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2D MOSFET operation of a fully-depleted bulk MoS; at quasi-flatband back-gate

M. Najmzadeh, J.P. Duarte, S. Khandelwal, Y. Zeng, C. Hu
Electrical Engineering and Computer Sciences (EECS), University of California, Berkeley, 94720 CA, USA
phone: +1-510-643-1450, e-mail: najmzadeh@berkeley.edu
In this paper, 2D MOSFET operation of a fully-depleted double-gate bulk MoS, is studied at a quasi-flatband of the
back-gate for the first time. Several key device parameters such as equivalent oxide thickness (EOT), carrier
concentration, flatband voltage, dielectric constant and carrier mobility were extracted from I-V and C-V
characteristics and at room temperature. In a similar operation to the inversion-mode SOl MOSFETs in [1], the back-
gate was used to keep a sheet of mobile charges on the flake back-side by its quasi-flatband operation at a fixed voltage
(0 V). Afterward, the top-gate was used as the active gate to perform mobile charge accumulation or depletion in the
channel. Fig. 1 shows the device architecture together with the high frequency R-C equivalent circuit model for this
underlap gate architecture. Fig. 2 represents the top-view microscope picture of the fabricated MoS, bulk MOSFET
with a flake thickness of 38 nm, measured by AFM. The fabrication steps include mechanical exfoliation of MoS;
crystals on a 260 nm thick oxidized Si substrate, e-beam lithography to make S/D pads, 50 nm Ni by thermal
evaporation and lift-off, gate patterning, high-k/metal-gate stack deposition (1 nm of SiO by thermal evaporation, 11
nm of ZrO, by ALD deposition at 105 °C, 30 nm of Ni by thermal evaporation) and lift-off. The measurements were
done at room temperature using an Agilent BISO0A Semiconductor Parameter Analyzer. Fig. 3 shows its 1¢-V,,
reporting a subthreshold slope of 110 mV/dec. and Ion/Ior of ~1x10°, both at V=100 mV.
EOT, dielectric constant, flatband voltage: Fig. 4 depicts the C,-V, measurement between the top-gate and the source-
drain electrodes (Vq4=0 V) at a high frequency regime (1 MHz). In strong accumulation, the EOT numeric value of
the gate stack can be extracted from the maximum value of gate-channel capacitance, resulting an EOT value of 6.3
nm. In the partial depletion regime, between threshold and flatband, the gate-channel capacitance would vary by
1/ C;C=l/ CZ,+2/(q.€h.Na).(Ves- Vi) [2]. The flatband voltage can be extracted from the x-intercept of 1/Cgc>~1/Cpnax’,
reporting a flatband voltage of -0.45 V. The dielectric constant of the flake can be extracted from the difference in the
gate-channel capacitance in strong accumulation and at the threshold voltage (-1.1 V, estimated from the linear onset
of I4-V, in Fig. 3), reporting a numeric value of 7.8. This is almost in the range of the reported experimental dielectric
constant numeric values in [3].
Carrier concentration: The carrier concentration can be extracted from the slope of 1/Cg.? —1/Crnax® in the linear region
between threshold and flatband, reporting a value of 2.1x10'7 cm. Note that this method can be applied to the devices
with a flake thickness higher than the Debye length (~7.2 nm at this carrier concentration or doping regime).
Series resistance: The series resistance, similar to an inversion-mode MOSFET in [4], can be extracted from the y-
intercept of R=Vas/la vs. 1/(Vg-Viy) in linear accumulation regime (V4s<Vg-Vi), see Fig. 4, assuming accumulation
as the dominant conduction mechanism in comparison to bulk conduction. This assumption is justified considering
the channel accumulation conductance ([.Cox. W/L.(Vgs-Vi)) of three times higher than the bulk conductance at
flatband (q.p.Ng.t.-W/L). An almost similar mobility assumption for bulk and accumulation conduction results a bias
range of Vg-Vi>0.60 V. A series resistance of 434 k2 is extracted in Fig. 4, while this fairy high value is due to the
used underlap gate design to minimize the parasitic gate-source and drain capacitances. Note that Benzyl Viologen
(BV) [5] or SiNy [6] doping can be performed in the S/D extensions to suppress such resistances as well as minimize
their gate-bias-dependencies especially above flatband and for shorter lengths [7].
Carrier mobility: The effective carrier mobility can be extracted using the split C-V method, similar to a
junctionless/accumulation-mode device in [8]-[9], covering a wide gate voltage range from threshold to strong

accumulation (per=I4¢.L/(W.Qn.Vs); Qn= fo‘;i’f Cyc-dV). Qn is the normalized mobile negative charges in the channel

per unit area. Fig. 5 shows the numeric effective mobility values after the series resistance correction, reporting a
maximum effective electron mobility value of 48 cm?/V.s. For comparison, the effective mobility is also extracted
from I-V characteristics, after a series resistance correction and from the gy values in linear accumulation regime,
Uef=gm/(Cox. W/L.Vys), reporting a maximum numeric value of 26 cm?V.s. The slight effective mobility
underestimation using only I-V characteristics can be due to neglecting the bias-dependency of the gate-channel
capacitance in strong accumulation regime.

Conclusion and further works: In this work, we extracted several device parameters in a double-gate bulk MoS;
MOSFET using C-V and I-V characteristics. Such device extraction methodologies were done assuming a typical
linear operation of an accumulation-mode MOSFET from depletion to accumulation. This parameter extraction
platform can be used to investigate the possible bias-dependency of key material parameters e.g. dielectric constant
and bandgap [10], in a high normal electric field considering a back-gate operation. This includes incorporation of
photoluminescence measurement on direct bandgap 2D devices, monolayer e.g. MoS; and bulk e.g. ReS, [11] as well
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as additional measurement methods e.g. Hall for comparison of e.g. mobility and carrier concentration values.
This work was supported by ATMI Inc. within the i-Rice program.
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Fig. 1: The device architecture, showing a top-gate operation
between threshold and flatband voltage (left) and a high
frequency model of the device (right).
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Fig. 2: The top-view microscope picture of the measured
underlap top-gate MoS2 MOSFET.
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Fig. 3: 1a-Vg characteristics at V=100 mV and Vg=0 V.
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Fig. 5: Extraction of series resistance in linear accumulation
regime from the total source-drain resistance vs. 1/(Vgs-Vip).
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Fig. 4: Cg-V characteristics at 1 MHz and Vg4s=0 V.
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Fig. 6: Effective mobility extraction using split-CV and -V,
after series resistance correction.
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