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Summary 

In a longitudinal cohort study of 2435 Bay Area healthcare workers conducted from July 2020-

January 2021, COVID-19 incidence was low. COVID-19 was strongly associated with community 

COVID-19 contacts but was not associated with work contacts unless accompanied by high-risk 

exposure.  
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Abstract  

 

Background: Preventing SARS-CoV2 infections in healthcare workers (HCWs) is critical for healthcare 

delivery. We aimed to estimate and characterize the prevalence and incidence of COVID-19 in a US 

HCW cohort and to identify risk factors associated with infection. 

Methods: We conducted a longitudinal cohort study of HCWs at 3 Bay Area medical centers using 

serial surveys and SARS-CoV-2 viral and orthogonal serological testing, including measurement of 

neutralizing antibodies. We estimated baseline prevalence and cumulative incidence of COVID-19. 

We performed multivariable Cox proportional hazards models to estimate associations of baseline 

factors with incident infections and evaluated the impact of time-varying exposures on time to 

COVID-19 using marginal structural models. 

Results: 2435 HCWs contributed 768 person years of follow-up time. We identified 21/2435 

individuals with prevalent infection, resulting in a baseline prevalence of 0.86% (95% CI, 0.53% to 

1.32%). We identified 70/2414 (2.9%) incident infections yielding a cumulative incidence rate of 9.11 

cases per 100 person years (95% CI 7.11 to 11.52). Community contact with a known COVID-19 case 

most strongly correlated with increased hazard for infection (HR 8.1, 95% CI, 3.8, 17.5). High-risk 

work-related exposures (i.e., breach in protective measures) drove an association between work 

exposure and infection (HR 2.5, 95% CI, 1.3-4.8). More cases were identified in HCW when 

community case rates were high. 

Conclusion: We observed modest COVID-19 incidence despite consistent exposure at work. 

Community contact was strongly associated with infections but contact at work was not unless 

accompanied by high-risk exposure.  

Keywords: COVID-19, SARS-CoV2, healthcare worker, healthcare personnel 
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Introduction 

Many assume that healthcare workers (HCWs) acquire COVID-19 at work.1–3  While early studies 

supported work-related risks, more recent studies have shown that factors including community-

based exposures, race/ethnicity, and residential zip code, are associated with SARS-CoV2 acquisition 

and may be more consequential than workplace exposures.4–6   

 

Existing literature and media reports have noted widely varying estimates of prevalence, incidence, 

and risk factors for infection.7–9  Few studies have assessed HCW infection and risk longitudinally 

despite changes in community prevalence of COVID-19 over time, workplace infection prevention 

efforts, and dynamic individual adherence to public health measures outside of work. Two European 

groups reported data from longitudinal HCW screening programs and estimated prevalence and 

incidence of infection2,10 but to date, a similar granular approach to describing prevalence and 

incidence of COVID-19 in United States HCWs has not been reported.  

 

Additionally, most seroprevalence studies of HCWs—both cross-sectional and longitudinal—have 

used a single unconfirmed serology test without orthogonal confirmation (i.e., using a different test) 

as their main outcome measure. Most studies have also not reported neutralizing antibody titers.11–

14 Orthogonal antibody testing increases specificity, which is critical when testing populations with 

low disease prevalence.15 Further, neutralizing antibody titers provides a functional assessment of 

immune responses. 

 

To address these current gaps in our understanding of SARS-CoV-2, we sought to estimate and 

characterize the prevalence and incidence of COVID-19 using both reverse-transcription polymerase 
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chain reaction (RT-PCR) and orthogonal antibody testing in a large longitudinal cohort of HCW during 

a dynamic phase of the US epidemic and to identify risk factors associated with HCW infection.  

 

Methods 

Ethics statement 

The COVID-19 Healthcare Worker Antibody and RT-PCR Tracking (CHART) Study was approved by the 

University of California, San Francisco’s Committee on Human Subjects Research, and the Stanford 

University School of Medicine Panel on Human Subjects in Medical Research. 

 

Study population and setting 

From May-September 2020, we recruited HCW from Stanford Health (SHC), UCSF Health (UCSF), and 

Zuckerberg San Francisco General Hospital (ZSFGH) for this longitudinal, prospective cohort study. 

These three medical centers serve large, mostly non-overlapping catchment populations in the San 

Francisco Bay Area and implemented similar mitigation policies over time (Supplementary Table 1). 

Recruitment included medical center-wide email and verbal announcements, targeted email 

notifications to department leaders, and recruitment flyers.   

 

HCWs completed an electronic screening questionnaire (Supplementary Material). Inclusion criteria 

were (1) age ≥18 years old, (2) employment at one of the three medical centers, and (3) did not 

anticipate ending employment or taking leave in the next 6 months. Eligible HCWs provided consent 

electronically. We collected study data using REDcap electronic data capture tools hosted at 

Stanford University.16,17    
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Schedule of evaluations 

The study was conducted from July 2020 to January 2021.   Participants completed up to 10 visits: 7 

visits at two-week intervals (±7 days) followed by 3 visits at four-week intervals (±7 days) up to 

completion or end of the study.. At all visits, participants completed an electronic survey and study 

staff collected nasopharyngeal (NP) swabs; swabs were optional for the final 3 visits.  Participants 

underwent phlebotomy monthly for anti-SARS-CoV-2 antibody testing. For individuals who tested 

positive by either RT-PCR or serology, additional visits were scheduled weekly for four visits for 

serology testing only. Participants received no incentives or compensation for joining the study. 

 

Laboratory RT-PCR and serology testing 

The UCSF Clinical Laboratories and Chan-Zuckerberg Biohub analyzed samples from the UCSF and 

ZSFGH sub-cohorts. Serology was performed using an assay to detect anti-nucleocapsid IgG (anti-

nucleocapsid Ab; Abbott Architect, Abbott Laboratories, Abbott Park, IL)18. The Stanford Clinical 

Virology Laboratory analyzed samples using an assay to detect anti-spike IgG (anti-spike Ab; 

Eurimmune Medizinische Labordiagnostika AG, Lübeck, Germany)19 as well as a laboratory-derived 

assay to detect anti-receptor-binding-domain IgG (anti-RBD Ab)20. Samples that were positive at one 

laboratory underwent confirmatory testing at the other laboratory. Serum samples that were 

positive for antibodies to either spike, nucleocapsid, or both proteins were assayed for the presence 

of neutralizing antibodies at UCSF or at Vitalant Research Institute (San Francisco, CA) by optimizing 

a lentivirus-based pseudotype neutralization assay21.  
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At UCSF, RT-PCR testing was performed using either (1) the M2000 Abbott RealTime Sars-CoV2 

assay22 amplifying RdRP and N genes, (2) the MAGPIX Luminex NxTag CoV Extended Panel assay 

(Austin, TX)23 amplifying the N gene, the Orf1ab gene, and the E gene, or (3) a Clinical Laboratory 

Improvement Amendments (CLIA)-validated laboratory-derived test modified from the CDC 

amplifying the N and E genes.24,25 At SHC, RT-PCR testing was performed using an SHC laboratory-

derived test amplifying the E gene or the Panther Fusion SARS-CoV-2 assay (Hologic, 

Massachusetts).26,27  

 

Definitions of COVID-19 exposures, positive test results, and cases 

We defined a low-risk work exposure as providing direct care to, being within 6 feet of, directly 

interacting with the environment in which a COVID-19 patient received care, or processing 

laboratory samples from a COVID-19 patient. We defined a high-risk exposure at work as ever 

interacting with a COVID-19 patient without full PPE—the institutionally recommended PPE for care 

of patients with COVID-19—or having a breach in PPE (e.g., tears, accidental removal).  

 

We defined an RT-PCR result as positive if the result was (1) detected or (2) indeterminate (positive 

RT-PCR followed by negative subsequent confirmatory RT-PCR test(s) done according to medical 

center occupational health protocols).  

 

We defined positive confirmed serology as having an initial positive serology (anti-nucleocapsid Ab 

or anti-spike Ab) followed by confirmation with a second positive serology using a different target 

(antnucleocapsid Ab, anti-spike Ab, or neutralizing Ab).  Positive confirmed serology represented 

prior COVID-19 infection. We defined a positive unconfirmed serology as an isolated positive anti-
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nucleocapsid or anti-spike Ab (i.e., a negative result on confirmatory testing) in the absence of RT-

PCR positivity.  

 

We defined baseline prevalent cases as participants with positive RT-PCR or positive confirmed 

serology at their initial visit. Participants who did not have baseline infection entered an incident 

cohort. We defined incident cases among this cohort as participants with a positive RT-PCR or a 

positive confirmed serology at any subsequent visit. The date of incident infection was the first date 

on which either the RT-PCR or the first serology test was positive (if confirmatory testing occurred 

within 4 weeks). 

 

Statistical analyses 

We estimated the prevalence as the proportion of cases at baseline out of total number of enrolled 

participants who completed baseline visits.  We estimated the cumulative incidence as the number 

of incident cases divided by the total follow-up time per 100 person-years and assumed a uniform 

incidence distribution across the 6-month follow-up time.  We censored person-time when a 

participant met the case definition, completed or withdrew from the study, or received a first dose 

of any COVID-19 vaccine. We calculated the confidence intervals (CI) using a non-parametric 

bootstrapping method. We conducted a sensitivity analysis to assess the impact of different case 

definitions on estimates considering 1) all unconfirmed positive serology results as cases, 2) all 

individuals with a single positive RT-PCR, no positive serology result, and at least one serology 

measurement ≥4 weeks after the positive RT-PCR as potential false positives and removing them 

from case counts. We obtained community-wide data on COVID-19 incidence in the six Bay Area 

counties from the California Department of Public Health.28 
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We compared characteristics of prevalent and incident cases to non-cases.  For binary time-varying 

exposures, we used participant self-report at the most recent visit prior to censoring. For continuous 

time-varying exposures, we computed median responses across all visits prior to censoring. We 

reported symptoms using the most recent reported status at the visit at which infection was 

identified. We reported standardized mean difference (SMD) to describe magnitude of difference in 

characteristics between incident cases and non-cases. Magnitude of effect is considered small if 

SMD=0.2, medium if SMD=0.5, and large if SMD=0.8. 

 

In the incident cohort, we first assessed associations between time to infection and baseline 

characteristics using multivariable Cox proportional hazards models. We evaluated the impact of 

pre-specified time-varying exposures on time to infection via marginal structural models (MSM).29–32 

We implemented a 2-step MSM model for each time-varying exposure by first estimating inverse 

probability of treatment weights (IPTW), in which exposure probability was estimated for each 

participant at each visit conditioning on fixed and other time-varying exposures up to that time. To 

stabilize weights, we excluded correlated time-varying variables. Each participant was weighted with 

the inverse predicted probability of exposure to simulate a counterfactual participant. Second, we 

applied an extended Cox proportional hazard model with IPTWs and reported hazard ratios for the 

impact of time-varying exposures on time to infection. For all regression analyses, we imputed 

missing laboratory data using a last observation carrying forward method and missing time-invariant 

or time-varying data using multiple imputation. We controlled family wise type I error at 0.05 and 

used the significance level of 0.05 in hypothesis tests. All analysis were conducted using SAS 9.4.3 

(SAS Institute, Research Triangle Park, NC) and R, version 4.5.3. (R Project for Statistical Computing, 

Vienna, Austria) by YW, DL, and ND. 
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Results 

Healthcare Worker Demographics 

Of 3918 individuals screened, 2435 provided consent and completed the first study visit, 

contributing 768 total person-years of follow-up time (Figure 1). Baseline demographics are 

presented in Table 1. Overall, mean age was 40.4 years (standard deviation (SD), 10.1), 1923/2435 

(79%) were female, and most participants (1921/2435, 79%) reported providing direct patient care, 

including 701/1921 (36%) who performed AGPs. Many participants reported work-related COVID-19 

exposure (1477/2419, 61%) with 797/1477 (54%) reporting high-risk exposure. Only 176/2419 (7%) 

participants overall reported contact with a COVID-19 positive person outside of work.  

 

Overall, demographic and behavior characteristics of participants with prevalent and incident 

COVID-19 reflected overall cohort characteristics (Table 1), including 73/91 (80%) providing direct 

patient care, mostly as nurses (42/91, 46%) or clinicians (24/91, 26%). During the course of the 

study, HCW time spent in the healthcare environment and work-related exposures to COVID-19 

were both stable (Figures 2A and 2B).  

 

Prevalence and incidence of COVID-19 

We identified 21/2435 individuals with evidence of COVID-19 at baseline and estimated a prevalence 

of 0.86% (95% CI, 0.53% to 1.32%). We identified 70/2414 (2.9%) individuals with incident COVID-19 

during follow-up and estimated a cumulative incidence rate of 9.11 cases per 100 person years (95% 

CI 7.11 to 11.52). The number of incident cases increased with rising prevalence of COVID-19 in the 

8-county region in which the study was conducted (Figure 2). Incidence rate estimates did not differ 

by sub-groups of gender, race/ethnicity, or job role (Supplementary Figure 1).      
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All 21 prevalent COVID-19 cases met the case definition with a positive serology; only 3 also had a 

positive RT-PCR. Most of the 70 incident cases were identified by a positive RT-PCR (53/70, 76%) 

with or without a positive serology. Of the 17/70 (24%) participants meeting the case definition by 

positive serology alone, only 2 (12%) individuals had a positive RT-PCR at a later visit (2 and 5 weeks 

after positive serology).   

 

We performed a sensitivity analysis using an alternative incident COVID-19 case definition that 

included all unconfirmed positive serology results as cases, resulting in 26 prevalent and 71 incident 

cases. This slightly increased the baseline prevalence to 1.07% (95% CI, 0.79% to 1.56%) and 

increased the cumulative incidence rate to 9.26 cases per 100 person-years (95% CI, 7.24 to 11.69). 

 

To examine the impact of potential false positive RT-PCRs, we performed a second sensitivity 

analysis using a second alternative case definition that excluded 7 cases meeting this definition. This 

decreased the cumulative incidence rate to 8.18 cases per 100 person-years (95% CI, 6.29 to 10.4). 

 

Overall, the testing yield of the incident cohort was relatively low: only 30/12,007 (0.25%) RT-PCR 

tests performed on asymptomatic participants were positive, and 7/30 (23%) of these met the false 

positive case definition. 

 

Figure 3 demonstrates the participant-level temporal sequence of testing results for all baseline 

prevalent cases and all incident cases. We found substantial evolution of antibody responses over 

time: of the 56 cases initially diagnosed by RT-PCR, 11 had at least one positive antibody at 
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diagnosis. By the end of follow-up, this rose to 27 individuals with at least one positive antibody test. 

Further, eleven individuals who had detected antibodies on one assay subsequently tested positive 

using another assay.  

 

COVID-19 symptomology 

Of the 70 incident cases, 36 (51.4%) were asymptomatic at diagnosis (30 with positive RT-PCR, 6with 

positive serology only.) Of the 36 participants who were asymptomatic at diagnosis, 14/22 (64%) 

who completed a follow-up symptom assessment had remained asymptomatic. Of the 25 

participants who were symptomatic at diagnosis, 19 had positive RT-PCR and 6 had positive serology 

only. 

Among the 1170 participants who reported symptoms at any visit, 58 (5%) were confirmed as 

prevalent or incident cases. Among 1252 participants who never reported symptoms, 32 (3%) were 

confirmed as prevalent or incident cases.  

 

While incident cases more commonly reported ever having symptoms (48/70, 69%), many non-cases 

(1112/2344, 48%) reported symptoms at least once (Supplementary Table 2). The most common 

symptoms reported by non-cases were fatigue (326, 14%), headache (466, 20%), nasal congestion 

(325, 14%), and rhinorrhea (412, 17%). Non-cases infrequently reported fever, chills, or decreased 

taste/smell while cases reported them more commonly.  

 

Predictors of COVID-19 infection 

In a multivariable Cox proportional hazards model, we did not find an association of incident COVID-

19 with fixed variables including baseline age, gender, race, ethnicity, household size, role, or work 
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category (Supplementary Table 3). In marginal structural models of self-reported time-varying 

variables, community contact with a known COVID-19 case strongly correlated with increased hazard 

for COVID-19 (HR 8.1, 95% CI, 3.8, 17.5; Table 2). Self-reported exposure to a COVID-19 patient at 

work was associated with infection (p=0.013), but this appeared to be primarily driven by high-risk 

exposures (i.e., a PPE failure or breach or an exposure to patient biological material; HR 2.5, 95% CI, 

1.3-4.8). Increasing community COVID-19 case rate showed a trend towards elevated adjusted 

hazard of HCW infection, but this finding did not reach statistical significance (HR 1.3, 95% CI 0.97-

1.8).  Neither time spent in the healthcare workplace, time spent providing direct patient-facing 

care, or adherence to community mitigation strategies were associated with COVID-19 infection. 

 

 

Discussion 

In this large observational cohort of healthcare workers, we observed modest COVID-19 infection 

rates despite consistent COVID-19 exposure at work. Changes in COVID-19 incidence tracked most 

closely with community infection rates and self-reported community contact with known COVID-19 

cases rather than work-related factors, except when breaches in standard safety protocols or PPE 

occurred.5 Our data provide evidence of the overall safety of standard healthcare work environment 

protocols and PPE guidelines, and are concordant with emerging literature showing that the main 

COVID-19 related risks to HCW are those coming from home and community-based factors.33   

 

By combining longitudinal and orthogonal RT-PCR and serology testing, our study allowed for a 

robust granular estimation of the true incidence of COVID-19 infection among HCW. Unlike many 

studies based on a single serologic test, we used confirmatory serology testing and also measured 

neutralizing antibody responses.34 As our data show, the serological response to infection is 



Acc
ep

ted
 M

an
us

cri
pt

 

14 
 

multifaceted and evolves over time; measuring a single antibody response to one target may result 

in inaccurate estimates of true infection rates.35 By testing serially and confirming antibody 

responses, we captured some COVID-19 cases that would have likely been missed with a single test 

in time and excluded others that were likely false positives.  

 

In our sensitivity analysis accounting for potential false positive COVID-19 cases, our incidence 

estimates were 10% lower. This may have been an underestimate because many cases were 

diagnosed at the end of the study and lacked follow-up time to differentiate true from false 

positives. Misclassifying false positive test results as true cases can impact the ability of a healthcare 

system to operate by limiting critical staffing and can also have adverse implications for household 

contacts of HCW. COVID-19 screening programs for HCW must balance the value of prompt 

diagnosis with the downside of potential false positive results. 

 

Our study is subject to several limitations. We enrolled volunteer participants and had a high 

fraction of MD, MD-equivalent, and RN practitioners. This cohort composition did not 

comprehensively reflect the occupational diversity within our medical centers. Thirty-eight percent 

of those screened did not enroll in the study; because we did not assess reasons for non-

participation, it is unclear to what degree this may have introduced any bias in our study population. 

We relied on self-reporting of COVID-19 related risks both at work and home, which may have 

resulted in overreporting of adherence to protective measures. Additionally, our institutional PPE 

recommendations changed over time; as such, not all breaches in PPE are considered equivalent. 

However, unlike many studies that have used information from employee health and safety offices, 

our study was independent of the medical centers in order to foster confidential no-fault reporting. 

Because sequencing of virus was beyond the scope of the study, the association between self-
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reported breach in PPE and incident COVID-19 cases remains solely an association and not proof that 

the breach itself led to the incident infection. Additionally, we did not perform orthogonal SARS-

CoV-2 antibody testing on samples that were initially antibody negative, and thus could have missed 

certain incident cases.  We also did not include confirmatory testing of RT-PCR results so could have 

inadvertently included false-positive RT-PCR results in incidence rate estimates.  We addressed this 

with a sensitivity analysis and found that incidence rates were minimally impacted.  Finally, our 

study was conducted before more recent variants of concern with increased transmissibility and 

immune escape emerged.    One key strength of our study was our use of marginal structural 

modeling using detailed longitudinal data to better estimate risks. 

 

Within a large group of frontline healthcare workers, our data indicate that healthcare workplaces 

pursuing comprehensive mitigation strategies can operate safely despite facing sequential waves of 

COVID-19 cases.  However, HCW do face community-based risks for acquiring COVID-19. Medical 

center infection control practices, vaccination programs, and community mitigation approaches 

should be sustained and maximized to protect HCW and health systems during periods of future risk 

related to rising caseloads and emerging SARS-CoV-2 variants.  
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Figure Legends 

Figure 1. Participant flow diagram. Positive confirmed serology: initial positive serology (anti-

nucleocapsid antibody (Ab) or anti-spike Ab) followed by confirmation with a second positive 

serology using a different target (anti-nucleocapsid Ab, anti-spike Ab, or neutralizing Ab).  Positive 

unconfirmed serology: An isolated positive anti-nucleocapsid or anti-spike Ab (i.e., a negative result 

on confirmatory testing) in the absence of RT-PCR positivity. Prevalent COVID-19 cases: Participants 

with positive RT-PCR or a positive confirmed serology at baseline. Incident COVID-19 cases: 

Participants with a positive RT-PCR or a positive confirmed serology at any subsequent visit.  

 

Figure 2. Work and community-related COVID-19 exposures and incident cases over time. Figure 

2A-C. Self-reported work and home exposures over time. Each line depicts the 7-day smoothed 

median responses of each self-reported home or community behavior or exposure. The gray shading 

represents the 95% confidence interval around the average. Fig. 2D. Incident cases in the context of 

surrounding community caseload. Boxes indicate unique incident cases and are color coded by how 

they met case definition. The line depicts a 7-day smoothed average of community reported cases 

from the six San Francisco Bay Area Counties surrounding the three medical centers. 

 

Figure 3. Timing and sequence of positive tests among healthcare workers with COVID-19. Each 

row represents all test results for each prevalent and incident case over the study period. Gray 

shading indicates each participant’s follow-up time. Dots represent RT-PCR results and boxes 

represent serology results. Blue coloring indicates a negative PCR or serology; red coloring indicates 

a positive RT-PCR or confirmed positive serology. Orange boxes represent unconfirmed positive 

serology. Red box thickness correlates with the number of positive confirmed serologies (e.g., 2 or 3 

positive antibody tests). 
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Table 1. Characteristics of healthcare workers 

 

 
Overall 

Prevalent 
positive 

Incident cohort 

Incident 
negative 

Incident 
positive 

SMD 

n 2435 21 2344 70  

Follow-up time (person-years) 779 0 750 17.5 0.60 

Age, years (mean [SD]) 
40.4 

(10.1) 
42.7 

(13.0) 
40.4 

(10.05) 
40.6 

(11.73) 
0.02 

Health system      0.16 

   SHC 891 (36.6) 5 (23.8) 855 (36.5) 31 (44.3)  

   UCSF Health 826 (33.9) 7 (33.3) 798 (34.0) 21 (30.0)  

   ZSFGH 718 (29.5) 9 (42.9) 691 (29.5) 18 (25.7)  

Gender      0.11 

   Female 1923 (79.0) 13 (61.9) 1855 (79.1) 55 (78.6)  

Latinx Ethnicity      0.12 

   No 2036 (87.8) 17 (100.0) 1960 (87.7) 7 (10.6)  

   Yes 267 (11.5) 0 (0.0) 260 (11.6) 7 (10.6)  

   Decline to answer 15 (0.6) 0 (0.0) 15 (0.7) 0 (0.0)  

Race      0.14 

   White 1411 (60.9) 9 (52.9) 1364 (61.1) 38 (57.6)  

   Asian 530 (22.9) 3 (17.6) 511 (22.9) 16 (24.2)  

   Black 37 (1.6) 1 (5.9) 34 (1.5) 2 (3.0)  

   Multiple races 137 (5.9) 3 (17.6) 131 (5.9) 3 (4.5)  

   Other 143 (6.2) 0 (0.0) 138 (6.2) 5 (7.6)  

   Decline to answer 58 (2.5) 1 (5.9) 55 (2.5) 2 (3.0)  

Highest level of education      0.29 

   Less than college 33 (1.4) 0 (0.0) 33 (1.5) 0 (0.0)  

   College 1006 (43.4) 6 (35.3) 967 (43.3) 33 (50.0)  

   Higher than college 1264 (54.5) 11 (64.7) 1222 (54.7) 31 (47.0)  

   Other 15 (0.6) 0 (0.0) 13 (0.6) 2 (3.0)  

Co-morbid conditions      

   None reported 1642 (71.5) 12 (70.6) 1582 (71.5) 48 (72.7) 0.03 

   Asthma/COPD  328 (14.3) 3 (17.6) 314 (14.2) 11 (16.7) 0.07 

   Diabetes/ Heart disease/ high 
   blood pressure/ Severe obesity 

266(11.6) 2 (11.8) 258 (11.7) 6 (9.1) 0.08 

   Kidney disease on dialysis/ liver 
   disease/ cancer/ autoimmune 
   disorder/ neurologic disease  

161 (7.0) 1 (5.9) 154 (7.0) 6 (9.1) 0.08 

Job role     0.45 

   Registered nurse or nurse 
manager 

1077 (44.2) 8 (38.1) 1035 (44.2) 34 (48.6)  

   Clinician (MD, MD equivalent, 
   APP, trainee) 

804 (33.0) 8 (38.1) 780 (33.3) 16 (22.9)  

   Research/administrative 115 (4.7) 1 (4.8) 113 (4.8) 1 (1.4)  

   Support service 112 (4.6) 0 (0.0) 110 (4.7) 2 (2.9)  

   Assistant or phlebotomist 84 (3.4) 1 (4.8) 80 (3.4) 3 (4.3)  

   Laboratory or pharmacist 77 (3.2) 1 (4.8) 73 (3.1) 3 (4.3)  

   Care coordination 71 (2.9) 0 (0.0) 65 (2.8) 6 (8.6)  

   Clinic manager or ward clerk 45 (1.8) 2 (9.5) 42 (1.8) 1 (1.4)  

   Respiratory or speech therapist 33 (1.4) 0 (0.0) 31 (1.3) 2 (2.9)  

   Environmental/food services 17 (0.7) 0 (0.0) 15 (0.6) 2 (2.9)  

Work duties      0.30 

   Direct patient care involved in 
intubating or suctioning patient 
airways 

701 (30.2) 6 (35.3) 670 (30.0) 25 (37.9)  

   Direct patient care but not 
performing any airway procedures 

1220 (52.6) 10 (58.8) 1178 (52.7) 32 (48.5)  

   Staff with indirect patient contact 
(e.g., reception, environmental 

128 (5.5) 0 (0.0) 127 (5.7) 1 (1.5)  
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services) 

   Laboratory 58 (2.5) 0 (0.0) 55 (2.5) 3 (4.5)  

   Work in healthcare but not with 
patients or biological samples 

81 (3.5) 1 (5.9) 78 (3.5) 2 (3.0)  

   Other 131 (5.6) 0 (0.0) 128 (5.7) 3 (4.5)  

Performed AGP
†
 385 (16.0) 3 (18.8) 368 (15.9) 14 (20.0) 0.11 

COVID-19 exposure at work      0.28 

   No exposure 942 (38.9) 8 (47.1) 908 (38.9) 26 (37.1)  

   Low risk exposure
‡
 680 (28.1) 6 (35.3) 661 (28.3) 13 (18.6)  

   High risk exposure
§
 797 (32.9) 3 (17.6) 763 (32.7) 31 (44.3)  

Time spent in the healthcare 
workplace  

    0.26 

   0 hours/week 28 (1.2) 0 (0.0) 28 (1.2) 0 (0.0)  

   <10 hours/week 90 (3.7) 2 (11.8) 85 (3.6) 3 (4.3)  

   10-20 hours/week 169 (7.0) 1 (5.9) 165 (7.1) 3 (4.3)  

   21-30 hours/week 296 (12.2) 0 (0.0) 287 (12.3) 9 (12.9)  

   31-40 hours/week 1148 (47.5) 5 (29.4) 1104 (47.3) 39 (55.7)  

   >40 hours/week 688 (28.4) 9 (52.9) 663 (28.4) 16 (22.9)  

Time spent providing direct 
patient-facing care  

    0.38 

   0 hours/week 234 (9.7) 1 (5.9) 226 (9.7) 7 (10.0)  

   <10 hours/week 305 (12.6) 3 (17.6) 299 (12.8) 3 (4.3)  

   10-20 hours/week 400 (16.5) 4 (23.5) 386 (16.6) 10 (14.3)  

   21-30 hours/week 397 (16.4) 0 (0.0) 381 (16.3) 16 (22.9)  

   31-40 hours/week 825 (34.1) 5 (29.4) 791 (33.9) 29 (41.4)  

   >40 hours/week 258 (10.7) 4 (23.5) 249 (10.7) 5 (7.1)  

Number in household (mean (SD)) 2.3 (17.2) 1.5 (1.1) 2.3 (1.7) 2.3 (1.9) 0.02 

Any children under the age of 18 
in household  

841 (36.5) 2 (11.8) 817 (36.8) 22 (33.8) 0.06 

Any adults 65 years or older in 
household  

256 (11.1) 1 (5.9) 245 (11.0) 10 (15.4) 0.13 

Extent of avoiding contact with 
people who live outside of your 
home  

    0.34 

   All of the time 80 (3.3) 2 (11.8) 72 (3.1) 6 (8.6)  

   Most of the time. I only leave my 
home to buy food or other 
essentials or to walk/exercise 

1232 (50.9) 8 (47.1) 1197 (51.3) 27 (38.6)  

   Some of the time. I have reduced 
the amount of time I am in public 
spaces, social gatherings, or at 
work 

1096 (45.3) 7 (41.2) 1052 (45.1) 37 (52.9)  

   None of the time 11 (0.5) 0 (0.0) 11 (0.5) 0 (0.0)  

Frequency of mask wearing when 
leaving home  

    0.25 

   All of the time 1778 (73.5) 10 (58.8) 1719 (73.7) 49 (70.0)  

   Most of the time 621 (25.7) 7 (41.2) 596 (25.6) 18 (25.7)  

   Some of the time 17 (0.7) 0 (0.0) 14 (0.6) 3 (4.3)  

   Never 3 (0.1) 0 (0.0) 3 (0.1) 0 (0.0)  

Had community exposure with a 
person who tested positive for 
COVID-19  

176 (7.3) 1 (5.9) 158 (6.8) 17 (24.3) 0.50 

Spent time in another 
country/state 

825 (34.1) 3 (17.6) 798 (34.2) 24 (34.3) <0.01 

 

Numbers are in N (%) unless otherwise stated.  

 

* Standardized mean difference (SMD) is a comparative measure of effect size between groups. Magnitude of 

effect is considered to be small if SMD = 0.2, medium if SMD = 0.5, and large if SMD = 0.8. 
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†
 Aerosol-generating procedures (AGPs): Intubation, extubation, chest physiotherapy, non-invasive ventilation, 

open suction, nebulized medications, manual ventilation, bronchoscopy, pulmonary function tests, high frequency 

ventilation, laryngoscopy, autopsy, cardiopulmonary resuscitation, tracheostomy, or high flow nasal cannula use. 

 

‡
 Low-risk exposure at work: interacting with a COVID-19 patient with no reported breach in PPE or other safety 

protocols. 

 

§
 High-risk exposure at work: ever interacting with a COVID-19 patient without full PPE or with having a breach in 

any safety protocol. 

Abbreviations:  APP = Advanced practice providers, AGP = Aerosol generating procedures, COPD =Chronic 

Obstructive Pulmonary Disease, MD = Medical Doctor, SD = Standard Deviation, SMD = Standardized mean 

difference, SHC = Stanford Health Care, UCSF = University of California, San Francisco, ZSFGH = Zuckerberg 

San Francisco General Hospital   
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Table 2. Marginal Structural Model of Variables Associated with Incident COVID-19  

 

Self-reported Time-varying Variable Adjusted Hazard Ratio (95% CI) p-value 

COVID-19 exposure at work   0.013 

   No exposure Ref.  

   Low risk
A
 0.8 (0.4, 1.7)  

   High risk
B
 2.5 (1.3, 4.8)  

Time spent in the healthcare workplace   0.68 

   <10 hours/week Ref.  

   10-20 hours/week 1.9 (0.5, 7.9)  

   21-30 hours/week 2.5 (0.7, 8.9)  

   31-40 hours/week 2.2 (0.7, 7.0)  

   >40 hours/week 2.0 (0.6, 6.6)  

Time spent providing direct patient-facing care   0.21 

   <10 hours/week 0.5 (0.2, 0.9)  

   10-20 hours/week 0.6 (0.3, 1.3)  

   21-30 hours/week 0.9 (0.5, 1.7)  

   31-40 hours/week Ref.  

   >40 hours/week 0.9 (0.4, 2.0)  

Direct contact with a person who tested positive for 
COVID-19 outside of place of work (yes vs. no) 

8.1 (3.8, 17.5) <0.001 

Extent of avoidance of people who live outside of 
your home when not at work (all/most of the time vs. 

some/none) 
1.0 (0.6, 1.6) 0.91 

Mask adherence when not at work (all of the time vs. 

most/some/never) 
0.8 (0.5, 1.6) 0.59 

Average number of new COVID-19 cases per day in 
6 Bay Area counties over 14 days prior to the visit (1 

unit increase per 10,000 cases) 
1.3 (0.97, 1.8) 0.08 

 

For each marginal structural model, we estimated inverse probability of treatment weights in which exposure 

probability was estimated for each participant conditioning on fixed variables (age, gender, race, ethnicity, 

household size, role, and work category) and time-varying variables shown in the table. 

 

A
 Low-risk exposure at work was defined as: ever providing direct care, being within 6 feet, or being within the 

environment of a COVID-19 patient or being involved with laboratory processing of samples from COVID-19 

patients.  

 

B
 High-risk exposure at work was defined as: ever interacting with a COVID-19 patient without full PPE or having 

a breach in PPE (e.g., tears, accidental removal). 
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