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Abstract
In direct volume rendering, transfer functions map data points to optical properties such

as color and opacity. We have found transfer functions based on the Gaussian primitive
to be particularly useful for multivariate volumes, because they are simple and rely on a
limited number of free parameters. We show how this class of transfer function primitives
can be analytically integrated over a line segment under the assumption that data values
vary linearly between two sampled points. Analytically integrated segment can then be
composited using standard techniques.
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1 Introduction

In direct volume rendering, data points are directly mapped to optical properties such as
color and opacity that are then composited along the viewing direction into an image. This
mapping is achieved usingtransfer functions. These functions have to be able to efficiently
classify data features and produce various different outputs such as color, opacity, emission,
phase function, etc. Typically these functions have many parameters that have to be set by
the user by hand or through interactive exploration of the volume data. As the survey by
Kindlmann [3] on transfer functions and generation methods shows, the process of creating
expressive transfer functions can be a very time consuming and frustrating task. For multi-
variate volumes, this problem becomes even more daunting since the number of parameters
grows with the number of dimensions, sometimes exponentially. It is therefore important,
especially for multivariate datasets, to have transfer functions with simple expressions that
rely on a limited number of free parameters. We have found transfer functions based on the
Gaussian primitive to be particularly useful. We show how this class of transfer function
primitives can be analytically integrated over a line segment under the assumption that data
values vary linearly between two sampled points.

2 Closed-Form Approximation Derivation

The emission-absorption volume rendering equation over a line segment is defined as [5]:

I(a, b) =
∫ b

a
Cρ(v(u)) e−

∫ u

a
τρ(v(t))dtdu (1)

Assuming constant color and extinction over the segment yields [4]:

I(a, b) =
∫ b

a
Cρ(v(u)) e−

∫ u

a
τρ(v(t))dtdu =

Cα

τ
(2)

where the opacityα is expressed as:

α = 1 − e−τ
∫ b

a
ρ(v(t))dt (3)



If we assume that data values vary linearly between samples along the ray, the opacity
becomes:

α = 1 − e−τl
∫ 1

0
ρ(v1+t(v2−v1))dt = 1 − e−τl ρ′(v1,v2) (4)

wherel = b − a andρ′(v1, v2) is the density integral over the segment. With a one dimen-
sional density function we get [2]:

ρ′(v1, v2) =
∫ 1

0
ρ(v1 + t(v2 − v1))dt =

1

v2 − v1

∫ v2

v1

ρ(v)dv =
R(v2) − R(v1)

v2 − v1
(5)

whereR is the density integral function:

R(v) =
∫

ρ(z)dz (6)

Now if we representρ with a multivariate Gaussian function:

ρ(~v) = e−(~v−~c)T KT K (~v−~c) (7)

with center~c and linear transformationK, the density integral can be expressed in closed
form:

ρ′(v1, v2) =
∫ 1

0
ρ(~v1 + t(~v2 − ~v1))dt (8)

=
∫ 1

0
e−(~v1+t(~v2−~v1)−~c)T KT K (~v1+t(~v2−~v1)−~c)dt (9)

=

√
π

2

e−(~v1−~c)T KT K (~v1−~c) + ((~v2−~v1)T KT K (~v1−~c))2

(~v2−~v1)T KT K (~v2−~v1)√
(~v2 − ~v1)TKTK (~v2 − ~v1)

(10)


erf


 (~v2 − ~v1)

TKTK (~v2 − ~c)√
(~v2 − ~v1)TKTK (~v2 − ~v1)


 − erf


 (~v2 − ~v1)

TKTK(~v1 − ~c)√
(~v2 − ~v1)TKTK(~v2 − ~v1)





(11)

=

√
π

2

S

‖~d‖(erf(B) − erf(A)) (12)

where:

A =
~d · ~v′

1

‖~d‖ (13)

B =
~d · ~v′

2

‖~d‖ = A + ‖~d‖ (14)

S = e−‖~v′1‖+A2

(15)

and:

~d = ~v′
2 − ~v′

1 (16)

~v′
1 = K(~v1 − ~c) (17)

~v′
2 = K(~v2 − ~c) (18)



Proof: AssumeKTK = I and~c = ~0. Then the integrand becomes:

e−(~v1+t(~v2−~v1))·(~v1+t(~v2−~v1))dt = e−~v1·~v1+2t~v1·(~v2−~v1)+(~v2−~v1)·(~v2−~v1)dt (19)

After changing the integration variable to:

u = t
√

(~v2 − ~v1) · (~v2 − ~v1) +
(~v2 − ~v1) · ~v1√

(~v2 − ~v1) · (~v2 − ~v1)
(20)

we obtain a closed form solution:

ρ′(~v1, ~v2) =
∫ 1

0
e−~v1·~v1+2t~v1·(~v2−~v1)+(~v2−~v1)·(~v2−~v1)dt (21)

=
e
−~v1·~v1+

((~v2−~v1)·~v1)2

(~v2−~v1)·(~v2−~v1)√
(~v2 − ~v1) · (~v2 − ~v1)

∫ (~v2−~v1)·~v2√
(~v2−~v1)·(~v2−~v1)

(~v2−~v1)·~v1√
(~v2−~v1)·(~v2−~v1)

e−u2du (22)

=

√
π

2

e
−(~v1·~v1)+

((~v2−~v1)·~v1)2

(~v2−~v1)·(~v2−~v1)√
(~v2 − ~v1) · (~v2 − ~v1)

· (23)


erf


 (~v2 − ~v1) · ~v2√

(~v2 − ~v1) · (~v2 − ~v1)


 − erf


 (~v2 − ~v1) · ~v1√

(~v2 − ~v1) · (~v2 − ~v1)





 (24)

The general case is obtained if we substitute~v1 with K(~v1−~c) and(~v2−~v1) with K(~v2−~v1).

3 Error Function Evaluation

There are many numerical approximations to the error function. One of the simplest
approximations[1] is:

erf(z) ≈ 1 −
(
a1t + a2t

2 + a3t
3
)
e−z2

, z ≥ 0 (25)

t =
1

1 + .47047 ∗ z

a1 = .3480242, a2 = −.0958798, a3 = .7478556

Equation 25 is only defined forz ≥ 0. However, erf is an odd function and erf(−z) =
−erf(z).
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