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Opponent Models and Heuristic Strategies for Simple Games 
 

Timothy J. Vickery (vickery@wjh.harvard.edu) 
Department of Psychology, 33 Kirkland St. 

Cambridge, MA 02138 
 

Abstract 

This study introduces a model that describes the reasoning 
strategies of a population of players in simultaneous-move, 
one-shot games. In the past, models of such behavior have 
explicitly employed the concept of Nash equilibrium in 
players’ models of other players. In this model, behavior is 
accounted for in terms of simple heuristic strategies and 
opponent modeling, rather than by recourse to the concept 
of Nash equilibrium. The model represents six types of 
boundedly rational players: three types who employ no 
model of their opponents, two types who model their 
opponents as employing simple heuristics, and one type 
who models the population as a mixture of different types 
of players. Results show promise for eliminating the 
concept of Nash equilibrium from players’ models of other 
players. In pursuit of this goal, a new type of graphical 
model based on Influence Diagrams is developed. 
Uncertain Decision Diagrams are suitable for modeling 
human decision-making with respect to explicit mental 
models that include noisy estimates of utility, and can be 
extended to model players’ models of other players.  

Introduction 
Agents often confront situations in which not only their 
personal choices, but also the choices of others, affect the 
subjective value of an outcome. Some examples of these 
situations are the negotiation of hunting rights between 
two tribes, the barter of goods at a market, and a game of 
rock, paper, or scissors. Such problems are of great 
interest to cognitive science, because humans evolved and 
exist in an environment replete with demands to compete 
and opportunities for cooperation. An understanding of 
how humans reason about competitive scenarios would 
improve our understanding of human behavior in 
numerous ways, allowing us to probe questions about the 
representation of utility, other agents, and the world, and 
enabling the construction of artificial agents that exploit 
or enhance the strengths and weaknesses of human 
decision making.  

The model sketched here describes how humans make 
decisions in games, or formalized incentive structures 
involving multiple agents. We model reasoning strategies 
employed when a person has no reward history with a 
game (i.e., the games are one-shot, not repeated).  The 
model describes a population of players as a mixture of 
player types, some of whom employ simple heuristic 
strategies, and others of whom employ simple models of 
opponents who play by these heuristic strategies. 

Game Theory Background 
 Traditional game theory formalizes the basic problem 
of determining the optimal solution for all agents in a 
setting in which outcomes for agents are determined by 

joint decisions. Nash (1950) determined that any such 
scenario has at least one solution strategy from which no 
player can benefit by deviating. This solution, called Nash 
equilibrium, is an optimal solution to a game when all 
agents behave “rationally,” in terms of decision theory. 
The games typically submitted to game theoretic analyses 
are analytically tractable: far simpler than games like 
chess, but useful for probing the capabilities of agents. 
 Two games employed by Stahl and Wilson (1995) to 
study human behavior are shown in table 1. The model 
presented in this paper will later be applied to the data 
they collected as humans played these games, which are 
fairly prototypical of situations studied in game theory. In 
these games, each subject is asked to examine each 
matrix, in turn, and choose T, M or B as a response. The 
player’s reward is determined by values in the chosen 
row. Each cell represents the value of an individual’s 
choice given the choices of her opponent, which 
correspond to the columns. Thus, if a player chose T and 
her opponent chose “M,” she would receive the payoff in 
cell (T,“M”). The games used here are symmetric, 
meaning that the opponent’s payoff table is the same.  
 The prescriptive qualities of game theoretic models are 
fascinating and useful as benchmarks to the success of 
algorithms in approximating solutions, but behavioral 
economists and psychologists have found that the 
traditional forms are unfortunately dysfunctional as 
descriptive models in many situations (cf. Camerer, 2003, 
who reviews many behavioral observations that 
disconfirm predictions relying on the concept of Nash 
equilibrium). The most successful models of human 
behavior in repeated games depict humans as employing 
algorithms that depend on reward history to approximate 
an optimal solution (for example, reinforcement 
algorithms). In general, humans do not seem to employ 
strategies that correspond to Nash equilibrium strategies 
either initially or over repeated interactions, but rather 
they often approximate the Nash equilibrium strategy in a 
manner consistent with reinforcement learning or similar 
algorithms that depend on historical factors.  

Behavior matching the Nash equilibrium in one-shot 
(non-repeated) games would imply either infinitely 
recursive reasoning or explicit knowledge of how to 
calculate Nash equilibrium. Thus, there is little reason to 
believe that humans bring to a game any mechanism 
tuned to extracting an optimal strategy like the Nash 
equilibrium solution without any experience at all with a 
particular incentive structure. The behavioral data 
reported by Stahl and Wilson (1995) are testament to this: 
the Nash equilibrium strategy alone is entirely inadequate 
for explaining behavior. However, the authors presented a 
successful model of behavior in one-shot games, in which 
some players were modeled as having a concept of others 
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that included the Nash equilibrium strategy. This paper 
addresses whether or not a model of this sort can be 
successful without resorting to the Nash equilibrium 
concept in agents’ models of others.   

The discovery of consistent initial strategies in game 
solving has important consequences. For one, it makes 
choice behavior predictable in novel situations. It also has 
consequences for the course of learning. As repeated 
iterations of the same or similar situation occurs, the time 
course of learning is more predictable with such 
knowledge than by an algorithm based upon reward 
history alone. Knowing the initial states of learners makes 
prediction of the eventual stable state reliable in models 
of behavior in games that have multiple equilibria.  
 Following Stahl and Wilson (1995), the model 
developed here assumes that humans are making optimal 
choices with respect to a noisy internal representation of 
the world, including representations of other agents. The 
model relies on an extension to Bayesian networks (Pearl, 
1988) that allows the incorporation of beliefs about others 
into an explicit model.  

Core Concepts of the Model 
Two core concepts underlie the model presented here. 
The first core concept is that of a heuristic strategy. The 
second is depth of strategic reasoning. These concepts 
motivate the structure of the model. 

Heuristic Strategies 
A heuristic is a simple rule of thumb or “ad hoc” strategy. 
A person who is knowledgeable of an incentive structure 
but carries no preconceived notions of her opponents’ 
states of mind might choose randomly, or they might use 
a simple rule. In fact, an informal test of these hypotheses 
gives support to the concept of a heuristic strategy. The 
twelve games used by Stahl and Wilson (1995) were 
presented to ten subjects. The subjects were shown only 
the payoffs to themselves. Subjects were asked to make 
no assumptions about what the opponents would receive 
as payoffs. Almost all of the subjects responded in a 
manner that was consistent with one of two heuristic 
strategies.  
 The first tendency was to choose the row in which the 
summed payoff was greatest. We will call this heuristic 
strategy the Maximum Sum (MS) heuristic. This strategy 
is rational if the opponent is assumed to choose at 
random. A second tendency was to choose the row with 
the highest minimum payoff. I will call this strategy the 

Greatest Minimum (GM) heuristic. This strategy is 
consistent with the notion that most humans are highly 
risk-averse, and is sensible if you want to maximize the 
least reward you could possibly receive. These two 
strategies together predicted >90% of the choices made in 
the twelve games used here. A third type of “level-zero” 
thinking will be included, the uniform random strategy 
(U), in which choices are made with equal likelihood. A 
player employing U might misunderstand the situation or 
lack motivation altogether. 

Depth of Strategic Reasoning 
The second core concept is the modeling of opponent 
strategies. If an opponent’s strategy is known, then 
solving for one’s best strategy is a decision theoretic 
problem. In most situations the opponent’s strategy is 
unknown. One way of approaching a situation in which 
you have no expectations is to view it from the 
perspective of the opponent, and then respond with the 
best response to her expected choice. The problem with 
this is that it can be carried to an arbitrary depth. A player 
might model an opponent as behaving on the basis of a 
heuristic strategy, or she might regard her opponent as 
behaving on the basis of a best response to a heuristic 
strategy, and so on. Due to practical restrictions it is 
unlikely that an infinitely recursive strategy could be 
employed by humans in such situations. However, it is 
possible that people make assumptions about other 
opponents that allow them to reduce the complexity of the 
problem to a manageable form. Empirical studies support 
a shallow depth of initial reasoning (e.g., Hedden and 
Zhang, 2002). 

Stahl and Wilson (1995) constructed a model that is 
closely resembled by the model presented in this paper, 
and which will serve as a point of comparison. They 
modeled a population of players using a mixture of player 
models, and found support for the idea that the population 
consisted of players who randomly selected responses 
(U), players who chose the best response to U, or BR(U)1, 
players who chose the best response to the best response 
to U, or BR(BR(U)), players who behaved as if their 
opponents played the Nash equilibrium strategy (Naïve 
Nash, or NN), and “worldly” types who behaved as if the 
world were a mixture of the above types. They used their 
model to estimate the posterior likelihood of each player’s 
type, and found very strong support that most players 
were acting consistently with the behavior of one of the 
predefined types.  
 Two aspects of their study led to this model. For one, 
their model was rather arbitrary and it is difficult to 
imagine a generalization to more complex scenarios. The 
model presented here adopts a graphical modeling 
approach, making it more extensible by allowing the 
addition of arbitrary variables and levels of reasoning. 
Secondly, this model eliminates the concept of the Nash 
equilibrium from players’ models, and replaces it with 
heuristic types described above.  
                                                           
1 If estimates of utility are noiseless, BR(U) is equivalent to MS, 
since it prescribes the choice of row with highest average utility. 

Table 1:Games (2/12) used by Stahl and Wilson (1995) 
 

Game  “T” “M” “B” Game  “T” “M” “B” 

 T 25 30 100  T 75 40 45 

1 M 40 45 65 2 M 70 15 100 

 B 31 0 40  B 70 60 0 
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The Structure of the Model 
This model assumes, like Stahl and Wilson (1995), that 
the population is composed of players who approach each 
individual game with a consistent initial strategy. Each 
player type is modeled individually using a graphical 
model from which the probability of any particular 
strategy can be derived. These models are the components 
of a mixture model which is used to obtain estimates of 
the probability of the data given the full model. 

Graphical Models and Extensions 
Bayesian networks are a class of graphical models in 
which the causal structure of the world is codified into 
nodes, representing variables, and edges, representing 
dependencies amongst variables. Nodes can have various 
states, which are either known or unknown. For example, 
a node might represent rain on the 25th. Before the 25th, 
the state of the node is unknown, but various other factors 
influence the probability of each state (e.g., the recent 
weather history). Given knowledge about the states of 
known variables, and the probabilistic dependencies 
amongst the nodes, the probability of an unknown 
variable’s taking on some state can be determined. 
Bayesian networks have been explored extensively in 
computer science (Pearl, 1988), and recently applied to 
modeling human cognition. Influence diagrams (IDs) 
extend Bayesian Networks with decision and utility nodes 
(Howard and Matheson, 1984). They allow the modeler to 
calculate the best possible choice for an agent given 
specific knowledge about the world, the choices available 
to the agent, and the payoffs that depend upon the choices 
of the agent and the state of the world. Decision nodes in 
IDs represent choices of agents (represented as rectangles 
in diagrams), and simply denote the (discrete) choices 
available to the agent. Utility nodes represent the value to 
agents of states of the world. Decision and utility nodes 
possess many of the same properties of chance nodes in a 
Bayesian network. Many details are omitted here due to 
limited space.  

Extensions of IDs called multiple agent influence 
diagrams (MAIDs) have been used recently to simplify 
the process of calculating the Nash equilibrium solution 
for players in competitive games (Koller and Milch, 
2001). MAIDs allow modeling of multiple agents, each 
with their own decision and utility nodes. Solving a 
MAID involves calculating the optimal decisions of 
players with respect to their knowledge of the world, but 
MAIDs assume rational agents with infinitely recursive 
models of opponents. Given that the goal of this work is 
to eliminate the need for the Nash equlibrium concept in 
explaining human behavior, We will not spend any more 
time discussing the specifics of MAIDs.  

An additional extension to MAIDs and IDs, known as 
networks of influence diagrams (NIDs), can be used to 
model agents who have any particular model of their 
opponents, agents who make decisions based on 
extraneous variables, and agents who conceive of a 

variety of possible models of their opponents, with 
uncertainty about which one their opponent will actually 
employ (Gal and Pfeffer, 2003). The models employed by 
this study borrow concepts from the NIDs framework, but 
the full arsenal provided by this modeling language is not 
necessary to build the basic models that we will use, and 
some additions are necessary.  

NIDs are rooted, acyclic directed graphs in which the 
nodes (called blocks to avoid confusion with nodes 
internal to blocks) are self-contained IDs and MAIDs. 
Root blocks represent the “top-level” model. Blocks are 
assigned to individual agents. The decisions of agents 
may be modeled by child blocks. Edges from one block to 
another block indicate that a decision node in the parent is 
modeled by the child.  

If a decision in a parent block is modeled by multiple 
child blocks, then a chance variable (labeled Mod[D], 
where D is the modeled decision node) is introduced to 
the parent. Mod[D] is a parent node D, and it takes on 
values corresponding to each of the child blocks that 
model the decision. Its conditional probability table (CPT) 
contains the probability allotted by the parent block to 
each of the different child models. In other words, it 
represents the degree of belief that each of the child 
blocks is being used by opponents. To solve a NID, one 
simply works from the leaf blocks to the root, solving for 
each decision variable the optimal response. Leaves are 
MAIDs or simple IDs, which may be solved according to 
known methods. The decision rules thus computed are 
available to the parent nodes, and are incorporated into 
parents as follows: each decision node in a parent that is 
modeled by a child requires the addition of a chance node 
to the parent. For each edge leaving a block, a chance 
node is added to the parent. This node has a conditional 
probability distribution over its component choices that is 
determined by the solution to the child. The original 
decision node becomes a chance node with each node that 
has been added as its parents. The new node takes on 
values of its parent nodes according to the probabilities 
allotted to the CPT of Mod[D]. Once the tree has been 
solved up to the root node, the root node becomes a 
MAID in the same fashion. Solving the root gives a 
Bayesian network that is open for interesting queries. This 
description is dense, high-level and misses many nuances. 
For a full description of NIDs, see Gal and Pfeffer (2003). 

Traditionally, IDs have been used to model situations 
for the purposes of making a decision. However, since 
human decision making is inherently noisy, in order to 
model human behavior we will have to replace the 
traditional decision nodes with a noisy version. To 
accomplish this, each decision node is converted to a 
chance variable where each choice, or state, is chosen 
with some probability that is determined on the basis of a 
noisy estimate of expected utility. If the noise has the 
properties that it is additive, independent and identically 
distributed according to a Weibull distribution, then the  
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probability of the decision takes the  convenient 
conditional logit form, 

 

∑
≡

k k

j
jP

)EU*exp(

)EU*exp(
)(

γ

γ
γ  

 
(1) 

where Pj is the probability of making choice j, EUj is the 
expected utility of the choice, and γ is a noise parameter 
(this choice was also inspired by Stahl and Wilson, 1995). 
Expected utility is calculated using basic algorithms for 
IDs, on the basis of the values in utility and chance nodes. 
IDs with the addition of this new type of decision node 
will be referred to as Uncertain Decision Diagrams 
(UDDs).  

Another modification to NIDs for modeling humans is 
the elimination of decision nodes for decisions that are 
modeled by child blocks. The reason for this is that 
leaving these decision nodes in for the opponent would 
require the use of MAIDs. Algorithms for solving MAIDs 
introduce the Nash equilibrium concept, which we 
attempt to eliminate as an explanation for behavior in this 
game. Graphical models with the above modifications 
will be referred to as NUDDs (Networks of UDDs).  

A model of behavior in one-shot matrix games 
Using NUDDs, behavior in any simultaneous matrix 
game can be modeled given assumptions about the 
contents of utility nodes and the form of each player’s 
model. Following Stahl and Wilson (1995), this model 
assumes that players fall into several categories. The 
primary goal was to replicate Stahl and Wilson (1995), 
but to do so without appealing to the Nash Equilibrium in 
opponent models. Their notation is reproduced where 
possible, and many of the same procedures are followed 
to maximize the comparability of this model to theirs. 
Of the five player types posited by Stahl and Wilson, two 

include the concept of Nash equilibrium (i.e., some 
component of these two models specifies that the 

opponent’s prior over responses is the same as the Nash 
equilibrium solution to the game). Revisiting this model, 
we will define 6 types of our own, without appeal to the 
Nash equilibrium concept. Descriptions of these 6 types 
follow, along with the parameters that were allowed to 
vary for each model. For modeling simplicity, the values 
of these parameters were assumed to be constant for every 
player within a class. 
1. The level-0 type of Stahl and Wilson (1995) becomes 

the “Uniform” player (U). A model of this player is 
pictured in figure 1a. Her choices are simply 
represented as a chance node with equal probabilities 
for each of the three decisions. This model has no free 
parameters. 

2. The level-1 type (best response to level-0) becomes 
the “Maximum Sum” heuristic player (MS). This 
player’s model is shown in figure 1b. The model is an 
UDD with a decision node and a utility node, where 
the utilities have been determined by summing the 
payoffs for each row. The noise parameter γ1 was 
allowed to vary. 

3. The level-2 type (best response to level-1), becomes 
the “Best response to maximum sum heuristic” player, 
BR(MS). The model for this player type is shown in 
figure 1c (in NUDD form and solved form). This is a 
simple NUDD in which the child block is the UDD 
described in 1. The noise parameter γ2 was varied. 

4. A second type of   heuristic player, who chooses on 
the basis of the row with the maximum minimum 
payoff. This player is referred to as the “Greatest 
Minimum” heuristic player, or GM. Her model is just 
like the MS player, but the values of the utility node 
correspond to the least minimum payoff for each of 
the choices. Noise parameter, γ3, was allowed to vary.  

5. The fifth type is the “Best Response to Greatest 
Minimum Heuristic” player, or BR(GM). This model 
is similar to BR(MS) with the child block replaced 

D[A]

U[MS]

D U(D)

T
M
B

(sum the
row

payoffs)

b. "MS" player and utility table

A[BR(MS)]

A[BR(MS)]

After solving children...

D[A]

U[MS]

D[B(MS)]

c. BR)MS) player (left : NUDD; Right: UDD)

A[Mix]

B[GM] B[U] B[MS]

After solving children...

D[B]

D[B(GM)] D[B(MS)]
D[B(U)]

Mod[D[B]]

D[A] U[A]

Squares respresent  decision nodes, diamonds
utility nodes, and ovals chance nodes.
Notation: A is the modeled player, B is the opponent .

D[A]

D P(D)

T
M
B

1/3
1/3
1/3

a. "U" Player w/ CPT

d. BR(Mix) Player (Left : NUDD; Right: UDD)

Figure 1: Four models of players in one-shot, three-choice matrix games
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with the GM player’s UDD. Decisional precision γ4 
was allowed to vary. 

6. The sixth type is the “Mixture of strategies” player, or 
BR(Mix). This is a player who believes that others are 
a mixture of the above strategies. We include a player 
who chooses the best response to a mixture of 
strategies 1, 2, and 4. In other words, she models her 
opponents as playing some mixture of the uniform and 
heuristic strategies. This player has 3 parameters that 
are allowed to vary: γ5 (noise), m1 (the proportion of 
her opponents that she believes are uniform players), 
and m2 (the proportion believed to be MS players). 
This player believes that opponents are GM players 
with probability m3 =1-m1-m2. This player’s model is 
shown in figure 1c. The CPT for Mod[D] is 
determined by the mixing parameters described above. 

Each of the models above produces predictions of the 
probability of each choice in each game. Choice 
probabilities for each strategy }3,2,1{∈j  within each 
game }12...,,2,1{∈i  for each model l (l=1, 2, 3, 4, 5, or 
6) were determined by equation 1, where expected utility 
of each response is calculated using a common algorithm 
for solving influence diagrams based on the structure of 
the graphical model. Subject h’s strategy in game i will be 
referred to as }3,2,1{),( ∈ihs . The probability of choice 
i given model type l and model parameters βl is denoted 
Pij(βl). Following Stahl and Wilson’s (1995) conventions, 
the probability of subject h’s choices in game i 
conditioned on that player belonging to class l is Pis(h,i)( 
βl) and the joint probability of all of participant h’s 
choices conditional on being a class l player is 

 ∏=
i

lihisl
h

l PP )()( ),( ββ  (2) 

The full mixture model includes 6 parameters αl  defining 
the proportion of subjects in the population who employ 
model l (the sum of all αl is 1). The likelihood of 
participant h making her particular choices is given by  

 
∑
=

≡
6

1
)()|(

l
l

h
ll

h PsL βαβ  
(3) 

Log-likelihood of the entire sample is 
 ∑≡

h

hsL )]|(log[ β  (4) 

A Test of the Model 
Parameter estimates 'β  were determined by 

maximizing (4) for the data collected by Stahl and Wilson 
(1995). They tested 48 subjects on 12 games (2 of which 
are shown in Table 1). Estimates of the maximum-
likelihood parameters were obtained using the constrained 
line-search procedure provided with the Matlab 
Optimization Toolbox and several randomly chosen 
starting points.   Imitating the procedures of Stahl and 
Wilson (1995), we constructed 95% confidence intervals 
using a bootstrap technique. From the parameter estimates 

'β , M=400 sample decisions s* (of the same sample size, 
48 subjects and 12 games) were generated using the 
following technique. First, draw a uniform random 

deviate [0,1] and choose a class based on this value and 
the lα̂ ’s (i.e., choose class l with probability lα̂ ). Then, 
obtain the probability of each decision given the 
corresponding model and its parameter estimates. Finally, 
choose a decision by drawing a second uniform random 
deviate and comparing it to this value. Once the samples 
s* were generated, we determined maximum-likelihood 
parameters 'β * for each s* using the same technique as 
before, and determined 95% confidence intervals for each 
β. The maximum-likelihood estimates and confidence 
intervals are given in Table 2. On first glance, we see that 
most parameters take on reasonable values. Approximate 
proportions of each player type were 14% (U), 17% (MS), 
2% (BR(MS)), 35% (GM), 17% (BR(GM)), and 16% 
(BR(Mix)). Their confidence intervals do not include 0, 
suggesting that sufficient evidence exists to include all of 
these types in this model, although two of the intervals do 
come close. The only immediate cause of concern is the 
confidence interval of γ2, which includes 0. When γ2 is 0, 
noise is so great that the strategy becomes the same as U. 
The likely reason for this is that only one player (as will 
be shown) is employing this strategy, and thus in many 
fits, γ2 was allowed to vary greatly with little consequence 
to the likelihood values. The BR(Mix) strategist seems to 
be employing a model with 40% GM players, 20% MS 
players, and 40% U players. The maximum log-likelihood 
was -448.75, which is slightly less than the value of -
442.73 obtained by Stahl and Wilson (1995). However, 
we believe that it still compares favorably, especially 
given the following considerations: (1) although this 
model’s parameters have 12 degrees of freedom relative 
to their 11 degrees of freedom, our model is somewhat 
more restricted due to the replacement of the Nash 
equilibrium prior. The Nash equilibrium prior is more 
flexible than either of our heuristic priors, predicting in 
some cases equal probabilities for all three choices. (2) 
Goodness-of-fit is lower for our (conceptually simpler) 
model. This statistic was obtained using the following 
equation,  

 

∑∑
−

=
i j ij

ijij

N
Nn
π
π

λ
2)(

 
 
(5) 

where nij is the number of people who chose j in game i, 
N is the number of subjects, and πij is the proportion of 
such choices predicted by our model. The πij are 
calculated as follows, 

 
∑
=

=
6

1

)(ˆ
l

lijlij P βαπ  
 
(6) 

We obtained λ=49.48 (distributed chi-square with df=24) 
for the full 12 games and 48 subjects, which exceeds 
acceptable values (p<.01). The null hypothesis that this 
model underlies the production of the data must be 
rejected on the basis of this statistic. However, this 
difficulty was also encountered by Stahl and Wilson 
(1995), who obtained an even higher value, λ=57.57. 
They point out that games 10 and 11 produced 
particularly troublesome results for their model, and the 
same applies here. Excluding these games from analysis, I 
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obtained λ=25.79 (df=20), compared with their λ=26.09. 
The model cannot be rejected (at α=.05) as an explanation 
of this data on the basis of this statistic. A direct 
comparison of these models is not possible, since they 
differ structurally. However, the above comparisons are 
not unfavorable to this model. 
 
Table 2: Results of model fit to data from S. & W. (1995) 

 
Parameter Estimate 95% Confidence Interval 

γ1[MS] 0.2718 0.1815 0.4583 
γ2 [BR(MS)] 0.5549 0 3.9587 
γ3 [GM] 0.0710 0.0504 0.0917 
γ4[BR(GM)] 0.2903 0.1678 0.4174 
γ5[BR(Mix)] 0.5525 0.3630 1.0630 

µ2 [% MS in BR(Mix)] 0.1989 0.0992 0.2619 
µ3 [% U in BR(Mix)] 0.4016 0.3077 0.5517 

α0 [U] 0.1691 0.0478 0.2918 
α1 [MS] 0.0208 0.0003 0.1490 

α2 [BR(MS)] 0.3450 0.2010 0.5552 
α3 [GM] 0.1658 0.0992 0.2619 

α4 [BR(GM)] 0.1591 0.3077 0.5517 
 -448.75 (compared to -442.73) 

λ 49.48/25.79 (compared to 57.57/26.09) 
 
 Posterior estimates of player types were obtained using 
a bootstrap method described by Stahl and Wilson (1995). 
Only a sketch of the results is reported here. Results show 
that subject classifications were not as well-defined as in 
the Stahl and Wilson (1995) model. 31 out of 48 were 
classified with a probability greater than 90%, compared 
with 38 in their model. However, many fewer bootstrap 
parameter estimates were obtained, and each of these was 
from a small number of attempts to search the parameter 
space. We also did not constrain parameter values as 
much as my predecessors. Even so, it is clear that the new 
heuristic (GM) and the model that responds to GM, 
BR(GM), are most appropriate for 18 and 10 players, 
respectively, and most of these with extremely high 
probability. At the very least, there is evidence for the 
employ of these strategies in lieu of NN. MS picks up 8 
players (the same as their roughly equivalent BR(U). 
BR(MS), which in our model finds very little support, is 
still only likely for one subject. Given that one player’s 
decisions match the noiseless BR(MS) predictions 
exactly, it is probable that this player used that strategy, 
but there is little support for that strategy, otherwise. 
Br(Mix) is most probable for only 4 players. The uniform 
strategy is the most likely candidate for only 7 players. 
The GM strategy is highly successful, with extremely 
high probability of being the model for many players 
formerly classified as level-0 (U) and NN players, as well 
as several mixture players. BR(GM) is also successful in 
explaining the activities of players formerly thought to be 
playing a best response to a mix of NN, U, and BR(U) 
strategies. 

Conclusions 
It is important to understand how real agents form their 
initial models, not only to predict agent behavior in novel 
situations, but also to predict the course of learning. This 
study shows that a successful model need only assume 
simple heuristics and low level opponent modeling to 
predict behavior. This model shows promise as an 
explanation for human behavior in simple games played 
without repetition. The model fit comparably to the model 
of Stahl and Wilson (1995), and most importantly it 
eliminated the Nash equilibrium concept from players’ 
models. The heuristics proposed in this article require 
only very simple cognitive abilities. 

A new type of node was introduced to Influence 
Diagrams to make them suitable for modeling human 
decision making. UDDs should be extended to model 
sequential decisions. Any domain that involves decision-
making that employs internal models of other agents 
might benefit from the application of such models. In 
future work, the methods here will be extended to 
determine which models are most appropriate to include 
in a full mixture model. These models should be extended 
to model different types of games with more choices, 
more agents, and sequential decisions.  

Acknowledgments 
I thank Josh Tenenbaum, Kobi Gal, Yuhong Jiang, and 
Christian Luhmann for useful discussions. This work was 
partially supported by an ONR award to Yuhong Jiang.  

References 
Camerer, C.F. (2003). Behavioral Game Theory: 

Experiments in Strategic Interaction, Princeton: 
Princeton University Press. 

Gal, K. and Pfeffer, A. (2003). A Language for Modeling 
Agents' Decision Making Processes in Games. Second 
International Joint Conference on Autonomous Agents 
and Multi-Agent Systems, Melbourne Australia. 

Hedden, T. and Zhang, J. (2002). What do you think I 
think you think? Theory of mind and strategic 
reasoning in matrix games. Cognition, 85: 1-36. 

Howard, R.A., and Matheson, J.H. (1984). Influence 
Diagrams. In Readings on the Principles and 
Applications of Decision Analysis, 721-762. 

Koller, D. and Milch, B. (2003), Multi-Agent Influence 
Diagrams for Representing and Solving Games, Games 
and Economic Behavior, 45: 181-221.  

Nash, J.F. (1950). Equilibrium points in n-person games. 
PNAS, 36:48-49. 

Pearl, J. (1988). Probabilistic Reasoning in Intelligent 
Systems, San Francisco: Morgan Kaufmann Publishers. 

Stahl, D.O., and Wilson, P.W. (1995). On Players’ 
Models of Other Players: Theory and Experimental 
Evidence. Games and Economic Behavior, 10, 218-254. 

2318




