.1 86.1 90.1 92.1 94.1 96.1 98.1 100.1 102.1 104.1 106.1 106.1 106.1 106.1 106.1 106.1 106.1 106.1 106.1 106.1 110.1 110.1 110.1 110.1 110.1 110.1 110.1 112.1 114.1 116.1 117.9 119.9 123.9 126.1 128.1 130.1 132.1 134.1 136.1 138.1	88.1 90.2 92.2 94.3 96.3 98.3 102.3 104.3 106.3 108.2 110.2 112.1 114.0 115.9 117.8 119.7 123.4 125.3 126.9 128.6 132.4 136.1 139.7 141.4 139.7 141.2 144.9	.067 .065 .060 .056 .051 .050 .044 .038 .035 .032 .028 .028 .026 .029 .025 .023 .020 .018 .016 .018 .016 .018 .019 .015 .017 .014 .012 .015 .012 .011 .010 .011 .012 .013	.002 .002 .001 .001 .001 .001 .001 .001			
76.1	86.0	.070	.002	140.1	T+0.0	•01¢	.002			

.

	6.44 MeV 0+										
θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	$\theta_{\rm L}$ (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	Δ (mb/sr)				
$\begin{array}{c} 16.1\\ 18.1\\ 20.1\\ 22.1\\ 24.1\\ 24.1\\ 26.1\\ 26.1\\ 26.1\\ 32.1\\ 26.1\\ 32.1\\ 14.1\\ 44.1\\ 44.1\\ 50.1\\ 57.1\\ 57.1\\ 57.1\\ 57.1\\ 59.1\\ 157.1\\ 59.1\\ 64.1\\ 66.1\\ 68.1\\ \end{array}$	18.922600222222222222222222222222222222222	$\begin{array}{c} 1.113\\ 1.464\\ .748\\ .304\\ .307\\ .449\\ .452\\ .661\\ .674\\ .472\\ .314\\ .336\\ .480\\ .405\\ .295\\ .234\\ .212\\ .211\\ .181\\ .121\\ .081\\ .076\\ .080\\ .078\\ .077\\ .074\\ .064\\ .060\\ .052\\ .046\\ .038\\ .038\end{array}$.023 .026 .019 .007 .007 .008 .009 .010 .011 .008 .005 .005 .005 .005 .005 .005 .005	70.1 74.1 76.1 78.1 80.1 82.1 84.1 86.1 90.1 92.1 94.1 96.1 96.1 98.1 100.1 102.1 104.1 106.1 102.1 104.1 106.1 102.1 104.1 106.1 102.1 104.1 106.1 102.1 104.1 106.1 102.1 104.1 105.1 105.1 119.9 123.9 126.1 128.1 130.1	$\begin{array}{c} 79.8\\ 84.0\\ 86.1\\ 88.2\\ 90.2\\ 92.3\\ 94.3\\ 96.4\\ 98.4\\ 100.4\\ 102.4\\ 104.4\\ 106.3\\ 110.2\\ 112.2\\ 114.1\\ 116.0\\ 117.9\\ 119.8\\ 121.6\\ 123.5\\ 125.3\\ 125.$	038 032 023 022 020 022 019 017 014 013 014 010 009 010 010 009 010 0010 009 006 005	.001 .001 .001 .001 .001 .001 .001 .001				

65.7 MeV (continued)

Ň

 ${
m Mg}^{24}(lpha,lpha')$

81 MeV

Elastic								
θ (deg)	θ (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	$ heta_{ m L}^{ heta}$ (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	
$\begin{array}{c} 12.9\\ 12.9\\ 13.9\\ 13.9\\ 14.9\\ 15.9\\ 16.4\\ 16.9\\ 17.4\\ 18.9\\ 19.4\\ 19.9\\ 20.9\\ 21.9\\ 22.2\\ 23.9\\ 9.9\\ 9.9\\ 9.9\\ 9.9\\ 9.9\\ 9.9\\ 9.9\\ $	$\begin{array}{c} 15.1\\ 15.1\\ 16.2\\ 17.4\\ 19.7\\ 9.9\\ 222222222222222222222222222222222$	472.6 483.9 357.6 340.9 181.5 191.7 68.50 35.15 17.87 20.96 34.40 47.02 65.35 72.23 68.93 46.377 37.68 20.12 10.41 6.691 8.440 11.11 11.80 10.41 8.752 6.105 4.341 3.054 3.284	.6 .4 .4 .4 .3 .16 .05 .08 .09 .05 .13 .08 .09 .05 .13 .08 .09 .05 .13 .08 .09 .05 .13 .08 .07 .07 .07 .06 .05 .06 .05 .024 .025 .03 .021 .016 .015 .016 .016	41.9 45.9 47.9 49.9 51.9 53.9 55.9 57.9 59.9 61.9 63.9 65.9 67.9 69.9 71.9 73.9 75.9 77.9 79.9 81.9 83.9 85.9 87.9 89.9 91.9 101.9 103.9 105.9 107.9 109.9 111.9	48.4 52.9 55.1 57.3 59.5 63.9 66.1 72.6 87.4 87.4 87.4 91.5 97.6 81.1 85.3 97.6 91.1 83.5 97.6 99.6 111.4 113.2 117.1 119.0 122.7	2.366 1.569 1.413 1.164 .868 .607 .495 .408 .329 .281 .248 .167 .133 .112 .094 .078 .059 .052 .042 .035 .023 .019 .014 .0056 .0048 .0056 .0048 .0056 .0044 .0030 .0026 .0014	.013 .012 .011 .011 .009 .005 .005 .005 .004 .002 .002 .002 .002 .002 .002 .002	

81 MeV (continued)

	1.368 MeV 2+									
θ _L (deg)	^θ cm (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)			
7.9 8.9 9.9 10.9 12.9 12.9 13.9 14.9 15.9 14.9 15.9 14.9 15.9 14.9 15.9 12.9 20.4 22.9 29.9 31.9 32.9 32.9 35.9 37.	9.2 10.4 11.6 12.7 13.1 15.1 15.2 24.4 17.4 18.9 22.2 22.2 22.2 23.3 35.1 2.4 1.5 1.2 2.4 4.5 1.7 1.2 2.4 4.5 1.7 1.2 2.4 4.5 1.7 1.2 2.4 4.5 1.7 1.2 2.4 2.2 2.2 2.2 2.5 1.5 1.2 2.4 2.5 1.5 1.2 2.4 2.5 1.5 1.2 2.4 2.5 1.5 1.2 2.4 2.5 1.5 1.2 2.4 2.5 1.5 1.2 2.4 2.5 1.5 1.2 2.4 2.5 1.5 1.2 2.4 2.5 1.5 1.2 2.4 2.5 1.5 1.2 2.5 1.5 1.2 2.5 2.5 1.5 1.2 2.5 2.5 1.5 1.2 2.5 2.5 1.5 1.2 2.5 2.5 1.5 1.2 2.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	$\begin{array}{c} 144.7\\ 118.7\\ 80.04\\ 33.61\\ 10.41\\ 7.630\\ 6.668\\ 19.07\\ 18.40\\ 36.21\\ 36.18\\ 43.53\\ 45.96\\ 10.48\\ 8.354\\ 7.410\\ 9.820\\ 12.32\\ 14.05\\ 4.407\\ 4.116\\ 4.853\\ 5.853\\ 6.271\\ 5.879\\ 5.295\\ 4.500\\ 3.590\\ 3.820\\ 4.163\end{array}$.2 .3 .17 .16 .06 .075 .049 .09 .09 .16 .12 .13 .06 .03 .026 .023 .026 .03 .026 .03 .026 .03 .026 .03 .026 .03 .026 .03 .017 .017 .017 .018 .017	45.9 47.9 49.9 51.9 53.9 55.9 57.9 57.9 63.9 67.9 67.9 71.9 73.9 75.9 77.9 77.9 79.9 83.9 87.9 87.9 91.9 103.9 105.9 107.	52.9 55.2 57.4 59.6 61.8 64.0 66.2 68.4 70.5 72.7 74.8 77.0 79.1 83.3 85.4 87.55 91.6 93.6 95.7 97.7 101.7 113.4 115.3 117.2 119.1 122.8	3.404 2.842 2.524 2.207 1.867 1.621 1.337 1.052 .933 .902 .691 .555 .476 .384 .320 .255 .226 .184 .156 .125 .103 .091 .075 .062 .022 .020 .016 .013 .011 .0059	.018 .017 .016 .015 .009 .009 .009 .008 .007 .004 .004 .004 .003 .004 .003 .003 .003			

					1		
			5.22 N	1eV 3+			- <u> </u>
ි [deg]	$\theta_{\rm cm}$ (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	$ heta_{ m L}^{ heta}$ (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)
8.9 9.9 10.9 11.9 15.9 16.9 17.9 18.4 19.9 22.2 22.4 22.2 22.4 22.9 22.9 22.9 2	$10.5 \\ 11.6 \\ 12.8 \\ 14.0 \\ 18.7 \\ 19.8 \\ 21.0 \\ 21.6 \\ 22.2 \\ 23.9 \\ 25.7 \\ 26.8 \\ 29.1 \\ 37.6 \\ 29.1 \\ 37.6 \\ 37.6 \\ 37.6 \\ 37.7 \\ 38.9 \\ 12.4 \\ 39.5 \\ 40.7 \\ 41.8 \\ 44.1 \\ 46.4 \\ 48.6 \\ 10.5 \\ $.140 .172 .128 .077 .064 .059 .036 .043 .025 .012 .015 .019 .015 .029 .039 .039 .056 .083 .108 .125 .166 .181 .215 .254 .266 .243 .234	.012 .008 .010 .005 .005 .005 .005 .005 .002 .004 .001 .001 .001 .001 .001 .001 .001	45.9 47.9 49.9 51.9 57.9 59.9 61.9 63.9 65.9 67.9 75.9 75.9 77.9 75.9 77.9 81.9 83.9 85.9 87.9 89.9 91.9 101.9 103.9 105.9 107.9 109.9 111.9	53.1 55.4 57.6 59.8 66.4 68.6 70.8 73.0 75.1 77.2 79.4 81.5 85.7 87.8 89.8 91.9 93.9 96.0 102.0 111.8 113.7 115.6 117.5 119.4 121.2 123.1	.208 .164 .117 .100 .023 .016 .0083 .0084 .0061 .0092 .013 .013 .013 .013 .014 .018 .017 .018 .016 .019 .018 .015 .014 .0073 .0075 .0062 .0042 .0028	.004 .003 .003 .001 .001 .0004 .0006 .0003 .0004 .001 .001 .001 .001 .001 .001 .00

81 MeV (continued)

(continued)

-90-

Q.

81 MeV (continued)

\$

	6.00 MeV 4+									
θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	Δ (mb/sr)			
8.9 9.910.912.912.912.913.9914.9914.9914.9914.9914.9914.9914.	$\begin{array}{c} 10.5\\ 11.6\\ 12.8\\ 14.0\\ 15.2\\ 15.6\\ 17.1\\ 19.8\\ 19.2\\ 225.6\\ 28.0\\ 23.5\\ 54.1\\ 23.4\\ 39.5\\ 34.5\\ 39.5$	3.684 4.676 5.616 5.627 5.858 5.250 4.479 4.268 3.016 1.708 1.160 .862 .596 .653 1.692 1.748 1.692 1.748 1.692 1.748 1.692 1.748 1.692 1.768 .768 .719 .783 .836 .794 .703 .556 .423	.052 .042 .064 .046 .065 .043 .041 .048 .047 .033 .026 .009 .018 .015 .007 .011 .011 .011 .011 .011 .011 .011	34.9 35.9 41.9 45.9 45.9 49.9 53.9 61.9 63.9 65.9 67.9 73.9 75.9 77.9 83.9 89.9 91.9 83.9 91.9 101.9 105.9	40.7 41.8 44.1 48.7 55.4 70.9 64.3 75.2 75.9 64.3 75.2 75.2 77.3 83.6 87.8 9.9 94.0 98.0 102.0 111.8 115.6	.354 .310 .258 .199 .196 .175 .161 .137 .118 .088 .079 .063 .050 .044 .037 .032 .026 .023 .019 .017 .014 .015 .013 .012 .0091 .0053	.005 .005 .004 .004 .004 .004 .003 .002 .002 .001 .001 .001 .001 .001 .001			

81 MeV (continued)

	6.44 MeV 0+								
θ _L (deg)	$ heta_{ ext{cm}}$ (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	θ _L (d e g)	$\theta_{\rm cm}$ (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)		
15.9 16.4 16.9 17.9 18.4 18.9 19.9 20.4 23.9 24.9 25.9 26.9 27.9 29.9 20.9 29.9 30.9 32.9 32.9 35.9 35.9 37.9 37.9 39.9	18.7 19.3 19.9 21.0 22.2 23.4 23.4 23.9 29.2 30.3 32.7 35.0 35.0 37.3 39.6 41.9 44.1 46.4	1.359 1.400 1.233 .752 .557 .401 .419 .387 .495 .869 .806 .586 .457 .389 .386 .457 .389 .386 .433 .437 .417 .372 .273 .210 .176 .130 .133	.023 .010 .021 .017 .007 .012 .013 .006 .006 .009 .008 .007 .006 .005 .005 .005 .005 .005 .005 .005	45.9 47.9 49.9 51.9 53.9 55.9 57.9 65.9 67.9 69.9 71.9 73.9 75.9 77.9 73.9 75.9 81.9 83.9 85.9 87.9 81.9 81.9 101.9 103.9 105.9	53.2 55.4 57.7 59.9 62.1 64.3 66.5 75.2 77.3 79.5 81.6 83.7 85.8 87.9 92.0 94.0 96.1 98.1 102.1 102.1 111.9 113.8 115.7	.071 .061 .067 .061 .054 .045 .038 .026 .023 .019 .018 .016 .015 .012 .011 .0089 .0075 .0062 .0071 .0059 .0036 .0022 .0018 .0016	.003 .003 .002 .002 .001 .001 .001 .001 .001 .001		

-92-

 ${
m Mg}^{24}(lpha,lpha')$

119.7 MeV

·	· .		Elast	ic		-	
$ heta_{ m L}^{ heta}$ (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	θ _L (deg)	$ heta_{ ext{cm}}$ (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)
12.3 14.3 15.3 15.3 16.3 19.3 20.3 21.3 24.3 25.3 24.3 25.3 26.3 27.3 28.3 31.3 35.3 34.3 35.3 37.3 37.3 38.3	14.4 16.7 17.9 19.0 21.4 22.5 23.7 24.0 27.1 28.3 29.5 31.8 32.2 35.4 35.4 43.2 43.2 43.2 44.3	$\begin{array}{c} 295.6\\ 26.19\\ 44.80\\ 73.45\\ 77.43\\ 62.95\\ 37.99\\ 22.56\\ 15.73\\ 17.82\\ 20.43\\ 20.86\\ 17.00\\ 17.12\\ 10.75\\ 9.663\\ 7.621\\ 7.226\\ 5.462\\ 4.617\\ 3.678\\ 2.987\\ 2.320\\ 2.442\\ 2.118\end{array}$.6 .09 .10 .16 .13 .13 .11 .07 .06 .04 .08 .05 .09 .21 .04 .097 .045 .040 .033 .035 .035 .032 .024 .013 .023 .014	38.3 39.3 40.3 41.3 46.3 51.4 50.4 53.3 51.4 53.3 51.5 51.5 50.5 50.5 50.5 50.5 50.5 50.5	44.3 45.5 46.6 47.7 50.0 53.35 57.0 61.1 64.4 66.6 75.2 64.4 66.6 75.2 76.4 75.6 75.2 76.4 79.6 83.7 85.8 95.0	1.955 1.755 1.566 1.153 .846 .439 .293 .206 .160 .102 .092 .056 .038 .028 .016 .011 .006 .007 .004 .002 .002 .001 .001 .0002	.012 .022 .015 .021 .011 .004 .003 .003 .003 .003 .007 .003 .001 .001 .001 .001 .001 .001 .001

UCRL-18414

119.7 MeV (continued)

	1.368 MeV 2+									
θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	$\theta_{\rm L}$ (deg)	$ heta_{ ext{cm}}$ (deg)	dσ/dΩ (mb/sr)	\triangle (mb/sr)			
10.3 12.3 16.3 17.3 23.3 24.3 25.3 27.3 27.3 27.3 28.3 31.3 32.3 31.3 35.3	12.0 14.4 19.0 20.2 21.4 27.2 28.3 29.5 31.8 32.9 35.4 37.5 39.0 42.1 43.4 44.4 45.5	15.05 46.67 16.56 10.47 15.35 12.49 10.76 10.22 12.63 12.17 12.32 8.782 7.379 6.512 5.836 5.556 5.103 4.630 3.762 3.874 3.431 3.081 2.797	.21 .22 .07 .05 .06 .06 .04 .07 .18 .04 .11 .049 .040 .045 .034 .036 .038 .030 .017 .028 .018 .015 .027	40.3 41.3 43.3 45.3 51.33 54.33 51.53 51.53 56.33 57.53	46.6 47.8 50.0 53.4 55.6 57.8 59.1 61.2 62.3 64.6 68.8 71.0 73.1 75.6 66.8 71.1 75.5 78.4 79.5 83.7 85.8 95.1	2.451 1.873 1.555 .919 .639 .447 .353 .227 .231 .145 .104 .074 .049 .037 .025 .024 .015 .010 .008 .005 .0010	.015 .027 .015 .006 .004 .004 .004 .004 .004 .004 .001 .001			

			·····						
5.22 MeV 3+									
θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)		
15.3 16.3 17.3 19.3 20.3 22.3 22.3 22.3 22.3 22.3 22.3 22	17.9 19.1 20.3 21.4 23.8 24.9 27.2 29.6 27.2 29.6 31.9 336.5 37.8 39.1 42.3 39.1 42.3 3.3 34.2 43.3 43.3	.204 .222 .210 .235 .264 .267 .287 .287 .287 .288 .316 .271 .241 .239 .239 .239 .239 .239 .239 .239 .239	.007 .009 .007 .008 .009 .008 .008 .008 .006 .009 .005 .010 .025 .006 .015 .005 .005 .005 .005 .005 .004 .003 .003 .003 .002 .002	38.3 39.3 40.3 41.3 46.3 50.3 54.3 56.3 58.3 58.3 58.3 58.3 62.3 56.3 62.3 72.3 74.3 76.3 85.3	44.5 45.6 47.5 55.8 55.8 55.0 62.6 66.0 71.5 55.0 64.6 66.0 71.7 75.7 78.7 78.7 81.9 83.0 95.2	.011 011 .009 .019 .027 .026 .027 .022 .024 .019 .017 .014 .010 .008 .006 .005 .003 .003 .003 .002 .001 .0007	.001 .002 .001 .003 .001 .001 .001 .001 .001 .001		

119.7 MeV (continued)

ł

119.7 MeV (continued)

	6.00 MeV 4+									
の し (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	∆ (mb/sr)	θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	Δ (mb/sr)			
10.3 12.3 14.3 19.3 20.3 21.3 22.3 23.3 24.3 25.3 26.3 26.3 26.3 26.3 27.3 28.3 30.3 31.3 34.3	12.1 14.4 16.8 21.4 22.6 23.8 24.9 26.1 27.3 28.4 29.6 30.7 31.9 33.1 35.4 36.5 39.9	7.95 4.404 1.230 1.802 1.489 .602 .510 .624 .742 .697 .724 .576 .491 .491 .622 .344	.15 .068 .019 .021 .021 .014 .012 .007 .013 .009 .017 .044 .009 .022 .011 .012 .009	35.3 36.3 37.3 37.3 38.3 39.3 40.3 41.3 50.3 54.3 56.3 58.3 58.3 72.3	41.1 42.2 43.4 43.4 44.5 45.6 45.6 45.6 47.2 58.0 58.0 58.0 58.0 58.6 64.6 66.8 79.8 81.9	.335 .268 .201 .219 .192 .178 .192 .148 .124 .101 .032 .017 .020 .013 .011 .001 .001	.010 .007 .004 .007 .004 .007 .004 .007 .004 .001 .001 .001 .001 .001 .001 .001			

X.

	6.44 MeV 0+										
θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	Δ (mb/sr)	$ heta_{ m L}$ (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	Δ (mb/sr)				
10.3 14.3 15.3 20.3 21.3 22.3 23.3 24.3 25.3 26.3 27.3 28.3 30.3 31.3	12.1 16.8 17.9 23.8 24.9 26.1 27.3 28.4 29.6 30.7 31.9 33.1 35.4 36.5	3.57 1.998 1.156 .654 .418 .211 .158 .140 .188 .259 .216 .244 .152 .167	.10 .024 .017 .012 .010 .005 .007 .004 .009 .026 .006 .015 .006 .006	34.3 35.3 36.3 37.3 37.3 38.3 40.3 41.3 43.3 54.3 54.3 56.3	40.0 41.1 42.2 43.4 43.4 44.5 44.5 44.5 44.5 50.2 53.6 61.4 62.5 64.7	.204 .153 .126 .081 .088 .083 .060 .056 .059 .026 .010 .010 .010	.007 .006 .005 .003 .004 .003 .005 .003 .005 .003 .001 .001 .001				

119.7 MeV (continued)

 Ne^{20} (α, α ') Ne^{20}

Beam Energy = 33.0 MeV

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Ela	astic		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\theta_{\rm cm}$	ασ/αΩ	Δ	$\theta_{ m em}$	$d\sigma/d\Omega$	Δ
12.5 3840 9 47.4 $.181$ $.035$ 14.9 1070 5 47.9 $.162$ $.010$ 17.2 209 3 48.0 $.200$ $.012$ 18.8 149 1 49.8 1.39 $.03$ 19.2 165 1 49.8 1.39 $.03$ 19.2 161 1 50.2 1.57 $.04$ 21.2 254 1 50.3 2.36 $.05$ 22.0 290 2 52.1 4.33 $.09$ 23.7 311 2 52.5 4.95 $.05$ 24.0 275 1 52.7 5.18 $.10$ 24.4 276 1 54.3 5.83 $.10$ 26.1 171 1 54.6 5.41 $.10$ 26.3 175 1 54.8 6.00 $.07$ 28.7 56.1 $.1$ 56.6 5.41 $.10$ 28.7 56.1 $.1$ 106 52.9 $.05$ 31.1 7.63 $.08$ 57.5 4.68 $.09$ 31.2 1.71 $.09$ 55.9 $.05$ $.05$ 31.1 7.63 $.08$ 57.5 4.68 $.09$ 32.6 1.37 $.14$ 59.7 2.87 $.030$ 32.6 1.37 $.14$ 59.7 2.87 $.030$ 32.6 1.37 $.14$ 59.7 $.05$ $.04$ 32.6 1.37 <td< th=""><th>(deg)</th><th>(mb/sr)</th><th>(mb/sr)</th><th>(deg)</th><th>(mb/sr)</th><th>(mb/sr)</th></td<>	(deg)	(mb/sr)	(mb/sr)	(deg)	(mb/sr)	(mb/sr)
40.4 1.69 .09 (8.8 1.43 .03	12.5 14.9 17.2 18.8 19.2 22.2 24.4 $1.3.3$ 22.2 24.4 $1.3.3$ $2.2.2$ 24.4 $1.3.3$ $2.2.2$	3840 1070 209 149 165 161 254 290 311 275 276 171 175 169 56.1 32.9 7.93 7.63 1.71 1.377 3.64 3.599 9.49 11.7 23.4 26.1 29.4 27.2 21.6 19.6 15.6 13.8 14.0 12.7 9.52 7.88 3.25 1.69	$\begin{array}{c} 9\\ 5\\ 5\\ 3\\ 1\\ 1\\ 1\\ 2\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	47.4 47.9 48.8 99.8 50022555555555555555555555555555555555	.181 $.162$ $.200$ 1.39 1.39 1.57 2.36 4.33 4.95 5.18 5.83 5.94 6.00 5.41 5.11 5.43 4.95 4.68 3.26 2.87 1.69 1.49 1.15 $.987$ $.910$ $.892$ 1.03 1.13 1.14 1.59 1.64 1.97 1.85 2.12 1.96 1.85 1.78 1.43	.035 .010 .012 .03 .04 .05 .09 .05 .10 .10 .10 .10 .07 .10 .07 .10 .07 .10 .07 .10 .07 .10 .07 .10 .07 .10 .05 .09 .04 .02 .05 .04 .028 .07 .030 .044 .028 .07 .03 .044 .028 .07 .03 .044 .028 .07 .03 .044 .028 .07 .03 .044 .028 .07 .03 .044 .055 .044 .028 .07 .03 .044 .055 .055 .045 .055 .045 .055 .045 .055 .045 .055

(¢. .

1944 - A.

		El	astic		
$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ	$\theta_{\tt cm}$	$d\sigma/d\Omega$	Δ
(deg)	(mb/sr)	(mb/sr)	(deg)	(mb/sr)	(mb/sr)
79.4 80.9 81.5 83.0 83.6 85.2	1.27 .964 .701 .524 .395 .261	.04 .023 .031 .015 .016 .015	85.7 87.9 90.0 92.0 94.1 96.2	.218 .194 .261 .373 .394 .421	.013 .010 .011 .016 .016 .018

Beam Energy = 33.0 MeV

33.0 MeV (continued)

		1.63 M	(eV 2 ⁺		
$\theta_{\rm cm}$	dσ/dΩ	Δ	$\theta_{\tt cm}$	dσ/dΩ	Δ
(deg)	(mb/sr)	(mb/sr)	(deg)	(mb/sr)	(mb/sr)
12.5 17.1 19.9 12.2 22.2 22.2 22.2 22.2 22.2 22	112 111 83.3 23.9 47.6 57.0 17.6 15.5 5.35 5.93 11.1 14.9 26.4 50.9 33.9 26.8 26.1 28.0 8.340 3.14 4.88 6.54 7.52 8.99 11.5 10.2 11.8 11.5 10.8 9.912 8.68 7.1	1 1 .4 .3 .5 .5 .3 .5 .1 .2 .1 .1 .2 .2 .4 .2 .1 .4 .6 .2 .2 .4 .3 .10 .17 .19 .11 .12 .28 .26 .02 .07 .16 .26 .1 .2 .3 .1 .15 .17 .08 .11	52.55555555555556666666666666666777777779991.02.32.345 52.066608999922441973195376082035173994950232345	5.02 5.10 4.39 1.759 1.596 1.577 1.566 1.7156 3.44 4.392 1.7256 3.44 4.3342 5.156 2.16 1.587 1.7256 3.44 4.3342 5.156 1.8892 1.5848 1.5848 1.5895 2.580 2.638 1.882 1.5848 2.5905 2.638 1.9311 .777	.09 .06 .08 .04 .06 .04 .06 .04 .06 .03 .06 .03 .08 .04 .09 .1 .06 .10 .06 .15 .07 .06 .10 .06 .15 .07 .06 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .06 .04 .05 .05 .05 .05 .06 .04 .05 .05 .05 .05 .05 .06 .04 .06 .04 .06 .05 .05 .05 .05 .06 .04 .06 .04 .06 .04 .06 .04 .06 .04 .06 .04 .06 .04 .06 .04 .06 .04 .06 .04 .06 .04 .06 .04 .06 .04 .05 .025 .025 .024

33.0 MeV (continued)					
	-	4.25 Me	v 4 ⁺		
$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ	$\theta_{\rm cm}$	ασ/αΩ	Δ
(deg)	(mb/sr)	(mb/sr)	(deg)	(mb/sr)	(mb/sr)
$15.1 \\ 17.5 \\ 19.5 \\ 24.4 \\ 26.6 \\ 21.5 \\ 19.5 \\ 24.4 \\ 26.7 \\ 21.5 \\ 19.5 \\ 24.4 \\ 29.1 \\ 1.5 \\ 19.5 \\ 24.4 \\ 29.1 \\ 1.5 \\ 19.9 \\ 24.4 \\ 24$	4.27 5.54 5.55 5.79 7.05 6.16 6.36 4.66 4.39 2.80 1.35 1.19 1.02 .934 .869 .809 1.24 1.54 1.67 1.12 1.55 1.64 1.52 1.41 1.07 .777	.10 .11 .10 .16 .25 .17 .17 .08 .08 .08 .05 .04 .03 .11 .033 .022 .068 .08 .08 .08 .08 .08 .08 .08 .17 .10 .08 .08 .03 .11 .03 .03 .01 .03 .009	48.6 50.4 50.4 50.9 52.5 55.1 55.1 55.1 55.1 55.1 55.1 55.1	.727 .663 .586 .675 .800 .837 1.04 1.08 1.12 1.10 1.20 1.10 1.20 1.10 1.20 1.10 1.68 .986 .828 .785 .612 .683 .565 .546 .589 .733 .761 .677 .575 .542	.021 .039 .041 .021 .038 .021 .04 .04 .04 .03 .03 .03 .05 .02 .02 .02 .02 .029 .026 .020 .023 .021 .027 .023 .021 .027 .022 .022 .018 .017 .025

:

-101-

		4.97 1	MeV 2		
$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ
(deg)	(mb/sr)	(mb/sr)	(deg)	(mb/sr)	(mb/sr)
15.1 17.6 19.5 19.5 24.4 24.9 26.8 29.2 34.0 35.6 37.9 43.5 43.5 45.1 45.2 44.9 45.2 45.2 50.6	.823 .647 .787 .771 .763 .580 .418 .118 .234 .160 .248 .219 .212 .152 .189 .169 .124 .165 .124 .165 .139 .234 .164 .369 .393	.045 .037 .036 .060 .081 .053 .043 .012 .019 .013 .017 .011 .035 .027 .027 .027 .027 .027 .027 .027 .022 .021 .010 .033 .012 .039 .015 .030	50.6 51.0 52.9 53.4 55.2 55.7 57.5 57.6	.410 .397 .410 .408 .377 .408 .398 .267 .332 .294 .231 .258 .225 .261 .327 .348 .372 .348 .372 .348 .372 .347 .284 .143 .053 .108 .150 .140	.035 .016 .027 .015 .026 .023 .017 .016 .025 .012 .009 .010 .014 .015 .017 .043 .019 .014 .019 .014 .019 .014 .012 .006 .007 .008 .013

33.0 MeV (continued)

JJO MEY (CONSINUEL)	33.0	MeV (continued)
---------------------	------	-------	-----------	---

		5.63 N	ſeV 3		
$\theta_{\rm cm}$.	$d\sigma/d\Omega$	Δ	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ
(deg)	(mb/sr)	(mb/sr)	(deg)	(mb/sr)	(mb/sr)
12.7 15.66 19.69.9 224.999377211604866661253 33333580235.66661253	14.8 16.4 16.5 15.5 $\cdot 16.4$ 15.3 10.9 11.1 6.93 7.27 3.13 1.76 1.71 1.58 2.32 2.09 2.27 3.51 3.71 4.07 2.97 3.45 3.51 3.73 3.12 2.91 1.78	.3 .2 .4 .3 .4 .2 .2 .09 .11 .06 .04 .04 .15 .05 .03 .11 .13 .12 .26 .21 .11 .11 .05 .16 .04 .13	48.9 50.7 50.7 51.2 53.0 55.3 55.3 55.3 55.3 55.3 55.3 57.7 57.7	1.92 1.61 1.82 1.54 1.65 1.63 1.21 1.75 1.76 1.63 1.73 1.85 1.82 1.63 1.30 1.49 1.39 1.15 1.11 $.978$ $.973$ $.724$ $.610$ $.832$ $.717$ $.791$.02 .06 .07 .03 .05 .05 .05 .05 .04 .04 .06 .03 .02 .03 .04 .03 .02 .03 .04 .03 .04 .03 .026 .027 .020 .020 .020 .020 .018 .030

ł

ł

)).e He. (convincer		
· · · · · · · · · · · · · · · · · · ·	<u> </u>	5.80 M	íeV l		
$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ
(deg)	(mb/sr)	(mb/sr)	(deg)	(mb/sr)	(mb/sr)
12.7 15.2 17.6 19.6 19.6 224.9 26.9 27.2 24.9 27.2 29.3 31.7 33.4 1.1 35.1 43.7 43.7 43.7 43.7 43.7 43.7 43.7 43.7 43.7 43.4 45.5 48.4	$12.3 \\ 4.87 \\ 2.07 \\ 3.26 \\ 2.78 \\ 4.71 \\ 4.60 \\ 4.55 \\ 2.67 \\ 1.78 \\ 1.04 \\ 1.38 \\ 1.23 \\ 1.72 \\ 2.81 \\ 2.84 \\ 3.18 \\ 3.03 \\ 1.46 \\ 2.76 \\ 1.69 \\ 2.08 \\ 1.45 \\ 1.14 \\ 1.04 \\ 1.45 \end{bmatrix}$	$ \begin{array}{c} .2\\.11\\.07\\.07\\.11\\.20\\.15\\.14\\.06\\.05\\.03\\.04\\.03\\.15\\.06\\.04\\.14\\.12\\.11\\.15\\.20\\.08\\.08\\.08\\.03\\.10\\.03\\.13\end{array} $	48.8 50.7 50.7 51.2 53.1 55.4 55.4 55.4 55.4 55.4 55.4 55.4 57.7 57.7	1.33 1.74 1.63 1.71 1.77 1.65 2.20 1.51 1.23 1.04 $.829$ $.716$ $.156$ $.120$ $.185$ $.227$ $.263$ $.563$ $.654$ $.591$ $.217$ $.207$ $.765$ $.978$ 1.24 1.17	.03 .06 .07 .03 .06 .03 .06 .04 .03 .03 .03 .040 .018 .008 .007 .012 .014 .015 .025 .025 .025 .023 .013 .014 .022 .022 .02 .02

33.0 MeV (continued)

33.	0	MeV	(continued))
		THC V	(CONCINCCO)	,

		7.17 M	le γ :3 [¯]		
$\theta_{\rm cm}$	dσ/dΩ	Δ	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ
(deg)	(mb/sr)	(mb/sr)	(deg)	(mb/sr)	(mb/sr)
$12.8 \\ 15.7 \\ 19.7 \\ 19.2 \\ 24.1 \\ 27.2 \\ 27.2 \\ 27.2 \\ 27.3 \\ 33.4 \\ 35.9 \\ 27.1 \\ 9.9 \\ 44.4 \\ 45.7 \\ 44.4 \\ 46.7 \\ 48.7 \\ 19.7 \\ 19.9 \\ 10.1 \\ 1$	30.0 25.9 23.4 18.8 20.4 16.9 9.76 9.99 5.60 5.41 3.61 4.34 4.00 4.72 4.57 4.43 4.69 4.77 4.69 4.77 5.60 2.19 1.86 2.11 2.41 1.88 1.89	.4 .2 .2 .3 .3 .22 .20 .08 .09 .06 .07 .05 .24 .07 .05 .24 .07 .05 .16 .15 .11 .22 .18 .08 .09 .04 .15 .04 .13	49.1 51.0 51.5 555555555555555555555555555	1.80 1.98 1.63 1.92 1.47 1.57 1.26 1.31 1.24 .898 .942 1.02 .918 .951 1.20 1.01 .979 .662 .950 .827 .716 .618 .519 .503 .487 .441	.04 .07 .04 .05 .03 .05 .04 .03 .029 .042 .02 .019 .018 .03 .029

-106-

$Ne^{20}(\alpha, \alpha')$)
----------------------------	---

スス	\cap	Mav
ノノ	• •	TAG A

Large	angle	data
0°		

33.0 Me	V
---------	---

	Elastic		1.63 M	e v 2 ⁺
θ_{L}	$\theta_{ m cm}$	dσ/dΩ	$\theta_{\rm cm}$	$d\sigma/d\Omega$
(deg)	(deg)	(mb/sr)	(deg)	(mb/sr)
86.7 88.7 90.7 92.7 94.7 96.7 98.7 100.7 102.7 104.7 106.7 106.7 110.7 110.7 112.7 114.7 116.7 120.7 122.7 124.7 126.7 128.7 130.7 132.7 134.7 136.7 138.7 140.7 142.7	98.1 100.3 102.3 104.3 106.3 108.2 110.2 112.1 114.0 115.9 117.8 119.7 121.6 123.4 125.3 127.1 128.9 130.7 132.5 134.3 136.1 137.6 139.3 141.0 142.8 144.5 146.2 147.9 149.5	.360 .304 .171 .131 .052 .055 .061 .110 .120 .088 .084 .077 .053 .049 .045 .087 .102 .244 .266 .298 .140 .113 .074 .066 .110 .230 .282 .525 .319	98.4 100.7 102.7 104.7 106.6 108.6 110.5 112.5 114.4 116.3 118.2 120.1 121.9 123.8 125.6 127.3 129.2 131.0 132.8 134.5 136.3 138.0 139.8 141.5 143.2 144.9 146.6 148.3 150.0	$\begin{array}{c} .832\\ .934\\ .800\\ .844\\ .564\\ .578\\ .446\\ .484\\ .264\\ .233\\ .229\\ .301\\ .308\\ .437\\ .441\\ .553\\ .313\\ .294\\ .215\\ .278\\ .293\\ .596\\ .662\\ 1.22\\ .986\\ 1.13\\ .901\\ .873\\ .558\end{array}$
144.7 146.7 148.7 150.7	151.2 152.9 154.5 156.2	•387 •291 •323 •206	151.6 153.3 154.9 156.5	•131 1.01 1.81 1.54

UCRI	,–18	41	4

	33.0 MeV (continued) Large angle data					
	1	+.25 MeV 4 ⁺			4.97 MeV 2	
θ	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ	$\theta_{\rm cm}$	do/dΩ	Δ
(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(mb/sr)	(mb/sr)
86.7 88.7 90.7 92.7 94.7 96.7 98.7 100.7 102.7 104.7 106.7 110.7 112.7 114.7 116.7 120.7 122.7 124.7 126.7 126.7 128.7 136.7 136.7 136.7 136.7 136.7 136.7 136.7 140.7 146.7 136.7 146.7 146.7 156.7 146.7 146.7 156.7 146.7 146.7 150.7 146.7 146.7 150.7	97.2 99.4 101.3 105.4 107.4 109.2 111.1 113.2 115.1 116.9 128.0 129.8 131.5 136.9 138.5 140.2 142.0 143.7 145.3 147.0 148.7 150.4 151.9 153.6	1.07 1.01 1.17 1.07 1.21 .853 .855 .718 .873 .768 .994 1.01 1.55 1.12 1.28 1.07 1.10 .697 .557 .439 .578 .683 1.89 2.45 3.25 2.61 1.48 1.14 1.07 .664 .744 .727	.03 .03 .02 .03 .023 .017 .016 .018 .017 .019 .024 .020 .021 .02 .021 .02 .021 .02 .021 .020 .021 .020 .021 .020 .021 .020 .010 .010 .010 .011 .03 .03 .03 .03 .03 .01 .011 .008 .007 .007	97.6 99.6 101.5 103.5 105.6 107.6 109.4 111.3 115.3 117.1 119.0 122.8 124.5 126.3 126.3 126.3 126.3 128.2 130.0 131.7 133.5 135.3 137.0 138.7 140.4 142.2 143.9 145.5 147.1 148.9 150.5 152.1	.147 .094 .069 .082 .090 .131 .110 .171 .234 .098 .121 .062 .061 .104 .089 .109 .227 .248 .083 .071 .145 .376 .497 .523 .284 .266 .234 .117 .080	.010 .008 .007 .007 .009 .006 .008 .009 .006 .005 .005 .006 .006 .006 .006 .006
	88.9 91.0 92.9 95.0	.560 .639 .755 .967	.021 .022 .022 .024	89.1 91.2 93.1 95.4	.088 .062 .048 .047	.008 .007 .006 .005
$\operatorname{Ne}^{20}(\alpha, \alpha')$

50.9 MeV

	Elastic							
$\theta_{\rm L}$	$\theta_{ m cm}$	$d\sigma/d\Omega$	Θ_{L}	$\theta_{\rm cm}$	do/dΩ			
(deg)	(deg)	(mb/sr)	(deg)	(deg)	(mb/sr)			
36.7 38.7 40.6 42.6 44.7 46.7 48.6 52.7 54.6 56.6 58.6 58.6 62.7 64.6 64.6 68.7 70.7 72.6 64.6 68.7 70.7 72.6 78.7 80.6 82.7 80.6 82.6 84.7 78.7 80.6 82.6 84.7 80.6 82.6 82.6 84.7 76.6 82.7 76.6 82.7 76.6 82.7 76.6 82.7 76.6 82.7 76.6 82.7 76.6 82.7 76.6 82.7 76.6 82.6 82.6 84.7 78.6 82.6 84.7 78.6 82.6 82.6 84.7 78.6 82.6 84.7 78.6 82.6 84.7 78.6 82.6 84.6 82.6 84.7 78.6 82.6 84.6 84.7 78.6 82.6 84.6 84.7 78.6 82.6 84.7 80.6 84.7 80.6 84.7 80.6 84.7 80.6 84.6 84.7 80.6 84.7 84.6	43.6 45.9 48.2 50.5 52.9 55.2 57.3 59.0 61.9 64.3 66.3 68.5 70.8 73.0 75.1 77.3 77.3 79.5 81.7 83.7 85.8 88.0 92.1 94.3 98.3 90.2 102.2	9.94 8.88 6.56 3.59 1.84 1.23 1.24 1.28 1.04 .590 .418 .398 .362 .436 .482 .483 .489 .518 .535 .518 .535 .518 .497 .528 .411 .424 .599 .362 .528 .411 .424 .528 .411 .424 .528 .411 .424 .528 .411 .424 .528 .411 .424 .528 .411 .424 .528 .411 .424 .528 .411 .424 .528 .518 .529 .518 .529 $.529.$	94.7 96.6 98.6 100.7 102.7 104.6 106.6 108.7 110.7 112.6 114.6 116.7 120.6 122.6 124.7 126.7 128.6 129.3 130.6 131.4 132.7 135.4 137.3 139.4 141.4 143.4 145.3 147.4 149.4 151.4 153.3 155.4 157.4	106.3 108.1 110.1 112.1 114.0 115.8 117.7 129.7 129.7 127.1 128.9 130.6 132.4 134.3 136.0 137.7 138.3 139.4 141.3 144.8 143.0 143.5 145.1 145.1 146.9 145.1 146.9 157.7 155.3 157.1 158.5 160.2 161.8	.103 .092 .059 .047 .024 .013 .011 .0092 .0066 .0046 .0030 .0056 .0054 .0055 .0025 .0025 .0025 .0025 .0025 .0025 .0025 .0025 .0025 .0025 .0035 .037 .040 .030 .031 .016 .0104 .022 .048 .065 .079 .062 .036 .075			
92.7	104.3	.125	159.4	163.4	.124			

-2	L0	9	
----	----	---	--

		50.9 MeV	(continued)		
		1.63	MeV 2 ⁺		
$\theta_{\mathtt{L}}$	$\theta_{\rm cm}$	$d\sigma/d\Omega$	θ_{L}	$\theta_{\rm cm}$	ασ/αΩ
(deg)	(deg)	(mb/sr)	(deg)	(deg)	(mb/sr)
36.7 38.7 40.6 42.7 46.7 48.6 52.7 56.6 58.6 57.7 62.7 64.6 66.6 68.7 70.7 72.6 68.7 70.7 78.6 82.7 78.6 82.7 78.7 78.6 82.7 78.7 78.6 82.7 78.7 78.6 82.7 78.7 78.7 78.7 80.6 82.7 78.7 78.7 78.7 80.6 82.7 79.7 78.7 78.7 78.7 80.6 82.7 79.7 78.7 78.7 80.6 82.7 79.7 78.7 78.7 80.6 82.7 79.7 78.7 79.6 82.7 79.7 78.7 78.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.7 78.7 80.6 82.7 79.7 80.6 82.7 79.7 80.6 82.7 79.7 80.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.7 79.6 82.6 84.7 79.6 82.7 79.6 82.7 79.6 82.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 84.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.7 79.7 79.7 79.6 84.7 79.7 79.6 84.7 79.7 79.6 84.7 79.7 79.6 84.7 79.7 79.6 84.7 79.6 84.7 79.6 79.7 79.6 84.7 79.6 84.7 79.6 84.7 79.6 84.6 84.7 79.6 84.6 84.7 79.6 84.6 84.7 79.6 84.6 84.7 79.6 84.6 84.6 84.7 79.6 84.6 84.6 84.7 79.6 84.6 84.6 84.7 79.6 84.6 84.6 84.6 84.6 84.6 84.7 79.6 84.6 84.6 84.7 79.6 84.6 84.7 79.6 84.6 84.7 79.6 84.6 84.7 79.6 84.7	43.7 46.1 48.3 50.6 53.0 55.5 59.1 64.5 57.5 864.5 66.5 77.5 75.5 77.7 79.7 81.9 81.9 81.9 81.9 81.9 88.2 99.4 98.6	3.89 3.23 4.35 4.76 4.37 2.54 1.71 1.18 1.18 1.19 1.27 1.31 1.08 1.07 .837 .848 .629 .615 .598 .785 .729 .966 .875 1.04 .906 1.05 1.08 .986 .894 .894 .894 1.00 .909	94.7 96.6 98.6 100.7 102.7 104.6 106.6 108.7 110.7 112.6 114.6 116.7 126.122.6 122.6 124.7 126.7 126.7 128.6 129.3 130.6 131.4 132.7 135.4 137.3 139.4 141.4 143.4 145.3 147.4 149.4 151.4 153.3	106.5 108.4 110.3 112.4 114.3 116.1 118.0 129.9 121.8 125.4 127.3 129.1 130.8 132.6 134.5 136.2 137.9 136.2 137.9 138.4 139.6 140.3 141.4 142.0 143.1 145.3 147.0 143.7 145.3 147.0 148.7 150.4 152.0 157.1 158.6	.740 .628 .542 .522 .458 .445 .445 .452 .465 .387 .394 .378 .331 .265 .206 .180 .160 .170 .201 .212 .239 .241 .239 .241 .239 .241 .239 .241 .199 .152 .140 .135 .170 .180 .248 .229 .177 .114
90.6 92.7	102.4 104.6	•947 •932 •879	157.4 159.4	161.9 163.5	•109 •159 •234

÷

-110-

50.9 MeV (c	continued)
-------------	------------

4.25 MeV 4 ⁺									
$\partial_{\mathbf{L}}$	θ_{cm}	dσ/dΩ	Δ	$\theta_{{f L}}$	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ		
(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(deg)	(mb/sr)	(mb/sr)		
74.6 76.7 78.7 80.6 84.7 86.7 88.6 90.6 92.7 94.7 96.6 98.6 100.7 102.7 102.7 104.6 106.6 106.7 110.7 112.6 114.6 116.7 118.7	86.4 88.6 90.6 92.7 96.9 99.0 100.9 102.9 105.0 106.9 108.8 110.7 112.8 114.7 116.5 118.4 120.3 122.2 123.9 125.8 127.7 129.4	.393 .403 .425 .423 .408 .427 .498 .457 .498 .467 .498 .460 .450 .449 .422 .352 .319 .313 .312 .290 .300 .296 .272 .240	.026 .026 .026 .026 .026 .026 .026 .026	122.6 124.7 126.7 128.6 129.3 130.6 131.4 132.7 133.4 135.4 137.3 137.3 139.4 141.4 145.3 147.4 149.4 157.4 157.4	132.9 134.8 136.5 138.2 138.8 139.9 140.5 141.7 142.3 143.4 144.0 145.6 147.2 149.0 150.7 152.3 153.9 155.6 157.2 158.8 160.4 162.1	.216 .237 .229 .265 .242 .256 .253 .229 .211 .159 .161 .130 .129 .161 .130 .129 .175 .242 .308 .166 .095 .438 .409 .391 .314	.029 .028 .028 .026 .019 .026 .018 .027 .020 .032 .023 .029 .028 .024 .020 .017 .023 .020 .017 .023 .030 .014 .017 .016 .018		

	50.9 MeV	(continued)
--	----------	-------------

	i		4.97 Me	V 2			
Θ^{Γ}	$\theta_{\rm cm}$	dσ/dΩ	Δ	θ_{L}	$\theta_{\rm cm}$	do/dN	Δ
(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(deg)	(mb/sr)	(mb/sr)
76.7 78.7 80.6 84.7 86.7 86.7 90.6 92.7 94.7 96.6 98.6 100.7 102.7 104.6 106.6 108.7 110.7 112.6 114.6 118.7 120.6 122.6	88.7 90.8 92.8 97.0 99.1 101.0 103.0 105.1 107.1 108.9 110.9 112.9 114.8 116.6 118.5 120.4 122.3 124.0 125.8 129.5 131.3	.188 .198 .185 .167 .174 .140 .164 .168 .153 .133 .130 .131 .129 .142 .142 .125 .117 .114 .079 .081 .077	.038 .039 .042 .041 .046 .043 .045 .045 .037 .037 .037 .038 .038 .038 .036 .034 .036 .039 .040 .041 .048 .048 .048	124.7 126.7 128.6 129.3 130.6 131.4 132.7 133.4 134.7 135.4 137.3 139.4 141.4 145.3 147.4 151.4 153.3 155.4 157.4 159.4	134.9 136.6 138.3 138.9 140.0 140.7 141.8 142.4 143.5 144.1 145.6 147.3 149.1 150.7 152.3 153.9 157.3 158.8 160.4 163.7	.069 .061 .050 .038 .048 .051 .056 .069 .069 .074 .076 .066 .043 .025 .069 .070 .083 .085 .074 .060	.051 .054 .060 .048 .060 .041 .053 .039 .049 .034 .038 .037 .038 .048 .061 .036 .035 .035 .035 .036 .039

				<u> </u>			
		4.25 M	1eV 4 ⁺		4.97 MeV 2		
$\theta_{ m L}$	θ	em	$d\sigma/d\Omega$	θ_{L}	$\theta_{\rm cm}$	$d\sigma/d\Omega$	
(deg)	(đ	eg)	(mb/sr)	(deg)	(deg)	(mb/sr)	
40.0 42 44 46 48 50 52 46 62 64 66 87 72 74	45555566777788888	7.9 2.5 4.1 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	1.05 .953 .909 .863 .866 .865 .651 .676 .476 .494 .490 .419 .356 .318 .279 .286	40.0 42 44 46 48 50 52 46 62 64 66 87 72 74	48.0 50.3 52.6 54.9 57.2 59.5 61.8 64.0 70.7 72.9 75.1 77.3 79.5 81.7 83.8 85.9	.034 .025 .019 .020 .024 .040 .070 .072 .108 .109 .126 .160 .180 .211 .171 .176	

50.9 MeV (continued)

50.9 MeV (continued)

5.63 MeV 3				5.80 Me	V l		7.17 MeV 3		
θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	θ _L (deg)	θ _{cm} (deg)	dσ/dΩ (mb/sr)	
40.0 42 44 46 48 50 52 60 62 64 66 68 70 72	48.0 50.4 52.7 55.0 57.3 59.6 61.8 73.0 75.2 77.4 79.6 81.8 83.9	1.01 .795 .747 .480 .578 .580 .535 .276 .222 .192 .123 .166 .130 .062	40.0 42 44 46 52 54 60 62 66 66 68 70	48.0 50.4 52.7 55.0 57.3 59.6 61.9 64.1 70.9 73.1 75.3 77.5 79.6 81.8	.685 .772 .721 .699 .405 .276 .117 .122 .095 .033 .024 .050 .011 .019	40.0 42 44 46 48	48.2 50.5 52.9 55.2 57.5	.448 .387 .356 .321 .222	

 $Ne^{20}(\alpha, \alpha')$

80.8 MeV

Elastic									
θ_{L}	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ	$ heta_{ extsf{L}}$	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ		
(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(deg)	(mb/sr)	(mb/sr)		
11.9 13 14 15.9 18 20 22 24 26 28 30 30.9 31.8 32 9 31.8 32 9 33.9 34 35.8 36 37.9 38 39.9 41.9	14.3 15.8 19.1 24.0 281.5 281.2 35.6 99.2 28.1 35.6 99.2 28.1 35.6 99.2 28.1 35.6 99.2 28.1 35.6 99.2 28.1 40.2 45.2 49.7 49.7	322.1 402.6 348.0 125.6 17.45 36.49 49.89 26.32 7.793 5.267 7.985 7.96 7.54 7.117 5.57 4.607 4.431 3.179 3.229 3.296 3.296 3.514 3.182	1.5 1.8 .7 .3 .06 .08 .14 .09 .044 .075 .048 .31 .36 .047 .32 .119 .038 .074 .027 .035 .040 .035 .048	43.9 45.9 47.8 47.8 49.8 51.8 57.8 57.9 57.9 61.9 69.9 77.8 81.8 83.9 85.9 85.9 87.9 105.8 117.8	52.0 54.2 56.4 56.4 58.7 61.0 63.2 67.6 67.8 67.8 72.2 80.8 89.2 93.3 95.5 97.5 101.5 109.4 117.0 128.1	2.530 1.951 1.516 1.467 1.322 1.101 .832 .476 .496 .449 .297 .087 .031 .030 .035 .0174 .0106 .0080 .0074 .0042 .0006	.036 .028 .049 .025 .024 .022 .020 .018 .017 .013 .009 .005 .005 .005 .005 .005 .004 .003 .0023 .0024 .0017 .0015 .0011 .0016 .0004		

80.8 MeV (continued)

1.63 MeV 2 ⁺									
$ heta_{\mathtt{L}}$	θem	d σ/ dΩ	Δ	θ_{L}	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ		
(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(deg)	(mb/sr)	(mb/sr)		
11 11.9 13 14 15.9 18 20 24 26 30.9 31.8 32.9 31.8 32.9 33.9 35.9 36 38 39.9 41.9 43.9	13.2 14.3 15.6 16.8 19.1 24.0 28.8 31.2 35.9 37.0 38.2 37.0 38.2 39.5 42.9 45.5 49.1 49.1 45.6 45.6 52.1	54.19 18.60 6.77 14.23 39.88 34.64 13.20 13.77 14.37 4.742 4.26 4.917 6.07 5.74 5.32 4.07 3.311 3.396	.50 .36 .23 .14 .18 .05 .07 .06 .037 .22 .29 .039 .33 .13 .08 .05 .04 .049 .042	45.9 47.8 47.8 49.8 51.8 53.8 57.9 57.9 57.9 61.9 77.8 81.8 83.9 85.9 89.8 97.9 103.8 105.8 117.8	54.4 56.5 58.8 61.1 63.3 67.8 67.9 67.9 72.3 89.3 93.5 95.6 97.7 101.6 109.6 115.2 117.1 128.2	3.237 2.737 2.701 2.188 1.921 1.664 1.280 1.310 1.298 .891 .210 .214 .148 .113 .106 .078 .031 .021 .0091	.036 .066 .034 .031 .029 .028 .029 .027 .022 .016 .012 .010 .007 .005 .003 .003 .003 .003 .0017		

80.8 MeV (continued)

4.25 MeV 4 ⁺									
$\theta_{\rm L}$	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ	θ_{L}	$\theta_{\rm cm}$	dσ/dΩ	Δ		
(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(deg)	(mb/sr)	(mb/sr)		
11 11.9 13 14 15.9 18 20 22 24 26 28 30 30.9 31.8 32 32.9 33.9 34 35.8 36 39.9 41.9	$13.3 \\ 14.4 \\ 15.7 \\ 16.9 \\ 21.7 \\ 26.9 \\ 21.5 \\ 28.3 \\ 35.0 \\ 37.1 \\ 38.4 \\ 40.8 \\ 43.6 \\ 49.9 \\ $	5.99 6.203 5.63 4.426 1.585 .981 2.411 3.079 2.094 1.496 1.629 1.75 1.53 1.409 1.02 1.089 1.089 1.064 .844 .945 .971 .962	.16 .21 .21 .078 .036 .013 .021 .036 .025 .019 .042 .022 .15 .16 .021 .13 .058 .019 .038 .015 .018 .026	43.9 45.9 47.8 49.8 51.8 53.8 57.9 57.9 61.9 69.9 77.8 81.8 83.9 85.9 89.8 97.9 103.8 105.8 117.8	52.2 54.5 56.7 59.0 61.3 63.5 68.1 72.5 81.2 89.5 89.5 93.7 95.9 97.9 97.9 101.8 109.8 115.5 117.4 128.4	.852 .841 .760 .711 .621 .535 .453 .418 .331 .201 .093 .090 .069 .065 .052 .047 .027 .024 .0152 .0064	.021 .018 .018 .018 .017 .016 .016 .012 .010 .008 .008 .008 .008 .005 .004 .005 .004 .005 .004 .005 .004 .003 .003 .0029 .0014		

(continued)

i

80.8 MeV (continued)

			4.97 M	leV 2			
θ_{L}	$\theta_{\rm cm}$	dσ/dΩ	Δ	θ_{L}	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ
(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(deg)	(mb/sr)	(mb/sr)
11 11.9 14 18 20 22 24 26 28 30 30.9 31.8 32 32.9 33.9 34 35.8 36 37.9 38 39.9	13.3 14.4 16.9 21.7 24.1 26.5 28.9 31.3 36.0 37.1 38.4 39.56 40.7 43.1 45.4 45.4 47.6	.793 .380 .305 .118 .105 .111 .196 .258 .277 .371 .324 .310 .402 .445 .415 .414 .399 .401 .378 .343 .317	.061 .052 .020 .004 .004 .007 .008 .008 .017 .010 .062 .073 .011 .089 .036 .012 .026 .010 .011 .013 .010	41.9 43.9 45.9 47.8 47.8 49.8 51.8 53.8 57.9 57.9 61.9 69.9 77.8 81.8 83.9 85.9 85.9 89.8 97.9 103.8 105.8 117.8	50.0 52.3 54.6 56.8 56.8 59.0 61.3 63.6 68.1 72.6 81.3 89.6 93.8 95.9 98.0 101.9 109.9 115.6 117.4 128.5	.199 .243 .244 .179 .192 .156 .160 .100 .077 .088 .075 .037 .024 .0126 .0103 .0090 .0045 .0012 .0027 .0015	.012 .011 .010 .017 .009 .008 .008 .007 .007 .007 .007 .007 .005 .003 .003 .003 .003 .0021 .0017 .0012 .0015 .0012 .0006 .0012 .0007

			5.63/5.80	MeV 3 ⁻ /1 ⁻			
$\theta_{\mathbf{L}}$	$\theta_{\rm cm}$	d σ/ dΩ	Δ	θ_{L}	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ
(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(deg)	(mb/sr)	(mb/sr)
11 11.9 13 14 15.9 18 22 24 26 28 30.9 31.8 32.9 31.8 32.9 33.9 34 35.8 36 37.9	13.3 14.4 15.7 16.9 21.7 26.5 28.9 31.3 37.2 28.4 37.2 38.4 37.2 38.4 39.7 40.8 42.1 45.4 45.4	24.42 19.31 13.61 9.34 3.55 6.23 5.81 4.382 3.570 3.032 2.414 2.26 1.48 1.746 1.44 1.174 1.177 .857 .849 .676	.34 .37 .32 .11 .05 .06 .06 .037 .030 .057 .026 .16 .16 .023 .16 .060 .019 .038 .014 .015	38 39.9 41.9 43.9 45.9 47.8 49.8 51.8 53.8 53.8 61.9 77.8 83.9 85.9 83.9 85.9 89.8 97.9 103.8 117.8	45.5 47.7 50.0 52.3 54.6 56.8 59.1 61.4 63.6 72.6 81.3 93.9 96.0 98.1 102.0 110.0 115.6 128.5	.701 .709 .765 .753 .716 .660 .613 .546 .552 .483 .241 .114 .043 .043 .043 .028 .024 .0127 .0065 .0055 .0018	.018 .016 .024 .020 .017 .032 .016 .015 .016 .015 .008 .006 .004 .004 .004 .004 .003 .004 .0022 .0015 .0013 .0008

80.8 MeV (continued)

0¹⁶(α,α')

æ.

		50	MeV		
		Ela	stic	<u> </u>	
$\theta_{\rm L}$	$\theta_{\rm cm}$	$d\sigma/d\Omega$	θ_{L}	$\theta_{\rm cm}$.	dσ/dΩ
(deg)	(deg)	(mb/sr)	(deg)	(deg)	(mb/sr)
8.3 9.3 10.3 11.3 12.3 13.2 13.3 14.3 15.2 15.3 16.3 17.3 18.2 18.3 19.3 20.2 20.3 21.3 22.2 22.3 23.3	9.8 11.6 12.8 14.1 15.3 16.5 16.6 17.8 19.0 19.1 20.3 21.5 22.7 24.0 25.3 24.0 25.3 26.6 27.8 29.1	235.5 373.9 662.8 169.8 16.9 14.7 36.2 133.4 162.7 447.0 235.5 226.9 187.9 184.8 125.8 82.4 69.6 25.3 12.9 6.88 6.44	24.3 25.3 26.3 28.3 30.3 32.2 32.3 33.7 34.2 38.5 40.2 42.2 44.2 46.2 52.2 54.2 58.2 54.2 58.2 64.7 66.7 68.7	30.3 31.5 32.8 35.2 37.7 39.9 41.7 42.3 47.6 51.9 54.7 61.4 63.0 70.6 70.6 70.6 82.3	13.7 31.0 37.7 47.4 36.1 22.2 2.52 14.2 6.50 16.3 17.5 14.4 9.61 5.48 2.41 2.07 1.58 $.762$ 1.074 1.25 1.55

-120-

		70 Met (et				
		6.137	MeV 3			
θ_{L}	$\theta_{\rm cm}$	ασ/αΩ	$ heta_{ extsf{L}}$	$\theta_{\rm cm}$	dσ/dΩ	
(deg)	(deg)	(mb/sr)	(deg)	(deg)	(mb/sr)	
9.3 11.3 12.3 13.2 14.3 15.2 15.3 16.3 17.3 18.2 18.3 19.3 20.2 20.3 21.3 22.2 22.3 23.3 24.3 25.3	11.7 14.4 15.7 16.8 18.2 19.3 19.5 20.7 22.0 23.1 23.2 24.5 25.6 25.8 27.0 28.1 28.3 29.5 30.8 32.0	16.7 21.3 23.6 22.4 23.9 22.2 42.7 19.3 16.3 13.5 13.0 9.92 7.79 7.76 6.22 5.40 6.00 6.49 7.30 7.84	26.3 28.3 30.3 32.2 32.3 33.7 34.2 38.5 40.2 44.2 46.2 50.2 54.2 52.2 54.2 58.2 64.7 66.7 68.7	33 .2 35 .6 38 .1 40 .6 40 .6 42 .4 43 .0 48 .1 50 .4 52 .8 55 .2 57 .6 62 .3 64 .7 67 .0 71 .6 79 .0 81 .3 83 .5	8.15 6.92 4.55 2.87 2.82 2.18 1.02 3.12 3.62 3.23 2.58 2.02 1.72 1.70 1.57 1.40 1.03 1.02	

50 MeV (continued)

50 MeV (continued)

6.9	18 MeV	2 ⁺	7	.118 Me	V l	8	.876 Me	۷ 5_
θ _L	$\theta_{\rm cm}$	dσ/dΩ	$\theta_{\mathtt{L}}$	$\theta_{\rm cm}$	dσ/dΩ	θ_{L}	$\theta_{\rm cm}$	dσ/dΩ
(deg)	(deg)	(mb/sr)	(deg)	(deg)	(mb/sr)	(deg)	(deg)	(mb/sr)
9.3 11.3 12.2 13.2 15.3 14.3 15.3 14.3 15.3 12.3 15.3 12.3 15.3 12.3 15.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12	11.7 14.4 15.7 16.9 19.5 8 0 2 3.6 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29	14.6 12.3 9.94 7.87 2.91 4.04 2.85 2.87 2.95 3.40 3.87 4.287 4.287 4.287 4.287 4.287 4.257 1.32 1.82 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.554	9112323233233223322332444455 112323233322332233244568022333244455 11223222222222223333244455 11211111111122222222222223333244455 11211111111111222222222222223333444455 112111111111111122222222222223333444455 11211111111111111122222222222223333444455 112111111111111111111111111111111	11.8 14.4 15.8 24.5 8 19.9 22.2 22.2 22.2 22.2 22.2 22.2 22.2	3.29 .005 1.15 1.50 3.80 2.85 6.28 3.16 2.97 2.88 2.37 2.00 2.05 1.77 1.72 1.82 2.05 2.28 2.48 2.53 2.15 1.40 .838 .597 .611 .699 1.04 .983 1.43 1.39	9.3 12.3 14.1 15.5 16 17 18 19 20 22 22 22 22 22 23 33 33 34 44 45 55 55 56 66 68 .0 22 33 33 34 44 45 55 55 56 66 68 .0 22 33 33 34 44 45 55 55 56 66 68 .0 22 33 33 34 44 46 02 24 26 80 33 33 34 46 22 22 22 22 22 22 22 23 33 33 34 44 46 02 24 22 22 22 23 33 33 34 44 46 02 24 22 27 77 77 25 22 22 22 22 23 33 33 34 46 22 22 22 23 33 33 34 46 22 22 22 23 33 35 24 46 22 22 22 22 23 33 35 22 22 22 22 22 22 22 22 22 22 22 22 22	$\begin{array}{c} 11.8\\ 13.2\\ 15.7\\ 16.4\\ 19.6\\ 9.2\\ 23.4\\ 25.6\\ 22.3\\ 24.5\\ 9.0\\ 22.3\\ 24.5\\ 22.2\\ 22.5\\ 24.5\\ 25.5\\ 25.5\\ 25.5\\ 25.5\\ 25.5\\ 25.5\\ 25.5\\ 24.5\\ 27.9\\ 21.2\\ 27.5\\ 24.5\\ 22.5\\ 24.5\\ 22.5\\ 24.5\\ 22.5\\ 24.5\\ 24.5\\ 25.5\\ 25.5\\ 25.5\\ 25.5\\ 25.5\\ 24.5\\ 27.9\\ 24.5\\ 27.5\\ 27.5\\ 24.5\\ 27.5\\ 2$	$\begin{array}{c} 1.82\\ 1.45\\ 1.63\\ 1.41\\ 1.26\\ 1.29\\ 2.38\\ .9493\\ .6793\\ .4027\\ .3257\\ .23489\\ .3257\\ .23489\\ .3292\\ .3402\\ .2040\\ .208\\ .3402\\ .208\\ .392\\ .398\\ .3292\\ .398\\ .392\\ .1503\\ .208\\ .392\\ .398\\ .392\\ .398\\ .392\\ .398\\ .392\\ .398\\ .392\\ .398\\ .392\\ .398\\ .392\\ .398\\ .392\\ .398\\ .392\\ .398\\ .392\\ .398\\ .398\\ .398\\ .398\\ .398\\ .398\\ .398\\ .398\\ .398\\ .3965\\ .265\\ .$

			0 ¹⁶ (α	,α')			
	·.		80.7 1	1eV			
<u></u>		1	g.s. () ⁺			
θ_{L}	$\theta_{\rm cm}$	dσ/dΩ	Δ	$ heta_{ m L}$	$\theta_{\rm cm}$	$d\sigma/d\Omega$	\bigtriangleup
(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(deg)	(mb/sr)	(mb/sr)
$\begin{array}{c} 10\\ 11\\ 12\\ 12\\ 12\\ 13\\ 13\\ 14\\ 14\\ 15\\ 16\\ 16\\ 16\\ 16\\ 17\\ 18\\ 18\\ 19\\ 20\\ 21\\ 22\\ 24\\ 24\\ 25\\ 26\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 31 \end{array}$	12.5 15.0 15.0 15.0 15.0 16.3 17.5 18.8 20.0 22.2 22.5 25.0 22.4 29.9 1.4 4.6 $3.7.5$ 3.8 3.6 $3.7.5$ 3.8	24.07 82.08 180.5 299.7 228.8 350.9 323.2 277.7 315.7 324.0 321.5 247.2 167.7 111.8 39.32 41.83 32.51 34.56 35.135 45.53 45.53 45.53 45.53 45.63 16.74 17.20 10.87 6.82 6.67 8.18 7.989 9.38 9.004	.76 .20 2.1 .3 .9 1.9 .4 2.6 1.1 .4 1.9 .3 2.0 .8 .3 1.1 .39 .14 .59 .29 .14 .59 .29 .14 .59 .29 .14 .59 .29 .14 .59 .29 .14 .59 .29 .14 .27 .32 .14 .21 .21 .10 .14 .21 .21 .10 .14 .21 .21 .10 .14 .21 .21 .10 .14 .21 .21 .10 .14 .21 .10 .14 .11 .10 .12 .070 .12 .074	322 333 333 333 333 333 333 333 333 33 3	399.7799113355580000244455577779111155588882	10.62 10.67 9.800 10.73 9.944 9.69 9.153 9.22 8.330 7.625 7.626 7.495 7.20 7.57 7.609 8.290 8.518 7.617 8.226 7.935 8.822 8.751 8.358 8.355 8.358 8.358 8.358 8.358 8.358 8.358 8.358 8.358 8.358 8.358 8.359 7.217 6.227 6.21 6.035 5.003	.14 $.08$ $.064$ $.13$ $.081$ $.13$ $.064$ $.12$ $.062$ $.051$ $.060$ $.085$ $.053$ $.077$ $.06$ $.11$ $.086$ $.056$ $.083$ $.062$ $.090$ $.056$ $.057$ $.085$ $.057$ $.093$ $.062$ $.090$ $.056$ $.057$ $.093$ $.057$ $.093$ $.089$ $.083$ $.13$ $.058$ $.082$ $.12$ $.056$ $.078$ $.11$ $.053$ $.069$

•

80.7 MeV (continued)

			g.s	s. 0 ⁺				
θ_{L}	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ		θ_{L}	$\theta_{\rm cm}$	dσ/dΩ	Δ .
(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(deg)	(mb/sr)	(mb/sr)
50 50 52 54 56 58 62 64 64 66 66	61.2 63.5 63.5 65.8 68.1 70.4 72.6 74.9 77.1 77.1 79.3 79.3	5.11 5.062 4.471 4.368 3.938 3.262 2.767 2.266 1.716 1.277 1.278 1.007 1.007	.10 .049 .088 .047 .084 .077 .071 .034 .030 .026 .031 .023 .029	- -	68 70 72 74 76 78 80 82 84 86 88 90	81.5 83.7 85.9 88.0 90.2 92.3 94.4 96.5 98.5 100.6 102.6 104.6	.781 .745 .648 .511 .419 .343 .243 .187 .165 .116 .109 .069 .078	.013 .025 .012 .012 .010 .014 .012 .011 .010 .011 .010 2 .0083 7 .0090

80.7 MeV (continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I		6.137	MeV 3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\theta_{\rm L}$	$\theta_{\rm cm}$	dσ/dΩ	Δ	θ_{L}	$\theta_{\rm cm}$	dσ/dΩ	Δ
10 12.6 25.06 $.76$ 34 42.5 2.749 $.035$ 11 13.9 28.10 $.11$ 35 43.8 2.108 $.057$ 12 15.2 21.81 $.71$ 35 43.8 2.353 $.029$ 12 15.2 24.99 $.09$ 36 45.0 2.130 $.029$ 12 15.2 22.88 $.30$ 36 45.0 2.130 $.029$ 13 16.4 24.02 $.49$ 37 46.2 2.112 $.045$ 13 16.4 19.41 $.10$ 38 47.4 2.046 $.027$ 14 17.7 13.35 $.56$ 38 47.4 2.025 $.040$ 14 17.7 13.75 $.07$ 38 47.4 2.025 $.040$ 14 17.7 13.75 $.07$ 38 47.4 2.025 $.040$ 14 17.7 13.75 $.07$ 38 47.4 2.025 $.040$ 14 17.7 13.75 $.07$ 38 47.4 2.025 $.040$ 14 17.7 13.75 $.07$ 38 47.4 2.014 $.057$ 15 18.9 11.30 $.35$ 39 48.6 2.110 $.045$ 16 20.2 4.46 $.32$ 40 49.8 2.202 $.028$ 16 20.2 4.64 $.13$ 40 49.8 2.021 $.032$ 16 20.2	(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(deg)	(mb/sr)	(mb/sr)
24 30.2 6.15 $.12$ 48 59.4 1.708 $.028$ 24 30.2 6.049 $.054$ 50 61.7 1.603 $.040$ 25 31.4 5.290 $.089$ 50 61.7 1.650 $.057$ 26 32.7 4.552 $.107$ 50 61.7 1.589 $.027$ 26 32.7 3.984 $.045$ 52 64.1 1.515 $.051$ 30 37.6 3.817 $.048$ 52 64.1 1.451 $.027$ 31 38.9 3.580 $.046$ 54 66.4 1.383 $.049$ 32 40.1 3.554 $.048$ 56 68.7 1.166 $.046$ 32 40.1 3.334 $.037$ 58 71.0 $.946$ $.042$ 33 41.3 3.078 $.045$ 66 80.0 $.579$ $.017$ 34 42.5 2.488 $.049$ 66 80.0 $.491$ $.019$	10 11 12 12 13 14 14 15 16 16 16 17 18 19 20 11 22 23 4 4 56 66 01 22 33 4 4	$\begin{array}{c} 12.6\\ 13.92\\ 15.2\\ 15.2\\ 15.2\\ 16.4\\ 17.7\\ 17.7\\ 18.9\\ 200.2\\ 2222222222222222222222222222222$	25.06 28.10 21.81 24.99 22.88 24.99 24.02 13.396 13.396 13.396 13.396 13.396 13.396 13.296 4.6937 4.6937 4.6937 4.6937 5.294 4.6937 4.6937 5.294 4.6937 5.294 4.6937 5.294 4.6937 5.2956 5.59847 5.59817 5.59817 5.59847 5.59817 5.59817 5.59817 5.59817 5.59817 5.59817 5.59817 5.6977 5.59817 5.599	.76 .11 .71 .09 .30 .49 .10 .56 .23 .07 .55 .059 .12 .046 .20 .12 .044 .26 .13 .062 .11 .059 .15 .059 .11 .12 .054 .045 .045 .049 .049 .045 .049 .049 .045 .049 .049 .045 .049 .049 .045 .049 .049 .045 .049 .049 .045 .049 .045 .049 .045 .049 .045 .049 .045 .049 .045 .049 .045 .049 .045 .049 .045 .049 .045 .049 .045 .049 .045 .049 .045 .049 .045 .049 .045 .049 .045 .049 .045 .049 .046 .049 .046 .049 .046 .049 .046 .049 .046 .049 .046 .049 .046 .049 .046 .049 .046 .049 .045 .049 .045 .049 .045 .049 .046 .049 .045 .049 .045 .049 .045 .049 .045 .049 .046 .049 .046 .049 .046 .049 .046 .049 .046 .049 .046 .049 .046 .049 .046 .049 .046 .049 .046 .049 .046 .048 .046 .049 .046 .049 .046 .048 .046 .049 .046 .049 .046 .049 .046 .049 .046 .048 .046 .049 .046 .048 .046 .049 .046 .048 .046 .049 .046 .048 .046 .049 .046 .048 .048 .048	33333333333444444444444444444444444444	42.588002444444999910226666000044447777114700002	2.749 2.108 2.353 2.130 2.139 2.046 2.025 1.81 2.114 2.025 1.81 2.114 2.022 2.240 2.021 2.008 2.022 2.240 2.021 2.008 2.032 2.244 2.039 2.133 2.039 2.124 2.039 1.603 1.650 1.589 1.451 1.383 1.166 .946 .579 .460	035 057 033 029 031 045 027 040 03 057 042 042 045 029 045 029 045 029 044 028 029 044 028 029 045 029 041 028 040 057 027 051 027 046 046 017 019 010

80.7	MeV ((continued)
------	-------	-------------

			6.13	7 MeV 3			
$\theta_{\rm L}$	$\theta_{\rm cm}$	dσ/dΩ	Δ	θ_{L}	$\theta_{\rm cm}$	dσ/dΩ	Δ
(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(deg)	(mb/sr)	(mb/sr)
68 70 72 74 76 78	82.2 84.4 86.7 88.8 90.9 93.0	.481 .412 .326 .283 .267 .209	.019 .010 .008 .008 .013 .011	80 82 84 86 88 90	95.1 97.2 99.3 101.3 103.4 105.4	.176 .153 .117 .120 .089 .0748	.010 .010 .011 .011 .009 .0088

80.7 MeV (continued)
------------	------------

6.916/7.115 MeV 2 ⁺ /1 ⁻											
θ_{L}	$\theta_{\rm cm}$	dσ/dΩ	Δ	θ_{L}	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ				
(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(deg)	(mb/sr)	(mb/sr)				
10 12 13 14 14 15 16 17 18 19 20 21 22 34 25 66 28 89 00 12 23 24 25 66 28 89 00 12 23 23 24 25 66 28 89 00 12 23 23 33 23 33 33 23 33	12.7 15.2 15.2 16.7 17.0 20.2 22.2 22.2 22.2 22.2 22.2 22.2 2	$\begin{array}{c} 15.07\\ 6.96\\ 6.61\\ 6.05\\ 4.25\\ 5.00\\ 6.52\\ 5.96\\ 6.99\\ 6.84\\ 4.82\\ 5.099\\ 6.84\\ 4.82\\ 5.099\\ 4.225\\ 8.48\\ 3.703\\ 3.816\\ 3.703\\ 3.816\\ 3.556\\ 3.566\\ 3.566\\ 2.821\\ 2.093\\ 2.064\\ 1.835\end{array}$.59 .40 .23 .25 .32 .21 .26 .36 .17 .27 .15 .27 .15 .27 .11 .051 .079 .042 .098 .075 .096 .045 .071 .070 .041 .061 .044 .060 .036 .053	34480122344446688002468024268024680246888888 902468024277788888888 90	42.6 42.791.5555555555555555666666687777788899999999901035 1005.000000000000000000000000000000000	1.410 1.630 1.004 .620 .693 .684 .651 .616 .674 .644 .666 .664 .675 .674 .691 .675 .664 .597 .625 .540 .476 .451 .422 .329 .326 .169 .153 .126 .0731 .0636 .0680 .0591 .0424	.037 .054 .039 .022 .026 .016 .023 .025 .025 .025 .025 .036 .025 .036 .025 .036 .025 .037 .025 .036 .032 .031 .029 .015 .015 .015 .013 .008 .0068 .0078 .0082 .0077 .0066				

80.7 MeV (continued)

8.876 MeV 2											
$\theta_{\rm L}$	$\theta_{\rm cm}$	dσ/dΩ	Δ	Θ_{L}	$\theta_{\rm cm}$	$d\sigma/d\Omega$	Δ				
(deg)	(deg)	(mb/sr)	(mb/sr)	(deg)	(deg)	(mb/sr)	(mb/sr)				
$ \begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 18\\ 20\\ 21\\ 22\\ 24\\ 26\\ 30\\ 31\\ 32\\ 32\\ 32\\ 35\\ 34\\ 35\\ 36\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38$	14.0 15.2 16.58 19.0 22.8 25.6 27.8 27.6 32.9 37.8 40.3 41.5 45.6 47.6 47.6 50.1	.446 .328 .303 .260 .211 .155 .164 .291 .346 .323 .374 .333 .211 .314 .223 .272 .283 .272 .283 .220 .245 .216 .21 .153 .202	.014 .010 .013 .010 .009 .008 .009 .012 .012 .012 .012 .012 .013 .013 .013 .013 .013 .013 .014 .012 .011 .014 .010 .010 .010 .010	41 42 44 46 48 50 526 56 50 56 56 56 60 62 64 66 66 68 68 74 66 88 90	51.3 52.5 54.9 57.3 59.7 62.0 64.4 69.0 71.3 73.6 75.9 78.1 80.4 80.4 82.6 89.1 91.3 101.7 103.7 105.8	.127 .190 .173 .154 .127 .111 .093 .0464 .0390 .0351 .0326 .0209 .0231 .0237 .0188 .0153 .0079 .0147 .0105 .0094 .0090	.007 .009 .008 .008 .007 .007 .0091 .0084 .0042 .0041 .0033 .0043 .0043 .0035 .0039 .0020 .0026 .0020 .0025 .0030				

¢.

-127-

REFERENCES

- 1. W. W. Eidson and J. G. Cramer, Phys. Rev. Letters 9, 497 (1962).
- 2. W. J. Braithwaite, J. G. Cramer and R. A. Hinrichs, Inelastic Excitation of Unnatural-Parity States, in Nuclear Physics Laboratory Annual Report, University of Washington, June 1966, p. 18.
- 3. F. W. Bingham, Phys. Rev. 145, 901 (1966).
- J. Kokame, K. Fukunaga, N. Inoue and H. Nakamura, Phys. Letters 8, 342 (1964).
- 5. J. S. Vincent, E. T. Boschitz and J. R. Priest, Bull. Am. Phys. Soc. 11, 333 (1966).
- 6. J. S. Vincent, E. T. Boschitz and J. R. Priest, Phys. Letters <u>25B</u>, 81 (1967).
- 7. R. E. Malmin, P. P. Singh, D. W. Devins, J. G. Wills, C. R. Bingham and M. L. Halbert, Bull. Am. Phys. Soc. 13, 117 (1968).
- J. S. Blair, N. Cue and D. Shreve, Inelastic α-Particle Scattering from ¹⁶0, in Nuclear Physics Laboratory Annual Report, University of Washington, June 1965, p. 3.

9. J. S. Blair, Phys. Rev. 115, 928 (1959).

- S. I. Drozdov, J. Exptl. Theoret. Phys. (U. S. S. R.) <u>28</u>, 734 (1955);
 28, 736 (1955). (Translation: Soviet Phys. JETP 1, 591, 588 (1955)).
- 11. E. V. Inopin, J. Exptl. Theoret. Phys. (U. S. S. R.) <u>31</u>, 901 (1956). (Translation: Soviet Phys. JETP 4, 764 (1957)).
- 12. N. Austern and J. S. Blair, Ann. of Phys. 33, 15 (1965).
- 13. E. Rost and N. Austern, Phys. Rev. 120, 1375 (1960).
- 14. R. H. Bassel, G. R. Satchler, R. M. Drisko and E. Rost, Phys. Rev. 128, 2693 (1962).
- 15. B. L. Cohen, Phys. Rev. 116, 426(1959).
- 16. B. G. Harvey, D. L. Hendrie, O. N. Jarvis, J. Mahoney and J. Valentin, Excitation of Rotational Levels in ¹⁵²Sm and ¹⁵⁴Sm, UCRL-17303, 1966.
- 17. D. K. McDaniels, J. S. Blair, S. W. Chen, and G. W. Farwell, Nucl. Phys. 17, 614(1960).
- 18. M. A. Preston, <u>Physics of the Nucleus</u> (Addison-Wesley Publishing Company, Inc., Reading, Mass., 1%2).

-128-

- 19. T. Honda and H. Ui, Nucl. Phys. 34, 593 (1962).
- 20. F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11, 1 (1959).
- 21. P. M. Endt and C. Van Der Leun, Nucl. Phys. A105, 1 (1967).
- 22. E. L. Kelly, General Description and Operating Characteristics of the Berkeley 88-Inch Cyclotron in Proceedings of the International Conference on Sector-Focused Cyclotrons, Los Angeles, April 1962, Nucl. Instr. Methods 18, 19, 33 (1962).
- 23. B. G. Harvey, unpublished magnet notes.
- 24. A. Septier, Focusing of Charged Particles (Academic Press, New York, 1967).
- 25. D. Judd, Brobeck Associates Report, "Study of Ion Optical Theory and Design for the University of Colorado," Report No. 200-57-Rl, July 1%0.
- C. F. Williamson, J-P. Boujot and J. Picard, Tables of Range and Stopping Power of Chemical Elements for Charged Particles of Energy 0.05 to 500 MeV, CEA-R3042, 1966.
- 27. G. Dearnaley and D. C. Northrop, <u>Semiconductor Counters for Nuclear</u> Radiations (John Wiley Inc., New York, 1963).
- 28. F. S. Goulding, Semiconductors for Nuclear Spectrometry. UCRL-16231, July 1965.
- 29. F. S. Goulding and W. L. Hansen, An Automatic Lithium Drifting Apparatus for Silicon and Germanium Detectors, UCRL-11261, Feb. 1964.
- 30. F. S. Goulding and D. Landis, Linear Amplifier, Gating and Timing System, in Instrumentation Techniques in Nuclear Pulse Analysis (National Academy of Sciences, Publication 1184, 1964).
- 31. E. A. Silverstein, Nucl. Instr. Methods 4, 53 (1959).
- 32. A. Springer, Scattering of 50.9 MeV α Particles from ²⁰Ne and ⁴⁰Ca.
 (Ph.D. thesis), UCRL-11681, May 1965.
- 33. J. Moss and G. C. Ball, Energy Resolution in Cyclotron Experiments, UCRL-17124, Sept. 1966.
- 34. C. M. Lederer, J. M. Hollander and I. Perlman, <u>Table of Isotopes</u> (John Wiley and Sons, Inc., New York, 1967).
- 35. P. M. Endt and C. Van Der Leurs, Nucl. Phys. 34, 1 (1962).

- 36. D. L. Hendrie, B. G. Harvey, J. Mahoney, and J. R. Meriwether, The $^{24}Mg(\alpha,\alpha^{*})$ Reaction at 50 MeV in Nuclear Chemistry Annual Report UCRL-17299, January 1967.
- 37. J. A. Kuehner and J. D. Pearson, Canadian Journal of Phys. <u>43</u>, 477 (1964).
- 38. A. Springer and B. G. Harvey, Phys. Rev. Letters 14, 316 (1965).
- 39. B. G. Harvey, J. R. Meriwether, J. Mahoney, A. Bussiere de Nercy andD. J. Horen, Phys. Rev. 146, 712 (1966).
- 40. B. G. Harvey, E. J-M. Rivet, A. Springer, J. R. Meriwether, W. B. Jones, J. H. Elliott and P. Darruilat, Nucl. Phys. 52, 465 (1964).
- 41. J. A. Kuehner and E. Almqvist, Bull. Am. Phys. Soc. 10, 37 (1965).
- 42. A. V. Cohen and J. A. Cookson, Nucl. Phys. 29, 604 (1962).
- 43. A. E. Litherland, J. A. Kuehner, H. E. Grove, M. A. Clark and E. Almqvist, Phys. Rev. Letters 7, 98 (1961).
- 44. D. M. Brink and G. F. Nash, Nucl. Phys. 40, 608 (1963).
- 45. J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. 242, 57 (1957).
- 46. P. H. Stelson and L. Grodzins, Nucl. Data 1, 21 (1965).
- 47. W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).
- 48. W. R. Smith, A General Hauser-Feshbach Nuclear-Scattering Computer Program, ORNL-TM-1117, May 1965.
- 49. W. R. Smith, The Hauser-Feshbach Nuclear Scattering Computer Code LIANA, ORNL-TM-1234, Sept. 1%5.
- 50. H. Feshbach, M. M. Shapiro and V. F. Weisskopf, Tables of Penetrabilities for Charged Particle Reaction, NYO-3077, June 1953.
- 51. J. M. Blatt and V. F. Weisskopf, <u>Theoretical Nuclear Physics</u> (John Wiley and Sons, Inc., New York 1952) p. 371.
- 52. N. K. Glendenning, Lectures: Inelastic Scattering and Nuclear Structure, UCRL-17503, 1967.
- 53. T. Tamura, Reviews Mod. Phys. 37, 679 (1965).
- 54. A. K. Kerman, Nuclear Rotational Motion, in <u>Nuclear Reactions</u>, vol. I, edited by P. M. Endt and M. Demeur (North-Holland Publishing Company, Amsterdam, 1959).
- 55. M. A. Melkanoff, T. Swada and J. Raynal, SEEK: A Fortran Program for

Automatic Searches in Elastic Scattering Analyses with the Nuclear Optical Model, UCLA Report 66-10, 1966.

- 56. H. H. Duhm, Private Communication.
- 57. I. M. Naqib, Excitation of Nuclear Levels in ²⁴Mg, ²⁷Al and ¹²C through Inelastic Scattering of α Particles, Ph.D. Thesis, University of Washington, 1962.
- 58. T. Tamura, Nucl. Phys. <u>73</u>, 241 (1965).

59. C. R. Gruhn and N. S. Wall, Nucl. Phys. 81, 161 (1966).

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.