
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Resilient Communications Middleware for IoT Data Exchange

Permalink
https://escholarship.org/uc/item/3wq0c6tf

Author
Benson, Kyle Edward

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3wq0c6tf
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Resilient Communications Middleware for IoT Data Exchange

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Kyle E. Benson

Dissertation Committee:
Professor Nalini Venkatasubramanian, Chair

Professor Sharad Mehrotra
Professor Michael Dillencourt

Professor Magda El Zarki

2018

© 2018 Kyle E. Benson

DEDICATION

I dedicate my PhD thesis...
...

...first and foremost to my family. My parents Ed and Laureen are the best anyone could
ask for, and not a day goes by that I don’t thank God for their love and support.

...
...to my closest friends whose love and support (and at times ridicule) have also shaped the
man I am today. Notably the Hoodlums (Rob, Tucker, Matt, Dylan, Alex, and Charles),

other Delawareans (Kevin [both big and evil], Jamie, Nick, Brooke, Eric, Shawn, and
Bryan), and my newer California friends (Moshe, Kristin, Jon, Kevin, Sky, Mehdi, Olivia,

Deisy, and Robin).
...

...to the UCI Associated Graduate Students (esp. Chris, Justin, and Kevin) for providing
extra-curricular activities and focus during my graduate studies.

...
... to my University of Delaware mentors, peers, and colleagues: my undergraduate advisor
Michela Taufer; co-authors Trilce Estrada and Sam Schlacter; other mentoring professors

Kathy McCoy, Terry Harvey, and Lori Pollock; the 2011 Computer Science cohort,
especially “Pretty” Steve, Eric, Mary, and Sana.

...
... to my Charter School of Wilmington high school teachers, especially Bill Tressler who
first introduced me to Computer Science and Chuck Biehl who helped expand my view of

the world through discrete mathematics.
...

... to all the beauty of God’s miraculous creation, whether visible or not: the mountains
and snow, the oceans and tides, the beaches and birds, the forests and stars.

...
... to all the future humans who will carry on and improve our legacy. I hope my life’s

work can provide even the smallest of stepping pebbles on your way to the stars. But even
more so I hope that love and truth guide you all to a better future where one day humanity

might truly know peace.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES ix

ACKNOWLEDGMENTS x

CURRICULUM VITAE xi

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 What is the Internet of Things (IoT)? . 1
1.2 What is Data Exchange? . 3
1.3 Motivation: Data-Centric IoT Challenges . 5

1.3.1 Constrained Devices and Cloud-centric Design 5
1.3.2 IoT Data Exchange Middleware Design 6
1.3.3 Enabling Resilient Internet of Things (IoT) Data Exchange 8

1.4 Thesis Contributions and Organization . 10

2 Related Work 13
2.1 IoT Data Exchange . 13

2.1.1 IoT Messaging Protocols . 14
2.1.2 IoT Middleware Services . 15

2.2 Resilient Network Communications . 17
2.2.1 Resilient Network Protocols . 17
2.2.2 Redundant Routing Paths . 18
2.2.3 Resilient Overlays . 19
2.2.4 Large-scale and Geo-correlated Failures 22
2.2.5 Delay-Tolerant Networking . 22

2.3 Software-Defined Networking . 23
2.3.1 SDN Control Plane . 24
2.3.2 SDN for IoT . 26
2.3.3 SDN for Pub/sub . 27
2.3.4 SDN for Resilience . 28
2.3.5 QoS via SDN . 28

iii

2.4 Edge Computing . 29

3 Our Proposed Middleware Approach to Resilient IoT Data Exchange 31
3.1 IoT in Mission-critical Settings . 32

3.1.1 Home & Community Safety . 33
3.1.2 Earthquake Detection and Alerting 33
3.1.3 Smart Fire Fighting . 35

3.2 Resilient Data Exchange Goals . 38
3.3 Our Proposed Middleware Approach . 40
3.4 System Architectures & Middleware Design 45
3.5 Leveraging Edge Resources . 48
3.6 SDN for Flexible IoT Edge Network Control 49

4 An IoT Deployment Experience 52
4.1 SCALE: Safe Community Awareness and Alerting Leveraging the Internet of

Things . 53
4.2 System Architecture . 54

4.2.1 Cloud Data Exchange for IoT . 55
4.2.2 Sensing Client . 59
4.2.3 Analytics . 66
4.2.4 Actuation . 68

4.3 Conclusions & Research Challenges . 71
4.3.1 Resilience Concerns . 71
4.3.2 Data Exchange . 72
4.3.3 Analytics . 75

5 Geo-aware Resilient Overlays for Cloud-centric IoT Data Collection 76
5.1 Chapter Overview . 77
5.2 Resilient Overlays for IoT Data Exchange 79

5.2.1 Failure Avoidance . 79
5.2.2 P2P vs. SDN Overlay Construction 81

5.3 Algorithms for Geo-Diverse Route Selection 82
5.3.1 Model and Notation . 83
5.3.2 Geo-diverse Path Heuristics . 84

5.4 Experimental Setup . 89
5.4.1 Simulation Design . 89
5.4.2 Modeling Community Infrastructure Topologies 91
5.4.3 Failure Model . 95

5.5 Experimental Results . 97
5.5.1 Comparing Geo-diverse Path Heuristics 98
5.5.2 Comparing Other Parameters . 100
5.5.3 Sharing Network Resources Between IoT Deployments 101

5.6 Prototype Implementation . 102
5.6.1 Fully Peer-to-Peer Overlay Considerations 102
5.6.2 Extending SCALE with GeoCRON 105

iv

5.7 Chapter Summary and Discussion . 106
5.7.1 Integrating GeoCRON Into Our Proposed Middleware 107

6 Edge Communications for Resilient IoT Data Exchange 108
6.1 Chapter Overview . 109
6.2 Our Approach to Resilient IoT Data Exchange 110

6.2.1 A Driving Scenario: Smart Campus Disaster Response 110
6.2.2 Ride-enhanced IoT Services for Emergency Response 112
6.2.3 Resilient IoT Data Exchange (Ride) Workflow 116

6.3 Ride Algorithms . 119
6.3.1 Ride-C – Data Collection in Ride . 119
6.3.2 Ride-D – Data Dissemination in Ride 123

6.4 Prototype Implementation . 127
6.5 Experimental Evaluation . 132

6.5.1 Experimental Setup . 132
6.5.2 Ride Evaluation in a Seismic Alerting Scenario 135
6.5.3 Ride-C Performance & Parameter Space Evaluation 137
6.5.4 Ride-D Scalability & Parameter Space Evaluation 142

6.6 Chapter Summary and Discussion . 147
6.6.1 Integrating Ride Into Our Proposed Middleware 148

7 Prioritizing Heterogeneous IoT Information Flows at the Edge 150
7.1 Chapter Overview . 151
7.2 The FireDeX Approach . 153

7.2.1 A Driving Scenario: Fire Fighting with IoT 154
7.2.2 IoT Data Exchange Addressed by FireDeX 154
7.2.3 Enabling Event Prioritization . 156

7.3 FireDeX Formal Model . 160
7.3.1 Queueing Network Performance Modeling 162
7.3.2 End-to-end Analytical Model . 168

7.4 Data Exchange Configuration Algorithms . 172
7.4.1 Utility Functions . 172
7.4.2 Priority Assignment Algorithm . 173
7.4.3 Ensuring Queue Stability via Preemptive Drop Rates 175

7.5 Prototype Implementation . 178
7.5.1 Application layer . 179
7.5.2 Data exchange layer . 181
7.5.3 Network layer . 182
7.5.4 Implementation challenges . 183

7.6 Experimental Results . 187
7.6.1 Experimental Setup . 188
7.6.2 Validating our Queueing Network Model 191
7.6.3 Evaluating the FireDeX Approach . 193
7.6.4 Comparing Prioritization & Drop Rate Algorithms for Situational Aware-

ness . 196

v

7.6.5 Assessing the FireDeX Prototype . 198
7.7 Chapter Summary and Discussion . 202

7.7.1 Integrating FireDeX Into Our Proposed Middleware 202

8 Conclusion 204
8.1 Future Directions . 205
8.2 Towards the Future of Resilient IoT Data Exchange 209

Bibliography 211

Appendices 226
A Multi-class Priority Queue Analytical Model 226
B Efficiently Computing Drop Rate Policies . 229

vi

LIST OF FIGURES

Page

1.1 IoT data exchange architecture . 4

2.1 Resilient Overlay Network (RON) routing 20
2.2 SDN control/data plane separation . 23
2.3 Virtual network embedding . 26

3.1 Smart fire fighting research roadmap . 35
3.2 IoT-enhanced structure fire scenario . 36
3.3 Smart fire fighting data exchange . 37
3.4 Proposed cross-layer middleware approach 41
3.5 Proposed middleware architecture . 46
3.6 Chapter progression and SDN abstrations 50

4.1 SCALE data exchange . 56
4.2 Smart smoke detector wiring diagram . 62
4.3 SCALE Client Architecture . 64
4.4 SCALE Client Class Diagram . 65
4.5 SCALE server architecture . 67
4.6 SCALE dashboard . 70

5.1 Community infrastructure monitoring . 78
5.2 GeoCRON approach . 80
5.3 GeoCRON overlay architecture . 81
5.4 Overlay usage in GeoCRON . 85
5.5 GeoCRON infrastructure topology . 92
5.6 GeoCRON infrastructure topology (less redundant) 93
5.7 GeoCRON failure model . 96
5.8 GeoCRON heuristics’ results . 99
5.9 GeoCRON multipath fanout results . 100
5.10 GeoCRON failure probability results . 101
5.11 GeoCRON within our middleware architecture 107

6.1 The Ride middleware architecture . 111
6.2 Ride’s workflow . 117
6.3 A prototype of Ride in our physical lab test-bed. 130
6.4 The network topologies used in our experiments. 134

vii

6.5 An example of Ride’s failure adaptations . 137
6.6 Ride-C configuration results . 138
6.7 Congested Cloud Data Path (CDP) results 140
6.8 Varying Maximum Detection Time results 140
6.9 Varying failure probability results . 141
6.10 Comparing failure detectors . 142
6.11 MDMT-construction algorithm results . 144
6.12 MDMT-selection policy results . 145
6.13 Ride-D overhead results . 146
6.14 Ride within our middleware architecture . 148

7.1 The FireDeX cross-layer middleware. 153
7.2 FireDeX middleware architecture . 157
7.3 Mapping subscriptions to network flows for prioritization 159
7.4 FireDeX queueing network model. 160
7.5 FireDeX implementation . 179
7.6 Web dashboard. 180
7.7 Web dashboard. 181
7.8 FireDeX workflow . 182
7.9 FireDeX experimental network topology . 185
7.10 FireDeX multiple subscriptions challenge . 186
7.11 Analytical vs. simulation results . 191
7.12 Results from scaling up # subscriber . 193
7.13 Comparing various ρ̃ values. 194
7.14 Evaluating success rates . 195
7.15 Evaluating response times . 195
7.16 Comparing priority-assignment algorithms 197
7.17 Comparing drop rate policies . 197
7.18 Analytical vs. simulation vs. prototype results 200
7.19 Scaling # subscribers with prototype . 201
7.20 FireDeX within our middleware architecture 203

8.1 Our complete proposed middleware architecture 210

viii

LIST OF TABLES

Page

4.1 Access/edge network technologies used in SCALE 60

5.1 Latency overhead for overlay routing . 106

6.1 Parameters Used in Ride-C . 122

7.1 FireDeX formal notation . 161
7.2 FireDeX experimental configuration parameters 187
7.3 FireDeX experimental configuration parameters for prototype 199

ix

ACKNOWLEDGMENTS

I would like to thank first and foremost my co-authors and various other peers I worked
closely with during my PhD: Georgios Bouloukakis, Guoxi Wang, Qing Han, Luca Scalzotto,
Qiuxi Zhu, Kyungbaek Kim, Andrew Yang, Ranga Raj, and Kiyoshi Nakayama. I also thank
my various mentors from both my PhD studies and internships: my dissertation committee,
especially my advisor Nalini Venkatasubramanian for all her guidance throughout the years;
Matthew MacFreier from ViaSat; Daniel Hoffman from Montgomery County, MD and the
SCALE team; Robert Szewczyk from Nest; Young-Jin Kim and Marina Thottan from Bell
Labs. I further thank the various teams and collaborators who have either contributed to
this research or supported it in some capacity: the CSN team (especially Mani Chandy and
Julian Bunn); the entire SCALE team (especially Dan Hoffman, John Cohn, and Charles
Fracchia); the NFPA (especially Casey Grant) and other authors of the Research Roadmap
for Smart Fire Fighting; UCI’s Office of Information Technology for discussing campus net-
work topologies; Extreme Networks for providing SDN testbed infrastructure.

My PhD research was supported in part by: NSF awards CNS 1450768, CNS 1143705, CNS
0958520, CNS 1528995; NIST Award # 70NANB17H285; the Bren School of Information
and Computer Sciences at UCI; the ARCS foundation; the La Verne Noyes Scholarship
program.

x

CURRICULUM VITAE

Kyle E. Benson

EDUCATION

Doctor of Philosophy in Computer Science 2018
University of California, Irvine Irvine, California

Bachelor of Science in Computer Science 2011
University of Delaware Newark, Delaware

RESEARCH EXPERIENCE

Graduate Student Researcher 2011–2018
University of California, Irvine Irvine, California

Research Intern Summer 2016
Nokia Bell Labs Murray Hill, New Jersey

Undergraduate Researcher 2010–2011
University of Delaware Newark, Delaware

SOFTWARE ENGINEERING EXPERIENCE

Software Engineer Intern Summer 2015
Nest Labs Palo Alto, California

Innovation Fellow Spring–Summer 2014
Montgomery County Montgomery County, Maryland

Software Engineering Intern Summer 2013
ViaSat, Inc. Carlsbad, California

LEADERSHIP EXPERIENCE

Vice President of Social Affairs 2013–2014
Associated Graduate Students of UCI Irvine, California

Site Assistant Technical Supervisor 2010–2011
University of Delaware Newark, Delaware

TEACHING EXPERIENCE

Teaching Assistant 2012–2018
University of California, Irvine Irvine, California

xi

MAGAZINE ARTICLE PUBLICATIONS

SCALE: Safe Community Awareness and Alerting
Leveraging the Internet of Things

Dec 2015

IEEE Communications Magazine

REFEREED CONFERENCE PUBLICATIONS

FireDeX: a Prioritized IoT Data Exchange Middleware
for Emergency Response

Dec 2018

ACM Middleware

Ride: A Resilient IoT Data Exchange Middleware
Leveraging SDN and Edge Cloud Resources

April 2018

IEEE Internet of Things Design and Implementation (IoTDI)

Resilient Overlays for IoT-based Community Infra-
structure Communications

April 2016

IEEE Internet of Things Design and Implementation (IoTDI)

Improving Sensor Data Delivery During Disaster Sce-
narios with Resilient Overlay Networks

March 2013

Workshop on Pervasive Networks for Emergency Management (PerNEM) as part of
IEEE Conference on Pervasive Computing and Communications (PerCom)

SOFTWARE

SCALE Client https://github.com/KyleBenson/scale_client/

Python-based event-driven middleware for acquiring data from various sensors (i.e. via
Raspberry Pi platform), processing it, and exporting it via multiple networks and data
exchange protocols.

Ride middleware https://github.com/KyleBenson/ride/

Resilient IoT Data Exchange (RIDE) using SDN and edge computing. Includes a
mininet-based simulation framework, REST API adapters for SDN controller interac-
tion, and various graph-based algorithms. Also used in FireDeX project.

xii

https://github.com/KyleBenson/scale_client/
https://github.com/KyleBenson/ride/

ABSTRACT OF THE DISSERTATION

Resilient Communications Middleware for IoT Data Exchange

By

Kyle E. Benson

Doctor of Philosophy in Computer Science

University of California, Irvine, 2018

Professor Nalini Venkatasubramanian, Chair

IoT aims to improve our daily lives by seamlessly integrating heterogeneous devices into the

physical space around us through a digital ecosystem of sensor data, communications, ana-

lytics, and semi-automated actions. Our exploratory proof-of-concept IoT system, SCALE,

motivated our research challenges and served as a testbed for deploying our proposed ap-

proach. In particular, we identified the critical need for IoT data exchange: an event-driven

pattern using producer-consumer abstractions to connect many heterogeneous devices, ser-

vices, and users. This provides a seamless communications fabric for large-scale networks of

heterogeneous resource-constrained devices. IoT deployments keep system deployment costs

and complexity low by off-loading much of the logic to the cloud. Hence, data exchange

manages the flow of application-supporting messages in order to gather data at the network

edge, process it in the cloud, and then use it at the edge. However, infrastructure failures

(e.g. during a natural disaster) or resource limitations (e.g. during emergency response

activities) disrupt connectivity with such cloud platforms.

To ensure a high degree of confidence in the resilient operation of mission-critical IoT systems,

this thesis proposes middleware solutions to resilient communications in support of IoT

data exchange in highly-challenged environments. Our proposed techniques leverage current

application information/resilience requirements, physical network topology awareness, and

xiii

modern system configuration abstractions (i.e. edge computing and SDN). They account

for and adapt the IoT data exchange to failures and other impactful constraints in the

underlying network infrastructure. We propose the use of SDN-enabled edge computing

for three primary reasons: reliability, performance, and locality (i.e. making use of data

produced at the edge there at the edge).

We explore this approach within the context of two different mission-critical scenarios and

three projects that build on each other to progressively leverage more edge intelligence as

we focus on more local settings. We first leverage a centrally-controlled geo-aware resilient

overlay network (GeoCRON) to improve cloud-centric collection of IoT seismic sensor data

during geographically-widespread earthquake-induced network infrastructure failures. We

then consider the question of whether to collect and process IoT data in the cloud or at the

edge for further resilience to cloud connection instability. To this end, the Ride system mon-

itors cloud overlay paths and redirects IoT data flows (when necessary) transparently to IoT

devices. Ride also expands on the seismic scenario with earthquake early-warning through a

novel resilient local alerting mechanism based on redundant multicast trees. Lastly, we con-

sider balancing the needs of multiple mission-critical applications in an IoT-enabled structure

fire response. The FireDeX project models the complete data exchange (i.e. IoT hosts, data

exchange brokers, and network infrastructure) and adaptively prioritizes information flows

according to information requirements and network resource constraints.

Altogether, the proposed middleware approach enables a more holistic view of and control

over the data exchange process. As demonstrated in the individual projects, this occurs

at different network and IoT deployment scales. While these contributions are but a few

parts of the greater resilient IoT data exchange challenge, they represent a few steps in the

direction of that goal.

xiv

Chapter 1

Introduction

1.1 What is the Internet of Things (IoT)?

The IoT represents the next stage of technological evolution in the information age. It aims to

improve our daily lives by seamlessly integrating heterogeneous physical devices throughout

the spaces we frequent regularly. By leveraging pervasive sensor data, communications, and

analytics, IoT digitizes physical devices and the environment they co-inhabit with humans.

This bridges physical spaces with virtual applications to perform semi-automated actions

and/or expose human-centric information services within the physical world.

While pervasive computing has been explored for decades (e.g. the annual IEEE PerCom

conference is in its 17th year), the 2010s saw a leap in available products. IoT components

became cheap and available enough (e.g. Raspberry Pi in 2012) that more hobbyists and re-

searchers began experimenting with do-it-yourself IoT systems. Economies of scale continue

to enable more pervasive IoT deployments in previously-mundane spaces. They also make

IoT devices affordable and accessible even to lower-income populations. Over time, this will

help bridge the chasm in the digital divide: pervasive computing systems were previously

1

available only to those who could afford them and possess the expertise required for their

setup and configuration.

As we move further into a future full of connected devices, the IoT promises to revolutionize

societal-scale operations and influence our daily lives. It integrates pervasive sensing/actua-

tion, dynamic data analytics, and communications. Domains such as transportation, home

automation, healthcare, and emergency response are becoming increasingly IoT-enabled; this

provides data-driven insights to improve situational awareness. This is particularly useful in

mission critical applications, e.g. to enable effective and timely emergency response. Recent

smart city efforts such as the SmartAmerica Challenge and Global City Teams Challenge

have showcased the integration of IoT into a variety of community settings and application

domains [171, 27, 107]. Such global efforts aim to leverage the IoT’s promise to improve

economic and living conditions for all.

§4 introduces our response to the SmartAmerica Challenge and consequent experiences with

an IoT proof-of-concept called SCALE. It aims, through the use of modern connected de-

vices and computer systems, to improve the safety of residents. We focused particularly on

lower-income and elderly residents who often do not have access to advanced technologies

such as home security systems, smartphones, and computers with Internet connections. To

accomplish this goal, we designed an event-driven distributed system to sense safety-related

data from devices in homes or on individuals, analyze it locally or within the cloud to detect

possible emergency events, and automatically contact individuals (e.g. homeowners, care-

takers, even emergency dispatch) to notify them and confirm if there is indeed an emergency.

This project revealed a difficult but promising road towards real-world IoT deployments for

personal safety, emergency response, and other mission-critical scenarios. This thesis lever-

ages our experiences with SCALE, similar systems, and various mission-critical scenarios

(see §3.1) to motivate a plethora of research problems. SCALE also serves as a testbed

IoT ecosystem into which we integrate proof-of-concept modules that implement our novel

2

contributions. This thesis focuses in particular on network communications in support of

resiliently connecting the various devices and services in IoT deployments to form a data

exchange fabric.

1.2 What is Data Exchange?

IoT deployments require some distributed data exchange solution to manage the flow of rel-

evant data to/from devices, systems and individuals (data producers and consumers). This

typically takes the form of a middleware that connects the many heterogeneous devices,

services, and users through a seamless communications fabric. Rather than completely

implementing communication mechanisms from the ground up, such middleware supports

reusable patterns from which larger systems can be composed more quickly, efficiently, and

with less developer effort. Fig. 1.1 shows how the heavily event-driven nature of IoT ecosys-

tems leads to a natural abstraction of their workflows as data producer/consumer patterns.

Sensing devices embedded in the physical space monitor real-world events and produce data

associated with them. The data exchange facilitates the transmission of this data via vari-

ous communications networks to interested data consumers. These human users, actuation

devices, or IoT applications/services consume events for further processing, storage, anal-

ysis, taking physical action, and/or conversion into higher-level events according to some

semantics.

Consider the following common interaction styles supported by IoT data exchange middle-

ware:

• Publish-subscribe (the Message Queue Telemetry Transport Protocol (MQTT) [141],

CoAP’s observe feature)

• RESTful interactions (HTTP, the Constrained Application Protocol (CoAP) [71])

3

Figure 1.1: IoT deployments typically leverage cloud services and data exchange middle-
ware to alleviate the burden on constrained devices and manage heterogeneity of underlying
technologies, data, devices, etc.

• Streaming data (HTTP WebSockets)

• Upload-only for sensors using a gateway or long-range low power wireless technology

such as LORA or Sigfox

In this thesis, we take an event-centric approach to IoT data exchange. The event-based

nature and distributed broker architecture of pub/sub systems, which decouples devices

in time and space, fits the needs of IoT interactions well. As such, we do not directly

consider patterns such as upload-only and streaming as they can essentially be boiled down

to publishing data related to events of interest, albeit perhaps with some quality of service

(QoS) in the latter case. Rather, we primarily consider the publish-subscribe pattern in

this thesis without loss of generality. We base this assumption on our previous experiences

with such systems (e.g. see Chap. 4) and the popular use of pub/sub (e.g. MQTT[141]) in

IoT implementations. Hence, we consider IoT sensors as publishers, all manner of data as

events, and interested entities (i.e. human stakeholders or other IoT devices and services) as

4

subscribers. Data exchanges (e.g. a broker implementation) route information to actuators

(e.g. alarms), data analytics services that detect new events, or to a local logging database

for post-incident analysis and forensics.

1.3 Motivation: Data-Centric IoT Challenges

During the SCALE project’s first phase, we identified and confirmed several key challenges

for IoT that we detail later in §1.3.3. This thesis makes steps towards addressing three

critical challenges: resilience, scalability, and intelligently managing heterogeneous resource-

constrained devices. It does this through a networking-centric approach to resilient IoT

data exchange: connecting many heterogeneous devices, services, and users through a seam-

less communications fabric. This middleware fabric facilitates the exchange of application-

supporting messages under a variety of challenging conditions without requiring complex

configurations that account for every different device and application.

1.3.1 Constrained Devices and Cloud-centric Design

IoT devices often tend to be low-powered, inexpensive, embedded systems with little intel-

ligence. Their limited storage (i.e. flash memory and RAM), processing capabilities, and

power availability means they must run lightweight highly-optimized software with low code

footprint and minimal computation. Hence, resource-constrained IoT devices and deploy-

ments keep costs and complexity low by off-loading much of the logic to the cloud. While

recent work aims to support processing IoT workloads in-network (see §2.1.2), this often

remains infeasible due to e.g. limited device resources or reliance on proprietary network

infrastructure. Instead, thin IoT client designs leverage cloud-based services to generate

actionable information in response to real-world events.

5

These cloud services provide the storage and compute capabilities necessary to manage IoT

devices and support their applications. The compute capabilities include: serving user-facing

applications (e.g. web-based interfaces), infrastructure for managing large volumes of data

from disparate sources, event-processing pipelines that compose multiple operations on this

data, and machine learning for advanced analytics. Managing IoT deployments includes:

securing connections to prevent unauthorized access, over-the-air (OTA) updates with the

latest device software, and monitoring devices to ensure proper function.

To connect on-site devices with off-site cloud data centers, these deployments leverage vari-

ous communications networks. While these connections usually traverse the public Internet

backbone at some point, the edge networks are often wireless (e.g. Wi-Fi, cellular, Blue-

tooth, etc.). Managing devices across heterogeneous networks, especially those without IP

or oriented towards low-power communications (e.g. Zigbee and 6LoWPAN), introduces a

layer of complexity that cloud-based services and middleware solutions aim to address.

1.3.2 IoT Data Exchange Middleware Design

In conjunction with the aforementioned cloud services, data exchange middleware further

alleviates the complexity of managing heterogeneous devices, services, and networks without

burdening constrained devices. From our SCALE project (see §4.3.2), we learned that IoT

data exchange should enable a flexible loose coupling of devices, apps on those devices,

and IoT system designs for simple abstract data-processing. Such abstractions as data

analytics pipelines proved highly flexible in adding new components, be they additional

software or even hardware (e.g. adding peripheral sensors via networked microcontrollers),

to the SCALE system. Especially when considering less-capable embedded devices, this

orchestration becomes much simpler with a unified data exchange middleware. Due to these

constraints, the data exchange must be designed with simplistic client-side interactions and

6

relegate more sophisticated coordination to more capable entities e.g. cloud-based servers or

brokers.

A hierarchical data exchange architecture with a distributed broker network lends itself well

to IoT deployments. “Top-level services” run in the cloud to manage global networks of

devices. They may potentially coordinate across “regional” services that cover certain areas.

This breakdown by physical location lends itself well to the event-centric nature of IoT for

several reasons:

1. Data interests / interactions typically exhibit strong spatial locality (e.g. monitoring

our homes)

2. Organic IoT deployments add additional regions over time or break up denses ones

into smaller ones

3. Each participating organization can manage its independently-evolving deployment

according to its own application domain, system, and policy requirements

At the bottom of this hierarchy lies the finest granularity of the “edge”: devices physically

reside in edge networks and often interact with other nearby actors. Edge services (e.g. a

smart Building Management System (BMS)) can support these local interactions by pro-

viding lower latency, location-centric services, and local device management. However, they

may also facilitate external interactions. For example, many low-powered devices operate

at the edge on non-IP networks such as Zigbee and must communicate with outside entities

through a gateway responsible for conversion to the common IP protocol.

As such, a complete IoT data exchange solution must consider the complexities of coor-

dinating across these various edge networks and hierarchies. This may include challenges

such as mobility, protocol translation, and security. In this thesis, we specifically focus on

resilient network communications in support of the data exchange overlay. As described

7

in §3, this takes a step towards bridging the gap between the network and data exchange

layers by exploiting data semantics to translate higher-level characteristics into lower-level

configurations.

1.3.3 Enabling Resilient IoT Data Exchange

As more individuals come to rely on IoT systems, especially for mission-critical scenarios like

those outlined in §3.1, we must clearly ensure a high degree of confidence in their resilient op-

eration: reliability, resource-awareness, and dynamic adaptability in challenging situations.

To this end, we narrow the focus of this thesis to this notion of resilience: adapting the

system in response to various challenges so as to maintain continuity of operations even if

in a degraded mode.

The low-cost constrained nature of IoT devices leaves them susceptible to a variety of prob-

lems including including faulty components, inaccurate sensing, and software bugs. Resilient

operation of applications and services in the presence of failures, disruptions, and other un-

expected challenges is a key issue. As IoT systems scale and increasingly rely on cloud ser-

vices to operate, resilience of these services, the software and algorithms comprising them,

and the networks that link them with end devices are crucial considerations. Furthermore,

infrastructure failures (e.g. during a natural disaster) or resource limitations (e.g. during

emergency response activities) disrupt connectivity with cloud platforms. Such disruptions

commonly occur as general Internet service outages, but are far more impactful in extreme

events such as natural catastrophes or man-made disasters [48, 100, 52, 123]. While IoT

deployments can be used to create dependable awareness and consequently improved deci-

sion making in disaster settings, this data must be quickly delivered in the face of massive

geo-correlated network outages and resource limitations. Critical applications such as health-

care and emergency response must continue to operate meaningfully (at least in a degraded

8

service mode) despite cloud and connectivity disruptions.

Most modern IoT deployments rely heavily on cloud intelligence to mitigate such disrup-

tions. However, cloud outages do occur [187, 178] and would leave deployments reliant on

this approach inoperative. While adding intelligence to the devices themselves can help al-

leviate some issues, it increases their cost and complexity. Furthermore, some researchers

argue that the cloud-centric approach limits IoT, which would be better served by a data-

centric approach [197]. Without complete autonomy, end devices cannot always overcome

such challenges, which are especially relevant to the mission-critical scenarios described in

§3.1. With the increasingly-widespread deployment of more flexible networking infrastruct-

ure (e.g. Software Defined Networking), we advocate for an approach that also leverages

intelligence embedded in the network itself. This enables a holistic middleware approach

to adaptively translating application-specified resilience requirements and system state into

concrete system configurations at multiple layers.

Hence, we focus on resilient network communications. This lower layer must operate ef-

fectively in order to support the meaningful exchange of relevant data. By simultaneously

considering both the network and data exchange middleware layers of IoT systems, we aim

for a more holistic solution than would be possible when considering only one layer at a time

in isolation. Clearly, a truly holistic solution to the challenge of resilience must address other

layers of the system stack:

• Compute hardware – gracefully handling faults or the degradation over time of cheap

components crammed into a small form factor

• Power constraints – greater energy density in batteries, operation in hostile conditions,

and energy harvesting

• Sensors – callibration, inaccuracies, missing readings, and longevity

9

• Application software – bugs that hamper operations or limit the applications’ effec-

tiveness; handling missing data or unavailable services

However, we leave these other challenges out of scope for this thesis and maintain a narrow

focus on the networking and data exchange middleware layers. The approach outlined below

can be leveraged as one part of a more complete solution to the plethora of IoT resilience

challenges. Such a middleware should perform under a variety of challenging conditions (e.g.

dynamic requirements/constraints, infrastructure failures, etc.) without requiring complex

manual configurations that account for every different device and application.

1.4 Thesis Contributions and Organization

This thesis aims to address some of the above challenges through a cross-layer (i.e. mid-

dleware and network) middleware approach to resilient IoT data exchange. It proposes the

centralized control of pub/sub-oriented information flows and melding these layers through

the use of Software-Defined Networking. This network and application-aware control middle-

ware avoids burdening constrained devices, adapts to infrastructure challenges, incorporates

evolving information requirements, and supports heterogeneous technologies. We demon-

strate four related but distinct approaches within different IoT deployment settings and

scales. As we progress through the chapters, each project progressively leverages more edge

intelligence and focuses on more local scenarios.

The following is the overall organization and research contributions of the thesis:

• Chapter 2 surveys related work.

• Chapter 3 proposes our approach in greater detail.

10

• Chapter 4 details our contribution to the research community of an early IoT proof-

of-concept called SCALE. It uses novel networking technologies, commodity sensor

devices,cloud services, and middleware abstractions to sense, analyze, and act on sensed

events in a distributed manner. We present SCALE’s architecture, capabilities, and

our lessons learned that drive the other research projects in this thesis.

• Chapter 5 describes a centrally-controlled Geographically-Correlated Resilient Overlay

Network (GeoCRON). It improves cloud-centric collection of IoT seismic sensor data

during geographically-widespread earthquake-induced network infrastructure failures.

Our key contributions include the novel resilient seismic sensing scenario, consideration

of multiple IoT infrastructure networks within a community-scale setting, and the

modeling of this scenario within a simulated experimental framework.

• Chapter 6 considers whether to collect and process IoT data in the cloud or at the

edge. It expands on the seismic scenario by exploring both reliable data collection and

alert dissemination (i.e. earthquake early-warning) in a smart campus environment.

The project titled Resilient IoT Data Exchange (Ride) exploits both cloud and edge

resources to maintain network awareness and intelligently choose data exchange paths

to facilitate time-critical IoT applications such as the example seismic alerting scenario.

We apply SDN and novel algorithms to ensure service stability through cloud path fail-

over, edge fail-over, and redundant multicast trees for enhanced local alerting. Our

main contributions from this project include a resource-conserving adaptive network

probing technique, heuristic-based algorithms for consructing redundant multicast trees

for pub/sub dissemination, and novel techniques and heuristics for exploiting network

state awareness gathered during the data collection phase when selecting the best

available multicast tree for the dissemination phase.

• Chapter 7 explores resilient IoT data exchange in a smart fire-fighting scenario and

balances the needs of multiple mission-critical applications. The FireDeX middleware

11

incorporates mechanisms and algorithms for ensuring reliable communications over

multiple networks between a smart building’s infrastructure (e.g. sensors, actuators,

occupants) and first responders. It enforces event prioritization at the network layer

to ensure these responders receive pertinent data in a timely manner despite resource

constraints, hostile environments, and heterogeneous protocols and data models. Our

primary contributions include a cross-layer analytical model of IoT data exchange per-

formance derived from a theoretical queueing network. We demonstrate the accuracy

of our model, significant improvements to the value of information captured during a

response effort, and the real-world performance of a prototype system.

• Chapter 8 concludes the dissertation with lessons learned, a holistic view at our entire

proposed middleware, and a look forward to future research problems we must address

to enable truly resilient IoT data exchange.

12

Chapter 2

Related Work

We now survey relevant work to provide appropriate background for this thesis. We start with

an overview of messaging protocols and middleware services related to IoT data exchange.

We then explore techniques for improving communications resilience, which will support

the lower-level IoT connectivity and thereby also improve resilience for IoT data exchange

middleware. Lastly, we briefly overview research that explores leveraging edge resources and

SDN. These emerging technologies and concepts can help enable more resilient IoT data

exchange solutions, and so we apply these in designing our proposed middleware approach.

2.1 IoT Data Exchange

Recall from §1.2 that we define IoT data exchange as a middleware solution to manage

the flow of relevant data to/from devices, systems and individuals (data producers and

consumers). This section overviews various messaging protocols and higher-level middleware

services that provide IoT data exchange solutions. The former provides the lower level of

connectivity in terms of messaging primitives. The latter builds upon this lower layer to

13

provide higher-level services with more advanced capabilities and guarantees. While not

comprehensive, we aim to provide a survey of typical solutions and how they fail to address

all of the resilience challenges outlined in §1.3.3.

2.1.1 IoT Messaging Protocols

IoT developers can either implement their own custom data exchange mechanism or choose

from numerous pre-existing popular IoT protocols or industry standards. Despite at-

tempts to standardize machine-to-machine (m2m) communication (e.g. oneM2M [180],

Thread1) as well as frameworks for building IoT applications (e.g. AllJoyn2, Nest Weave3),

no one choice has captured enough market share to be considered a de facto standard yet. A

Google search reveals that a handful of protocols have been touted over the last few years as

ideal for IoT data exchange. One common theme across them is the small footprint of client

libraries, which allows their use by constrained devices. They also tend to rely on centralized

server(s), simplifying their deployment since most IoT systems rely on cloud services anyway.

Each of these protocols came to popularity for different reasons. Hence, a system developer

must choose the protocol for a particular deployment based on requirements including per-

formance, reliance on centralized infrastructure, client code footprint, QoS guarantees, and

a balancing act of features and customization vs. API simplicity.

Our SCALE project initially incorporated one of the simplest and most popular IoT proto-

cols, Message Queuing Telemetry Transport (MQTT) [141]. This open sourced lightweight

topic-based publish-subscribe protocol boasts a simple API that enables an asynchronous

event-driven programming paradigm. For RESTful architectures, HTTP remains a popular

option due to its near-universal penetration and ability to directly interact with web services

(e.g. forward sensor data directly to cloud apps). RFC 7252 [71] defined a lighter-weight

1https://www.threadgroup.org/
2https://github.com/alljoyn/alljoyn.github.com/wiki
3https://nest.com/weave/

14

https://www.threadgroup.org/
https://github.com/alljoyn/alljoyn.github.com/wiki
https://nest.com/weave/

RESTful protocol for more constrained devices. The the Constrained Application Proto-

col (CoAP) operates over UDP rather than TCP, which better supports battery-powered

devices and even low-power wireless networks such as ZigBee. It also provides subscription-

like capabilities through its observe feature as well as HTTP compatibility through a proxy

and UDP-based group multicast. The Data Distribution Service (DDS) [142] provides pub-

sub style message bus semantics and the ability to define the data schema in terms of types,

sizes, etc. Along with its support for UDP transport and a plethora of QoS options, these fea-

tures enable broker-less group communication as well as real-time guarantees. The Extensible

Messaging and Presence Protocol (XMPP) [159] features integrated support for presence

(i.e. device discovery) and its extensible nature allows for configuring additional services such

as publish-subscribe and the QoS support lacking from the core protocol. The Asynchronous

Message Queueing Protocol (AMQP) [14], an enterprise-grade message queue standard, re-

ceives much attention for managing data flows among backend services. However, its lack

of an embedded device-capable implementation precludes its use in highly-constrained IoT

client devices.

2.1.2 IoT Middleware Services

We now consider a few middleware solutions that provide IoT services beyond connectivity

and basic data exchange. Such solutions can leverage work in large-scale pub/sub sys-

tems [23, 160, 200] and adapt them specifically for IoT. For example, the authors in [79]

propose moving IoT designs beyond the cloud using a distributed replicated append-only log

for IoT data called the Global Data Plane. The Nodle.io (www.nodle.io) project leverages

smartphones as gateways to provide Internet connectivity for constrained IoT devices with

lower-powered radios (e.g. BLE). This creates a large-scale network for location tracking

and data exchange without requiring dedicated infrastructure. The authors of [76] leverage

information-centric networking approaches to facilitate in-network processing of IoT data

15

www.nodle.io

before it reaches the destination consumer(s). Such data-centric approaches also enable re-

search into managing data exchange configurations according to data processing workload

characteristics [129, 183]. Other related research proposes similar centralized control of IoT

data exchange [109, 198].

The challenge of interoperability is typically addressed through protocol translation. For

example, the Eclipse project Ponte [148] converts between HTTP, CoAP, and MQTT by pro-

viding thin wrappers around numerous choices of the pub/sub backend and underlying data

storage. IFTTT (http://ifttt.com) facilitates the interoperation of various IoT services

through a cloud platform through which users can define triggers and actions that should

be taken in response. For example, one might configure their home to email them whenever

someone rings their smart doorbell. The HomeOS project [57] addressed a similar challenge

with a different approach. It abstracts smart devices like PC peripherals in an operating

system and accomplishes interoperability via drivers. It manages a smart home through a

central server that provides local computation and storage The Building Operating System

Services (BOSS) project took a similar approach to this [55]. BOSS abstracts devices through

drivers, which enables an abstraction layer running the same code on multiple buildings with

different underlying physical hardware. It also establishes fault domains.

Other services include supporting sensing at a semantic level. SATWARE [102] approaches

this by defining virtual sensors, which abstract the underlying sensor feed and expose a

semantically-annoted resulting sensor feed. SensorML [38] defines an XML encoding to

describe sensors and their capabilities, whether physical or virtual. This can be used to define

an ontology of system components and how they work together. The Sentilo platform [9]

provides an open source architecture for sensor data management in a smart city. It uses

RESTful APIs to provide basic services such as sensor data discovery, data transfer, and

pub/sub. It includes a large catalog of sensor types so as to generically support many

different data sources.

16

http://ifttt.com

2.2 Resilient Network Communications

Techniques to handle end-to-end dependability (e.g. due to infrastructure failures) have been

designed at different levels of the system stack. In general, they can be considered as failure

avoidance (i.e. proactive) or recovery (reactive). Reactive recovery of network paths may

take several seconds or even minutes [67]. During recent hardware maintenance on our local

campus data center we measured similar downtimes of ≈45secs. - 5 mins. Other reactive

approaches include retransmission or selecting alternative routes as discussed below. Failure

avoidance limits the perceived impact of infrastructure challenges and includes techniques

such as multi-path transmission or coding in wireless networks.

While we aim to survey general network resilience in this section to lend context to the

overall thesis, we only scratch the surface of this topic. Interested readers may look to

surveys such as [177] for a more comprehensive investigation. Both [176] and [177] discuss

general challenges to networked systems and discuss the proposed ResiliNets framework,

which aims to formalize the steps and strategies involved in designing and maintaining more

robust networks.

2.2.1 Resilient Network Protocols

The original Internet architecture was designed as a scalable high-performance resilient net-

work for delivering data. The Internet Protocol (IP) [106] itself was designed with resilience

in mind during the early days of ARPANET. A prime benefit of packet switching is that

messages transmitted over the network would be routed by the infrastructure itself. This

allowed it to route around failures in the network by updating the routing tables after a failed

node or link. Beyond this best effort model of packet routing, the Transport Layer provides

reliability guarantees through TCP by retransmitting lost packets. This still requires an

17

available route, but it is resilient to transient failures or occasional packet corruption. While

UDP does not provide such reliability, many application-layer protocols (e.g. CoAP [71])

implement their own reliability mechanisms on top of it by retransmitting datagrams similar

to TCP. We leave out of scope discussions about resilience using coding and error correction

e.g. Ethernet’s Frame Check Sequence or layered coding used in many video transmission

protocols that tolerates some packet loss without requiring retransmission.

Throughout the Internet’s evolution, researchers and engineers applied a variety of techniques

to improve its resilience. Some of these techniques generalize and reappear at various points

in different networking stacks. For example, the concept of redundancy is applied in terms

of transmitting over multiple wireless channels to avoid interference, maintaining redundant

networking equipment (e.g. routers, wireless basestation coverage) in case of failure, aggre-

gating multiple physical links in a wired topology in case one fails, and even retransmitting

unacknowledged packets when using TCP. Another application of redundancy that we will

exploit in this thesis is maintaining multiple network paths between two nodes. This may

take the form of recomputing alternative routes in routing infrastructure given knowledge

of the complete topology (e.g. OSPF), maintaining different flows and either intelligently

choosing between them with a higher level logic or copying data over both (e.g. MPLS,

TCP multi-homing), or maintaining loops for fast re-routing of traffic in response to failures

(e.g. SONET). These techniques, while capable of quickly and effectively handling transient

network failures such as packet loss due to congestion or faulty networking equipment, break

down during massive failure scenarios.

2.2.2 Redundant Routing Paths

Many different resilient networking techniques find and exploit redundant (i.e. disjoint)

paths [149]. We explored techniques for recovering from double-link failures by reconnect-

18

ing a spanning tree. Our work decomposed the network into cycles in order to respond to

these link failures by activating the correct backup links [136]. These may act as backup

routes (i.e. reactive), but failing over to them takes several seconds or even minutes [67].

During recent hardware maintenance on our local campus data center we measured similar

downtimes of ≈ 45secs. - 5 mins while the routing protocols converged to the alternative

route. Hence, proactive techniques that enable multiple simultaneous connections for re-

silience to failures/packet drops may prevent such downtime. For example, consider the use

of multi-homing, which establishes multiple connections at the transport layer to increase

resilience to such failures [45]. Similarly, some systems exploit multiple access networks for

redundancy [62, 186].

The traditional disjoint paths problem formulation minimizes the total number of edges/ver-

tices shared by several of k different paths between a source and destination. Finding k > 2

maximally-disjoint paths of minimal cost is NP-Complete even if we restrict the number of

hops in such paths to be ≤ 4 [36]. However, a pair (i.e. k = 2) of such paths can be found in

polynomial time[181]. To efficiently find k > 2 disjoint paths, a polynomial-time minimum

cost flow-based algorithm was proposed in [78]. It reformulates the problem to minimize

shareability : the sum over all edges of the total number of paths (minus one) using that

edge.

2.2.3 Resilient Overlays

In the face of failures and congestion, the underlying network infrastructure’s routing proto-

cols may take several minutes to utilize alternative routes due to reconvergence of the routing

protocols. Several case studies have identified issues with Internet routing, in particular with

the Border Gateway Protocol (BGP), during massive failure scenarios. For example, [191]

found paths that needlessly passed through other continents following a major earthquake

19

R3 R1

R2

H3

Cloud

H4 H2

R4

Internet

H1

Figure 2.1: A node in a resilient overlay network routes around failures by passing packets
through another overlay node.

in Taiwan. It also claimed that BGP policies negatively impact resilience on the Internet

by not allowing certain paths. The authors of [82] found that most visible failures in the

Internet did not exceed 5-15 minutes while the authors of [119] found that BGP route update

convergence could take up to 15 minutes after a fault. During this time, some end-to-end

connections may be unavailable because certain paths are non-functional but others may ex-

ist that the routing infrastructure is not yet aware of. Hence, we see that we cannot always

rely on network routing infrastructure to address all failure scenarios. Part of the reason for

this is the simplification of intelligence in the core of the network to improve performance

and scalability.

Alternatively, application-layer Resilient Overlay Networks (RONs) can leverage alternative

network routes to substantially improve delivery of messages, as well as latency, during

20

failures, unavailability, and congestion [16, 82]. RON nodes try to find an alternative path

when the main one fails to deliver a packet. As shown in Fig. 2.1, they do this by acting

as intermediary hops within the overlay network. They attempt to contact another node

(i.e. peer) in the overlay to see if that node is reachable and has a working path to the

desired destination. If it does, then the traffic is routed through this intermediate node to

the destination until a more direct path becomes available or less congested.

Indeed, [82] found that “overlay networks can typically route around 50% of failures.” When

an end-host perceives a failure, or simply wishes to improve chances of delivery by utilizing

an alternate path, it chooses such an intermediary overlay peer according to some metrics

(e.g. latency, current load) and requests that it route traffic to the destination. Adding

this level of intelligence to the routing infrastructure may incur large amounts of additional

complexity and cost, but it can also be accomplished with simple end hosts in a peer-to-peer-

like fashion. Deploying end hosts for the specific purpose of establishing a RON, or using

those that are already part of a distributed sensing effort for this purpose as well, could

possibly increase the reliability of a system without having to modify any of the routers in

the underlying physical network.

Aside from the original work proposing RON [16], other research has explored aspects of

this approach. For flash dissemination of alerts to the public, [67] constructed a reliable

application layer multicast forest with multiple parents-to-multiple children for exploiting

path redundancy. The authors of [107] studied a regional-area network for Internet access

and resilient information sharing in emergency situations. They configure a mesh-topological

network composed composed of multiple base stations interconnected with each other. Their

system uses a variety of Ethernet-based wired or wireless transmission systems such as

optical/metal Ethernet, WiFi, FWA, satellite, and unmanned aerial vehicle (UAV). Our

work [29, 28], which we present in Chap. 5, added geo-awareness to the RON concept for

resilience to geo-correlated failures e.g. caused by earthquakes.

21

2.2.4 Large-scale and Geo-correlated Failures

Many previous projects have explored resilience to failures in the Internet, although few

have addressed large-scale geographically correlated failures. Most of these works aim to

formally model failures and identify strategies for designing more reliable network infra-

structure. Large-scale failures tend to be geographically-correlated in nature, whether due

to a particularly impactful natural phenomenon (e.g. earthquakes as described in §3.1.2,

tornado), a cascading failure from another network (e.g. power grid), or perhaps a targeted

attack by human adversaries (e.g. electro-magnetic pulse weapon). Some research attempts

to formally model these failures and extrapolate design methodologies for improving net-

work infrastructure reliability from them. Straight line segments drawn through a network

topology, failing any intersected links, were used in [137] to study geo-correlated failures. In

[97], the most damaging link cuts possible for a given network provider is used to plan a

more resilient network. Geo-diverse multipath routing within an autonomous system (AS) is

studied in [153], and we borrow and expand on their geo-diversity metrics in Chap. 5. An-

other consideration is disseminating early warnings/notifications/alerts at short notice to the

public. Flash dissemination can leverage application-layer overlays to ensure all recipients

are notified as quickly as possible [67].

2.2.5 Delay-Tolerant Networking

When an application tolerates long delays (i.e. > a few seconds) between delivery of mes-

sages, it can forego normal assumptions of end-to-end latency made by the traditional

TCP/IP suite. In such a case, routing of packets may involve a store-and-forward approach in

which intermediate routers must wait until the next hop is available to transfer the packet.

Delay-tolerant networks often exploit mobility patterns of these intermediate nodes. We

leave out of scope this specific focus on wireless, mobile, and delay-tolerant networking.

22

Figure 2.2: SDN separates the control and data plane to logically centralize the control
plane. (source: Dungay 2016)

Instead, we refer interested readers to explore a somewhat recent survey on delay-tolerant

networking in the context of vehicular networks [145]. We also refer them to our previous

work (done outside the context of this thesis) on information gathering that exploits mobile

data collectors in the context of a fire response within an unplanned infrastructure-deficient

shanty town [108, 151].

2.3 Software-Defined Networking

Software-Defined Networking (SDN) represents a new paradigm in computer networking

in which the control plane is separated from the data plane [130]. As shown in Fig. 2.2,

the control plane is then logically centralized to make routing decisions globally. It then

pushes configurations down to the data plane (e.g. physical switches) to carry out these

decisions. SDN APIs (e.g. OpenFlow [130], P4 [37]) provide a unified view of and control

over the underlying network infrastructure. OpenFlow defines a protocol for manipulating

flow table rules, which match packets according to various OSI Layer 2-4 header fields and

perform actions such as forwarding out some port or even manipulating the header. An

SDN controller observes the underlying network by querying switches for various statistics

e.g. packets sent/received, loss rates, etc. This enables the accurate collection and main-

tenance of evolving network conditions in support of dynamically adapting the data plane.

23

SDN controllers also expose high-level APIs for developing network applications/services.

This enables the fully-automatable merging of network-and-application-awareness, deriva-

tion of unique communication requirements, and configuration of the underlying data plane

switches.

SDN provides a variety of abstractions to represent the underlying physical network. These

include authorized access to directly manage physical switches, control over virtual (software-

based) switches [146] (e.g. running inside edge/cloud data centers), network virtualiza-

tion [35] to reserve “slices” of the physical infrastructure, etc. SDN can provide a simplified

single-network view of the whole distributed system that may span multiple physical het-

erogeneous networks (e.g. building Wi-Fi and local cellular) and different locations. Recent

research into SDN-enabled 5G cellular architectures [182] supports the potential for such

interfaces that connect e.g. emergency responder devices to a building’s internal network.

For more information about SDN beyond the topics covered below, interested readers may

wish to read this survey paper [18]. Table 2 in [112] compares different programmable data

planes. Some techniques also use SDN for network and application awareness [77].

2.3.1 SDN Control Plane

SDN’s logically-centralized control plane means deploying one or more controller services

that configure the data plane switches. When a switch finds a packet with no matching rule,

it forwards it to the controller. The controller determines how to handle the packet, installs

the appropriate rules in the data plane, and forwards the packet back to the appropriate

switch. SDN controllers have evolved quite a lot over the years (see [18]), with one of the

most recent and more mature options being ONOS [2]. ONOS supports clustering controller

instances as well as deploying apps across them.

24

A single-controller architecture is much simpler, but also represents a single point of failure

as well as a performance bottleneck. To successfully distribute multiple controller instances,

the global network state gathered from the data plane must by synchronized between them.

The authors of [121] explore these state distribution trade-offs within the context of a load

balancer application. They found “that SDN control state inconsistency significantly de-

grades performance of logically centralized control applications agnostic to the underlying

state distribution”. Hence, SDN presents a tradeoff of managing state distribution for added

network intelligence.

The logically-centralized control plane presents a possible single point of failure if not

physically-distributed. SDN controllers are typically clustered for scalability and fault-

tolerance. However, co-locating them in one part of the network makes it easier for a few link

failures to isolate data plane elements from all controller instances. Therefore, the controller

placement problem has been explored in the literature [101, 68]. It aims to place controller

instances in locations that minimize the impact of potential failures.

Other control plane challenges include managing device mobility in distributed controller

networks [75]. To handle large volumes of previously-unmatched packets, [152] proposes

a “prioritized service model (PSM)” to handle unmatched newcoming packets with higher

priority so that they experience delay closer to that of already-matched flows.

Network hypervisors: in addition to the direct data plane programmability offered by

SDN controllers, researchers explored a virtualization concept similar to that of the virtual

machine OS. A network hypervisor [169, 12] is an SDN controller that manages the phys-

ical network but exposes virtual abstractions of that network in the form of e.g. virtual

slices. Such virtual network tenancy may prove invaluable for rapidly-deployed IoT systems.

Network hypervisors must map virtual switch abstractions to physical switches as shown

in Fig. 2.3. This process, called virtual network embedding (VNE), may assign one virtual

switch to one physical switch without the tenant SDN controller knowing which physical

25

Figure 2.3: A Virtual Network Embedding (VNE) maps SDN software (i.e. virtual) switches
to physical infrastructure, thereby abstracting it from IoT devices and services.

switch it is managing. VNE can also map a virtual switch to many physical ones and even

multiple virtual switches to a single physical one (i.e. by slicing the flow table rules). These

abstractions can even support additional services such as automatic fail-over or virtual links

(i.e. tunnels) that implement our proposed overlay routing techniques. In this thesis, we

assume either direct control over the data plane switches (Chap. 6) or a “big switch” ab-

straction that encompasses the entire physical network in a single virtual switch (Chap. 7).

Hence, we leave further discussion about network virtualization as out of scope and instead

refer interested readers to recent survey papers on network hypervisors [35] and VNE [84].

2.3.2 SDN for IoT

SDN helps manage networking for IoT deployments by offloading configuration logic from

constrained devices. While many recent preliminary works have proposed the application of

26

SDN to IoT deployments, few substantial works with in-depth studies and implementations

have been published. Some of those of particular note that have include: using P4 [37]

to rewrite packets in order to bridge multiple protocols without cloud involvement [185];

Network Calculus and Genetic Algorithms to manage SDN flows and guarantee QoS in het-

erogeneous networks [69]; managing wireless IoT sensor networks [60]; leveraging a Value of

Information metric to configure information processing entities that make up IoT applica-

tions at the edge [74]; managing IoT pub/sub protocols as described in §2.3.3. Although

it does not consider real-time (i.e. delay-sensitive) management, [196] uses ONOS “traffic

steering intents” to control flows between Kafka brokers in an IoT setting for resilience to

link errors or traffic congestion.

2.3.3 SDN for Pub/sub

Multiple recent works applied SDN to enable high performance pub/sub through network-

level multicast. This started in [110] to provide line-rate pub/sub. Later works investigated:

using network header primitives (e.g. IPv6 address) for establishing content-based routing

tables with application-layer filtering [33] bandwidth-efficient content based routing [32];

dynamic subscription/advertisement changes [73]; load balancing [11]. Furthermore, [189]

investigated differentiating pub/sub subscriptions at the network level and prioritizing them

separately to provide bounded queueing delays. Many other research works investigated

coupling DDS with SDN for better control of the data exchange process [91, 92, 49, 31].

POSEIDON [92] aims to support different underlying pub/sub protocols, but it requires

software agents running on the SDN switches.

27

2.3.4 SDN for Resilience

Resilience research in SDN predominately focuses on quickly recovering from failures. One

mechanism, fast fail-over [63], uses predefined backup paths and recovers by changing to an

alternate path computed as described in §2.2.2. Some works consider how to compute these

paths in SDN-specific settings such as [157], which uses machine learning to forward packets

along the best of several available paths. Other consider network-wide resilient manage-

ment [173] or leveraging redundant routes for IoT devices [162]. In [53], partial-protection of

paths is shown to reduce the cost of maintaining backup paths vs. a full-protection scheme.

Some research considers both QoS and reliability simultaneously. For example, [54] provi-

sions multiple paths for QoS and fault-tolerance in multimedia networking. The authors

of [122] take QoS metrics into account during the process of computing redundant routes,

whereas [46] considers reliability as a QoS requirement.

2.3.5 QoS via SDN

Some recent works address prioritization in SDN, although they do not operate at the fine

level of granularity that our approach described in Chapter 7 does. These works include:

delay guarantees for real-time systems [118]; studies on real SDN switch performance when

applying prioritization to TCP flows [59]; SDN & priority queues to enhance improvement

of query plans in distributed SQL store [193]. Real-time flows are considered in [15] by

assigning them higher priority than the delay-tolerant ones.

While we do not directly address Quality of Service (QoS) guarantees in this thesis, this

is an area of extensive research within the SDN community. Examples include: QoS guar-

antees of bandwidth [116]; adaptive QoS-aware routing in hybrid networks (i.e. containing

some non-SDN switches) using a simulated annealing approach [124]; a network calculus-

based language for expressing QoS parameters [165]; an extensive comparison on multiple

28

algorithms for setting up performance-guaranteed traffic tunnels in backbones [184] [42] con-

siders QoS in home networks in terms of 4 different application types: web, file transfer,

voice, and video.

2.4 Edge Computing

A common design paradigm for the Internet architecture as well as protocols/applications

that rely on it is that of pushing intelligence as close to the edge as possible. Not only does

this allow the network core to focus specifically on high-speed packet routing by limiting the

amount of logic those devices contain, it also allows for a hierarchical design methodology

in terms of deploying heterogeneous devices to handle different tasks within a network. For

example, customer devices run TCP in order to ensure reliable delivery of data (if possible)

through the best-effort Internet service. Gateway routers at the edges of networks handle

these customer devices’ traffic and may send packets through different flows in the network to

offer a particular quality-of-service or shape certain traffic types (e.g. p2p applications). In

enterprise networks, middleboxes offer services such as firewalls or caches that would overly

complicate finely-engineered routers.

This hierarchical design also allows these networks to scale in an efficient and cost-effective

manner. Routers at the edges of the network aggregate data flows from many customer

devices and forward them along a fewer number of links into the core of the network. The

core routers, which are much fewer in number, will then forward this traffic along high-speed

long-haul links to other core routers and back up this hierarchy to the destination customer

devices. In this manner, the more complex logic to handle applications and new network

services resides in customer devices. With the advent of IoT systems, designers often disrupt

this paradigm by further extending the hierarchy as IoT devices are less capable of supporting

more complex logic. They often deploy gateway nodes or basestations to collect traffic from

29

sensor devices (or send commands to devices) and determine how to handle it (e.g. send to

cloud or process immediately). These nodes offer opportune points at which to add software

intelligence at the network’s edge. This can complement the Internet’s resilience mechanisms

in order to address the aforementioned problems, a concept we will return to in Section 5.

At the IoT data and application layers, we observe a trend towards decentralization through

processing and storing data on edge devices and gateways (e.g. Apple HomeKit, Nest Weave,

and research projects [62, 117, 70]). Mesh networking solutions [17, 81] avoid the cloud and

enable such approaches via direct communications between IoT devices. This edge approach

also potentially improves QoS [164, 127] and performance over cloud-only architectures by

selectively performing computations or other services on edge resources. For example, [70]

decomposes an application into tasks and selectively runs them on either the client or a

2-tiered cloud architecture. We also see investigations into deploying middlebox-like services

for in-network data exchange. For example, [194] runs MQTT brokers within the edge

network infrastructure itself for improved message forwarding.

Smart buildings are a special case of edge computing in IoT systems because they represent

dedicated infrastructure that can be easily exploited as edge resources. Heterogeneous IoT

devices in buildings/structures (e.g. sensors, cameras) produce data that varies in size, fre-

quency (periodic samples vs. asynchronous alerts), type, and importance to individual sub-

scribers [200, 160, 199, 21]. In existing structures, this complexity is handled by a BMS that

locally manages devices and data. Recent work on smart buildings includes ontologies [19]

and protocols to support building automation [44], techniques to preserve privacy [132], en-

abling energy efficiency [190], programmable building operating system services [55], context

aware IoT management via SDN [111], and accurate positioning for location based apps [47].

30

Chapter 3

Our Proposed Middleware Approach

to Resilient IoT Data Exchange

We now provide a high-level overview of our proposed approach. We first motivate the

mission-critical IoT application scenarios that we use to derive challenges and design re-

quirements. Then we present our approach, its merits, system architecture, and design

decisions. We discuss our cross-layer middleware within the context of deriving and lever-

aging application and network awareness, edge vs. cloud data exchange operation, and

configuring IoT edge networks through SDN. We explore our approach in the context of

three different projects inspired by and built on top of the initial SCALE efforts. Each

focuses on slightly different scenarios, data exchange goals, approaches to resilience, system

scales, available state information, degrees of edge involvement, and SDN abstractions. This

chapter compares and constrasts the projects that compose the remaining chapters along

these dimensions to paint the picture of our approach’s overall capabilities.

31

3.1 IoT in Mission-critical Settings

With the increasing availability and decreasing cost of microelectromechanical systems sen-

sors, several projects have begun exploring the use of these devices in Internet-connected

distributed sensing efforts. As IoT deployments find their way into more aspects of our lives,

we will come to rely on them for improving how we address emergency scenarios. Examples

of such smartspaces include personal spaces such as homes, offices, senior facilities; critical

infrastructures such as airports, shipping, and port facilities; organizations such as schools

and hospitals. Applications range from surveillance and security to personal safety and sit-

uational awareness in emergency response scenarios. While IoT devices are often deployed

for a dedicated purpose, such as monitoring critical infrastructures, their data may be re-

purposed and exploited for new applications if access to this information are made available

through open APIs. We now detail a few examples of such mission-critical applications and

their challenges presented to IoT data exchange and communications networks.

Such sensor networks could potentially detect these events’ onset and warn possibly af-

fected individuals to find shelter, as well as aid first responders through increased situational

awareness. However, network failures can severely hamper these networks’ ability to gather

useful information in a timely manner, especially important for those aimed at monitoring

fast-moving destructive physical phenomena such as earthquakes and floods. Such events

often result in large-scale geographically correlated failures in addition to serious network

congestion as individuals contact each other or request help, exacerbating failures or tying

up channels entirely.

32

3.1.1 Home & Community Safety

As we move beyond purpose-built building/home security systems, we enter an age of solu-

tions deployable and customizable by the building manager/homeowner. Such deployments

may leverage other devices in the vicinity to improve outcomes. For example, alarms raised

by detection of an emergency may trigger flashing lights or automatically connect a resident

with emergency personnel via video call. Several other works in addition to our SCALE

project, which explores the question of deploying in-home safety solutions with off-the-shelf

hardware as detailed in §4, explore in-home and community safety scenarios. For example,

[41] uses a phone’s accelerometer to detect when the owner carrying it has fallen down. The

authors of [13] expand on this scenario by considering which specific IoT devices to activate

in order to perpetually monitor a smart space for possible personal emergencies while con-

sidering energy constraints of battery-powered devices. At the wider community scale, IoT

device deployments can be exploited to detect emergencies outside the home. For example,

[87] uses audio signals (e.g. from ambient microphones deployed in a city) to accurately de-

tect gunshots. Other such devices, whose information could help understand regional impact

of phenomena, include weather stations, pollution detectors, and geiger counters [5]. Such

applications require a high degree of certainty in the results. As such, they should ensure

that data of potential interest is not lost and is delivered as soon as possible. Such a require-

ment is especially challenging in home environments due to the typical lack of expertise in

persons that deploy the IoT infrastructure. For more wide-scale and public deployments, we

propose multiple techniques in this thesis that improve communications resilience.

3.1.2 Earthquake Detection and Alerting

We now present an IoT deployment scenario for earthquake-detection and emergency re-

sponse derived from our ongoing IoT projects and collaborative deployments. We model this

33

use case after two different volunteer seismic sensing network projects based in California.

The Community Seismic Network (CSN) [7, 50] and Quake-Catcher Network (QCN) [51]

deploy small low-cost accelerometers in homes, businesses, and schools to monitor seismic

activity. These devices report such activity to a cloud service that quickly and accurately

detects and characterizes earthquakes. By distributing such situational awareness (i.e. in

the form of mass alerts), affected individuals can then take protective action (e.g.“duck-hold-

and-cover”) while first responders assess damage, coordinate efforts, and direct evacuations.

While some of our earliest work [24, 25] was with QCN, we only present the specifics of

CSN within this discussion. Volunteers provide space and power for these sensors, which

may be connected to a desktop computer or a dedicated low-power computer, such as a

plug computer or Raspberry Pi. When they detect abnormal ground motion, indicative of a

possible seismic event, these hosts report messages called picks to a cloud server (e.g. Google

AppEngine) that processes the information and determines if an earthquake has occurred.

This server sits outside the earthquake-prone region from where it safely collects and analyzes

recent picks for possible earthquakes. By effectively identifying and categorizing earthquakes

in a timely manner, the CSN system, in conjunction with traditional seismographs, could

enable a real-time fine-grained targeted early warning system and provide people precious

seconds to take shelter before a seismic wave propagates to their location. We envision such

a deployment expanding in the future as more individuals deploy IoT sensor devices in their

homes that often incorporate accelerometers (e.g. home security, smart-phones), which could

contribute shaking measurements to the CSN system.

However, earthquake-induced damage can cause communications disruptions (congestion,

failure) and cloud connectivity instabilities as discussed earlier. This may result in lost or

delayed sensor data captured during and immediately after an earthquake. The most heavily-

impacted regions suffer the highest data losses but also most need timely reliable alerts for

protecting life and property. To support an early warning system despite severe congestion

34

and packet loss (i.e. due to sudden traffic spikes from people contacting each other as well

as failures caused by the tremor), the picks must arrive at the server for analysis within a

few seconds of the event. Such failures will often be localized due to the geographic scope of

an earthquake as well as cascading failures introduced by e.g. failures in the power grid.

3.1.3 Smart Fire Fighting

In 2015, the US National Institute of Standards and Technology (NIST) and National Fire

Protection Association (NFPA) published the Research Roadmap for Smart Fire Fight-

ing (Res. Roadmap) [94] that “establishes the scientific and technical basis” of Smart Fire

Fighting (SFF). This interdisciplinary collaboration brought together members of industry,

government, the fire science practice, and academia to identify technologies and key chal-

lenges in SFF. In response, we initiated a project to address some of these challenges (see

Fig. 3.1) with distributed middleware solutions for data management.

Figure 3.1: The NIST/NFPA Research Roadmap for Smart Fire Fighting [94] identified
several key challenges that guide our explorations in the FireDeX project.

During a fire, an occupant or automated system activates the emergency dispatch process

depicted in Fig. 3.2. A local fire department(s) responds by sending a team of fire fighters

(FFs). An Incident Commander (IC) coordinates the effort from an Incident Command Post

35

(ICP) set up onsite. To effectively manage the dynamic response and minimize casualties,

injuries, and property damage, the IC requires up-to-date situational awareness information.

Today the IC still derives much of this information from non-digital sources (e.g. human-

initiated reports via voice and/or FF radio, paper records) and collates it in an ad-hoc

manner to guide operations. However, smartspaces equipped with IoT devices enable access

to live data feeds that can generate actionable information in real-time through proper

filtering, prioritizing, and analysis. Such a data-driven approach to improving FF outcomes

fuses sensor data producers with consumers (e.g. analytics, IC) and actions (e.g. device

actuations, alerts) as shown in Fig. 3.3. This improves the efficacy of the classical fire

response workflow, thereby driving the emergence of SFF technologies.

Figure 3.2: To address our target scenario of fire response in an IoT-enabled structure,
GeoCRON addresses fundamental challenges in exchanging data between the FFs and the
IoT-enabled building infrastructure.

Maintaining up-to-date situational awareness for SFF requires the integration and enrich-

ment of static and dynamic data from buildings and IoT infrastructure. Static information

such as building floor plans, inspection histories, and presence of hazardous material can be

gathered apriori. This data may be served by off-site cloud data exchange. For example,

an Emergency Operations Center (EOC) serves a particular region’s emergency response

36

services with inter-agency coordination as well as cloud computing infrastructure to support

SFF services. An EOC may even monitor third-party data streams (e.g. weather, social

media) and forward relevant information to the ICP. Dynamic information published by

IoT devices (in the building and brought by FFs) must be delivered to relevant subscribers

(e.g. analytics services) and combined with contextual knowledge to generate situational

awareness. Such information includes: motion sensing, location/occupancy/activity track-

ing, smoke levels, air flow rate, audiovisual feeds, etc. Different data types vary in importance

to responders depending on the situation (e.g. “smoke” > “water pressure” when initially

sizing up the event and vice versa during active fire suppression).

Figure 3.3: To address our target scenario of fire response in an IoT-enabled structure,
GeoCRON addresses fundamental challenges in exchanging data between the FFs and the
IoT-enabled building infrastructure.

Stakeholders (e.g. IC, FFs, residents) request, visualize, and act on data as shown in Fig. 3.3.

An IC may use a tablet (or similar device) running a situational awareness dashboard to

monitor the situation and coordinate the response effort. The IC assesses building occu-

pancy for coordinating evacuations, tracks the locations and biometrics of FFs to ensure

their safety and effectiveness, and detects environmental hazards within the building such as

37

high temperature or smoke levels. FFs may use some less-intrusive interface (e.g. a heads-up

display (HUD) on their mask or glasses) to receive similar data or non-voice commands from

the IC. A key challenge for SFF is delivering mission-critical data for “timely, targeted deci-

sion making” in an unreliable, partially available, and congested network environment [94].

Given the heterogeneous value of events and limited resources for delivering notifications,

we believe event prioritization is necessary in such mission-critical settings. To this end, we

propose the FireDeX data exchange middleware to manage the flow of situational aware-

ness information. It assigns and enforces event priorities according to the requirements and

capabilities of three system layers: application, data exchange, network.

Some other works have addressed some SFF-specific challenges. One investigates equipment

for dropping sensor devices to support indoor localization and tracking of FFs, which helps

ensure their safety if they become lost inside a smokey building [126]. Another considers edge

computing for video transmission that provides increased situational awareness [192]. A re-

lated scenario that we leave outside the scope of this thesis is a shanty fire scenario. Different

from the above SFF structure fire scenario, a shanty town has little planned infrastructure

and poses many hazards such as highly-flammable structures and chemicals. Our previous

work in this area investigated path planning and mobile ad-hoc networking techniques for

mobile data collectors (e.g. volunteers on bikes) to gather and report situational awareness

in support of response efforts.

3.2 Resilient Data Exchange Goals

In support of the above mission-critical IoT scenarios, we identify data exchange requirements

that our approach targets throughout this thesis. Such applications require resilient timely

data exchange to make use of relevant information in driving situational awareness and

thereby effective response. As previously discussed, our solution cannot extensively modify

38

or complicate constrained IoT devices. Furthermore, it should not completely rely on cloud

platforms in case of cloud connectivity instability.

The the Safe Community Awareness and Alerting Network (SCALE) project targeted the

in-home safety scenario (see §3.1.1) at the community-scale. As a prototype demonstration

effort, we initially aimed to quickly build a working data exchange that could support pub-

lishing events and subscribing to notifications about them as described in §1.2. SCALE’s

evolution from a small demonstration project to multiple deployments spanning several ap-

plication domains and continents presented new requirements. IoT deployments lasting

months to years must execute reliably over time, with minimal administrative intervention,

and under changing connectivity and device conditions. See §4.3 for more details about the

challenges encountered during the SCALE project that led us to further explore resilience

as described in the following chapters.

The GeoCRON project (Chap. 5) arose from our effort to target the community-scale seismic

monitoring setting described in §3.1.2. It aims to collect data from IoT seismic sensors spread

throughout this wide-area community. However, a major earthquake may cause large-scale

geo-correlated failures within this region. Therefore, we aim to address the challenge of

collecting this data despite network infrastructure failures that lead to cloud connectivity

disruptions. Furthermore, we explore how to accomplish this without direct control over the

underlying public Internet infrastructure.

Ride (Chap. 6) expands on the seismic scenario to include earthquake detection and early

warning within a campus setting. As such, we relax the preceding assumption about control

over the underlying infrastructure. Instead, we explore added control over the edge network

infrastructure. Hence, we move the resilient communications logic from the IoT devices

themselves (as we did in GeoCRON) to the network itself through the use of SDN. We

explore resilience to cloud connection disruptions through one of Ride’s primary concerns:

whether information should be collected and processed in the edge data center vs. in the

39

cloud. Furthermore, we explore how to leverage SDN capabilities at the edge to improve local

data dissemination (i.e. alerting). However, we don’t explore the wide-area geo-correlated

failures within that chapter because infrastructure failures would be experienced more or

less homogeneously across a local campus region. Lastly, Ride explores how to accomplish

these goals without introducing significant overhead and consuming additional resources.

FireDeX (Chap. 7) balances the needs of multiple mission-critical applications and data

consumers. It targets the smart fire fighting setting described in §3.1.3. It aims to manage

data exchange flows within a smart building during an active fire response. Such a dynamic

setting introduces challenges of heterogeneous information: what data must be delivered

to which consumers. Hence, FireDeX also considers the relative importance of different

data types to different data consumers. This large volume of data further complicates this

scenario by introducing resource constraints such as limited network bandwidth. When

network conditions deteriorate and cannot support every outstanding request, it addresses

the challenge of which data should be delivered first. This ensures that subscribers can

make use of the best available information in a timely manner and maintain a high degree

of situational awareness.

3.3 Our Application-and-Network-Aware

Resilient Communications Middleware

To address the challenges outlined previously, we propose a cross-layer middleware solution

to resilient IoT data exchange. It builds on the classic IoT deployment approach of cloud-

centric data exchange discussed in §1.2 and applied in the original SCALE project (see

§4.3.2). Therefore, this integration middleware combines together several other middleware

solutions in order to bridge the three layers shown in Fig. 3.4. Bridging these layers enables

40

Figure 3.4: We propose a cross-layer middleware approach to help bridge the semantic gaps
between the data and infrastructure layers.

our middleware to leverage application and network awareness to improve communications

resilience.

Resilience techniques to deal with limitations/disruptions in community IoT networking

infrastructures can be addressed at two different levels: a lower connectivity level (how

to deliver reliably) and a higher messaging level (what to deliver for improved utility).

GeoCRON and Ride focus on the former by exploiting redundant paths and edge resources

to ensure communication of critical safety data to the backend cloud where it is stored and

analyzed. FireDeX focuses on the latter by prioritizing messages in a manner that maximizes

the overall value of information gathered.

Connectivity level resilience requires awareness and control over the underlying network

infrastructure whereas messaging level resilience requires some amount of interaction with

the data exchange layer. Our proposed middleware gathers network state and application

semantics (i.e. resilience requirements) to leverage when adapting information flow in the

41

IoT system. By configuring the data exchange middleware and underlying networking infra-

structure according to this cross-layer awareness, this unified end-to-end approach bridges

semantic gaps between the information and infrastructure layers. Much of the network state

information is collected by the SDN controller directly from the data plane switches/routers

and made available to our middleware through various SDN APIs.

GeoCRON ensures more reliable collection of data at a cloud service despite geo-correlated

infrastructure failures throughout the sensed region. It achieves reliable message delivery

by exploiting geographically-redundant network routes to avoid failures. It extends the

notion of Resilient Overlay Network (RON) [16], which routes around failures and congestion

in the wired Internet. Our proposed Geographically-Correlated Resilient Overlay Network

(GeoCRON) [29, 28] gathers the underlying routing infrastructure topology and locations

of both IoT nodes in the overlay and routers in the underlay. It uses this information to

establish multiple geo-diverse routes in the overlay according to the number requested by an

application’s resilience requirements. Sending multiple copies of each message along these

geo-diverse routes improves the chances of successful message delivery (to the cloud data

exchange) during large-scale geo-correlated failures.

Ride expands on the seismic scenario by also considering alert dissemination after the col-

lection and consumption of relevant events. It extends existing IoT data exchange solutions

to more resiliently collect, process, and disseminate events of critical interest to humans

(e.g. disaster alerts). Ride achieves this goal by determining whether to collect and process

data in the cloud or at the edge. It approaches reliable message delivery through failure

recovery rather than avoidance and, in the event of a complete cloud outage, it leverages

edge resources to maintain continuous data exchange operations. Hence, it prefers the cloud

whenever possible (i.e. for more high-performance regional IoT services), but fails over to the

edge when it becomes unavailable. Ride pre-configures data flows for reliable operation and

dynamically responds to evolving network conditions (e.g. failures, traffic spikes). It borrows

42

from GeoCRON the approach of establishing multiple geo-diverse overlay links to the cloud

data exchange. However, it also monitors these virtual cloud links through a novel resource-

conserving adaptive network probing technique. IoT applications register with Ride and

provide resilience requirements for this monitoring service (e.g. detection time, false positive

rate, etc.). The monitoring service gathers cloud data path link information (e.g. round-

trip-time, loss rate, jitter). During deteriorated conditions, Ride re-routes IoT data flows

through an alternative path. When no such path is available, it re-routes them to a backup

edge service until one of the cloud data paths recovers. This allows seamless operation un-

der both normal and failure conditions. Ride further pre-configures multiple disjoint local

multicast-based alert dissemination paths for edge-mode operation. This approach decreases

network resource consumption by avoiding packet duplication during local alerting. It builds

these multicast trees according to the locations of subscribers registered for resilient alert

topics and the alerting application’s requested degree of resilience (i.e. number of disjoint

multicast trees). Ride gathers local network topology information from the SDN controller

and local link status estimated by the data exchange service according to the routes traversed

during the data collection phase. Its novel path-selection scheme leverages this potentially

imprecise network state awareness.

FireDeX addresses resilience at the messaging level by ensuring delivery of the most impor-

tant events (according to subscriber requirements) despite resource constraints. It essen-

tially prioritizes messages and allocates available network resources. It collects information

requirements directly from the subscribers in the form of subscriptions: an event topic and

an associated utility function that quantifies the value of information captured given a rate of

successful message delivery. It also collects network state information (i.e. latency, available

bandwidth, and error rates) collected through SDN APIs. The FireDeX algorithms combine

this cross-layer awareness and a queueing theory-based analytical model to configure the

system for optimal performance. They first assign priorities to subscriptions and then allo-

cate bandwidth to the network flows serving these subscriptions through pre-emptive packet

43

drop rates. These drop rates prevent the delay or loss of important data due network buffers

filling up.

Altogether, these approaches contribute to our vision of a resilient cross-layer communica-

tions middleware for IoT data exchange that leverages existing technologies/software when-

ever possible. Furthermore, such an integration middleware solution has several advantages

over a top-to-bottom custom solution:

• Global optimization requires a unified framework that simultaneously considers state

and requirements of each layer. This provides a more holistic view than each individual

solution isolated at its layer would. For example, we can bridge the pub/sub subscrip-

tion requirements with network state awareness for better configuration of both layers.

• Implementation agnostic design supports various implementations of each com-

posed middleware solution. For example, our solution is agnostic to which MQTT

broker is used as long as it properly supports the MQTT protocol. New solutions can

easily be swapped in to provide additional features without having to re-implement

them in our core middleware code.

• Lightweight client middleware adds minimal complexity to the IoT devices them-

selves. Most necessary services and complex algorithms run in the cloud/edge and pass

configurations to the lightweight client middleware when necessary.

• Heterogeneous devices, platforms, networks, and physical resource constraints can

be better abstracted by a unified framework. The specific underlying technologies can

be abstracted by the composed middleware services e.g. SDN OpenFlow abstracts the

physical network technologies in use.

• Multi-protocol support is especially important for IoT ecosystems in which highly-

constrained devices require specific protocols with minimal feature sets. Protocol bridg-

ing can be easily accomplished at the middleware layer without major changes to the

44

software (i.e. through plug-ins). For example, we could support many different data ex-

change protocols (e.g. MQTT and CoAP) without modifying the clients to implement

this support.

• Cascading failures further hamper resilient operation. A more holistic view can

detect and mitigate potential problems at one layer that might affect another.

3.4 System Architectures & Middleware Design

This thesis explores the proposed approach to resilient communications for IoT data ex-

change in the various scenarios described in §3.1 and shown in Fig. 3.6. These scenarios

determine different scales, designs, and resilience challenges in system architectures. The

SCALE project (see Chap. 4) targeted the in-home safety scenario (see §3.1.1) at the

community-scale. Because it was a demonstration project, we were more concerned with

quickly assembling loosely-coupled services supported by a central cloud-based data ex-

change broker. As such, we learned a lot about IoT deployment resilience through both

the initial Smart America Challenge (first half 2014) and subsquent experience leveraging

SCALE as a prototype IoT testbed, i.e. a classic IoT deployment. Through this we identified

several of the key research challenges that we consider in §1.3.3.

Over several years following the initial SCALE project, our research group extended SCALE

to target different application scenarios including water infrastructure [96], in-home senior

care [13], and sensor data upload planning for mobile sensing [201]. Each of these scenarios

brought heterogeneous requirements that led to different different deployment scales, system

design considerations, and proposed research approaches to improving the IoT deployments’

resilience. While we leave the specifics of these projects out of scope and instead refer

interested readers to the respective publications, this thesis focuses on the earthquake de-

tection/alerting and smart fire fighting scenarios described in §3.1.2 and §3.1.3 respectively.

45

Figure 3.5: Our proposed middleware minimizes intelligence added to devices and instead
concentrates it in the network and at the edge.

Fig. 3.5 depicts the system architecture components of our proposed middleware. It main-

tains the IoT thin client design by minimizing the intelligence added to devices and instead

concentrates it in the network and at the edge. Altogether this middleware bridges producers

and consumers with decoupled applications around a loosely-coupled data exchange fabric.

The remainder of this thesis explores the techniques proposed to address resilience challenges

in each scenario. We also discuss our prototype implementations of each project and how

we incorporate additional logic into either the IoT devices themselves, the network, or in a

controller service running at the cloud and/or edge.

GeoCRON aims to collect data from IoT sensors spread throughout a community-scale de-

ployment despite regional geo-correlated failures. When we first consider the cloud-centric

earthquake detection scenario, we assume little control over the underlying public Internet

infrastructure due to the IoT devices’ spread over a large geographic area. Instead, we essen-

tially consider the IoT producer devices as edge resources to which we add a thin middleware

logic that facilitates an application-layer geo-aware overlay network. We centrally configure

46

this overlay through a data exchange middleware service residing in the cloud (not pic-

tured). Incorporating the geo-diverse multi-path routing techniques into SDN abstractions

provided by network service providers would further remove a lot of the producer devices’

logic necessary for operating the overlay networks.

Ride expands on the seismic scenario by considering a more local region (i.e. campus area) in

Ride. Hence we incorporate both cloud connectivity as well as edge services: local compute

for backup analytics and SDN management abstractions for the smart campus network. As

such, we view this setting as one small region within the larger community-scale setting

that GeoCRON targeted. Ride closes the IoT application loop by facilitating end-to-end

resilient data collection, backup analytics, and alert dissemination. It extends the overlay

path approach to maintaining cloud connectivity by monitoring and adapting the overlay

paths. However, it does so by coordinating between the SDN infrastructure and a networking

probing service that runs on both the edge and cloud. It sends probes from the edge through

the overlay path(s) to the cloud service, which in turn responds along the same route. The

resilient alerting mechanism leverages network-layer multicast and as such does not require

modifications to the consumers. Rather, it coordinates between the local data exchange and

SDN to configure the redundant multicast trees for any registered resilient alert subscriptions.

FireDeX considers balancing the needs of multiple mission-critical applications and data

consumers during the smaller-scale smart fire fighting scenario. It accomplishes this by

prioritizing events within a smart building during an active fire response, which ensures

delivery of the currently most-critical data first. While we assume we have control over

the building-area network through SDN, we do not directly consider the building network

topology and instead rely on a higher-level abstraction as described below. This requires

the consumers to incorporate additional subscription logic that coordinates with a FireDeX

service. They communicate the relative importance of their subscriptions to each other,

which FireDeX then uses to compute optimal bandwidth allocations and priority queueing

47

disciplines for each active subscription. These are enforced at the network-level (i.e. in the

SDN switches) so as to be generalized across a transport-layer protocol rather than requiring

data exchange (i.e. application)-layer support/modifications. For example, AMQP supports

prioritization, but MQTT does not. Hence, we essentially extend MQTT (really MQTT-SN)

to add priority queueing disciplines.

Note the evolution of the role edge services play in our architecture as the chapters progress.

We start with only IoT devices and cloud services, move to an edge-centric exploration

of resilient IoT data exchange, and then consider how to coordinate the needs of various

consumers at the edge. This determination of edge vs. cloud is a key part of our approach

as well as the above middleware architecture that implements it.

3.5 Leveraging Edge Resources

In this thesis, we argue that a data exchange solution exploiting edge infrastructure can

enhance localized situational awareness, system outcomes, and event responses (especially

in the absence of stable cloud connectivity). IoT edge computing further exploits the fact

that events generated in the physical world, as well as consumer interest in them, exhibit

spatiotemporal correlations and locality. For example, users in the vicinity of an emergency

are interested in alerts and notifications that enable them to take protective action; nearby

actuators (e.g. sirens, elevators) should automatically respond to the event even in the

absence of stable cloud connectivity.

Fig. 3.5 depicts how we implement our approach to exploiting edge resources and where

we locate software artifacts that implement this logic. Because IoT deployments would not

typically have direct control over the public Internet, they can take further advantage of

edge resources by carefully configuring them along with the local network. This can provide

48

further guarantees such as QoS or fine-grained routing control. Therefore, we claim that

such deployments should exploit both cloud and locally-managed edge computing solutions

whenever possible. This improves their ability to capture and leverage application and

network awareness for dynamically configuring the data exchange in support of mission-

critical applications.

A crucial question when edge resources are involved is whether data processing should happen

in the cloud or at the edge. Recall that traditional IoT approaches forward all data to the

cloud. We essentially assume this approach in the GeoCRON project where the IoT devices

themselves are the only exploitable edge resources. However, the seismic data must be

aggregated centrally to make use of it and so we only consider uploading this information

to the cloud. The edge devices instead provide the networking infrastructure necessary to

establish a resilient overlay for more reliable data collection. We first address this edge vs.

cloud issue in the Ride project. Not only do we use edge resources as a backup during

cloud unavailability, but we exploit the SDN-enabled control over the local edge network to

improve local alerting through our novel resilient multicast mechanism. While the FireDeX

model allows a distributed broker network, we focus on the local edge setting. In that case,

we abstract away whether data exchange and processing happens in the edge vs. cloud.

Instead, we focus on improving the performance and utility of the overall data exchange

process. Note that the generic model adopted in FireDeX allows for cloud data exchanges,

sources, and consumers. Their presence in the cloud would simply change the expected

network performance characteristics.

3.6 SDN for Flexible IoT Edge Network Control

We leverage Software-Defined Networking (SDN) to gather awareness of and effect

control over the underlying networking infrastructure. As explained in depth in §2.3, the

49

Figure 3.6: As we progress in the chapters, we explore more localized (i.e. edge) approaches
and consequently more abstract SDN representations of the network infrastructure.

SDN philosophy exposes a logically-centralized control plane and unified software APIs (e.g.

OpenFlow [130]). This enables the accurate collection and maintenance of evolving network

conditions. In turn, we leverage this in support of dynamically adapting IoT data exchanges

with minimal modifications to constrained devices. Throughout our explorations in this

thesis, we assume progressively more mature SDN abstractions as shown in Fig. 3.6. We

start by using SDN APIs to create and maintain resilient overlays [16]. That is, we treat

the public Internet routes between IoT devices and the cloud, which we typically have no

administrative control over, like virtual SDN links.

At first, we consider only these overlay links. GeoCRON constructs a resilient overlay using

the individual IoT devices as peers. It centrally determines the resilient paths to be followed

by sensor data packets being uploaded to the cloud. The peers act as SDN switches in

forwarding messages through the right sequence of peers that avoids likely infrastructure

failures. The peers forward packets in this manner because we assume limited to no direct

50

control over the Internet routes that packets traverse. Clearly, we could relax this assumption

if an ISP provides SDN APIs for such direct control.

Ride utilizes these overlay links to provide multiple disjoint paths through which devices in

the edge network can contact the cloud service. However, it also monitors these virtual links

and selects the best available if some become challenged. If none are available, it moves

to operating in edge mode by re-routing messages to an edge cloud service. In edge mode,

Ride additionally configures the SDN components in the local edge network (where we do

assume direct control). This improves local data collection as well as alert dissemination

through the use of a resource-conserving resilient multicast mechanism. The flexibility of

SDN enables constructing, configuring, and selecting from disjoint multicast trees in this

approach. Ride thus ensures cloud connectivity through any available network paths, fail-

over to edge backup services during extreme connectivity challenges, and more resilient event

routing than traditional approaches.

FireDeX mostly considers the local edge network and abstracts both physical routes and

virtual links as a single SDN big switch. This simplified view of the underlying network

removes the consideration of how to route packets and allows us to instead focus on the

prioritization of messages according to information requirements and resource constraints.

We designed our queueing network model used in FireDeX so that future work can relax this

assumption and explore e.g. different physical routes for different priority classes.

51

Chapter 4

An IoT Deployment Experience

With the increasing pervasiveness of computers in our daily lives, the IoT concept transitions

from a future prediction to real-world deployments. With this manifestation comes a myriad

of possible applications from manipulating devices in our homes to large-scale automation

of industries and public utilities. To explore possible applications with societal-scale im-

pacts, the White House Presidential Innovations fellows and NIST issued the SmartAmerica

Challenge [172] in 2013. In response, we formed a public/private/academic partnership with

multiple organizations to envision, design, build, and demonstrate the Safe Community

Awareness and Alerting Network (SCALE). This chapter details the SCALE motiva-

tion, workflow, architecture, design choices, challenges we encountered, and lessons learned.

Since 2013, SCALE grew to include more domains and organizations across multiple con-

tinents. The conclusions drawn from this experience inspired much of our future research

in IoT (including the remaining chapters in this dissertation). We also leveraged it as a

prototype testbed in many of these projects.

52

4.1 SCALE: Safe Community Awareness and Alerting

Leveraging the Internet of Things

A common human-facing aspect of IoT applications is that they aim to improve our quality

of life through inexpensive commonly-available technology. While home security systems

have existed for decades, they are rather expensive services and only in recent years have

we seen components become cheap and available enough that hobbyists experiment with

do-it-yourself systems. It seems natural then that an open system, made possible with these

recent advances, should be created to improve the lives of underserved populations that

previously could not afford such advanced home security and safety monitoring systems.

Therefore, SCALE primarily targets the in-home safety scenario described in §3.1.1. We

envisioned it as a community-scale deployment of modern connected devices and computer

systems to improve the safety of residents. Our goal was to cater specifically to lower-income

and elderly residents who often do not have access to advanced technologies such as home

security systems, smartphones, and computers with Internet connections.

To accomplish this goal, we designed an event-driven distributed system to sense safety-

related data from devices in homes or on individuals, analyze it locally or within the cloud

to detect possible emergency events, and automatically contact individuals (e.g. homeown-

ers, caretakers, even emergency dispatch) to notify them and confirm if there is indeed an

emergency. We implemented a prototype of this system and deployed it in Montgomery

County, Maryland, USA to enable rapid integration of components and testbeds from dif-

ferent partners.

The immediate goals of the SCALE project are:

• Demonstrate our ability to extend a connected safe home to everyone at a low incre-

mental cost

53

• Jump-start a live testbed for identifying and researching IoT challenges (e.g. middle-

ware, networking, etc.)

• Identify suitable sensors, data schemas, and algorithms for detecting possible emer-

gency events

• Implement and test workflows for cloud-based analytics and alerting

• Demonstrate an open data platform for connecting disparate systems with minimal

coordination

4.2 System Architecture

We designed SCALE as an event-driven middleware platform. Devices upload sensed events

to a cloud data exchange and the analytics service monitors them for possible emergencies.

It sends residents emergency alerts to confirm or reject. Other interested individuals (i.e.

emergency dispatch personnel) visualize events through a dashboard. This section discusses

the high-level requirements, logical components, architectural design decisions, and imple-

mentation details of the system prototype. It first discusses a cloud data exchange and then

the components of the system that perform sensing, analysis, and actuation.

We aimed to implement SCALE in a modular and open manner such that it could be

repurposed or extended to support many different applications, not just safety and alerting-

related ones. This approach also enables individual components to be swapped out for

equivalent ones with little extra effort. We designed all of the components around the concept

of loose integration, then relied on an open data hub to integrate them into a system. In this

way, multiple implementations of the sensing client, analytics server, and alerting dashboard

could be active simultaneously and iteratively developed in parallel.

54

4.2.1 Cloud Data Exchange for IoT

As described in §4.3.2, IoT deployments must facilitate machine-to-machine (m2m) com-

munication for exchanging IoT data (sensed events, analytics, alerts, etc.). In SCALE, we

propose the Data in Motion Exchange (DIME) system shown in Figure 4.1. We envisioned

DIME as an open communications hub for IoT that simplifies the development and deploy-

ment processes.

DIME allows any device or service to publish or subscribe to any other data feed, regardless

of the protocols used at the device level. This simple loose coupling enables developers to

incorporate new services and devices without the need to modify existing ones. Not only

does this simplify system evolution but it also creates a level playing field for innovation.

Any party can introduce new capabilities, or improvements to existing ones, to the system

with minimal need for coordination among current components. They can perform analysis

on sensed data, or even higher-level events, and contribute the results back to the exchange,

driving science and innovation faster as more devices connect.

4.2.1.1 Sensed Event Data

To build an exchange for IoT data, we first defined the type of data that DIME should handle.

We decided to treat raw sensed data and higher-level events equivalently. This aligns with our

concept of virtual sensors, previously proposed in [102]. Virtual sensors abstract low-level

data by processing sensor data streams, which may be directly or indirectly derived from

physical sensor devices, and exposing higher-level semantics through advanced analytics.

Furthermore, by treating incoming data as events, we can develop middleware abstractions

for disparate services to treat remote virtual sensors the same as local physical ones.

Recognizing the rich amount of information contained within a higher level event as well

55

Figure 4.1: DIME facilitates the exchange of data between main SCALE components. DIME
Components shown in solid boxes have been implemented, and those in dashed boxes remain
as future work.

56

as subtle device differences that affect lower-level events, we wanted a well-adopted flexible

schema that could allow, but not require, inclusion of additional information fields beyond

what is necessary to convey the sensor reading. These additional fields should not break the

schema or require all entities in the system to understand them.

1 {"d" :

2 {"event": "temperature",

3 "value": 55.5,

4 "units": "celsius",

5 "timestamp": 12345678,

6 "device": {"id" : "1233",

7 "type": "sheevaplug",

8 "version": "1.0",

9 "manufacturer, chipset, MAC address...":

10 "Globalscale Technologies, ..."},

11 "location":

12 {"lat": 33.3,

13 "lon": "-71"},

14 "cond": {"time" : 1234, "value" : 95,

15 "threshold" : {"operator" : ">",

16 "value" : "95"}},

17 "prio_class": "high",

18 "prio_value": 0...10,

19 "schema":

20 {"source":

21 "schema.org/scale_sensors.json"}}}

Listing 1: An example of the JSON-formatted sensor data schema SCALE uses to encapsu-
late sensed events.

For simplicity and flexibility, we opted to use JSON to format the data for transmission to the

broker as it provides a commonly-used self-describing format supported by mature software

modules. We defined what we thought was a reasonable starting point for the schema.

described in Listing 1. It includes information about the platform (hardware, operating

system, etc.), sensor (device type, identifier, etc.), data (units, value, timestamp, priority,

etc.), a pointer to the specific schema in use to facilitate interoperability, and any other

miscellaneous domain-specific information developers wish to include. One should note that

57

we do not believe this schema comprehensive and rather envision a system where different

domains could define their own schema and publish information about how to interpret it

so as to encourage interoperability between vendors/systems. Such an approach could make

use of an interface such as HyperCat [34] that identifies available devices/data, how to access

them, and how to interpret the results.

4.2.1.2 Current Implementation

In its current form, DIME uses MQTT[141], a fast, lightweight, publish-subscribe-style pro-

tocol. It was developed by IBM for lightweight telemetry, donated to open source, and

has since gained popularity for use as an m2m protocol for IoT data. The publish-subscribe

model allows multiple servers to collect data from DIME and multiple clients to send it with-

out requiring any configuration on our part. The DIME server currently uses the open source

Eclipse Paho MQTT broker [144]. While Paho could be run anywhere, we used IBM’s Mes-

sageSight 1 software appliance, which handles millions of concurrent data streams, running

on the IBM SoftLayer Cloud.

In DIME, sensor data is published to a particular topic, which consists mainly of a device

identifier and sensed event type. Other services, such as the SCALE Server, subscribe to

this data by a particular device, sensor type, or just to all data.

For compatibility, DIME also provides a RESTful interface, implemented via HTTP, initially

residing on the SCALE Server for ease of deployment. This interface translates incoming

data into the proper format and publishes them via MQTT. In this manner, we quickly

implemented DIME as a simple MQTT server, though we plan to extend it to directly

support other protocols (e.g. HTTP and XMPP).

1http://www-03.ibm.com/software/products/en/messagesight

58

http://www-03.ibm.com/software/products/en/messagesight

4.2.2 Sensing Client

This section describes the development and deployment of several SCALE Clients that sense,

minimally analyze, and report data to DIME for ingestion by the analytics server.

4.2.2.1 Networking Technologies

SCALE uses various types of networking technologies in order to facilitate communications

among heterogeneous sensor devices. The specific choice of networking technology typically

depends on the sensor application as well as the constraints of the facility in which the sensors

are deployed. In most installations, the limited reach of the facility’s cabling infrastructure to

the sensor installation points precludes the widespread use of wired networking technologies

(e.g. Ethernet) to support the sensor network. Hence, wireless should be supported to

provide at least one viable option.

Various wireless networking options exist, such as Wi-Fi, Bluetooth and ZigBee. Table 4.1

shows the list of edge networks that SCALE used in its various applications. Wi-Fi is

the most well-known wireless networking technology, but its high power profile can be a

limiting factor. Bluetooth, on the other hand, has one of the lowest power profiles, yet has

a limited range. ZigBee represents an intermediate solution built on IEEE 802.15.4, which

incorporates a low-power wireless specification enabling mesh networking of sensor devices.

3G is good for outdoor deployment where WiFi access is limited, but it is costly. Ultra

narrow band (UNB) can be used for long range communication. It, however, supports only

low bandwidth communication and requires additional infrastructure (such as base tower).

As these examples illustrate, the power envelope and distance between sensors in a particular

sensor application can dictate the choice among wireless networking options.

Our first SCALE prototype included the standard Wi-Fi and Ethernet connections as well

59

Table 4.1: Access/edge network technologies used in SCALE

Network Features Application
UNB Ultra narrow band, long range radio, low

bandwidth
CSN

Zigbee Low power wireless mesh networks Senseware
WLAN High bandwidth wireless with infrastruct-

ure support
CSN

WiFi Adhoc Mesh networking, adhoc networks CSN
BlueTooth and BLE Low power, low data volume Assisted living, fall de-

tection for elderly
3G/Cellular/GPRS Wide area coverage, outdoor deployment Air quality monitoring,

noise sensing
Wired Ethernet Wired infrastructure Configuration and

management

as Sigfox ultra-narrowband (UNB) wireless adapters. UNB allows for long-range, low-power,

low-bandwidth uplinks. Sigfox provided a UNB basestation to install in Montgomery County.

We were able to deploy several SCALE devices with Sigfox UNB adapters in Rockville,

Maryland and send data to DIME via the basestation from up to several kilometers away,

despite using lower-powered basestation and client adapter antennas.

Sigfox adapters send data in 12 byte packets and so MQTT was not an option. Instead,

we coded the data to fit within this packet and created the aforementioned HTTP interface

where Sigfox directed this data. When received at the SCALE server, the data is translated

into the proper schema and published via MQTT so that it appears identical to other sensors’

data.

We also integrated Senseware’s proprietary mesh networking solution into the SCALE system

as described below.

60

4.2.2.2 Hardware Platforms

We wanted a flexible client platform to allow deploying heterogeneous sensors, devices, and

networking technologies. Some clients may plug into a stable power source and Internet

access to support a multitude of sensors and more advanced local data analytics, while oth-

ers may be battery-powered and just upload raw sensed data via wireless. To support the

pervasiveness of these systems and address the latter of these device types by reducing re-

liance on home Internet access, crucial for our mission to support underserved populations,

we aimed to integrate platforms and technologies that could provide long-range low-power

connections. To address both styles, we chose to use commodity off-the-shelf components

wherever possible, which had additional benefits of reducing infrastructure costs; increasing

the number of possible integrated devices and sensors; reducing development costs by lever-

aging extensive community support; allowing other researchers, hobbyists, and new team

members to easily understand our design so that they may copy and extend it.

We first built a general-purpose sensor box named FlexSCALE that supports many different

sensors and network adapters. Interested readers can refer to our directions on how to

build their own FlexSCALE box2. The compute units and sensors are housed within a

large cable box to protect wires and maintain a cleaner facade. Environmental sensors (e.g.

light and temperature) were fastened on top such that they protruded from holes in the

lid, gaining external access with minimal wiring exposed. The initial version housed both a

Raspberry Pi and a Sheevaplug, each running a form of Debian Linux, as the compute units.

We transitioned to just using the Raspberry Pi to simplify platform support and handle a

greater variety of peripherals thanks to I/O ports and pins other than USB and Ethernet.

Each FlexScale box has light (luminance), explosive gas, passive infrared (motion detection)

sensors, an accelerometer (acting as a seismograph), and thermometer as well as a Wi-Fi

2https://github.com/KyleBenson/scale_client#building-a-scale-box

61

https://github.com/KyleBenson/scale_client##building-a-scale-box

Figure 4.2: Wiring diagram for the hacked smoke detector device.

dongle and a Sigfox UNB adapter. A powered USB hub supported the two USB sensors and

two USB network adapters on the Sheevaplug and older Raspberry Pis.

In contrast with the larger and more extensible FlexSCALE Box, we experimented with ded-

icated devices to monitor a single sensor and report its readings with almost no analysis. We

were particularly interested in retrofitting existing household sensing devices and connecting

them with the SCALE service. Therefore, we modified an off-the-shelf 9-volt smoke detector

and attached it to an Arduino Micro for the purpose of monitoring the voltage level of the

battery. See Figure 4.2 for the wiring diagram used for this device. The Arduino constantly

sends (every ˜4 sec.) the measured voltage level to DIME via a Sigfox adapter. If this level

drops significantly, indicative of the alarm going off, the server sends an alert. The theory

here is that the alarm consumes more power than just the sensor itself and so the additional

function drops the voltage level of the battery significantly. The Arduino and Sigfox devices

fit into a small project box, similar in size to a mint tin.

To complement the aforementioned dedicated and flexible sensing platforms, we also built

an Android application for personal fall detection. It analyzes the device’s accelerometer

62

readings using the algorithm presented in [41]. Upon detecting a user falling, the applications

presents them with an option to cancel the alert, thus preventing false alarms, before a

countdown timer expires and the phone publishes the alert via MQTT to call for help.

To test and showcase how existing proprietary systems could integrate with DIME and

SCALE with minimal modifications, we partnered with Senseware, a Virginia-based startup.

They build modular sensor devices that transmit data via mesh networks to a gateway for

upload to a web-based cloud service. The user-friendly devices are easy to deploy and

can have a variety of connected sensors (i.e. air quality, humidity), making them an ideal

candidate to expand the SCALE testbed with commercial hardware. Senseware integrated

their sensors’ data by forwarding it to a Senseware-specific HTTP endpoint to facilitate this

connection similar to how we integrated Sigfox devices. The data still goes through their full

cloud service as well and therefore is visible in their own dashboard as well the SCALE one.

4.2.2.3 Software Design

We wanted a cross-platform extensible software package that runs on the majority of devices.

This package should be modular and support plugging in different component implementa-

tions (e.g. new sensors or network protocols) without disrupting other modules. Adding or

changing hardware components should not require any software changes but should rather be

handled through a simple configuration file. We also needed a lighter-weight client software

stack for constrained devices, but this would likely be less reusable as these often require

device-specific optimizations and/or libraries that would decrease flexibility and portability.

Interested readers can find the most up-to-date version of the SCALE client software at

https://github.com/KyleBenson/scale_client. Figure 4.3 shows the first prototype

FlexSCALE software we built to address the above requirements. Figure 4.4 shows an up-

dated class diagram for the software that more clearly elaborates on the inheritance model

63

https://github.com/KyleBenson/scale_client

Figure 4.3: The original SCALE Client architecture.

64

Figure 4.4: The latest SCALE Client class diagram.

we used. This Python package connects with various sensor devices attached to the compute

system, records data, and publishes events according to some policy. Data originates at an

instantiation of the abstract Sensor class, which allows us to rapidly connect new sensor

types and define new virtual sensors. Sensors create SensedEvents, which encapsulate the

sensor data schema described in Section 4.2.1.1, and place them in a queue for reporting to

DIME or further analysis by relevant VirtualSensors.

Each networking protocol that connects the Client to DIME is abstracted with a concrete

instantiation of the EventPublisher class. Similar to adding new sensors, this allows us to

easily add new protocols and API endpoints with minimal additional code. It currently

supports MQTT via Wi-Fi or Ethernet, Sigfox ultra-narrowband (UNB), and local storage.

EventPublishers also provide a degree of control over quality of service (QoS), currently just

in the form of transmitting higher-priority events first. We added this feature early on to

address the UNB transmitters’ low bandwidth.

We used SaltStack 3 for configuration management: remotely deploying and updating soft-

ware on the sensor boxes. We chose SaltStack because it is highly scalable, supports redun-

dant master servers, is written in the Python language used throughout SCALE, and (most

importantly) connects with devices deployed behind network address translators (NATs)

3http://www.saltstack.com/

65

http://www.saltstack.com/

as are commonly found in residential homes. Our configurations for the original SCALE

deployment can be found at https://github.com/KyleBenson/ScaleSaltConfig.

4.2.3 Analytics

The SCALE analytics service monitors sensor data and events streaming from DIME and

publishes detected emergency events, which may trigger alerts to individuals when appro-

priate as described in Section 4.2.4.1. Refer to Figure 4.5 and the description below for how

we designed and implemented the analytics server.

We implemented the analytics engine as an asynchronous event-driven Python server that

acts on sensed events in accordance with their type using appropriate event-handlers. Thus,

adding new sensor and event types only requires additional programming by end application

developers, not those responsible for server development. The code implementing this server

is available at https://github.com/KyleBenson/SmartAmericaServer.

The server, deployed on the IBM BlueMix platform, receives sensed data through Eclipse

Paho’s MQTT client [144] and routes it to the appropriate event-detection function. These

functions, which we refer to as virtual sensors, convert lower-level events to higher-level ones

(e.g. alarm buzzing to smoke detected to possible fire), escalating events and publishing

them back to DIME. When a possible emergency event is detected, SCALE may alert a

resident as described in Section 4.2.4.1.

We used the above incremental approach as it allows different server components to live on

or replicate across separate machines and locations, improving scalability, response times,

modularity, reliability, and ease of creating an audit trail. An audit trail exposes intermediate

events to external entities, which helps in building trust in particular event sources (i.e.

sensing devices, event-detection algorithms) and adding new hooks for separate services to

66

https://github.com/KyleBenson/ScaleSaltConfig
https://github.com/KyleBenson/SmartAmericaServer

Figure 4.5: Depiction of data flow and database tables in the analytics and alerting services.

67

make use of these states. We accomplished this distributed approach using the Celery task

queue manager 4 that distributes event-handling across worker processes.

Some historical storage of recent events is necessary to detect changes over time and dis-

ambiguate sensor readings indicative of the same event. We used the Django framework’s

object-relational mapping (ORM) to abstract the PostgreSQL database tables seen in Figure

4.5 as Python objects. Periodically, the database removes old events, though in the future

we will instead archive them for historical analysis and audit purposes.

4.2.4 Actuation

This subsection describes SCALE’s mechanisms for interacting with and alerting human

users.

4.2.4.1 Alerting

Once possible emergency events are detected, concerned individuals must be notified in a

timely, reliable, accessible, and interactive manner. Users will receive alert messages after

connecting their home monitoring devices to SCALE and registering these devices and con-

tact information with the alerting system. Ideally, this system could eventually integrate with

emergency dispatch centers to automatically alert authorities. To mitigate false-positives,

it supports a confirmation step in which the user determines whether the emergency is real

and emergency personnel should be alerted.

Because SCALE especially aims to make the system as accessible as possible, especially

for lower-income and/or less technologically-savvy users, it does not require access to a

computer or smartphone when receiving and acting on alerts. It supports simple phone calls

4http://www.celeryproject.org/

68

http://www.celeryproject.org/

so that users with land lines, but no cell phones, can still use it. It does support SMS (text

messaging) as most people in the US nowadays have cell phones, especially since government

programs such as 5 exist to provide them to low-income residents.

While a smartphone application is a potential future addition, we opted to use an Internet

telephone service for alerting. We chose Twilio, which has a rich API for programming inter-

actions with users through the server’s web interface, to issue SMS/phone call alert messages

and handle correspondence with participants (event confirmation/rejection, registration/un-

registration, contact method preferences, etc.).

When the analytics subsystem detects a possible emergency, it sends an Alert message

through MQTT to instruct the alerting subsystem to contact the registered user(s) of the de-

vice from which the sensor data originated. This contact info is retrieved from the database

as shown in Figure 4.5, and the database stores an Alert entry representing this communi-

cation. When the contact responds, the database updates the state of the Alert to rejected

if the user responds with “emergency” or presses 1 and event confirmed if the user responds

with “okay” or presses 2.). If no one responds within some amount of time (currently 30-60

seconds) of initiating the alert, a trigger fires that escalates the emergency event. Currently,

it is set to confirm the event, but public officials likely would adopt a different policy that

perhaps dispatches an individual to investigate further rather than scrambling an entire unit.

4.2.4.2 Dashboard

To help dispatch personnel visualize alert events and sensed data, we built a dashboard for

the SCALE system. We wanted an intuitive, lightweight, web-based solution so we could

later port it to mobile devices and borrow functionality for a smartphone application aimed

at residents for monitoring their personal SCALE deployment(s). Figure 4.6 shows the main

5http://www.fcc.gov/lifeline

69

http://www.fcc.gov/lifeline

Figure 4.6: The main view of the SCALE dashboard.

user interface.

The main view of the SCALE dashboard presents a list of recent alerts, their locations in a

Google Maps view, and a summary of the number of high, medium, and low priority events.

It includes contact information about the individual alerts and a currently non-functional

interface for calling, texting, or emailing residents. The user can also confirm or reject

events manually. A second view presents raw sensed events as they arrive, which is simply

for debugging purposes. The dashboard, also hosted on BlueMix, is built on top of software

designed by BioBright. It is written using Node.js at the backend, Javascript and Twitter

Bootstrap in the front-end, and a browser MQTT client.

70

4.3 Conclusions & Research Challenges

Our experience in designing, developing, and deploying the first iteration of SCALE described

in this chapter has proven the feasibility of a distributed IoT approach to improving resident

safety at a low incremental cost. This initial exploration underwent many extensions and

expanded to include additional application domains across multiple continents. Because

SCALE serves as a research testbed, much further engineering and development would be

necessary before it could be deployed in a real mission-critical setting. However, the lessons

we learned helped drive future research and development for IoT. We discuss some of these

topics below and present our future plans and vision for SCALE. Some of the conclusions

we draw here directly influenced the projects described in Chapters 5,6,7.

4.3.1 Resilience Concerns

From a hardware perspective, our biggest lesson learned was that cheap sensors break. We

purchased many of our devices online for under $10-20 (US) and some failed. The explosive

gas sensors in particular tended to burn out after a few uses. While some of these issues can

be alleviated by using better quality components, this likely drives up the price of the device

without completely ensuring reliable operation and so care must be taken to plan for these

issues.

Regarding power, we found that the number of peripherals on the Raspberry Pi required

a higher-amperage power adapter. We also used a powered USB hub to support all of the

USB sensors and wireless adapters used on the Sheevaplug. We experimented with battery

backup and determined that the system dies after about 10 hours. Future work will explore

graceful degradation of devices (turning off network adapters, adjusting sampling rates, etc.)

to improve this battery life.

71

We also found working with prototype devices inside a large project box easier than trying to

cram them all into a small one. We frequently needed to troubleshoot or change hardware and

so having room to work simplified this process. Because we found using both a Sheevaplug

and a Raspberry Pi in one box to be troublesome due to the former’s constraints in supporting

peripherals and having an outdated platform, we are interested in finding a box with a

smaller form factor as the small cable boxes were still viewed as large and imposing. We

are considering 3D printing our own design so we have ample yet not excessive room and

custom fittings for all the components.

From a software perspective, we found the design of the client around simple abstract pipeline

components to be very flexible when adding new hardware support.

Since the first SCALE effort, we experimented with additional networked sensor devices to

extend the coverage of a SCALE deployment and improve its resilience. We added support

for an ad-hoc Wi-Fi mode that supports distributed emergency detection and alerting even

during power and network failures by having FlexSCALE boxes exchange data with each

other directly. We also added inexpensive battery-powered microcontrollers with attached

sensors and IEEE 802.15.4-based wireless so additional sensors can be deployed throughout

a residence without requiring additional FlexSCALE boxes.

4.3.2 Data Exchange

While we found MQTT suitable for rapidly developing an IoT system, we did find it limited

due to its simplistic lightweight approach. Below we outline some considerations for future

IoT protocol standardization efforts and security considerations for data management in IoT

systems.

72

4.3.2.1 Standards Considerations

When designing our analytics system and topic hierarchies, we found MQTT’s lack of sup-

port for fine-grained queries somewhat limiting. It does not handle ranges at all and the

expressiveness of wildcards cannot match that of regular expressions. For example, to per-

form a query over a target geography one would need to define a tag for that geography, which

limits flexibility for defining new targets. Our current inefficient solution is to subscribe to

all events and filter them based on content. Future protocols should consider the desire to

issue such queries and filters as sorting through the results by content on the client-side may

be intractable with the larger-scale systems the IoT vision promises.

A major advantage of MQTT is its lightweight nature and simplicity. Future IoT standards

should follow this model, while allowing for extensions that provide additional services when,

but only when, developers/deployers wish to use them. For example, the size of the DDS

[142] standard may intimidate some newcomers, whereas getting started with MQTT takes

only a matter of minutes. Protocol designers must keep in mind that many IoT developers

will enter the market with little systems experience or come from a Web 2.0 background.

As such, providing a simple intuitive starting point, perhaps with RESTful APIs, for them

to develop systems will help lower the barrier to entry, resulting in more projects with

diverse applications. This approach appears to have worked very well with Node.js, which

has enjoyed rapid adoption in part due to allowing the developer community the freedom

to pick from a variety of options for accomplishing a given task rather than specifying one

standard way. To further lower this barrier, future standards should also allow developers to

use familiar tools, languages, etc. whenever possible. For example, they should emphasize

interoperability with other protocols, such as how CoAP [71] can interoperate with HTTP.

73

4.3.2.2 Security and Privacy

While we did not implement security mechanisms in SCALE beyond requiring SSH keys

to remotely access devices, we did discuss security and privacy implications throughout the

project and plan to address them in future versions. MQTT supports authentication and

identification directly, but not authorization. It can be run using TLS so that the username

and password used for authentication are encrypted during transmission. Identification is

handled using a unique identifier or a public digital certificate, with the latter clearly in-

volving management of keys. Some MQTT server implementations provide authorization as

an added service. In a scenario where user privacy and integrity of the data and communi-

cations is crucial, such a server should be used. This allows the server to determine which

client devices have access to which resources, i.e. which topics they are allowed to publish

and subscribe to. This would prevent unauthorized individuals from retrieving readings from

devices they do not own as well as prevent publishing of information to a topic representing

a different device. This does not, however, validate the actual data in question, which could

still be faked by an individual with the proper secret keys.

One open concern is that of the devices’ physical security. As they are located in residents’

homes they could be physically tampered with, moved, or have their code modified by

knowledgeable users. This could result in undefined behavior, misleading event reports, or

completely spoofed data. This is one of the main reasons for involving human-in-the-loop

sensing in order to confirm events before notifying emergency personnel. Whether this step

is truly enough to ensure correctness of the data in question is a policy question outside the

scope of this work.

74

4.3.3 Analytics

When building the SCALE Server, we aimed to design the analytics module to promote

code reuse such that new complex analytics could be derived from existing components with

minimal modification. We successfully used an event-driven model that listens for sensed

events of some type, transforms them to represent a higher-level conceptual event, and then

publishes them back out through DIME for further analysis or immediate action. In this

manner, the analytics became a pipeline through which data streams flow, allowing other

pipelines to hook in at any step to work off intermediate results for a different purpose.

For these reasons we are considering redesigning the analytics module using more suitable

libraries such as a stream processing system. We hope this will simplify the implementation

and eventually provide a query language suitable for less-technical users to create queries

and glean useful information from IoT data.

We envision the future of IoT platforms as enabling non-programmers to build and deploy

analytics by merely composing these functions together and changing exposed parameters.

An example attempt at building such a development environment is Node-RED [139], a

visual graph-based programming platform for IoT that closely matches this paradigm.

75

Chapter 5

Geo-aware Resilient Overlays for

Cloud-centric IoT Data Collection

In this chapter, we begin our exploration of resilient communications for IoT data ex-

change by considering cloud-centric data collection. We begin this investigation in a highly-

challenging earthquake-detection scenario and propose techniques for collecting data from

a distributed seismic sensor network despite wide-area infrastructure failures. Because we

assume no direct control over the routing infrastructure and start with only the IoT devices

and cloud analytics service themselves, we propose a resilient overlay network (RON)-based

approach. In this way, we essentially treat the IoT devices as edge resources that facilitate

an SDN-like mechanism for routing around possible network failures. The cloud service

configures them according to application resilience requirements and the underlying phys-

ical network topology. As we put together the complete approach proposed in this thesis,

the reader will understand how the techniques and algorithms discussed in this chapter can

easily be adopted for direct management through SDN APIs when possible.

76

5.1 Chapter Overview

This chapter focuses on cloud-centric resilient data collection within the context of the

earthquake-detection application described in §3.1.2. Hence, we address the IoT data ex-

change challenge of large-scale geographically-correlated failures due to a high-magnitude

earthquake. Such failures hamper the communication of critical safety data to the backend

cloud service where it is stored and analyzed. We therefore propose exploiting redundant

network paths to improve data collection. To accomplish this, we extend the the notion of

resilient overlay networks (RON), originally designed in the context of wired networks, to

IoT deployments. For a detailed background on RON, see §2.2.3.

To capture and exploit the geographically-correlated nature of the deployed infrastructure

and associated damaged regions in disasters, we propose the use of Geographically-Correlated

Resilient Overlay Network (GeoCRON) [28, 29]. We design the GeoCRON middleware to

extend the RON concept with awareness of the geographic placement of nodes in the underlay.

It uses this information, as well as knowledge about the underlying routing infrastructure,

to choose multiple geo-diverse routes in order to improve the chances of a message reaching

the destination during large-scale geo-correlated failures.

We study this approach within the context of massive network failures affecting the two

different community IoT systems within the same geography shown in Fig. 5.1. In addition

to the seismic sensing network, we also consider a smaller infrastructure-based network

of wireless devices embedded in a smart water distribution network. The latter reports

water pressure changes at pipe junctions that may be indicative of leaks that require human

intervention. See §5.4.2 for more details about this system. We consider the GeoCRON

approach both with and without the additional water sensing infrastructure that enables

cross-deployment data exchange collaboration.

To study geo-correlated failures on this combined network infrastructure, we utilize simula-

77

Created by Trial Version

Created by Trial Version

Created by Trial Version

Created by Trial Version

Created by Trial Version

Created by Trial Version

Smart Community

Long-range
Antenna Location Analytics/Alerting Cloud

Operational Dispatch Center

Water Supply

Smart Home

Weather Observation

Figure 5.1: A general IoT community monitoring example with emphasis on water infra-
structure.

tions due to practical concerns that prevent real-world experimentation. We evaluate the use

of our proposed GeoCRON middleware to route messages along geo-diverse paths in order to

improve the chances of data delivery. GeoCRON measures path geo-diversity through vari-

ous formulations, and so we apply these various measures to create a family of heuristics for

choosing geo-diverse paths and compare their performance with each other. The proposed

heuristics fall into one of two classes: those with only knowledge of peers’ locations and those

with knowledge of the underlying network infrastructure and its components’ locations.

Key contributions of this chapter include:

• Discussing existing as well as new algorithms to exploit path geo-diversity for the

construction, maintenance, and effective use of GeoCRON overlays in a realistic multi-

network geo-correlated failure scenario. (§5.3)

• Deriving sensing and communications network topologies based on regional water de-

mand, which we leverage as a proxy for population density. We use these topologies

78

to inform GeoCRON about the structure of the underlying network infrastructure.

(§5.4.2)

• Validation of the diverse GeoCRON techniques with appropriate geo-diversity met-

rics using extensive simulations and analysis of improved resilience to communications

network failures. (§5.5)

• A prototype implementation of the GeoCRON reliable communication methodology in

the SCALE platform to understand operational and deployment challenges in a real

world community setting. (§5.6)

5.2 Resilient Overlays for IoT Data Exchange

We now describe how to use the IoT devices within a resilient overlay for geo-correlated

failure avoidance.

5.2.1 Failure Avoidance

Fig. 5.2 depicts GeoCRON’s network-aware approach to resilient communications. When

a GeoCRON node tries to send sensor data to the cloud server(s), it tries to maximize the

delivery rate of the data by sending multiple copies along disjoint paths to each known

server. In our earlier work [29], we explored sending one message and awaiting a timeout,

which indicates a possible network failure. The node would then try a different path, up to

a predetermined number of retries. However, we found that this frequently required a full

5-10 seconds to deliver the majority of the messages. Given the low-latency requirements of

our seismic sensing scenario, we instead opted to send all message attempts at the same time

to decrease latency (i.e. setting the message timeout to 0). We note that other IoT systems,

79

Figure 5.2: The GeoCRON approach leverages infrastructure topology information to avoid
failures through geo-diverse overlay routing.

such as the water sensing network, may opt to relax this constraint and use a hybrid of these

two techniques, but we save this study for future work.

We define the multi-path fanout k as the number of message copies sent to each server. This

value is configurable within the client code and is experimentally determined to maximize

data delivery without introducing too much congestion into the network. One could also

envision a more intelligent selection of k based on knowledge of the network topology and

assumptions regarding the impact of the failures, perhaps derived from the level of shaking

perceived by the seismic nodes. The first of these packets is sent directly to the server

without any overlay hops to minimize latency and overhead. The remaining k − 1 are sent

using geo-diverse overlay paths chosen from the available peers as described in §5.3. In [95],

the authors discovered that the vast majority of node pairs only require a single overlay hop

in order to exhibit the same diversity as multiple hops. Therefore, we use as each possible

path a 2-hop overlay path where the first hop is some overlay peer and the second is the

80

Seismic Sensor Nodes Water Sensors

Internetwork

Wireless
Base

Stations

Server

GeoCRON
Overlay

Geo-diverse routing for
communication resilience

Observation
Network

Physical
Communication

Network

Figure 5.3: An overview of the layered multi-system architecture being studied.

destination server. The list of overlay peers from which to choose is configured by the cloud

server as described below.

Corresponding to the two deployment scenarios, we consider a resilient overlay network

(RON) comprised of two types of nodes, i.e. seismic sensing nodes and the wireless bases-

tations that receive the water sensor readings (see Fig. 5.3). These two deployments clearly

differ in terms of timing constraints on the data delivery, last-hop connectivity, and physical

placement of network nodes.

5.2.2 P2P vs. SDN Overlay Construction

GeoCRON routes around network failures using end hosts (i.e. IoT devices) with stable Inter-

net connections and ample power supplies. This avoids reliance on Internet Service Providers

adopting and deploying new technologies (i.e. SDN). Networked systems commonly follow

the paradigm of pushing intelligence towards the edges of the network to streamline the core

81

and allow heterogeneous logic on these edge devices. Because many IoT devices, including

our model seismic sensing nodes, feature general CPUs, we can easily add software intelli-

gence to enable middlewares for sharing resources between IoT devices. This allows us to

share networking capabilities and implement the aforementioned RON approach to signifi-

cantly enhance communications resilience in IoT systems. Thus, we exploit the existence of

a multitude of end-host devices without requiring Internet Service Providers to offer addi-

tional services in their networks. Our proposed IoT deployments allow us to add this logic by

running the GeoCRON overlay on the seismic nodes, which run on commodity computers,

and water sensor basestations, which are assumed to be running high-performance hardware.

Because GeoCRON nodes report data to a cloud service for analysis and storage, we consider

GeoCRON a hybrid peer-to-peer network. Each node must at least know the locations and

IP addresses of its peer clients; specific heuristics will request additional information (e.g.

physical route to the other node) in order to facilitate the choice of which route to use.

Note that we assume a centralized controller (i.e. the cloud server) configures the overlay

such that clients need not maintain contact with more hosts other than those they might

use as overlay hops. This fits with our general SDN-like approach; the overlay peers can

even be thought of as virtual switches in such an architecture. However, one might consider

designing a fully-P2P implementation of the GeoCRON system for more decentralization.

Such a design must consider which peers each node maintains contact with (i.e. neighbors

in the overlay). See §5.6.1 for a discussion about some of these considerations.

5.3 Algorithms for Geo-Diverse Route Selection

Resilience to Internet failures has been extensively studied, though few works address massive

geo-correlated failures. See §2.2 for an overview of some approaches. Here we define the

algorithms GeoCRON uses for geo-diverse route selection.

82

5.3.1 Model and Notation

This section introduces notation that we use to model and reason about GeoCRON formally.

Network Model Let G = (V,E) be the graph defining the network under consideration,

where V is the set of nodes representing routers and end hosts and E is the set of undirected

edges representing physical links between nodes. Each edge e ∈ E is assigned a weight

w ∈ N to represent the latency (as measured in milliseconds) of the links. For the purposes

of this study, we assume the latency of a link is constant (other than queueing delays) and

bidirectional.

Node Locations Each node v ∈ V is assigned a physical location as measured in geographic

coordinates. Let loc : vi → (xi, yi), for xi, yi ∈ R, be the function mapping each node vi to

its physical coordinates and dist : (v0, v1) → R be the function mapping each node pair to

the physical distance between their locations.

We consider each node as belonging to some region, which is some geographic area within the

entire plane under study. Let R be the set of regions under consideration, reg : V → R map

each node to the region it is located in, and RD ∈ R be the location of the disaster. In our

discussions, we consider each region as a cell within a grid and so reg assigns each v ∈ V to

the cell whose bounds v’s location falls within, which could be gleaned from GPS, IP address,

or user-specified data. Note that although these approaches may not give perfectly accurate

location information, the coarse granularity of reg means that they should reasonably suffice

for our purposes.

Overlay and Server Nodes Let S ⊂ V be the servers (sinks) to which each sensor node

reports data to.

Network Paths When a sensor node sends a message to some server s ∈ S the packet will

travel a particular path through the network as determined by the underlying infrastructure.

83

Let p = (v0, e0, v1, ..., en−1, vn), for vi ∈ V, ei ∈ E, be a sequence of nodes and interconnecting

edges that represent such a path. When a sensor node chooses to send such a message using

overlay nodes as intermediaries, we may consider only the sequence of overlay peers rather

than the entire physical path. As such, let h = (o0, ..., on), for oi ∈ O, be the sequence of

overlay peer hops taken by such a message, where on ∈ S is the final destination server.

Currently, we only consider 2-hop overlay paths in which the second hop is the destination

server s0. That is, h = (o0, ..., s0). Let also P = {p0, p1, ...} be the set of all possible paths

in G and path : h → p ∈ P map overlay paths to physical topology paths. This is done by

joining together the physical paths from the source peer o0 to the first hop o1 with with the

path from the first hop o1 to the second hop o2 and so on.

Modeling Path Diversity In order to assess the diversity of a potential path choice, we

must define some model for quantifying it. We define diversity as a measure of how different

two paths are in terms of shared components, proximity of component locations, or even

both. The goal is to identify paths that are less likely to suffer geo-correlated disruptions at

the same time. Let D(pa, pb) : {pa, pb} → R be the abstract diversity function for comparing

two physical paths. Let D(ha, hb) : {ha, hb} → R be the abstract diversity function for

measuring the diversity between two overlay paths. These function templates are used to

measure the diversity according to one of the concrete heuristics defined in §5.3.2.

5.3.2 Geo-diverse Path Heuristics

In this section, we propose a family of techniques and heuristics used to rank the geo-diversity

of various overlay path options. These heuristics are used by GeoCRON (see Algorithms 1

and 2) to select the best overlay paths with which to deliver data. When a GeoCRON

node o1 has data to send to the server, it first sends the data directly without use of the

overlay as described in §5.2. For the sake of discussion, let us just consider the case of a

84

R3
R1

R5

H3

Cloud

H4

H2

H1

R2

R4

R6H5

R8

H6

H7

H8

R7H9

P0

P1
P1

Figure 5.4: A GeoCRON node chooses an overlay based on geographic information.

Algorithm 1: Generalized single-path resilient overlay selection algorithm. Note that
GetDiversityScore and GetTieBreaker are virtual functions in our implementation, and
so their return values depend on the specific heuristic in use.

1 Function GetBestPath(s)
2 D∗ ← 0
3 h∗ ← NULL
4 for o ∈ O do
5 h← 2-hop overlay path to s via o
6 D ← GetDiversityScore(h)
7 if (D > D∗) or (D = D∗ and D∗! = NULL and GetTieBreaker(h∗, h) < 0.0)

then
8 D∗ ← D
9 h∗ ← h

10 if h∗ is NULL then
11 ThrowNoValidPathException()

12 return h∗

85

Algorithm 2: Generalized multi-path resilient overlay selection algorithm

1 Function GetBestMultiPath(k, s)
2 ClearCurrentMultiPath()
3 h← one-hop direct overlay path to s
4 AddToCurrentMultiPath(h)
5 H ← ∅
6 while H.size() < k
7 h← GetBestPath(s)
8 H.add(h)
9 AddToCurrentMultiPath(h)

10 return H

single server s acting as the destination for this data. Let p0 = (o1, e1, v2, . . . , s) be this

non-overlay direct path to the destination s. If configured with k > 1, o1 will also send

out additional packets along geo-diverse overlay routes P ∗ = (p1, . . . , pk−1) to s. Clearly

it is impractical to assume that o1 will have knowledge of the failures along overlay path

p1 = (o1, e1, v2, . . . , oi, . . . s) before either attempting the path or receiving some (possibly

out-of-band) communications regarding the failures. Therefore, GeoCRON nodes must make

the best local decision possible regarding which geo-diverse paths to use.

In our earlier work [29], we tested various heuristics that chose paths (p1, . . . , pk−1) using

only the locations of the overlay nodes. We found little benefit from these heuristics over

the baseline (random choice of peer), and so our discussions here consider knowledge of the

underlying physical network path p1 and even the locations of the routers therein. Therefore,

when determining pi’s diversity, o1 may consider information such as the components of the

path v, e ∈ p1, the location of each router v ∈ pi, and the location of the overlay peer choice

o1 ∈ O. By exploiting this knowledge, these heuristics aim to pick paths that are more

diverse (less correlated) and therefore improve the resilience of the system to failures.

Below we discuss the implementation of various heuristics (other than Random and Ideal

since they are straightforward) used to choose geo-diverse overlay paths. They have varying

degrees of awareness regarding existence and locations of network infrastructure, including

86

the end devices. In order of decreasing topology and location knowledge, these are:

• Ideal (oracle heuristic that finds any working path),

• Gsford (router proximity-aware),

• AreaDistance (router minimum distance and path area-aware),

• Intersection (shared router and link-aware),

• Random (uniformly random path choice).

Gsford: This heuristic is derived from some our previous work [113, 114]. In [113], we

considered lessening the impact of geographically-correlated failures by picking geo-diverse

paths considering whether their routers were within some threshold distance (Tdist) of one

another. As detailed in Algorithm 13, the very first overlay peer chosen is the one with the

lowest latency. All subsequent path choices are compared with all other currently chosen

paths and penalized by one point for each router on those paths within Tdist of a router on

this path. The diversity value is the inverse of this penalty, and so the chosen path will be

the one with the lowest penalty score. This technique was applied to a geo-social notification

system (GSFord) in [114], where the heuristic gets its name from.

AreaDistance: This heuristic is based on a geodiversity metric proposed in [153]. The goal

of this heuristic is to choose physical paths that are as far away from each other as possible.

They define the geodiversity of two paths according to:

Dg(Pb, Pa) = αd2
min + βA (5.1)

Where α, β ∈ [0, 1] are configurable weight parameters, d2
min is the square of the minimum

distance between any two routers in Pb, Pa, and A is the area of the polygon bounded by the

locations of all components in Pb and Pa. AreaDistance is called to evaluate the geodiversity

87

Algorithm 3: Path diversity scoring function used in the GSFord system [113, 114].
Paths are penalized for having routers within a threshold distance of a router on another
path.

1 Function GsfordGetDiversityScore(h, Tdist)
2 H ← GetCurrentMultiPath()
3 if H.size() = 1 then
4 return 1/GetLatency(h)

5 proximity ← 0
6 p0 ← path(h)
7 for h′ ∈ H do
8 p1 ← path(h′) for router v1 ∈ p0 do
9 for router v2 ∈ p1 do

10 if dist(v1, v2) < Tdist then
11 proximity ← proximity + 1

12 diversity ← 1/(proximity + 1) // avoid divide by 0

13 return diversity

of each currently chosen path and the current possible path choice. For each path, its

aggregate geodiversity is chosen as the minimum of those when compared with all of the

other paths. The justification for this method is that although a path may be very diverse

from another, it could also be extremely correlated with another yet, and so it is geodiverse

only in so far as it is geodiverse from all currently chosen paths. Ties are broken by taking

the choice with the lower path length (number of routers and links).

Path Intersection: This heuristic is also based on a diversity metric proposed in [153].

However, it is not truly a geodiversity metric as it does not consider the physical locations

of the topology components. Rather, it simply considers whether or not the two paths share

the same components. It measures the size of the paths’ intersection, hence its name, and

measures the diversity of two paths according to the following metric:

D(Pb, Pa) = 1− | Pb ∩ Pa |
|Pa|

(5.2)

Where |Pa| ≤ |Pb|. Note that our implementation takes min(|Pa|, |Pb|) as the factor in the

88

denominator to ensure |Pa| ≤ |Pb|. Note also that we must ensure both paths have at least

one component each in order to avoid dividing by 0. Just like AreaDistance, Intersection

computes the diversity between the path under consideration and each currently chosen path,

assigning the aggregate diversity for this path as the minimum of all these. It also breaks

ties by choosing the path of shorter length.

5.4 Experimental Setup

Due to practical considerations with respect to deploying an IoT network within critical

infrastructure and testing its performance in an earthquake, we implemented and studied our

system in a simulation-based environment. We opted to use the ns-3 [8] network simulator

because we wanted to be able to modify the source code to fit our scenario. Below we

describe our simulation design and implementation, the code for which is freely available for

others to download, use, and modify 1. We then present the experiments we ran with this

simulation and discuss the results.

5.4.1 Simulation Design

To support collecting physical path information, we extended ns-3’s NixVectorRouting model,

which is used for more computationally efficient routing in large networks. This new function

returns the physical path that will be used to reach a destination (identified by its IP address).

To read our network topology and sensor locations (see §5.4.2), we created a new Topolo-

gyReader model that extends the InetTopologyReader. This new model reads in all of the

node and link information the same as for Inet, but it stores the different types of nodes in

1The interested reader can find all of our ns-3 code on the geocron branch at https://github.com/

KyleBenson/ns3

89

https://github.com/KyleBenson/ns3
https://github.com/KyleBenson/ns3

different NodeContainers so that we can properly configure each group separately. It also

sets the locations of nodes for use in the failure model.

We implemented a GeoCRON Application in ns-3 that attempts to upload sensor data to the

server(s) via multiple geo-diverse routes at a specific time. Each Application adds a slight

random delay (uniformly random within a range of 1.5 seconds) to this send time when

sending packets via the overlay so as to avoid high packet loss rates that we encountered

initially due to too many nodes sending messages at the exact same instant. We chose a small

delay and to send all multi-path messages at once because the seismic scenario requires low

latency. Furthermore, each node would be sending messages at a slightly different time in a

real scenario due to e.g. detecting the seismic wave at different times. Overlay forwarding

was handled by adding a new header that specifies the IP address of the peer hops, which is

used by overlay peers to determine where to forward a packet to. When a server receives a

message, it logs this fact in a trace file and responds with an ACK through the same overlay

path.

The parameters to consider for an experiment are all specified by command line configura-

tion. These include: disaster location, base failure probability p(fail), number of geo-diverse

paths to attempt, which heuristics and their (optional) model parameters, and the number

of times to run each unique configuration so as to average results over many different appli-

cations of the failure model, random heuristic choices, etc. The simulator iterates over all

combinations of specified parameters applying them in a particular order so as to ensure a

consistent comparison, with respect to one parameter e.g. application of failure model, be-

tween configurations. This lessens the amount of variance we see between treatment groups

and gives a more accurate estimation of the underlying distribution(s) that determine the

results.

90

5.4.2 Modeling Community Infrastructure Topologies

Our earlier work [29] considered only the seismic sensor network and generated network

topologies from the Rocketfuel [175] and BRITE [131] projects. However, we expanded

on this to include the water sensor network and we consider both as participating in the

GeoCRON overlay. As such, we now demonstrate a novel method for synthetically generating

a communications network topology from the water infrastructure topology as well as place

seismic sensors based on population density estimates derived from water customer demand.

We model the water sensor network based on the realistic water network provided by

EPANet [154, 179], a simulation framework from the Environmental Protection Agency

(EPA). It consists of 118 pipelines, 96 junctions (i.e. pipe joints), a pump, a valve, a storage

tank, and 2 reservoirs located throughout a 9.26 km × 7.77 km geographical region. Each

junction has its own level of demand (i.e. consumption), and each pipeline has different

properties including length, diameter, roughness coefficient, and status (i.e. open or closed).

To mimic a real-world setting, we place approximately 50 sensors in this network at spo-

radic junctions since these interconnection points are more prone to failures [6] and easier

to instrument. The sensors periodically send pressure/flow rate values to the cloud service

for leak detection. Because modern water networks typically do not have such sensor instru-

mentation currently built into them, we assume that these sensors are mostly retrofitted into

the infrastructure. Therefore, we assume that sensor data collection will be done wirelessly.

Because these sensor devices will likely be low-powered and frequently battery-operated,

we model the wireless network after a low-power long-range technology such as Sigfox’s

ultra-narrowband, which we used extensively in the SCALE project. Multiple wireless base

stations (BSs) would cover the water network and forward sensor data to the cloud through

either the wired infrastructure or direct BS-to-BS wireless links (e.g. microwave antennae).

To construct two realistic network topologies (one less redundant and one more redundant)

91

Seismic Sensor

Water Sensor

Base Station (BS)

Gateway Router

Backbone Router

BS Coverage

Wireless link

Low-BW wired link

High-BW wired link

Legend Unit: km

Figure 5.5: Partial network topology as an example to show different node and link types.
Other topology plots will follow this legend and exclude the legend for clarity.

92

Figure 5.6: The less redundant of our two network topologies.

93

for this study, we apply the approach given in the IGen project [150]. We started with the

sensorized water distribution network described in §5.4.2 as our target geography from which

to build communications and seismic networks alongside. By applying real-world network

design techniques to constructing synthetic networks [150], we performed the following steps

to generate the topologies:

1. Use the water demand values at each junction to derive an estimate of population

density around that point. Normalize these demands across the total demand of the

whole network to get the density.

2. Use these densities to randomly place 225 nodes representing customer locations (busi-

nesses, residential neighborhoods, etc.), each of which have community seismic sensors

running on their network.

3. Place 20 additional router nodes based on K-Means with respect to the seismic nodes’

locations.

4. Use the techniques adopted by the network topology generator IGen [150], we build

a full network topology interconnecting the routers and splitting them into gateway

routers and backbone ones. 4 backbone routers are chosen from all the router nodes

using K-Medoids. The backbone routers are linked in a full mesh topology, whereas the

gateway routers are linked into a sparse mesh using a Delaunay Triangulation. This

is an efficient way of obtaining a cost-effective topology with redundancy. It produces

alternate paths between nodes, while minimizing the number of such paths [150]. We

also removed a few redundant long-haul connections between backbone routers as this

would reduce network construction costs.

5. Augment the resulting network to have some long-haul connections outside of the city

through a few different paths to represent connections to the cloud service where the

data should all be uploaded.

94

6. Connect each of the customer nodes to the closest gateway routers.

7. Place long-range wireless basestations (BSs). We deploy 4 in the less redundant topol-

ogy and 7 in the other using K-Means [98] to place each BS at the center of sensor

clusters and then move them slightly to ensure full coverage (2km range) over the

water sensors. The basestations, which we modeled after the Sigfox ultra-narrowband

network we worked with during the SCALE project, are each linked to the closest back-

bone router via a wired link as well as to the closest basestation via a wireless link.

The wireless links between basestations represent microwave links used to link radio

towers, especially useful during emergencies when wired connectivity may be affected.

We modeled this after Montgomery County, which deploys microwave technology on

many its government buildings and radio towers to ensure continuity of operations even

during large outages.

8. Placed the cloud data center (server node) far outside target geography because we

assume nodes will always try to send sensor data outside of the affected region. This

mimics the CSN system, which runs its cloud service outside of California to lessen the

possibility of data being trapped within a failed region. The server is connected to 3

of the backbone routers so that there exist redundant options for the overlay to utilize

if the default path fails. While we only place a single server node in this topology, it

actually represents a connection to the cloud. That is, it represents many servers in

different locations, but for the purposes of studying connectivity to any of them we

only need a single node.

5.4.3 Failure Model

The failure model assumes an earthquake occurs immediately before each client reports

sensor data and that all non-server nodes and all links within the region under study are

95

Probability of the Failure

Figure 5.7: The earthquake-inspired failure model used in our simulations.

failed with a particular probability (p(fail)). We assume the server (cloud data center) resides

far enough away from the region under study so as to remain unaffected by the disaster. The

motivation for this assumption comes from the CSN deployment, which specifies its server

instance to run outside of California in order to lessen the chance of data being trapped

within the area affected by the earthquake. Our earlier work [29] assumed a uniformly-

random failure model due to a lack of fine-grained node locations. Here we have exact node

locations and so consider a more realistic version in which nodes closer to the earthquake

epicenter are more likely to fail. We loosely base this model on our previous experiences

with simulating seismic wave propagation and ground shaking intensity [24, 25].

As depicted in Fig. 5.7, non-server nodes and links fail with a probability inversely propor-

tional to the network component’s distance from the earthquake’s epicenter according to the

96

following equation:

p(fail)

2D∗S/B
(5.3)

Where p(fail) is the base failure rate input into the simulation, D is the distance from the

component to the earthquake epicenter, S is a factor that determines how quickly p(fail)

decreases with distance D, and B is the length of the square boundary representing the

entire region under study.

All failures happen at the same time (before the Applications attempt data upload), although

we are exploring the use of a more sophisticated model that would allow for dynamic evolving

failures to represent e.g. propagating seismic waves, secondary failures, aftershocks, and

other disasters such as tornadoes, floods, etc.

5.5 Experimental Results

This section describes the results of our simulation experiments. We ran each unique con-

figuration of simulation parameters 24 times. For each unique parameter configuration, we

averaged the results of all the runs to lessen the effects of edge cases and better compare the

experimental groups with each other.

To quantitatively compare each experimental group, we use the delivery rate of the individual

nodes’ original sensor data message. That is, a message counts as delivered if at least one

copy of it reaches at least one server. This message count is normalized by the number of

active (non-failed) nodes so that this delivery rate falls in the range [0, 1]. The plots below

show this delivery rate as a function of time. Note that the starting point of the curves in

97

these plots represents the performance without the overlay. This is because the messages

sent directly to the server go out first and the overlay messages are sent after a short time

delay. Note that in the legends each experimental group is labeled with the name of the

heuristic and the following parameters in brackets:

• f - failure probability

• k - multipath fanout

• D - distance threshold for Gsford heuristic

5.5.1 Comparing Geo-diverse Path Heuristics

Before comparing the various heuristics with each other, we had to identify a somewhat

narrow set of parameters to run them with in order to avoid the combinatorial explosion of

exploring every possible configuration, which would make each simulation run prohibitively

long. We settled on a p(fail) of 0.1, though we also experimented with 0.2, 0.3, and 0.5 (see

below). For the multipath fanout, we used k = 5 (though we also used k = 3, k = 9, and

k = 17 as described below) based on the findings in [153] that some topologies showed strong

increases in diversity for k < 4 whereas others showed strong increases for k < 7.

For Gsford’s Tdist parameter, we ran experiments on the values Tdist ∈ {20, 30, 40, 50, 75, 100,

1000, 2500}. The Gsford heuristic performs better for smaller Tdist values, which intuitively

makes sense as setting this value to 1 would essentially turn it into an approximation of

the Path Intersection heuristic, which we show below performs the best. We settled on

Tdist = 30 as performing generally well both in this current experimental setup as well as in

some previous studies using different randomly generated topologies.

We also ran experiments on different disaster locations and on both the less redundant

98

and more redundant topologies we created. The results described below hold across these

different parameters as well.

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
Time (seconds)

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76
D

e
liv

e
ry

 R
a
ti

o
 Performance of Heuristics

areageodivrp[f=0.1,k=5]
gsford[f=0.1,k=5]
ideal[f=0.1,k=5]
intergeodivrp[f=0.1,k=5]
rand[f=0.1,k=5]

Figure 5.8: The delivery rate for each of the heuristics.

Fig. 5.8 shows the results comparing all the heuristics described in §5.3.2. Recall that the

Ideal heuristic represents the upper bound on the delivery rate we can achieve with overlay

routing. We see that Gsford and Path Intersection perform similarly, though the latter has

a clear slight advantage. It is interesting to note that Path Intersection would be easier

to implement in a real system as it does not need to know the physical locations of the

routing components along a physical path. Because of the above two facts, we chose Path

Intersection as our best non-optimal heuristic and use it in a few experiments described

below. The AreaDistance heuristic does not appear to perform particularly well, especially

as it is usually matched by the Random heuristic, which has the simplest implementation of

all.

99

5.5.2 Comparing Other Parameters

We also ran experiments to explore how the multipath fanout and failure probability affect

the delivery rate.

Fig. 5.9 shows the results for using k ∈ {3, 5, 9, 17} with the Path Intersection heuristic.

We see that using k = 5 achieves almost as high an improvement as with higher values,

which appears to reproduce the results in [153]. When considering the detrimental effects of

too many message copies flowing through an already-challenged network, we believe using a

smaller value for k to be ideal.

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
Time (seconds)

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

De
liv

er
y

Ra
tio

 How Multi-path Fanout Value Affects Resilience

intersection[f=0.1,k=17]
intersection[f=0.1,k=3]
intersection[f=0.1,k=5]
intersection[f=0.1,k=9]

Figure 5.9: The delivery rate for varying multipath fanout values.

Fig. 5.10 shows the upper bounds (using the Ideal heuristic) on delivery rates for 1 and

2 servers and f ∈ {0.1, 0.2, 0.3, 0.5}. This demonstrates how impactful a slight increase in

p(fail) can be on the network’s performance. We see that the curves tighten with higher

p(fail) values, indicating that the performance improvement becomes less during more fail-

ures as fewer working paths are available. When the percentage of network components

100

failing goes beyond 25% it appears as though the delivery rate expected drops below accept-

able values, even with the use of RONs.

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
Time (seconds)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
De

liv
er

y
Ra

tio
 Theoretical Resilience Improvement for Various Failure Rates

p(fail)=0.1
p(fail)=0.2
p(fail)=0.3
p(fail)=0.5

Figure 5.10: The theoretically optimal delivery rate for even higher values of p(fail).

5.5.3 Sharing Network Resources Between IoT Deployments

To study the possibility of both IoT deployments joining the same GeoCRON overlay and

sharing network resources, we ran some experiments in which we applied three different

treatments of which nodes participate in the overlay: only seismic, only water sensor bases-

tations, and both types of nodes. The previously presented results above are from this last

case where all IoT nodes actively participate. For this experiment, we isolated only the

results of one network or another (i.e. only seismic nodes both in the case where they were

the only ones participating and also when they could use the water sensor basestations as

an overlay).

We found that combining the overlays did not actually have a significant impact, either nega-

101

tively or positively, on the delivery ratio. We believe that this result is due to a combination

of several factors. First, the density of the seismic sensor node deployment and the fact

the overlay topology is fully connected in the simulations means that the seismic nodes are

already capable of finding nearly all of the same paths using only seismic node peers and so

the addition of using the basestations does not open up many further possibilities. Second,

the structure of our network topology is such that the basestation nodes are already highly

resilient and so do not benefit from using the seismic nodes as overlay peers. Because the

basestations are connected to each other with long-range wireless links that do not fail when

the failure model is applied, they can easily contact each other to route around failures. We

actually noted that the use of GeoCRON resulted in achieving a 100% delivery ratio for most

scenarios when p(fail) = 0.1. Therefore, we see that the application of GeoCRON does gen-

eralize across different types of IoT networks beyond the seismic sensing scenario. Because of

these findings, we intend to repeat these experiments with different network topologies and

scenarios in the future in order to determine whether these results generalize across further

networks and IoT deployments.

5.6 Prototype Implementation

We now discuss practical system design considerations as well as our initial prototype. To be-

gin testing GeoCRON in real-world settings, we created an initial prototype implementation

as an extension to the SCALE project described in Chap. 4.

5.6.1 Fully Peer-to-Peer Overlay Considerations

We now consider some practical implementation considerations if one were to implement

GeoCRON as a fully peer-to-peer network rather than our proposed centrally-controlled (i.e.

102

SDN-like) architecture. In order to pick an overlay peer to help create a geo-diverse path to

the destination, each GeoCRON client must know about other clients in the network. All

GeoCRON nodes must at least know the locations and IP addresses of these peer clients;

specific heuristics will request additional information (e.g. physical route to the other node)

in order to construct the overlay. As IoT networks can scale to a large number of nodes,

it is clearly impractical for each client, which typically runs on a low-powered embedded

computer, to maintain this information for every other client in the overlay. Therefore,

we must restrict the number of other peers known by each client to a subset of the entire

network.

The cloud service instances maintain knowledge of the full network and associated metadata,

including underlying route information, to simplify bootstrapping new nodes in the network.

When a GeoCRON node comes online, it contacts one of the servers and retrieves a list of

geo-diverse peers according to the metrics described in Section 5.3. These peers use tools such

as traceroute to gather information about the paths between them and both the server(s)

and other nodes, including physical routers and link latencies. This data is uploaded to the

server(s), where the path geo-diversity algorithms are run to select the best overlay path

choices for each node.

The maintenance of the overlay would be a crucial consideration if our system involved more

node churn (e.g. mobile nodes). However, the in situ placement of the sensors means the

overlay topology and node locations are expected to remain essentially static except due to

failures, in which case nodes are not expected to come back online quickly. Our current

architecture thus does not concern itself with overlay maintenance, but we do intend to

incorporate mobile nodes and study it in the future. It is well-known that maintaining an peer

overlay where each node in the overlay knows about O(log(n)) (n being the number of nodes)

other nodes will allow the network to scale to practical sizes. Similar to other overlay-based

systems [114, 128], GeoCRON could bootstrap nodes with the aforementioned centralized

103

approach and then allow nodes to gossip with known peers to refine these initial choices

according to some metric. For example, [128] used an simulated annealing-like approach in

which connections are chosen to decrease the distance between peers while assuring a low

probability of disconnect during random failures by keeping an average node degree. To

address more sophisticated and realistic route choice strategies, we are exploring assigning

peers based on geo-spatial metrics so that clients are aware of both nearby peers as well as

those in diverse areas. We are currently considering three different approaches:

• Assigning peers with a probability inversely proportional to their distance from the

client node

• Choosing peers to be as uniformly distributed spatially as possible by breaking the

area under consideration into a grid and picking some number of peers from each cell

• Choosing peers based on clusters (a structured approach) by breaking the area into a

hierarchical grid and choosing a predetermined number of peers from each cluster

These approaches would guarantee a client knowing about peers that are both nearby and

distant. This would allow for a client to contact another peer far away in order to request

information about additional peers in this distant region, similar to the method used by

Pastry [155] for contacting far away peers based on some key, which in this case would be

location.

Furthermore, by introducing such gossip mechanisms to GeoCRON in addition to overlay

routing, nodes can further coordinate with each other during a disaster to learn about new

peers and paths, especially if contact with the server(s) has been disrupted. In this manner,

they may share information about perceived failures and known good paths to further im-

prove adaptation to dynamic events. This can be further improved if multiple devices are

located within a local area network, especially if equipped with wireless technologies. Note

104

also that such a mechanism can be exploited to implement rich techniques for in-network

processing of sensor readings e.g. data compression, local event detection, and content ag-

gregation.

5.6.2 Extending SCALE with GeoCRON

In our initial implementation, a SCALE client using the GeoCRON overlay feature will con-

tact its SCALE server and request a list of geo-diverse peers. We implemented a location-

sensing module to collect the geographic locations of SCALE nodes, which the server uses

when running the geo-diverse path algorithms, based on their IP address or a user-specified

configuration. The SCALE client middleware contains a group of modules, referred to as

EventSinks, that handle reporting sensed events to the data exchange using the appropri-

ate networking technologies. The GeoCRON EventSink chooses a configurable number of

overlay peers, packs necessary information (e.g. server IP address) into a Google protocol

buffer (protobuf [4]), and transmits this header along with the sensed event to each chosen

overlay peer over UDP. The overlay peers read the header info and forward the packet to

the requested server.

To determine the overhead incurred by the overlay routing, we set up an experiment with

SCALE devices. We configured a GeoCRON overlay on 6 Raspberry Pis to send sensor

data (over Wi-Fi) directly to a laptop acting as the server as well as through each other.

The server recorded the timestamps at which the different packets were received so we could

determine the difference in latency from the direct message and the overlay message. We

ran the experiment a number of times and varied the number of such messages sent (100

and 1000) and the number of hops in the overlay (1-5). The results (see Table 5.1) indicate

very low latency increases when using the overlay. The latency increase appears non-linear

as we add more hops, but it has high variance, possibly due to effects of operating system

105

hops min max mean stdev
1 0.0002279 0.42008 0.02377 0.02418
2 0.0004408 0.35384 0.04049 0.03435
3 0.0004480 0.29621 0.05441 0.03706
4 0.0006402 0.34069 0.07287 0.04285
5 0.0004800 1.61702 0.12674 0.10012

Table 5.1: Latency difference in seconds between overlay and direct packet for 100 messages.

scheduling. Future work will include setting up an experimental testbed for studying the

resilience improvement of using our GeoCRON implementation in a real-world setting as

well as repeating the above experiment with devices not on the same local area network.

5.7 Chapter Summary and Discussion

In this chapter we discussed the concept of communications resilience in IoT deployments.

To motivate our research, we discussed two IoT systems (seismic and water infrastruct-

ure sensing) and the design of a realistic network topology to support them. We proposed

the use of Geographically-Correlated Resilient Overlay Networks (GeoCRON) for improving

these systems’ data delivery during a large-scale geo-correlated failure event (earthquake).

This middleware runs on IoT systems where inexpensive devices deployed in communities

communicate information with remote cloud platforms. We presented and evaluated (in

simulations) several heuristics for choosing multiple geo-diverse overlay paths in IoT deploy-

ments with varying degrees of knowledge regarding the underlying network topology. We

also discussed the design and implementation of an initial prototype system for GeoCRON

in the context of the SCALE IoT platform.

106

5.7.1 Integrating GeoCRON Into Our Proposed Middleware

GeoCRON lays the foundation of our overall middleware approach proposed in this thesis.

It provides a resilient cloud-centric data exchange through an application-layer geo-aware

resilient overlay network. The prototype implementation described previously incorporates

the data exchange logic shown in Fig. 5.11 that runs in the producers and cloud service.

However, during severe network outages that cause very high rates of infrastructure failures,

GeoCRON’s ability to avoid failures decreases dramatically as shown in Fig. 5.10. Hence,

this cloud-centric approach alone cannot support such mission-critical applications as earth-

quake detection and subsequent early warning. Next, we continue building up our proposed

middleware by expanding on the seismic scenario with the addition of edge resources to

facilitate backup analytics and early warning alerts.

Figure 5.11: GeoCRON adds data exchange logic to the producers for a cloud-centric overlay-
based resilient data exchange approach.

107

Chapter 6

Edge Communications for Resilient

IoT Data Exchange

In the previous chapter (5), we explored cloud-centric data collection in the seismic monitor-

ing scenario. However, we also identified the challenge of cloud connectivity instability during

such scenarios in §1.3.3. To this end, recall that this thesis advocates for a middleware-based

approach to resilient timely IoT data exchange for mission-critical applications without mod-

ifications to constrained IoT devices or complete reliance on cloud platforms. Consider this

challenge along with the fact that an organization such as a university campus manages

its own infrastructure and services. Therefore, such deployments can and should exploit

both cloud and locally-managed edge computing solutions. In conjunction with capturing

application and network awareness, this approach further improves our middleware’s

ability to dynamically configure the IoT data exchange and underlying network in support of

mission-critical applications. This chapter explores this concept and also introduces the data

dissemination challenge of IoT data exchange. We explore this within the seismic response

scenario given in §3.1.2. We expand this scenario in this chapter to include the concept

of early-warning in contrast to the cloud-centric collection-only approach in the previous

108

chapter.

6.1 Chapter Overview

In this chapter, we design and develop the Resilient IoT Data Exchange (Ride) middle-

ware. It uses edge resources and SDN to gather network awareness and application resilience

requirements. It leverages this awareness to pre-configure data flows for reliable operation

and dynamically respond to evolving network conditions (e.g. failures, traffic spikes) and

critical events (e.g. earthquakes). Ride’s novelty lies in its integrated cross-layer approach

to enhancing IoT data collection from devices and situational awareness dissemination to

other devices and users (Ride-C and Ride-D respectively). Ride-C employs a novel resource-

conserving cloud connection monitoring approach. It probes multiple network overlay paths

to the cloud service and, during deteriorated conditions, re-routes IoT data flows through

an alternative path or to a backup edge service. This allows seamless operation under both

normal and failure conditions. Ride-D pre-configures disjoint local multicast-based alert dis-

semination paths for edge-mode operation. To this end, it leverages and extends approaches

to multicast-based pub/sub discussed in §2.3.3. Its novel path-selection scheme leverages

network state information obtained from Ride-C and the SDN infrastructure. By adapting

information flows in the IoT system based on application semantics (i.e. resilience require-

ments) and network state, this unified end-to-end framework bridges semantic gaps between

the information and infrastructure layers. In contrast to many of the works discussed in §2,

Ride’s cross-layer integrated approach leverages both edge and cloud infrastructure, includ-

ing SDN services. It specifically targets providing mission-critical applications with more

resilient and resource-conserving IoT data collection and alert dissemination. Hence, two

key aspects of IoT deployments drive our design of Ride: edge computing and SDN.

As previously discussed in §3.5, leveraging edge resources enhances localized situational

109

awareness. By focusing on the local edge network in an earthquake early-warning scenario

(see §6.2.1), we exploit this locality and enhance the data exchange process at the edge during

cloud connectivity instability. Ride accomplishes this by leveraging local compute resources

and greater flexibility in configuring the underlying infrastructure. It coordinates with edge

networking infrastructure that we assume provides SDN capabilities and programmable in-

terfaces.

Ride utilizes SDN APIs to create and maintain resilient overlays [16] (see §2.3 and §2.2 for

more information). It treats the public Internet routes to the cloud, which we typically have

no administrative control over, like virtual SDN links. By configuring the SDN components

in the local edge network (where we do have control), this approach ensures cloud connec-

tivity through any available network paths, fail-over to edge backup services during extreme

connectivity challenges, and more resilient event routing than traditional approaches. Fur-

thermore, implementing this intelligence in the programmable network infrastructure enables

the Ride approach without extensively modifying and adding complexity to constrained IoT

devices.

6.2 Our Approach to Resilient IoT Data Exchange

Using a driving earthquake alerting and emergency response scenario, we advocate for the

resilient IoT data exchange need and Ride’s SDN-based edge computing approach to it.

6.2.1 A Driving Scenario: Smart Campus Disaster Response

Recall the earthquake detection and alerting scenario detailed in §3.1.2. The Ride project

focuses on this scenario within a smart campus environment: a small community (e.g. uni-

versity or corporate campus) instrumented with IoT sensors, actuators, and semi-automated

110

Figure 6.1: The Ride middleware leverages edge cloud resources (without IoT device modi-
fications) for network and application-aware resilient data exchange.

111

intelligence. Such infrastructure allows the deployment of emergency response applications

to improve the safety of community members. To improve reliable seismic data accessibility

and alerting during the critical initial seconds of an earthquake, we advocate Ride’s combined

proactive/reactive approach that leverages all available (i.e. still-functional) resources, espe-

cially those at the edge of the network. Ride thus extends a traditional IoT data exchange

solution to, when configured with appropriate resilience parameters, support the stringent

timing requirements of applications such as an earthquake early-warning system: reliable

rapid sensor data collection, event-detection, and real-time alerting.

6.2.2 Ride-enhanced IoT Services for Emergency Response

The geo-correlated nature of seismic events, alert recipients, and related failures in the sce-

nario above illustrates the need and value of managing and processing IoT data flows at

the edge in a network and application-aware manner. Therefore, we propose Ride-enhanced

alerting service that pre-configures cloud and edge resources to capture and quickly deliver

mission-critical sensed events to the public cloud service for regional emergency response

coordination. In response to public cloud connectivity issues, it redirects this data to edge

services for rapid and reliable generation of local awareness until such connectivity is restored.

We treat edge services as logically-centralized, although they can be physically-distributed.

Hence, edge services remain available during emergencies; future work will coordinate multi-

ple edge instances to handle service failures. We can also envision a city-scale early-warning

system as a hierarchical network of collaborating edges (i.e. systems-of-systems), each of

which independently manages their own networks and edge infrastructure.

In designing Ride’s architecture (see Fig. 6.1), we adopted a practical approach that considers

IoT deployment characteristics and constraints derived from our previous experiences. Our

primary design philosophy, avoiding modifications to constrained IoT devices and associated

112

protocols (e.g. CoAP and MQTT), led us to implement fail-over functionality using edge

services and SDN rather than e.g. device-chosen broker fail-over due to timeouts. This

also encouraged a protocol-agnostic design that extends in multiple ways the abilities of

traditional messaging-layer IoT data exchange protocols, thereby easing adoption by existing

deployments. Thanks in part to SDN, we designed Ride’s technology-agnostic approach to

exploit physical (route) redundancy in ensuring resilient data capture and delivery. This

includes leveraging heterogeneous networking technologies: local wired/wireless, Internet

overlays, long-range wireless such as LoRa/SigFox, and cellular, which is often congested

during earthquakes.

Note Ride’s generic design applies in other emergency response scenarios (e.g. tsunamis,

wide-spread fires, terrorist attacks, etc.) to maintain time-and-mission-critical services dur-

ing wide-area infrastructure failures, albeit with slightly less-stringent resilience require-

ments. Therefore, we treat application-specific analysis techniques (e.g. earthquake analysis)

as black boxes. We focus instead on the following two-step process of resiliently collecting

sensed events and disseminating alerts (Ride-C and Ride-D). This jointly enables a unified

resilient framework while separating concerns of where to collect and process data from how

to disseminate resulting alerts.

6.2.2.1 Ride Data Collection (Ride-C)

Ride-C configures resilient IoT publisher-to-data exchange event collection flows. It tracks

and adapts to local or cloud failures and determines whether further processing should

occur at the cloud or edge. Our approach monitors current network state and available

communication paths to determine when and how to collect and propagate sensed events

from IoT devices to cloud services when available or edge services when not. It captures

network state awareness and embeds it in the IoT workflow using an SDN controller’s APIs

to manage physical (or virtual) SDN-enabled switches.

113

Ride-C creates and manages resilient overlays: multiple Internet paths from local gateway

routers to the cloud that administrators typically have no direct control over. We treat

each overlay path as a virtual SDN link and refer to it as a CDP. To avoid complicating

and burdening resource-constrained IoT devices, Ride-C monitors the cloud connection itself

from the edge by probing each CDP (i.e. similar to ping). We use a custom UDP datagram

containing a sequence number and timestamp for the probe rather than ICMP echo requests

since service providers’ firewalls often block ICMP packets. This further enables directly

detecting a cloud service process’s status as it may have crashed while the cloud server VM

still replies to ICMP requests. The probe travels through its assigned CDP to a simple

cloud echo server and then back to the Ride-C service. There a control loop analyzes the

probes’ Round-Trip Time (RTT) to gather network metrics (e.g. link latency, packet loss)

and determine if a particular CDP should be avoided due to failure or congestion.

Upon detecting such problems, Ride-C responds by failing over to an alternative cloud path

or redirecting to edge services transparently to IoT devices. For simplicity, we assume a first

feasible path policy using a strict ordering of CDP preferences to maintain cloud connectivity

when possible. We leave out of scope the complex question of determining CDP preferences

in terms of: cost, network administrator policies, the interplay of multiple applications

simultaneously vying for resources, etc. Our novel adaptive active network probing technique

minimizes overhead while accounting for application-specified resilience requirements (e.g.

failure detection time). Directly querying the SDN switches’ packet counters to calculate

packet loss rate could not provide this level of control and configurability. Nor could it detect

but gracefully account for changes in the CDP’s underlying physical routes as evidenced by

a significant change in latency or jitter.

114

6.2.2.2 Ride Data Dissemination (Ride-D)

Ride-D uses an unmodified cloud data exchange when possible or resilience-enhanced edge

alerting during periods of cloud connection instability (i.e. Ride-C redirected sensed events

to the backup edge service). SDN enables Ride-D’s novel network-aware multicast-based

group communication mechanism for reliable alerting. Before a failure/congestion event, it

configures the SDN data plane with multiple pre-constructed Maximally-Disjoint Multicast

Trees (MDMTs) (see Fig. 6.2b). At alert time, Ride-D leverages up-to-date local network

awareness embedded in the data exchange workflow by Ride-C (i.e. publication routes) and

itself (i.e. subscriber responses to previous alerts) to intelligently choose from these multiple

component-diverse physical path choices. Because of the time-critical nature of alerts, it must

quickly select the ideal MDMT and therefore avoids online querying of the SDN control or

data planes.

Similar to a few other recent systems [73, 11], Ride-D utilizes the logically centralized control

plane and programmable data plane of SDN in conjunction with a pub-sub broker to translate

the pub-sub paradigm into network-level multicast. However, it does so to enable resilience

in a manner transparent to the client IoT devices and requiring only a thin middleware layer

at the edge server application. The only data exchange protocol requirement for Ride-D is

network-layer multicast support; §6.4 discusses supporting different protocols. We chose to

use network-level multicast rather than an application-layer reliable multicast mechanism in

order to improve resource efficiency (i.e. minimal packet duplication and bandwidth usage).

In edge environments infrastructure cost constraints (e.g. bandwidth and thin IoT device

clients) and challenges introduced by temporary emergency scenarios may prohibit purely-

unicast-based alerting. Furthermore, maintaining alternative paths for each alert subscriber,

as opposed to each alert group, increases system state and overhead (e.g. data structures,

SDN flow tables, and maintenance thereof). Because the preconfiguration phase uses SDN’s

centralized control plane, it can create and use more resilient multicast trees than those

115

made by many traditional techniques (e.g. PIM-SM [65]) that build single distribution trees

on-demand in response to join requests from subscribers and publishers. This flexibility

can also incorporate additional application requirements, e.g. bandwidth guarantees, cost

metrics, prioritization, etc. although we leave these out of scope.

To further improve alert reliability, Ride-D can intelligently retransmit alerts that have not

yet reached all subscribers. It retries sending the alert after a configurable timeout period

as long as some subscribers remain unreached and the number of retries has not exceeded a

specified maximum. To facilitate this retry mechanism, it maintains an alert context for a

given message and topic to track the necessary state: which subscribers have not yet been

alerted, which MDMTs were recently used, and how many more retries remain. As each

subscriber acknowledges successful receipt of the alert, Ride-D updates the alert context so

that these retries ignore that subscriber and any MDMT links that only serve it. It also

updates the STT with the response’s route back along the used MDMT. Retries ignore the

most-recently-selected MDMTs so that e.g. if some were used x+ 1 times for this alert only

those used x times will be considered. This extension to the approach originally presented in

[30] improves path-selection diversity and helps overcome the inaccuracy of our network state

estimation approach described in §6.3.1.2. When most subscribers have been alerted, Ride-D

may switch over to contacting the remaining ones individually via unicast for more precise

path selection. Note that we leave the implementation and study of this retransmission

extension for future work due to the outstanding implementation challenges we discuss later

in §6.4.

6.2.3 Ride Workflow

Ride’s workflow executes at the network edge in three phases (see Fig. 6.2a): 1) a priori host

registration and network configuration; 2) on-line network state analysis and maintenance;

116

(a) Ride’s workflow consists of three phases shown here as differently-
shaded regions starting at the top.

(b) Maximally-
Disjoint Multicast
Trees (MDMTs)
example based on
[22]’s red-blue tree
algorithm.

Figure 6.2: Ride’s resilient IoT data exchange workflow and diverse multicast tree-based
alert dissemination.

3) event-time failure-detection, adaptation, and alerting.

First, Ride registers and configures the participating hosts and network components.

It exposes an API (e.g. as an SDN controller northbound API) for the Ride-enabled edge

service to register: 1) its application resilience requirements and the available CDPs with

Ride-C; 2) its time-critical alert topic (e.g. “seismic-alert”) and the desired resilience level

(number of MDMTs) with Ride-D. Each IoT subscriber/publisher sends a normal sub-

scription/advertisement message that the SDN data plane forwards to both the unmodified

pub-sub broker and the Ride edge service. Working with the SDN controller’s APIs, Ride

processes this information to set up resilient data collection and alert dissemination routes

from/to the relevant publishers/subscribers as detailed in §6.3. This includes configuring

SDN switches (be they physical hardware or software implementations) for Ride-C’s CDP

probing/monitoring mechanism, its publication collection routes, and Ride-D’s MDMTs.

Second, Ride maintains these configurations in the online phase: it recalculates routes

117

and updates flow rules in response to network dynamics e.g. topology changes, evolving

traffic patterns, handling (un)subscribe requests from clients, etc. It monitors the CDPs for

potential failures and gathers network state awareness during data collection as described in

§6.3.1.

Third, Ride adapts to failure events to maintain service availability. Upon detecting a

CDP failure, Ride-C redirects cloud data exchange traffic through a different CDP if one

is still available or to the edge server if not. In the latter case, address translation allows

constrained IoT hosts to remain unaware of this change and seemingly continue publishing

data to the cloud network address (i.e. IPv4). The SDN switches translate this destination

address from that of the cloud server to the edge’s, route data packets to the edge, and

translate the source address of replies back from the edge server address to that of the cloud

seamlessly. When the CDP recovers, Ride-C reverts this redirection and return to normal

cloud operation.

During fail-over to edge services, Ride-D enables network-aware alert dissemination at the

edge. It selects the best of its pre-configured MDMTs, thereby improving resilience to

local failures and conserving limited network resources. Alert packets are sent to a network

address (e.g. IPv4) assigned to the selected MDMT. SDN data plane switches forward

packets matching that address along the computed dissemination routes. We also use address

translation here to avoid requiring complicated multicast configuration and software support

on constrained IoT subscribers. The last hop SDN switch translates the packets’ destination

address into that of the subscriber so that the alert appears as a unicast message from the

server. Our current implementation (see §6.4) uses OpenFlow’s [130] flow rules for packet

forwarding/address translation and group tables for multicast. However, the Ride paradigm

could utilize alternative SDN technologies, addressing schemes other than IPv4, and even

incorporate non-SDN switches using tunneling.

118

6.3 Ride Algorithms

This section details, in the context of its aforementioned three-phase workflow, Ride’s novel

techniques for network and application-aware resilient event collection from IoT publishers

and dissemination of critical alerts to locally-interested users and actuating IoT subscribers.

Refer to the following notation for the algorithms outlined here. Ride models the network

topology as an undirected graph G(V,E) with vertices (network switches, routers, and

hosts) V (G) connected by links E(G). A route traversing link e incurs a weighted cost we

(e.g. bandwidth, power consumption, routing table entries). We denote the set of sensor-

publishers as P , the subscribers interested in receiving alerts as S, the cloud service as

c ∈ V , the Ride-enabled edge service as r ∈ V , and the MDMTs as a set T where k = |T |

and ∀Ti ∈ T, {r} ∪ S ⊂ Ti ⊆ G. We model the CDPs as a set of virtual links D = {e ∈

E(G) : e = (c, y)} for the Internet-connected gateways y ∈ V (G).

6.3.1 Ride-C – Data Collection in Ride

6.3.1.1 Configuring resilient data collection

Ride-C first selects the primary CDP and configures resilient data collection routes through

it. In IoT alerting systems, multiple co-located sensors may generate and send similar

sensed events to the server during an emergency. Therefore, we consider a data collection

approach for preferring that at least some of these publications can be used for emergency

event-detection rather than emphasizing collecting all of them. We compare two policies

for building routes and associated flow rules from each registered publisher p ∈ P to the

assigned gateway router y: 1) shortest path finds the absolute shortest path (in terms of

we) between p and y; 2) diverse path finds maximally-disjoint paths (i.e. they share a

minimum number of common nodes/links) from each p ∈ P to y, although it prefers shorter

119

ones when considering equally-disjoint paths.

The latter method exploits topological redundancy in the network to increase the reliability

of IoT data collection due to multiple sensed events traversing the same failed link being

less likely. See §2.2.2 for a discussion about about the challenges in computing diverse paths

and details about the algorithm proposed in [78] that we use to accomplish this for k > 2 in

polynomial time. Because this algorithm finds multiple paths between two vertices, Ride-C

first adapts G by adding a new virtual node vd and edges between each p ∈ P and vd, using

vd as the new source node for [78]’s algorithm. Note that this approach does not guarantee

that each publisher gets some route to the data exchange. For those that do not, we simply

add the shortest path to ensure complete connectivity as expected.

Ride-C then configures the CDP monitoring mechanism (see Alg. 4) for each registered

CDP. To optimize resource consumption, it minimizes probing frequency overhead while

meeting the application-specified requirements of 1) maximum detection time TD and 2)

failure/congestion-detection false positive rate upper bound, RFP .

Ride-C initializes this process with a learning phase in which it analyzes the CDP’s steady-

state condition to calculate the proper adaptive probing parameters: interval I and timeout

To. In this phase, it sends a new probe as soon as it receives the last reply or times out after

TD. Upon gathering enough acknowledgements, it calculates the CDP’s packet loss rate Pl

and average RTT, RTTa. We define the requested false positive rate RFP = (Pl)
N as the

probability of N consecutive packet losses. Given these parameters, Ride-C calculates the

minimum number of sample probes NB = dlogPl
RFP e it needs to collect before marking

a CDP congested or failed. It then concludes the initialization phase by setting the initial

probe interval to: I = TD
dlogPl

RFP e
.

120

Algorithm 4: Ride-C Probing and Adaptation

1 while True // On-line Adaptive Probing

2 Send a probe on CDP
3 if the acknowledgement is received within To then
4 Update sliding window with new RTT

5 else
6 Update sliding window with packet loss indicator

7 Pl, RTTa ←− Calculate new metrics in W
8 if RTTa > I or last NB elements in W are all packet loss indicators then
9 return UNAVAILABLE

10 else
11 NB ← dlogPl

RFP e
12 I ← TD

NB

13 To ← 2 ∗RTTa
14 Wait I

6.3.1.2 On-line maintenance of network state awareness

As shown in Alg. 4, Ride-C continues updating its resource-conscious application-aware

parameters in the steady-state. It revises the CDP’s estimated RTT, RTTa, using an ex-

ponential moving average method with a smoothing factor of 0.8, which we chose based on

TCP’s round-trip time estimation [163]. Ride-C sets the probe’s timeout To = 2 ∗ RTTa

to ensure it meets the TD requirement. Upon receiving probe acknowledgements or timeout

events, it updates the CDP’s packet loss rate and then probing interval as before. Ride-C de-

tects possible failure or congestion as evidenced by NB consecutive timeouts or significantly

increased latency: RTTa > I. It cannot detect failures and mark a CDP unavailable within

TD while satisfying RFP if RTTa > I due to not collecting enough samples within TD.

During edge mode operation, Ride-C continues CDP monitoring but also estimates the

currently-functional local network topology from sensed events collected at the edge. Rather

than (or in addition to) waiting for control plane updates derived from link-level failure de-

tection in the network data plane, it leverages its own data plane activity for an online link

121

Table 6.1: Parameters Used in Ride-C

Application
Specified

TD: Maximum detection time
RFP : Maximum false positive rate

DataPath
Metrics

Pl: DataPath packet loss rate

RTTa
Exponential moving average of
probe round-trip-time

NB
Min. # samples collected before
detector determines CDP state

Detector
Parameters

I: Probe interval
To: The timeout of the probe

state estimation technique. This complements existing network resilience techniques (e.g.

packet retransmission) within a distinctly IoT setting by leveraging application-awareness

for a time-critical collect-and-disseminate data exchange solution. Ride-C matches recently-

collected events with its pre-configured sensor-publisher routes. It adds each of these routes

to a graph data structure called the Successfully Traversed Topology (STT) that it contin-

ually maintains to represent the network components recently (within ≈ 2sec.) verified as

functional. Note that these STT node/link states are non-definitive estimates of the current

state: presence in the STT could indicate a recently-functional but now-failed component,

while absence could have no significance. By embedding this estimation in edge service-

bound data flows as incremental updates to the shared STT , this cooperative method en-

ables Ride-D to leverage Ride-C’s network state awareness to improve resilient local alert

dissemination as described later.

6.3.1.3 Active fail-over adaptation

Ride-C responds to a CDP disruption by triggering a fail-over mechanism. It determines: 1)

what fail-over actions to perform upon CDP state changes and 2) what flows to generate and

push to the SDN-enabled switches for implementing these actions in the physical network. If

another CDP remains available, Ride-C redirects IoT data collection through it by adapting

the SDN data plane as described in the initialization phase. In the case that all the CDPs

122

are marked unavailable, Ride-C will redirect sensed events from publishers to the edge server.

It builds these redirection routes and their associated flow rules using the same policies as

for CDP redirection, except with the edge server r as the destination instead of a gateway

switch y. After this fail-over, Ride operates in edge mode and leverages Ride-D for resilient

local alert dissemination.

6.3.2 Ride-D – Data Dissemination in Ride

We now define Ride-D’s algorithms for network-aware reliable multicast-based alert dis-

semination. The Ride middleware uses Ride-D to disseminate alerts to locally-interested

subscribers. For resilient (i.e. to failures and congestion) alerting, Ride-D configures the k

MDMTs T to share a minimal number of edges/vertices as shown in Fig. 6.2b and discussed

in §6.3.2.1.

6.3.2.1 Background on Multicast Tree Construction

The classical problem of constructing a single multicast tree Ti of minimum cost that includes

the root and every subscriber (i.e. {r} ∪ S ⊂ Ti is referred to as the Steiner tree problem.

This problem is NP-Hard in general for general graphs, and so heuristic-based algorithms

that provide bounded approximations have been proposed [104]. Despite this NP-Hardness,

disjoint path research [61, 22] found that a pair (i.e. k = 2) of edge-disjoint directed spanning

trees can be found in polynomial time, even in a distributed manner. This produces “edge-

disjoint directed spanning trees for a 2-edge-connected digraph”. These maximally-(edge

and vertex)-disjoint trees, rooted at a distinguished node (i.e. r) and spanning all of V ,

guarantee recovery from a single non-cut node or link failure. Clearly, our earthquake-

induced failure scenario would cause > 1 component failures. Hence, we explore networks

with greater connectivity and > 2 maximally-disjoint (i.e. they share a minimal number of

123

edges/vertices) trees for reliable multicast.

6.3.2.2 Configuring MDMTs a priori

We briefly describe the MDMT-construction algorithms below and invite the reader to find

more details in the respective references and performance comparisons in §6.5.4:

• steiner approximates the Steiner trees using the somewhat näıve approximation method

described in [104]. It finds the minimum spanning tree of the metric closure subgraph. That

is, it converts path lengths between terminal nodes into edge weights for a new graph (i.e. a

metric closure subgraph) and finds its minimum spanning tree (MST). Each iteration finds

one MDMT and increases the used edges’ weights (by either doubling the weight or adding

the max weight of all edges) to disincentivize their use in the next iteration. We adopt two

versions of this technique for our comparison heuristics by 1) doubling (w′e = 2we) or 2)

adding the max weight (w′e1 = we1 + maxe2∈E(Ti) we2). This algorithm has an approximation

ratio of 2− 2
|S∪r| .

Runtime complexity: O(|S|(|E|+ |V | log |V |)).

• diverse-paths iteratively adds each subscriber s ∈ S to the MDMTs, ordered by the

minimum-path distance from r. Each iteration generates k maximally-disjoint paths from

r to s using the same diverse path-finding algorithm [78] as Ride-C’s diverse path routing

policy. The k paths to the first s form the initial MDMTs. It selectively adds each path to

one of the k MDMTs with which it has maximal overlap. Hence, This greedy approach aims

to form the trees with lower total cost while maintaining disjoint paths. Because this can

result in a non-tree graph, we first find the MST and then iteratively remove all non-terminal

vertices of degree ≤ 1 until only necessary edges and vertices remain.

Runtime complexity: O(k(|E| log k + |V | log |V |)).

124

• red-blue incorporates the concept of red-blue trees shown in Fig. 6.2b. Recall from

§6.3.2.1 that this approach finds k = 2 edge-disjoint directed spanning trees in polynomial

time [61, 22]. We adopt the SkeletonList data structure and algorithm proposed in [22].

It colors every edge (not just a tree) in the graph red and/or blue (cut edges are colored

both red and blue) in O(|V | · |E|) time. This more efficiently handles topology updates (i.e.

dynamic adding and removal of nodes and links). Faster (O(|V |+ |E|) algorithms [61] must

be fully re-computed after topology updates since they color just those edges in the spanning

trees. This coloring partitions G into two maximally-disjoint directed acyclic graphs (DAGs)

with respect to the edges. For k > 2 (k a positive power of 2), we recursively apply the

procedure on the resulting red and blue graph to greedily further subdivide the graph. Note

that SkeletonLists enforce directionality on edges, and so we must convert our undirected

graph into a directed one first. To compute a Steiner tree from one of these DAGs, we

combine the shortest paths to every s ∈ S into the tree before finally converting the graph

back into an undirected graph for use as a multicast tree.

Runtime complexity: O(k|V | · |E|).

6.3.2.3 On-line MDMT maintenance

Ride-D modifies MDMTs in response to network topology/state and subscription updates.

Note that we leave the challenge of minimizing MDMT modifications (i.e. to reduce overhead

from forwarding plane changes) as out of scope. Interested readers might look closer at [22]

for an example of how to handle dynamic topology changes (e.g. dynamic adding/removal of

nodes/links/subscribers) using the SkeletonList data structure. We instead assume a simple

approach of completely recomputing the MDMTs and focus our contributions on intelligent

MDMT-selection as described next.

125

6.3.2.4 Event-time failure response

Alg. 5 details Ride-D’s alerting mechanism. We now describe how its network state and

failure-aware MDMT-selection policies leverage our novel link-state estimation technique

(STT) to determine each Ti’s suitability for delivering the alert despite recent failures. We

empirically compare these policies later in §6.5.4. Note that the algorithms in Alg. 5 incor-

porate the intelligent retransmission mechanism described in §6.2.2.2. With this additional

mechanism, each alert response from a subscriber is used to update the STT with the route

back along Ti. Note that the policies’ objective functions break ties randomly. Further-

more, they prefer alerting unreached subscribers by considering each Ti as the MDMT with

already-reached subscribers and their unique path links removed.

• min-missing-links selects the MDMT having the fewest links not present in STT . This

policy therefore aims to avoid failed links as possibly indicated by their absence from the

STT . It also prefers smaller trees, which it uses to break ties.

Objective function: −|{e ∈ E(Ti), e /∈ E(STT)}|

• max-overlap-links selects the MDMT sharing the highest proportion of its links in

common with STT , thereby decreasing the likelihood of failures along the MDMT. Note

that we scale by |Ti| (i.e. calculate a proportion rather than a discrete total of overlapping

links) to alleviate a preference for larger trees. Due to Steiner trees spanning a subset of

the graph (each MDMT contains possibly different non-terminal nodes), it differs slightly

from min-missing-links because of this scaling. These policies also make different selections

because of the STT ’s inherent uncertainty mentioned previously: preferring known good

links vs. avoiding potentially bad ones.

Objective function:
|{e : e ∈ E(Ti), e ∈ E(STT)}|

|E(Ti)|

• max-reachable-subscribers considers complete paths rather than individual links. It

126

selects the MDMT that can reach the most subscribers assuming only the links in STT are

up. Again, the STT ’s uncertainty means this assumption may lead this policy astray.

Objective function: |{s ∈ S : PathExists(STT ∩ Ti, r, s)}|

• max-link-importance combines the STT -uncertainty-avoidance of max-overlap-links

with the complete path consideration of max-reachable-subscribers. It selects the MDMT

whose intersection with STT has the highest total link importance (i.e. the number of paths

from the root to the subscribers that traverse that link). Note that an implementation should

pre-compute each edge’s importance, which takes O(|Ti|), to improve run-time performance.

Also note that we scale the objective function by the total possible link importance to avoid

preferring larger trees. Furthermore, an implementation could easily incorporate the notion

of heterogeneous priority for different subscribers by assigning different importance values

to their respective links.

Objective function:

∑
e∈(E(Ti)∩E(STT)) |{s ∈ S : e ∈ GetPath(Ti, r, s)}|∑

e∈E(Ti)
|{s ∈ S : e ∈ GetPath(Ti, r, s)}|

While we omit the formal proof, each metric essentially computes the intersection of Ti and

STT in linear time. Although they use this result differently, each implementation has a

runtime complexity of O(k(|Ti|+ |STT|).

6.4 Prototype Implementation

To demonstrate Ride’s improvement to an IoT data exchange’s resilience, we developed a

prototype implementation and proof-of-concept testbed in our lab. We implemented the

core Ride algorithms and integrated them with our SCALE [27] IoT middleware (see §4.2

for details) to use as the edge alerting service. This complete prototype implements the

proposed architecture (Fig. 6.1) by leveraging RESTful CoAP APIs to manage the workflow

127

Algorithm 5: Ride-D network-aware multicast alerting algorithms for the configura-
tion and alerting phases.

1 Function ConfigureMDMTs(S, topic, r, k, G, algorithm)
2 T ← BuildMDMTs(algorithm, G, S, r, k)
3 for Ti ∈ T do
4 addresses← InstallMulticastTreeFlowRules(Ti)
5 for s ∈ S do
6 InstallResponseFlowRules(s, r,GetPath(Ti, s, r)

7 RegisterMDMTs(T , topic, addresses)

8 Function SendAlert(msg, topic)
9 Metric← MDMT selection policy objective function

10 alert← MakeAlertContext(msg, topic)
11 retries← GetMaxRetries(topic)
12 while UnreachedSubscribers(alert) 6= ∅ or retries > 0
13 S ← UnreachedSubscribers(alert)
14 for Ti ∈ GetMDMTs(topic) do
15 Mi ← Metric(S,GetRoot(Ti), Ti,GetSTT())

16 M∗, T ∗ ← max {(Mi, Ti) : i ∈ [1..|M |]}
17 address← GetAddressForMDMT(T ∗)
18 SendMulticast(msg, address)
19 retries--
20 RecordMDMTUsed(T ∗, alert)
21 RegisterAlertResponseCallback(OnSubscriberACK, alert)
22 wait(timeout)

23 Function OnSubscriberACK(s, alert)
24 MarkSubscriberReached(s, alert)
25 p← GetPath(MdmtUsed(alert), s,GetServer(alert))
26 UpdateSTT(p)

128

describe in §6.2.3, Fig. 6.2a. We invite the reader to try out Ride and find more details in

our source code repository: https://github.com/KyleBenson/ride.

The earliest Ride prototype, just like the initial SCALE prototype, forwarded events to a

cloud MQTT broker. If unavailable, Ride redirected these data flows to an edge MQTT

broker, which required the client’s network stack to detect a change in the underlying TCP

state machine and re-connect with the new broker. The latest prototype described below

instead prefers the UDP datagram-based protocol CoAP, integrated via CoAPthon [72], in

order to support connection-less RESTful interactions for constrained IoT devices. This

interaction style simplifies OpenFlow-based redirection of sensor-publishers to alternative

CDPs or edge services and also enables Ride-D multicast alerting. We also aim to incorporate

an extension to the UDP-based MQTT-SN [105], which is designed for low-power devices

e.g. sensor networks. We demonstrated (in a limited lab setting) the possibility to apply

Ride’s address translation techniques on MQTT-SN for edge redirection of data collection

and multicast-based alert dissemination. However, most MQTT-SN implementations use

different topic IDs for each subscriber, which prohibits our multicast-based alerting. Hence,

we leave exploring this avenue for future work.

Fig. 6.3a depicts our lab’s real-world testbed that we used in our initial proof-of-concept.

Unmodified SCALE devices publish environmental sensed events to an MQTT [141] broker

for visualization via our web-based dashboard or further processing by an analytics service.

The SCALE devices associate with a Wi-Fi AP connected to the pictured switch, which

routes data to either the edge or cloud broker instances. An ONOS [64] SDN controller

connected to the SDN switch’s management port controls its forwarding plane routing using

the OpenFlow [130] protocol. Both the edge server and SDN controller VMs are hosted on

a VMware ESX Hypervisor machine connected to the switch. Using our initial SCALE

prototype of Ride, we conducted a first proof-of-concept experiment in our lab test-bed to

demonstrate CDP fail-over to the edge MQTT broker. We simulated a broken link by

129

https://github.com/KyleBenson/ride

(a) Our experimental testbed setup.
(b) Results from our initial cable-pulling experi-
ment.

Figure 6.3: A prototype of Ride in our physical lab test-bed.

unplugging the Ethernet cable connecting the switch to our campus network. Fig. 6.3b

shows the observed throughput of IoT data measured at the cloud broker stop after this

network outage and pick up a few seconds later at the edge broker. Soon after reconnecting

the Ethernet cable, we see the primary CDP recover as evidenced by the cloud broker

throughput.

For our more comprehensive experimental setup (§6.5) based on the seismic alerting sce-

nario, SCALE client devices run 3 different mock seismic alerting applications modeled after

CSN: 1) a publisher to upload seismic sensed events at a pre-defined time; 2) an alerting

service (running on both cloud and edge servers) to aggregate these readings (i.e. detect

an earthquake) over a two-second period and publish a seismic alert ; 3) a subscriber that

records the results of these alerts (i.e. when they were received, which seismic readings were

captured in them) for measuring performance.

We implemented Ride’s logic on the edge server as modular Ride-C and Ride-D Python

middleware services. We developed an SDN controller REST API adaptation layer that

requests an updated topology from the SDN controller. Ride then runs path-finding and

multicast tree-building algorithms on the network topology using the popular NetworkX

[90] graph algorithms library. It builds publisher routes and MDMTs, convert them into

OpenFlow flow rules, and install these rules in the SDN data plane via the controller’s

REST API. This approach enabled more rapid prototyping, modular testing, and flexibility

130

than targeting a single SDN controller platform.

Ride-C pre-configures data collection routes from each registered sensor-publisher to the

cloud service. While we use static flow rules for these routes to improve STT accuracy, Ride

could also support dynamic routes by having the SDN switch at each hop tag packets in a

manner similar to [66]. These tags could then be used to build the STT . Ride-C spawns

a local threaded client and simple cloud-based UDP echo server to monitor each registered

CDP as described in §6.3.1. Upon deeming a CDP congested or failed, Ride-C marks it

unavailable and publishes this observation locally for use by other applications. In response

to this unavailable event, it checks the state of the other CDPs and uses the SDN data

plane to re-route IoT traffic through an available one or to the edge server (using address

translation flow rules) until a CDP recovers.

During normal cloud operation, the seismic alerting service simply publishes alerts to each

subscriber using unicast. After fail-over to the Ride-D-enabled edge service, it receives

and processes sensed events originally addressed to the cloud. It analyzes them for seismic

events while Ride simultaneously updates the STT . When issuing an alert, it uses the

shared STT graph to select the best available MDMT and send the singular alert packet

to the subscribers using the associated multicast address. This address includes both a

destination IPv4 address and UDP source port to ensure responses are routed back along

the correct MDMT. This enables Ride-D to collect further network/alert state information for

the intelligent retransmission mechanism described in §6.2.2.2. Note, however, that we had

difficulty implementing the retransmission mechanism due to limitations with the CoAPthon

library (i.e. it ignores responses to multicast messages). Hence, our current implementation

only sends a single multicast alert, and so our results in §6.5.4 do not include retransmission.

While using multicast trees reduces total bandwidth consumption, we must also address

potential flooding issues by not sending alerts too frequently. Therefore, we include minimal-

sized alert data to avoid this due to a lack of flow control. CoAP’s flow control mechanisms

131

are intended for reliably-transmitted messages (multicast messages must be non-reliable [71]).

Hence, we also later explore prioritizing data to provide some flow control (i.e. in the form

of targeted packet drops) in the data plane.

6.5 Experimental Evaluation

This section evaluates Ride using our prototype implementation. We describe the experi-

mental setup (including synthetic network topology), overall results from our experiments,

and finally delve deeper into the parameters that affect Ride’s individual algorithms’ perfor-

mance.

6.5.1 Experimental Setup

Due to practical limitations (i.e. limited number of physical SDN switches and the difficulty

of creating repeatable failure scenarios in a real network), we implement larger-scale experi-

ments with Mininet [1]. This emulation environment uses Open vSwitch (OVS) [3] to create

a virtual network topology of SDN-enabled switches (in a real Linux networking stack) with

realistic delays, bandwidth limits, and link loss rates. It connects these switches together

as well as to virtual hosts, which are implemented as network namespace-isolated processes

and run our aforementioned Ride-enabled SCALE seismic clients. OVS switches connect via

the SDN southbound protocol OpenFlow [130] to the distributed SDN controller platform

ONOS [64] running on the same machine.

132

6.5.1.1 Synthetic Network Topology

To lend a realistic setting to our experiments, we wrote a Python script to randomly gen-

erate a synthetic campus network topology, inspired by our university’s network, with

realistic link characteristics (e.g. bandwidth, latency). Fig. 6.4 shows its hierarchical struc-

ture that represents buildings as individual routers, each serving multiple end-hosts and

2-connected to a full mesh of four core routers. Every major building (85%) router con-

nects with two different core routers. A few buildings (e.g. two for the same department)

connect directly together. Each distribution router, which also connects with two different

core routers, serves several minor buildings (15%). Every building has an internal two-level

tree network (i.e. floor/rack switches) serving the end-hosts, although we flattened this due

to more scalable simulations and no exploitable redundancy (i.e. due to the tree structure

and the shared-risk group that is a buildings’ physical structure and electrical wiring). The

distinguishing smart features of our synthetic campus topology are: 1) edge server(s) (i.e.

data centers) connected with two core routers and 2) multiple cloud CDPs comprised of

higher-latency links between a public cloud data center node and Internet gateway routers

that each connect with two core routers. Our script randomly generates such a topology

with varying parameters: number of buildings, hosts, and core routers; redundant connec-

tions between buildings (e.g. two buildings for the same department); link characteristics of

bandwidth, latency, and cost.

6.5.1.2 Experimental Framework

We use a custom Python-based scenario configuration framework that: 1) reads a synthetic

network topology file; 2) constructs it using Mininet; 3) randomly selects and configures

hosts as sensor-publishers and/or alert subscribers; 4) executes the experiment by applying

a network failure model at pre-determined times; 5) and records results to determine Ride’s

133

(a) Smart campus network structure. (b) Synthetically generated smart campus
topology.

Figure 6.4: The network topologies used in our experiments.

performance. As indicated by the event flow captured in Fig. 6.5, the publishers constantly

upload generic IoT traffic (ẽvery 100ms) as well as a seismic sensed event at each of the

following failure model steps: 1) after 20 simulated seconds, disabling the primary CDP to

represent a distant earthquake and demonstrate Ride-C fail-over; 2) disabling the remaining

CDP 20 seconds later, which demonstrates fail-over to the edge and Ride-D-based alerting;

3) disabling nodes/links in the local campus network with a configurable uniformly random

probability that represents the geospatially-uniform shaking experienced within a local cam-

pus region during a nearby earthquake; 4) 20 seconds later, the primary CDP recovers to

demonstrate Ride-C’s return to normal (cloud) operation.

Our framework initializes the experiment with the following configuration parameters: the

number of publishers/subscribers, the local failure model’s uniform probability, the cam-

pus topology file (described below), Ride’s algorithm/policy parameters (e.g. k, TD, etc.),

and the number of experiment runs. For each run, it chooses the group of publishers and

134

subscribers uniformly at random from the available end-hosts (overlap allowed). To better

compare multiple experimental treatments, we can optionally maintain the same sequence

of publisher/subscriber/failure/routing configurations through the use of random number

generator seeds.

6.5.1.3 Evaluating Performance

We calculate three main metrics to assess Ride’s performance: 1) reachability, an approxi-

mation of alerting service availability, is the portion of subscribers that successfully receive

alerts; 2) latency is the delay from when a publisher creates a seismic sensed event until a

subscriber first receives an alert derived from it. 3) overhead is either the number of probe

packets (Ride-C) or total link cost of a route (Ride-D).

We use these metrics to compare Ride with two non-Ride configurations: 1) when k = 0 the

edge service uses unicast-based alert dissemination over the shortest paths; 2) we calculate

an oracle upper bound on reachability by a) removing the failed nodes and links from the

topology originally read from a file to create the Mininet network and b) calculating the

percent of subscribers reachable from the edge/cloud servers in the remaining topology.

6.5.2 Ride Evaluation in a Seismic Alerting Scenario

This section uses the above scenario to demonstrate Ride’s ability to monitor and adapt

network state for resilient event collection and timely alert dissemination despite failures.

The example run in Fig. 6.5 shows CDP failures as visible gaps in data collection and spikes

in alert dissemination. Note that Ride-C quickly fails over to an alternative CDP in the first

gap and successfully delivers alerts quicker and more completely than later alerts that must

contend with local network failures. After the local failures, Ride enters edge-mode operation

135

(orange section in middle) and Ride-D disseminates seismic alerts rather than the cloud’s

basic unicast approach. Note the increase in alert latency over time (green dots trending

upwards) due to CoAP’s reliable transmission mechanism. It times out after 2-3 seconds of

not receiving an acknowledgement and re-sends the seismic event (publisher-to-broker) or

alert (broker-to-subscriber). This can lead to increasing event collection and dissemination

over time as evidenced by the red/green and yellow bars, respectively, appearing several

seconds after the initial event. Note that we discard alerts delivered > 10secs. after the

event as they have limited use in seismic early-warning. When returning to cloud operation,

we note the lack of event collection gap as the edge continues receiving events until cloud

redirection completes.

Our emulated experiments validate the benefit of exploiting SDN-enabled edge resources

for resilience in such settings. With a cloud-only approach, the data exchange would ex-

perience complete failure during the middle segment. Instead, it only misses a few seconds

worth of data collection and alert dissemination. This loss, especially during fail-over to the

edge, indicates needed improvements to the SDN-enabled fail-over mechanism. Even with

Mininet’s zero-latency control plane configuration, the time required to adapt the data plane

by installing flow rules drastically impacts both reachability and timeliness. Hence, we are

exploring additional strategies such as pre-installation of partial re-routing paths.

Fig. 6.9 shows the performance of event collection and alert dissemination for varying failure

probability. We see that for very high failure rates, further network redundancy is needed.

The disjoint publisher routing algorithm seems to improve alert dissemination slightly by

producing a more complete STT . We plan to investigate this further in future work. To

further explore and improve Ride configurations, the following two sections isolate the Ride-C

and Ride-D mechanisms.

136

Figure 6.5: Ride’s failure adaptations during an example execution of our seismic alerting
scenario.

6.5.3 Ride-C Performance & Parameter Space Evaluation

Our initial experiments with Ride-C demonstrate its efficacy and a potential generic appli-

cation. We used a modified form of the experimental setup described above with a 1% link

loss rate and 10-second link failures. The hosts all publish 10 packets/sec. of data to the

cloud through a randomly chosen Internet gateway router. We run this experiment with

three different configurations: 1) without Ride-C - no failure detection or failover is enabled,

2) with Ride-C - the default Ride-C failure detection and failover mechanisms are enabled

(i.e. if Ride-C detects gateway-to-cloud link failures, it forwards the affected data flow to

the other unfailed link), and 3) with Ride-C and an edge buffer, which we describe later. At

the end of each experiment run, the total number of packets that publishers sent and the

number of packets received at the cloud server are collected to calculate the total packet loss

rate. Fig. 6.6 shows how Ride-C performed in the CDP failure experiment with these three

different configurations and varying numbers of publishers. Overall, in the configuration

where Ride-C is not enabled, the experiment results in the highest packet loss. The packets

that attempt to traverse the affected link during failure are all lost. The packet loss improves

in the configuration with Ride-C default failure detection and failover mechanisms enabled.

After detecting the failure, Ride-C redirects the affected flows through the unfailed CDP. In

this second configuration, only the packets sent through the affected link between the time

when the failure started and when the failover action triggered are lost.

137

Figure 6.6: Packet loss in the CDP failure experiment using three different configurations.

The third configuration further improves the packet loss by running an edge buffer program

on the application edge server. The server leverages the network-awareness that Ride-C

provides to use this buffer as temporary storage for high-priority sensed event packets that

might otherwise be lost during a transient cloud disruption. The circular buffer program

receives a copy of each sensed event packet that is sent to the cloud server and stores a

fixed number (2650 by default) of these packets. As a simple proof-of-concept, we initially

implemented this step on the publisher, but will later implement it as a network function

leveraging SDN features transparent to end hosts. The publisher sends a copy of the sensed

event packet to both the edge and cloud servers at the same time. Upon detecting the CDP

failure, Ride-C sends a notification to the edge buffer program. The edge buffer program

then starts to send all the recently-buffered sensed event packets to the cloud through the

other unfailed CDP.

By temporarily maintaining local copies of this data at the edge after forwarding it through

the cloud CDP, we decreased packet loss rates at the cloud service by≈75% as compared with

only buffering in publishing devices, which are often resource-constrained in IoT settings.

For lower numbers of publishers, the packet loss sits around the preset gateway-to-cloud link

138

packet loss rate of 1%. This means that the packets normally lost during the failure are

instead recovered and forwarded by the edge buffer program. As the number of publishers

increases and exceeds a certain value, the packet loss increases due to more published packets

but a constant limited buffer size. When the number of packets lost during failure exceeds

the buffer storage capacity, the excess packets are lost. However, this configuration shows

a significantly lower packet loss than the previous configurations since some of the data is

recovered. This scenario therefore serves as an example of network-aware services that can

be developed using Ride-C.

We also tested how Ride-C works during a congestion scenario rather than complete link

failure. We first set the rate limit on egress ports connecting to the campus network at

10Mbps. A host connected to this SDN-enabled switch creates congestion traffic by sending

data to another host in the campus network using iperf in UDP mode at 8Mbps. We

configured a static flow in the switch to always forward the congestion traffic through one

of the campus network egress ports. Fig. 6.7a shows the congestion’s impact on IoT traffic

without Ride-C. The throughput of IoT data at the cloud decreases and the delay of received

IoT packets increases significantly. Fig. 6.7b shows how Ride-C handles the congestion

scenario. After detecting the congestion, the IoT traffic that is currently forwarded through

the congested port is instead forwarded to an unaffected port. We observe the recovery of

IoT data throughput and delay a few seconds after the congestion starts.

Now we evaluate the different configurations of Ride-C and its failure-detection algorithm.

We setup experiments to evaluate its failure-detection-and-correction time and overhead

(# probe packets) under varying parameters (e.g. the application-specified requirement

TD). Fig. 6.8 shows how Ride-C always meets the required TD, which closely matches the

observed failure detection time (linear trend). Note that different maximum detection time

requirements change the detection time and overhead. Also note that the Ride-C detector

can always detect the failure within the maximum detection time. It also shows the trade-off

139

(a) Without Ride-C (b) With Ride-C

Figure 6.7: The throughput and delay of IoT data under the influence of a congested CDP.

Figure 6.8: Varying Maximum Detection Time TD showcases Ride-C’s resource-conserving
adaptive probing.

140

between TD and the probing overhead, which decreases significantly as TD increases from 1

second to 3 seconds. This suggests that if an application can tolerate a few more seconds of

failure detection time, it can lower the probing overhead significantly.

Figure 6.9: Varying network failure probability shows setting collection routes using disjoint
method improves alerts’ delivery rate

We also compared the two different routing policies (shortest/disjoint) given in §6.3.1, but

found that they perform almost identically as shown in Fig. 6.9. Clearly the known hard

problem of diverse path routing presents an area ripe for improvement as previously dis-

cussed.

We also compared the Ride-C failure-detector’s performance with two other failure detectors

from [16] and [58]. Both of the detectors are based on a PULL style method with which

the detector sends probes to a target and decides its liveness based on replies. The Resilient

Overlay Networks (RON) [16] failure detector sends the probes with long intervals in its

normal state. After a probe timeout, it sends subsequent probes with a shorter interval. If

all these fast-transmitted probes timeout, the RON reports a failure event.

The B-AFD failure detector proposed in [58] is an adaptive version of the RON detector. It

141

Figure 6.10: Comparing failure detector (FD) overhead of Ride-C and two related works.

takes QoS requirements like maximum detection time, mistake recurrence time, and mistake

duration to dynamically reduce the probing overhead. We ran experiments with all three

failure detectors several times to compare their performance. To make them detect the

failure at a certain time, we set maximum detection time TD for Ride-C and B-AFD to

(1,2,3,4,5) seconds. Since RON has no TD parameter, we manually configured its parameters

to achieve a similar failure detection time. Fig. 6.10 compares their actual failure detection

time and probing overhead. It shows that Ride-C and B-AFD detect the failure with much

lower overhead while still satisfying the TD requirement. Compared with B-AFD, Ride-C

tends to detect the failure with lower overhead but slightly longer detection time.

6.5.4 Ride-D Scalability & Parameter Space Evaluation

To evaluate Ride-D’s ability to resiliently disseminate alerts in larger settings and different

configurations, we isolated the Ride-D phase of our experiments with a larger topology.

However, scaling issues (Mininets performance degrades with > 100 end-hosts and > 30

switches) necessitated a simulation framework version. It uses Python’s NetworkX [90]

graph algorithms library to manipulate the topology and directly calculate the subscribers’

142

reachability (given a single alert transmission attempt) for each constructed MDMT in the

face of earthquake-induced failures. Our emulated and simulated studies otherwise utilize the

same experimental setup and synthetic network topology structure (Fig. 6.4). This allowed

for careful control of the parameters, isolating the experiment from the effects of system

configuration issues (e.g. SDN controller, Mininet performance, process scheduling, etc.),

developing and testing the algorithms before completing the network stack, and exploring

the parameter space more quickly due to lower overhead. This version directly applies

Ride-D’s core logic to build k MDMTs for the specified algorithm and a network topology

read from a file rather than the SDN controller. Hence, we used a pared-down version of the

Ride-D implementation classes to construct the MDMTs without requiring SDN controller

interactions. We did this in part by implementing a dummy version of the SDN REST

API adapter described in §6.4 that reads the topology from a file instead of from the SDN

controller.

Each run of the simulation version sets up the scenario as described previously, but it directly

by: 1) removing the failed nodes and links from each MDMT; 2) calculating the percentage

of subscribers reachable from the edge server via the remaining topology; 3) aggregating

this value across all runs with the same experimental treatment. (i.e. finds the minimum,

maximum, mean, and standard deviation) It similarly calculates the two aforementioned

non-Ride comparisons of oracle and unicast. It also calculates the two special comparisons

by removing the failed nodes and links from the original topology to determine reachability

via: any remaining path (oracle) or the normal shortest paths from edge server to sub-

scribers (unicast baseline non-multicast approach). Note that we ignore results for which

no subscribers are reachable in the remaining topology (i.e. oracle’s reachability is 0) as no

recovery is possible in such a situation.

We vary the aforementioned parameters with default values of: 200 publishers, 400 sub-

scribers, failure probability=0.1, a 200-building topology file, k=4, the red-blue MDMT-

143

construction algorithm, the Ride-C diverse publisher-routing policy, and 100 runs. For each

MDMT-selection policy, we calculate the STT based on which publishers are still connected

to the edge via their Ride-C-assigned routes, execute the policy, and record the reachabil-

ity of its choice. We also record the minimum, maximum, and mean reachability of all k

MDMTs as worst, best, and random selection policy results.

Figure 6.11: Comparing MDMT-construction algorithms shows careful MDMT-selection
performs better than unicast.

Fig. 6.11 compares the different MDMT-construction algorithms. Note that both the ran-

dom and worst (not pictured) curves perform worse than unicast due to multicast tree

structures’ lack of redundancy. However, the best MDMT choice results prove how an in-

telligent MDMT-selection policy can effectively support resilient multicast-based alerting.

Without enough information (i.e. STT accuracy), however, unicast should be preferred

since MDMT-selection would be as good as (or even worse than) random.

We note that red-blue outperforms the other algorithms for smaller k and that k > 4 pro-

vides insignificant improvement, hence our recommended default of k = 4 MDMTs. We also

recommend not using steiner for k ∈ 2, 4. By varying the failure probability parameter for

each algorithm (Fig. 6.9 shows the results for red-blue), we found significant reachability im-

144

provements for lower values (0.05-0.35). Beyond that (not pictured), they converge towards

oracle, indicating that no strategy could address such high failure rates.

Figure 6.12: For k > 2, the max-link-importance MDMT-selection policy performs best
(red-blue construction algorithm pictured).

Fig. 6.12 compares the MDMT-selection policies for red-blue (the other construction algo-

rithms produced similar results). It validates Ride-D’s network-aware approach of choosing

the best MDMT based on Ride-derived network state; all of our policies perform better than

unicast and random MDMT choice. However, our recommended policy max-link-importance

achieves the highest average reachability for k > 2. This is likely due to its hybrid approach

that considers both individual links and complete paths. For k = 2, the policy does not seem

to matter and so the simplest should suffice.

Fig. 6.13 shows Ride-D’s improvement in overhead over traditional unicast alerting. These

results show unicast maintaining a constant link cost per subscriber successfully alerted

whereas Ride-D incurs less incremental cost per subscriber thanks to multicast’s data trans-

mission efficiency. We also note from Fig. 6.13 that the number of subscribers vs. publishers

has no effect on reachability.

145

Figure 6.13: Multicast-based dissemination improves overhead vs. unicast while reachability
remains unaffected by increased # subscribers.

Some results not pictured varied other scenario parameter. The results all indicated that

Ride-D requires a certain level of STT accuracy for effective MDMT-selection. For example,

increasing the ratio of publishers to subscribers up to 1:4 improves this selection. Similarly,

Ride-D can tolerate up to about 40% publication loss rate (e.g. due to congestion) for a

1:2 publisher:subscriber ratio. Furthermore, the campus network topology’s size (i.e. #

buildings) and number of redundant connections appears to have little effect on reachability

for our campus network topology. Explorations into more redundant topologies could help

confirm this finding or identify structures that enable more benefit from the Ride-D approach.

Increasing from k = 1 (no redundancy) to k = 2 and then k = 4 actually decreases the worst

(and sometimes random) reachability for each MDMT-construction algorithm. However, it

does typically increase the best reachability as seen in Fig. 6.11. This intuitive result indicates

that choosing too large a value for k does not just increase resource usage but may also

decrease reliability due to not enough available redundancy in the topology. Interestingly,

diverse-paths appears to perform worse for k = 4, which indicates that our method for

assigning the disjoint paths to MDMTs may need improvement. Experiments on multiple

146

failure probabilities for these k values demonstrated the same trends.

6.6 Chapter Summary and Discussion

This chapter demonstrated our cross-layer network and application aware approach to re-

silient communications for IoT data exchange in the context of Ride. This SDN-enabled

edge service middleware facilitates network-awareness by monitoring network conditions and

adapting to failures/congestion in public cloud IoT data flows for event collection. In the

event of cloud unavailability, it also enables resilient emergency alert dissemination to in-

terested users and IoT devices by intelligently selecting from multiple redundant multicast-

based topic distribution trees. We framed this discussion in the context of an IoT-based

seismic monitoring and alerting application running both in the cloud and at the edge for re-

silience to earthquake-induced network failures/congestion. Our prototype implementation

and emulation/simulation-based results indicate Ride’s efficacy.

While our approach does slightly increase overall system complexity, it does so mainly in the

edge cloud service. The Ride middleware extends existing IoT data exchanges without mod-

ifying them, the IoT devices, or potentially even the cloud services. The registration process

enables independently using Ride with only the most-critical IoT services. Administrators

must determine which services require such enhancement and their desired level of resilience.

Real-time critical apps require lower TD (e.g. < 1sec.) whereas those that tolerate some de-

lay but must remain operable can use higher values. Less-critical apps that tolerate some

alerting loss can use k = 2, whereas we recommend k = 4 for the most stringent of mission-

critical applications such as our seismic scenario. Furthermore, adaptive probing intervals

and multicast actually conserve network resources as shown in §6.5. Hence, administrators

must weigh the benefits of this conservation with the increased deployment complexity.

147

6.6.1 Integrating Ride Into Our Proposed Middleware

Ride builds upon the middleware approach and architecture (Fig. 6.14) proposed in this

thesis by incorporating edge resources into the data exchange process. It extends the cloud-

centric data collection approach used in GeoCRON by monitoring and adapting the overlay

paths to failures and disruptions. Through this adaptation to the data collection phase,

Ride answers the question of whether to collect and process data at the edge or in the cloud.

Furthermore, it improves resilient dissemination of local alerts when operating in edge mode.

Our resilient multicast-based data dissemination mechanism closes the IoT application’s loop

by leveraging both application resilience requirements and network state awareness gathered

during the data collection phase. In this manner, it improves the data dissemination process

without modifying data consumers. Instead, it focuses the logic for this mechanism in an

edge service that coordinates with the SDN infrastructure. The prototype described in §6.4

incorporates modules that implement these mechanisms and algorithms into SCALE.

Figure 6.14: Ride adds data exchange logic to the data exchange and SDN layers.

At this stage, our prototype middleware fully supports an end-to-end mission-critical IoT

application. However, it does not address the question of which subscriber(s) are most

148

important to notify. Furthermore, it does not consider the needs of multiple IoT safety

applications that share edge resources. Next, we explore this question and expand on our

proposed middleware by expanding on its enhanced subscription capabilities to incorporate

prioritizing the most important data flows.

149

Chapter 7

Prioritizing Heterogeneous IoT

Information Flows at the Edge

Consider the process of IoT data exchange in support of enhanced situational awareness

and response during the Smart Fire Fighting (SFF) scenario described in §3.1.3. Note the

diversity of stakeholders with interest in a variety of data: emergency response personnel

(e.g. FFs, medical staff, public safety officers, government officials) and civilian community

members (e.g. evacuees, their family members or caretakers, residents impacted by smoke

or street closings). Key challenges arise in such settings including: managing heterogeneous

information with varying size, format, relevance, urgency, etc.; seamless integration of new

IoT data sources with pre-existing sources and information on the fly; supporting reliable

and timely communication over constrained networks (e.g. due to lossy channels and failed

components).

This chapter explores these challenges within the context of our FireDeX project. We now

consider how to manage such heterogeneity of data and information requirements in a more

localized setting (i.e. the immediate area around the structure on fire). We take the previous

150

chapters’ approaches to maintaining resilient connectivity as a given and instead focus on pri-

oritizing information flows according to user requirements and network resource constraints.

In a SFF setting, needs may evolve over time and these constraints may vary as a result of

both changing human activities and infrastructure challenges due to the fire itself. This ex-

ploration into managing data exchange at the edge expands our previous approaches by also

balancing the needs of multiple actors and mission-critical IoT applications simultaneously.

7.1 Chapter Overview

To overcome the above challenges, we propose FireDeX, an integration middleware that

unifies (a) smartspace IoT data and infrastructure (e.g. a Smart Building Management

System (BMS)) with (b) programmable network infrastructure (e.g. through SDN) and (c)

domain specific applications (e.g. smart fire fighting systems and apps brought onsite by

emergency responders). FireDeX aims to support timely and reliable delivery of the most

critical data to relevant subscribers despite challenging network conditions. It utilizes the

cross-layer (i.e. application and network-aware) approach for IoT data exchange shown in

Fig. 7.1 and described here. It leverages edge computing (i.e. data exchange brokers at the

network edge) and SDN to bridge critical application requirements with network state. This

approach facilitates platform and device independent adaptation of IoT communication at

the middleware layer.

Using SDN, FireDeX configures the underlying physical network to prioritize messages ac-

cording to the requirements (i.e. subscriptions with utility functions that quantify situational

awareness) and underlying network resource constraints (e.g. bandwidth, error). Through

the use of priority queues and carefully tuned packet drop rates (i.e. for bandwidth al-

location), it ensures timely delivery of the most important data possible. To this end, we

construct an extensible queueing theoretic model to abstract the cross-layer flow of data. We

151

present our formal analysis that our proposed novel algorithms leverage to configure the data

exchange. These algorithms manage active subscriptions by separately assigning priorities

to each and then allocating bandwidth to them. This enables timely and reliable delivery of

the most critical data to relevant subscribers despite challenging network conditions.

The FireDeX middleware combines several novel capabilities and design features, notably

the following key contributions:

• Applying a cross-layer approach (application, middleware, networking) to prioritizing

mission critical IoT data exchange during a fire response scenario in an IoT-enhanced

smart building with SDN-enabled edge infrastructure. (§7.2)

• Formulating an extensible formal model of these three layers based on the unified frame-

work of queueing theory. This model includes our new multi-class priority queueing

model. We use it here to represent an SDN switch, but it is generally suitable for use

in other queueing networks. (§7.3)

• Leveraging the above queueing model to explore the configuration parameter space

and derive novel algorithms that prioritize IoT events and tune notification deliv-

ery/delay. FireDeX leverages SDN to configure the underlying physical network with

priority queueing disciplines and carefully tuned packet drop rates (i.e. for bandwidth

allocation). (§7.4)

• Designing, implementing, and evaluating a prototype middleware that incorporates the

above algorithms. It coordinates with an OpenFlow-enabled SDN controller to config-

ure the network infrastructure. We discuss our design decisions, challenges overcome,

and practical considerations identified during this experience. (§7.5)

In §7.6, we evaluate the FireDeX approach by: describing our experimental framework for

randomly generating, configuring, and running experiments; validating our proposed analyt-

152

Figure 7.1: The FireDeX cross-layer middleware.

ical model; evaluating our middleware’s performance and capabilities both in simulation and

an emulated network setting that incorporates our prototype implementation; comparing

the various proposed algorithms’ performance.

7.2 The FireDeX Approach

To motivate the need for prioritized IoT data exchange, the challenges involved, and our

proposed approach, we begin with a motivating IoT-enhanced structural fire scenario. We

discuss related work and then describe our proposed approach.

153

7.2.1 A Driving Scenario: Fire Fighting with IoT

See §3.1.3 for details about our targeted smart fire fighting scenario. We leverage it to define

the challenges that FireDeX addresses and to lend a more realistic setting to our experiments.

In particular, we target the varying information requirements of subscribers and deliver the

most important of heterogeneous information flows according to currently available network

resources.

7.2.2 IoT Data Exchange Addressed by FireDeX

Several research challenges for mission-critical IoT data exchange arise from the above driving

SFF scenario.

Heterogeneity of devices and information: As described in §2.4, IoT-enabled build-

ings produce a wide variety and large volume of heterogeneous information potentially releve-

nat to emergency response efforts. To manage both scale and heterogeneity, we design

FireDeX as an edge middleware that leverages existing IoT infrastructure and services man-

aged by a third-party BMS. Its pub/sub approach integrates capabilities of new devices/-

tools brought on scene by responders, while separating operational and ownership concerns.

Note that external entities often lack the knowledge, access, and expertise to reconfigure

local devices. This might conflict with existing configurations customized by building IoT

administrators.

Managing smart spaces at scale in real time: Tuning data collection parameters

at each device (e.g sampling rate, resolution) for individual subscribers is not always viable,

especially as the number and diversity of devices scales. FireDeX’s edge broker approach

naturally supports scalability; geographically-dispersed subscribers interconnect through a

distributed network of data exchange brokers. This network may be hierarchical: top-level

154

brokers running in cloud data centers serve a large region with many local brokers running

in edge data centers to serve a smaller local area (e.g. one or a few buildings, a campus).

FireDeX can further leverage work in large-scale pub/sub, in-network data processing, and

more deeply exploiting data semantics as described in Chapter 2.

Managing unreliable IoT networks: Communications are often constrained in crisis

scenarios. FireDeX leverages SDN to manage networking for IoT deployments by offloading

network configuration tasks from constrained devices and network hardware. See §2.3 for a

more detailed overview of SDN.

Research on Network Utility Maximization (NUM) [195] aims to tune the underlying net-

work according to application-level requirements. NUM configures a network (e.g. assigns

bandwidth) to serve nodes in a manner that maximizes utility functions that capture a user’s

degree of satisfaction with the network’s performance. Few prior researchers have investi-

gated discrete priority classes, which we leverage in our approach, within the context of

NUM. The authors of [138] propose assigning more bandwidth to users (i.e. via weighting

their requests higher) based on their requested priority levels. Similarly, [161] manages IoT

devices to maximize utility by allocating bandwidth and offloading processing, but the au-

thors do not use SDN or consider the data exchange middleware and prioritized application

requirements. Our cross-layer approach and consideration of utility functions sets apart our

work from most related SDN research referenced above.

Modeling cross-layer data exchange interactions using Queueing Theory: To

analyze IoT data exchange performance we must consider all three layers’ characteristics

and their effects on each other. However, existing efforts typically focus on each layer in

isolation. Therefore, we model cross-layer interactions by composing and extending previous

work at each layer through the unified framework of queueing theory [99, 166]. Queueing

Petri Nets (QPNs) enable accurate performance prediction in pub/sub systems [115, 158].

Alternatively, [39, 40] model and analyze the performance of pub/sub and middleware

155

protocols using Queueing Networks (QNs). While QPNs have an advantage over QNs in

representing parallelism, QNs provide convenient primitives to construct well-formed perfor-

mance models for efficient analysis [188]. Furthermore, QNs have been extensively applied

to model network infrastructure performance [86, 88, 93, 20] and more recently SDN infra-

structure [80, 170, 174].

7.2.3 Enabling Event Prioritization

We now overview how the FireDeX middleware addresses the above challenges. See §7.5

for a detailed discussion of how we implemented this middleware. We frame our discussions

in terms of the three layers depicted in Fig. 7.1: mission-critical applications, abstractions

representing the physical network infrastructure, and the data exchange middleware that

bridges these two to manage the overall system configuration and flow of information. As

shown in Fig. 7.2, FireDeX integrates other middleware technologies: data APIs for interfac-

ing with IoT data (i.e. through the BMS), a local pub/sub broker, a thin client middleware

running on each subscribing IoT device, and SDN APIs for managing local network infra-

structure. It implements the proposed algorithms and provides middleware APIs for our data

prioritization and network management approach. To ensure delivery of the most important

events despite network resource constraints (e.g. failures, poor signal strength, limited band-

width), it prioritizes events and allocates available network bandwidth according to

application requirements.

Application layer: FireDeX subscriber devices run a client middleware to establish bro-

ker connections, retrieve a list of event topics, subscribe to relevant ones, and report data

exchange/network channel statistics. Because different data vary by importance, we propose

prioritizing events according to their relative importance to the emergency response effort.

To configure this, subscribers register utility functions with their FireDeX subscriptions.

156

Figure 7.2: FireDeX middleware architecture

These functions capture a quantified measure of value for varying rates of event delivery

performance. Our proposed algorithms consider these utility functions when configuring the

data exchange and network to maximize users’ utility (i.e. situational awareness).

Data exchange layer: FireDeX prioritizes subscriptions according to their subscriber-

specified utility functions. It leverages the queueing theoretic analysis we present in §7.3

to estimate system performance under a given configuration. This analysis drives the algo-

rithms presented in §7.4 that assign discrete priority classes and allocate available network

bandwidth. FireDeX connects subscriber clients and the BMS data APIs with the pub/sub

broker, which performs the actual routing of events.

While some existing data exchange implementations and protocols support priorities, con-

figuring them requires specific APIs [147]. Furthermore, many popular options (e.g. the

MQTT [141] protocol and associated broker implementations) do not support priorities and

so require equal treatment of all events transmitted to the same subscriber. To decouple

FireDeX from the underlying data exchange broker, which may be specific to the site’s BMS,

we do not employ application-layer (i.e. in-broker) prioritization. Rather, we propose en-

forcing priorities at the network layer through unified APIs provided by SDN. This approach

accounts for both application-level requirements (e.g. utility functions) and network-level

state information (e.g. available bandwidth) without mandating (or extensively modify-

ing) specific broker technologies. Hence, FireDeX essentially extends the data exchange

broker/protocol with network and application-aware prioritization.

157

Network layer: FireDeX manages network infrastructure through APIs provided by an

SDN controller that likely runs alongside the BMS (i.e. at the edge). It gathers network

state information to derive resource constraints. It combines these with the subscribers’ in-

formation requirements to drive its management algorithms. The authors of [198] previously

advocated a similar approach of centrally gathering a global view of a pub/sub system’s state

to simplify its management. They refer to this central control approach as SDN-like because

it separates the pub/sub control and data plane. They further propose integrating SDN with

the data exchange middleware, which this centralization cleanly enables. We advocate for

this approach in IoT settings where offloading device management and data processing from

constrained devices typically leads to centralized (i.e. cloud-centric) designs. For simplicity

of discussion, we consider the big switch model shown in Fig. 7.1 that abstracts the entire

local physical network into a single virtual SDN switch. This provides a simplified single-

network view of the whole distributed system that may span multiple physical heterogeneous

networks (e.g. building Wi-Fi and local cellular) and different locations.

To enforce event priorities at the network layer, FireDeX leverages SDN APIs. It configures

priority queueing disciplines for packets matching the different subscriptions. However, for

the network to distinguish the data exchange-layer concept of subscriptions, we must first

translate it to a network-level concept. As shown in Fig.7.3, we accomplish this through

the SDN concept of network flows. SDN switches match incoming packets of a particular

network flow according header information. For example, OpenFlow considers OSI Layer

2-4 fields: IP/MAC address, UDP/TCP port, VLAN, etc. To differentiate subscriptions

as belonging to different network flows, a FireDeX subscriber maintains multiple network

connections with the pub/sub broker (e.g. over different Layer 4 port numbers). This may

represent different applications running on the same device and/or one application open-

ing multiple connections. The latter case enables the network to distinguish and manage

individual groups of subscriptions based on their assigned connection. The data exchange

middleware layer dictates this assignment of (possibly multiple) subscriptions to one net-

158

work connection and its corresponding unique network flow. Subscribers initiate multiple

connections and then register each subscription to avoid directly configuring the underlying

data exchange broker. FireDeX also assigns each network flow a priority level by considering

subscriber requirements. It configures the SDN switches to forward packets matching these

network flows through the proper priority queue.

Figure 7.3: FireDeX differentially prioritizes subscriptions at the SDN layer using multiple
connections per subscriber.

To manage available network resources, FireDeX also allocates bandwidth to each network

flow. It applies preemptive packet drop rates that consider the utility of each network

flow’s subscriptions. We propose dropping lower-priority packets before switch buffers fill up

to prevent high delays and dropping of higher-priority packets. §7.4.3 discusses this concept

further and proposes our optimization-based algorithm for setting these drop rates. This

algorithm is partly inspired by the aforementioned research in Network Utility Maximization

(NUM). However, in FireDeX subscribers actually define the utility functions according

to their information needs, and so they indirectly cooperatively control the assignment of

bandwidth. Furthermore, our proposal leverages discrete priority classes to drive priority

queueing disciplines and calculates the best priority assignments rather than assuming them

as a given input.

159

Figure 7.4: FireDeX queueing network model.

7.3 FireDeX Formal Model

From the above scenario, we formulate a generalized model for prioritized data exchange

in mission-critical settings. FireDeX combines queueing theoretic approaches from both

the middleware and network layers to construct the representative and extensible 3-layer

queueing network shown in Fig. 7.4. The data exchange middleware bridges the network

infrastructure and application layers to enable a novel cross-layer end-to-end performance

model. We derive this analytical model to estimate a particular configuration’s expected

performance.

160

Table 7.1: Notations of the parameters in our cross-layer data exchange model

Notation Description

Application Layer

vj ∈ V event topics

si ∈ S subscribers

rj ∈ R subscriptions

pi ∈ P publishers

λpubpi,vj
topic vj’s publication rate

λsubrj
rj’s delivery rate

Ξrj rj’s success rate

∆rj rj’s end-to-end response time

Data Exchange Layer

bk ∈ B brokers

λnotifybk,rj
rj’s notification rate

Ψ : R 7→ F network flow for a subscription

Φ : F 7→ Y priority for a network flow

Ω : F 7→ [0, 1] packet drop rate for a network flow

Network Layer

xk ∈ X SDN switches

hj ∈ H, H = P∪S∪B network hosts

wxk,hj ∈ W,wxk,hj ∈ N bandwidth between xk and hj

Gvj ∈ Z>0 serialized packet size for topic vj

zhj ,hi ∈ Z, zhj ,hi ∈ [0, 1] packet error rate

Γ : N×H ×H 7→ N transforms event departure to arrival rates (e.g. packet er-
rors)

fj ∈ F network flows

yj ∈ Y unique priority classes

161

7.3.1 Queueing Network Performance Modeling

Refer to Table 7.1 for the notations used throughout this section.

7.3.1.1 Application Modeling

Let Vpi ⊆ V be the set of topics each pi publishes to e.g., “smoke”, “temperature”, etc. Let

λpubpi,vj
be the publication rate of events with topic vj published by pi per unit time.

Assumption 1. λpubpi,vj
is based on a Poisson process.

We define each subscription as a tuple rj = (si, vj, Urj) where utility function Urj quantifies

the information value for subscriber si receiving events with topic vj. Let Rsi = {rj ∈ R :

si ∈ rj} be the set of prioritized information requests (i.e. subscriptions) for each subscriber

si. Let λsubrj
be the incoming rate of events matching subscription rj received per unit time

by subscriber si.

Let Ξrj be the success rate of delivering events matching subscription rj = (si, vj, Urj) to

subscriber si. By Assumption 1, we can estimate Ξrj (i.e. by summing Poisson process rates

to produce the rate of an aggregate Poisson process) as:

E
[
Ξrj

]
=

λsubrj∑
pi∈P λ

pub
pi,vj

Let ∆rj be the response time: the average end-to-end delay of events matching subscription

rj = (si, vj, Urj) from the moment they are published until si receives them. Below we

calculate this metric, which includes event processing times, network delays, etc.

162

7.3.1.2 Data Exchange Modeling

The data exchange layer represents a network of broker nodes B. We assume that each

publisher/subscriber connects with a single broker that we refer to as its home broker : bpi is

the broker that pi publishes to and bsi is the broker that subscriber si receives events from.

Furthermore, we define the set of publishers connected with bk as Pbk = {pi ∈ P : bk = bpi},

the set of subscribers connected with bk as Sbk = {si ∈ S : bk = bsi}, and the set of

subscriptions handled by bk as Rbk = ∪si∈Sbk
Rsi .

A broker bk forwards events with rate λfwdbk,bi
to another broker bi ∈ B for eventual consump-

tion by one of the latter’s subscribers. As depicted in Fig. 7.4, we model each broker bk

using a single inbound M/M/1 queue Qin
bk

and multiple outbound M/M/1 queues Qout
bk,si

. By

Assumption 1 and the exponentially distributed service rate of Qin
bi
,∀bi ∈ B−{bk}, we know

that λfwdbk,bi
is Poisson. Hence, we can define the arrival rate of events at Qin

bk
as the sum of all

(post-network transformation) event publication/forwarding rates over all publishers/bro-

kers:

λinbk =
∑
pi∈Pbk

∑
vj∈Vpi

Γ
(
λpubpi,vj

, pi, bk

)
+

∑
bi∈B,bi 6=bk

Γ
(
λfwdbi,bk

, bi, bk

)

Note that Γ, which we define in §7.3.1.3, represents network-layer traffic shaping due to error

rates, administrative policies, etc.

Forwarding, replication, or dropping of events based on current subscriptions occurs at the

exit of Qin
bk

. Let µinbk be Qin
bk

’s service rate for analyzing an incoming event and determining

where to forward it (e.g. based on a topic routing tree). We assume µinbk is constant (or

averaged) across all topics and independent of current subscriptions. Events not matching

subscriptions Rbk are dropped with rate λnosubbk
.

For each of broker bk’s subscribers si ∈ Sbk , it forwards events matching a subscription

163

rj ∈ Rsi to Qout
bk,si

with rate λthrubk,si
for transmission to si. Recall that each broker maintains

multiple connections (i.e. network flows) with each subscriber. Let µoutbk,rj
be the service rate

at Qout
bk,si

that captures the time it takes to map an event matching subscription rj to the

corresponding connection of si. It forwards these publications into the network layer with

rate λnotifybk,rj
. Hence, we calculate the per-subscriber forwarding rate as:

λnotifybk,si
=
∑
rj∈Rsi

λnotifybk,rj

FireDeX Configuration Parameters: The data exchange layer also represents the

FireDeX configuration service. FireDeX associates each subscription with one of the net-

work flows fj ∈ F in order to manage subscription traffic in a network-aware manner. Recall

from §7.2.3 that network flows represent multiple connections between a subscriber and its

home broker. We define the set of network flows for a particular subscriber si as Fsi ⊆ F.

Additionally FireDeX defines a set of unique priority classes yj ∈ Y . It assigns each network

flow to a priority class for managing network traffic in an application-aware manner. Note

that yj has higher priority than yk for j < k, i.e. y0 is the highest priority.

To configure the end-to-end data exchange interactions across all 3 layers, FireDeX employs

the following functions:

– Ψ : R 7→ F is the function mapping subscriptions (i.e. events matching them) to the

corresponding subscribers’ network flows. Note that we denote Ψ(si, vj) = Ψ(rj) as

the network flow for subscription rj = (si, vj, Urj) and so Ψ : S×V 7→ F. As described

in §7.2.3, this mapping allows the SDN data plane to distinguish packets containing

events from each other based on their subscriptions.

– Φ : F 7→ Y is the function mapping network flows to priority classes. This defines

164

which priority class (i.e. priority queue) the SDN infrastructure uses for a packet

transmitted on network flow fj. This packet contains event(s) matching subscriber si’s

subscription rj where fj = Ψ(rj). Hence Φ ◦Ψ(rj) is subscription rj’s priority.

– Ω : F 7→ [0, 1] is the function mapping network flows to preemptive packet drop proba-

bilities. By dropping some packets on a network flow, FireDeX more accurately tunes

the data exchange configuration than through priority assignment alone. Somewhat

akin to network traffic policing, this technique lowers the bandwidth usage of a network

flow so that the aggregate bandwidth needs of all flows does not exceed that available.

By dropping packets in the lower-priority flows, this prevents switch buffers from filling

up and dropping higher-priority packets.

7.3.1.3 Network Modeling

Publications forwarded to the network layer are encapsulated in packets for transmission by

the SDN infrastructure. To simplify the analysis used in our queueing model, we leverage

the following:

Assumption 2. The data exchange and applications encapsulate each event in a single

packet for transmission through the network.

Let X be the set of SDN switches that connect with the various hosts H. A host hj may

have multiple physical network interfaces/connections to one or more switches and packets

between two hosts may traverse multiple routes. However, SDN abstractions support the

following assumption that simplifies our analysis:

Assumption 3. We consider multiple switches/routes between two hosts as aggregated into

a single virtual SDN switch/link that captures the underlying physical network topology and

characteristics.

165

By Assumption 3, we need only to model a single big switch serving a publisher or subscriber.

Hence, we refer to xsi as the FireDeX-managed SDN switch that controls traffic between bsi

and si. We refer to xpi as the unmanaged SDN switch that exposes the network characteristics

(defined below) of the network channel between bpi and pi. Note that FireDeX does not

manage the latter switch because this might conflict with deployment-specific IoT device

configurations. To model multiple hosts sharing the same network medium (e.g. a wireless

channel), we apply Assumption 3 and model such a channel as one switch serving multiple

hosts. We therefore define the set of subscribers served by switch xk as Sxk = {si ∈ S : xsi =

xk}, all of their subscriptions as Rxk = {∪si∈Sxk
Rsi}, and all of their network flows as Fxk .

Similarly, let Pxk = {pi ∈ P : xpi = xk} be the set of publishers served by xk.

Let Qum
xi

be the queue modeling the unmanaged switch xi that encompasses a publisher-broker

or broker -broker link. By Assumption 2, we have the packet arrival rate for publications and

forwarded events at switch xi as λpubpi,vj
and λfwdbk,bi,vj

respectively. We model Qum
xi

as a multi-

class queue, which enables us to calculate the average transmission delay of a packet (∆tx
rj

)

based on its size. Each class corresponds to the topic of an event encapsulated within a

packet. Hence, we define the expected serialized size (e.g. in bytes) of a packet that, by

Assumption 2, contains a single event published to topic vj as Gvj ∈ Z>0. By Assumption

3, we have wxk,hj as the bottleneck bandwidth available between two hosts (i.e. from the

switch xk serving them to the destination host hj). Therefore, we can define a per-topic

packet transmission rate as:

µumxi,vj =
wxi,bk
Gvj

This enables calculating the average transmission delay ∆um
xi

of packets in Qum
xi

(see §7.3.2).

We apply Γ to packets departing the switch queue Qum
xi

in order to transform event departure

rates from a host hj to event arrival rates at the destination host hi. To simplify our analysis,

166

we leave retransmission of packets for future work and instead consider only packet error

rates. Let zhj ,hi ∈ [0, 1] be this packet error rate that, by Assumption 3, allows us to model

packet drops at the single switch between these hosts. We have the arrival rate of publications

(on topic vj from publisher pi at broker bk) as:

Γ
(
λpubpi,vj

, pi, bk
)

=
(
1− zpi,bk

)
λpubpi,vj

We define the transformed arrival rate of events forwarded from broker bi to bk similarly.

We model each managed SDN switch encompassing a broker-subscriber link as two different

queues: 1) an M/M/1 queue Qin
xk

that feeds into 2) our newly-proposed queueing model: a

non-preemptive priority and multi-class queue Qout
xk

. By Assumption 2, we therefore have the

arrival rate at switch xk of event-encapsulating packets within a network flow fj as λinxk,fj .

Qin
xk

processes each incoming packet by matching its header contents to a corresponding

network flow fj and determining the assigned priority (i.e. Φ(fj)). Let µinxk be the service

rate at Qin
xk

that captures the time required to perform this matching (e.g. an SDN switch

TCAM lookup), assign the given priority, and route the packet to the appropriate output

port. Note that this might actually capture delays from forwarding packets along a multi-

switch route.

Before enqueueing the packet at the correct output port, the switch first applies the dropping

policy to each flow according to the FireDeX-computed function Ω(fj). Because our model

does not consider further packet drops in Qin
xk

or before Qout
xk

, we have the per-subscription

arrival rate at Qout
xk

as:

λthruxk,rj
=
(

1− Ω ◦Ψ
(
rj
))

λnotifybk,rj
(7.1)

167

Multi-class priority queue Qout
xk

separates the departure rates of each packet according to its

serialized size and the switch’s available bandwidth. Note that the assigned priority class

affects the response time but not the departure rates of these packets. By Assumption 2,

we therefore have the service (i.e. transmission) rate of packets encapsulating events that

match subscription rj = (si, vj, Urj) from SDN switch xk to subscriber si as:

µoutxk,rj
=
wxk,si
Gvj

(7.2)

We have the departure rate from Qout
xk

as: λoutxk,rj
= λthruxk,rj

. We then apply Assumption 2 and Γ

to packets departing switch queue Qout
xk

. Considering packet error rates, we have the arrival

rate of events at subscriber si matching subscription rj = (si, vj, Urj) as:

Γ
(
λoutxk,rj

, bsi , si

)
= λsubrj

=
(

1− zbsi ,si
)
λoutxk,rj

7.3.2 End-to-end Analytical Model

We now leverage the above queueing network to derive theoretical performance results.

This analysis, the accuracy of which we validate in §7.6.2, enables FireDeX to tune the

data exchange performance characteristics of end-to-end event response time and delivery

success rate. To calculate ∆rj , the end-to-end response time of events for subscription rj, we

calculate the propagation and queueing delays at each layer. Note that the queueing delay

in our model captures the real-world processing and network transmission delays.

To simplify our analysis, we exploit the local nature of our target scenario and consider only

168

a single broker (bk) in the remainder of this section. Future work will explore relaxing this

assumption and extending this analysis to include the more general scenario of a distributed

broker network enabled by our queueing network model above. By the above assumption,

we calculate the per-subscription end-to-end response time metric as:

∆rj = E
[
∆prop
pi,bk

+ ∆um
xpi

]
+ ∆bk + ∆prop

bk,si
+ ∆xsi

(7.3)

where ∆prop
bk,hj∈H is the propagation delay (i.e. physical network latency) between the broker

and another host hj (bk or si). ∆um
xpi

and ∆xsi
are the transmission delays of packets passing

through switches xpi and xsi respectively. ∆bk is the processing delay of events passing

through bk.

We must estimate the heterogeneous propagation delays for this subscription’s events from

each possible publisher on topic vj – i.e. {pi ∈ Pbk : vj ∈ Vpi}. By our single broker

assumption, we have this as the expected delay from any such publisher to broker bk. In the

same manner, we estimate the queueing delay at the intermediate switch xpi . Therefore, we

have:

E
[
∆prop
pi,bk

+ ∆um
xpi

]
=

∑
{pi∈Pbk

:vj∈Vpi}

∆prop
pi,bk

+ ∆um
xpi

|{pi ∈ Pbk : vj ∈ Vpi}|

The average response time of (7.3) includes queueing delays at each layer of FireDeX. Based

on the queueing network representing FireDeX (see Fig. 7.4), we identify the type of each

queueing model and their arrival/processing/transmission rates.

At the data exchange layer we use M/M/1 queues. Based on standard solutions for M/M/1

169

queues [120], we have the time that an event remains in the system (i.e. queueing time +

service time; also called average delay) given by:

∆Qmm1(µ, λ) =
1

(µ − λ)
(7.4)

At the network layer, we use three different types of queueing models: i) the M/M/1 queue

(Qin
xk

); ii) the multi-class queue (Qum
xi

) and iii) the non-preemptive priority and multi-class

queue (Qout
xk

). As already pointed out, we model the transmission of packets inside the

unmanaged switch queue (Qum
xi

) using a multi-class queue (each class corresponds to the

topic of an event encapsulated within a packet). Based on standard solutions [120], the

average delay for a particular subscription rk is given by:

∆Qmcl
(µ, λ, rk) =

1

µrk − µrk
∑

rj∈R λrj/µrj
(7.5)

where λ = {λrj : rj ∈ R} and µ = {µrj : rj ∈ R}.

Finally, the SDN switch is modeled using the non-preemptive priority and multi-class queue

(Qxk). Hence, the average delay of packets for rk assigned with yj is given by:

∆Qmclpr
(µ, λ, rk) =

Lrk(λ, µ)

λrk
(7.6)

where λ = {λrj : rj ∈ R}, µ = {µrj : rj ∈ R} and Lrk is the number of events matching

subscription rk with assigned priority yc (where Φ ◦ Ψ(rk) = yc) in the system (queue +

170

server) of Qmclpr. See Appendix A for our proof of (7.6).

By relying on the above analytical models, we calculate the average delay of events for any

subscription rj at each node and layer of the FireDeX queueing network according to (7.3).

Data Exchange: at this layer the average delay at bk (∆bk) is given by calculating the

queueing delay of events matching rj at both inbound (Qin
bk

) and outbound (Qout
bk,si

) queues

– i.e., ∆bk = ∆Qin
bk

+ ∆Qout
bk,si

. Both queues are of M/M/1 type. For Qin
bk

, the incoming rate

of events is λinbk and its service rate is µinbk ; for Qout
bk,si

the incoming rate of events is λthrubk,si
and

the service rate is µoutbk,rj
. Hence, we apply (7.4) to determine:

∆bk = ∆Qmm1

(
µinbk , λ

in
bk

)
+ ∆Qmm1

(
µoutbk,rj

, λthrubk,si

)
(7.7)

Network: at this layer the average delay (∆um
xi

) at the unmanaged switch xi (publishers-

broker link) is given by calculating the queueing delay of packets matching rk at the multi-

class Qum
xi

queue. Hence, using the analytical model of (7.5) such a delay is given by:

∆um
xi

= ∆Qmcl

(
{µumxi,vj : vj ∈ V}, {λpubpi,vj

: pi ∈ Pxi , vj ∈ Vpi}, rk
)

At the SDN switch xk (broker-subscribers link) the average delay (∆xk) is given by estimating

the queueing delay for packets matching rj at both inbound (Qin
xk

) and outbound (Qout
xk

)

queues – i.e., ∆xk = ∆Qin
xk

+∆Qout
xk

. In the M/M/1 queue Qin
xk

packets arrive at a per-flow rate

λinxk,fj and are served with rate µinxk . Hence, by applying (7.4), ∆Qin
xk

= ∆Qmm1

(
µinxk , λ

in
xk,fj

)
.

The outbound queue (Qout
xk

), a multi-class and non-preemptive priority queue, has a per-

171

subscription packet arrival rate λthruxk,rj
. Its service rates µoutxk,rj

capture the specific event/packet

size of the corresponding rk = (si, vj, Urj). Hence, we apply (7.6) to find:

∆Qout
xk

= ∆Qmclpr

(
{µoutxk,rj

: rj ∈ Rxk}, {λthruxk,rj
: rj ∈ Rxk}, rk

)
(7.8)

7.4 Data Exchange Configuration Algorithms

The core algorithms of FireDeX leverage the above analytical model to configure the SDN-

enabled data exchange. Considering current system state and information requirements,

they assign priorities and preemptive drop rates to subscriptions (i.e. via Φ ◦Ψ, Ω) in order

to maximize subscriber-defined utility functions.

7.4.1 Utility Functions

To capture the relative value of information for different subscriptions, we propose using

utility functions. Subscribers include a utility function with their subscriptions. They depend

on the rate of successful event delivery Ξrj . The overall utility for a subscriber depends on

each of its subscriptions’ utilities and is defined as:

Usi =
∑
rj∈Rsi

Urj(Ξrj)

Let Ûrj be a subscription’s maximum achievable utility: delivering the maximum number

of events under ideal network conditions (i.e. no loss, minimal latency, no other traffic to

172

contend with).

To further capture the relative value of information between each subscriber, we consider an

overall utility of all subscribing first responders. Each subscriber may define different utility

functions to capture the fact that each of their needs vary (e.g. the IC may require more

situational awareness than individual FFs). We define the overall utility of the configuration

for all subscribers as a sum over each individual subscriber’s utility:

U =
∑
si∈S

Usi

To model heterogeneous information requirements in our experiments, we generate different

utility functions for each subscription. We define the base utility function as:

Urj(Ξrj) = αrj log(1 + Ξrj) (7.9)

where the utility weight αrj is varied for each subscription.

7.4.2 Priority Assignment Algorithm

FireDeX leverages the above quantified utility metrics to assign priorities for each data flow in

a manner that aims to maximize the overall utility. We decouple the assignment of priorities

from that of drop rates for two reasons. Prioritization ensures the most important events

get through first, but it does not necessarily provide guarantees about how much data is

delivered. Hence, we first assign the priorities and then optimally set the preemptive drop

rates to tune bandwidth usage for the network flows in each priority class. Second, this

173

decoupling allows us to explore different policies in these two spaces independently.

Because the assignment of discrete priorities to maximize utility is non-trivial, we propose a

heuristic to approximate a solution. It first ranks subscriptions according to their maximum

utility Ûrj scaled by the corresponding required bandwidth. This metric essentially mea-

sures information value per unit bandwidth and lets FireDeX consider that some high-value

subscriptions may consume a lot of network resources. We define this metric as:

Ûrj

Gvjλ
notify
bk,rj

(7.10)

To approximate a solution to the priority-assignment problem, we propose the following

greedy approach for each subscriber si:

1. Sort the subscriptions rj ∈ Rsi by (7.10)

2. Split this list into |Fsi| sub-lists of approximately equal size

3. Assign Ψ(rj) = Fsi(k) for each rj ∈ sub-list number k

4. Split the list of flows Fsi into approximately |Y | sub-lists of approximately equal size

5. Assign Φ(fj) = yk for each fj ∈ sub-list number k

Note that this splitting up of lists handles unequally-sized splits (e.g. |Fsi | > |Y |) by prefer-

ring higher priorities first.

This priority assignment ensures delivery of the highest-priority events if possible. However,

an overloaded system will fill switch buffers and lead to high delay and loss of lower-priority

events. Hence, we apply preemptive drop rates to avoid such a case.

174

7.4.3 Ensuring Queue Stability via Preemptive Drop Rates

Given the above priority assignment, FireDeX further fine-tunes the subscriptions’ success-

ful notification rate Ξrj . Based on the requested subscription utility functions and current

network state (e.g. bandwidth constraints), it applies a preemptive packet dropping policy.

This improves the overall utility of the system’s configuration by essentially allocating avail-

able bandwidth to the network flows. Crucially, this bandwidth allocation also ensures queue

stability throughout the network. That is, if packets arrive at the switches’ inbound queues

too quickly, the forwarding queues will grow in size until the buffers fill up and packets are

dropped. To prevent the dropping of high-value events, FireDeX preemptively drops lower-

priority packets. The algorithms presented here determine with what probability packets of

each network flow should be dropped (Ω(fj)) to improve situational awareness while ensuring

queue stability.

Not only does ensuring queue stability improve system performance, it also satisfies con-

ditions necessary for our analytical model’s results to prove accurate. Let ρQ = λ
µ

be the

server utilization (i.e. probability that the server is busy) of the corresponding queue (e.g.

Qout
xk

). By [89], the system remains unsaturated (i.e. queue stability is ensured) when ρQ < 1.

For FireDeX’s M/M/1 queues (i.e., Qin
bk

, Qout
bk,si

, Qin
xk

) we define: ρQin
bk

=
λinbk
µinbk

, ρQout
bk,si

=
λthrubk,si

µoutbk,rj

and ρQin
xk

=
λinxk,fj

µinxk
. FireDeX’s multi-class queues Qum

xi
and Qout

xk
have per-topic and per-

subscription arrival and service rates respectively. We determine their server utilization

as:

ρQum
xi

=
∑
Pxi

∑
vj∈Vpi

λpubpi,vj

µumxi,vj
(7.11)

175

ρQout
xk

=
∑

rj∈Rxk

λthruxk,rj

µoutxk,rj

(7.12)

To improve successful delivery rate while ensuring queue stability, we propose several algo-

rithms of increasing sophistication below. Note that these algorithmic formulations currently

only consider the outbound queue of the SDN switches for this constraint as tuning the drop

rates only affects ρQout
xk

. Also recall that this queue captures the bottleneck bandwidth of the

network route from broker to subscriber. Future work will explore simultaneously balancing

the load across data exchange brokers to also ensure stability of their queues within our

model.

Each algorithm makes use of a parameter ρ̃ in tuning the system’s tolerance to approaching,

but never exceeding, the queue saturation point of ρQout
xk

= 1. Clearly, to satisfy the strict

inequality ρQout
xk

< 1 we must have ρ̃ > 0. Setting ρ̃ even higher provides ample buffer

within the SDN switch queues for resilience to temporary notification rate spikes that might

otherwise lead to queue saturation. Even if this condition is just barely satisfied (e.g. ρ̃ =

10−10), queues will still grow quite large and thereby cause high delay (refer to Fig. 7.13 for

an example).

Therefore, the following drop rate policies set Ω such that:

ρQout
xk

= 1− ρ̃ (7.13)

Flat drop rates: this simple naive policy sets all drop rates equal to satisfy Eq. (7.13) by

176

solving Eq. (7.12) for a parameter β such that:

Ω(fj) = β (7.14)

Linear drop rates: this more information value-aware policy sets the drop rates for each

network flow according to its assigned priority level. It solves Eq. (7.12) for a parameter β

that satisfies Eq. (7.13) with drop rates set to:

Ω(fj) = βΦ(fj) (7.15)

Exponential drop rates: similar to Linear, this policy sets drop rates according to priority

level. It solves Eq. (7.12) for a parameter β that satisfies (7.13) with drop rates set to:

Ω(fj) = 1− β−Φ(fj) (7.16)

Appendix B presents derivations for how exactly to efficiently solve the above drop rate

heuristics.

Optimized drop rates: the following convex optimization formulation assigns drop rates to

maximize overall utility. Given the previously-assigned priorities as input, FireDeX assigns

177

drop rates by solving the following convex optimization problem:

maximize U

subject to Ω(fj) ∈ [0, 1],∀fj ∈ F

ρQout
xk
≤ 1− ρ̃, ∀xk ∈ X

(7.17)

Note that the second constraint ensures available bandwidth constraints are met (i.e. queue

stability) according to the ρ̃ parameter.

As long as the chosen utility functions are concave (e.g. logarithm) within the feasible domain

of assigned drop rates, then (7.17) can be expressed as a convex optimization problem and

efficiently solved. Hence, we define a utility function, such as that given in (7.9), that takes

as input our analytical model for determining λsubrj
. Because this is an affine function over the

drop rates, we can optimally solve for drop rates that maximize the overall system utility.

We used CVXPY [10, 56] to implement this approach in the FireDeX middleware.

7.5 Prototype Implementation

We now present a prototype implementation of the FireDeX middleware. It implements

the analytical model and algorithms discussed in §7.3 and §7.4 respectively. Consider this

implementation according to the three layers shown in Fig. 7.5. The FireDeX Coordinator

Service (FCS) extends the data exchange broker by managing the network infrastructure

through SDN. It runs the algorithms to compute priorities and drop rate policies, and then

it configures the SDN switches through an SDN controller to enforce these policies. We invite

the reader to try out FireDeX and find more up-to-date details than we could fit below by

visiting our source code repository: https://github.com/boulouk/firedex.

178

https://github.com/boulouk/firedex

Figure 7.5: The FireDeX cross-layer middleware.

7.5.1 Application layer

The FireDeX publishers connect to the data exchange broker through an MQTT connection

via the MQTT Paho library [144]. Currently, the data generated by the publishers is sim-

ulated via Poisson and Deterministic distributions. Future work will consider replacing it

with data coming from real IoT deployments.

The FireDeX subscribers connect to the data exchange broker to receive relevant events.

They subscribe to these by specifying a topic and the corresponding utility function. Each

subscriber establishes multiple MQTT-SN connections to the broker with a client library

[135]. Multiple connections allow the network layer to distinguish different event types (i.e.

more/less relevant) as described in §7.5.3. Hence, it can apply different priority queueing

and event dropping policies as instructed by the FCS. For the subscribers we use MQTT-SN

instead of MQTT because it relies on UDP rather than TCP. The latter’s re-transmission

mechanism interferes with our preemptive packet dropping approach that tolerates some loss

of sensor data under constrained bandwidth. Note that UDP does not support fragmentation

and reassembly of messages. Therefore, we assume that messages are never fragmented and

179

Figure 7.6: Web dashboard.

limit their size at the application layer to 256 bytes (before packet headers) due to limitations

in the MQTT-SN library. The subscribers first coordinate with the FCS as depicted in

Fig. 7.8. This interaction determines the connection they should use for each subscription.

Then they open the connections specified by the FCS to the broker and subscribe to each

topic through its corresponding connection.

We implemented both the publisher and subscriber applications in Java.

To enable the subscribers’ interaction with the FireDeX middleware we implemented a pro-

totype of web dashboard that can be used to receive relevant events specifying topic and the

correspondent utility function (see Fig. 7.6 and Fig. 7.7).

180

Figure 7.7: Web dashboard.

7.5.2 Data exchange layer

The data exchange layer consists of two components: the unmodified data exchange broker

and the FCS.

Data exchange broker. The data exchange layer supports the publish/subscribe paradigm

for event delivery. An unmodified MQTT [141] broker facilitates this exchange between

publishers and subscribers. While FireDeX supports any MQTT broker implementation

(e.g. VerneMQ, HiveMQ, RabbitMQ), we deployed the Moquette [133] broker because it

is lightweight, embeddable, open-source and easy to configure. We also run an MQTT-SN

gateway [105, 134] co-located with the MQTT broker. It translates from MQTT over TCP

(publishers’ protocol) to MQTT-SN over UDP (subscribers’ protocol).

FireDeX Coordinator Service. The FCS is the “brain” of the FireDeX middleware and

follows the workflow shown in Fig. 7.8. It manages user subscriptions by assigning priorities

and drop rates as described in §7.4 and shown in Fig. 7.3. The FCS physically resides

either in the local network (i.e. building on fire) or a remote location. We implemented

the FCS as a REST server using the Python library Flask [85]. The subscribers indicate

their topics of interest and corresponding utility functions to the FCS through a HTTP

request (i.e. subscription intent). The FCS computes priorities and drop rates for each

subscriber’s network flows, responds with the mapping of subscriptions to connections (i.e.

network flows), and then configures the network layer (i.e. SDN infrastructure) to enforce

these policies.

181

Figure 7.8: Subscribers and FCS interaction workflow.

7.5.3 Network layer

This layer enforces event prioritization and drop rates configured through the SDN protocol

OpenFlow [130]. The SDN controller configures the SDN switches with these policies at the

direction of the FCS. We implemented two SDN applications through the Ryu [156] SDN

controller to facilitate this coordination.

The Topology Application monitors network traffic to create an internal graph representation

(using the NetworkX library [90]) of the network topology. The topology is used to route

packets from source to destination.

The FireDeX Flow Application populates the switches’ flow and group tables. These tables

contain OpenFlow rules that enforce the priority and drop rate policies specified by the

FCS. To identify a subscriber’s traffic on the network the FireDeX Flow Application matches

the packet’s header with the network flow information received by the FCS. Network flow

information includes the subscriber’s IP address and the connection’s (i.e. network flow’s)

transport layer port number. We use the SELECT option of OpenFlow group tables to set

182

the drop rate as the weight for one of two different “buckets” that drops the packet rather

than forward it normally. The example rules in Listing 7.1 match packets for the subscriber

with IP address 10.0.0.1 and an MQTT-SN connection on UDP port 8888. It applies priority

class 2 (i.e. queue number) and a 10% drop rate.

FLOW TABLE RULE: ip_address = 10.0.0.1 , udp_port = 8888,

action = (group_identifier , 1)

GROUP TABLE RULE: group_identifier = 1,

buckets [

(weight = 90, action = (queue = 2, output_port = 3)),

(weight = 10, action = drop)

]

Listing 7.1: Example rules in flow and group tables.

We configure priority queues on the switches via Linux TC [125] since OpenFlow has no uni-

fied API to support this. Furthermore, FireDeX must enforce a random per-packet selection

of the buckets option (i.e. for the drop rate implementation) rather than the typical ap-

proach of hashing packet header fields. Hence, we leverage a modified Open vSwitch (OVS)

version [143] that implements this.

7.5.4 Implementation challenges

We resolved several challenges while implementing this prototype:

• Differentiating events at the network layer for policy enforcement. We used SDN

network flows to distinguish subscriptions served by different connections at the net-

work layer. This was necessary because the OVS switches can only inspect the packets’

header (i.e. OSI Layers 2-4), and not the packets’ payload. Hence, we needed to bring

183

the Layer 7 (application layer) concept of subscription topics down to Layers 2-4 for

this in-network policy enforcement.

• Enforcing packet drop rates via SDN required us to use the modified OVS version

described above. This enabled us to implement the drop rate policies through weighted

per-packet selection of bucket options (i.e. drop vs. forward with priority).

• SDN controller choice: we moved from ONOS to Ryu because the former does not

support group rules specifying the enqueue action as required by our flow rules shown

in Listing 7.1.

• The UDP protocol was used rather than TCP in our subscribers. Applying drop

policies to packets (i.e. events) over a TCP connection triggers its re-transmission

mechanism because the sender (i.e. data exchange broker) does not receive an acknowl-

edgement message when the corresponding packet (i.e. event) is dropped. Hence, we

used MQTT-SN over UDP so that a packet drop would actually drop that particular

event.

• The Web Socket implementation in JavaScript that we used in the web-based

dashboard implementation proved challenging. It does not allow specifying the local

port to which the MQTT socket should bind when opening a connection. Instead, we

implemented a gateway between the Java-based subscriber application and the web-

based dashboard. This enabled our proposed mechanisms by differentiating the data

flows at the gateway and enforcing the FireDeX policies before forwarding events to

the subscriber dashboard.

• Clock-synchronization issues between publishers and subscribers made gathering

accurate results difficult. This is part of the reason for running our experiments on

a single machine in Mininet: all applications shared the same system clock in this

manner.

184

Figure 7.9: Network topology structure used in the the prototype implementation experi-
ments.

• Our experimental network topology required additional “dummy” switches for

constructing the priority queues shared across all subscribers (see Fig. 7.9). This is

due to the fact that each host has its own Ethernet interface connecting it with a

switch. Therefore, enqueueing prioritized messages would result in one set of priority

queues for each subscriber rather than sharing the queues across all subscribers as our

version described here accomplishes.

However, one challenge remains open. The MQTT-SN control messages (e.g. subscrip-

tion/unsubscription/acknowledgement messages) are sent to the same UDP port (i.e. net-

work flow) on which we apply the drop rate policies. Therefore, some of them may be

dropped. To better understand the situation, consider Fig. 7.10 that shows the messages

exchanged between broker and subscriber through the SDN network infrastructure. The first

message sent from the broker to the subscriber (i.e. the first subscription’s acknowledgement

message) triggers the creation of the flow/group rules (see Listing 7.1) associated with the

network flow to which the subscription belongs. However, when the subscriber subscribes to

another topic on the same network flow, the second subscription’s acknowledgement message

may be dropped because of the drop rate policy applied. This can delay the subscription

establishment process for a very long time if this network flow has a high drop rate as-

185

Figure 7.10: Supporting multiple subscriptions per connection is challenging due to dropping
control packets.

186

signed. One possible solution to overcome the aforementioned problem requires changing

the protocol between subscribers and FCS. In this case, the SDN controller would create

the flow/group rules without setting the drop rates. The subscriber informs the FCS once it

finishes establishing all of its subscriptions. Then the FCS can instruct the SDN controller

to apply the drop rates policies. However, this complicates the implementation considerably,

and so we currently only consider one subscription per network flow in our experiments to

avoid this problem.

7.6 Experimental Results

Table 7.2: Default parameters for our experimental configurations used in the simulated
experiments.

Data Exchange Parameters

#topics
(|V|)

pub rate
(λpubpi,vj

)
event size

(Gvj)
#subscriptions

(|Rsi |)
utility
weight
(αrj)

Telemetry
data

140 Exp(1
6
) ∈

[4,7]
Exp(1

110
) ∈

[90,500]
70 Exp(1

0.5
) ∈

[0.01,2]

Async.
events

60 Exp(1
4
) ∈

[3,5]
Exp(1

800
) ∈

[500,1100]
42 Exp(1) ∈

[0.1,4]

Network Parameters

#subscribers
(|S|)

#publishers
(|P|)

#flows
(|Fsi |)

#priorities
(|Y |)

bandwidth
(wsi)

ρ tolerance
(ρ̃)

10 160 9 9 80 Mbps 0.1

FireDeX uses the analytical model given in §7.3.2 to estimate end-to-end response times and

success rates for event notifications to interested subscribers. We validate this analysis by

using and extending an open source queueing simulator to represent our proposed system.

We compare the subscribers’ end-to-end response times given by the analytical model with

those given by the simulation. Note that we omit the trivial results for validating success

rates. In order to improve the figures’ legibility, we did not include error bars in our plots as

187

the simulation results’ confidence intervals are very small (less than two orders of magnitude

from the corresponding mean values presented in the plots). We further validate the model’s

accuracy under greater numbers of subscribers.

After validating our model, we then use it to evaluate the FireDeX approach for a given

configuration. We do this using both the simulator as well as a Mininet-based emulated

framework that incorporates our prototype implementation. In particular, we compare our

approach’s efficacy with that of an unprioritized system and evaluate the trade-off between

response times and success rates. We use our proposed priority-assignment algorithm, which

we call bandwidth-adjusted-prio, and the exponential drop rate policy. Subsequently, we

utilize the analytical model only to compare different algorithms’ ability to maximize the

overall value of information captured.

7.6.1 Experimental Setup

We developed a Python-based framework that models the real-world scenario given in §7.2.1

and provides input data for our simulations. We configure it to consider two classes of topics

that represent events: sensor telemetry readings published periodically and asynchronously-

published notifications that indicate real-world phenomena detected from analysis of raw

sensor readings. This framework leverages the probability distributions and parameters

given in Table 7.2 to generate random configurations for each publisher, subscriber, the

broker, and the network. For example, it selects the publication rate and packet size of

events from the given distributions. Note that we bound these values to maintain more

realistic parameters by redrawing a new one when it lies outside the given range. Note that

the actual topics published and subscribed to are chosen uniformly at random from those

available.

The model presented in §7.3 generically captures a very wide range of scenarios and system

188

configurations. To reduce the number of variables we explore in our experiments, we only

simulate a single (i.e. last-hop) SDN switch between the broker and subscriber. Recall

that this represents the bottleneck bandwidth and transmission delays. Also note that

propagation delay and error rates are typically modeled as constant values. Hence, we

ignore them for these experiments to focus instead on the variable delays our model aims to

capture.

7.6.1.1 Queueing Network Simulator

After generating these configuration parameters for a single instance of a scenario, the above

framework feeds them into a simulator to drive its pseudo-random number generators. That

is, these parameters correspond to the expected values of the probability distributions from

which the simulator draws the actual individual publications’ arrival times and packet sizes.

Note that we use exponential distributions in order to maintain our assumption of Poisson

arrival/service rates. This simulator extends JINQS [83], a Java simulation library for mul-

ticlass queueing networks. JINQS provides a suite of primitives that allow developers to

rapidly build simulations for a wide range of queueing networks. We leverage this power

and extend JINQS to: i) represent the queueing network introduced in Fig. 7.4; ii) imple-

ment our new multi-class and non-preemptive priority queueing model; iii) simulate pub/sub

interactions using a set of configuration parameters provided by our Python-based frame-

work. To evaluate FireDeX, we generate parameters and run the simulator 10 times for each

configuration and then average across these. Each run generates approximately 6,500,000

publications to accurately calculate per-subscription response times and success rates. Fur-

thermore, we consider 9 priority classes due to practical limitations of many existing network

traffic and data exchange management systems. For example, Linux TC [125] and AMQP

0.9.1 [14] only support 8 and 10 priority queues respectively.

189

7.6.1.2 Prototype Emulation

The experimental framework we developed configures an emulated network using Mininet [1].

This uses OVS [3] to create a virtual network topology of SDN-enabled switches (in a real

Linux networking stack) with realistic delays, bandwidth limits, and link loss rates. It con-

nects these switches together as well as to virtual hosts, which are implemented as network

namespace-isolated processes and run our FireDeX middleware implementation described

in §7.5. OVS switches connect via the SDN southbound protocol OpenFlow [130] to the

distributed SDN controller platform Ryu [156] running on the same machine. The pub-

lisher/subscriber hosts themselves produce output files from which we calculate the results

depicted below.

The experimental framework configures the managed SDN switches to create a number of

priority queues (the configurable parameter |Y |). Because OpenFlow does not support a

unified API for creating these queues, we currently do this using Linux TC [125], which

supports up to 8 queues. However, the highest priority queue is used to send the default

traffic. Since this would affect the results for that priority queue, we route the default traffic

through the highest priority queue, and the prioritized traffic through the remaining queues.

This limits the number of priority queues that we can actually use to prioritize the network

traffic to 7.

Note that Linux TC can emulate bandwidth limitations, packet loss, and network delay.

The bandwidth limitation constrains the volume of traffic (i.e. number of bytes) that can

be sent per unit of time. However, it does not simulate the actual packet transmission delay

(
Gvj

wsi
) due to the available bandwidth. Hence, Linux TC sends packets at the same speed

regardless of packet size (i.e. the transmission delay is constant). This in turn further affects

the perceived queueing delay. That is, if the available bandwidth is enough to empty the

queues, the queued packets do not experience the queueing delay due to the transmission

190

delay of previous packets. The aforementioned issues have to be considered while evaluating

experiments results.

7.6.2 Validating our Queueing Network Model

0

0.5

1

1.5

2

2.5
analytical:

Q
 =~ 0.6

sim:
Q

 =~ 0.6

0

10

20

30

40

50

60

70 analytical:
Q

 =~ 0.95

sim:
Q

 =~ 0.95

0 1 2 3 4 5 6 7 8

Priority

0
5

10
15
20
25
30
35

E
n
d
-t

o
-e

n
d
 r

e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

analytical with drop policy:
Q

 =~ 1.7

sim with with drop policy:
Q

 =~ 1.7

b

a

c

Figure 7.11: Analytical vs. simulation end-to-end response times for varying traffic loads
(ρQout

xk
).

To prove the accuracy of the theoretical analysis we developed in §7.3.2, we now compare

its estimated performance metrics with those calculated from the aforementioned simulator.

7.6.2.1 Varying traffic loads

Recall that the SDN switch’s outbound queue (shown in Fig. 7.4) captures the bottleneck

bandwidth of the network route from broker to subscriber. FireDeX uses the corresponding

server utilization (ρQout
xk

) to decide the bandwidth tuning by assigning drop rates. Therefore,

191

we parameterize the simulated queueing network to vary the system’s network traffic load:

a) medium-load conditions (ρQout
xk

= 0.6); b) high-load conditions (i.e. close to saturation

– ρQout
xk

= 0.95); c) overloaded conditions (i.e. saturated – ρQout
xk

= 1.7). Note that the

saturated case (3rd) corresponds to the default parameters in Table 7.2. To achieve the

medium-load (1st) and high-load (2nd) cases, we set the number of subscriptions for each

topic class respectively: i) 21,15; and ii) 42,24.

Fig. 7.11 shows the results of these experiments according to assigned priority class and

averaged across all topics, subscribers, etc. Comparing the curves of both the simulated

measurements and the analytical results obtained by Eq. (7.3) reveal our model’s high

accuracy. We notice small differences for events with lower priority levels. In particular,

note priority level 8’s differences: 0.35 ms in Fig. 7.11a, 13.98 ms in Fig. 7.11b and 8.24 ms

in Fig. 7.11c. Because the system approaches saturation in Figs. 7.11b and 7.11c, we deem

these results acceptable. In Fig. 7.11c, FireDeX uses our drop policy mechanism to drop

packets at the SDN switch and return the system to below saturation (i.e. ρQout
xk

= 0.9 by

using ρ̃ = 0.1).

7.6.2.2 Scaling up number of subscribers

We now validate our analytical model’s accuracy under varying numbers of subscribers: |S|

= 1, 10, 20, 50, 100. To maintain the same degree of system saturation (i.e. ρQout
xk

= 1.7),

we increase the bandwidth proportional to the number of subscribers: wxk,si = 8Mbps. We

keep all other parameters according to Table 7.2. According to these parameters, we measure

the simulated mean response times and plot them vs. those calculated using Eq. (7.3) in

Fig. 7.12. Note the curve for each number of subscribers that shows response time increasing

with the priority class. From this comparison, we see that the absolute deviation between

the two curves does not exceed 10 ms across all priority levels. Therefore, our model remains

accurate even with higher numbers of subscribers.

192

1 5 10 20 50 100

Number of Subscribers

0

5

10

15

20

25

30

35

40

E
n
d
-t

o
-e

n
d
 r

e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

analytical with drop policy: =~ 1.7

sim with drop policy: =~ 1.7

Figure 7.12: Analytical vs. simulation end-to-end response times for varying numbers of
subscribers.

7.6.3 Evaluating the FireDeX Approach

We now compare our approach’s efficacy with that of an unprioritized system and a system

without preemptive packet drops. We will evaluate the trade-off between response times and

success rates. However, we discuss in more detail the concept of network switch buffers and

their limited capacity within the context of FireDeX. Recall from §7.4.3 that we apply drop

rates in order to prevent these buffers from filling up, which leads to high queuing delays

as well as dropped high priority packets. Recall also from that discussion that we tune

the parameter ρ̃ in order to keep these buffers from growing indefinitely. Fig. 7.13 depicts

the detrimental effects on response time of selecting too low a value for ρ̃ (i.e. the buffers

grow too large). As evidenced by the linear decrease in success rate, we must carefully

analyze the trade-off in expected queue size with achievable utility when tuning the data

exchange. These results helped determine the default of ρ̃ = 0.1 that we used throughout

our experiments and adopted as the default in our prototype.

While ρ̃ keeps buffers at a finite size, we must also consider real-world constraints of physical

switches: limited buffer capacity. Hence, we now consider applying a buffer capacity of k

193

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

 tolerance

0

20

40

60

80

100

120

140

160

180

E
n
d
-t

o
-e

n
d
 r

e
s
p
o
n
s
e
 t
im

e
s
 (

m
s
)

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

S
u
c
c
e
s
s
 R

a
te

success rate

end-to-end response times

Figure 7.13: Comparing various ρ̃ values.

packets for the simulator’s SDN switch outbound queue. This models a real-world switch

dropping packets when the buffer fills up. It drops the incoming packet if its priority class

is less than or equal to the lowest priority class of those in the buffer. Otherwise, it evicts

lower-priority packets to make space in the buffer. We set k = 2000 based on reported

buffer sizes of various real-world SDN switches[43]. Additionally, we configure this queue in

3 different ways:

i) No priority assignment or drop policy features (i.e. a simple switch that treats all

packets identically and only drops incoming ones when its buffer has filled up)

ii) Priority assignment only (i.e. no drop rates)

iii) Both priorities and drop rates (i.e. the complete FireDeX approach)

These experiments use the parameters given in Table 7.2. Figs. 7.14 and 7.15 show the

success rates and end-to-end response times, respectively. Configuration (i) results in a 58%

average success rate and 0.9 sec average response time regardless of assigned priority.

The configuration (ii) experiments used the algorithm we proposed in §7.4.2, which we

call bw-adjusted-prio, for assigning priorities to each network flow (i.e. to their contained

194

0 1 2 3 4 5 6 7 8

Priority

0

0.2

0.4

0.6

0.8

1
S

u
c
c
e

s
s
 R

a
te

k=2000 packets without priorities

k=2000 packets with priorities

k=2000 packets with priorities and drop policy

Figure 7.14: Comparing success rates for no priorities (i.e. single switch buffer), priorities
only, and an added drop policy.

0 1 2 3 4 5 6 7 8

Priority

10
-4

10
-3

10
-2

10
-1

10
0

10
1

E
n

d
-t

o
-e

n
d

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

k=2000 packets without priorities

k=2000 packets with priorities

k=2000 packets with priorities and drop policy

Figure 7.15: Comparing response times for no priorities (i.e. single switch buffer), priorities
only, and an added drop policy.

195

subscriptions and associated packets). The results demonstrate that priority assignment

significantly improves both response times and success rates for higher priority subscriptions.

In particular, subscriptions with priorities 0-4 have a response time less than 4 ms and 100%

success rate. However, the success rate of lower priority subscriptions suddenly decreases

while the response time increases to the order of seconds. For instance, those with priority 6

have a 45% success rate and 11 sec. response time. Additionally, subscriptions with priorities

7,8 have very low success rates (almost all packets dropped), while those events successfully

delivered have a high response time of 20 sec.

The results for configuration (iii) demonstrate how applying drop rates further improves

response time to the order of milliseconds. Specifically, priority 0-6 subscriptions have a

response time under 6 ms, whereas those with priority 8 have a response time of 647 ms.

The most important subscriptions (i.e. priority 0) have 100% success rate. The FireDeX

exponential drop rate policy smoothly decreases the success rate proportional to the priority

level. This demonstrates our approach to controlling the success rate based on a subscriber’s

available bandwidth in order to achieve lower response times. Next, we compare the level of

overall utility achieved using the various priority assignment and drop rate algorithms that

base their configurations on the subscriptions’ utility functions.

7.6.4 Comparing Prioritization & Drop Rate Algorithms for Sit-

uational Awareness

We now compare different algorithms’ ability to maximize the value of information captured

for a given configuration. We measure this as the achieved utility rate: the ratio of a

subscription’s max utility (Ûrj) to achieved utility averaged over all subscriptions.

Fig. 7.16 compares our proposed priority-assignment algorithm (named bw-adjusted-prio)

with: no priorities (i.e. a single queue; named no-prio), randomly-assigned priorities (i.e. to

196

0 1 2 3 4 5 6 7 8 9

Subscriber

0.35

0.4

0.45

0.5

0.55

0.6

0.65
A

c
h

ie
v
e

d
 u

ti
lit

y
 r

a
te

bw-adjusted-prio

info-prio

no-prio

random-prio

Figure 7.16: Comparing priority-assignment algorithms with other naive approaches.

1 2 3 4 5 6 7 8

Relative utility weight

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
c
h

ie
v
e

d
 u

ti
lit

y
 r

a
te

optimal

linear

exponential

flat

Figure 7.17: Comparing drop rate policies by varying the utility of one subscription class
relative to the other.

197

show the poor performance resulting from inaccurate priority assignment; named random-

prio), and a naive version of the proposed greedy algorithm that, when ranking subscriptions,

considers only max utility without scaling by the bandwidth requirement (named info-prio).

This figure shows how leveraging network awareness when assigning priorities improves the

achieved utility rate by 12% vs. the naive version and 36% vs. no prioritization. Note that

we do not assign drop rates for the priority algorithms comparison. Instead, we configure the

simulator to drop packets once the buffers fill up in order to compare the priority-assignment

algorithms only. With drop rates, FireDeX improves the value of exchanged data by 42%

vs. prioritization only and 94% vs. no prioritization.

We then compare the four drop rate-assignment algorithms outlined in §7.4.3 in conjunction

with the best-performing bw-adjusted-prio algorithm. To demonstrate FireDeX’s ability to

improve situational awareness for heterogeneous data and information requirements, our

experiments varied the utilities of each topic class relative to the other. We increase the

random variable distribution parameters used to generate the utility weights (αrj) of one

topic class relative to the other (i.e. telemetry data vs. the higher-utility higher-bandwidth

lower-publication frequency asynchronous events). The x-axis in Fig. 7.17 shows this relative

difference in terms of the constant factor we scale up the asynchronous event class’s αrj by

compared with that of the telemetry data class. Note that we maintain αrj for the telemetry

data as the constant default value given in Table 7.2. These results demonstrate how the

optimization-based algorithm captures the most overall utility (i.e. it maximizes situational

awareness) under a particular set of network conditions.

7.6.5 Assessing the FireDeX Prototype

We now assess the performance of our prototype implementation and compare its results

with those predicted by our analytical and simulation models. We proceed as in §7.6.2:

198

Table 7.3: Default parameters for our experimental configurations used with the prototype.

Data Exchange Parameters

#topics
(|V|)

pub rate
(λpubpi,vj

)
event size

(Gvj)
#subscriptions

(|Rsi |)
utility
weight
(αrj)

Async.
events

7 1 100 70 Exp(5) ∈
[0.01,100]

Network Parameters

#subscribers
(|S|)

#publishers
(|P|)

#flows
(|Fsi |)

#priorities
(|Y |)

bandwidth
(wsi)

ρ tolerance
(ρ̃)

10 10 7 7 320 Kbps 0.1

we first show the results obtained for different traffic loads and then scale up the number

of subscribers. Once again, we omit the trivial validation of drop rates as those results

exactly matched that we intuitively expected. We change the experiments’ configuration

parameters to those in Table 7.3 to overcome practical scaling issues in Mininet and the

challenges described in §7.5.4. To this end, we reduce the number of subscriptions to have

only one subscription per network flow. We reduce the number of priority classes to 7 because

of Linux TC limitations. Note that we use a fixed publication rate and event size because

of the smaller number of total events published as compared to in the queueing simulator.

If we varied the publication rate and event size the same way as in the simulation, it would

take longer for the results to converge on the expected value of the exponential distributions.

Also, to more closely match the simulation framework and Mininet environment we:

i) Use only asynchronously-published events.

ii) Set the SDN output queue’s service rate in the simulation framework to deterministic

rather than exponential. This better represents the concept of a switch’s bandwidth,

which essentially has a constant service rate measured in bytes/second.

We test FireDeX under different network load conditions: a) medium-load conditions (ρQout
xk

199

= 0.5); b) high-load conditions (i.e. close to saturation – ρQout
xk

= 0.9); c) overloaded condi-

tions (i.e. saturated – ρQout
xk

= 1.7). Fig. 7.18 shows the end-to-end response time obtained

from an experiment with 10 subscribers and the aforementioned load conditions.

0

0.02

0.04

0.06 Analytical: =~ 0.5

Sim: =~ 0.5

Prototype: =~ 0.5

0

0.2

0.4

0.5 Analytical: =~ 0.9

Sim: =~ 0.9

Prototype: =~ 0.9

0 1 2 3 4 5 6

Priority

0

0.5

1

1.5

E
n

d
-t

o
-e

n
d

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Analytical with drop policy: =~ 1.7

Sim with drop policy: =~ 1.7

Prototype with drop policy: =~ 1.7

a

b

c

Figure 7.18: Analytical vs. simulation vs. prototype end-to-end response times for varying
traffic loads (ρQout

xk
).

We see from these results that the prototype’s performance closely matches that of the

simulator and that predicted by the analytical model. However, we identified two reasons

for the slight differences. First, the prototype and simulation results match each other closely

but differ from the analytical model’s predictions due to the deterministic service rates vs.

the latter’s exponential service rates. Second, we still see significant difference in response

times for the simulator vs. prototype due to the emulator’s lack of proper queueing delay.

Recall that, as discussed in §7.6.1.2, transmission delay and queueing delay are not correctly

applied by Linux TC. Hence, we expected to observe the same trends for end-to-end response

time, but with lower values. This matches the results we see here in Fig. 7.18.

Note that just as in §7.6.2 the lowest priority events experience the largest difference in

response time under saturated conditions. However, we see a difference in response time

200

that remains constant across priority classes in the unsaturated setting (Fig. 7.18a). For the

saturated and overloaded conditions (Fig. 7.18b & 7.18c), we see larger differences for the

lowest priorities in part due to the above issue regarding transmission delay. Because these

messages are waiting in the queues longer, this difference is compounded further by the lack

of transmission delay for each queued message in front of it. Hence, we expect to see the

gap between the analytical model and the simulated/emulated results, but a more accurate

emulated setting should further reduce the difference between simulated vs. emulated. Even

with these slight differences, we consider these results acceptable.

We then scaled up the number of subscribers as shown in Fig. 7.19. We test the system

with numbers of subscribers |S| = 10, 20, 50, 80, 100. To maintain the same degree of

system saturation (i.e. ρQout
xk

= 1.7), we increase the bandwidth proportional to the number

of subscribers. As shown in Fig. 7.19, the implementation again produces results closely

matching that of the simulation, even with an increased number of subscribers.

10 20 50 80 100

Number of Subscribers

0

0.2

0.4

0.6

0.8

1

E
n

d
-t

o
-e

n
d

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
) Simulation with drop policy: =~ 1.7

Prototype with drop policy: =~ 1.7

Figure 7.19: Simulation vs. prototype end-to-end response times for varying numbers of
subscribers.

201

7.7 Chapter Summary and Discussion

In this chapter we explored the challenge of managing multiple heterogeneous mission-critical

information flows at the edge. We added to the previous chapters’ approaches by balancing

the needs of different stakeholders (i.e. subscribers and IoT emergency response applications)

through a rigorous treatment of data prioritization in a constrained networking environment.

To this end, we developed the FireDeX extensible integration middleware. Our proposed

SDN-enabled three-layer approach bridges application-specified information requirements,

generic data exchange capabilities, and physical network characteristics. Its algorithms as-

sign priorities to subscriptions and tune their bandwidth allocation (i.e. via packet drop

rates) to maximize overall situational awareness. Our experimental results showed that this

approach greatly improves the performance in terms of information value captured as well as

end-to-end delays. We also expanded on our previous work with FireDeX [26] by developing

a prototype implementation and comparing its performance with our analytical model and

simulation-based studies.

The cross-layer queueing model serves as a sound theoretical framework underpinning the

FireDeX middleware and enables the analysis used to drive its algorithms. Its modular

design supports composition of alternative queueing models. Hence it lays the groundwork

for many potential extensions and alterations, some of which we will address in the future

work discussed later in Chap. 8.

7.7.1 Integrating FireDeX Into Our Proposed Middleware

FireDeX builds on our overall middleware approach proposed in this thesis by balancing

the needs of multiple mission-critical applications and data consumers. While our proof-

of-concept prioritizes events within a smart building during an active fire response, this

202

technique fits within our greater vision of resilient IoT data exchange. Through our proposed

prioritization approach, queueing theoretic model, and algorithms, our complete system

can now leverage edge resources to enhance the resilience of multiple mission-critical IoT

applications. The prototype implementation described previously incorporates this data

exchange logic into the consumer device and a coordinator service as shown in Fig. 7.20 and

Fig. 7.5.

FireDeX also expands on the previous two chapters’ approaches by potentially incorporat-

ing their techniques in support of various mission-critical IoT applications. The highly-

generalized FireDeX SDN abstraction (i.e. big switch) can deploy the GeoCRON and Ride

techniques as well without requiring coordination with the FireDeX modules. Alternatively,

our extensible queueing model and analysis could also incorporate these previous techniques

to further improve awareness of and control over the entire data exchange process.

Figure 7.20: FireDeX adds data exchange logic to the consumers and middleware service,
but enforces prioritization in the network.

203

Chapter 8

Conclusion

In this thesis we proposed a cross-layer middleware approach to enabling resilient commu-

nications in support of IoT data exchange. We identified research challenges during the

SCALE project that served as a proof-of-concept IoT deployment and experimental testbed.

We explored this approach within two different IoT-enhanced mission-critical scenarios (i.e.

seismic and structure fire response). Each of the core chapters detailed our work in three

projects that successively built upon each other to implement this approach. We first con-

structed geo-diverse resilient overlays for cloud-centric data collection in Chap. 5. We then

ensured an application-specified maximum cloud connection downtime in Chap. 6 by mon-

itoring these overlays for challenges, failing over to the edge in response, and improving

dissemination of local alerts through a network-aware resilient multicast mechanism. In

Chap. 7, we considered the information requirements of multiple mission-critical apps and

ensured delivery of the most important messages first based on a formal model of the data

exchange system, its resource constraints, and application requirements.

204

8.1 Future Directions

As we consider developing a comprehensive middleware solution that incorporates the tech-

niques proposed in this thesis, many other challenges to IoT data exchange remain open.

Here we outline the future directions for each of the core chapters as well as general challenges

to IoT data exchange.

GeoCRON future directions:

• More realistically modeling correlated failures due to shared link bundles and cascading

failures (e.g. power grid dependencies).

• Incorporating wireless ad-hoc networking so that physically hyper-close nodes can work

closely on data delivery and event detection.

• Considering an even more distributed architecture for GeoCRON in which devices

nearby each other gossip about their sensor readings before uploading them. This

can reduce the volume of data uploaded through data compression as well as avoiding

upload of false positive readings.

• Modeling and testing against dynamic failures in which failures happen over a period

of time, rather than instantaneously, and also recover over time. The overlay heuris-

tics and implementation should not negatively impact the network during recovery,

and the peers should coordinate overlay maintenance so none become disconnected.

Furthermore, overlay peers can exchange information about perceived failures in the

network to improve this dynamic adaptation.

• Incorporating additional network technologies (e.g. cellular), infrastructures (e.g. trans-

portation), and failure models (e.g. flood, fire).

205

• Studying different strategies for overlay usage according to the application requirements

of different IoT systems (e.g. quality-of-service levels).

• Studying whether GeoCRON also generalizes to mobile nodes (e.g. smartphones).

Ride future directions:

• Improving data collection using multiple CDPs simultaneously and determining which

data should traverse each overlay link.

• Improving data dissemination via wireless ad-hoc networks that facilitate forwarding

alerts to other nearby subscribers that were unable to receive the multicast alert di-

rectly.

• Completing and exploring the Ride-D retransmission mechanism as well as its selective

unicast extension.

• Securing data transmission using tunneling (e.g. IPsec) for collection and secure mul-

ticast (e.g. DTLS-based multicast [167]) for dissemination,

• Experimenting with additional network failure models (e.g. shared-risk groups) and

application scenarios (e.g. rapidly spreading fire).

FireDeX future directions include expanding on the theoretical model and the prototype

system. For example, we aim to extend the theoretical model by relaxing some of the

Assumptions in §7.3:

• Considering multiple switches and physical network routes in managing subscriber data

flows.

• Considering non-Poisson arrival and service rates by using e.g. G/G/1 queues.

206

• Converting larger events into many packets (or many events into one packet) by ap-

plying the queueing theoretic concept of batch arrivals [168].

• Configuring an entire broker network rather than just the BMS’s local broker.

Moving forward, we will also build on the FireDeX prototype to explore further IoT mid-

dleware challenges in emergency response settings. We plan to deploy it in a smart building

on the UCI campus and integrate it with our existing IoT testbed privacy-preserving smart

building system [27, 132] named Tippers. Tippers will facilitate an E-Vault system for

granting emergency responders access to and control over building infrastructure (i.e. de-

vices and network connections) and data, similar to key vaults commonly-used now to help

unlock doors during emergencies. We are also developing a SFF situational awareness dash-

board. This inter-disciplinary collaborative project will both set the stage for future SFF

investigations as well as cutting-edge research in the intersection of emergency response and

privacy-preserving cyber-spaces. Armed with this prototype system and application, we plan

to conduct drills with fire fighters aimed at identifying, developing, and testing IoT-enabled

workflows and technologies for SFF. Specific expected research questions include:

• How users can define utility functions, without understanding the underlying imple-

mentation details of FireDeX, for enhancing situational awareness in real-world set-

tings.

• Mobility and multi-network management in hostile communications environments as

FFs enter buildings with damaged or otherwise suspect communications infrastructure.

• How to collate heterogeneous data from various sources for targeted timely decision-

making.

• Managing dynamic conditions such as failing publisher devices, subscriber churn, and

varying network bandwidth/error rates.

207

• Accurately and efficiently estimating publication rates.

• Considering SDN overhead (e.g. flow table space required, delay for configuration

changes and statistics collection).

• Supporting alternative formulations of tunable bandwidth allocation e.g. traffic polic-

ing.

Aside from those challenges listed previously in §1.3.3 and above for each of the three core

chapters, future research in the area of general IoT data exchange should also consider:

• Interoperability of network and data exchange protocols. Rather than classic ap-

proaches of implementing translators for each protocol pair, dynamically-configurable

software artifacts can improve flexibility and ease of IoT deployments.

• Data semantics can be leveraged to configure network elements for improved opera-

tion. As networking technologies mature, programmable Layer 7 switches may support

actions based on data contents exposed by protocols such as DDS.

• Distributed data exchange brokers must coordinate among each other as well as

between physically-dispersed edge deployments.

• Synchronizing cloud and edge services to ensure they remain in agreement about

various state information, especially system configurations. This also includes the

question of how to best recover from a cloud service outage when switching back from

edge operation.

• Mobility of IoT devices requires tight synchronization between controller entities when

a mobile node passes into a region managed by a different controller. This remains an

open area of research for SDN especially.

208

• Resilient SDN controller placement to ensure all switches remain connected with

their corresponding master controller for no downtime in management, which is espe-

cially crucial for resilient operations.

8.2 Towards the Future of Resilient IoT Data Exchange

Altogether, the middleware approach proposed in this thesis enables a more holistic view of

and control over the data exchange process. As demonstrated in the individual projects, this

occurs at different network and IoT deployment scales. Fig. 8.1 depicts the combined system

components that make up our entire middleware and address the challenges set forth by these

differing requirements. By converting GeoCRON’s overlay network to a direct overlay service

offered as an SDN abstraction by network service providers, our entire middleware would

comprise very little additional logic necessary on the IoT devices themselves. Rather, it

deploys the necessary software artifacts predominately as edge services with some public

cloud counterparts. This strategy keeps in line with thin IoT client designs and enables

more rapid development and deployment of IoT services.

Unifying the data exchange process through such a middleware further enables modular

extensions to be dynamically deployed without requiring modifications to the IoT devices

themselves. Furthermore, the nature of SDN allows future iterations to borrow on previous

network abstractions just as we did in the main chapters of this thesis. Thus future research

can easily explore other SDN capabilities not covered here. The formal queueing theory-based

model presented in FireDeX (Ch. 7) can serve as the sound theoretical underpinning through

which these extensions might be modeled for developing mathematically-sound configuration

algorithms. As such, our work represents a step in the direction of supporting plug-and-play

operation in future dynamic IoT-based applications through flexible, efficient, reliable, and

timely methods for information exchange.

209

Figure 8.1: Our proposed middleware unifies the techniques described throughout this thesis
for a more holistic IoT data exchange.

210

Bibliography

[1] Mininet: An Instant Virtual Network on your Laptop (or other PC) - Mininet. http:
//mininet.org/.

[2] Onos: Open network operating system. https://onosproject.org/.

[3] Open vSwitch. http://openvswitch.org/.

[4] Protocol Buffers - Google’s data interchange format.
https://github.com/google/protobuf.

[5] Pervasive computing for disaster response. http://www.cacr.caltech.edu/

projects/PerDis/, Aug 2012.

[6] Community resilience planning guide for buildings and infrastructure systems. National
Institute of Standards and Technology, 1, July 2015.

[7] Community Seismic Network.
http://www.communityseismicnetwork.org/, May 2015.

[8] ns-3. http://www.nsnam.org/, May 2015.

[9] Sentilo. http://www.sentilo.io, Feb 2016.

[10] S. D. Akshay Agrawal, Robin Verschueren and S. Boyd. A rewriting system for convex
optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

[11] W. al. SDNPS: A Load-Balanced Topic-Based Publish/Subscribe System in Software-
Defined Networking. Applied Sciences, 6(4):91, mar 2016.

[12] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, W. Snow, G. M. Parulkar,
et al. Openvirtex: A network hypervisor. In ONS, 2014.

[13] N. S. Alhassoun, M. Y. S. Uddin, and N. Venkatasubramanian. Safer: An iot-based
perpetual safe community awareness and alerting network. In 2017 Eighth Interna-
tional Green and Sustainable Computing Conference (IGSC), pages 1–8, Oct 2017.

[14] AMQP Working Group 0-9-1. http://www.amqp.org/specification/0-9-1/

amqp-org-download, 2008.

211

http://mininet.org/
http://mininet.org/
https://onosproject.org/
http://openvswitch.org/
https://github.com/google/protobuf
http://www.cacr.caltech.edu/projects/PerDis/
http://www.cacr.caltech.edu/projects/PerDis/
http://www.communityseismicnetwork.org/
http://www.nsnam.org/
http://www.sentilo.io
http://www.amqp.org/specification/0-9-1/amqp-org-download
http://www.amqp.org/specification/0-9-1/amqp-org-download

[15] N. An, T. Ha, K. Park, and H. Lim. Dynamic priority-adjustment for real-time flows
in software-defined networks. In 2016 17th International Telecommunications Network
Strategy and Planning Symposium (Networks), pages 144–149, Sept 2016.

[16] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay networks.
In Proceedings of the eighteenth ACM symposium on Operating systems principles,
SOSP ’01, pages 131–145, New York, NY, USA, 2001. ACM.

[17] A. P. Athreya and P. Tague. Network self-organization in the Internet of Things. In
SECON ’13.

[18] T. Bakhshi. State of the Art and Recent Research Advances in Software Defined
Networking. Wireless Communications and Mobile Computing, 2017:35, 2017.

[19] B. Balaji et al. Brick: Towards a unified metadata schema for buildings. In BuildSys,
2016.

[20] C. C. Beard and V. S. Frost. Prioritization of emergency network traffic using ticket
servers: A performance analysis. Simulation, 2004.

[21] S. Behnel, L. Fiege, and G. Muhl. On quality-of-service and publish-subscribe. In
ICDCS Workshops. IEEE, 2006.

[22] Y. Bejerano and P. V. Koppol. Link-coloring based scheme for multicast and unicast
protection. In HPSR ’13, 2013.

[23] P. Bellavista, A. Corradi, and A. Reale. Quality of service in wide scale publish-
subscribe systems. IEEE Communications Surveys & Tutorials, 2014.

[24] K. Benson, T. Estrada, M. Taufer, J. Lawrence, and E. Cochran. On the powerful
use of simulations in the quake-catcher network to efficiently position low-cost earth-
quake sensors. In Proceedings of the 2011 IEEE Seventh International Conference on
eScience, ESCIENCE ’11, pages 77–84, Washington, DC, USA, 2011. IEEE Computer
Society.

[25] K. Benson, S. Schlachter, T. Estrada, M. Taufer, J. Lawrence, and E. Cochran. On
the powerful use of simulations in the quake-catcher network to efficiently position
low-cost earthquake sensors. Future Generation Computer Systems, 29(8):2128–2142,
2013.

[26] K. E. Benson, G. Bouloukakis, C. Grant, V. Issarny, I. Moscholios, S. Mehrotra, and
N. Venkatasubramanian. FireDeX: a Prioritized IoT Data Exchange Middleware for
Emergency Response. In Proceedings of the 19th International Middleware Conference,
Middleware ’18. ACM, December 2018.

[27] K. E. Benson, C. Fracchia, G. Wang, Q. Zhu, S. Almomen, J. Cohn, L. Darcy, D. Hoff-
man, M. Makai, J. Stamatakis, et al. Scale: Safe community awareness and alerting
leveraging the internet of things. IEEE Communications Magazine, 53(12):27–34, 2015.

212

[28] K. E. Benson, Q. Han, K. Kim, P. Nguyen, and N. Venkatasubramanian. Resilient
overlays for iot-based community infrastructure communications. In 2016 IEEE First
International Conference on Internet-of-Things Design and Implementation (IoTDI),
pages 152–163. IEEE, 2016.

[29] K. E. Benson and N. Venkatasubramanian. Improving sensor data delivery during
disaster scenarios with resilient overlay networks. In Third International Workshop on
Pervasive Networks for Emergency Management 2013 (PerNEM 2013) as part of the
2013 IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), pages 547–552. IEEE, 2013.

[30] K. E. Benson, G. Wang, Y.-J. Kim, and N. Venkatasubramanian. Ride: A Resilient IoT
Data Exchange Middleware Leveraging SDN and Edge Cloud Resources. In 2018 IEEE
Second International Conference on Internet-of-Things Design and Implementation
(IoTDI). IEEE, 2018.

[31] L. Bertaux, A. Hakiri, S. Medjiah, P. Berthou, and S. Abdellatif. A DDS/SDN Based
Communication System for Efficient Support of Dynamic Distributed Real-Time Appli-
cations. In 2014 IEEE/ACM 18th International Symposium on Distributed Simulation
and Real Time Applications, pages 77–84. IEEE, oct 2014.

[32] S. Bhowmik, M. A. Tariq, J. Grunert, and K. Rothermel. Bandwidth-efficient content-
based routing on software-defined networks. In Proceedings of the 10th ACM Interna-
tional Conference on Distributed and Event-based Systems, DEBS ’16, pages 137–144,
New York, NY, USA, 2016. ACM.

[33] S. Bhowmik, M. A. Tariq, L. Hegazy, and K. Rothermel. Hybrid content-based rout-
ing using network and application layer filtering. In 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS), pages 221–231, June 2016.

[34] M. Blackstock and R. Lea. Iot interoperability: A hub-based approach. In 2014
International Conference on the Internet of Things (IOT), pages 79–84, Oct 2014.

[35] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer. Survey on network virtualization
hypervisors for software defined networking. IEEE Communications Surveys Tutorials,
18(1):655–685, Firstquarter 2016.

[36] A. Bley and J. Neto. Approximability of 3- and 4-Hop Bounded Disjoint Paths Prob-
lems. In Proceedings of IPCO ’10.

[37] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95, July
2014.

[38] M. Botts and A. Robin. Opengis sensor model language (sensorml) implementation
specification. OpenGIS Implementation Specification OGC, 7(000), 2007.

213

[39] G. Bouloukakis, N. Georgantas, A. Kattepur, and V. Issarny. Timeliness evalua-
tion of intermittent mobile connectivity over pub/sub systems. In Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineering, L’Aquila,
Italy, Apr. 2017.

[40] G. Bouloukakis, I. Moscholios, N. Georgantas, and V. Issarny. Performance model-
ing of the middleware overlay infrastructure of mobile things. In IEEE International
Conference on Communications, Paris, France, May 2017.

[41] A. Bourke, J. OBrien, and G. Lyons. Evaluation of a threshold-based tri-axial ac-
celerometer fall detection algorithm. Gait & Posture, 26(2):194 – 199, 2007.

[42] I. N. Bozkurt and T. Benson. Contextual router: Advancing experience oriented net-
working to the home. In Proceedings of the Symposium on SDN Research, SOSR ’16,
pages 15:1–15:7, New York, NY, USA, 2016. ACM.

[43] Buffer requirements. https://people.ucsc.edu/~warner/buffer.html, 2008.

[44] S. Bushby, H. M. Newman, and M. A. Applebaum. NISTIR 6392 GSA Guide to Spec-
ifying Interoperable Building Automation and Control Systems Using ANSI/ASHRAE
Standard 135-1995, BACnet. National Institute Of Standards and Technology, 1999.

[45] A. L. Caro, P. D. Amer, and R. R. Stewart. Transport layer multihoming for fault
tolerance in fcs networks. In MILCOM, volume 2, pages 949–953. Citeseer, 2003.

[46] A. Chakrabarti and G. Manimaran. Reliability constrained routing in qos networks.
IEEE/ACM Transactions on Networking, 13(3):662–675, June 2005.

[47] K. Chen, S. He, B. Chen, J. Kolb, R. H. Katz, and D. E. Culler. Bearloc: A composable
distributed framework for indoor localization systems. In Workshop on IoT-Sys, 2015.

[48] K. Cho, C. Pelsser, R. Bush, and Y. Won. The Japan Earthquake: The Impact on
Traffic and Routing Observed by a Local ISP. In Proceedings of the Special Workshop
on Internet and Disasters, SWID ’11, pages 2:1–2:8. ACM, 2011.

[49] H.-Y. Choi, A. L. King, and I. Lee. Making DDS really real-time with openflow. In
Proceedings of the 13th International Conference on Embedded Software - EMSOFT
’16, pages 1–10, New York, New York, USA, 2016. ACM Press.

[50] R. Clayton, T. Heaton, M. Chandy, A. Krause, M. Kohler, J. Bunn, R. Guy, M. Olson,
M. Faulkner, M. Cheng, L. Strand, R. Chandy, D. Obenshain, A. Liu, and M. Aivazis.
Community seismic network. Annals of Geophysics, 54(6), 2012.

[51] E. Cochran, J. Lawrence, C. Christensen, and A. Chung. A novel strong-motion seismic
network for community participation in earthquake monitoring. IEEE Instrumentation
Measurement Magazine, 12(6):8–15, December 2009.

214

https://people.ucsc.edu/~warner/buffer.html

[52] A. Dainotti, C. Squarcella, E. Aben, K. C. Claffy, M. Chiesa, M. Russo, and A. Pescapé.
Analysis of country-wide internet outages caused by censorship. In Proceedings of the
2011 ACM SIGCOMM conference on Internet measurement conference, pages 1–18.
ACM, 2011.

[53] A. Das, C. U. Martel, and B. Mukherjee. A partial-protection approach using multipath
provisioning. In 2009 IEEE International Conference on Communications, pages 1–5,
June 2009.

[54] S. Das, K. Yamada, H. Yu, S. S. Lee, and M. Gerla. A qos network management
system for robust and reliable multimedia services. In K. C. Almeroth and M. Hasan,
editors, Management of Multimedia on the Internet, pages 1–11, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg.

[55] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro, N. Kitaev,
and D. Culler. Boss: Building operating system services. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation, nsdi’13, pages
443–458, Berkeley, CA, USA, 2013. USENIX Association.

[56] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[57] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee, S. Saroiu, and P. Bahl. An
operating system for the home. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, NSDI’12, pages 25–25, Berkeley, CA,
USA, 2012. USENIX Association.

[58] J. Dong, X. Ren, D. Zuo, and H. Liu. An adaptive failure detector based on quality
of service in peer-to-peer networks. Sensors (Basel, Switzerland), 14(9):16617–16629,
2014.

[59] R. Durner, A. Blenk, and W. Kellerer. Performance study of dynamic qos management
for openflow-enabled sdn switches. In 2015 IEEE 23rd International Symposium on
Quality of Service (IWQoS), pages 177–182, June 2015.

[60] A. El-Mougy, M. Ibnkahla, and L. Hegazy. Software-defined wireless network architec-
tures for the internet-of-things. In 2015 IEEE 40th Local Computer Networks Confer-
ence Workshops (LCN Workshops), pages 804–811, Oct 2015.

[61] G. Enyedi and G. Rétvári. Finding multiple maximally redundant trees in linear time.
Periodica Polytechnica Electrical Engineering, 54(1-2):29, 2010.

[62] A. et al. Increasing network resilience through edge diversity in nebula. SIGMOBILE
Mob. Comput. Commun. Rev., 16(3):14–20, Dec. 2012.

[63] B. et al. Provable data plane connectivity with local fast failover: Introducing openflow
graph algorithms. In Proceedings of HotSDN ’14.

[64] B. et al. ONOS. In Proceedings of HotSDN ’14, 2014.

215

[65] F. et al. RFC 7761 - Protocol Independent Multicast - Sparse Mode (PIM-SM).

[66] G. et al. Recovery from link failures in a Smart Grid communication network using
OpenFlow. In SmartGridComm ’14.

[67] K. et al. Efficient and reliable application layer multicast for flash dissemination. IEEE
TPDS, 25(10):2571–2582, Oct 2014.

[68] M. et al. Survivor: An enhanced controller placement strategy for improving sdn
survivability. In Globecom ’14.

[69] Q. et al. A Software Defined Networking architecture for the Internet-of-Things. In
NOMS 2014.

[70] R. et al. MAPCloud: Mobile Applications on an Elastic and Scalable 2-Tier Cloud
Architecture. In UCC 2012.

[71] S. et al. RFC 7252 - The Constrained Application Protocol (CoAP).

[72] T. et al. Coapthon: Easy development of coap-based iot applications with python. In
WF-IoT ’15.

[73] T. et al. Pleroma: A sdn-based high performance publish/subscribe middleware. In
Middleware ’14.

[74] T. et al. Software-defined and value-based information processing and dissemination
in iot applications. In NOMS ’16.

[75] W. et al. Ubiflow: Mobility management in urban-scale software defined iot. In
INFOCOM ’15.

[76] W. et al. Iproiot: An in-network processing framework for iot using information centric
networking. In ICUFN 2017, 2017.

[77] Z. et al. Dynamic application-aware resource management using software-defined net-
working: Implementation prospects and challenges. In NOMS ’14.

[78] Z. et al. Minimum-Cost Multiple Paths Subject to Minimum Link and Node Sharing
in a Network. IEEE/ACM Transactions on Networking, 18(5):1436–1449, 10 2010.

[79] Z. et al. The cloud is not enough: Saving iot from the cloud. In Proceedings of
HotCloud’15, 2015.

[80] G. Faraci, A. Lombardo, and G. Schembra. A building block to model an sdn/nfv
network. In 2017 IEEE International Conference on Communications (ICC), pages
1–7, May, Paris, France 2017.

[81] M. Y. Fathany and T. Adiono. Wireless protocol design for smart home on mesh
wireless sensor network. In ISPACS ’15, 2015.

216

[82] N. Feamster, D. G. Andersen, H. Balakrishnan, and M. F. Kaashoek. Measuring the
effects of internet path faults on reactive routing. SIGMETRICS Perform. Eval. Rev.,
31(1):126–137, Jun 2003.

[83] T. Field. Jinqs: An extensible library for simulating multiclass queueing networks, v1.
0 user guide, 2006.

[84] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach. Virtual network
embedding: A survey. IEEE Communications Surveys Tutorials, 15(4):1888–1906,
Fourth 2013.

[85] Flask web framework. http://flask.pocoo.org/, 2010.

[86] C. H. Foh, Y. Zhang, Z. Ni, J. Cai, and K. N. Ngan. Optimized cross-layer design
for scalable video transmission over the ieee 802.11 e networks. IEEE Transactions on
Circuits and Systems for Video Technology, 2007.

[87] I. L. Freire and J. A. Apolinario Jr. Gunshot detection in noisy environments. In
Proceeding of the 7th International Telecommunications Symposium, Manaus, Brazil,
pages 1–4, 2010.

[88] P. Gill, Z. Li, A. Mahanti, J. Luo, and C. Williamson. Network information flow in
network of queues. In MASCOTS 2008. IEEE, 2008.

[89] D. Gross, J. Shortle, J. Thompson, and C. Harris. Fundamentals of queueing theory.
John Wiley & Sons, 4th edition, 2008.

[90] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics,
and function using NetworkX. In SciPy2008.

[91] A. Hakiri, P. Berthou, A. Gokhale, and S. Abdellatif. Publish/subscribe-enabled soft-
ware defined networking for efficient and scalable iot communications. IEEE Commu-
nications Magazine, 53(9):48–54, September 2015.

[92] A. Hakiri and A. Gokhale. Data-centric publish/subscribe routing middleware for
realizing proactive overlay software-defined networking. DEBS 2016.

[93] H. Halabian, I. Lambadaris, and C.-H. Lung. Network capacity region of multi-queue
multi-server queueing system with time varying connectivities. In ISIT. IEEE, 2010.

[94] A. Hamins, C. Grant, N. Bryner, A. Jones, and G. Koepke. NIST Special Publication
1191 Research Roadmap for Smart Fire Fighting. National Institute Of Standards and
Technology, 2015.

[95] J. Han, D. Watson, and F. Jahanian. Topology aware overlay networks. In INFOCOM
2005. 24th Annual Joint Conference of the IEEE Computer and Communications So-
cieties. Proceedings IEEE, volume 4, pages 2554 – 2565 vol. 4, march 2005.

217

http://flask.pocoo.org/

[96] Q. Han, P. Nguyen, R. T. Eguchi, K. Hsu, and N. Venkatasubramanian. Toward an
integrated approach to localizing failures in community water networks. In 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS), pages
1250–1260, June 2017.

[97] A. F. Hansen, A. Kvalbein, T. Čičić, and S. Gjessing. Resilient routing layers for
network disaster planning. In Proceedings of the 4th international conference on Net-
working - Volume Part II, ICN’05, pages 1097–1105. Springer-Verlag, 2005.

[98] J. Hartigan and M. Wong. Algorithm as 136: A k-means clustering algorithm. Royal
Statistical Society, Series C, 28(1):100–108, 1979.

[99] F. He, L. Baresi, C. Ghezzi, and P. Spoletini. Formal analysis of publish-subscribe sys-
tems by probabilistic timed automata. In International Conference on Formal Tech-
niques for Networked and Distributed Systems, Tallinn, Estonia, June 2007.

[100] J. Heidemann, L. Quan, and Y. Pradkin. A preliminary analysis of network outages
during hurricane sandy. University of Southern California, Information Sciences Insti-
tute, 2012.

[101] B. Heller, R. Sherwood, and N. McKeown. The controller placement problem. In
Proceedings of the first workshop on Hot topics in software defined networks, pages
7–12. ACM, 2012.

[102] B. Hore, H. Jafarpour, R. Jain, S. Ji, D. Massaguer, S. Mehrotra, N. Venkatasubrama-
nian, and U. Westermann. Design and Implementation of a Middleware for Sentient
Spaces. In 2007 IEEE Intelligence and Security Informatics, pages 137–144. IEEE,
May 2007.

[103] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge, UK: Cambridge University
Press, pages 146 – 147, 1999.

[104] F. Hwang, D. Richards, and P. Winter. The Steiner tree problem. North-Holland,
1992.

[105] IBM. MQTT For Sensor Networks (MQTT-SN), Nov. 2013.

[106] U. o. S. C. Information Sciences Institute. RFC 791 - INTERNET PROTOCOL.

[107] M. Inoue, Y. Owada, K. Hamaguti, and R. Miura. Nerve net: A regional-area network
for resilient local information sharing and communications. In 2014 Second Interna-
tional Symposium on Computing and Networking, pages 3–6, Dec 2014.

[108] G. Jain, S. Babu, R. Raj, K. Benson, B. Manoj, and N. Venkatasubramanian. On dis-
aster information gathering in a complex shanty town terrain. In Global Humanitarian
Technology Conference-South Asia Satellite (GHTC-SAS), pages 147–153. IEEE, 2014.

[109] Y. Jararweh, M. Al-Ayyoub, A. Darabseh, E. Benkhelifa, M. Vouk, and A. Rindos.
Sdiot: a software defined based internet of things framework. Journal of Ambient
Intelligence and Humanized Computing, 6(4):453–461, Aug 2015.

218

[110] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikander. Lipsin:
Line speed publish/subscribe inter-networking. SIGCOMM Comput. Commun. Rev.,
39(4):195–206, Aug. 2009.

[111] P. Kathiravelu, L. Sharifi, and L. Veiga. Cassowary: Middleware platform for context-
aware smart buildings with software-defined sensor networks. In Proceedings of the 2Nd
Workshop on Middleware for Context-Aware Applications in the IoT, M4IoT 2015,
pages 1–6, New York, NY, USA, 2015. ACM.

[112] K. Kim, S. Min, and Y. Han. A programmable data plane to support in-network data
processing in software-defined iot. In 2017 International Conference on Information
and Communication Technology Convergence (ICTC), pages 855–860, Oct 2017.

[113] K. Kim and N. Venkatasubramanian. Assessing the Impact of Geographically Corre-
lated Failures on Overlay-Based Data Dissemination. In 2010 IEEE Global Telecom-
munications Conference GLOBECOM 2010, pages 1–5. IEEE, Dec. 2010.

[114] K. Kim, Y. Zhao, and N. Venkatasubramanian. GSFord: Towards a Reliable Geo-social
Notification System. In 2012 IEEE 31st Symposium on Reliable Distributed Systems,
pages 267–272. IEEE, Oct. 2012.

[115] S. Kounev, K. Sachs, J. Bacon, and A. Buchmann. A methodology for performance
modeling of distributed event-based systems. In 11th IEEE International Symposium
on Object Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, USA,
May 2008.

[116] H. Krishna, N. L. M. van Adrichem, and F. A. Kuipers. Providing bandwidth guaran-
tees with openflow. In 2016 Symposium on Communications and Vehicular Technolo-
gies (SCVT), pages 1–6, Nov 2016.

[117] I. Ku, Y. Lu, and M. Gerla. Software-defined mobile cloud: Architecture, services and
use cases. In IWCMC 2014.

[118] R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam, S. Mohan, and R. B.
Bobba. End-to-end network delay guarantees for real-time systems using sdn. In 2017
IEEE Real-Time Systems Symposium (RTSS), pages 231–242, Dec 2017.

[119] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed internet routing conver-
gence. SIGCOMM Comput. Commun. Rev., 30(4):175–187, Aug 2000.

[120] E. Lazowska, J. Zahorjan, S. Graham, and K. Sevcik. Quantitative system performance:
computer system analysis using queueing network models. Prentice-Hall, Inc., 1984.

[121] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann. logically central-
ized?: State distribution trade-offs in software defined networks.

[122] X. Li, Z. Qin, and T. Yu. Optimizing the qos performance of fast rerouting. In
2009 Ninth International Conference on Hybrid Intelligent Systems, volume 3, pages
313–318, Aug 2009.

219

[123] Z. Li, M. Liang, L. O’Brien, and H. Zhang. The cloud’s cloudy moment: A systematic
survey of public cloud service outage. CoRR, abs/1312.6485, 2013.

[124] C. Lin, K. Wang, and G. Deng. A qos-aware routing in sdn hybrid networks. Procedia
Computer Science, 110:242 – 249, 2017. 14th International Conference on Mobile
Systems and Pervasive Computing (MobiSPC 2017) / 12th International Conference
on Future Networks and Communications (FNC 2017) / Affiliated Workshops.

[125] Linux TC. http://lartc.org/manpages/tc.txt, 2001.

[126] H. Liu, J. Li, Z. Xie, S. Lin, K. Whitehouse, J. A. Stankovic, and D. Siu. Auto-
matic and robust breadcrumb system deployment for indoor firefighter applications.
In Proceedings of the 8th international conference on Mobile systems, applications, and
services - MobiSys ’10, page 21, New York, New York, USA, jun 2010. ACM Press.

[127] P. Liu, D. Willis, and S. Banerjee. ParaDrop: Enabling Lightweight Multi-tenancy at
the Network’s Extreme Edge. In 2016 IEEE/ACM Symposium on Edge Computing
(SEC), pages 1–13. IEEE, oct 2016.

[128] L. Massoulie, A.-M. Kermarrec, and A. Ganesh. Network awareness and failure re-
silience in self-organizing overlay networks. In Reliable Distributed Systems, 2003.
Proceedings. 22nd International Symposium on, pages 47 – 55, oct. 2003.

[129] R. Mayer, B. Koldehofe, and K. Rothermel. Predictable low-latency event detection
with parallel complex event processing. IEEE Internet of Things Journal, pages 274–
286, 2015.

[130] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. Openflow: Enabling innovation in campus networks. SIG-
COMM Comput. Commun. Rev., 38(2):69–74, Mar. 2008.

[131] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An Approach to Universal
Topology Generation. page 346, Aug. 2001.

[132] S. Mehrotra, A. Kobsa, N. Venkatasubramanian, and S. R. Rajagopalan. Tippers: A
privacy cognizant iot environment. In 2016 IEEE International Conference on Perva-
sive Computing and Communication Workshops (PerCom Workshops), March 2016.

[133] Moquette broker. https://github.com/andsel/moquette/, 2014.

[134] Mqtt-sn transparent gateway. https://www.eclipse.org/paho/components/

mqtt-sn-transparent-gateway/, 2016.

[135] Mqtt-sn udp client. https://github.com/jsaak/mqtt-sn-gateway, 2016.

[136] K. Nakayama, K. E. Benson, V. Avagyan, M. B. Dillencourt, L. F. Bic, and N. Venkata-
subramanian. Tie-set based fault tolerance for autonomous recovery of double-link
failures. In 2013 IEEE Symposium on Computers and Communications (ISCC), pages
000391–000397. IEEE, 2013.

220

http://lartc.org/manpages/tc.txt
https://github.com/andsel/moquette/
https://www.eclipse.org/paho/components/mqtt-sn-transparent-gateway/
https://www.eclipse.org/paho/components/mqtt-sn-transparent-gateway/
https://github.com/jsaak/mqtt-sn-gateway

[137] S. Neumayer and E. Modiano. Network reliability with geographically correlated fail-
ures. In INFOCOM, 2010 Proceedings IEEE, pages 1 –9, march 2010.

[138] H. A. Nguyen, T. V. Nguyen, and D. Choi. How to maximize user satisfaction degree in
multi-service ip networks. In 2009 First Asian Conference on Intelligent Information
and Database Systems, pages 471–476, April 2009.

[139] Node-RED. http://nodered.org/.

[140] NumPy. http://www.numpy.org/, 1995.

[141] OASIS. MQTT Version 3.1.1, Oct. 2014.

[142] Object Management Group. Data Distribution Service, Mar. 2015.

[143] S. OVS. https://github.com/saeenali/openvswitch/wiki/

Stochastic-Switching-using-Open-vSwitch-in-Mininet, 2014.

[144] Paho Java Client. https://www.eclipse.org/paho/clients/java/, 2008.

[145] P. R. Pereira, A. Casaca, J. J. Rodrigues, V. N. Soares, J. Triay, and C. Cervello-
Pastor. From delay-tolerant networks to vehicular delay-tolerant networks. IEEE
Communications Surveys & Tutorials, 14(4):1166–1182, 2012.

[146] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado. The design and imple-
mentation of open vswitch. In NSDI, 2015.

[147] Pivotal, ”RabbitMQ”. https://www.rabbitmq.com/, 2018.

[148] Ponte - Bringing Things to REST Developers. http://eclipse.org/ponte/.

[149] S. Qazi and T. Moors. Finding Alternate Paths in the Internet:A Survey of Techniques
for End-to-End Path Discovery. page 13, aug 2013.

[150] B. Quoitin, V. V. Schrieck, P. Francois, and O. Bonaventure. Igen: Generation of
router-level internet topologies through network design heuristics. in Proceedings of
the 21st International Teletraffic Congress, Sep. 2009.

[151] R. Raj, S. Babu, K. Benson, G. Jain, B. Manoj, and N. Venkatasubramanian. Efficient
path rescheduling of heterogeneous mobile data collectors for dynamic events in shanty
town emergency response. In Global Communications Conference (GLOBECOM),
pages 1–7. IEEE, 2015.

[152] Y. Ren, L. Liu, L. Cui, Y. Shi, and D. Zheng. Qos evaluation of prioritized data plane
service employing queueing model. In 2017 IEEE/ACM 25th International Symposium
on Quality of Service (IWQoS), pages 1–6, June 2017.

[153] J. P. Rohrer, A. Jabbar, and J. P. G. Sterbenz. Path diversification for future internet
end-to-end resilience and survivability. Telecommunication Systems, 56(1):49–67, Aug.
2014.

221

http://nodered.org/
http://www.numpy.org/
https://github.com/saeenali/openvswitch/wiki/Stochastic-Switching-using-Open-vSwitch-in-Mininet
https://github.com/saeenali/openvswitch/wiki/Stochastic-Switching-using-Open-vSwitch-in-Mininet
https://www.eclipse.org/paho/clients/java/
https://www.rabbitmq.com/
http://eclipse.org/ponte/

[154] L. A. Rossman. Epanet users manual. United States Water Supply and Water Re-
sources Division, National Risk Management Research Laboratory, September 2000.

[155] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms Heidelberg, Middleware
’01, pages 329–350, London, UK, UK, 2001. Springer-Verlag.

[156] Ryu SDN controller. https://osrg.github.io/ryu/, 2011.

[157] T. V. P. S, S. S. Prasad, and K. Kataoka. AMPF: application-aware multipath packet
forwarding using machine learning and SDN. CoRR, abs/1606.05743, 2016.

[158] K. Sachs, S. Kounev, and A. Buchmann. Performance modeling and analysis of
message-oriented event-driven systems. Software & Systems Modeling, 2013.

[159] P. Saint-Andre. Extensible messaging and presence protocol (xmpp): Core. Technical
report, 2011.

[160] P. Salehi, K. Zhang, and H.-A. Jacobsen. Popsub: Improving resource utilization in
distributed content-based publish/subscribe systems. In ACM DEBS, 2017.

[161] F. Samie, V. Tsoutsouras, S. Xydis, L. Bauer, D. Soudris, and J. Henkel. Distributed
qos management for internet of things under resource constraints. In Proceedings of the
Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis, CODES ’16, pages 9:1–9:10. ACM, 2016.

[162] H. Sandor, B. Genge, and G. Sebestyen-Pal. Resilience in the Internet of Things: The
Software Defined Networking approach. In ICCP 2015.

[163] M. Sargent, J. Chu, D. V. Paxson, and M. Allman. Computing TCP’s Retransmission
Timer. (RFC-6298), June 2011.

[164] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for VM-Based
Cloudlets in Mobile Computing. IEEE Pervasive Computing, 8(4):14–23, oct 2009.

[165] C. Schlesinger, H. Ballani, T. Karagiannis, and D. Vytiniotis. Quality of service ab-
stractions for software-defined networks. Technical report, March 2015.

[166] A. Schröter, G. Mühl, S. Kounev, H. Parzyjegla, and J. Richling. Stochastic perfor-
mance analysis and capacity planning of publish/subscribe systems. In DEBS, pages
258–269. ACM, 2010.

[167] S. H. Shaheen and M. Yousaf. Security analysis of dtls structure and its application
to secure multicast communication. In IEEE FIT ’14.

[168] D. Shanbhag. On infinite server queues with batch arrivals. Journal of Applied Prob-
ability, 3(1):274–279, 1966.

222

https://osrg.github.io/ryu/

[169] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and
G. Parulkar. Flowvisor: A network virtualization layer. OpenFlow Switch Consortium,
Tech. Rep, 1:132, 2009.

[170] D. Singh, B. Ng, Y.-C. Lai, Y.-D. Lin, and W. K. Seah. Modelling software-defined
networking: Switch design with finite buffer and priority queueing. In LCN. IEEE,
2017.

[171] Smart emergency response system (sers). http://smartamerica.org/teams/

smart-emergency-response-system-sers/, 2014.

[172] SmartAmerica. http://smartamerica.org/.

[173] P. Smith, A. Schaeffer-Filho, D. Hutchison, and A. Mauthe. Management patterns:
SDN-enabled network resilience management. In 2014 IEEE Network Operations and
Management Symposium (NOMS), pages 1–9. IEEE, may 2014.

[174] K. Sood, S. Yu, and Y. Xiang. Performance analysis of software-defined network switch
using m/geo/1 model. IEEE Communications Letters, pages 2522–2525, 2016.

[175] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP topologies
with Rocketfuel. Networking, IEEE/ACM Transactions on, 12(1):2 – 16, Feb. 2004.

[176] J. Sterbenz, E. C andetinkaya, M. Hameed, A. Jabbar, and J. Rohrer. Modelling
and analysis of network resilience. In Communication Systems and Networks (COM-
SNETS), 2011 Third International Conference on, pages 1 –10, jan. 2011.

[177] J. P. G. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer, M. Schöller,
and P. Smith. Resilience and survivability in communication networks: Strategies,
principles, and survey of disciplines. Comput. Netw., 54(8):1245–1265, jun 2010.

[178] Summary of the Amazon S3 Service Disruption in the Northern Virginia (US-EAST-1)
Region. https://aws.amazon.com/message/41926/.

[179] U. S. W. Supply and N. R. M. R. L. Water Resources Division. Epanet. [Online]
Available: http://www.epa.gov/nrmrl/wswrd/dw/epanet.html, April 2009.

[180] J. Swetina, G. Lu, P. Jacobs, F. Ennesser, and J. Song. Toward a standardized com-
mon m2m service layer platform: Introduction to onem2m. IEEE Wireless Communi-
cations, 21(3):20–26, June 2014.

[181] N. Taft-Plotkin, B. Bellur, and R. Ogier. Quality-of-service routing using maxi-
mally disjoint paths. In 1999 Seventh International Workshop on Quality of Service.
IWQoS’99. (Cat. No.98EX354), pages 119–128, May 1999.

[182] S. K. Tayyaba and M. A. Shah. Resource allocation in sdn based 5g cellular networks.
Peer-to-Peer Networking and Applications, 2018.

223

http://smartamerica.org/teams/smart-emergency-response-system-sers/
http://smartamerica.org/teams/smart-emergency-response-system-sers/
http://smartamerica.org/
https://aws.amazon.com/message/41926/

[183] J. Thalheim, A. Rodrigues, I. E. Akkus, P. Bhatotia, R. Chen, B. Viswanath, L. Jiao,
and C. Fetzer. Sieve: actionable insights from monitored metrics in distributed systems.
In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference. ACM, 2017.

[184] S. Tomovic, I. Radusinovic, and N. Prasad. Performance comparison of qos routing
algorithms applicable to large-scale sdn networks. In IEEE EUROCON 2015 - Inter-
national Conference on Computer as a Tool (EUROCON), pages 1–6, Sept 2015.

[185] M. Uddin, S. Mukherjee, H. Chang, and T. V. Lakshman. Sdn-based multi-protocol
edge switching for iot service automation. IEEE Journal on Selected Areas in Com-
munications, pages 1–1, 2018.

[186] M. Y. S. Uddin, A. Nelson, K. Benson, G. Wang, Q. Zhu, Q. Han, N. Alhassoun,
P. Chakravarthi, J. Stamatakis, D. Hoffman, et al. The scale2 multi-network archi-
tecture for iot-based resilient communities. In IEEE SMARTCOMP ’16, pages 1–8.
IEEE, 2016.

[187] Update on azure storage service interruption. https://azure.microsoft.com/

en-us/blog/update-on-azure-storage-service-interruption/.

[188] M. Vernon, J. Zahorjan, and E. D. Lazowska. A comparison of performance Petri nets
and queueing network models. University of Wisconsin-Madison, Computer Sciences
Department, 1986.

[189] Y. Wang, Y. Zhang, and J. Chen. Pursuing differentiated services in a sdn-based
iot-oriented pub/sub system. pages 906–909, 06 2017.

[190] T. Weng, A. Nwokafor, and Y. Agarwal. Buildingdepot 2.0: An integrated management
system for building analysis and control. In ACM BuildSys’13, 2013.

[191] J. Wu, Y. Zhang, Z. M. Mao, and K. G. Shin. Internet routing resilience to fail-
ures: analysis and implications. In Proceedings of the 2007 ACM CoNEXT conference,
CoNEXT ’07, pages 25:1–25:12, New York, NY, USA, 2007. ACM.

[192] X. Wu, R. Dunne, Q. Zhang, and W. Shi. Edge computing enabled smart firefighting:
Opportunities and challenges. In Proceedings of the Fifth ACM/IEEE Workshop on
Hot Topics in Web Systems and Technologies, HotWeb ’17, pages 11:1–11:6. ACM,
2017.

[193] P. Xiong, H. Hacigumus, and J. F. Naughton. A software-defined networking based
approach for performance management of analytical queries on distributed data stores.
In Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’14, pages 955–966, New York, NY, USA, 2014. ACM.

[194] Y. Xu, V. Mahendran, and S. Radhakrishnan. Towards sdn-based fog computing:
Mqtt broker virtualization for effective and reliable delivery. In 2016 8th International
Conference on Communication Systems and Networks (COMSNETS), pages 1–6, Jan
2016.

224

https://azure.microsoft.com/en-us/blog/update-on-azure-storage-service-interruption/
https://azure.microsoft.com/en-us/blog/update-on-azure-storage-service-interruption/

[195] Y. Yi and M. Chiang. Stochastic network utility maximisation - a tribute to kelly’s
paper published in this journal a decade ago. 19:421–442, 06 2008.

[196] H. Yoon, S. Kim, T. Nam, and J. Kim. Dynamic flow steering for iot monitoring data
in sdn-coordinated iot-cloud services. In 2017 International Conference on Information
Networking (ICOIN), pages 625–627, Jan 2017.

[197] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman, J. Wawrzynek, E. Lee, and
J. Kubiatowicz. The cloud is not enough: Saving iot from the cloud. In 7th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 15), Santa Clara, CA, July
2015. USENIX Association.

[198] K. Zhang and H. Jacobsen. Sdn-like: The next generation of pub/sub. CoRR,
abs/1308.0056, 2013.

[199] K. Zhang, V. Muthusamy, M. Sadoghi, and H.-A. Jacobsen. Subscription covering for
relevance-based filtering in content-based publish/subscribe systems. In IEEE ICDCS,
2017.

[200] K. Zhang, M. Sadoghi, V. Muthusamy, and H.-A. Jacobsen. Efficient covering for
top-k filtering in content-based publish/subscribe systems. In ACM/IFIP/USENIX
Middleware Conference, 2017.

[201] Q. Zhu, M. Y. S. Uddin, Z. Qin, and N. Venkatasubramanian. Upload planning for mo-
bile data collection in smart community internet-of-things deployments. In 2016 IEEE
International Conference on Smart Computing (SMARTCOMP), pages 1–8, May 2016.

225

Appendices

A Multi-class Priority Queue Analytical Model

We now prove the analytical model that estimates the average response time of events match-

ing subscription rk in the system (queue+server) of Qmclpr. This is a non-preemptive multi-

class priority queueing system where each subscription (rj ∈ R) corresponds to a class and

one or more subscriptions can be mapped to priority level yj ∈ Y .

Based on (7.6), to estimate ∆Qmclpr
for a given rk, we accept as input the set of arrival (λsub)

and processing (µsub) rates:

λsub = {λrj : rj ∈ R}

µsub = {µrj : rj ∈ R}

As previously discussed, a given subscription (rk) is mapped to a priority (yc) as given by:

yc = Φ ◦Ψ(rk) (A.1)

226

Let λprio be the set of arrival rates and µprio the set of processing rates per yj:

λprio = {λyj : yj ∈ Y }

µprio = {µyj : yj ∈ Y }

Because one or more rj can be mapped to a yc, by (A.1) we can estimate the arrival rate λyc

of events with assigned priority yc as follows:

λyc =
∑

{rj∈R:yc=Φ◦Ψ(rj)}

λrj (A.2)

Similarly the processing rate µyc is estimated as follows:

µyc =

[∑
{rj∈R:yc=Φ◦Ψ(rj)}

λrj
λyc

1

µrj

]−1

(A.3)

Similarly, we can estimate arrival and processing rates for any priority yj. We now rely on

(A.2),(A.3), and the analysis in Section 3.4.2 of [89] to estimate the waiting time (delay only

in the queue) ∆yc
q for a given yc as follows:

∆yc
q =

∑
yj∈Y

ρyj
µyj

(1− σyc−1)(1− σyc)
(A.4)

where ρyj = λyj / µyj and σyc =
∑c

i=0 ρyi (i.e. the sum of ρyi for all priority classes yi whose

227

priority is higher than or equal to yc). Let Lycq be the average number of priority-yc events

in the queue. From (A.4), Little’s formula then gives:

Lycq = ∆yc
q λyc (A.5)

Finally, let ∆yc be the average response time of priority-yc events in the system (queue+server).

This is estimated as follows:

∆yc = ∆yc
q +

1

µyc

Let Lrkq be the average number of events in the queue matching subscription rk with priority

yc. Using (A.2) and (A.5) this can be estimated by:

Lrkq =
λrk
λyc

Lycq

and the average number of priority-yc events in the system matching subscription rk is given

by:

Lrk = Lrkq
λrk
µrk

(A.6)

Finally, by relying on little’s law formula and (A.6), the average response time of events

matching a given subscription rk in the multi-class priority queueing system (Qmclpr) is

228

given by:

∆Qmclpr
=
Lrk

λrk

B Efficiently Computing Drop Rate Policies

We now detail efficiently computing drop rate policies for the FireDeX middleware by solving

Eq. 7.12 for the flat, linear and exponential drop rate policies. Considering Eq. 7.12 and

Eq. 7.13 we aim to find:

ρQout
xk

=
∑

rj∈Rxk

λthruxk,rj

µoutxk,rj

= 1− ρ̃

We can expand the denominator to rewrite the previous equation considering Eq. 7.1 and

Eq. 7.2:

ρQout
xk

=
∑

rj∈Rxk

λnotifybk,rj
Gvj

(
1− Ω ◦Ψ

(
rj
))

wxk,si
= 1− ρ̃ (B.7)

where Ω ◦ Ψ
(
rj
)

represents the drop rate for the subscription rj. Eq. B.7 is the starting

point for each of the following derivations.

Flat drop rate policy. This policy sets all network flows’ drop rates equal. The drop

rate for subscription rj is equal to the drop rate assigned to its network flow fj. Hence,

considering Eq. 7.14 we have each drop rate equal to β:

Ω ◦Ψ
(
rj
)

= Ω(fj) = β (B.8)

229

Substituting Eq. B.8 into Eq. B.7 we obtain:

∑
rj∈Rxk

λnotifybk,rj
Gvj(1− β)

wxk,si
= 1− ρ̃

The bandwidth wxk,si is constant across every subscription rj. Therefore we can write:

∑
rj∈Rxk

λnotifybk,rj
Gvj(1− β) = wxk,si(1− ρ̃)

Now, we isolate the constant term β:

∑
rj∈Rxk

λnotifybk,rj
Gvj −

∑
rj∈Rxk

λnotifybk,rj
Gvjβ = wxk,si(1− ρ̃)

−β
∑

rj∈Rxk

λnotifybk,rj
Gvj = wxk,si(1− ρ̃)−

∑
rj∈Rxk

λnotifybk,rj
Gvj

β
∑

rj∈Rxk

λnotifybk,rj
Gvj =

∑
rj∈Rxk

λnotifybk,rj
Gvj − wxk,si(1− ρ̃)

β = 1− wxk,si(1− ρ̃)∑
rj∈Rxk

λnotifybk,rj
Gvj

(B.9)

Hence, we can use Eq. (B.9) to efficiently compute the flat drop rates.

Linear drop rate policy. This policy sets each network flow’s drop rate as proportional

to its assigned priority level. The drop rate for subscription rj is equal to the drop rate

assigned to its network flow fj. Hence, considering Eq. 7.15 we have:

Ω ◦Ψ
(
rj
)

= Ω(fj) = βΦ(fj) (B.10)

230

Substituting Eq. B.10 into Eq. B.7 we obtain:

∑
rj∈Rxk

λnotifybk,rj
Gvj(1− βΦ(fj))

wxk,si
= 1− ρ̃

Similarly to the flat drop rate policy, we isolate the constant term β:

∑
rj∈Rxk

λnotifybk,rj
Gvj(1− βΦ(fj)) = wxk,si(1− ρ̃)

∑
rj∈Rxk

λnotifybk,rj
Gvj −

∑
rj∈Rxk

λnotifybk,rj
GvjβΦ(fj) = wxk,si(1− ρ̃)

−β
∑

rj∈Rxk

λnotifybk,rj
GvjΦ(fj) = wxk,si(1− ρ̃)−

∑
rj∈Rxk

λnotifybk,rj
Gvj

β =

∑
rj∈Rxk

λnotifybk,rj
Gvj − wxk,si(1− ρ̃)∑

rj∈Rxk
λnotifybk,rj

GvjΦ(fj)
(B.11)

Hence, we can use Eq. (B.11) to efficiently compute the linear drop rates.

Exponential drop rate policy. This policy sets each network flow’s drop rate according

to its assigned priority level. The drop rate for subscription rj is equal to the drop rate

assigned to its network flow fj. Hence, considering Eq. 7.16 we have:

Ω ◦Ψ
(
rj
)

= Ω(fj) = 1− β−Φ(fj) (B.12)

Substituting Eq. B.12 into Eq. B.7 we obtain:

∑
rj∈Rxk

λnotifybk,rj
Gvj(1− (1− β−Φ(fj)))

wxk,si
= 1− ρ̃

231

Similarly to the previous cases we isolate the constant term β:

∑
rj∈Rxk

λnotifybk,rj
Gvj(1− (1− β−Φ(fj))) = wxk,si(1− ρ̃)

∑
rj∈Rxk

λnotifybk,rj
Gvjβ

−Φ(fj) = wxk,si(1− ρ̃)

Since Φ(fj) ∈ Y ∀fj ∈ F where Y = {0, 1, ..., N − 1}, we have:

∑
y∈Y

β−y (
∑

rj∈Rxk
,Φ(fj)=y

λnotifybk,rj
Gvj)

∑
y∈Y

(
1

β
)y (

∑
rj∈Rxk

,Φ(fj)=y

λnotifybk,rj
Gvj)

Note that we can express this as a polynomial. Substituting α = β−1 we get:

∑
y∈Y

αy (
∑

rj∈Rxk
,Φ(fj)=y

λnotifybk,rj
Gvj) (B.13)

We can therefore solve the (N-1)-order polynomial given in Eq. (B.13) to efficiently compute

the exponential drop rates. We can solve this polynomial using the algorithm described in

[103]. It relies on computing the eigenvalues of the companion matrix. The commonly-used

NumPy Python library [140] implements this algorithm.

232

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	What is the Internet of Things (IoT)?
	What is Data Exchange?
	Motivation: Data-Centric IoT Challenges
	Constrained Devices and Cloud-centric Design
	IoT Data Exchange Middleware Design
	Enabling Resilient IoT Data Exchange

	Thesis Contributions and Organization

	Related Work
	IoT Data Exchange
	IoT Messaging Protocols
	IoT Middleware Services

	Resilient Network Communications
	Resilient Network Protocols
	Redundant Routing Paths
	Resilient Overlays
	Large-scale and Geo-correlated Failures
	Delay-Tolerant Networking

	Software-Defined Networking
	SDN Control Plane
	SDN for IoT
	SDN for Pub/sub
	SDN for Resilience
	QoS via SDN

	Edge Computing

	Our Proposed Middleware Approach to Resilient IoT Data Exchange
	IoT in Mission-critical Settings
	Home & Community Safety
	Earthquake Detection and Alerting
	Smart Fire Fighting

	Resilient Data Exchange Goals
	Our Proposed Middleware Approach
	System Architectures & Middleware Design
	Leveraging Edge Resources
	SDN for Flexible IoT Edge Network Control

	An IoT Deployment Experience
	SCALE: Safe Community Awareness and Alerting Leveraging the Internet of Things
	System Architecture
	Cloud Data Exchange for IoT
	Sensing Client
	Analytics
	Actuation

	Conclusions & Research Challenges
	Resilience Concerns
	Data Exchange
	Analytics

	Geo-aware Resilient Overlays for Cloud-centric IoT Data Collection
	Chapter Overview
	Resilient Overlays for IoT Data Exchange
	Failure Avoidance
	P2P vs. SDN Overlay Construction

	Algorithms for Geo-Diverse Route Selection
	Model and Notation
	Geo-diverse Path Heuristics

	Experimental Setup
	Simulation Design
	Modeling Community Infrastructure Topologies
	Failure Model

	Experimental Results
	Comparing Geo-diverse Path Heuristics
	Comparing Other Parameters
	Sharing Network Resources Between IoT Deployments

	Prototype Implementation
	Fully Peer-to-Peer Overlay Considerations
	Extending SCALE with GeoCRON

	Chapter Summary and Discussion
	Integrating GeoCRON Into Our Proposed Middleware

	Edge Communications for Resilient IoT Data Exchange
	Chapter Overview
	Our Approach to Resilient IoT Data Exchange
	A Driving Scenario: Smart Campus Disaster Response
	Ride-enhanced IoT Services for Emergency Response
	Ride Workflow

	Ride Algorithms
	Ride-C – Data Collection in Ride
	Ride-D – Data Dissemination in Ride

	Prototype Implementation
	Experimental Evaluation
	Experimental Setup
	Ride Evaluation in a Seismic Alerting Scenario
	Ride-C Performance & Parameter Space Evaluation
	Ride-D Scalability & Parameter Space Evaluation

	Chapter Summary and Discussion
	Integrating Ride Into Our Proposed Middleware

	Prioritizing Heterogeneous IoT Information Flows at the Edge
	Chapter Overview
	The FireDeX Approach
	A Driving Scenario: Fire Fighting with IoT
	IoT Data Exchange Addressed by FireDeX
	Enabling Event Prioritization

	FireDeX Formal Model
	Queueing Network Performance Modeling
	End-to-end Analytical Model

	Data Exchange Configuration Algorithms
	Utility Functions
	Priority Assignment Algorithm
	Ensuring Queue Stability via Preemptive Drop Rates

	Prototype Implementation
	Application layer
	Data exchange layer
	Network layer
	Implementation challenges

	Experimental Results
	Experimental Setup
	Validating our Queueing Network Model
	Evaluating the FireDeX Approach
	Comparing Prioritization & Drop Rate Algorithms for Situational Awareness
	Assessing the FireDeX Prototype

	Chapter Summary and Discussion
	Integrating FireDeX Into Our Proposed Middleware

	Conclusion
	Future Directions
	Towards the Future of Resilient IoT Data Exchange

	Bibliography
	Appendices
	Multi-class Priority Queue Analytical Model
	Efficiently Computing Drop Rate Policies

