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ABSTRACT OF THE DISSERTATION

Structured Low-Rank Matrix Approximation in Signal Processing:

Semidefinite Formulations and Entropic First-Order Methods

by

Hsiao-Han Chao

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2018

Professor Lieven Vandenberghe, Chair

Applications of semidefinite optimization in signal processing are often derived from the

Kalman–Yakubovich–Popov lemma and its extensions, which give sum-of-squares theorems

of nonnegative trigonometric polynomials and generalized polynomials. The dual semidefi-

nite programs involve optimization over positive semidefinite matrices with Toeplitz structure

or extensions of the Toeplitz structure. In recent applications, these techniques have been

used in continuous-domain sparse signal approximations. These applications are commonly

referred to as super-resolution, gridless compressed sensing, continuous 1-norm, or total-

variation norm minimization. The semidefinite formulations of these problems introduce a

large number of auxiliary variables and are expensive to solve using general-purpose or even

customized interior-point solvers.

The thesis can be divided into two parts. As a first contribution, we extend the semide-

finite penalty formulations in super-resolution applications to more general types of struc-

tured low-rank matrix approximations. The penalty functions for structured symmetric and

nonsymmetric matrices are discussed. The connection via duality between these penalty

functions and the (generalized) Kalman–Yakubovich–Popov lemma from linear system the-

ory is further clarified, which leads to a more systematic proof for the equivalent semidefinite

formulations. In the second part of the thesis, we propose a new class of efficient first-order

splitting methods based on an appropriate choice of a generalized distance function, the
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Itakura–Saito distance, for optimizations over the cone of nonnegative trigonometric poly-

nomials. The Itakura–Saito distance is the Bregman distance defined by the negative entropy

function. The choice for this distance function is motivated by the fact that the associated

generalized projection on the set of normalized nonnegative trigonometric polynomials can

be computed at a cost that is roughly quadratic in the degree of the polynomial. This should

be compared to the cubic per-iteration-complexity of standard first-order methods (the cost

of a Euclidean projection on the positive semidefinite cone) and customized interior-point

solvers. The quadratic complexity is confirmed by numerical experiments with Auslender

and Teboulle’s accelerated proximal gradient method for Bregman distances.
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CHAPTER 1

Introduction

Non-polyhedral conic extensions of linear programming (LP), such as second-order cone

programming (SOCP) and semidefinite programming (SDP), have been widely studied in

the last few decades, for applications in many areas including operations research, statistics,

machine learning, and engineering. The popularity is mainly due to two reasons. The first

reason is the development of reliable and efficient solvers, which are mostly based on some

variation of interior-point methods (IPMs) [Kar84,Meh92,NN94]. Theoretically IPMs have

a worst-case polynomial complexity, and in practice they are quite efficient and robust.

Secondly, despite the very simple standard forms of LP, SOCP and SDP, there exists a

surprising variety of problems they can cover, either through an equivalent reformulation,

approximation, or as a heuristic. See [BN01, BV04] for example, for modeling problems

arising in a wide spectrum of applications. In fact, powerful modeling softwares for convex

optimization, such as CVX [GB14] and CVXPY [DB16], transform problems into these three

forms.

LP, SOCP and SDP all fit in to the conic optimization framework, with specific choices

of the cone. The conic linear program has the following standard form

minimize 〈c, x〉

subject to A(x) = b

x ∈ K,

(1.1)

with variable x ∈ E, where E is a finite-dimensional vector space over R, and 〈·, ·〉 denotes

an inner product on E. The problem data are c ∈ E, b ∈ Rm, linear mapping A : E→ Rm,

and a proper cone K ⊂ E (the definition is given in Section 2.1). With the choices E = Rn

and K = Rn
+ (the nonnegative orthant), the mapping can be represented as A(x) = Ax with
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A ∈ Rm×n, and problem (1.1) reduces to an LP. With the same choices of E and the mapping

A, and taking K = Kn1 × · · · ×Knl , where Knk = {y ∈ Rnk |
√
y2

1 + · · ·+ y2
nk−1 ≤ ynk

} and∑l
k=1 nk = n, problem (1.1) reduces to an SOCP (although its dual form is more commonly

seen). If we choose E = Sn, the space of n×n symmetric matrices, and K = Sn+, the positive

semidefinite (PSD) cone, the mapping can be defined as A(x) = (〈A1, x〉, . . . , 〈Am, x〉) with

A1, . . . , Am ∈ Sn, and problem (1.1) reduces to an SDP.

The Lagrange dual of (1.1) is also a conic LP

maximize −〈b, z〉

subject to c+Aadj(z) ∈ K∗,
(1.2)

with variable z ∈ Rm, and here 〈·, ·〉 denotes an inner product on Rm. The adjoint Aadj :

Rm → E is the linear mapping satisfying 〈A(x), z〉 = 〈x,Aadj(z)〉 for all x ∈ E and z ∈ Rm,

and K∗ ⊂ E denotes the cone dual to K with respect to the inner product on E. With

the standard choices of inner products, the corresponding cones of LP, SOCP and SDP

are self-dual. Popular general-purpose solvers like SDPT3 [TTT02], SeDuMi [Stu99], and

MOSEK [MOS02] are based on implementations of primal-dual IPMs for LP, SOCP and

SDP.

Many SDP applications in signal processing and control are based on SDP formula-

tions of problems involving the cone of nonnegative trigonometric polynomials, its dual

cone, the PSD Toeplitz matrices, and their extensions [WBV96, SMM00, DTS01, DLS02,

AV02, Hac03, Dum07, GL08]. These applications were made possible by the development

of IPMs for SDP in the 1990s. Dumitrescu provides in his book [Dum07] a good over-

view of signal processing applications of nonnegative trigonometric polynomials for the first

15 years since then. More recently, there have emerged new SDP applications to pro-

blems of continuous-domain sparse signal approximation, commonly referred to as super-

resolution, gridless compressed sensing, continuous 1-norm, or total-variation norm mini-

mization [CG12, CF14, BTR13, TBS13, YX16, LC16, YX15, CC15, CGH17, MCK15]. Inte-

restingly, these problems are related to the earlier formulations of nonnegative polynomi-

als by duality. Owing to the fact that LMI representations of these cones introduce a

large number of auxiliary variables, in either the classical and the more recent applications,
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there has been a strong research activity to develop faster solvers than the general-purpose

ones [AV00,AV02,Hac03,RV06,LV07,HV14,BTR13].

The thesis can be divided into two subjects. First, inspired by the connection of the SDPs

used in super-resolution applications with the bounded real lemma, we extend the SDP pen-

alty formulations to more general types of structured low-rank matrix approximations, as

well as clarify their connections with the (generalized) Kalman–Yakubovich–Popov (KYP)

lemma [Kal63,Yak62, Pop62,Ran96, IMF00,BV02, BV03, IH05,Sch06,PV11] from linear sy-

stem theory. More specifically, in Chapter 2, we give the LMI characterization and conic

decomposition of the extensions to the PSD Toeplitz matrices, and explain the connecti-

ons with the KYP lemma. In Chapter 3 and 4, for symmetric and nonsymmetric matrices,

respectively, the SDP formulations of gauge penalty functions of continuous 1-norm for struc-

tured low-rank matrix approximation are presented, and their primal-dual interpretations

are explained. This part of work has appeared in the papers [CV16,CV17].

The second subject of the thesis addresses the algorithmic aspect. Earlier works in this

area include customized IPMs that exploit the structures of the SDPs involving nonnega-

tive trigonometric polynomials and extensions, which achieve O(n3) per-iteration complex-

ity [AV00, AV02, Hac03, RV06, LV07, HV14], as well as first-order splitting methods that

depend on a Euclidean projection on the PSD cone and therefore cannot offer improvement

over the O(n3) per-iteration complexity (the cost of an eigenvalue decomposition) [BTR13].

We develop a new class of efficient first-order splitting methods with an appropriate choice

of the Bregman distance function. We show that its complexity is at least as efficient as

O(n2) per iteration, as compared to the earlier works of O(n3), whereas general-purpose

IPMs exhibit O(n6) and O(n4) per-iteration complexities on the primal and dual SDP for-

mulations, respectively. In Chapter 5, we present the Itakura–Saito distance, and a pair of

entropy functions associated with it, as well as classical results useful for their calculations.

In Chapter 6, we discuss first-order methods based on generalized proximal operators defined

in terms of the Itakura–Saito distance, and include numerical results with Auslender and

Teboulle’s accelerated proximal gradient method for Bregman distances.

Chapter 7 concludes the thesis with some final remarks.
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CHAPTER 2

Semidefinite Duality and the KYP Lemma

The purpose of this chapter is to provide enough background for the development of the

following chapters. While the main result directly needed can be found in Section 2.4, the

other sections give relevant explanations on the duality in the Kalman–Yakubovich–Popov

(KYP) lemmas. Specifically, the sections are divided as the following. Sections 2.1 and 2.2

provide a short review on conic duality and the theorems of alternatives. In Section 2.3, we

first discuss the duality between the nonnegative trigonometric polynomials and the positive

semidefinite Toeplitz matrices. Then as a nontrivial extension, the duality between the

cone of nonnegative Popov functions and a convex cone of structured positive semidefinite

matrices is explained. The conic decomposition of these structured positive semidefinite

matrices, which is the main result necessary for the development of Chapter 3 and 4, is

presented in Section 2.4. Specific examples of the decomposition are given in Section 2.5,

and the duality is pointed out in Section 2.6. It turns out that this decomposition result

also constitutes a key step in the proofs (that are based on SDP duality) of the KYP lemma

and its generalizations [Ran96, IMF00, BV02, BV03, IH05, Sch06, PV11]. The KYP lemmas

provide the foundation for the characterization of nonnegative Popov functions as linear

matrix inequalities (LMIs). For completeness, the general forms of the KYP lemmas and

the proofs are given in Section 2.7.

2.1 Conic duality

This section provides some background on convex cones and duality. The definitions and

properties are standard and can be found, for example, in [BN01, §2] [BV04, §2].
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Let E denote a finite-dimensional vector space over real numbers R. A convex cone

K ⊂ E is a convex set that is invariant under nonnegative scalar multiplication, i.e., given

any x, y ∈ K and scalars α, β ≥ 0, it holds that αx + βy ∈ K. A set is closed if and only if

it contains the limit point of every convergent sequence in it. A convex cone K is pointed if

and only if it contains no line, i.e., x ∈ K and −x ∈ K only if x = 0. A set is called solid if

and only if it has a nonempty interior.

Definition 2.1 (Proper cone). A cone is proper if it is convex, closed, pointed, and solid.

It is useful to consider the dual cones for several reasons. As pointed out in Chapter 1,

dual cones appear in the dual conic optimization problems.

Definition 2.2 (Dual cone). The dual cone of a cone K is defined as

K∗ = {z ∈ E | 〈x, z〉 ≥ 0 ∀x ∈ K},

where 〈·, ·〉 denotes an inner product on E. The dual cone K∗ is by definition closed and

convex even if K is not.

The following properties regarding the dual cones are relevant to the rest of the chapter.

Lemma 2.1. The dual cone K∗ is proper if and only if K is proper.

Lemma 2.2. If K is a closed convex cone, then K∗∗ = K. The cones K and K∗ are therefore

a pair of dual cones.

Moreover, if the dual cones are identical, i.e., K∗ = K, it is said to be self-dual. Examples

of self-dual proper cones are the nonnegative orthant, the second-order cone, the positive

semidefinite cone, and their direct products.

2.2 SDP theorem of alternatives

The theorems of alternatives deal with feasibility problems involving systems of (genera-

lized) inequalities and equalities. There exists a rich literature on different variants and
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applications of theorems of alternatives. The best known one is the Farkas’ lemma for linear

feasibility problems [Far02]. More background and non-polyhedral conic extensions can be

found in [Ben69,BB71,CK77,BW81]. Results on LMIs appear in [Wol81,Las95,Las97,BV03].

For our purpose we present three theorems of alternatives for LMIs in [BV03], which will

be useful for the derivations in the following sections. Denote the space of block diagonal

Hermitian matrices as H = Hn1 × · · · ×Hnl , with the standard inner product

〈diag(X1, . . . , Xl),diag(Z1, . . . , Zl)〉 =
l∑

k=1

trXkZk.

Let A : E → H be a linear mapping and its adjoint Aadj : H → E be the linear mapping

satisfying 〈A(x), Z〉 = 〈x,Aadj(Z)〉 for all x ∈ E and Z ∈ H, and let A0 ∈ H.

Theorem 2.1. Exactly one of the following statements is true.

(a) There exists an x ∈ E such that A(x) + A0 � 0.

(b) There exists a Z ∈ H with 0 6= Z � 0 such that Aadj(Z) = 0 and 〈A0, Z〉 ≤ 0.

Theorem 2.2. Exactly one of the following statements is true.

(a) There exists an x ∈ E such that 0 6= A(x) � 0.

(b) There exists a Z ∈ H with Z � 0 such that Aadj(Z) = 0.

Theorem 2.3. At most one of the following statements is true.

(a) There exists an x ∈ E such that A(x) + A0 � 0.

(b) There exists a Z ∈ H with Z � 0 such that Aadj(Z) = 0 and 〈A0, Z〉 < 0.

Moreover, if A(x) � 0 implies A(x) = 0, then exactly one of the two statements is true.

Theorems 2.1 and 2.2 present strong alternatives, whereas Theorem 2.3 presents weak

alternatives that become strong alternatives if a certain condition holds.

6



2.3 Nonnegative trigonometric polynomials

Trigonometric polynomials are the simplest examples of Popov functions (whose formal defi-

nition comes later in Section 2.7) with many important applications. The material presented

here has been well known in signal processing and control [SMM00, DTS01, AV02, Dum07].

We include this section as a tangible and classical example, and in particular, as a preview

for the rest of the chapter.

Consider a vector of complex exponentials parametrized by ω ∈ [0, 2π):

a(ejω) = (1, ejω, ej2ω, . . . , ejpω),

and define an inner product on R×Cp:

〈x, z〉 = Re(x0z0 + 2x̄1z1 + · · ·+ 2x̄pzp)

= x0z0 + (x̄1z1 + x1z̄1) + · · ·+ (x̄pzp + xpz̄p).

A trigonometric polynomial of degree p or less can be expressed as

Fx(e
jω) = 〈a(ejω), x〉

= x0 + 2
(

Re(x1) cosω + Im(x1) sinω + · · ·+ Re(xp) cos pω + Im(xp) sin pω
)
.

The cone of nonnegative trigonometric polynomials

Ktrig = {x ∈ R×Cp | Fx(ejω) ≥ 0 ∀ω ∈ [0, 2π)}

is a proper cone, and it appears naturally as constraints in signal processing applications

[WBV96,SMM00,DTS01,DLS02,AV02,Hac03,Dum07,GL08,SDL10].

2.3.1 Spectral factorization

A useful classical result concerning nonnegative trigonometric polynomials is the spectral

factorization theorem (or Riesz-Fejér theorem, see [AM79, §9] [Dum07, §1], for example).

Denote with superscript aH the conjugate transpose of a vector or matrix a. The theorem
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states that Fx(e
jω) is nonnegative if and only if it is the square of a causal polynomial

B(ejω) = a(ejω)Hb =
∑p

k=0 bke
−jkω for some b ∈ R×Cp, i.e., a sum-of-squares with one term,

x ∈ Ktrig ⇐⇒ Fx(e
jω) = |B(ejω)|2 = a(ejω)HbbHa(ejω). (2.1)

Several efficient algorithms exist for computing a (minimum phase) spectral factor b given

an x ∈ Ktrig (see e.g. [Dum07, appendix B] and references therein).

2.3.2 LMI characterizations

The following equivalence enables solving problems involving the constraint x ∈ Ktrig as

SDPs when the objective function and the other constraints are SDP representable. It is

the foundation of many signal processing applications of SDP [Dum07], where x = D(X)

is called the Gram matrix parametrization of any trigonometric polynomial, with the linear

mapping D : Hp+1 → R×Cp defined as the diagonal sums

D(


X00 X01 · · · X0p

X10 X11 · · · X1p

...
...

. . .
...

Xp0 Xp1 · · · Xpp


) = (

p∑
i=0

Xii,

p−1∑
i=0

Xi+1,i, . . . , Xp−1,0 +Xp1, Xp0). (2.2)

Theorem 2.4. The following statements are equivalent.

(a) Fx(e
jω) ≥ 0 for all ω ∈ [0, 2π).

(b) There exists an X ∈ Hp+1 such that x = D(X) and X � 0.

(c) There exists a P ∈ Hp such that M + FHPF −GHPG � 0, where M ∈ Hp+1 with

M =


0 · · · 0 x̄p
...

. . .
...

...

0 · · · 0 x̄1

xp · · · x1 x0


and F,G ∈ Rp×(p+1) with

F =
[

0 Ip

]
, G =

[
Ip 0

]
. (2.3)
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Proof. The proof proceeds as (c) ⇒ (b) ⇒ (a) and ¬(c) ⇒ ¬(a). Showing (c) ⇒ (b) is

straightforward by taking

X = M + FHPF −GHPG � 0

and noting that x = D(X). Showing (b)⇒ (a) is also straightforward. Note that if x = D(X)

and X � 0, then Fx(e
jω) = a(ejω)HXa(ejω) ≥ 0 for all ω.

To show ¬(c) ⇒ ¬(a), we invoke Theorem 2.3 with A(P ) = FHPF −GHPG, A0 = M ,

and note that constraint qualification is satisfied. This is easily seen by looking at the

diagonal of A(P ) � 0, which enforces the constraints 0 ≥ P11 ≥ P22 ≥ · · · ≥ Ppp ≥ 0 on the

diagonal elements of P and implies A(P ) = 0. The negation of (c) is therefore equivalent to

the existence of a Z � 0 with rank r ≥ 1 such that FZFH = GZGH and trMZ < 0. The

equality on Z states that Z is Toeplitz. Hence, we use the classical result of Vandermonde

decomposition, which states that every positive semidefinite n × n Toeplitz matrix of rank

r can be decomposed as

Z =
r∑

k=1

dka(ejωk)a(ejωk)H

with distinct ωk and positive weights dk for k = 1, . . . , r [SM97, page 170]. Thus, the strict

inequality means trMZ =
∑r

k=1 dka(ejωk)HMa(ejωk) < 0, which implies that

Fx(e
jωk) = a(ejωk)HMa(ejωk) < 0

for some k.

The equivalence between (a) and (c) in Theorem 2.4 is a result of KYP lemma applied

to the discrete-time finite-impulse response case. As in the proof of Theorem 2.4, it is

shown in Section 2.7 that the nontrivial direction in the proof of the general non-strict KYP

lemma requires the use of Theorem 2.3, and hence, a constraint qualification. Secondly,

as the Vandermonde decomposition is needed to factorize a positive semidefinite Toeplitz

matrix, we need the decomposition result for more generally structured positive semidefinite

matrices, which is described precisely in Section 2.4.

Note that from the last expression in (2.1), we see the relation x = D(bbH) and conclude
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that x ∈ Ktrig \ {0} if and only if there exists a X ∈ Hp+1 with rank 1 such that x = D(X)

and X � 0. This also allows a stronger statement than (b) in Theorem 2.4 to be made.

The LMI characterization provides more flexibility in the problems we can solve by in-

corporating other SDP constraints, for example, problems with noisy or missing data.

Example: MA estimation. Suppose we are modeling a time series as an order p moving

average process, MA(p), parametrized by b ∈ R × Cp, given an estimated autocorrelation

sequence of length p + 1, r̂ = (r̂0, r̂1, . . . , r̂p) ∈ R × Cp. It is possible that the estimated

sequence r̂ is not a valid autocorrelation sequence, i.e., the estimated power spectral density

Fr̂(e
jω) may be negative at some frequency ω. Therefore, it is desirable to find a valid

autocorrelation sequence r ∈ Ktrig that is ‘close to’ the estimated sequence r̂, for example,

by solving the optimization problem

minimize ‖r − r̂‖

subject to r ∈ Ktrig.

After obtaining the optimal r, spectral factorization algorithms can be applied to obtain b

from D(bbH) = r.

2.3.3 Duality: positive semidefinite Toeplitz matrices

Next we will see that the decomposition result is also important in the characterization of the

dual cone. The dual cone also appears in interesting applications, albeit not as prominent,

but they are certainly useful from an optimization point of view. From Theorem 2.4, we

obtain equivalent expressions for Ktrig. In particular, the expression

Ktrig = {D(X) | X � 0}

shows that Ktrig is the image of the positive semidefinite cone under linear mapping. We

can then easily obtain an expression for the dual cone as

K∗trig = KToep = {z ∈ R×Cp | 〈x, z〉 ≥ 0 ∀x ∈ Ktrig}

= {z ∈ R×Cp | 〈D(X), z〉 = tr(XT (z)) ≥ 0 ∀X � 0}

= {z ∈ R×Cp | T (z) � 0},
10



where the mapping T : R × Cp → Hp+1 denotes the adjoint of D and maps a vector to a

Hermitian Toeplitz matrix

T (z) =


z0 z̄1 · · · z̄p

z1 z0 · · · z̄p−1

...
...

. . .
...

zp zp−1 · · · z0


. (2.4)

Since Ktrig is a proper cone, Lemmas 2.1 and 2.2 tell us that KToep is also proper and that

the cones Ktrig and KToep are dual to each other.

As a side note, using the Vandermonde decomposition in the proof of Theorem 2.4, we

see that the dual cone admits the expression

KToep = {z ∈ R×Cp | z =
r∑

k=1

dka(ejωk), dk ≥ 0, k = 1, . . . , r},

which is the (truncated) trigonometric moment cone.

Example: line spectrum estimation. Parametric line spectrum estimation is concerned

with fitting signal models of the form

y(t) =
r∑

k=1

cke
jωkt + v(t), (2.5)

where v(t) is noise. If the phase angles of ck are independent random variables, uniformly

distributed on [−π, π], and v(t) is circular white noise with E |v(t)|2 = σ2, then the covariance

matrix of y(t) of order p+ 1 is given by
r0 r−1 · · · r−p

r1 r0 · · · r−p+1

...
...

. . .
...

rp rp−1 · · · r0


= σ2I +

r∑
k=1

|ck|2


1

ejωk

...

ejpωk




1

ejωk

...

ejpωk



H

, (2.6)

where rk = E (y(t)y(t− k)) [SM97, §4.1] [PM96, §12.5]. Many classical subspace methods

are designed for this model (see Appendix A for a short review), and active researches are
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still being conducted to adapt these methods to more general situations. An optimization

approach is considered here instead. A given estimated covariance matrix R̂ may not be

PSD, and it is often desirable to find z ∈ K∗1 such that σ2I + T (z) is ‘close to’ R̂, for

example, by solving the optimization problem

minimize γ‖σ2I + T (z)− R̂‖+ z0

subject to z ∈ KToep,

where γ is a positive regularization parameter. An estimate of the model parameters |ck|2,

ωk for k = 1, . . . , r can therefore be obtained via Vandermonde decomposition of T (z).

2.4 Structured positive semidefinite matrix factorization

The section is adapted from [CV17]. In this thesis, the extension is made by observing that

the set of complex exponentials

{a(ejω) = (1, ejω, . . . , ejpω) | ω ∈ [0, 2π)}

can be parameterized as

{a(λ) | (λG− F )a = 0, λ ∈ C ′, a0 = 1}

where C ′ is the unit circle in the complex plane, and F and G are the p × (p + 1) matrices

defined in (2.3). Note that the parameter λ for the vector a is dropped at times to simplify

notation. In the rest of this chapter, we remove the restriction a0 = 1 and generalize the set

in two ways. The first generalization is to allow F and G to be arbitrary matrices of equal

size, i.e., to replace λG− F with an arbitrary matrix pencil (a matrix polynomial of degree

one). Second, we allow C ′ to be an arbitrary circle or line in the complex plane, or a segment

of a line or a circle. Specific examples of these extensions, with different choices of F , G,

and C ′, are discussed in Section 2.5.

Throughout the rest of the thesis we assume that F and G are complex matrices of size

p× n, and Φ and Ψ are Hermitian 2× 2 matrices with det Φ < 0. We define

A = {a ∈ Cn | (µG− νF )a = 0, (µ, ν) ∈ C}, (2.7)
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where

C =
{

(µ, ν) ∈ C2 | (µ, ν) 6= 0, qΦ(µ, ν) = 0, qΨ(µ, ν) ≤ 0
}
. (2.8)

Here qΦ, qΨ are the quadratic forms defined by Φ and Ψ:

qΦ(µ, ν) =

 µ

ν

H Φ

 µ

ν

 , qΨ(µ, ν) =

 µ

ν

H Ψ

 µ

ν

 . (2.9)

The set C is a subset of a line or circle in the complex plane, expressed in homogeneous

coordinates, as explained in appendix B. Three important special cases of Φ are

Φu =

 1 0

0 −1

 , Φi =

 0 1

1 0

 , Φr =

 0 j

−j 0

 ,
for the unit circle, imaginary axis, and real axis, respectively. If Φ11 6= 0 or Ψ11 > 0, then

ν 6= 0 for all elements (µ, ν) ∈ C, and we can simplify the definition of A as

A = {a ∈ Cn | (λG− F )a = 0, (λ, 1) ∈ C}. (2.10)

If Φ11 = 0 and Ψ11 ≤ 0, then the pair (1, 0) is also in C and the set A in (2.7) is the union

of the right-hand side of (2.10) and the nullspace of G, i.e.,

A = {a ∈ Cn | (λG− F )a = 0, (λ, 1) ∈ C} ∪ {a ∈ Cn | Ga = 0}.

Examples of sets A are given in Section 2.5. When referring to a specific element in A

corresponding to a parameter λ ∈ C ∪ {∞}, we use the notation a(λ) to indicate that

(λG− F )a(λ) = 0

with a finite λ satisfying (λ, 1) ∈ C, or

Ga(λ) = 0

with λ being a point at infinity and (1, 0) ∈ C.

The purpose of this section is to discuss a class of structured positive semidefinite matri-

ces, i.e., the convex hull of the set of matrices aaH with a ∈ A,

conv {aaH | a ∈ A} = {
r∑

k=1

aka
H
k | ak ∈ A, k = 1, . . . , r}. (2.11)
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2.4.1 Main result: conic decomposition

The key result (Theorem 2.5) is known under various forms in system theory, signal proces-

sing, and moment theory [KS66,KN77,GS84]. Our purpose is to give a simple semidefinite

formulation that encompasses a wide variety of interesting special cases, and to present

a constructive proof that can be implemented using the basic decompositions of numerical

linear algebra (specifically, symmetric eigenvalue, singular value, and Schur decompositions).

Lemma 2.3 provides the matrix factorization result needed in the proof of Theorem 2.5.

Lemma 2.3. Let Φ, Ψ ∈ H2 with det Φ < 0. If U, V ∈ Cp×r satisfy

Φ11UU
H + Φ21UV

H + Φ12V U
H + Φ22V V

H = 0, (2.12)

Ψ11UU
H + Ψ21UV

H + Ψ12V U
H + Ψ22V V

H � 0, (2.13)

then there exist a W ∈ Cp×r, a unitary Q ∈ Cr×r, and vectors µ, ν ∈ Cr such that

U = W diag(µ)QH , V = W diag(ν)QH ,

and qΦ(µi, νi) = 0, qΨ(µi, νi) ≤ 0, (µi, νi) 6= 0 for i = 1, . . . , r.

Proof. See Appendix C.

Theorem 2.5. Let A be defined by (2.7) and (2.8), where F , G ∈ Cp×n and Φ, Ψ ∈ H2

with det Φ < 0. A matrix X ∈ Hn is positive semidefinite of rank r ≥ 1 and satisfies

Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0 (2.14)

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0, (2.15)

if and only if X can be decomposed as X =
∑r

k=1 aka
H
k , with linearly independent vectors a1,

. . . , ar ∈ A.

Proof. Sufficiency is readily proved by substituting X =
∑r

k=1 aka
H
k in (2.14) and (2.15),
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and verifying that if (µkG− νkF )ak = 0 with (µk, νk) 6= 0, then

Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H =
r∑

k=1

αkqΦ(µk, νk)yky
H
k

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H =
r∑

k=1

αkqΨ(µk, νk)yky
H
k

where αk = 1/|νk|2, yk = Gak if νk 6= 0, and αk = 1/|µk|2, yk = Fak if νk = 0.

To show necessity, we start from any factorization X = Y Y H where Y ∈ Cn×r has rank r.

It follows from Lemma 2.3 , applied to U = FY and V = GY , that there exist a matrix

W ∈ Cp×r, a unitary matrix Q ∈ Cr×r, and two vectors µ, ν ∈ Cr such that

FY Q = W diag(µ), GY Q = W diag(ν), (µi, νi) ∈ C, i = 1, . . . , r.

Choosing ak equal to the kth column of Y Q gives the decomposition of X.

Viewed geometrically, the theorem says that (2.11) is the set of positive semidefinite

matrices X that satisfy (2.14) and (2.15).

It is useful to note that the proof of Lemma 2.3 in the appendix is constructive and gives

a simple algorithm, based on singular value and Schur decompositions, for computing the

matrices W , Q and the vectors µ, ν.

2.5 Examples

In this section we illustrate the decomposition in Theorem 2.5 with different choices of the

matrices F , G, Φ, and Ψ. The section is adapted from [CV17].

2.5.1 Trigonometric polynomials

Complex exponentials As a first example, we take p = n− 1,

F =
[

0 In−1

]
, G =

[
In−1 0

]
, Φ = Φu ,

 1 0

0 −1

 , Ψ = 0. (2.16)

A nonzero pair (µ, ν) satisfies qΦ(µ, ν) = |µ|2 − |ν|2 = 0 only if µ and ν are nonzero and

λ = µ/ν is on the unit circle. The condition (λG − F )a = 0 in the definition of A gives
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a recursion λa1 = a2, λa2 = a3, . . . , λan−1 = an. Defining exp(jω) = λ, we find that A

contains the vectors

a = c (1, ejω, ej2ω, . . . , ej(n−1)ω), (2.17)

for all ω ∈ [0, 2π) and c ∈ C. The matrix constraints (2.14)–(2.15) reduce to FXFH =

GXGH , i.e., X is a Toeplitz matrix. Theorem 2.5 therefore reduces to the well known

Vandermonde decomposition of every positive semidefinite Toeplitz matrix

X =
r∑

k=1

|ck|2


1

ejωk

...

ej(n−1)ωk




1

ejωk

...

ej(n−1)ωk



H

, (2.18)

with ck 6= 0 and distinct ω1, . . . , ωr [SM97, page 170].

Restricted complex exponentials Define F , G, Φ as in (2.16), and

Ψ =

 0 −ejα

−e−jα 2 cos β


with α ∈ [0, 2π) and β ∈ [0, π). The elements a ∈ A have the same general form (2.17),

with the added constraint that cos β ≤ cos(ω − α). Since we can restrict ω to the interval

[α − π, α + π], this is equivalent to |ω − α| ≤ β. The constraints (2.14)–(2.15) specify that

X is Toeplitz and satisfies the matrix inequality

−e−jαFXGH − ejαGXFH + 2(cos β)GXGH � 0. (2.19)

The theorem states that a positive semidefinite Toeplitz matrix of rank r satisfies (2.19) if

and only if it can be decomposed as (2.18) with nonzero ck and |ωk − α| ≤ β.

16



Real trigonometric functions Next consider p = n− 1,

G =



1 0 0 · · · 0 0

0 2 0 · · · 0 0

0 0 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 0


, F =



0 1 0 · · · 0 0 0

1 0 1 · · · 0 0 0

0 1 0 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 1 0 1


,

and

Φ = Φr ,

 0 j

−j 0

 , Ψ = Φu =

 1 0

0 −1

 .
A nonzero pair (µ, ν) satisfies qΦ(µ, ν) = j(µ̄ν − µν̄) = 0 and qΨ(µ, ν) = |µ|2 − |ν|2 ≤ 0 only

if ν 6= 0 and λ = µ/ν is real with |λ| ≤ 1. The condition (λG − F )a = 0 gives a recursion

λa1 = a2, 2λak = ak−1 + ak+1 for k = 2, . . . , n − 1. If we write λ = cosω, we recognize the

recursion 2 cosω cos kω = cos (k − 1)ω + cos (k + 1)ω and find that A contains the vectors

a = c (1, cosω, cos 2ω, . . . , cos (n− 1)ω),

for all ω ∈ [0, 2π) and all c. With the same F and G = [ 2In−1 0 ], the condition (λG −

F )a = 0 reduces to 2λa1 = a2, 2λak = ak−1 +ak+1 for k = 2, . . . , n−1. If we write λ = cosω,

the solutions are the vectors

a = c (1,
sin 2ω

sinω
,

sin 3ω

sinω
, . . . ,

sinnω

sinω
),

for all ω ∈ [0, 2π) and all c.

Trigonometric vector polynomials We take p = (k− 1)l, n = kl, and replace F and G

in (2.16) with

F =


0 I 0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I


, G =


I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


,
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and blocks of size l × l. Then A contains the vectors of the form

a = (1, ejω, ej2ω, . . . , ej(k−1)ω)⊗ c,

for all c ∈ Cl and ω ∈ [0, 2π), where ⊗ denotes Kronecker product.

2.5.2 Polynomials

See [KS66, KN77], for example, for a classical treatment of sequence of polynomials and

moments.

Real powers Define F , G as in (2.16), and Φ = Φr, Ψ = 0. A pair (µ, ν) satisfies

qΦ(µ, ν) = 0 if and only if µ̄ν is real. If (µ, ν) 6= 0, we either have ν = 0 and µ arbitrary, or

ν 6= 0 and λ = µ/ν real. The set A therefore contains the vectors

a = c (1, λ, λ2, . . . , λn−1), a = c (0, 0, . . . , 0, 1)

for all λ ∈ R and c. The matrix constraints (2.14)–(2.15) reduce to FXGH = GXFH , i.e.,

X is a symmetric (real) Hankel matrix. Hence, a real symmetric positive semidefinite Hankel

matrix of rank r can be decomposed in one of two forms

X =
r∑

k=1

|ck|2



1

λk
...

λn−2
k

λn−1
k





1

λk
...

λn−2
k

λn−1
k



T

, X =
r−1∑
k=1

|ck|2



1

λk
...

λn−2
k

λn−1
k





1

λk
...

λn−2
k

λn−1
k



T

+ |cr|2



0

0
...

0

1





0

0
...

0

1



T

,

with distinct real λk and nonzero ck.

Restricted polynomials If F , G are defined as in (2.16) and Φ = Φr,

Ψ =

 2 −(α + β)

−(α + β) 2αβ
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where −∞ < α < β < ∞, then A contains all vectors a = c(1, λ, . . . , λn−1) with λ ∈ [α, β].

The matrix constraints require X to be a real symmetric Hankel matrix that satisfies

2FXFH − (α + β)(FXGH +GXFH) + 2αβGXGH � 0.

Orthogonal polynomials Let p0(λ), p1(λ), p2(λ), . . . be a sequence of real polynomials

on R, with pi of degree i. It is well known that the polynomials are orthonormal with respect

to an inner product that satisfies the property

〈f(λ), λg(λ)〉 = 〈λf(λ), g(λ)〉 (2.20)

(for example, an inner product of the form 〈f, g〉 =
∫
f(λ)g(λ)w(λ)dλ with w(λ) ≥ 0) if and

only if the polynomials satisfy a three-term recurrence

βi+1pi+1(λ) = (λ− αi)pi(λ)− βipi−1(λ), (2.21)

with p−1(λ) = 0 and p0(λ) = 1/d0, where d2
0 = 〈1, 1〉. This can be seen as follows [GK83].

Suppose p0, . . . , pn−1 is any set of polynomials, with pi of degree i. Then λpi(λ) can be

expressed as a linear combination of the polynomials p0(λ), . . . , pi+1(λ), and therefore

λ


p0(λ)

p1(λ)
...

pn−2(λ)


=
[
J βn−1en−1

]


p0(λ)

p1(λ)
...

pn−1(λ)


(2.22)

for some lower-Hessenberg matrix J (i.e., satisfying Jij = 0 for j > i + 1). Let 〈·, ·〉 be an

inner product on the space of polynomials of degree n− 1 or less. Taking inner products on

both sides of (2.22), we find that

H = JG+ βn−1en−1g
T

where

Hij = 〈λpi−1(λ), pj−1(λ)〉, Gij = 〈pi−1(λ), pj−1(λ)〉, gj = 〈pn−1(λ), pj−1(λ)〉,
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for i, j = 1, . . . , n − 1. The polynomials are orthonormal for the inner product if and

only if G = I and g = 0. The inner product satisfies the property (2.20) if and only

if H is symmetric. Hence if the polynomials are orthonormal for an inner product that

satisfies (2.20), then J is a symmetric tridiagonal matrix. If we use the notation

J =



α0 β1 0 · · · 0 0

β1 α1 β2 · · · 0 0

0 β2 α2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · αn−3 βn−2

0 0 0 · · · βn−2 αn−2


, (2.23)

the recurrence (2.21) follows. Conversely, if the three-term recurrence holds, and we define

the inner product by setting G = I, g = 0, then H is symmetric and the inner product

satisfies (2.20).

Now consider (2.7) and (2.8), with p = n− 1 and

Φ = Φr, Ψ = 0, G =
[
In−1 0

]
, F =

[
J βn−1en−1

]
,

where J is the Jacobi matrix (2.23) of a system of orthogonal polynomials. Then (µ, ν) ∈ C

if and only if either ν 6= 0 and λ = µ/ν ∈ R, or ν = 0. The set contains the vectors a of the

following form for all λ ∈ R:

a = c (p0(λ), p1(λ), p2(λ), . . . , pn−1(λ)), a = c (0, 0, . . . , 0, 1).

2.5.3 Rational functions

As a final example, we consider the controllability pencil of a linear system:

G =
[
I 0

]
, F =

[
A B

]
, (2.24)

where A ∈ Cns×ns and B ∈ Cns×m. With this choice, A contains the vectors a = (x, u) that

satisfy the equality (µI − νA)x = νBu for some (µ, ν) ∈ C. Since (µ, ν) 6= 0, we either have
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ν = 0 and x = 0, or ν 6= 0 and ((µ/ν)I − A)x = Bu. If A has no eigenvalues λ that satisfy

(λ, 1) ∈ C, then A contains the vectors

a =

 (λI − A)−1Bu

u


for all (λ, 1) ∈ C and all u ∈ Cm. If C includes the point (1, 0) at infinity, then A also

contains the vectors (0, u) for all u ∈ Cm.

This can be extended to the controllability pencil of a descriptor system

G =
[
E 0

]
, F =

[
A B

]
,

where E ∈ Cns×ns is possibly singular. With this choice, A contains the vectors a = (x, u)

that satisfy the equality (µE − νA)x = νBu for some (µ, ν) ∈ C. If det(µE − νA) 6= 0 for

all (µ, ν) ∈ C, then A contains all vectors

a =

 (λE − A)−1Bu

u


for (λ, 1) ∈ C and u ∈ Cm. If (1, 0) ∈ C, then A also contains (0, u) for all u ∈ Cm.

2.6 Duality

Using Theorem 2.5, we obtain an LMI expression for the cone of structured positive semi-

definite matrices defined in (2.11) as

Kstru = {
r∑

k=1

aka
H
k | ak ∈ A, k = 1, . . . , r}

= {X ∈ Hn | X � 0, (2.14), (2.15)}.

The LMI expression shows that the cone Kstru is closed and convex. Therefore, according to

Lemma 2.2, it forms a dual pair with its dual cone,

K∗stru = KPopov = {M ∈ Hn |
r∑

k=1

aHk Mak ≥ 0 ∀ak ∈ A, k = 1, . . . , r}

= {M ∈ Hn | FM(λ) = a(λ)HMa(λ) ≥ 0 ∀a(λ) ∈ A}.

This is the cone of nonnegative Popov functions. Section 2.7 gives more discussion on Popov

functions and the equivalent expressions for KPopov.
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2.7 Kalman–Yakubovich–Popov Lemma

Although it is not directly related to the main contributions of the thesis, this section presents

general forms of the KYP lemma [Kal63, Yak62, Pop62, Ran96, IMF00, BV02, BV03, IH05,

Sch06,PV11] consistent with the notation of this thesis and gives specific examples in their

well-known forms. The theorems in this section state the same results as [IH05, theorem 2],

except that a less restrictive constraint qualification is given for the nonstrict KYP lemma.

We note that there are further variations of the KYP lemma that are not covered here, for

example, the sampling formulation that results in a low-rank structure in the LMIs [LP04,

RV06, LV07, RDV07], as well as the generalization to certain curves in the complex plane

described by polynomial equality and inequality of order higher than quadratic [PIH14].

The trigonometric polynomials in Section 2.3 are extended to Popov functions (see [IOW99,

HSK99], for example) defined as

FM(λ) = a(λ)HMa(λ) (2.25)

where M ∈ Hn is called the central matrix, and a(λ) ∈ A. Many properties in control and

signal processing applications can be characterized as the nonnegativity of a Popov function

over a set of parameters, i.e.,

FM(λ) ≥ 0 ∀λ ∈ C ′ = {µ/ν ∈ C ∪ {∞} | (µ, ν) ∈ C}

where C represents a subset of a line of circle in the complex plane, as described in Section 2.4

and Appendix B. Here we assume the set C defined with Φ and Ψ in (2.8) is not empty and

not a singleton, since otherwise the nonnegative Popov constraint would be trivial. We

also assume the inequality qΨ(µ, ν) ≤ 0 is not redundant, which means there exist points

λ = µ/ν with qΦ(µ, ν) = 0 and qΨ(µ, ν) < 0. The KYP lemma [IH05, theorem 2] establishes

equivalence of the nonnegative Popov constraint to a matrix inequality that is linear in the

central matrix M , thus allowing M(x) to be any linear mapping of the decision variable x

in an optimization problem.
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2.7.1 Strict version

We first state the KYP lemma with strict inequality.

Theorem 2.6. The following statements are equivalent.

(a) FM(λ) > 0 for all λ ∈ C ′.

(b) There exist P,Q ∈ Hp with Q � 0 and

M +

 F

G

H (Φ⊗ P + Ψ⊗Q)

 F

G

 � 0. (2.26)

Proof. Suppose (b) holds. Consider any λ = µ/ν ∈ C ∪ {∞} with (µ, ν) ∈ C and a 6= 0

such that (µG− νF )a = 0. Define

w =

 (1/ν)Ga ν 6= 0

(1/µ)Fa ν = 0.

Therefore Ga = νw and Fa = µw, and.

FM(λ) = aHMa > −

 Fa

Ga

H (Φ⊗ P + Ψ⊗Q)

 Fa

Ga


= −

 µw

νw

H (Φ⊗ P + Ψ⊗Q)

 µw

νw


= −qΦ(µ, ν)wHPw − qΨ(µ, ν)wHQw

≥ 0.

The first line follows from (2.26), and the last line from qΦ(µ, ν) = 0, qΨ(µ, ν) ≤ 0, and

Q � 0.

Conversely, suppose (b) is false, then by applying Theorem 2.1 with A : Hp × Hp →

Hn ×Hp and

A(diag(P,Q)) = diag(

 F

G

H (Φ⊗ P + Ψ⊗Q)

 F

G

 , Q), A0 = diag(M, 0), (2.27)
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there exist X ∈ Hn and Z ∈ Hp such that

diag(X,Z) 	 0, Aadj(diag(X,Z)) = 0, tr(MX) ≤ 0.

Equivalently, there exists X � 0 with rank r ≥ 1 satisfying (2.14) and (2.15). Theorem 2.5

and tr(MX) ≤ 0 then imply aHMa ≤ 0 for some a ∈ A.

2.7.2 Nonstrict version

A constraint qualification (CQ) is needed in the nonstrict KYP lemma. The proof of Theo-

rem 2.7 uses strong alternatives of Theorem 2.3, which is ensured by an assumption we refer

to as CQ. It states that the image of the linear mapping A does not intersect with the PSD

cone except for the origin. Consider the linear mapping A defined in (2.27), CQ says that

there exists no P and Q such that A(diag(P,Q)) � 0, or equivalently, via the application

of Theorem 2.2, there exist X and Z such that diag(X,Z) � 0, and Aadj(diag(X,Z)) = 0.

More explicitly, there exists X � 0 such that

Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H ≺ 0.

This CQ can also be characterized exactly in terms of the problem data F and G, which

states that the following two conditions must hold:

1. The normal rank of λG− F is p.

2. The generalized eigenvalues of λG − F are nondefective and lie in the interior of the

one-dimensional set C ′. More accurately, if λ is a finite generalized eigenvalue, then it

satisfies qΦ(λ, 1) = 0 and qΨ(λ, 1) < 0. If it is an infinite generalized eigenvalue, then

qΦ(1, 0) = 0 and qΨ(1, 0) < 0.

We refer interested readers to Appendix D for details and a proof. A sufficient and more

easily verified condition is that rank(µG− νF ) = p, i.e., full row rank, for all (µ, ν) 6= 0.

Theorem 2.7. If constraint qualification holds, the following statements are equivalent.
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(a) FM(λ) ≥ 0 for all λ ∈ C ′.

(b) There exist P,Q ∈ Hp with Q � 0 and

M +

 F

G

H (Φ⊗ P + Ψ⊗Q)

 F

G

 � 0.

Proof. The proof is similar to that of Theorem 2.6, except that we invoke Theorem 2.3 with

constraint qualification.

2.7.3 Linear time-invariant systems

This section presents the KYP lemma as it is more commonly seen in system and control

theory. Consider again the controllability pencil (2.24)

G =
[
I 0

]
, F =

[
A B

]
,

where A ∈ Cns×ns and B ∈ Cns×m describe a linear system. For the discrete-time systems,

with Φ = Φu, the set C ′ is (a subset of) the unit circle in the complex plane. For the

continuous-time systems, with

Φ = Φi ,

 0 1

1 0

 ,
the set C ′ is (a subset of) the imaginary axis in the complex plane. The CQ translates into

system theoretic properties.

Lemma 2.4. If all uncontrollable modes of the system described by the pair (A,B) are

nondefective and corresponding to eigenvalues in the interior of the one-dimensional set C ′,

the following statements are equivalent.

(a) For all λ ∈ C ′ and (x, u) ∈ Cns+m such that (λI − A)x = Bu (which means x = 0 for

λ at infinity), it holds that  x

u

HM
 x

u

 ≥ 0.
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(b) There exist P,Q ∈ Hp with Q � 0 and

M +

 A B

I 0

H (Φ⊗ P + Ψ⊗Q)

 A B

I 0

 � 0.

Note that if the eigenvalues of A do not lie in C ′, i.e., (λI − A)−1 exists for all λ ∈ C ′,

then statement (a) can be replaced with the following: for all λ ∈ C ′, it holds that (λI − A)−1B

I

HM
 (λI − A)−1B

I

 � 0.
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CHAPTER 3

Gauge Penalties for Structured Symmetric Matrices

Few optimization problems have attracted as much interest in recent years as the problem

of minimizing the sum of a convex function and an `1-norm regularization term. A general

form of problems of this type is

minimize f(
r∑

k=1

θkak) +
r∑

k=1

|θk|

subject to ak ∈ C, k = 1, . . . , r,

(3.1)

where f is a convex function and C is a set (or dictionary) of vectors in Cn or Rn. The

unknowns in problem (3.1) are the real or complex coefficients θk, the vectors (or atoms) a1,

. . . , ar selected from C, and the number r of selected dictionary elements. If C is a finite

set of vectors, it can be represented by a matrix A with the elements of C as its columns,

and the problem can be written as

minimize f(Aθ) + ‖θ‖1. (3.2)

This includes as special cases the LASSO problem [Tib96], basis pursuit [CDS98], noisy basis

pursuit [Tro06,DE06], and numerous other applications [CRT06,Don06,Ela10,HTW15].

When reviewing the literature on `1-norm methods in signal processing [CRT06, CM73,

SS86,SBT12], it is striking that many of the underlying applications involve signals in con-

tinuous domains (time, space, or frequency domain), and the `1-norm problems arise after

discretizing and truncating an infinite dictionary. The discretization is used when no exact

method for the continuous problem is known, or when the discretized problem is believed to

be easier to solve numerically by convex optimization techniques.

It was recently noted that certain problems of the form (3.1) with infinite dictionaries

can be exactly solved by semidefinite optimization, if the function f is also semidefinite
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representable. In particular, the authors of [CF14,TBS13,BR11,CF13,YX15,Fer15] consider

1-norm minimization with dictionaries of vectors of undamped complex exponentials,

C = Ce = {γ (1, ejω, . . . , ej(n−1)ω) ∈ Cn | ω ∈ [0, 2π), |γ| = 1/
√
n}

and use the fact that problem (3.1) is equivalent to the finite-dimensional convex optimization

problem

minimize f(x) + (trV + w)/2

subject to

 V x

xH w

 � 0

V is Toeplitz.

(3.3)

The variables in this problem are V ∈ Hn, x ∈ Cn, w ∈ R. (Here Hn denotes the set of

Hermitian n × n matrices.) The formulations were proposed for super-resolution, gridless

compressed sensing, and other applications in signal processing, and allow the continuous

sparse optimization problems to be posed directly, as a finite-dimensional convex semidefinite

optimization problem, without discretization.

This chapter and Chapter 4 present extensions of semidefinite programming formulati-

ons (3.3) of 1-norm optimization problems over infinite dictionaries of vectors of complex

exponentials. In particular, the `1-norm penalty is extended to convex penalties promoting

certain types of structure. We distinguish between two cases. Penalties for structured sym-

metric matrices are treated in this chapter. Specifically, Chapter 3 is concerned with the

problem (3.1) where the set C contains structured positive semidefinite matrices. Based on

the development of this chapter, Chapter 4 discusses penalties for structured nonsymmetric

matrices, i.e., when the set C contains structured nonsymmetric matrices, which include

vectors as a special case. The results in the previous chapter provide simple, constructive

proofs of the semidefinite representations of the penalty functions used in the aforementi-

oned applications. The connection also leads the extensions to penalty functions for sets

of vectors parameterized via the nullspace of matrix pencils. The techniques are illustrated

with examples of low-rank matrix approximation problems arising in spectral estimation and

array processing.
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Outline

Section 3.1 gives a brief overview of sparse signal reconstruction via `1-norm and atomic

norm minimizations. Section 3.2 outlines recent works on extensions to certain continuous

domains. In Section 3.3, we define and present semidefinite representations of the atomic

norms and gauge functions for structured symmetric matrices, based on the direct and con-

structive proofs of Theorem 2.5 in Section 2.4 and Appendix C. In Section 3.4, we derive the

convex conjugates of the atomic norms and gauge functions, and discuss the relation between

the dual SDP representations and the Kalman–Yakubovich–Popov lemma. In Section 3.5,

the SDP techniques are illustrated with some applications in signal processing. Appendix D

discusses the technical results on the properties of the matrix pencil λF − G that are nee-

ded to ensure strong duality in the dual problems. Most content of this chapter is adapted

from [CV17].

3.1 Sparse signal reconstruction

Techniques for sparse signal reconstruction via `1-norm minimization have been a very active

research topic over the past decades. The optimization of `1-norm has been widely studied

in statistics, signal processing, and machine learning, and forms the basis of the celebrated

LASSO method for regressor selection, compressed sensing, basis pursuit, and many other

techniques. From a computational viewpoint, `1-norm minimization is attractive because

it leads to tractable optimization problems that can be solved as linear programs (LPs) or

second-order cone programs (SOCPs). In addition, an extensive theory has been developed

that explains when and why `1-norm methods are successful.

One of the best known examples is the basis pursuit problem, in which we seek the

minimum `1-norm solution to an underdetermined linear equation [CDS98]:

minimize ‖θ‖1

subject to Aθ = y.
(3.4)

This is problem (3.2) with f(x) being the indicator function of the singleton {y}, and it
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can be written as an LP, for which many efficient algorithms exist. The matrix A ∈ Cn×m

in (3.4) may consist of an over-complete (i.e., n < m) dictionary of basis signals from which

an element is ‘selected’ if the corresponding element in θ is nonzero. The goal of sparse

signal recovery is to select a small number of basis signals that are sufficient to represent the

data vector y. One possible formulation is to compute the sparsest vector of coefficients θ

by minimizing the cardinality (number of nonzero elements) of θ:

minimize ‖θ‖0

subject to Aθ = y.
(3.5)

The problem (3.5) is nonconvex and combinatorial in nature, and it is in general NP-hard.

The `1 minimization (3.4), on the other hand, is a tractable convex problem and often

has very sparse solutions θ. It can therefore be interpreted as a convex heuristic for (3.5).

Moreover, problems (3.5) and (3.4) can be shown to be equivalent when the problem data

A, y satisfy certain properties; see [FN03,CRT06].

Many variations of the basis pursuit problem (3.4) exist that account for noisy or missing

data, or add convex constraints on the coefficients θ. For example, in the robust recovery

problem we allow noise in the data vector y and replace the equality constraint with a norm

inequality, i.e., choosing f(x) in (3.2) as the indicator function of {x | ‖x− y‖ ≤ δ},

minimize ‖θ‖1

subject to ‖Aθ − y‖ ≤ δ,
(3.6)

or penalty in the objective,

minimize ‖θ‖1 +
γ

2
‖Aθ − y‖2, (3.7)

which is f(x) = (γ/2)‖x − y‖2 in (3.2). The scalars δ and γ are nonnegative parameters.

The latter formulation (3.7) is also well known as the LASSO [Tib96], and can be viewed as

either robust basis pursuit or `1-norm regularized least-squares regression.

Building on the foundations and success of basis pursuit, methods for exact signal recovery

with incomplete data solve a problem of the same form (3.4), where A is a randomly chosen

measurement matrix, and each equality constraint represents a linear measurement on θ.
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Exact recovery with n < m is guaranteed under certain conditions [CRT06], and these

conditions can be shown to hold with high probability for certain distributions of A. This

gives rise to the famous compressed sensing (or compressive sampling) theory and finds many

interesting applications [Don06,CW08,Bar07,Ela10,EK12].

More recent work has focused on extensions of these results from sparse optimization

to other types of ‘low-dimensional structure’. An example is the minimization of the trace

norm (or nuclear norm, i.e., the sum of singular values) of a matrix,

minimize ‖X‖∗

subject to A(X) = y,
(3.8)

as a convex heuristic to the rank minimization problem

minimize rankX

subject to A(X) = y.
(3.9)

Here X ∈ Cn×m is a matrix variable, y ∈ Cl is given, and A denotes a linear map. The

problem (3.8) can be formulated as a semidefinite program (SDP). The rank minimization

problems is in general NP-hard, but, as for `1-norm minimization, there are proven conditions

under which the two problems are equivalent [Faz02,RFP10].

The notion of atomic norm introduced in [CRP12] gives a unified description of convex

penalty functions that extend the `1-norm penalty, used to promote sparsity in the solution

of an optimization problem, to various other types of structure. The atomic norm associated

with a non-empty (finite or infinite) set C is defined as the gauge of its convex hull, i.e., the

convex function

g(x) = inf {t ≥ 0 | x ∈ t convC}

= inf {
r∑

k=1

θk | x =
r∑

k=1

θkak, θk ≥ 0, ak ∈ C}. (3.10)

This function is convex, nonnegative, and positively homogeneous. It is not necessarily a

norm, but it is common to use the term ‘atomic norm’ even when g is not a norm. When

used as a regularization term in an optimization problem, the function g(x) defined in (3.10)
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promotes the property that x can be expressed as a nonnegative linear combination of a

small number of elements (or ‘atoms’) of C.

The vector `1-norm and the matrix trace norm are the best known examples of atomic

norms. The `1-norm of a real or complex n-vector is the atomic norm associated with

C = {sek | |s| = 1, k = 1, . . . , n}, where ek is the kth unit vector of length n. The matrix

trace norm (or nuclear norm) is the atomic norm for the set of rank-1 matrices with unit

norm. Specifically, the trace norm on Cn×m is the atomic norm for C = {vwH | v ∈ Cn, w ∈

Cm, ‖v‖ = ‖w‖ = 1}, where wH is the conjugate transpose and ‖ · ‖ denotes the Euclidean

norm. Many other examples are discussed in [CRP12,BTR13,TBS13].

3.2 Related works

It is interesting to note that applications of `1-norm optimization for sparse signal processing

often involve a discretization of a sparse optimization problem over the underlying continuous

domains (time, space, or frequency domain) [CRT06, CM73, SS86, SBT12]. The reason for

adopting a discretization procedure was either that no exact method for the continuous

problem was known, or that solving the discretized version was believed to be numerically

cheaper or easier to implement. However, several issues arise because of the discretization.

The continuous-domain signal may not be sparsely representable after discretization (often

referred to as ‘basis mismatch,’ see [TBS13,CSP11] for example), resulting in inaccurate or

non-sparse estimation. As the grid gets finer, the discretization problem typically becomes

more ill-conditioned, which leads to numerical difficulties in optimization algorithms. Finally,

the discretized problem may be very large and expensive to solve (see [TBS13], and references

therein).

For these reasons, several researchers have recently studied exact formulations for certain

sparse signal reconstruction problems in continuous domains. In particular, the atomic norm

associated with the set

Ce = {γ (1, ejω, . . . , ej(n−1)ω) ∈ Cn | ω ∈ [0, 2π), |γ| = 1/
√
n} (3.11)
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has been studied by several groups [CG12,CGH17,CF13,CF14,Fer15,BTR13,TBS13,YX16,

LC16, MCK14, MCK15]. Problems of this type are widely encountered in signal processing

and system theory. They include very classical problems, for example the estimation of

line spectra, direction of arrival estimation in sensor array processing, and the estimation of

spike signals. It is known that the atomic norm for the set Ce is the optimal value of the

semidefinite program (SDP)

minimize (trV + w)/2

subject to

 V x

xH w

 � 0

V is Toeplitz,

(3.12)

with variables w ∈ R and V ∈ Hn (the n×n Hermitian matrices). This result can be shown

via convex duality and semidefinite characterizations of bounded trigonometric polynomials

[BTR13, CF14, CG12], or directly by referring to the classical Vandermonde decomposition

of positive semidefinite Toeplitz matrices as a positive sum of outer product of vectors in

Ce [TBS13,STY14]. More generally, one can consider the atomic norm of the set of matrices

C = {vwH ∈ Cn×m | v ∈ Ce, ‖w‖ = 1}. The atomic norm for this set, evaluated at a matrix

X ∈ Cn×m, is the optimal value of the SDP

minimize (trV + trW )/2

subject to

 V X

XH W

 � 0

V is Toeplitz,

(3.13)

with variables V ∈ Hn and W ∈ Hm; see [YX16, LC16, Fer15, CV16, CV17]. Further ex-

tensions, that place restrictions on the parameter ω in the definition (3.11), can be found

in [MCK14,MCK15,CV16,CV17].
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3.3 Semidefinite representation of gauges for structured symme-

tric matrices

In this thesis we discuss extensions of the SDP representations (3.12) and (3.13) to a larger

class of atomic norms and gauge functions. Recall for easy reference definitions (2.7) and (2.8)

of the set in Section 2.4,

A = {a ∈ Cn | (µG− νF )a = 0, (µ, ν) ∈ C} (3.14)

where F,G ∈ Cp×n, and

C =
{

(µ, ν) ∈ C2 | (µ, ν) 6= 0, qΦ(µ, ν) = 0, qΨ(µ, ν) ≤ 0
}

(3.15)

where Φ,Ψ ∈ H2 such that det Φ < 0, with the quadratic forms

qΦ(µ, ν) =

 µ

ν

H Φ

 µ

ν

 , qΨ(µ, ν) =

 µ

ν

H Ψ

 µ

ν

 .
We extend the gauge function representations by making a similar observation as in Chapter 2

that Ce (3.11) can be parameterized as

Ce = {a | a ∈ A, ‖a‖ = 1} (3.16)

where the matrices F , G, Φ, Ψ are defined in (2.16). In addition to the extensions already

mentioned in Chapter 2, where we allow more general choices of F , G, Φ, and Ψ, we also

replace the normalization ‖a‖ = 1 with a condition of the type ‖Ea‖ ≤ 1 where E is not

necessarily full column rank.

A function g is called a gauge if it is convex, positively homogeneous (g(tx) = tg(x) for

t > 0), nonnegative, and vanishes at the origin [Roc70, §15], [KN77, §1]. Examples are the

(Minkowski) gauges of nonempty convex sets C, which are defined as

g(x) = inf {t ≥ 0 | x ∈ tC}.

Conversely, if g is a gauge, then it is the Minkowski gauge of the set C = {x | g(x) ≤ 1}.

A gauge is a norm if it is defined everywhere, positive except at the origin, and symmetric

(g(x) = g(−x)).
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The gauge of the convex hull convC of a set C can be expressed as

g(x) = inf {
r∑

k=1

θk | x =
r∑

k=1

θkak, θk ≥ 0, ak ∈ C, k = 1, . . . , r}.

The minimum is over all possible decompositions of x as a nonnegative combination of a

finite number of elements of C. The gauge of the convex hull of a compact set is also called

the atomic norm associated with the set [CRP12].

Let F , G, Φ, Ψ be defined as in Theorem 2.5, where F , G ∈ Cp×n and Φ, Ψ ∈ H2 with

det Φ < 0. We assume that the set C defined in (3.15) is not empty. In this section we first

discuss the gauge of the convex hull of the set

C = {aaH ∈ Hn | a ∈ A, ‖a‖ = 1},

where A is defined in (3.14). The gauge of the convex hull of C is the function

g(X) = inf {
r∑

k=1

θk | X =
r∑

k=1

θkaka
H
k , θk ≥ 0, ak ∈ A, ‖ak‖ = 1} (3.17)

= inf {
r∑

k=1

‖ak‖2 | X =
r∑

k=1

aka
H
k , ak ∈ A}. (3.18)

The second expression follows from the fact that if a ∈ A then βa ∈ A for all β.

The expressions
∑

k θk and
∑

k ‖ak‖2 in these minimizations take only two possible values:

trX if X can be decomposed as in (3.17) and (3.18), and +∞ otherwise. Theorem 2.5 tells

us that a decomposition exists if and only if X is positive semidefinite and satisfies the two

constraints

Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0 (3.19)

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0. (3.20)

Therefore

g(X) =

 trX X � 0, (3.19), (3.20)

+∞ otherwise.
(3.21)

Now consider an optimization problem in which we minimize the sum of a function

f : Hn → R and the gauge defined in (3.18) and (3.21),

minimize f(X) + g(X). (3.22)
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If we substitute the definition (3.18), this can be written as

minimize f(X) +
r∑

k=1

‖ak‖2

subject to X =
r∑

k=1

aka
H
k

ak ∈ A, k = 1, . . . , r.

(3.23)

The variables are X and the parameters a1, . . . , ar, and r of the decomposition of X.

This formulation shows that the function g(X) in (3.22) acts as a regularization term that

promotes a structured low rank property in X. If we substitute the expression (3.21) we

obtain the equivalent formulation

minimize f(X) + trX

subject to Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0

X � 0.

(3.24)

This problem is convex if f is convex.

A useful generalization of (3.18) is the gauge of the convex hull of

C = {aaH | a ∈ A, ‖Ea‖ ≤ 1}

where E may have rank less than n. The gauge of convC is

g(X) = inf {
r∑

k=1

θk | X =
r∑

k=1

θkaka
H
k , θk ≥ 0, ak ∈ A, ‖Eak‖ ≤ 1}. (3.25)

The variables θk in this definition can be eliminated by making the following observation.

Suppose that the directions of the vectors ak in the decomposition of X in (3.25) are given,

but not their norms or the coefficients θk. If 0 < ‖Eak‖ < 1, we can decrease θk by scaling

ak until ‖Eak‖ = 1. If Eak = 0, θk can be made arbitrarily small by scaling ak. Hence, we

obtain the same result if we use
√
θkak as variables and write the infimum as:

g(X) = inf {
r∑

k=1

‖Eak‖2 | X =
r∑

k=1

aka
H
k , ak ∈ A, k = 1, . . . , r}. (3.26)

Therefore g(X) =
∑

k ‖Eak‖2 = tr(EXEH) if X can be decomposed as in (3.26) and +∞

otherwise. Using Theorem 2.5 we can express this result as

g(X) =

 tr(EXEH) X � 0, (3.19), (3.20)

+∞ otherwise.
(3.27)
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Minimizing f(X) + g(X) is equivalent to the optimization problem

minimize f(X) +
r∑

k=1

‖Eak‖2

subject to X =
r∑

k=1

aka
H
k

ak ∈ A, k = 1, . . . , r,

(3.28)

with variables X and the parameters a1, . . . , ar, r of the decomposition of X. When

EHE = I this is the same as (3.23). By choosing different E we assign different weights to

the vectors ak. Using the expression (3.27), the problem (3.28) can be written as

minimize f(X) + tr (EXEH)

subject to Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0

X � 0.

(3.29)

Example Consider the line spectrum estimation example in Section 2.3.3. Classical met-

hods, such as MUSIC and ESPRIT, are based on the eigenvalue decomposition of an esti-

mated covariance matrix (see Appendix A). With the formulation outlined in this section

one can solve related but more general covariance fitting problems, expressed as

minimize f(R) + n
r∑

k=1

|ck|2

subject to R = σ2I +
r∑

k=1

|ck|2


1

ejωk

...

ej(n−1)ωk




1

ejωk

...

ej(n−1)ωk



H

,

with variables R ∈ Hn, σ2, |ck|, ωk, and r, where f is a convex penalty or indicator function

that measures the quality of the fit between R and the estimated covariance matrix. This is

equivalent to the convex optimization problem

minimize f(X + tI) + trX

subject to X � 0, t ≥ 0

X is Toeplitz.

A numerical example is given in Section 3.5.
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3.4 Duality

In this section we derive the conjugates of the gauge functions defined in Section 3.3 and

show that they can be interpreted as indicator functions of sets of nonnegative or bounded

generalized polynomials. This gives a useful interpretation of the dual problems for (3.22).

Using only SDP duality, we derive the complementary slackness relations expressed in terms

of points and polynomials on the one-dimensional continuous domain C. Special cases of the

relations with vectors of complex exponentials Ce were previously shown via either infinite-

dimensional convex duality [CG12,CF14] or atomic norm duality [CRP12,TBS13].

We assume that the subset of the complex plane represented by C in (3.15) is one-

dimensional, i.e., C is not a singleton and not the empty set. Equivalently, the inequality

qΨ(µ, ν) ≤ 0 in the definition is either redundant (and C represents a line or circle), or it

is not redundant and then there exist elements of C with qΨ(µ, ν) < 0. When stating and

analyzing the dual problems, we will need to distinguish these two cases (qΨ(µ, ν) ≤ 0 is

redundant or not). For the sake of brevity we only give the formulas for the case where the

inequality is not redundant. The dual problems for the other case follow by setting Ψ = 0

and making obvious simplifications.

We also assume that µG − νF has full row rank (rank(µG − νF ) = p) for all nonzero

(µ, ν)). This condition will serve as a ‘constraint qualification’ that guarantees strong duality.

3.4.1 Conjugate of symmetric matrix gauge

We first consider the conjugate of the function g defined in (3.27). The conjugate is defined

as g∗(Z) = supX (tr(XZ)− g(X)), i.e., the optimal value of the SDP

maximize tr ((Z − EHE)X)

subject to X � 0

Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0.

(3.30)
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The dual of this problem is

minimize 0

subject to Z −

 F

G

H (Φ⊗ P + Ψ⊗Q)

 F

G

 � EHE

Q � 0,

(3.31)

with variables P,Q ∈ Hp. It is shown in Appendix D that strong duality holds under the

assumptions listed at the top of Section 3.4.

If strong duality holds, then g∗(Z) is the optimal value of (3.31), i.e., equal to zero if

there exist P , Q that satisfy the constraints in (3.31), and +∞ otherwise. In other words,

g∗(Z) is the indicator function of the set described by the constraints in (3.31). To complete

the picture, we now show that g∗(Z) can be expressed as

g∗(Z) =

 0 aHZa ≤ ‖Ea‖2 for all a ∈ A

+∞ otherwise.
(3.32)

This expression of g∗ follows directly from the definition of the conjugate and (3.26), since

g∗(Z) = sup
X

(tr (XZ)− g(X)) = sup
a1,...,ar∈A

r∑
k=1

(aHk Zak − ‖Eak‖2),

which is the same as (3.32). This is consistent with a property from gauge duality: the

conjugate of the gauge of a set is the indicator of the unit level set of the polar gauge [FMP14,

proposition 2.1]. It is also instructive to derive (3.32) from the dual SDP (3.31). The

expression (3.32) is obtained immediately by applying Theorem 2.7; however, we include the

derivation here to make the presentation in this chapter self-contained. Suppose P and Q are

feasible in (3.31). Consider any a ∈ A and (µ, ν) ∈ C with µGa = νFa. Define y = (1/ν)Ga

if ν 6= 0 and y = (1/µ)Fa otherwise. Then

aHZa− ‖Ea‖2 ≤

 Fa

Ga

H (Φ⊗ P + Ψ⊗Q)

 Fa

Ga


=

 µy

νy

H (Φ⊗ P + Ψ⊗Q)

 µy

νy


= (yHPy)qΦ(µ, ν) + (yHQy)qΨ(µ, ν)

≤ 0.
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The last line follows from Q � 0 and qΦ(µ, ν) = 0, qΨ(µ, ν) ≤ 0. Conversely, if problem (3.31)

is infeasible, then the optimal value is +∞ and, since strong duality holds, there exist

matrices X that are feasible for (3.30) with tr((Z − EHE)X) > 0. Using Theorem 2.5, we

see that there exist a1, . . . , ar ∈ A with

r∑
k=1

(aHk Zak − ‖Eak‖2) > 0.

Therefore aHk Zak > ‖Eak‖2 for at least one ak.

3.4.2 Dual problem interpretation

The interpretation of the conjugate gives useful insight in problem (3.22), where g is defined

in (3.27). The dual problem is

maximize −f ∗(Z)− g∗(−Z).

Expanding g∗(−Z) using (3.31) gives the equivalent problem

maximize −f ∗(Z)

subject to −Z −

 F

G

H (Φ⊗ P + Ψ⊗Q)

 F

G

 � EHE

Q � 0,

(3.33)

with variables Z, P , Q, and using the expression (3.32) we can put the constraints in this

problem more succinctly as

maximize −f ∗(Z)

subject to ‖Ea‖2 + aHZa ≥ 0 for all a ∈ A.
(3.34)

This last form leads to an interesting set of optimality conditions. Suppose X and Z are

feasible for (3.28) and (3.34), respectively. Then

f(X) +
r∑

k=1

‖Eak‖2 ≥ −f ∗(Z) + tr(XZ) +
r∑

k=1

‖Eak‖2

= −f ∗(Z) +
r∑

k=1

(‖Eak‖2 + aHk Zak)

≥ −f ∗(Z).
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The first inequality follows by definition of f ∗(Z), and the second and third line from primal

and dual feasibility. If X and Z are optimal and strong duality holds, then

f(X) +
r∑

k=1

‖Eak‖2 = −f ∗(Z).

This is only possible if f(X) + f ∗(Z) = tr(XZ) and ‖Eak‖2 + aHk Zak = 0 for k = 1, . . . , r.

Hence only the vectors a ∈ A at which the inequality in (3.34) is active, can be used to form

an optimal X =
∑

k aka
H
k .

Example: Generalized Kalman–Yakubovich–Popov lemma When specialized to

the controllability pencil (2.24), the equivalence between the constraints in (3.34) and (3.33)

is known as the (generalized) Kalman–Yakubovich–Popov lemma [Kal63,Yak62,Pop62,Sch06,

IH05]; see Section 2.7 for more details.

We assume that A has no eigenvalues λ with (λ, 1) ∈ C, and that the pair (A,B) is

controllable, so the pencil satisfies the rank condition that rank(λF −G) = ns for all λ. The

dual problem (3.34) becomes

maximize −f ∗(Z)

subject to F(λ, Z) � 0 for all (λ, 1) ∈ C

M22 + Z22 � 0 if (1, 0) ∈ C

where M = EHE and

F(λ, Z) =

 (λI − A)−1B

I

H  M11 + Z11 M12 + Z12

M21 + Z21 M22 + Z22

 (λI − A)−1B

I

 .
The function F is called the Popov function with central matrix M + Z [IOW99,HSK99].

3.5 Line spectrum estimation examples

The formulations in Section 3.3 will now be illustrated with examples of Toeplitz covariance

fitting from signal processing. The optimization problems were solved with CVX [GB14].
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Figure 3.1: Line spectrum estimation by Toeplitz covariance fitting (Section 3.5.1). The red

dots represent the frequencies and magnitudes of the true model. The blue lines show the

estimated parameters obtained by solving (3.36).

3.5.1 Gaussian white noise model

We fit a covariance matrix of the form (2.6) to an estimated covariance matrix Rm. The

estimate Rm is constructed from N = 150 samples of the time series y(t) defined in (2.5),

with r = 3, and frequencies ωk and magnitudes |ck| shown in Figure 3.1. The noise is

Gaussian white noise with variance σ2 = 64. The sample covariance matrix is constructed

with n = 30 as

Rm =
1

N − n+ 1
Y Y H (3.35)

where Y is the n× (N − n+ 1) Hankel matrix with y(1), . . . , y(N − n+ 1) in its first row.

To estimate the model we solve
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minimize γ‖R−Rm‖2 +
r∑

k=1

|ck|2

subject to R = σ2I +
r∑

k=1

|ck|2


1

ejωk

...

ej(n−1)ωk




1

ejωk

...

ej(n−1)ωk



H

,

(3.36)

with variables σ2, |ck|2, ωk, r, and R. The norm ‖ · ‖2 in the objective is the spectral norm.

The regularization parameter γ is set to 0.25. As can be seen from Figure 3.1, the recovered

parameters ωk and |ck| are quite accurate, despite the very low signal-to-noise ratio. The

estimated noise variance σ2 is 79.6.

The semidefinite optimization approach allows us to fit a covariance matrix with the

structure prescribed in (2.6) to a sample covariance matrix that may not be Toeplitz or

positive semidefinite.

3.5.2 Moving average noise model

The covariance fitting formulation can also be extended to applications where the noise v(t)

is modeled as a moving-average process [Geo06,SDL10].

Moving average model Consider a zero-mean moving average model that describes a

time series as a weighted sum of a white noise series. Specifically, a moving average model

of order m (denoted MA(m)) takes the form

v(t) = e(t) +
m∑
k=1

σke(t− k)

where σk are scalar (real or complex) coefficients and e(t) is a (circular) white noise series.

It is a stationary process, and the covariance sequence vanishes for |k| > m, i.e.,

E[v(t)v(t− k)] = 0 for |k| > m.

In other words, the covariance matrix of v(t) is a banded Toeplitz matrix.
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Consider fitting signal models of the form (2.5)

y(t) =
r∑

k=1

cke
jωkt + v(t),

where the frequencies are restricted to |ωk| ≤ ωc with a cutoff frequency ωc, and the noise

v(t) is a moving average process of order m. One can formulate a covariance fitting problem

minimize γ‖R−Rm‖2 +
r∑

k=1

|ck|2

subject to R = P +
r∑

k=1

|ck|2


1

ejωk

...

ej(n−1)ωk




1

ejωk

...

ej(n−1)ωk



H

|ωk| ≤ ωc, k = 1, . . . , r

P is a covariance of MA(m).

The term ‖R−Rm‖2 in the objective promotes closeness of the identified covariance matrix R

to the sample covariance matrix Rm, which may be non-Toeplitz or not positive semidefinite,

depending on how it is constructed. The closeness can also be measured with other matrix

norms or distance metrics such as discussed in [Geo07]. The second term is in effect the same

as maximizing trP (or minimizing − trP ) with an appropriate choice of γ. It encourages a

larger noise variance in the identified model, and a smaller sum of the signal powers. In fact,

at the optimum, the second term in the identified covariance is always singular, because if it

is nonsingular, we can increase the diagonal elements in P such that it is still a covariance

matrix of MA(m) [Geo06].
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It can be shown that the problem is equivalent to the SDP

minimize γ‖R−Rm‖2 + trX/n

subject to R = P +X

X is Toeplitz

−FXGT −GXF T + 2(cosωc)GXG
T � 0

X � 0

P =



p0 · · · p̄m
...

. . .
. . .

pm
. . .

. . .

. . .
. . . p̄m

. . .
. . .

...

pm · · · p0


(p0, . . . , pm) = D(Q)

Q � 0,

where F , G are defined as in (2.16) and D is defined in (2.2).

As a numerical example, we construct an estimated covariance matrix Rm as in (3.35)

with n = 30 from N = 250 samples of y(t), which is a real-valued signal generated from the

superposition of line spectrum and a MA(3) noise with variance 51.75, shown in red stems

and curves, respectively, in Figure 3.2. We compare estimation results between fitting with

white noise model (MA(0)) and with MA(3) noise model. In Figure 3.2, the regularization

parameter γ = 8.0 and the estimated noise variance is 51.41 for the top figure, and for the

bottom figure, γ = 18 and the estimated noise variance is 50.77. As is visually notable,

fitting with MA(3) noise model can provide a more accurate estimate of the signal model.
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Figure 3.2: Line spectrum estimation by Toeplitz covariance fitting (Section 3.5.2) with

white noise model (MA(0)) (Top) and with MA(3) model (Bottom). The red (blue) stems

represent the true (estimated) line spectrum, and the red (blue) curve represents the true

(estimated) noise spectrum. The dotted vertical line indicates the cutoff frequency ωc = π/6.
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CHAPTER 4

Gauge Penalties for Structured Nonsymmetric

matrices

We now extend the results of the previous chapter to nonsymmetric matrices. The penalty

functions discussed in this chapter can also be interpreted as extensions to the trace norm

to take into account certain matrix structures. In particular, it is well known that the trace

norm ‖Y ‖∗ of a matrix Y is the optimal value of the SDP

minimize (trV + trW ) /2

subject to

 V Y

Y H W

 � 0,
(4.1)

where V andW are variables of compatible sizes. We will show that this SDP (4.1) is a special

case of the SDP representations of our penalty functions. In Section 4.1, we derive SDP

representations of atomic norms and gauge functions for structured nonsymmetric matrices.

The chapter is organized as follows. In Section 4.2, we derive the convex conjugates

of these gauge functions and discuss optimality conditions. In Section 4.3, the techniques

are illustrated with examples of low-rank matrix approximation problems arising in spectral

estimation and array processing. Most content of this chapter is adapted from [CV16,CV17].

Some background and related works have been given in Sections 3.1 and 3.2.
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4.1 Semidefinite representation of gauges for structured nonsym-

metric matrices

We define F , G, E, Φ, Ψ, and A as in the previous chapter, but add the assumption that

the matrices F , G, and E are block-diagonal:

G =

 G1 0

0 G2

 , F =

 F1 0

0 F2

 , E =

 E1 0

0 E2

 . (4.2)

Here F1, G1 ∈ Cp1×n1 and F2, G2 ∈ Cp2×n2 (possibly with p1 = 0 or p2 = 0). The matrices

E1 and E2 have n1 and n2 columns, respectively. We discuss the function

h(Y ) =
1

2
inf
V,W

g(

 V Y

Y H W

)

of Y ∈ Cn1×n2 , where g is defined in (3.26) and (3.27). Using (3.26) we can write h(Y ) as

h(Y ) = inf {1

2

r∑
k=1

(‖E1vk‖2 + ‖E2wk‖2) | Y =
r∑

k=1

vkw
H
k , (vk, wk) ∈ A}, (4.3)

while the characterization (3.27) shows that h(Y ) is the optimal value of the SDP

minimize
(
tr(E1V E

H
1 ) + tr(E2WEH

2 )
)
/2

subject to Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0

X =

 V Y

Y H W

 � 0,

(4.4)

with V and W as variables. This can be seen as an extension of the well-known SDP

formulation (4.1) of the trace norm of a matrix. If we take F and G to have zero row

dimensions (equivalently, define A = Cn1 ×Cn2 and omit the first two constraints in (4.4))

and choose E1 = I, E2 = I, then h(Y ) = ‖Y ‖∗, the trace norm of Y .

The block-diagonal form of F and G implies that if (v, w) ∈ A, then (αv, βw) ∈ A for

all α, β. This observation leads to a number of useful equivalent expressions for (4.3). First,

we note that h(Y ) can be written as

h(Y ) = inf {
r∑

k=1

‖E1vk‖‖E2wk‖ | Y =
r∑

k=1

vkw
H
k , (vk, wk) ∈ A}. (4.5)
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This follows from the fact ‖E1vk‖2 + ‖E2wk‖2 ≥ 2‖E1vk‖‖E2wk‖, with equality if ‖E1vk‖ =

‖E2wk‖. If the decomposition of Y in (4.3) involves a term vkw
H
k with E1vk and E2wk

nonzero, then replacing vk and wk with

ṽk = (
‖E2wk‖
‖E1vk‖

)1/2vk, w̃k = (
‖E1vk‖
‖E2wk‖

)1/2wk

gives another valid decomposition with

1

2
(‖E1ṽk‖2 + ‖E2w̃k‖2) = ‖E1vk‖‖E2wk‖ ≤

1

2
(‖E1vk‖2 + ‖E2wk‖2).

If E1vk = 0 and E2wk 6= 0, then replacing vk and wk with ṽk = αvk, w̃k = (1/α)wk gives an

equivalent decomposition with

1

2
(‖E1ṽk‖2 + ‖E2w̃k‖2) =

1

2α2
‖E2wk‖2 → 0

as α goes to infinity. The same argument applies when E1vk 6= 0 and E2wk = 0. In all cases,

therefore, the two expressions (4.3) and (4.5) give the same result.

From (4.5) we obtain two other useful expressions:

h(Y ) = inf {
r∑

k=1

‖E1vk‖ | Y =
r∑

k=1

vkw
H
k , (vk, wk) ∈ A, ‖E2wk‖ ≤ 1} (4.6)

= inf {
r∑

k=1

‖E2wk‖ | Y =
r∑

k=1

vkw
H
k , (vk, wk) ∈ A, ‖E1vk‖ ≤ 1}. (4.7)

This again follows from the property that the components vk, wk of elements (vk, wk) in

A can be scaled independently. At the optimal decomposition in (4.6), all terms satisfy

E2wk = 0 or ‖E2wk‖ = 1. In (4.7), all terms satisfy E1vk = 0 or ‖E1vk‖ = 1.

A final interpretation of h is

h(Y ) = inf {
r∑

k=1

θk | Y =
r∑

k=1

θkvkw
H
k ,

θk ≥ 0, (vk, wk) ∈ A, ‖E1vk‖ ≤ 1, ‖E2wk‖ ≤ 1} .

(4.8)

The equivalence with (4.5) follows from the fact that if the optimal decomposition of Y =∑r
k=1 θkvkw

H
k involves the term vkw

H
k , then the norms ‖E1vk‖ and ‖E2wk‖ will be either zero
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or one. (If 0 < ‖E1vk‖ < 1 we can decrease θk by scaling vk until ‖E1vk‖ = 1, and similarly

for wk.) The expression (4.8) shows that h(Y ) is the gauge of the convex hull of the set

{vwH ∈ Cn1×n2 | (v, w) ∈ A, ‖E1v‖ ≤ 1, ‖E2w‖ ≤ 1}.

The SDP representation of h in (4.4) allows us to reformulate problems

minimize f(Y ) + h(Y ), (4.9)

where f is convex and h is the gauge (4.3)–(4.8), as a convex problem. Minimizing f(Y ) +

h(Y ) is equivalent to

minimize f(Y ) +
r∑

k=1

‖E1vk‖‖E2wk‖

subject to Y =
r∑

k=1

vkw
H
k

(vk, wk) ∈ A, k = 1, . . . , r.

(4.10)

Alternatively, one can replace the second term in the objective with
∑

k ‖E2wk‖ and add

constraints ‖E1vk‖ ≤ 1, as in

minimize f(Y ) +
r∑

k=1

‖E2wk‖

subject to Y =
r∑

k=1

vkw
H
k

(vk, wk) ∈ A, k = 1, . . . , r

‖E1vk‖ ≤ 1, k = 1, . . . , r,

(4.11)

or vice versa. When E1 and E2 are identity matrices, we can interpret h(Y ) as a convex

penalty that promotes a structured low-rank property of Y . The outer products vkw
H
k

are constrained by the set A; the penalty term in the objective is the sum of the norms

‖vkwHk ‖2 = ‖vk‖‖wk‖. The matrices E1 and E2 can be chosen to assign a different weight to

different terms vkw
H
k .
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Problems (4.10) and (4.11) can be reformulated as

minimize f(Y ) + (tr(E1V E
H
1 ) + tr(E2WEH

2 ))/2

subject to Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0

X =

 V Y

Y H W

 � 0.

(4.12)

Example: column structure When p2 = 0, the matrices F and G in (4.2) have the form

F = [ F1 0 ] and G = [ G1 0 ]. This means that A = A1 ×Cn2 where

A1 = {v ∈ Cn1 | (µG1 − νF1)v = 0, (µ, ν) ∈ C}.

There are no restrictions on the w-component in (v, w) ∈ A. Problem (4.10) simplifies:

minimize f(Y ) +
r∑

k=1

‖E1vk‖‖E2wk‖

subject to Y =
r∑

k=1

vkw
H
k

vk ∈ A1, k = 1, . . . , r.

(4.13)

The equivalent semidefinite formulation (4.12) simplifies to

minimize f(Y ) + (tr(E1V E
H
1 ) + tr(E2WEH

2 ))/2

subject to Φ11F1V F
H
1 + Φ21F1V G

H
1 + Φ12G1V F

H
1 + Φ22G1V G

H
1 = 0

Ψ11F1V F
H
1 + Ψ21F1V G

H
1 + Ψ12G1V F

H
1 + Ψ22G1V G

H
1 � 0 V Y

Y H W

 � 0.

This SDP formulation of (4.13) (with E1 = I, E2 = I) was studied in [CV16].

As an example, we again consider the signal model (2.5). A natural idea for estimating

the parameters ωk and ck is to solve a nonlinear least squares problem

minimize
n−1∑
t=0

|ym(t)−
r∑

k=1

cke
jωkt|2,
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where ym(t) is the observed signal. This problem is not convex and difficult to solve iteratively

without a good starting point [SM97, page 148]. Instead of fixing r, we can also impose a

penalty on
∑

k |ck|, and consider the optimization problem

minimize γ‖y − ym‖2 +
r∑

k=1

|ck|

subject to y =
r∑

k=1

ck


1

ejωk

...

ej(n−1)ωk


.

(4.14)

The optimization variables are y and the parameters ck, ωk, r in the decomposition of y.

The vector ym has elements ym(0), . . . , ym(n − 1). This is a special case of (4.11) with

f(y) = γ‖y − ym‖2, n1 = n, n2 = 1, Φ = Φu, Ψ = 0, and

E1 = (1/
√
n)I, E2 = 1, F1 =

[
0 In1−1

]
, G1 =

[
In1−1 0

]
,

so that A1 is the set of all multiples of vectors (1, ejω, . . . , ej(n−1)ω). The problem is therefore

equivalent to the convex problem

minimize γ‖y − ym‖2 + (trV )/(2n) + w/2

subject to

 V y

yH w

 � 0

V is Toeplitz.

A related numerical example will be given in Section 4.3.1.

Example: joint column and row structure To illustrate the general problem (4.10),

we consider a variation on the previous example. Suppose we arrange the observations in an

n×m Hankel matrix

Ym =


ym(0) ym(1) · · · ym(m− 1)

ym(1) ym(2) · · · ym(m)
...

...
...

ym(n− 1) ym(n) · · · ym(m+ n− 2)


,
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and we fit to this matrix a matrix Y with the same Hankel structure and with elements

y(t) =
∑r

k=1 ck exp(jωkt). We formulate the problem as

minimize γ‖Y − Ym‖2
F +

r∑
k=1

|ck|

subject to Y =
r∑

k=1

ck


1

ejωk

...

ej(n−1)ωk




1

e−jωk

...

e−j(m−1)ωk



H

.

(4.15)

This is an instance of (4.10) with n1 = n, n2 = m, Φ = Φu, Ψ = 0, E1 = (1/
√
n)I,

E2 = (1/
√
m)I, and

G1 =
[
In−1 0

]
, F1 =

[
0 In−1

]
, G2 =

[
0 Im−1

]
, F2 =

[
Im−1 0

]
.

With these parameters, the set A contains the pairs (v, w) of the form

v = α(1, ejω, . . . , ej(n−1)ω), w = β(1, e−jω, . . . , e−j(m−1)ω).

The convex formulation is

minimize γ‖Y − Ym‖2
F + (trV )/(2n) + (trW )/(2m)

subject to

 V Y

Y H W

 � 0

 F1 0

0 F2

 V Y

Y H W

 F1 0

0 F2

T =

 G1 0

0 G2

 V Y

Y H W

 G1 0

0 G2

T .
A related example is discussed in Section 4.3.1.

4.2 Duality

In this section we derive the conjugates of the gauge functions defined in Section 4.1 and

show that they can be interpreted as indicator functions of sets of bounded generalized

polynomials. This gives a useful interpretation of the dual problems for (4.9).

We make the same assumptions as in the beginning of Section 3.4 to ensure that strong

duality holds.
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4.2.1 Conjugate of nonsymmetric matrix gauge

Consider the conjugate of the gauge defined in (4.3)–(4.8). We have

h∗(Z) = sup
Y

(Re (trZHY )− h(Y ))

where h(Y ) is the optimal value of (4.4). Therefore h∗(Z) is the optimal value of the SDP

maximize
1

2
tr(

 −EH
1 E1 Z

ZH −EH
2 E2

X)

subject to Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0

X � 0.

(4.16)

The dual of this problem is

minimize 0

subject to

 0 Z

ZH 0

−
 F

G

H(Φ⊗ P + Ψ⊗Q)

 F

G

�
 EH

1 E1 0

0 EH
2 E2


Q � 0.

(4.17)

As in Section 3.4.1, with the assumptions we make, it follows from Appendix D that strong

duality holds. Therefore h∗(Z) is equal to the optimal value of (4.17), i.e., zero if there exist

P and Q that satisfy the constraints of this problem, and +∞ otherwise. This will now be

shown to be equivalent to

h∗(Z) =

 0 Re (vHZw) ≤ (‖E1v‖2 + ‖E2w‖2)/2 for all (v, w) ∈ A

+∞ otherwise

=

 0 Re (vHZw) ≤ ‖E1v‖‖E2w‖ for all (v, w) ∈ A

+∞ otherwise.
(4.18)

54



To see this, first assume P and Q are feasible in (4.17), and a = (v, w) ∈ A satisfies

(µG− νF )a = 0 with (µ, ν) ∈ C. Then

vHZw + wHZHv − ‖E1v‖2 − ‖E2w‖2 ≤

 Fa

Ga

H (Φ⊗ P + Ψ⊗Q)

 Fa

Ga


= (yHPy)qΦ(µ, ν) + (yHQy)qΨ(µ, ν)

≤ 0,

where y = (1/ν)Ga if ν 6= 0 and y = (1/µ)Fa otherwise. Conversely, if problem (4.17) is

infeasible, then (4.16) is unbounded above, so there exists a feasible X with positive objective

value. If we decompose X as in Theorem 2.5, with ak = (vk, wk), we find that

0 < tr(

 −EH
1 E1 Z

ZH −EH
2 E2

 r∑
k=1

 vk

wk

 vk

wk

H)

=
r∑

k=1

(vHk Zwk + wHk Z
Hvk − ‖E1vk‖2 − ‖E2wk‖2)

so at least one term in the sum is positive. The second expression for h∗(Z) in (4.18)

follows from the block diagonal structure of F and G. Following similar arguments as

in Section 3.4.1, the expression (4.18) can also be derived directly from definition of the

conjugate, (4.3), and (4.5), or via gauge duality.

4.2.2 Dual problem interpretation

The interpretation of the conjugate h∗ can be applied to interpret the dual of (4.9),

maximize −f ∗(Z)− h∗(−Z).

Substituting the expression (4.17) for h∗(−Z), one can write this as

maximize −f ∗(Z)

subject to

 0 −Z

−ZH 0

−
 F

G

H (Φ⊗ P + Ψ⊗Q)

 F

G

 �
 EH

1 E1 0

0 EH
2 E2


Q � 0,
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with variables Z, P , Q. Substituting the expression (4.18) for h∗(−Z), we obtain

maximize −f ∗(Z)

subject to Re (vHZw) ≤ ‖E1v‖‖E2w‖ for all (v, w) ∈ A.

As in Section 3.4.2, the primal-dual optimality conditions provide a useful set of comple-

mentary slackness relations between primal optimal Y and dual optimal Z. Specifically,

the optimal Y can be decomposed as Y =
∑

k vkw
H
k with elements (vk, wk) ∈ A at which

Re (vHk Zwk) = ‖E1vk‖‖E2wk‖.

Example Suppose A ∈ Cns×ns , B ∈ Cns×m, C ∈ Cl×ns , D ∈ Cl×m are matrices in a

state-space model with (A,B) controllable, and A has no eigenvalues that satisfy (λ, 1) ∈ C.

We take p1 = 0, n1 = l, p2 = ns, n2 = ns +m,

G2 =
[
I 0

]
, F2 =

[
A B

]
, E1 = I, E2 =

[
0 I

]
.

With this choice of parameters, A = Cl ×A2, where A2 contains the vectors

w =

 (λI − A)−1Bu

u


for all u ∈ Cm and all (λ, 1) ∈ C, plus the vectors (0, u) if (1, 0) ∈ C. Since v is arbitrary

and E1 = I, the inequality in (4.18) reduces to ‖Zw‖ ≤ ‖E2w‖ for all w ∈ A2. With

Z = [ C D ], this is equivalent to a bound on the transfer function

‖D + C(λI − A)−1B‖2 ≤ 1 for all (λ, 1) ∈ C, ‖D‖2 ≤ 1 if (1, 0) ∈ C.

4.3 Numerical examples

The formulations in Section 4.1 will now be illustrated with examples from signal processing.

The optimization problems were solved with CVX [GB14].

4.3.1 Line spectrum estimation by penalty approximation

This example is a variation on problem (4.14). We take n = 50 consecutive measurements of

the signal defined in (2.5). There are three sinusoids with frequencies and magnitudes shown
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Figure 4.1: The data for the example in Section 4.3.1. The red dashed lines show the exact,

noise-free signal. The circles show the signal corrupted by Gaussian white noise (in blue),

plus a few larger errors in 20 positions (in black). The green dots show the recovered signal

y from (4.19).

in Figure 4.2. The noise v(t) is a superposition of white noise and a sparse corruption of 20

elements (see Figure 4.1). The model parameters are estimated by solving

minimize γ
n∑
i=1

φ(yi − ym,i) +
r∑

k=1

|ck|

subject to y =
r∑

k=1

ck


1

ejωk

...

ej(n−1)ωk


|ωk| ≤ ωc, k = 1, . . . , r,

(4.19)

where φ is the Huber penalty, γ = 0.071, and ωc = π/6. The variables are y and the

parameters r, ck, ωk in the decomposition of y. The problem is equivalent to the convex

problem

minimize γ
n∑
i=1

φ(yi − ym,i) + (trV )/(2n) + w/2

subject to

 V y

yH w

 � 0

FV FH −GV GH = 0

−FV GH −GV FH + 2(cosωc)GV G
H � 0

(4.20)

with F and G defined in (2.16). The variables are the n-vector y, the Hermitian n × n

matrix V , and the scalar w. Figure 4.2 shows the result, and the estimates obtained from a
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Figure 4.2: Line spectrum models estimated from the signal in Figure 4.1 by solving the

optimization problem (4.19) (Left) and using the matrix pencil method (Right).

simple implementation (without filtering) of the matrix pencil method described in [HS90,

SP95], where we form a 30× 21 Hankel matrix Ym from the measurements and compute the

generalized eigenvalues of λYm1−Ym2 as estimates of ejωk (Ym1 and Ym2 represent the matrix

Ym with the last and the first column removed, respectively). The comparison illustrates the

usefulness of incorporating the prior frequency constraint and the Huber penalty in (4.19).

It is interesting to note that problem (4.19) can be equivalently formulated as

minimize γ
n∑
i=1

φ(yi − ym,i) +
r∑

k=1

|ck|

subject to


y1 y2 · · · yn2

y2 y3 · · · yn2+1

...
...

...

yn1 yn1+1 · · · yn1+n2−1


=

r∑
k=1

ck


1

ejωk

...

ej(n1−1)ωk




1

e−jωk

...

e−j(n2−1)ωk



H

|ωk| ≤ ωc, k = 1, . . . , r,

(4.21)
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where n1 + n2 − 1 = n. This problem is equivalent to

minimize γ
m∑
i=1

φ(yi − ym,i) + (trV )/(2n1) + (trW )/(2n2)

subject to X =

 V Y

Y H W

 � 0

FXF T = GXGT

−FXGT −GXF T + 2(cosωc)GXG
T � 0

(4.22)

where G and F are block diagonal with blocks

G1 =
[
In1−1 0

]
, F1 =

[
0 In1−1

]
, G2 =

[
0 In2−1

]
, F2 =

[
In2−1 0

]
.

The variables in (4.22) are the matrices V , Y , W . The elements yi in the objective are the

elements in the first row and last column of the matrix variable Y . The two SDPs (4.20)

and (4.22) give the same result y, but may have different numerical properties (in terms of

accuracy or complexity).

4.3.2 Direction of arrival estimation

This example illustrates the use of frequency interval constraints in direction-of-arrival

(DOA) estimation. We consider a uniform linear array of n sensors. The signal arriving

at the array is a superposition of a small number of planar waves arriving from different

directions in [−π/2, π/2]. We take 2d/λc = 1, where d is the distance between the sensors

and λc the signal wavelength [SM97, §6.2]. When all sensor measurements are available,

the directions of arrival can be estimated by classical methods, such as MUSIC and ES-

PRIT [SM97,Sch86,PRK86]; see Appendix A for a brief overview. In this example, however,

we assume that only a randomly selected subset of sensors is used. Moreover, the sensors are

not omnidirectional. They are randomly partitioned in two groups of equal size, measuring

two different ranges of directions. To simplify notation, we will assume the measurements
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are noise-free. Consider the DOA estimation problem:

minimize
3∑
j=1

rj∑
k=1

|xjk|

subject to yj =
rj∑
k=1

xjk


1

ejπ sin θjk

...

ej(n−1)π sin θjk


θjk ∈ Θj, k = 1, . . . , rj, j = 1, 2, 3

(y1 + y2)I1 = b1, (y2 + y3)I2 = b2,

(4.23)

with variables yj and their decomposition parameters rj, xjk and θjk. The vectors b1 and

b2 contain the outputs of two subsets of the elements in a linear array of n non-isotropic

antennas. Elements in the first group, indexed by the index set I1, measure input signals

arriving from angles in Θ1∪Θ2 = [−π/2,−π/6]∪ [−π/6, π/6]. Elements in the second group,

indexed by the index set I1, measure input signals arriving from Θ2 ∪ Θ3 = [−π/6, π/6] ∪

[π/6, π/2]. The problem can be equivalently cast as the SDP

minimize
∑3

j=1(tr(Vj) + wj)/2

subject to

 Vj yj

yHj wj

 � 0, j = 1, 2, 3

V1, V2, V3 are Toeplitz

−e−jαjFVjG
T − ejαjGVjF

T + 2(cos βj)GVjG
T � 0, j = 1, 2, 3

(y1 + y2)I1 = b1, (y2 + y3)I2 = b2

(4.24)

with variables Vj ∈ Hn, yj ∈ Cn, wj ∈ R, for j = 1, 2, 3. The matrices F , G are defined

in (2.16). The three intervals [αj − βj, αj + βj] are the images of the intervals Θj after the

transformation ω = π sin θ, which represents the spatial frequency associated with a direction

of arrival θ.

Figure 4.3 shows the results of an instance with n = 500 elements in the array, but using

only a total of 40 randomly selected measurements (|I1| = |I2| = 20). The red dots show the

angles and magnitudes of 7 signals used to compute the measurement vectors b1, b2. The
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Figure 4.3: Direction-of-arrival estimation with (Left) and without (Right) interval con-

straints (Section 4.3.2).

estimated angles and coefficients |cjk| are shown with blue lines. The right-hand plot shows

the solution if we omit the interval constraints in (4.23).

Figure 4.4 shows the success rate as a function of the number |I1| + |I2| of available

measurements, for an example with n = 50 elements, and the same angles as in Figure 4.3.

Each data point is the average of 100 trials, with different, randomly generated coefficients,

and different random selections of the two sensor groups. We observe that solving the

optimization problem with the interval constraints has a higher rate of exact recovery. For

example, with 30 available measurements, including the interval constraints gave the exact

answer in all instances, whereas the method without the interval constraints was successful

in only about 25% of the instances.

4.3.3 Direction of arrival from multiple measurement vectors

This example demonstrates the advantage of using multiple measurement vectors (or snaps-

hots) in DOA estimation, as pointed out in [LC16, YX16]. Suppose we have K omnidi-

rectional sensors placed at randomly chosen positions of a linear grid of length n. The

measurements of the K sensors at one time instance form one measurement vector. We
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Figure 4.4: Comparison of recovery rate for different number of available measurements with

interval constraints (red) and without (blue), in the example of Section 4.3.2.

collect m of these measurement vectors, at m different times, and assume that the directions

of arrival and the source magnitudes remain constant while the measurements are taken.

The problem is formulated as

minimize
r∑

k=1

‖ck‖

subject to Y =
r∑

k=1


1

ejα sin θk

...

ej(n−1)α sin θk


cHk

|θk| ≤ θc, k = 1, . . . , r

YI = B,

(4.25)

with variables Y ∈ Cn×m, ck ∈ Cm, θk, and r. Here α = 2πd/λc, where d is the distance

between the grid points and λc is the signal wavelength, and θc is a given cutoff angle. The

columns of the K×m matrix B are the measurement vectors. The matrix YI is the submatrix
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of Y containing the K rows indexed by I ⊂ {1, . . . , n}. The convex formulation is

minimize (trV )/(2n) + (trW )/2

subject to

 V Y

Y H W

 � 0

FV FH −GV GH = 0

−FV GH −GV FH + 2(cosωc)GV G
H � 0

YI = B

with F and G defined in (2.16) and ωc = α sin θc.

Figure 4.5 shows an instance with n = 30, K = 7, α = 2, and θc = π/4. We show the

solution for m = 1, m = 15 and m = 30. The blue lines show the values of θk and ‖ck‖/
√
m

computed by solving problem (4.25). In an experiment of 150 trials with randomly chosen

index sets I, the signal was recovered accurately in 67.3% of the trials for m = 15 and 85.3%

for m = 30.

4.3.4 Structured matrix decomposition

We generate a 30× 30 matrix C = AB +N as a product of a 30× 3 matrix A with entries

Aij = exp(j(i − 1)ωj), for given values of ω1, ω2, ω3, and a randomly generated complex

3 × 30 matrix B with entries from a normal distribution, plus a Gaussian noise matrix N .

The goal is to estimate the parameters ωj and the matrix B from the noisy measurements C.

We compare two methods. In the first method we assume we are given a narrow interval

that includes the parameters ωj. We consider the optimization problem

minimize γ‖Y − C‖F +
r∑

k=1

‖xk‖

subject to Y =
r∑

k=1


1

ejωk

...

ej(n−1)ωk


xHk

|ωk − α| ≤ β, k = 1, . . . , r

(4.26)
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Figure 4.5: The results with 1 (Top), 15 (Middle) and 30 (Bottom) measurement vector(s) in

the DOA estimation problem of Section 4.3.3. The figures on the right show the magnitude

of the trigonometric polynomials obtained from the dual solution. The red dots show the

true directions of arrival (and magnitudes).
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Figure 4.6: Structured matrix decomposition of a matrix with rank 3 plus a Gaussian noise

matrix, with (Left) and without (Right) interval constraint (Section 4.3.4).

with γ a positive parameter. In the example, we use α = 0, β = π/12. The problem can be

converted to the SDP

minimize γ‖Y − C‖F + (tr(V ) + tr(W ))/(2
√
n)

subject to

 V Y

Y H W

 � 0

V is Toeplitz

−FV GH −GV FH + 2 cos β GV GH � 0

with F and G defined in (2.16). In the second method, we omit the third constraint in the

SDP, i.e., solve (4.26) without the interval constraint. Figure 4.6 shows the two solutions,

for independently tuned values of γ, with the estimates of ωk on the horizontal axis, and the

norms of the vectors xk on the vertical axis. As can be seen, adding the interval constraints

allowed the method to identify the parameters ωk, and thus ‖xk‖, more accurately.
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CHAPTER 5

Itakura–Saito Generalized Distance

The second subject of the thesis is of the algorithmic aspect. In this chapter, we introduce

a generalized distance defined for the cone of nonnegative trigonometric polynomials and

discuss the properties and calculation techniques regarding this distance. In Chapter 6, we

will explain how the distance is used in first-order proximal methods and see the techniques

discussed in this chapter in action. Chapters 5 and 6 are adapted from [CV18].

As mentioned in the previous chapters, optimization problems over the cone of nonne-

gative trigonometric polynomials or its dual cone, the cone of positive semidefinite Toep-

litz matrices, are common in signal processing and system identification [MAK95, WBV98,

SMM00, DTS01, DLS02, AV02, Dum07, GL08, ALH17]. Recent examples include superreso-

lution techniques for spectrum estimation and gridless compressed sensing [CF13, TBS13,

CF14]. If the cost function admits an efficient semidefinite representation, such problems

can be solved by general-purpose interior-point solvers for semidefinite optimization. Special-

purpose interior-point solvers and first-order splitting methods such as alternating direction

method of multipliers (ADMM) have also been explored [AV00, AV02, Hac03, RV06, LV07,

HV14, BTR13]. However, these methods have at best a per-iteration-complexity that is

cubic in the degree of the polynomial. In particular, at each iteration, the first-order split-

ting methods involve a Euclidean projection on the positive semidefinite cone, which takes

an eigenvalue decomposition. Therefore, in order to solve these problems more efficiently,

we explore generalized first-order methods that are based on a generalized distance, the

Itakura–Saito distance.

We consider real coefficients in the following for the simplicity of notation. The results

can be extended to complex coefficients by making natural changes. To be specific, let K be
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the cone of nonnegative trigonometric polynomials of degree p or less:

K = {x = (x0, . . . , xp) ∈ Rp+1 | Fx(ejω) ≥ 0 ∀ω} (5.1)

where Fx(z) is the Laurent polynomial

Fx(z) = xpz
p + · · ·+ x1z + x0 + x1z

−1 + · · ·+ xpz
−p. (5.2)

The convex cone K can be expressed as the image of the positive semidefinite cone under a

linear transformation,

K = {D(X) | X ∈ Sp+1
+ } (5.3)

where Sp+1
+ is the set of symmetric positive semidefinite matrices of order p + 1, and the

linear mapping D maps X to the vector of its diagonal sums, i.e.,

D(


X00 X01 · · · X0p

X10 X11 · · · X1p

...
...

. . .
...

Xp0 Xp1 · · · Xpp


) = (

p∑
i=0

Xii,

p−1∑
i=0

Xi+1,i, . . . , Xp−1,0 +Xp1, Xp0) (5.4)

(see [DTS01,AV02,Dum07] and Theorem 2.4).

The Itakura–Saito distance is defined as

d(x, v) =
1

2π

∫ 2π

0

(
Fx(e

jω)

Fv(ejω)
− log

Fx(e
jω)

Fv(ejω)
− 1) dω, (5.5)

with domain dom d = (K \ {0})× (intK). It is the Bregman distance

dφ(x, v) = φ(x)− φ(v)− 〈∇φ(v), x− v〉,

associated with the negative entropy function

φ(x) = − 1

2π

∫ 2π

0

logFx(e
jω) dω. (5.6)

The chapter is organized as follows. In Section 5.1 we review some background material

from statistical signal processing and numerical linear algebra related to positive definite

Toeplitz systems. The negative entropy function (5.6) and its conjugate are discussed in

Section 5.2, and the associated Bregman distance (5.5) in Section 5.3.
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5.1 Forward and backward Levinson–Durbin algorithm

In this section we review some classical results and algorithms from statistical signal proces-

sing. We denote by T (y), where y = (y0, y1, . . . , yp), the symmetric Toeplitz matrix

T (y) =


y0 y1 · · · yp

y1 y0 · · · yp−1

...
...

. . .
...

yp yp−1 · · · y0


, (5.7)

and by J (b), where b = (b0, b1, . . . , bp), the matrix

J (b) =



b0/2 0 · · · 0 0

b1/2 b0 · · · 0 0
...

...
. . .

...
...

bp−1/2 bp−2 · · · b0 0

bp/2 bp−1 · · · b1 b0


+



b0/2 b1 · · · bp−1 bp

b1/2 b2 · · · bp 0
...

... . .
. ...

...

bp−1/2 bp · · · 0 0

bp/2 0 · · · 0 0


. (5.8)

This matrix is known as the Jury matrix [DM90]. Note that T (y)b = J (b)y for all y and b.

The results in this section may be summarized as follows. Suppose T (y) is positive

definite, and let b = (b0, . . . , bp) be the solution of the linear equation

T (y)b = e, (5.9)

where e = (1, 0, . . . , 0). Then the polynomial b0z
p + b1z

p−1 + · · · + bp is stable (has all its

zeros inside the unit circle). The classical algorithm for solving this equation is the Levinson–

Durbin algorithm, which computes a Cholesky factorization of T (y)−1 in order p2 operations.

Several more recent algorithms for positive definite Toeplitz systems are even faster, with

an order p(log p)2 complexity [BA80,BGY80,Hoo87,AG88,Ste03].

Second, suppose the polynomial B(z) = b0z
p + b1z

p−1 + · · ·+ bp is stable. Then the Jury

matrix J (b) is nonsingular, and the unique solution y of the equation

J (b)y = e (5.10)
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defines a positive definite Toeplitz matrix T (y). This equation can be solved by a recursive

algorithm that is essentially the Jury stability test applied to B(z). The algorithm computes

a factorization of J (b) and can be interpreted as a backward Levinson–Durbin algorithm.

More details on these algorithms may be found in textbooks on statistical signal proces-

sing, for example, [Sch91, §10] or [PM96, §11].

5.1.1 Levinson–Durbin algorithm

The Levinson–Durbin algorithm [GV96, §4.7] is a fast algorithm for the Cholesky facto-

rization of the inverse of a positive definite Toeplitz matrix T (y), given its first column

y = (y0, . . . , yp). The computed factorization is

UT (y)UT = diag(σ2
p, . . . , σ

2
0), (5.11)

where 0 < σp ≤ · · · ≤ σ0 and U is a unit upper triangular matrix

U =



1 ap1 ap2 · · · ap,p−1 app

0 1 ap−1,1 · · · ap−1,p−2 ap−1,p−1

0 0 1 · · · ap−2,p−3 ap−2,p−2

...
...

...
. . .

...
...

0 0 0 · · · 1 a11

0 0 0 · · · 0 1


. (5.12)

For theoretical purposes later in the thesis, it is useful to note that the Levinson–Durbin

algorithm can be extended to Toeplitz matrices that are positive semidefinite, but not po-

sitive definite. In that case we can still compute a factorization of the form (5.11), where

0 ≤ σp ≤ · · · ≤ σ0.

Algorithm 5.1. Levinson–Durbin algorithm.

Input. The coefficients y0, . . . , yp of a Toeplitz matrix T (y).

Output. If T (y) is positive semidefinite, a matrix U and coefficients σ0, . . . , σp

that satisfy (5.11), (5.12), and 0 ≤ σp ≤ · · · ≤ σ0.
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Algorithm. Define σ0 =
√
y0. For k = 0, . . . , p− 1, execute the following steps.

• If σk 6= 0, define

κk = −yk+1 + ykak1 + · · ·+ y1akk
σ2
k

. (5.13)

Otherwise, set κk = 0.

• If |κk| > 1, terminate. The matrix T (y) is not positive semidefinite.

• Compute σk+1 = σk(1− κ2
k)

1/2 and
ak+1,1

...

ak+1,k

ak+1,k+1


=


ak1

...

akk

0


+ κk


akk
...

ak1

1


. (5.14)

The coefficients κk are known as the reflection coefficients. The algorithm has complexity

O(p2).

The update (5.14) can be written concisely using polynomial notation, if we define the

polynomials

A0(z) = 1, Ak(z) = zk + ak1z
k−1 + · · ·+ ak,k−1z + akk, k = 1, . . . , p, (5.15)

and the reversed polynomials Âk(z) = zkAk(1/z) = akkz
k+· · ·+ak1z+1. With this notation,

the update (5.14) can be written Ak+1(z)

Âk+1(z)

 =

 1 κk

κk 1

 zAk(z)

Âk(z)

 , k = 0, . . . , p− 1, (5.16)

starting at A0(z) = 1.

Another useful form is in terms of the (p + 1)-vectors a(k) = (1, ak1, . . . , akk, 0, . . . , 0).

The recursion (5.14) can be written as a sequence of linear transformations

a(k+1) = Hka
(k), k = 0, . . . , p− 1, (5.17)
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starting at a(0) = (1, 0, . . . , 0), where

Hk =

 Ik+2 + κkJk+2 0

0 Ip−k−1

 (5.18)

and Jr is the r × r reverser matrix

Jr =


0 · · · 0 1

0 · · · 1 0
... . .

. ...
...

1 · · · 0 0


.

We mention two properties of the factorization (5.11) that will be useful later in the

thesis. The first column of the equation T (y)UT = U−1 diag(σ2
p, . . . , σ

2
0) is

y0 y1 · · · yp

y1 y0 · · · yp−1

...
...

. . .
...

yp yp−1 · · · y0




1

ap1
...

app


=


σ2
p

0
...

0


. (5.19)

This is known as the Yule–Walker equation. The Levinson–Durbin algorithm solves the

Yule–Walker equation (i.e., computes ap1, . . . , app, σ
2
p, given y0, . . . , yp) in O(p2) operations.

The solution is unique if the p× p Toeplitz matrix with first column y0, . . . , yp−1 is positive

definite. If T (y) is positive definite, then σ2
p 6= 0, and b = σ−2

p (1, ap1, . . . , app) is the solution

of (5.9).

Second, if T (y) is positive definite, then the polynomials Ak(z) defined in (5.15) are

stable. In particular, the polynomial

b0z
p + b1z

p−1 + · · ·+ bp =
1

σ2
p

Ap(z)

is stable. To show this, one can note that if Ak(z) is a stable polynomial, then |Ak(z)| ≥

|Âk(z)| holds for |z| ≥ 1. (This is easily seen by factoring Ak(z) and using the fact that

|z − a|/|1 − āz| ≥ 1 if |a| < 1 and |z| ≥ 1.) Therefore, if Ak(z) is stable (Ak(z) 6= 0 for

|z| ≥ 1) and |κk| < 1, then the polynomial Ak+1(z) defined in (5.16) is nonzero for |z| ≥ 1.

Since A0(z) = 1, stability of the polynomials Ak(z) follows by induction.
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5.1.2 Jury stability test

In this section we discuss an algorithm that can be seen as the Levinson–Durbin algorithm

run backwards. The algorithm is equivalent to the Jury test for determining the stability of a

real polynomial. The connection between the Jury test and the Levinson–Durbin algorithm

was noted by Vieira and Kailath [VK77]. In Section 5.1.3 we will see that the algorithm also

computes a factorization of the Jury matrix defined in (5.8).

We use the same notation (5.12) as in the previous section.

Algorithm 5.2. Jury stability test.

Input. The coefficients b0, . . . , bp of a polynomial B(z) = b0z
p + · · · + bp, with

b0 > 0.

Output. If B(z) is stable, a unit upper triangular matrix U with first row (b0, . . . , bp)/b0

and coefficients 0 < σp ≤ · · · ≤ σ0 such that U−1 diag(σ2
p, . . . , σ

2
0)U−T is Toep-

litz.

Algorithm. Define

(ap1, . . . , app) = (b1/b0, . . . , bp/b0), σp = 1/
√
b0.

For k = p− 1, p− 2, . . . , 0, execute the following steps.

• Define κk = ak+1,k+1. If |κk| ≥ 1, terminate. The polynomial B(z) is not

stable.

• Otherwise, compute σk = σk+1/(1− κ2
k)

1/2 and
ak1

...

akk

 =
1

1− κ2
k


ak+1,1

...

ak+1,k

− κk
1− κ2

k


ak+1,k

...

ak+1,1

 . (5.20)

The Jury stability test is successful if |κk| < 1 for k = p − 1, . . . , 0, or, equivalently, σ0 ≥

σ1 ≥ · · · ≥ σp > 0. The complexity of this algorithm is O(p2).
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The relation with the Levinson–Durbin algorithm is clear if we write the update (5.20)

as a recursion for the polynomials Ak(z) (with coefficients aki, as defined in (5.15)), zAk(z)

Âk(z)

 =
1

1− κ2
k

 1 −κk

−κk 1

 Ak+1(z)

Âk+1(z)

 =

 1 κk

κk 1

−1  Ak+1(z)

Âk+1(z)

 ,
and compare this with (5.16). The choice κk = ak+1,k+1 ensures that Ak(z) is a polynomial of

degree k. This form of the recursion also explains why the Jury test works. Suppose Ak+1(z)

is stable. Then |κk| < 1, since |ak+1,k+1| is the product of the absolute values of the zeros of

Ak+1(z). Moreover, since |Ak+1(z)| ≥ |Âk+1(z)| for |z| ≥ 1, the polynomial Ak(z) is nonzero

for |z| ≥ 1. Therefore if the recursion starts with a stable polynomial Ap(z) = (1/b0)B(z),

then the polynomials Ak(z) are stable and |κk| < 1 for k = p− 1, . . . , 0. The converse can

be shown as in the proof of stability of the polynomials generated by the Levinson–Durbin

algorithm. If |κk| < 1 for k = 0, . . . , p− 1, then the recursion Ak+1(z) = zAk(z) + κkÂk(z)

started at A0(z) = 1 generates a sequence of stable polynomials.

In terms of the vectors a(k) = (1, ak1, . . . , akk, 0, . . . , 0), the recursion (5.20) can be written

as

a(k) =

 (1− κ2
k)
−1(Ik+2 − κkJk+2) 0

0 Ip−k−1

 a(k+1)

= H−1
k a(k+1), k = p− 1, . . . , 0, (5.21)

with Hk defined in (5.18), where κk is the reflection coefficient computed by Algorithm 5.2.

5.1.3 Factorization of Jury matrix

Vostrý in [Vos75] points out that Algorithm 5.2 computes a factorization of the Jury ma-

trix (5.8). Using the formula (5.21) for the recursion of Algorithm 5.2, we find that

1

b0

H−1
0 · · ·H−1

p−1J (b) =

 1 0

0 L

 , (5.22)
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where

L =



1 0 0 · · · 0 0 0

a11 1 0 · · · 0 0 0

a22 a21 1 · · · 0 0 0
...

...
...

. . .
...

...
...

ap−3,p−3 ap−3,p−4 ap−3,p−5 · · · 1 0 0

ap−2,p−2 ap−2,p−3 ap−2,p−4 · · · ap−2,1 1 0

ap−1,p−1 ap−1,p−2 ap−1,p−3 · · · ap−1,2 ap−1,1 1


.

The factorization shows that the Jury matrix is nonsingular if the vector b defines a stable

polynomial. It also provides an O(p2) algorithm for solving equations with coefficient matrix

J (b). In particular, it can be used to solve (5.10). To compute y = J (b)−1e, we first

compute

1

b0

H−1
0 · · ·H−1

p−1e =


σ2

0

−κ0σ
2
0

...

−κp−1σ
2
p−1


and then calculate y using forward substitution with the triangular matrix on the right-hand

side of (5.22). In other words, from the output of Algorithm 5.2, the solution of (5.10) can

be computed as

y0 = σ2
0, yk+1 = −σ2

kκk − y1akk − · · · − ykak1, k = 0, . . . , p− 1. (5.23)

5.2 Entropy

Recall the definition of the cone of nonnegative trigonometric polynomials in (5.1) and its

semidefinite characterization (5.3). To simplify notation, we use the inner product

〈x, y〉 = x0y0 + 2x1y1 + · · ·+ 2xpyp (5.24)

=
1

2π

∫ 2π

0

Fx(e
jω)Fy(e

jω) dω,

on Rp+1. The adjoint of the linear mapping D, for this inner product on Rp+1 and the trace

inner product on Sp+1, is the function T : Rp+1 → Sp+1 that maps y = (y0, . . . , yp) to the
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symmetric Toeplitz matrix (5.7). The dual cone of K is the cone of positive semidefinite

Toeplitz matrices

K∗ = {y | 〈y, x〉 ≥ 0 ∀x ∈ K} = {y | T (y) � 0}. (5.25)

We will discuss two related convex functions, associated with the cones K and K∗. The

first function is

φ(x) = − 1

2π

∫ 2π

0

logFx(e
jω)dω, (5.26)

with domain domφ = K \ {0}. This is the negative of the (differential) entropy rate of the

moving-average process with power spectrum Fx(e
jω). The second function is

ψ(y) = log(eTT (y)−1e) (5.27)

with domain domψ = intK∗ = {y | T (y) � 0}. (Recall that e = (1, 0, . . . , 0), so

eTT (y)−1e = (T (y)−1)00.) The function ψ can be evaluated by solving the Yule–Walker

equation (5.19) with coefficient matrix T (y), since

eTT (y)−1e = 1/σ2
p. (5.28)

Another useful expression is

ψ(y) = log(eTT (y)−1e) = − log(y0 − ỹT T̃ (y)−1ỹ) (5.29)

where on the right-hand side we refer to a partition of T (y) as

T (y) =


y0 y1 · · · yp

y1 y0 · · · yp−1

...
...

. . .
...

yp yp−1 · · · y0


=

 y0 ỹT

ỹ T̃ (y)

 .

The second expression in (5.29) shows that ψ is a convex function, since the argument of

the logarithm is concave in y. The function ψ(y) is equal to the negative entropy of the

autoregressive process defined by the solution ap1, . . . , app, σp of (5.19), i.e.,

ψ(y) = − 1

2π

∫ 2π

0

log
σ2
p

|1 + ap1e−jω + · · ·+ appe−jpω|2
dω = − log σ2

p.

75



Up to a change of sign and a constant, the two functions form a pair of conjugates; we

will see that

φ∗(y) = ψ(−y)− 1, ψ∗(x) = φ(−x)− 1. (5.30)

Discussions of the duality relations between the two functions and their importance in signal

processing can be found in [BGL98, BGL01]. In Section 5.3 the function φ is used as the

kernel to define a Bregman distance.

5.2.1 Semidefinite representations

It will be useful to express the functions φ(x) and ψ(y) as optimal values of convex optimi-

zation problems.

We first consider the negative entropy function φ. If x ∈ K \ {0}, then Fx(z) has a

spectral factorization

Fx(z) = B∗(z)B(z) (5.31)

where

B(z) = b0 + b1z
−1 + · · ·+ bpz

−p, B∗(z) = B(1/z) = b0 + b1z + · · ·+ bpz
p,

with real coefficients b0, . . . , bp and b0 > 0. The factor B(z) can be chosen to have all

its zeros on or inside the unit circle (B(z) 6= 0 for |z| > 1). If x ∈ intK, then B(z)

can be chosen to have its zeros inside the unit circle. This choice of B(z) is known as

the minimum-phase spectral factor and is unique. Substituting z = ejω, one can write the

spectral factorization (5.31) as Fx(e
jω) = |B(ejω)|2. From the minimum-phase spectral factors

we immediately obtain the value of the negative entropy function:

φ(x) = −2 log b0. (5.32)

The minimum-phase spectral factorization of positive trigonometric polynomials is effi-

ciently computed by the cepstral method, described in [Vai93, appendix D] [SN97, §5.4], or

by the Newton method proposed by Tunnicliffe Wilson [Wil69]. Tunnicliffe Wilson’s method

finds the coefficients b in the spectral factorization (5.31) by solving the equivalent set of
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quadratic equations

D(bbT ) = x (5.33)

via Newton’s method. The two methods are compared in [FSR03].

It is also known that spectral factorization problems can be formulated as semidefinite

programming problems with low-rank solutions. Replacing bbT in (5.33) with a positive

semidefinite matrix X ∈ Sp+1 gives a convex relaxation

D(X) = x, X � 0.

The feasible solution X with maximum element X00 = eTXe can be shown to be equal

to X = bbT , where b is the vector of coefficients of the minimum-phase spectral factor;

see [MW01] [Hac03, theorem 6.6] [Dum07, theorem 2.15]. If we combine this fact with the

expression (5.32), we see that the negative entropy φ(x) is the optimal value of the convex

optimization problem

minimize − log(eTXe)

subject to D(X) = x

X � 0

(5.34)

in the variable X, as a function of the right-hand side x of the equality constraint.

Convex duality then gives another expression for φ(x). A convenient dual for (5.34) can

be derived starting from the reformulation

minimize − log v

subject to eTXe = v

D(X) = x

X � 0,

with an extra scalar variable v. The Lagrangian of this problem is

L(X, v, w, y, Z) = − log v − w(eTXe− v) + 〈y,D(X)− x〉 − tr(ZX)

= − log v + wv + tr(X(T (y)− weeT − Z))− 〈x, y〉,

and the dual function is

inf
v>0,X

L(X, v, w, y, Z) =

 logw − 〈x, y〉+ 1 w > 0, T (y)− weeT = Z

−∞ otherwise.
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The Lagrange dual of (5.34) is therefore

maximize logw − 〈x, y〉+ 1

subject to weeT � T (y),
(5.35)

with a scalar variable w and a vector variable y = (y0, . . . , yp). The variables w and y are

the Lagrange multipliers for the equality constraints in (5.34). Since strong duality holds

(the dual problem is strictly feasible), φ(x) is also equal to the optimal value of (5.35).

The dual problem (5.35) can be further simplified by eliminating w. Dual feasibility

requires the Toeplitz matrix T (y) to be positive semidefinite. It therefore has a factoriza-

tion (5.11), and the inequality in the dual problem can be written as

diag(σ2
p, . . . , σ

2
0) = UT (y)UT � w(Ue)(Ue)T = weeT .

If T (y) is singular, we have σ2
p = 0 and there exists no solution with positive w, so the problem

is infeasible. If T (y) is nonsingular, we have 0 < σ2
p ≤ · · · ≤ σ2

0, so w = σ2
p = 1/(eTT (y)−1e)

at the optimum and

logw = − log(eTT (y)−1e) = −ψ(y),

where ψ is defined in (5.27). The result of this elimination step is an unconstrained optimi-

zation problem in the variable y:

maximize −ψ(y)− 〈x, y〉+ 1. (5.36)

The optimal value of this problem is again equal to φ(x).

Using similar arguments, we derive semidefinite programming representations of ψ(y). If

T (y) is positive definite, then ψ(y) is the optimal value of the convex problem

minimize − logw

subject to weeT � T (y),
(5.37)

with variable w. The dual of this problem is

maximize log(eTXe)− 〈D(X), y〉+ 1

subject to X � 0,
(5.38)
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with a symmetric variable X. Since φ(x) is the optimal value of (5.34), the dual can be

written as

maximize −φ(x)− 〈x, y〉+ 1, (5.39)

with variable x. By strong duality, the optimal values of (5.38) and (5.39) are also equal to

ψ(y).

5.2.2 Gradients

We have seen how φ(x) can be evaluated via spectral factorization, and ψ(y) by solving a

Yule–Walker equation. We now discuss algorithms for computing the gradients of the two

functions.

Suppose x ∈ intK = int domφ. The optimal value of (5.34) and of the dual pro-

blem (5.35) is φ(x). From convex duality theory, if the dual has a unique optimal solution

y, then the optimal value φ is differentiable at x and

∇φ(x) = −y.

The techniques described in Sections 5.1.2 and 5.1.3 allow us to construct the unique dual

optimal solution y from the primal optimal solution, as follows. A primal feasible X and

dual feasible y, w are optimal for (5.34) and (5.35) if they satisfy

w = X−1
00 , (T (y)− weeT )X = 0 (5.40)

(see [BV04, §5]). The second equality is known as complementary slackness. Now let b be the

vector of coefficients of the minimum-phase spectral factor, so X = bbT is optimal for (5.34).

Then, from (5.40) the dual optimal solution w, y satisfies w = 1/b2
0 and

J (b)y = T (y)b =
1

b0

e.

The solution y = (1/b0)J (b)−1e can be computed using Algorithm 5.2 and the factorization

of J (b) given in Section 5.1.3. Algorithm 5.2 thus provides an O(p2) algorithm for computing

the gradient of φ at a point x ∈ intK, from its spectral factor.
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The function ψ is clearly differentiable, with gradient

∇ψ(y) = − 1

eTT (y)−1e
D(T (y)−1eeTT (y)−1). (5.41)

The gradient is easily obtained from the solution of the Yule–Walker equation (5.19), since

T (y)−1e = σ−2
p (1, ap1, . . . , app). If we define a = (1, ap1, . . . , app), then

∇ψ(y) = − 1

σ2
p

D(aaT ). (5.42)

5.2.3 Legendre property

We have shown that φ(x) is the optimal value of (5.36), and therefore

φ(x) = sup
y

(−〈x, y〉 − ψ(y)) + 1 = ψ∗(−x) + 1. (5.43)

This is the second of the conjugacy relations (5.30). Similarly, from the fact that ψ(y) is the

optimal value of (5.39) we conclude that

ψ(y) = sup
x

(−〈x, y〉 − φ(x)) + 1 = φ∗(−y) + 1. (5.44)

This gives the first identity in (5.30). The relation (5.44) can also be obtained directly

from (5.43) by noting that ψ is a closed convex function (closed because its domain is open,

and its value ψ(y) tends to infinity as y approaches the boundary of its domain and σp → 0).

Therefore ψ∗∗ = ψ [Roc70, theorem 12.2], and the identity φ∗(y) = ψ(−y) − 1 follows by

taking the conjugates of the two sides of (5.43).

In addition to being closed, convex, and differentiable on an open domain intK∗, the

function ψ is strictly convex. It is therefore a convex function of Legendre type [Roc70, page

258]. By [Roc70, theorem 26.5] the pair (intK,φ) is also of Legendre type, and the gradient

∇ψ is a one-to-one mapping from intK∗ to − intK, with inverse

(∇ψ)−1(x) = −∇φ(−x). (5.45)

Algorithms 5.1 and 5.2 give efficient algorithms for evaluating the two gradient mappings.

Even though the function φ is finite on the boundary of K (except at the origin), it is

essentially smooth, i.e., the norm of∇φ(x) grows unboundedly as x approaches the boundary

[Roc70, page 251].
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5.3 Itakura–Saito distance

Let h : Rn → R be a closed strictly convex function with int (domh) 6= ∅, and assume h is

differentiable on int (domh). The Bregman distance with kernel h is the function

dh(x, v) = h(x)− h(v)− 〈∇h(v), x− v〉, (5.46)

with domain dom dh = domh× int (domh). For example, the squared Euclidean distance

dh(x, v) = (1/2)‖x − v‖2
2 is the Bregman distance for h(x) = (1/2)‖x‖2

2 and the standard

inner product 〈u, v〉 = uTv. The best known non-quadratic example is the relative entropy

dh(x, v) =
n∑
i=1

(xi log (xi/vi)− xi + vi), (5.47)

which is the Bregman distance for the negative entropy function h(x) =
∑

i xi log xi and the

standard inner product.

From the definition (5.46) it is clear that dh is convex in x for fixed v. By convexity of h,

we also have dh(x, v) ≥ 0 for all (x, v) ∈ dom dh. Strict convexity of h further implies that

dh(x, v) = 0 only if x = v. However, dh(x, v) 6= dh(v, x) in general, so dh(x, v) is not a true

distance.

5.3.1 Itakura–Saito and Kullback–Leibler distance

The Bregman distance dφ for the negative entropy kernel (5.26) and the inner product (5.24)

is called the Itakura–Saito distance. To simplify notation we omit the subscript in dφ, and

define

d(x, v) = φ(x)− φ(v)− 〈∇φ(v), x− v〉

=
1

2π

∫ 2π

0

(
Fx(e

jω)

Fv(ejω)
− log

Fx(e
jω)

Fv(ejω)
− 1) dω. (5.48)

The domain of d is (K \ {0}) × (intK). The Itakura–Saito distance was first proposed

and has been studied extensively in speech processing [GM76, GBG80]. For surveys of the

Itakura–Saito and other spectral distance measures, see [Bas89,GKT09,Bas13].
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Figure 5.1: Contour lines of the function φ(1, x1, x2) defined in (5.26) (Left), and

contour lines of the function φ̃(1, x1, x2) defined in (5.49) (Right), on the set

{(x1, x2) | (1, x1, x2) ∈ K} = {(x1, x2) | 1 + 2x1 cosω + 2x2 cos 2ω ≥ 0 ∀ω}

The Legendre property of the underlying kernel function φ makes the Itakura–Saito

distance well suited for the generalized proximal methods discussed in Sections 6.1 and 6.2.

This is a key difference with the better known Kullback–Leibler divergence,

dkl(x, v) =
1

2π

∫ 2π

0

(Fx(e
jω) log

Fx(e
jω)

Fv(ejω)
− Fx(ejω) + Fv(e

jω))dω,

which is also a Bregman distance, namely for the kernel function

φ̃(x) =
1

2π

∫ 2π

0

Fx(e
jω) logFx(e

jω)dω. (5.49)

However, the function φ̃ is not essentially smooth, i.e., the norm of φ̃(x) does not necessarily

go to infinity as x approaches the boundary of K. Figure 5.1 illustrates the different behavior

of φ and φ̃ near the boundary of K.

5.3.2 Strong convexity

Another important property of the Itakura–Saito distance, required for its use in generali-

zed proximal gradient methods, follows from the strong convexity of the negative entropy

82



function φ(x) when restricted to a bounded set. We define the norm

‖x‖1 =
1

2π

∫ 2π

0

|Fx(ejω)|dω.

With respect to this norm the function φ is 1-strongly convex on the set {x | ‖x‖ ≤ 1} where

‖x‖ = 〈x, x〉1/2. In other words,

d(x, v) ≥ 1

2
‖x− v‖2

1 ∀(x, v) ∈ dom d, ‖x‖ ≤ 1, ‖v‖ ≤ 1. (5.50)

To see this, we consider v ∈ intK and x ∈ K \ {0}, and define

g(t) = φ(v + t(x− v)) = − 1

2π

∫ 2π

0

log(Fv+t(x−v)(e
jω))dω

for v + t(x− v) ∈ K. The second derivative is

g′′(t) =
1

2π

∫ 2π

0

Fx−v(e
jω)2

Fv+t(x−v)(ejω)2
dω

≥
(

1

2π

∫ 2π

0

Fx−v(e
jω)2

Fv+t(x−v)(ejω)2
dω

)(
1

2π

∫ 2π

0

Fv+t(x−v)(e
jω)2dω

)
≥

(
1

2π

∫ 2π

0

|Fx−v(ejω)|dω
)2

= ‖v − x‖2
1.

The first inequality follows from ‖v + t(x − v)‖ ≤ 1, and the second inequality from the

Cauchy–Schwarz inequality. Integrating the inequality g′′(t) ≥ ‖v − x‖2
1 twice gives (5.50).

More generally,

d(x, v) ≥ σ

2
‖x− v‖2

1 ∀(x, v) ∈ dom d, ‖x‖ ≤ 1/
√
σ, ‖v‖ ≤ 1/

√
σ.
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CHAPTER 6

Entropic Proximal Operators for Nonnegative

Trigonometric Polynomials

We now discuss algorithms for solving optimization problems over the cone K (5.1) of nonne-

gative trigonometric polynomials. If f is a cost function with an epigraph {(x, t) | f(x) ≤ t}

that can be represented by linear matrix inequalities, then the semidefinite representation

of K (5.3) allows us to formulate the problem of minimizing f(x) over K as a semidefi-

nite program (SDP), and solve it using general-purpose SDP solvers. The interior-point

algorithms implemented in these solvers have a complexity of O(p4) per iteration, if we as-

sume that the complexity is dominated by the cost of handling the constraint x ∈ K (i.e.,

ignoring the cost of handling the constraints that represent the epigraph of f). The special-

purpose interior-point algorithms developed in [AV02,GHN03,RV06] reduce the complexity

to O(p3) per iteration. First-order proximal algorithms such as the proximal gradient algo-

rithm [Nes04, BT09b] or the alternating direction method of multipliers (ADMM) [BPC11]

offer no immediate improvement over the O(p3) per-iteration-complexity of the customized

interior-point methods, since they require at each iteration a Euclidean projection on the

positive semidefinite cone (i.e., an eigenvalue decomposition of order p + 1) and, moreover,

converge more slowly than interior-point methods.

The purpose of this chapter is to describe faster first-order methods, based on the gene-

ralized distance introduced in Chapter 5, with a complexity of roughly O(p2) or O(p(log p)2)

operations per iteration. Specifically, the algorithms are based on generalized proximal ope-

rators defined in terms of the Itakura–Saito distance

d(x, v) =
1

2π

∫ 2π

0

(
Fx(e

jω)

Fv(ejω)
− log

Fx(e
jω)

Fv(ejω)
− 1) dω, (6.1)
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with domain dom d = (K \ {0})× (intK). We present an efficient method for computing a

generalized projection x = Π(a, v), defined as the solution of the problem

minimize 〈a, x〉+ d(x, v)

subject to x0 = 1
(6.2)

for an arbitrary (p + 1)-vector a and a vector v ∈ intK. If we interpret Fx(e
jω) as a power

spectrum, then the constraint x0 = 1 normalizes the total power

x0 =
1

2π

∫ 2π

0

Fx(e
jω)dω. (6.3)

Our method for (6.2) reduces the problem to a nonlinear equation in one variable (equiva-

lently, an unconstrained differentiable convex optimization problem in one variable) that can

be solved using Newton’s method. Each Newton iteration requires the solution of a positive

definite Toeplitz equation, which takes O(p2) operations using Levinson’s algorithm, as sum-

marized in Section 5.1.1, or O(p(log p)2) operations using superfast Toeplitz solvers. Since

the number of Newton steps is small and weakly dependent on problem size, we conclude

that the complexity of solving problem (6.2) is roughly O(p2) or O(p(log p)2).

The Itakura–Saito projection operation (6.2) should be compared with the Euclidean

projection of the vector v − a on the set {x ∈ K | x0 = 1}, i.e., the solution of

minimize 〈a, x〉+ 1
2
‖x− v‖2

subject to x ∈ K

x0 = 1

(6.4)

where ‖u‖2 = 〈u, u〉. This is a non-trivial convex optimization problem [AV00, DTS01,

Dum07].

To test the effectiveness of the entropic projection operator, we use it in an accelerated

proximal gradient method [AT06,Tse08] for optimization problems of the form

minimize f(x)

subject to x ∈ K

x0 = 1,

(6.5)
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where f is a differentiable convex function. The entropic projection operator can also be

used in other types of first-order methods, for example, the mirror descent algorithm [BT03].

The generalized projection can be further extended to define generalized proximal ope-

rators, which map vectors a and v to the solution of

minimize 〈a, x〉+ g̃(x0) +
1

τ
d(x, v) (6.6)

where g̃ is a possibly nondifferentiable convex function of one variable and τ > 0. This is

useful for optimization problems

minimize f(x) + g̃(x0)

subject to x ∈ K,

with differentiable f . The second term in the cost function assigns a cost to the total

power (6.3).

The main results of the chapter are in Section 6.1, where we describe the algorithm for the

Itakura–Saito projection (6.2). Section 6.2 contains numerical examples with a generalized

proximal gradient method based on the Itakura–Saito distance. To make the thesis self-

contained, Appendix E gives more details and a proof of convergence of this proximal gradient

method. This chapter is adapted from [CV18].

6.1 Entropic proximal operators

Proximal algorithms, such as the projected and proximal gradient methods and their accele-

rated variants [Nes04,BT09a], the Douglas-Rachford method and alternating direction met-

hod of multipliers [CP07,BPC11], or Dykstra’s sequential projection method [BD86,Han88],

depend on efficient methods for evaluating the proximal operators of cost functions. The

proximal operator of a convex function g is the mapping

proxg(u) = argmin
x

(g(x) +
1

2
‖x− u‖2

2), (6.7)

where ‖·‖2 is the Euclidean norm. If g is the indicator function of a set, this is the Euclidean

projection of u on the set.
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Useful extensions of the proximal methods are obtained by replacing the squared Euc-

lidean distance in the definition by a generalized Bregman distance function, in the hope

of making the generalized proximal operators or projections easier to compute. There is an

extensive literature on methods of this type (see, for example, the book [CZ97]), and the

properties that the generalized distance function must satisfy depend on the algorithm in

which they are applied [BL00]. In the numerical experiments of the next section we will apply

one specific algorithm, Auslender and Teboulle’s generalization of an accelerated proximal

gradient method due to Nesterov [AT06,Tse08]. The generalized proximal operator used in

this method is defined as

proxhg(a, v) = argmin
x

(〈a, x〉+ g(x) + dh(x, v)), (6.8)

where dh is a Bregman distance (5.46). On the right-hand side of (6.8), the vectors a and

v are given, with v ∈ int (domh). The variable in the minimization problem is x and the

feasible set is dom g ∩ domh. This is a generalization of (6.7): if dh(x, v) = (1/2)‖x− v‖2
2

and 〈a, x〉 = aTx, then the solution of (6.8) is proxg(v − a).

Proximal algorithms that use the generalized definition (6.8) require that for every a

and every v ∈ int (domh), the minimizer in (6.8) is a unique and easily computed point

x̂ ∈ int (domh). The classical example is the indicator g(x) = δC(x) of the probability

simplex C = {x ∈ Rn | x ≥ 0, 1Tx = 1}, and the relative entropy function (5.47). With this

choice of g and dh, the solution of the optimization problem in (6.8) is

x̂i =
vie
−ai∑n

j=1 vje
−aj

, i = 1, . . . , n.

Sufficient conditions that guarantee existence in int (domh) and uniqueness of the solution

of (6.8) are discussed in papers on generalized distances (for example, [BL00, BT03]). We

will return to this question in the context of the specific applications studied in the chapter.

In the following sections we consider the generalized proximal operator (6.8) defined by

the Itakura–Saito distance (6.1) and the inner product (5.24)

〈x, y〉 = x0y0 + 2x1y1 + · · ·+ 2xpyp

on Rp+1.
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6.1.1 Projection

We first take for g the indicator function of

{x ∈ Rp+1 | x0 = 1} = {x ∈ Rp+1 | 1

2π

∫ 2π

0

Fx(e
jω)dω = 1},

and denote the generalized proximal operator by

Π(a, v) = argmin
x0=1

(〈a, x〉+ d(x, v)) (6.9)

To simplify notation we define c = a − ∇φ(v) and write the minimization problem in the

definition as

minimize 〈c, x〉+ φ(x)

subject to x0 = 1.
(6.10)

The feasible set is a compact set {x ∈ K | x0 = 1}. Since φ is strictly convex and essentially

smooth, the problem has a unique solution in intK, for every c. The optimality conditions

for the projection problem are

∇φ(x) = −c− λe, 〈e, x〉 = 1.

The variable λ is a Lagrange multiplier for the equality constraint in (6.10). The unknown

x can be eliminated from the first equation, using the inverse gradient mapping in (5.45).

Substituting x = −∇ψ(c+ λe) in the second equation gives a nonlinear equation in λ:

〈e,∇ψ(c+ λe)〉+ 1 = 0.

More explicitly, in view of (5.41), λ is the root of the equation

− eT (T (c) + λI)−2e

eT (T (c) + λI)−1e
+ 1 = 0 (6.11)

in the interval (−λmin(T (c)),∞). After solving the nonlinear equation for λ, we compute

the solution of the Yule–Walker equation with coefficient matrix T (c+λe) = T (c) +λI, and

obtain x from the expression (5.42).

Solving (6.11) is equivalent to solving the dual of problem (6.10), which is given by

maximize −φ∗(−c− λe)− λ = −ψ(c+ λe)− λ+ 1.
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As we have seen, the negative of the cost function

h(λ) = ψ(c+ λe) + λ− 1 = log(eT (T (c) + λI)−1e) + λ− 1

is strictly convex and differentiable on the interval (−λmin(T (c)),∞). It increases to ∞ as

λ → −λmin(T (c)) and as λ → ∞. The optimal λ can therefore be found by setting the

derivative of h to zero. The derivative h′(λ) is the left-hand side of (6.11).

To solve the nonlinear equation (6.11), one can minimize h(λ) by Newton’s method with

a backtracking line search, or use a safeguarded Newton method, similar to algorithms used

for secular equations [CGT00, §7.3] [NW06, §4.3]. To check whether λ > −λmin(T (c)),

one can use the Levinson–Durbin algorithm and terminate the recursion early, as soon as a

reflection coefficient with |κk| ≥ 1 is found.

A feasible starting value λ > −λmin(T (c)) is easily found by embedding the Toeplitz

matrix T (c) in a symmetric circulant matrix. The smallest eigenvalue of the circulant matrix

is a lower bound on the smallest eigenvalue of T (c) and can be computed by the discrete

Fourier transform.

The second derivative is

h′′(λ) = −(eT (T (c) + λI)−2e)2

(eT (T (c) + λI)−1e)2
+ 2

eT (T (c) + λI)−3e

eT (T (c) + λI)−1e
.

The value of h(λ) and its derivatives follow from the solution of the Yule–Walker equation

with coefficient matrix T (c) + λI. They can be computed in order p2 operations by the

Levinson–Durbin algorithm, or in order p(log p)2 operations by superfast algorithms for

positive definite Toeplitz systems.

Let λ? be the solution of (6.11). The derivative h′(λ), which is given by the left-hand side

of (6.11), increases monotonically from −∞ to zero on the interval (−λmin(T (c)), λ?] and

from zero to one on the interval [λ?,∞). When started at a point λ(0) ∈ (−λmin(T (c)), λ?),

Newton’s method with unit steps produces an increasing sequence of values that converges

to λ? from the left. When started at a point λ(0) ∈ (λ?,∞), the Newton update may be infea-

sible, and backtracking or bisection steps can be taken to find a point in (−λmin(T (c)), λ(0)).
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In practice, a small number of Newton iterations (on the order of 10) is sufficient, almost

independent of problem size. The computational cost of the projection algorithm is therefore

a small multiple of the cost of a positive definite Toeplitz factorization, i.e., O(p2) for the

Levinson–Durbin algorithm and O(p(log p)2) for the superfast algorithms.

6.1.2 Proximal operator

The method of the previous section can be extended to generalized proximal operators (6.8)

where g(x) has the form g(x) = g̃(x0), with g̃ a convex function of one variable. This

generalized proximal operator maps vectors a ∈ Rp+1 and v ∈ intK to the vector

argmin
x

(〈a, x〉+ g̃(x0) + d(x, v)). (6.12)

The projection operator discussed in Section 6.1.1 is a special case with g̃(t) = δ{1}(t), the

indicator function of {1}. Other interesting choices are

g̃(t) = δ[0,1](t) =

 0 0 ≤ t ≤ 1

+∞ otherwise,
g̃(t) =

t2

2
+ δ[0,∞)(t) =

 t2/2 t ≥ 0

+∞ otherwise.

We will assume that g̃ increases faster than linearly as t→∞ (i.e., that limt→∞ g(t)/t =∞)

and, without loss of generality, that dom g̃ ⊆ R+. This implies that g̃ is co-finite and

therefore its conjugate g̃∗(λ) is defined for all λ [Roc70, corollary 13.3.1].

If we define c = a − ∇φ(v) and introduce an auxiliary variable u, the minimization

problem in the definition (6.12) is

minimize 〈c, x〉+ g̃(u) + φ(x)

subject to 〈e, x〉 = u.

The Lagrange dual of this problem is

maximize − ψ(c+ λe)− g̃∗(λ) + 1.

If g̃∗ is a simple function, as in the examples mentioned above, this concave maximization

problem with one variable can be solved by modifying the methods described in Section 6.1.1.
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6.2 Numerical experiments

In this section we use the generalized projection Π(a, v) (6.9) in an accelerated proximal

gradient method for solving convex problems of the form

minimize f(x)

subject to x ∈ K

x0 = 1,

(6.13)

where f is convex and differentiable on {x ∈ K | x0 = 1}. The algorithm is algorithm

IGA (Improved Interior Gradient Algorithm) from [AT06], and is also discussed in [Tse08,

algorithm 1]. It is an extension to non-Euclidean projections of an accelerated proximal

gradient algorithm by Nesterov. The algorithm generates three strictly feasible sequences

vk, xk, yk, using the following recursion started at a strictly feasible v0 = x0:

yk = (1− θk)xk−1 + θkv
k−1 (6.14a)

vk = Π(τk∇f(yk), vk−1) (6.14b)

xk = (1− θk)xk−1 + θkv
k. (6.14c)

Appendix E describes the algorithm in detail, including different strategies for choosing the

parameters θk ∈ (0, 1) and τk > 0. (In the experiments we used the monotonic search

strategy.)

6.2.1 Covariance estimation

As a first example, we consider a variation of the line spectrum estimation example in

Section 3.5.1. We estimate the parameters in a signal model

s(t) =

ρ∑
k=1

cke
jωkt + w(t), (6.15)
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where w(t) is white noise with variance σ2. Under standard assumptions [SM97, §4.1] [PM96,

§12.5] the covariance matrix of s(t) of order p+ 1 is given by
r0 r−1 · · · r−p

r1 r0 · · · r−p+1

...
...

. . .
...

rp rp−1 · · · r0


= σ2I +

ρ∑
k=1

|ck|2


1

ejωk

...

ejpωk




1

ejωk

...

ejpωk



H

, (6.16)

i.e., a positive multiple of the identity plus a rank-ρ positive semidefinite Toeplitz matrix.

If the line spectrum has Hermitian symmetry, the signal is real and the covariance matrix is

symmetric (rk = r−k).

To fit a covariance matrix of this structure to observed data, we introduce variables t = σ2

and y = r − te, and solve a convex problem

minimize y0 + γf̃(y + te)

subject to y ∈ K∗.
(6.17)

The second term in the objective measures the quality of the fit of the matrix T (y) + tI =

T (y+te) to the observed data. The first term in the objective is a multiple of the trace of T (y)

and is added to encourage low-rank solutions. The coefficient γ is a positive regularization

parameter. The dual of this problem can be written as

maximize −γf̃ ∗((x− e)/γ)

subject to x ∈ K

x0 = 1,

(6.18)

where f̃ ∗ is the conjugate of f̃ . If f̃ ∗ is differentiable, this is of the form (6.13) with f(x) =

γf̃ ∗((x− e)/γ).

In the example we take a simple quadratic penalty function f̃(r) = ‖T (r)−R‖2
F , where

R is a sample covariance matrix. With this choice, f̃ ∗ is quadratic. The sample covariance

matrix R is constructed from N = 150 samples of a time series s(t) of the form (6.15), shown

in Figure 6.1. We take ρ = 4, and the frequencies ωk and magnitudes |ck| indicated with red

circles in Figure 6.2. The noise is Gaussian white noise with variance σ2 = 64. The sample
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Figure 6.1: True signal (solid line) and noisy samples (circles).

covariance matrix of order p + 1 = 30 is constructed as R = HHT/(N − p) where H is the

(p+ 1)× (N − p) Hankel matrix with s(1), . . . , s(N − p) in its first row.

Figure 6.2 shows the solution of the primal and dual problems (6.18) and (6.17), for

γ = 2 · 10−4. As can be seen, the recovered spectrum is quite accurate. The estimated noise

variance σ2 is 77.2. Figure 6.3 shows the relative optimality gap in the dual problem (6.18)

versus iteration number. To estimate the optimality gap we use the optimal value computed

by CVX [GB14]. The error decreases roughly as 1/k2.

6.2.2 Euclidean projection on nonnegative polynomials

To evaluate the complexity for large p, we test the generalized proximal gradient method on

a family of test problems

minimize
p∑

k=1

(xk − ak)2

subject to x ∈ K

x0 = 1.

This problem arises in signal processing, as the problem of finding the normalized autocorre-

lation sequence closest to a given sequence [AV00,DTS01,Dum07]. Figure 6.4 shows a small

example.
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and dual optimal polynomial Fx(e
jω) (solid curve).
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Figure 6.3: Relative suboptimality versus iteration number of the generalized proximal

gradient method applied to the dual problem (6.18). The optimality gap is computed as

(f(xk) − f opt)/|f opt|, where f(x) denotes the negative of the dual objective value in (6.18)

and f opt is the optimal solution computed by CVX.
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Figure 6.4: Euclidean projection on the normalized nonnegative trigonometric polynomials

of order p = 9. The red curve is Fa(e
jω); the blue curve is Fx(e

jω), where x is the Euclidean

projection of a on {x ∈ K | x0 = 1}.

The experiment was performed on an Intel Core i5-2410M 2.30GHz CPU with 6GB RAM

and 64-bit operating system, using MATLAB version 7.12 (R2011a). The initial proximal

stepsize in the algorithm is τ0 = 10/p. The monotone search strategy in Appendix E (with

β = 2) is used. In most problems less than 5 line search steps during the first few iterations

of the algorithm were needed.

In Figure 6.5 we compare the complexity of the generalized proximal gradient met-

hod (6.14) with general-purpose interior-point solvers called via CVX. The problem instances

are randomly generated, with a from the normal distribution N(0, I). For the first three data

points (p+1 = 200, 400, 800), SDPT3 [TTT02] was used as the interior-point method. Each

of these data points is an average over 10 instances. For p + 1 = 1000, 1200, 1600, 2000,

SeDuMi [Stu99] with the low-precision option was used. The first three of these data points

are averages over five instances. For p + 1 = 2000, only one instance was used. The blue

curve is the total time for the proximal gradient method, averaged over the same instances

as the interior-point solvers. The iteration was terminated when the relative suboptimality

was less than 10−4. The CVX solution was used to evaluate the suboptimality.

The number of iterations for the interior-point solvers was generally between 10 and 30,
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Figure 6.5: Time for proximal gradient method and general-purpose interior-point methods

(IPM) versus problem size (Left), and time per iteration for the proximal gradient method

(Right).

and for the proximal gradient method between 100 and 200. On average about 10 Newton

iterations were sufficient to evaluate the generalized projections. From Figure 6.5, it can be

observed that the proximal gradient method exhibits a complexity under O(p2), whereas the

SDP solvers have a complexity close to O(p4).

In Figure 6.6 we show results for larger problems of size up to 8000. Each data point is an

average over five instances, and the iteration was terminated when the relative improvement

in the cost function, defined as |mini<k f(xi)− f(xk)|/mini≤k f(xi), was below 10−6.
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Figure 6.6: Time for the proximal gradient method (Left) and time per iteration (Right)

versus problem size.
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CHAPTER 7

Conclusion

In the first part of the thesis we developed semidefinite representations of a class of gauge

functions and atomic norms for sets parameterized by linear matrix pencils. The formula-

tions extend the semidefinite representation of the atomic norm associated with the tri-

gonometric moment curve, which underlies recent results in continuous or ‘off-the-grid’

compressed sensing. The main contribution is a self-contained constructive proof of the

semidefinite representations, using techniques developed in the literature on the Kalman–

Yakubovich–Popov (KYP) lemma. In addition to opening new possible areas of appli-

cations in system theory and control, the connection with the KYP lemma is important

for numerical algorithms. Specialized techniques for solving semidefinite programs (SDPs)

derived from the KYP lemma, for example, by exploiting real symmetries and rank-one

structure [GHN03, LP04, RV06, LV07, HV14], are useful in the development of customized

interior-point solvers for the SDPs discussed in the thesis.

The second part of the thesis discussed a generalized proximal operator for the cone

of nonnegative trigonometric polynomials, based on the Itakura–Saito distance. Analysis

and numerical experiments show that projections in this distance have a complexity that is

roughly quadratic in the degree of the polynomial. Proximal algorithms based on the gene-

ralized distance therefore scale better than standard (Euclidean) proximal algorithms, which

require eigenvalue decompositions, and interior-point methods, which have a complexity that

is cubic or higher at each iteration. In consequence, the approach discussed in the thesis is

very promising for a wider range of large-scale SDP applications and algorithms.
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APPENDIX A

Classical methods for line spectrum estimation

Methods for fitting data to the model

y =
r∑

k=1

xk



1

e−jωk

e−j2ωk

...

e−j(n−1)ωk


, (A.1)

have been very extensively studied in various areas of applications. Some of the representative

and popular ones are presented here. A list of more complete references can be found

in [SM97, §4].

Prony’s approach

Fitting given exact data y to the model in (A.1) has been studied at least as early as by

Prony [Pro95]. The key idea is the following Prony’s polynomial p : C→ C:

p(s) =
r∏

k=1

(1− s

sk
) = 1 +

r∑
k=1

pks
k =

[
1 s s2 · · · sr

]


1

p1

p2

...

pr


,

where s is a complex argument and this r-degree polynomial has roots at sk = ejωk , or

equivalently, p(sk) = 0 for k = 1, . . . , r. Then for any r + 1 consecutive elements of y, we
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have 

yl

yl+1

yl+2

...

yl+r



H 

1

p1

p2

...

pr


=

r∑
k=1

x̄ks
l−1
k (
[

1 sk s2
k · · · srk

]


1

p1

p2

...

pr


)

=
r∑

k=1

x̄ks
−l−r+1
k p(sk) = 0.

This states that the vector p =
[

1 p1 p2 · · · pr

]T
is orthogonal to the ‘signal subspace’,

which is a subspace of Cr+1 spanned by all possible vectors consisting of r + 1 consecutive

elements of y.

Therefore, assuming that r, the number of components, is known, the following procedure

recovers parameters in (A.1) with exact data y ∈ Cn and n ≥ 2r.

Exact Prony’s method

1. Solve a (possibly over-complete but consistent) system of linear equations to obtain

Prony’s polynomial p.

y1 y2 · · · yn−r

y2 y3 · · · yn−r+1

y3 y4 · · · yn−r+2

...
...

...
...

yr+1 yr+2 · · · yn



H 

1

p1

p2

...

pr



=


ȳ2 ȳ3 · · · ȳr+1

ȳ3 ȳ4 · · · ȳr+2

...
... · · ·

...

ȳn−r+1 ȳn−r+2 · · · ȳn




p1

p2

...

pr


+


ȳ1

ȳ2

...

ȳn−r


= 0

2. Compute the r roots of p(s), for example, by computing the eigenvalues of its compa-

nion matrix. For each k, ejωk = sk.
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3. Solve an (over-complete but consistent) system of linear equations to obtain x =[
x1 x2 · · · xr

]T
.

y =


1 1 · · · 1

s−1
1 s−1

2 · · · s−1
r

...
... · · ·

...

s
−(n−1)
1 s

−(n−1)
2 · · · s

−(n−1)
r




x1

x2

...

xr


�

In the presence of noise, however, the linear equations at step 1 is often no longer con-

sistent. Although it could be replaced by computing the (total) least-squares solution, its

stability cannot be easily characterized. Moreover, at step 2, finding roots of a polynomial

from its coefficients can be an extremely ill-conditioned problem, i.e., a small perturbation of

the coefficients may well leave some of the roots falling far from the unit circle. As a result,

much works have been done to robustify Prony’s method. The MUSIC method is perhaps

the most popular one among them.

MUSIC

The MUltiple SIgnal Classification method follows the same spirit as the exact Prony’s

method, but it computes the signal subspace and its orthogonal complement (sometimes

referred to as the ‘noise subspace’) in a robust way, achieving asymptotic stability under

certain statistical assumptions. Consider the model (A.1) with additive noise,

y =
r∑

k=1

xk



1

e−jωk

e−j2ωk

...

e−j(m−1)ωk


+ w, (A.2)

where the data y are measurements corrupted by i.i.d. white Gaussian noise w with zero

mean and covariance matrix σ2I. Here we abuse the notation and use y to denote a length-
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m vector of random variables. Assume also that the phase of each xk is random, and their

distributions are such that

E [xxH ] = D =


|x1|2 0 · · · 0

0 |x2|2 · · · 0
...

...
. . . 0

0 0 · · · |xr|2


This is satisfied, for example, when the phase of each xk is drawn independently and uni-

formly from {±1} or [0, 2π).

We use the following notation to simplify matters,

a(s) =



1

s−1

s−2

...

s−m+1


and A =

[
a(s1) a(s2) · · · a(sr)

]
,

where m > r and sk = ejωk . The covariance matrix of y ∈ Cm is then

E [yyH ] = E [(Ax+ w)(Ax+ w)H ] = ADAH + σ2I.

The first term ADAH has rank r, and suppose it has eigenvalue decomposition

ADAH =
[
PS PN

]
diag (λ1, . . . , λr, 0, . . . , 0)

[
PS PN

]H
,

where the columns of PS ∈ Cm×r span the signal subspace and the column(s) of PN ∈

Cm×(m−r) span the noise subspace. Then AHPN = 0 implies

a(sk)
HPN = a(s−1

k )TPN = 0, k = 1, . . . , r,

as well as a(s−1)TPN 6= 0 and PH
N a(s) 6= 0 for s /∈ {s1, . . . , sr}. Therefore, the only roots of

a(s−1)TPNP
H
N a(s) on the unit circle are s1, . . . , sr. Through the eigenvalue decomposition
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of E [yyH ],

E [yyH ] = ADAH + σ2I

=
[
PS PN

]



λ1 + σ2

. . . 0

λr + σ2

σ2

0
. . .

σ2



[
PS PN

]H
,

we can obtain PN corresponding to the smallest eigenvalue of multiplicity m− r.

Following the analysis, we conclude that the supports ωk’s can be recovered exactly by

computing the roots of a(s−1)TPNP
H
N a(s) on the unit circle, provided that a true covariance

matrix E [yyH ] is available. In practice, however, it is common to instead use a sample

covariance matrix

1

N

N∑
l=1



yl

yl+1

yl+2

...

yl+m−1





yl

yl+1

yl+2

...

yl+m−1



H

=
1

N
Y Y H ,

where we denote the m×N Hankel matrix

Y =



y1 y2 · · · yN

y2 y3 · · · yN+1

y3 y4 · · · yN+2

...
...

...
...

ym ym+1 · · · yN+m−1


.

Note that when n measurements are available, we typically take N = n−m+ 1.

When the sample covariance matrix is used, two major issues need to be considered. The

first is the determination of r, as it may not be clear how many eigenvalues correspond to

the noise subspace PN . The second issues come up when we are trying to find r roots of
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a(s−1)TPNP
H
N a(s) on the unit circle, as they may deviate from it due to inaccurate estimate

of PN . The following procedure describes heuristics to go around them and achieves stability

as N →∞.

MUSIC method

1. Compute the eigenvalue decomposition of the sample covariance matrix 1
N
Y Y H , or

equivalently, the singular value decomposition (SVD) of Y .

2. If r is not given, then determine it by finding a cutoff point of the eigenvalues or

singular values, perhaps with some knowledge about the noise level σ2. Then from the

partition

1

N
Y Y H =

[
PS PN

] ΛS 0

0 ΛN

[ PS PN

]H
or

Y =
[
PS PN

] ΣS 0

0 ΣN

V H ,

we can determine PN .

3. Determine the supports by either of the following.

(a) (Spectral MUSIC [Sch86] [Bie79]) Find the r locations of the highest peaks of the

function
1

a(e−jω)TPNPH
N a(ejω)

, ω ∈ [0, 2π].

(b) (Root MUSIC [Bar83]) Find the r (pairs of reciprocal) roots of the equation

a(s−1)TPNP
H
N a(s) = 0 that are closest to the unit circle. Then take ωk’s as the

angular positions of them, i.e., sk = |sk|ejωk . �

As in Prony’s analysis, this method requires n ≥ 2r. In fact, we obtain Prony’s polynomial

in step 2, a(s−1)TPN = cp(s) (where c is a scalar constant) if we take n = 2r and m = r+ 1.

To have advantage over the exact Prony’s method, we need n > 2r, which is often the case

in practice.
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ESPRIT and matrix pencil method

We describe another subspace method, Estimation of Signal Parameters via Rotational In-

variance Techniques [PRK86], that also achieves asymptotic stability based on the same

statistical model. It has similar computational cost as MUSIC but is reported to obtain

slightly more accurate estimates in most cases [SM97, page 164].

The key idea is the following observation of rotational invariance. Let

A1 =
[
Im−1 0

]
A and A2 =

[
0 Im−1

]
A,

where A is as defined before, then

A1 = A2 diag (s1, . . . , sr).

From ADAH = PSΛSP
H
S we know that PS = AC with some nonsingular C (= DAHPSΛ−1

S ),

so if we define

PS1 =
[
Im−1 0

]
PS and PS2 =

[
0 Im−1

]
PS,

then

PS1 = A1C = A2 diag (s1, . . . , sr)C

= PS2(C−1 diag (s1, . . . , sr)C).

Therefore, the sk’s are obtained as the eigenvalues of P †S2PS1.

The first two steps of the ESPRIT method are identical to those of the MUSIC method.

ESPRIT method

1. Compute the eigenvalue decomposition of the sample covariance matrix 1
N
Y Y H , or

equivalently, the singular value decomposition (SVD) of Y . (When working directly

with Y , this procedure is equivalent to a matrix pencil method [HS88]. This procedure

actually also works in a more general case of estimating damped complex sinusoids.)

2. Do the decomposition as in step 2 of the MUSIC method, but will use PS.

3. Let PS1 =
[
Im−1 0

]
PS and PS2 =

[
0 Im−1

]
PS. Compute the eigenvalues of

P †S2PS1 to get sk’s, and take ωk’s as the angular positions of them, i.e., sk = |sk|ejωk . �
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In all the above methods, we solve for x as the least-squares solution of

y ≈
[
a(ejω1) a(ejω2) · · · a(ejωr)

]
x.

Note that there is no restriction on how close the ωk’s can be with respect to each other.

However, the problems of determining the subspaces and eigenvalues become extremely ill-

conditioned when any two ωk’s are too close together. Hence with the presence of noise and

numerical error, the estimates could be quite inaccurate.
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APPENDIX B

Subsets of the complex plane

This appendix is from [CV17]. In this appendix we explain the notation used in equation (2.8)

to describe subsets of the closed complex plane. Recall that we use the notation

qΘ(µ, ν) =

 µ

ν

H  Θ11 Θ12

Θ21 Θ22

 µ

ν


for the quadratic form defined by a Hermitian 2× 2 matrix Θ.

Lines and circles If Φ is a 2 × 2 Hermitian matrix with det Φ < 0, then the quadratic

equation

qΦ(λ, 1) = 0 (B.1)

defines a straight line (if Φ11 = 0) or a circle (if Φ11 6= 0) in the complex plane. Three

important special cases are

Φu =

 1 0

0 −1

 , Φi =

 0 1

1 0

 , Φr =

 0 j

−j 0

 ,
for the unit circle, imaginary axis, and real axis, respectively. Curves defined by two dif-

ferent matrices Φ, Φ̃ can be mapped to one another by applying a nonsingular congruence

transformation Φ̃ = RΦRH .

When Φ11 = 0, we include the point λ = ∞ in the solution set of (B.1). Alternatively,

one can define points in the closed complex plane as directions (µ, ν) 6= 0. If ν 6= 0, the pair

(µ, ν) represents the complex number λ = µ/ν. If ν = 0, it represents the point at infinity.

Using this notation, a circle or line in the closed complex plane is defined as the nonzero
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∠λ Ψ Assumptions

[a− b, a+ b]

 0 −eja

−e−ja 2 cos b

 0 ≤ b ≤ π

[a, 2π − a]

 0 1

1 −2 cos a

 0 ≤ a ≤ π

Table B.1: Common choices of Ψ with Φ = Φu (λ on the unit circle).

solution set of a quadratic equation

qΦ(µ, ν) =

 µ

ν

H Φ

 µ

ν

 = 0,

with det Φ < 0. A congruence transformation Φ̃ = RΦRH corresponds to a linear transfor-

mation between the sets associated with the matrices Φ and Φ̃.

Segments of lines and circles The second type of set we encounter is defined by a

quadratic equality and inequality

qΦ(λ, 1) = 0, qΨ(λ, 1) ≤ 0. (B.2)

We assume that det Φ < 0. If the inequality is redundant (e.g., Ψ = 0) the solution set

of (B.2) is the line or circle defined by the equality. Otherwise it is an arc of a circle, a closed

interval of a line, or the complement of an open interval of a line. It includes the point at

infinity if Φ11 = 0 and Ψ11 ≤ 0. Alternatively, one can use homogeneous coordinates and

consider sets of points (µ, ν) that satisfy

qΦ(µ, ν) = 0, qΨ(µ, ν) ≤ 0, (µ, ν) 6= 0. (B.3)

For easy reference, we list the most common combinations of Φ and Ψ in tables B.1–

B.3 [IH03, IH05].

As for circles and lines, we can apply a congruence transformation to reduce (B.2) to a

simple canonical case. We mention two examples. Iwasaki and Hara [IH05, lemma 2] show
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Imλ Ψ Assumptions

[a, b]

 2 −j(a+ b)

j(a+ b) 2ab

 a ≤ b

[−∞,−a] ∪ [a,∞]

 −1 0

0 a2

 a ≥ 0

Table B.2: Common choices of Ψ with Φ = Φi (λ imaginary).

λ Ψ Assumptions

[a, b]

 2 −(a+ b)

−(a+ b) 2ab

 a ≤ b

[−∞, a] ∪ [b,∞]

 −2 a+ b

a+ b −2ab

 a ≤ b

[a,∞]

 0 −1

−1 2a


[−∞, a]

 0 1

1 −2a


Table B.3: Common choices of Ψ with Φ = Φr (λ real).
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that for every Φ, Ψ with det Φ < 0, there exists a nonsingular R such that

Φ = RHΦiR, Ψ = RH

 α β

β γ

R (B.4)

with α, β, γ real, and α ≥ γ. To see this, we first apply a congruence transformation

Φ = RH
1 ΦiR1 to transform Φ to Φi. Define

R−H1 ΨR−1
1 =

 x β + jz

β − jz y


with real x, y, z, β, and consider the eigenvalue decomposition x jz

−jz y

 = Q

 α 0

0 γ

QH , (B.5)

with eigenvalues sorted as α ≥ γ. Since the 2, 1 element of the matrix on the left-hand side

of (B.5) is purely imaginary, the columns of Q can be normalized to be of the form

Q =

 u jv

jv u


with u and v real, and u2 + v2 = 1. This implies that QΦiQ

H = QHΦiQ = Φi and

QH

 x β + jz

β − jz y

Q = QH

 x jz

−jz y

Q+

 0 β

β 0

 =

 α β

β γ

 .
The transformation (B.4) now follows by taking R = QHR1.

Applying the congruence defined by R, we can reduce the conditions (B.3) to an equiva-

lent system µ′

ν ′

H  0 1

1 0

 µ′

ν ′

 = 0,

 µ′

ν ′

H  α 0

0 γ

 µ′

ν ′

 ≤ 0, (µ′, ν ′) 6= 0, (B.6)

where (µ′, ν ′) = R(µ, ν). In non-homogeneous coordinates,

Reλ′ = 0, α|λ′|2 + γ ≤ 0. (B.7)

Keeping in mind that α ≥ γ, we can distinguish four cases. If 0 < γ ≤ α the solution set

of (B.7) is empty. If γ = 0 < α the solution set is a singleton {0}. If γ < 0 < α, the solution
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set of (B.7) is the interval of the imaginary axis defined by |λ′| ≤ (−γ/α)1/2. If γ ≤ α ≤ 0,

the inequality is redundant and the solution set is the entire imaginary axis.

Another useful canonical form of (B.2) is obtained by transforming the solution set to a

subset of the unit circle. If we define

T =
1√
2

 1 1

−1 1

R, ε =
1

2
(α + γ), δ =

1

2
(α− γ), η = β.

then it follows from from (B.4) that

Φ = THΦuT, Ψ = TH

 ε+ η −δ

−δ ε− η

T.
The coefficients ε, δ, η are real, with δ ≥ 0. The congruence defined by T therefore transforms

the conditions (B.3) to an equivalent system µ′

ν ′

H  1 0

0 −1

 µ′

ν ′

 = 0,

 µ′

ν ′

H  0 −δ

−δ 2ε

 µ′

ν ′

 ≤ 0,

where (µ′, ν ′) = T (µ, ν). In non-homogeneous coordinates, this is

|λ′|2 = 1, δReλ′ ≥ ε.

The solution set is empty if ε > δ. It is the unit circle if ε ≤ −δ. It is the singleton {1} if

ε = δ > 0. It is a segment of the unit circle if −δ < ε < δ.
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APPENDIX C

Matrix factorization results

This appendix is from [CV17] and contains a self-contained proof of Lemma 2.3, needed in

the proof of Theorem 2.5, and some other matrix factorization results that have appeared in

papers on the Kalman–Yakubovich–Popov (KYP) lemma [Ran96,IMF00,BV02,BV03,PV11].

We include the proofs because their constructive character is important for the result in

Theorem 2.5. Lemma C.1 is based on [Ran96, lemma 3] and [IH05, lemma 5]. Lemma 2.3

can be found in [PV11, corollary 1].

Lemma C.1. Let U and V be two matrices in Cp×r.

(a) If UUH = V V H , then U = V Λ for some unitary matrix Λ ∈ Cr×r.

(b) If UUH = V V H and UV H + V UH = 0, then U = V Λ for some unitary and skew-

Hermitian matrix Λ ∈ Cr×r.

(c) If UUH � V V H and UV H +V UH = 0, then U = V Λ for some skew-Hermitian matrix

Λ ∈ Cr×r with ‖Λ‖2 ≤ 1.

Proof. Part (a). If UUH = V V H , then U and V have singular value decompositions of the

form

U = PΣQH
u , V = PΣQH

v , (C.1)

with unitary P , Qu, Qv. The unitary matrix Λ = QvQ
H
u satisfies U = V Λ.

Part (b). If we substitute the singular value decompositions (C.1) in the equation UV H +

V UH = 0, we obtain

Σ(QH
u Qv +QH

v Qu)Σ
T = 0. (C.2)
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If U and V , and therefore Σ, have full column rank, this implies that the matrix Λ̃ = QH
u Qv

is skew-Hermitian. The matrix Λ = QvΛ̃Q
H
v = QvQ

H
u is skew-Hermitian and unitary, and

satisfies U = V Λ. If U and V do not have full column rank, we modify Λ̃ as follows. We

write (C.2) as  Σ1 0

0 0

 Λ̃11 + Λ̃H
11 Λ̃12 + Λ̃H

21

Λ̃21 + Λ̃H
12 Λ̃22 + Λ̃H

22

 Σ1 0

0 0

 = 0

with Σ1 positive diagonal of size q × q, where q = rank(U) = rank(V ), and Λ̃11 the q × q

leading diagonal block of Λ̃. This shows that Λ̃11 + Λ̃H
11 = 0, so Λ̃ is unitary with a skew-

Hermitian 1, 1 block. Since Λ̃11 is skew-Hermitian it has a Schur decomposition Λ̃11 = Q∆QH

with unitary Q ∈ Cq×q, and ∆ diagonal and purely imaginary. Moreover ∆∆H � I because

Λ̃11 is a submatrix of the unitary matrix Λ̃. Partition Q and ∆ as

Λ̃11 =
[
Q1 Q2

] ∆1 0

0 ∆2

[ Q1 Q2

]H
(C.3)

with ∆1∆H
1 ≺ I and ∆2∆H

2 = I. Since Λ̃ is unitary, we have

Λ̃12Λ̃H
12 = I − Λ̃11Λ̃H

11

= Q1Q
H
1 +Q2Q

H
2 −Q1∆1∆H

1 Q
H
1 −Q2∆2∆H

2 Q
H
2

= Q1(I −∆1∆H
1 )QH

1 ,

and by part (a),

Λ̃12 = Q1(I −∆1∆H
1 )1/2Ω (C.4)

for some unitary Ω. Therefore the matrix Λ̃11 Λ̃12

−Λ̃H
12 ΩH∆H

1 Ω

 =

 Q1 Q2 0

0 0 ΩH




∆1 0 Γ

0 ∆2 0

−Γ 0 ∆H
1



QH

1 0

QH
2 0

0 Ω

 ,
where Γ = (I −∆1∆H

1 )1/2, is skew-Hermitian (from the expression on the left-hand side and

the fact that Λ̃11 is skew-Hermitian and ∆1 is purely imaginary) and unitary (the right-hand

side is a product of three unitary matrices). If we now define

Λ = Qv

 Λ̃11 Λ̃12

−Λ̃H
12 ΩH∆H

1 Ω

QH
v
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then Λ is unitary and skew-Hermitian, and

U = P

 Σ1 0

0 0

 Λ̃11 Λ̃12

Λ̃21 Λ̃22

QH
v

= P

 Σ1 0

0 0

 Λ̃11 Λ̃12

−Λ̃H
12 ΩH∆H

1 Ω

QH
v

= P

 Σ1 0

0 0

QH
v Λ

= V Λ.

Part (c). Assume UUH � V V H and V V H−UUH has rank s. We factorize V V H−UUH =

Ũ ŨH with Ũ ∈ Cp×s and write UUH � V V H and UV H + V UH = 0 as[
U Ũ

] [
U Ũ

]H
=
[
V 0

] [
V 0

]H
(C.5)

and [
U Ũ

] [
V 0

]H
+
[
V 0

] [
U Ũ

]H
= 0.

It follows from part (b) that there exists a unitary skew-Hermitian matrix Λ̃ for which

[
U Ũ

]
=
[
V 0

] Λ̃11 Λ̃12

Λ̃21 Λ̃22

 .
The subblock Λ = Λ̃11 satisfies U = V Λ, Λ + ΛH = 0 and ΛHΛ � I.

The following small example illustrates the use of the proof of part (b) in Lemma C.1.

Consider r = 3, q = rank(U) = rank(V ) = 2, Qv = I and,

Λ̃ = QH
u =


0.8j 0 0.6j

0 j 0

0.6 0 −0.8

 ,
which is unitary but not skew-Hermitian. Then ∆1 = 0.8j, ∆2 = j, and

Ω = (I −∆1∆H
1 )−1/2QH

1 Λ̃12 = (1− 0.64)−1/2

 1

0

H  0.6j

0

 = j.
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The resulting Λ is therefore

Λ = Qv

 Λ̃11 Λ̃12

−Λ̃H
12 ΩH∆H

1 Ω

QH
v =


0.8j 0 0.6j

0 j 0

0.6j 0 −0.8j

 .

Proof of Lemma 2.3. Suppose U and V are p× r matrices that satisfy (2.12) and (2.13). As

explained in appendix B, there exists a nonsingular R such that

Φ = RH

 0 1

1 0

R, Ψ = RH

 α β

β γ

R
with β real and γ ≤ α. Define S = R11U +R12V and T = R21U +R22V . Then

STH + TSH =
[
U V

] Φ11I Φ21I

Φ12I Φ22I

 UH

V H

 = 0 (C.6)

and

αSSH + γTTH =
[
U V

] Ψ11I Ψ21I

Ψ12I Ψ22I

 UH

V H

 � 0. (C.7)

We show that this implies that S = W diag(s)QH , T = W diag(t)QH , for some W ∈ Cp×r,

unitary Q ∈ Cr×r, and vectors s, t ∈ Cr that satisfy

sit̄i + s̄iti = 0, α|si|2 + γ|ti|2 ≤ 0, (si, ti) 6= 0, i = 1, . . . , r.

The result is trivial if S and T are zero, since in that case we can choose W = 0, and

arbitrary Q, s, t. If at least one of the two matrices is nonzero, then (C.7), combined with

α ≥ γ, implies that γ ≤ 0. Therefore there are three cases to consider.

• If α ≤ 0, we write (C.6) as (S + T )(S + T )H = (S − T )(S − T )H . From Lemma C.1,

S + T = (S − T )Λ with Λ unitary. Let Λ = Qdiag(ρ)QH be the Schur decomposition

of Λ, with |ρi| = 1 for i = 1, . . . , r. Define W = (S − T )Q, s = (1/2)(ρ + 1),

t = (1/2)(ρ− 1).

• If γ = 0 < α, then S = 0, and we can take Q = I, W = T , s = 0, t = 1.
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• If γ < 0 < α, then from Lemma C.1, S = (−γ/α)1/2TΛ for some skew-Hermitian Λ

with ΛHΛ � I. This matrix has a Schur decomposition Λ = Qdiag(ρ)QH with |ρi| ≤ 1

for i = 1, . . . , r. Define W = TQ, s = (−γ/α)1/2ρ, and t = 1.

The factorizations of U and V now follow from U

V

 = (R−1 ⊗ I)

 S

T

 = (R−1 ⊗ I)

 W diag(s)

W diag(t)

QH =

 W diag(µ)

W diag(ν)

QH

where µ and ν are defined as µi

νi

 = R−1

 si

ti

 , i = 1, . . . , r.

These pairs (µi, νi) are nonzero and satisfy µi

νi

H Φ

 µi

νi

 =

 si

ti

H  0 1

1 0

 si

ti

 = s̄iti + sit̄i = 0

and µi

νi

H Ψ

 µi

νi

 =

 si

ti

H  α β

β γ

 si

ti

 = α|si|2 + β(s̄iti + sit̄i) + γ|ti|2 ≤ 0.
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APPENDIX D

Strict feasibility

In this appendix from [CV17] we discuss strict feasibility of the constraints X � 0, (2.14),

(2.15) in Theorem 2.5. We assume that the set C defined in (2.8) is not empty and not a

singleton. This means that if the inequality qΨ(µ, ν) ≤ 0 in the definition is not redundant,

then there exist points in C with qΨ(µ, ν) < 0. We will distinguish these two cases.

• Line or circle. If the inequality qΨ(µ, ν) ≤ 0 is redundant, we have C = {(µ, ν) ∈ C2 |

(µ, ν) 6= 0, qΦ(µ, ν) = 0}, a line or circle in homogeneous coordinates. In this case we

understand by strict feasibility of X that

X � 0, Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0. (D.1)

We also define C◦ = C.

• Segment of line or circle. In the second case, C is a proper one-dimensional subset of

the line or circle defined by qΦ(µ, ν) = 0. In this case we define strict feasibility of X

as

(D.1), Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H ≺ 0. (D.2)

We also define C◦ = {(µ, ν) 6= 0 | qΦ(µ, ν) = 0, qΨ(µ, ν) < 0}.

The conditions on F and G that guarantee strict feasibility will be expressed in terms of the

Kronecker structure of the matrix pencil λG − F [Gan05, Van79]. For every matrix pencil
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there exist nonsingular matrices P and Q such that

P (λG− F )Q

=



Lη1(λ)T 0 · · · 0 0 0 0 · · · 0

0 Lη2(λ)T · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

...

0 0 · · · Lηl(λ)T 0 0 0 · · · 0

0 0 · · · 0 λB − A 0 0 · · · 0

0 0 · · · 0 0 Lε1(λ) 0 · · · 0

0 0 · · · 0 0 0 Lε2(λ) · · · 0
...

...
...

...
...

...
. . .

...

0 0 · · · 0 0 0 0 · · · Lεr(λ)



(D.3)

where Lε(λ) is the ε× (ε+ 1) pencil

Lε(λ) =



λ −1 0 · · · 0 0

0 λ −1 · · · 0 0
...

...
...

...
...

0 0 0 · · · −1 0

0 0 0 · · · λ −1


,

and λB − A is a regular pencil, i.e., it is square and det(λB − A) is not identically zero.

The parameters ε1, . . . , εr, and η1, . . . , ηl are the right and the left Kronecker indices of the

pencil. The normal rank of the pencil is p− l, where p is the row dimension.

We show that there exists a strictly feasible X if and only if the following two conditions

hold.

1. The normal rank of λG− F is p. This means that l = 0 in (D.3).

2. The generalized eigenvalues of λB−A are nondefective and lie in C◦. (More accurately,

if λ is a finite generalized eigenvalue, then (λ, 1) ∈ C◦. If it is an infinite generalized

eigenvalue, then (1, 0) ∈ C◦.).
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A sufficient but more easily verified condition is that rank (µG− νF ) = p for all (µ, ν) 6= 0,

i.e., l = 0 and the block λB − A in (D.3) is not present.

Proof. Without loss of generality we assume that the pencil is in the Kronecker canonical

form (P = I, Q = I in (D.3)) and Φ = Φu, so the equality in (D.1) is

FXFH = GXGH . (D.4)

We first show that the conditions are necessary. Assume X is strictly feasible. Partition

X as an (l + 1 + r) × (l + 1 + r) block matrix, with block dimensions equal to the column

dimensions of the l + 1 + r block columns in (D.3). Suppose l ≥ 1 and consider the kth

diagonal block Xkk with 1 ≤ k ≤ l. The kth diagonal block of the pencil is

λGk − Fk = Lηk(λ)T = λ

 Iηk

01×ηk

−
 01×ηk

Iηk

 .
The kth diagonal block of (D.4) is FkXkkF

H
k = GkXkkG

H
k or 01×ηk

Iηk

Xkk

[
0ηk×1 Iηk

]
=

 Iηk

01×ηk

Xkk

[
Iηk 0ηk×1

]
.

This is impossible since Xkk � 0. Hence, if (D.4) holds with X � 0, then l = 0.

Next suppose det(µB − νA) = 0 for some (µ, ν) 6= 0. If ν 6= 0, then µ/ν is a finite

generalized eigenvalue of the pencil λB − A; if ν = 0 then the pencil has a generalized

eigenvalue at infinity. Let y be a corresponding left generalized eigenvector, i.e., yH(µB −

νA) = 0, while yHB and yHA are not both zero (since yHB = yHA = 0 would imply that

the pencil λB − A is singular). Define uH = yHB if ν 6= 0 and uH = yHA otherwise. This

is a nonzero vector. The first diagonal block of (D.4) is

AX11A
H = BX11B

H . (D.5)

From this it follows that |µ|2uHX11u = |ν|2uHX11u, and, since X11 � 0, we have qΦ(µ, ν) =

|µ|2 − |ν|2 = 0, i.e., the generalized eigenvalues are on the unit circle. In addition, if the

inequality in (D.2) holds, then

Ψ11AX11A
H + Ψ21AX11B

H + Ψ12BX11A
H + Ψ22BX11B

H ≺ 0
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and from this, qΨ(µ, ν)(uHX11u) < 0. This is only possible if qΨ(µ, ν) < 0. We conclude

that if det(µB − νA) = 0 for nonzero (µ, ν), then (µ, ν) ∈ C◦.

Next we show that the generalized eigenvalues of the pencil λB − A are nondefective.

Since C◦ is the unit circle or a subset of the unit circle, there are no infinite generalized

eigenvalues. Assume the pencil is in Weierstrass canonical form, i.e.,

λB − A =


(λ− ρ1)I − Js1 0 · · · 0

0 (λ− ρ2)I − Js2 · · · 0
...

...
. . .

...

0 0 · · · (λ− ρt)I − Jst


,

where ρ1, . . . , ρt are the generalized eigenvalues (which satisfy |ρi| = 1), and Js is the s× s

matrix

Js =



0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1

0 0 0 · · · 0 0


.

Then (D.5) implies that

(ρiI + Jsi)X11,i(ρiI + Jsi)
H = X11,i

where X11,i is the ith diagonal block of X11, if we partition X11 as a t× t block matrix with

i, j block of size of si × sj. Expanding this gives

|ρi|2X11,i + ρiX11,iJ
T
si

+ ρ̄iJsiX11,i + JsiX11,iJ
T
si

= X11,i.

Since |ρi| = 1 this simplifies to

ρiX11,iJ
T
si

+ ρ̄iJsiX11,i + JsiX11,iJ
T
si

= 0.

The last rows of the second and third matrices are zero. Therefore the last row of the first

matrix is zero. However the element in column si − 1 is the last diagonal element of the
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positive definite matrix X11,i. This is a contradiction unless si = 1, i.e., the eigenvalue ρi is

nondefective. We conclude that the two conditions are necessary.

It remains to show sufficiency. Suppose λG− F has the Kronecker canonical form

λG− F =



λ− ρ1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · λ− ρt 0 · · · 0

0 · · · 0 Lε1(λ) · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · Lεr(λ)


with ρi ∈ C◦. Define a block diagonal matrix

X =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · 0

0 · · · 0 X11 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · Xrr


with diagonal blocks

Xkk =

εk+1∑
i=1


1

λki
...

λεkki




1

λki
...

λεkki



H

, k = 1, . . . , r,

where λk1, . . . , λk,εk+1 are distinct and in C◦. This matrix X is strictly feasible.
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APPENDIX E

Generalized proximal gradient method

The appendix is from [CV18] and describes the accelerated proximal gradient method used

in the experiments, including a convergence proof. The proof follows [Tse08] and is included

to clarify where our assumptions on the problem and the Bregman distance are needed.

These conditions are slightly weaker than the ones stated in [Tse08, page 17]. The proof also

justifies the third parameter selection strategy discussed below.

We consider an optimization problem

minimize F (x) = f(x) + g(x), (E.1)

in which the objective is split as a sum of two convex functions. We assume that ∅ 6=

dom g ⊆ dom f and that f is differentiable with a Lipschitz continuous gradient on dom g,

i.e., there exists a constant L such that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2 (E.2)

for all x, y ∈ dom g. In addition, we assume that dh is a Bregman distance with kernel h, and

that for every a and every v ∈ int (domh), the generalized proximal operator proxhτg(τa, v)

defined in (6.8), is well defined, i.e., the optimization problem

minimize 〈a, x〉+ g(x) +
1

τ
dh(x, v) (E.3)

has a unique solution in dom g ∩ int (domh). Here τ is a positive proximal stepsize. We

also assume that

dh(x, y) ≥ 1

2
‖x− y‖2 (E.4)

for all x ∈ dom g ∩ domh and y ∈ dom g ∩ int (domh). The norm on the right-hand side

of (E.4) is the same norm as in (E.2). Finally, we assume that the problem (E.1) is solvable

and has a solution x? ∈ dom g ∩ domh.
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The following algorithm is IGA in [AT06] and Algorithm 1 in [Tse08]. We start at

x0 = v0 ∈ dom g ∩ int (domh) and run the iteration

yk = (1− θk)xk−1 + θkv
k−1 (E.5a)

vk = proxhτkg(τk∇f(yk), vk−1) (E.5b)

xk = (1− θk)xk−1 + θkv
k. (E.5c)

Suitable choices for the parameters θk ∈ [0, 1] and τk > 0 are discussed below. Since the

minimizer vk in step (E.5b) is in the convex set dom g ∩ int (domh), all iterates yk, vk, xk

are in dom g ∩ int (domh). The update in the second step (E.5b) is therefore well defined

at all iterations.

We discuss three strategies for choosing θk and τk. The first option requires knowledge

of L, the Lipschitz constant in (E.2) with respect to a norm that also satisfies (E.4). Se-

veral strategies have been proposed to avoid this and replace L with an adaptively adjusted

estimate λk [BT09a,Gul92,Tse08,Nes13,SGB14]. The second and third methods below are

examples of this.

In each method we will choose θ1 = 1, θk ∈ (0, 1) for k > 1, and τk > 0 subject to the

two conditions:

F (xk) ≤ (1− θk)F (xk−1) + θk(g(vk) + f(yk)

+ 〈∇f(yk), vk − yk〉+
1

τk
dh(v

k, vk−1)), (E.6)

and

τk(1− θk)θk−1 ≤ τk−1θk. (E.7)

We will see that these conditions imply that

F (xk)− F (x?) ≤ θk
τk
dh(x

?, x0). (E.8)

Each of the following three parameter selection methods satisfies (E.6) and (E.7), with

θk/τk = O(1/k2).
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Known Lipschitz constant We choose τk = 1/(Lθk) and a sequence θk that satisfies

θ1 = 1 and

(1− θk)θ2
k−1 ≤ θ2

k, k > 1. (E.9)

A simple choice is θk = 2/(k + 1). The sequence that decreases most quickly, subject to the

constraint (E.9), is obtained by imposing equality in (E.7). This gives the recursion

θk =
−θ2

k−1 +
√
θ4
k−1 + 4θ2

k−1

2
.

To show that (E.6) holds, we apply (E.2) with x = xk and y = yk, substitute (E.5c) for

xk on the right-hand side, simplify the argument of the norm using (E.5a), and apply (E.4)

to obtain

f(xk) ≤ (1− θk)(f(yk) + 〈∇f(yk), xk−1 − yk〉)

+ θk(f(yk) + 〈∇f(yk), vk − yk〉+
1

τk
d(vk, vk−1)).

The inequality (E.6) now follows from convexity of f and Jensen’s inequality for g applied

to (E.5c).

Monotonic search This is the strategy of [Tse08, BT09a]. We choose a fixed sequence

θk that satisfies (E.9), as in the previous strategy. We choose λ0 > 0, and at iteration k

choose for λk the smallest element of {βiλk−1 | i = 0, 1, 2, . . .}, for which τk = 1/(λkθk)

satisfies (E.6). Here β > 1.

The inequality (E.7) holds because

τkθk = 1/λk ≤ 1/λk−1 = τk−1θk−1

and (E.9) holds. The procedure guarantees that λk ≤ λmax = max {λ0, βL} because, as

shown above, (E.6) holds for θkτk ≤ 1/L. Therefore

θk
τk
≤ θ2

kλmax ≤
4λmax

(k + 1)2
= O(

1

k2
).

In this method, testing a candidate λk requires the evaluation of the generalized proximal

operator in step (E.5b), and evaluations of f(xk), g(xk), g(vk), and dh(v
k, vk−1). These

function values are needed to verify whether the inequality (E.6) holds.
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Non-monotonic search The third method does not force λk to be monotonically increa-

sing as in the second method. At each iteration, choose some λ̂k > 0, and take the smallest

λk in {βiλ̂k | i = 0, 1, 2, . . .} that satisfies (E.6) with θk defined as the positive root of

λkθ
2
k = λk−1θ

2
k−1(1− θk),

and τk = 1/(θkλk).

Lipschitz continuity of ∇f guarantees that (E.6) holds if λk = 1/(θkτk) ≥ L. Hence

the selected parameter satisfies λk ≤ max{λ̂k, βL}. The second condition (E.7) is satisfied

by construction of θk. Finally, it can be shown that θk/τk = O(1/k2) [Gul92, lemma 2.2].

The steps in this method are more expensive than in the second method. When testing a

candidate λk, we also change θk and therefore yk, so we need to recompute f(yk) and ∇f(yk).

We now prove the inequality (E.8). We will need the following lemma [Tse08, proposition

1]. If x̂ ∈ int(domh) is a solution of (E.3), then for all x ∈ dom g ∩ domh,

〈a, x̂〉+ g(x̂)− 〈a, x〉 − g(x)

≤ 1

τ
(dh(x, v)− dh(x̂, v)− dh(x, x̂)). (E.10)

Suppose (E.6) holds. By definition, vk satisfies an inequality of the form (E.10), i.e., for

x ∈ dom g ∩ domh,

〈∇f(yk), vk〉+ g(vk)− 〈∇f(yk), x〉 − g(x)

≤ 1

τk
(dh(x, v

k−1)− dh(vk, vk−1)− dh(x, vk)).

Evaluating this at x = x? and combining the result with (E.6) gives

F (xk)− (1− θk)F (xk−1) +
θk
τk

(dh(x
?, vk)− dh(x?, vk−1))

≤ θk(f(yk) + 〈∇f(yk), x? − yk〉+ g(x?))

≤ θkF (x?).

Re-arranging gives

τk
θk

(F (xk)− F (x?)) + dh(x
?, vk)

≤ (1− θk)τk
θk

(F (xk−1)− F (x?)) + dh(x
?, vk−1).

Combining these inequalities recursively using (E.7) gives (E.8).
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