
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Variants of Privacy Preserving Set Intersection and their Practical Applications

Permalink
https://escholarship.org/uc/item/3vq9n0fp

Author
Faber, Sky Justin

Publication Date
2016

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-ShareAlike
License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3vq9n0fp
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Variants of Privacy Preserving Set Intersection and their Practical Applications

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Sky Faber

Dissertation Committee:
Professor Stanislaw Jarecki, Chair

Professor Pierre Baldi
Professor Michael Goodrich

2016

Chapter 2 c© 2012 ACM
Chapter 3 c© 2015 ACM

Chapter 4 c© 2013 IEEE Computer Society
Chapter 5 c© 2013 ACM

Chapter 6 c© 2015 Springer
All other materials c© 2016 Sky Faber

DEDICATION

To Gabe, my guide in an ocean of darkness.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Private Set Intersection . 4
1.2 Secure Pattern Matching . 7
1.3 Highlighted Security Properties . 10
1.4 Practical Applications . 12

1.4.1 Genomics . 13
1.4.2 Privacy Aware Consumer Applications 15
1.4.3 Inter-Organization Information Sharing 16

2 Privacy Preserving Genomic Testing on Smartphones 18
2.1 GenoDroid Framework . 22

2.1.1 Smartphone Rationale . 23
2.1.2 Framework Structure . 25

2.2 Paternity testing . 29
2.2.1 An Optimized Implementation . 30
2.2.2 Performance Evaluation . 32

2.3 Genetic Ancestry Testing . 33
2.3.1 Construction . 36
2.3.2 Implementation Details . 37
2.3.3 Performance Evaluation . 38

2.4 Personalized Medicine . 40
2.4.1 Initial Construction . 41
2.4.2 Cloud-Aided Variant . 43
2.4.3 Performance Evaluation . 45

2.5 Usability Study . 46

iii

3 Private Proximity-based Off-line Social Network Interaction 49
3.1 Design Goals . 53
3.2 UnLinked System Design . 54

3.2.1 OSN Requirements . 55
3.2.2 Types of Communication in UnLinked 56
3.2.3 Communication Channels . 56
3.2.4 Cryptographic (Privacy) Requirements 57

3.3 LinkedIn . 58
3.4 Cryptographic Tools . 59

3.4.1 Building Blocks . 60
3.4.2 Adversarial Model . 62
3.4.3 Security Properties . 62
3.4.4 Two-Way Private Set Intersection . 64
3.4.5 Two-Way PSI Cardinality . 69

3.5 System Architecture . 70
3.5.1 Requirements . 70
3.5.2 Setup Phase Details . 71
3.5.3 Off-line Phase Details . 72
3.5.4 Notification Policy . 73

3.6 Discussion and Extensions . 76
3.6.1 Minimizing Irrelevant Connections 76
3.6.2 Authenticated Channels . 77
3.6.3 Unlinkability . 77
3.6.4 Freshness of Credentials . 78
3.6.5 Detecting Misbehavior . 78

3.7 Implementation & Evaluation . 79
3.8 Operational Algorithims . 80

4 Secure Pattern Matching 82
4.1 The Need for Blindfolded Searching of Data 83
4.2 Background and Overview of Secure Pattern Matching 85

4.2.1 Insecure Pattern Matching . 85
4.2.2 Security and Adversary Models . 87

4.3 Overview of Secure Pattern Matching Protocols 89
4.3.1 Protocol 1: Integer Comparison Based Pattern Matching 89
4.3.2 Protocol 2: Fast Fourier Transform (FFT) Based 92
4.3.3 Protocol 3: Matrix Multiplication Based Pattern Matching 93
4.3.4 Protocol 4: Garbled Circuit Based Text Processing 96

4.4 Open Problems . 97

5 Size- and Position-Hiding Private Substring Matching 98
5.1 Problem Statement . 101

5.1.1 Definitions & Notation . 102
5.1.2 Proposed Construction . 105
5.1.3 Security Analysis . 108

iv

5.1.4 Timing Attacks . 110
5.2 SPH-PSM in Practice . 111

5.2.1 Instantiating AddHomEnc . 111
5.2.2 ElGamal-based SPH-PSM . 113
5.2.3 Performance Evaluation . 114

5.3 Extensions . 116
5.3.1 Revealing Test Outcome to Alice . 116
5.3.2 Fixed-Size Wildcards and Non-Contiguous Substrings 116
5.3.3 Multiple Substrings/Starting Locations 117
5.3.4 Reducing Data Transfer Time . 118
5.3.5 Coping with (Some) Malicious Input 119

6 Efficient Pattern Matching on Symetrically Encrypted Data 122
6.1 Preliminaries . 126
6.2 Substring Queries . 128

6.2.1 Basic SSE Substring Search . 130
6.2.2 Wildcards and Phrase Queries . 134
6.2.3 Query Flexibility . 135
6.2.4 Substring Protocol Extensions . 136

6.3 Security Analysis . 138
6.3.1 Security of Substring Queries . 138

6.4 Implementation and Performance . 142
6.5 Substring SSE Extensions . 147

6.5.1 MIXED-SSE-OXT: Substring Terms in General Boolean Formula Queries147
6.5.2 MIXED-OSPIR-OXT: Substring and Keyword Search in OSPIR Setting151

6.6 Security Proof for Substring Search SSE . 159

7 Related Work 166
7.1 Privacy Preserving Genomic Testing on Smartphones 166

7.1.1 Secure Testing on Fully Sequenced Human Genomes 166
7.1.2 Secure Computation on DNA Fragments 167
7.1.3 Secure Computation on Mobile Devices. 169

7.2 Private Off-line Social Network Interactions 170
7.2.1 Private Friends Discovery . 171
7.2.2 Private Set Intersection . 172
7.2.3 Policy-Enhanced Private Set Intersection 172

7.3 Secure Genomics Pattern Matching . 173
7.3.1 Secure Genomics . 173
7.3.2 Secure Pattern Matching . 174
7.3.3 Input-Size Hiding . 175

8 Conclusions 177

Bibliography 180

v

LIST OF FIGURES

Page

3.1 Interaction in UnLinked: (a) Regular OSN interaction, (b) Setup, (c) Offline,
(d) OSN Spillover . 56

3.2 Setup . 65
3.3 Offline Execution Phase . 66
3.4 Setup w/ Cardinality . 69
3.5 Offline Execution Phase w/ Cardinality . 70

4.1 A patient visits a doctor who privately examines his genome for treatment (a).
FBI privately examines a passenger list for a suspect with name like ”Rob”
(b). 84

4.2 Client queries using the exact matching from [HT10] “TACT” (a) and wild
card matching“TAC*” (b). Server’s text remains “GATTACT” with a single
match in both cases. 90

4.3 Character Delay Vectors for “TACT” and their application to the Activation
Vector during processing. 94

4.4 Insecure Pattern Matching Expressed as Linear Matrix and Vector Operations. 95

5.1 Base-line SPH-PSM Protocol. 107

5.2 AH-ElGamal based SPH-PSM. (Computation is done mod P). 108

6.1 SUB-SSE-OXT: SSE Protocol for Substring Search (shadowed text indicates
additions to the basic OXT protocol for supporting substring queries) 133

6.2 MIXED-SSE-OXT: SSE for Conjunctions of Multiple Substring and Exact
Keyword Terms . 148

vi

LIST OF TABLES

Page

2.1 Computation & Communication costs of GenoDroid paternity test. Online
cost reflect wall-clock-based run-times. 33

2.2 Computation & Communication Costs of our Privacy-Preserving Ancestry Test. 39
2.3 Computation & Communication costs of GenoDroid’s cloud aided hla-b and

tpmt tests. Online cost reports wall-clock running time. 46

3.1 Evaluation of UnLinked. 80

4.1 Comparison of pattern matching protocols. 89

5.1 Notation used throughout the chapter. 103
5.2 SPH-PSM: computation time for varying substring lengths. 113

6.1 Latency (in secs) for 10 TByte DB, 100M records, 25.6 billion record-keyword
pairs . 146

vii

ACKNOWLEDGMENTS

Throughout my time at the University of California, Irvine I met many great minds. I was
shaped and molded for better or worse through my interactions with each of them. While
I gained great knowledge, those interactions were more valuable than anything I learned. I
am immensely grateful to have had the opportunity to be touched by all of them. I’d like
to thank a few of them specifically who made this work possible with their guidance and
support.

First and foremost, I’d like to thank Gene Tsudik my mentor and one-time friend. Gene
taught me not only how to be an effective researcher but how to think and write critically.
Thank you for including me in brainstorming sessions even when I was still a kid who knew
nothing. More than anything, thank you for giving me a space to work and grow at my own
rate. I would be half the man I am today without having the opportunity to work with you
for so many years.

I would also like offer my wholehearted gratitude to Stanislaw Jarecki. Stas takes cryptog-
raphy education seriously and with great passion. He taught me to be a real cryptographer.
Without his dedication and rigor I would never have had the necessary skills to succeed in
this field. On behalf of all of your students, thank you for assigning the tough problems and
thoughtfully grading all of our chicken scratch proofs. Your extra curricular crypto classes
inspired me to be better than I am. And, your extra long brainstorming sessions inspired
me to invent something new, thank you. Most importantly, thank you for being there in my
time of need. I’ll never forget all that you have done for me.

I would also like to thank each of my defense committee members, Stanislaw Jarecki, Pierre
Baldi, Michael Goodrich. Thank you for your support and for your ears.

Special thanks to each of my co-authors. My contributions could not shine alone. I would
not be here without their thought, effort, and support. In particular, thank you to Emiliano
De Cristofaro, Karim El Defrawy, Paolo Gasti, Hugo Krawczyk, and Michael Steiner for your
mentorship. You’re feedback was critical in my development.

I am also very grateful to each of the members of the SPROUT research group who I
happily co-located with so many years: Gergely Acs, Mishari Almishar, Filipe Beato, Tatiana
Bradley, Xavier Carpent, Alberto Compagno, Mauro Conti, Sargis Dudaklyan, Luca Ferretti,
Paolo Gasti, Cesar Ghali, Tyler Kaczmarek, Quan Nguyen, Naveen Nathan, Ekin Oguz,
Ronald Petrlic, Kasper Rasumussen, Norrathep Rattanavipanon, Marc Roeschin, Jaroslav
Sedenka, Michael Steiner, and Christopher Wood. Not only were you all an endless source
of inspiration my darts game would be shot without you.

In addition to all the great souls I met in my field. UCI was a place to meet lifelong
friends: Kevin Bache, Kyle Benson, Jimmy Foulds, Cesar Ghali, Moshe Lichman, Ekin
Oguz, Kristin Roher, Mehdi Sadri, Jonathan Shoemaker, and Patricia Sponaugle. Thank
you all for listening to my late night kvetching. Our success will forever be intertwined.

viii

I was supported during my years at UCI by fellowships from the Bren School of Information
and Computer Science, as well as through several teaching and research assistantships. Many
thanks goes to IBM and the IARPA SPAR program for supporting me through my education
by letting me do what I love. Thanks also to Marco Levorato and Ray Klefstad for being
excellent teachers and role models who truly care about their students.

Finally, I’d like to extend my deepest thanks to my parents. They continuously encouraged
me to pursue my dreams and consistently pushed me towards higher education. They were
always there when I needed a helping hand. I am eternally grateful.

ix

CURRICULUM VITAE

Sky Faber

EDUCATION

Doctor of Philosophy in Computer Science 2016
University of California, Irvine Irvine, California

Master of Science in Computer Science 2013
University of California, Irvine Irvine, California

Bachelor of Science in Computer Science and ACMS 2009
University of Washington, Seattle Seattle, Washington

Associates in Science 2007
Bellevue College Bellevue, Washington

RESEARCH EXPERIENCE

Graduate Research Assistant 2011–2016
University of California, Irvine Irvine, California

Cryptography Research Intern Summer 2015
IBM Research, Watson Yorktown Heights, New York

Research Intern Summer 2012
HRL Laboratories Malibu, California

TEACHING EXPERIENCE

TA for Network & Distributed Systems Security (ICS 203) Winter 2016
University of California, Irvine Irvine, California

TA for Principles in System Design (ICS 53) Winter 2015
University of California, Irvine Irvine, California

TA for Computer and Communication Networks (ICS 174) Fall 2014
University of California, Irvine Irvine, California

x

PAPERS IN SUBMISSION OR UNDER REVIEW

Private Projections based on Private Set Intersection 2017
ACM Asia Conference on Computer and Communications Security

REFEREED CONFERENCE PUBLICATIONS

Bounded Size-Hiding Private Set Intersection [BFT16] 2016
Security and Cryptography for Networks

Rich Queries on Encrypted Data: Beyond Exact
Matches [FJK+15]

2015

European Symposium on Research in Computer Security

UnLinked: Private Proximity-based Off-line OSN Inter-
action [FPT15]

2015

Workshop on Privacy in the Electronic Society

Three-party ORAM for Secure Computation [FJKW15] 2015
International Conference on the Theory and Application of Cryptology and Information
Security (Asiacrypt)

Secure Genomic Testing with Size-and Position-hiding
Private Substring Matching [DCFT13]

2013

Workshop on Privacy in the Electronic Society

Genodroid: are privacy-preserving genomic tests ready
for prime time? [DCFGT12]

2012

Workshop on Privacy in the Electronic Society

xi

ABSTRACT

Variants of Privacy Preserving Set Intersection and their Practical Applications

By

Sky Faber

Doctor of Philosophy in Computer Science

University of California, Irvine, 2016

Professor Stanislaw Jarecki, Chair

Private Set Intersection (PSI) is a cryptographic primitive that allows two network connected

parties with hidden inputs to jointly compute the intersection of these inputs while keeping

their specific inputs secret. PSI can be used as a building block for a variety of applications,

most notably querying a remote relational database without revealing the query or the

database. Many constructions of PSI exist, each building off of a subset of an assortment of

cryptographic primitives such as: oblivious transfer, hash functions, garbled circuits, public

key encryption and signature schemes, and basic number theoretic hardness assumptions. In

this dissertation, we study variations of PSI and their practicality to modern day applications.

Specifically, we study new security constraints for PSI that arise from applications such as

genomics, consumer applications, and inter-agency information sharing. These constraints

lead to several novel secure computation protocols. Through actualized prototypes of these

schemes we conclude that, specialized PSI protocols are fast enough for use today, even on

resource constrained hardware.

xii

Chapter 1

Introduction

Recent research has unveiled the practicality of efficient Privacy Preserving Set intersection,

also known as Private Set Intersection or PSI, in an assortment of security models. Since

PSI’s inception the research community has focused primarily on refinement of the primitive

in two areas: greater efficiency (reduced cryptographic operations) and stricter privacy re-

quirements (fewer, more innocuous cryptographic assumptions). In this thesis, we examine

several variants of PSI motivated by practical applications. We detail the necessity for these

variants as well as the unique privacy challenges that arise from the alterations.

The protocol constructions examined within differ from traditional PSI in several, often

overlapping, ways. Specifically they have one or more of the following characteristics: mod-

ified output requirements modified matching criteria, stricter privacy guarentees, or relaxed

security requirements.

In addition to Private Set Intersection we also examine the closely related problem of Secure

Pattern Matching (SPM). SPM itself can be thought of as a variant of PSI with modified

matching criteria and output. Each is a secure computation protocol between two parties

each with private inputs. The protocol computes for one or both parties a function over

1

these private inputs. The protocols in this thesis are presented as a modification of either

SPM or PSI depending on the requirements of the specific application.

The main contributions of this work are:

1. Design and prototype implementation of GenoDroid, a system for privacy preserving

genetic testing. GenoDroid is a “cradle-to-grave” solution focusing on securing genomic

data from the time it is generated by the sequence machine to time of use on user’s

smartphones.

2. Design and prototype implementation of UnLinked, a system for supporting proximity-

based offline social network interactions. UnLinked offers authentic offline friend-of-

friend discovery without the use of an actively connected central server. Perhaps most

notably the UnLinked prototype seamlessly handles detection and protocol execution

with physically proximate peers, notifying users only in the event of a “match”.

3. Design and implementation of the finderlib framework. A Java based library for run-

ning privacy preserving cryptographic protocols on smartphones without the need for

a central server. Finderlib is a central component of both GenoDroid and UnLinked.

4. Design and analysis of several novel cryptographic primitives. Briefly these are: Autho-

rized Two-Way Private Set Intersection (ATW-PSI), Authorized Two-Way Private Set

Intersection Cardinality (ATW-PSI-CA), Size and Position Hiding Substring Matching

(SPH-SM), and Substring Searchable Symmetric Encryption OXT (SUB-SSE-OXT).

5. Implementation of the SUB-SSE-OXT protocol, supporting real time privacy preserv-

ing substring queries over a SQL style database with 100s of millions of rows.

In this thesis I will describe my solutions to four problems in the area of Private Set Inter-

section and the closely related area of Private Pattern Matching.

2

In this chapter we cover: the basics of Private Set Intersection and Secure Pattern Matching,

the types of protocol modifications we encounter, and the practical applications our protocols

are designed for.

Subsequent chapters are dedicated to a specific problem solved by a novel protocol or system

design, with the exception of Chapter 4 which presents existing solutions to SPM in-depth.

Specifically the problems solved in this thesis are:

1. Chapter 2 addresses the problem of using PSI to build practical privacy preserving

genomic testing on smartphones and it is based on my publication Genodroid: are

privacy-preserving genomic tests ready for prime time? written along with Emiliano

De Cristofaro, Paolo Gasti, and Gene Tsudik [DCFGT12].

2. Chapter 3 addresses the problem of bi-lateral private set intersection over authorized

input and it is based on my publication UnLinked: Private Proximity-based Off-line

OSN Interaction, written along with Ronald Petrlic and Gene Tsudik [FPT15].

3. Chapter 5 addresses the problem of size- and position-hiding private substring matching

and it is based on my publication Secure Genomic Testing with Size-and Position-

hiding Private Substring Matching, written along with Emiliano De Cristofaro and

Gene Tsudik [DCFT13].

4. Chapter 6 addresses the problem of private pattern matching over symetrically en-

crypted data and it is based on my publication Rich Queries on Encrypted Data: Be-

yond Exact Matches, written along with Stanislaw Jarecki, Hugo Krawczyk, Quan

Nguyen, Marcel Rosu, and Michael Steiner [FJK+15].

3

1.1 Private Set Intersection

Private Set Intersection (PSI) is a Secure Computation Protocol realizing the specific function

of set intersection. Informally, PSI is a two party protocol in which each party holds a set

they wish to keep secret and a single party learns the intersection between these two sets.

Ideally, no party learns any additional information about the input sets beyond the protocol

output. That is, no information about the opposing parties input is learned except what can

be derived from the intersection itself. Unfortunately, this ideal functionality is difficult, if

not impossible, to achieve. Instead, most authors build protocols for the slightly amended

functionality that reveals the size of both input sets. This is discussed in detail in Section

1.3. Formally PSI is defined as:

Definition 1.1 (Private Set Intersection (PSI)). A protocol between Server with input S =

{s1, . . . , sw}, and Client with input C = {c1, . . . , cv}. At the end of the protocol execution

Client learns exactly (S ∩ C, |S|), and Server learns exactly |C|. PSI securely implements:

FPSI : (S, C) 7→ (|C|, (S ∩ C, |S|)).

In some cases learning the intersection is equivalent to learning both input sets. For example,

if the two sets are identical. Due to this in some situations learning the intersection is

unacceptable. In these cases it is often advantageous to learn a function over the intersection.

Of particular interest is the size, or cardinality, of the intersection.

Definition 1.2 (Private Set Intersection Cardinality (PSI-CA)). : A protocol between Server

with input S = {s1, . . . , sw}, and Client with input C= {c1, . . . , cv}. At the end of the protocol,

Client learns exactly (|S∩C|, |S|) and Server learns exactly |C|. PSI-CA securely implements:

FPSI-CA : (S, C) 7→ (|C|, (|S ∩ C|, |S|)).

One can imagine even further limitations on the output information. Some works focus on

generic solutions that support securely computing any function of the intersection at vastly

4

increased cost. One natural reduction of information from cardinality is that of Private Set

Intersection Existentiality (PSI-X), which reveals to one party only one bit of information

beyond the input size, whether or not the intersection is empty. PSI-X is not covered here

and an in-depth study of the equivalences amongst these three primitives is ongoing work.

Additionally, some applications motivate alterations to the basic PSI protocol beyond output

modification. Specifically, we examine PSI protocols that operate over authorized input. As

discussed in Section 1.3 this requires slight modifications to the standard models of security.

Most importantly we must introduce a semi-trusted third party that operates only as a

signing authority and not an active participate. i.e, the new protocol entity signs one or both

parties inputs before protocol interaction, after which no further involvement is required.

Definition 1.3 (Authorized Private Set Intersection (APSI)). A three party protocol between

Server with input S = {s1, . . . , sw}; Client with input C= {c1, . . . , cv} and Cσ = {σ1, . . . , σv},

where σi = Sig(skCA, ci), for i = 1, . . . , v; and authorization authority CA with input skCA.

At the end of the protocol, Client learns: (ASI
def
= S ∩ {ci | Ver(pkCA, σi, ci) = 1}, |S|), Server

learns |C| and CA learns nothing. APSI securely implements: FAPSI : (S, (C, Cσ), skCA) 7→

(|C|, (ASI, |S|),⊥).

The above protocols can be realized in a number of ways. Primarily, solutions can be

grouped into one of two competing schools of thought. First, there are solutions based on

general frameworks for secure computation, such as garbled circuits or oblivious random ac-

cess memory. These protocols provide flexibility for increased bandwidth and computational

cost. Second, there are “specialized” solutions based on a plethora of number-theoretic as-

sumptions. This dissertation focuses on protocols of the second kind due to their increased

practicality, especially in resource constrained environments. A detailed study of the pros

and cons of both approaches is left for future work. Specifically, our implementations use

the instantiations of PSI-CA, and APSI from the literature as defined below. These imple-

5

mentations surpassed their generic-based competitors at the first annual iDASH Privacy &

Security Workshop due to their increased efficiency.

In addition to implementing the above known variants of PSI this dissertation defines, realizes

and implements several closely related novel variants. For the most part, these variants are

based loosely on the above instantiations and are introduced in their relevant sections.

The specific existing protocols implemented here are defined below:

Private Set Intersection Cardinality. We implement the PSI-CA protocol of [DT11],

secure in the semi-honest model under the Decisional Diffie-Hellman (DDH) assumption in

the Random Oracle Model (ROM). It executes on common input two large primes p, q, such

that q|p− 1, and two cryptographic hash functions H and H ′. We assume that p, q, H and

H ′ are publicly available and that the same values are used in all instantiations of a specific

application in order to support pre-computation. (Computation below is assumed mod p.)

Client picks Rc randomly from Zq and then, for each ci ∈ C = {c1, . . . , cv}, computes ai =

H(ci)
Rc . Then it sends {ai}vi=1 to Server. The latter picks Rs and randomly from Zq and

sends client {a′i = (ai)
Rs}vi=1 after being shuffled. Server also sends, for each sj ∈ S =

{s1, . . . , sw}, tsj =H ′(H(sj)
Rs).

Finally, client outputs |S ∩ C| as:

|{ts1, . . . , tsw} ∩ {H ′(a′1
1/Rc), . . . , H ′(a′v

1/Rc)}|.

Authorized Private Set Intersection. We implement the semi-honest APSI protocol

of [DCKT10], executed on common input an RSA modulo n = pq, an RSA encryption

exponent e, two random group elements g, g′ such that 〈−1〉 × 〈g〉 ≡ 〈−1〉 × 〈g′〉 ≡ Zn, and

6

two cryptographic hash functions H,H ′. All these parameters are assumed to be fixed for

all instantiations of the protocol and publicly available.

For each element ci in its input, client receives from the certificate authority σi such that

σei = H(ci). Then client picks a random value RC:i ← Zn/2 and two random bits bi, bi and

computes Mi = (−1)bi · σi · gRC :i, Ni = (−1)bi · H(ci) · (g′)RC:i . Then it computes a zero-

knowledge proof π = ZK{RC:i, i = 1, . . . , v |M2e
i /N

2
i = (ge/g′)2RC:i}. Client sends {Mi, Ni}

and π to server. If π verifies, server picks a random element RS ← Zn/2 and computes

Z = g2eRS . Then, for each element Mi from Client, it computes M ′
i = (Mi)

2eRS and for each

of its input elements sj, it computes TS:j = H ′(KS:j, H(sj), sj). Finally, it sends back to

client Z, {M ′
i}, {TS:j} and π′ where π′ = ZK{RS|Z = g2eRS ,∀i,M ′

i = (Mi)
2eRS}.

If π′ verifies, client outputs {TS:j} ∩ {H ′(M ′
i · Z−RC:i , H(ci), ci)}.

1.2 Secure Pattern Matching

In addition to Private Set Intersection we cover the closely related primitives of Secure

Pattern Matching (SPM) and Secure Substring Matching (SSM). While all of the intricacies

of SPM are covered in great detail in Chapter 4 we describe it here briefly. Informally,

one party contains a text t and the other a pattern p, possibly containing single character

wildcards (capable of matching any character). The protocol reveals to the pattern holder a

single bit of information, if the pattern matched the text at any location.

Our definitions rely on the following notation. The t[x : l] notation signifies the l length

substring of t rooted at x. i.e (tx, . . . , tx+l). The wildcard character“w=*” has the property

that w = x evaluates to true for any x. Finally, two strings x = (x1, . . . , xm) and y =

(y1, . . . , ym) are considered equal if and only if for alli < m xi = yi.

7

Definition 1.4 (Secure Pattern Matching (SPM)). A protocol between Client with input

(p = p1, ..., pm), and Server with input (t = t1, ..., tn) in which Client learns n and if t[s :

m] = p for any s < n and1 Server learns m. Any pi can be the wildcard character w, ti must

be letters from the alphabet. SSM securely implements:

FSSM(p, t)→ (m, (b, n)),where b =

 1 iff ∃ss.t.t[s : m] = p

0 otherwise

Secure Substring Matching (SSM) is SPM with the modification that the pattern must match

exactly one location. Occasionally this is extended to a set of locations. SPM can be built

by O(n) innvocations of any SSM protocol.

Definition 1.5 (Secure Substring Matching (SSM)). A protocol between Client with input

(p = p1, ..., pm, s), and Server with input (t = t1, ..., tn) in which Client learns n and if

t[s : m] = p for s < n and Server learns m. Any pi can be the wildcard character w or letter

from the alphabet Σ, ti must be letters from the alphabet. SSM securely implements:

FSSM((p, s), t)→ (m, (b, n)),where b =

 1 iff ∃t[s : m] = p

0 otherwise

We make two concrete contributions to the existing SPM literature. First, the design and

analysis of a size hiding SSM scheme detailed in Chapter 4. Second, the design, analysis,

and implementation of a limited SPM scheme with2 detailed in Chapter 6. The latter is

of particular interest as the implementation goes beyond a simple prototype. It is capable

of processing complex pattern queries over databases with hundreds of millions of rows in

real time. This is the most efficient protocol covered in this work; however, the additional

efficiency comes at the price of decreased privacy. Unlike the majority of the other protocols

1The t[x : l] notation signifies the l length substring of t rooted at x. i.e (tx, . . . , tx+l)
2Only some pattern characters can be wildcards

8

herein the solution requires an active semi-trusted third party capable of learning a function

of access patterns over the data (called leakage).

In addition to pattern and substring matching a few applications are concerned with the

related and well studied concept of hamming distance defined as follows.

Definition 1.6 (Secure Hamming Distance (SHD)). : A protocol between Server with input

string S, and Client with input string C such that |S| = |C| At the end of the protocol,

Client learns HD(S, C) (where HD denotes Hamming Distance, i.e., the number of positions

at which the corresponding symbols are different) and Server learns nothing. SHD securely

implements: FSHD : (S, C) 7→ (⊥,HD(S, C)).

We implement the following trivial protocol realizing SHD.

Secure Hamming distance (SHD). To obtain the SHD of two equal-length string in the

semi-honest model, we can use any additively homomorphic encryption scheme, such as,

Paillier [Pai99] or additive ElGamal variant [ElG85].

Client generates keypair (pk, sk) and, given string C= c1|| . . . ||cn, computes {ai =Epk(−ci)}ni=1.

Similarly, Server computes {bi =Epk(si)}ni=1. Client sends {ai}ni=1 to Server, which computes

di = bi ∗ ai, such that di is the encryption of (si − ci). Next, Server picks n random values,

{ri}ni=1, and returns {ei = di
ri}ni=1 to Client, after shuffling them. Finally, Client sets zi = 1

if Dsk(ei) = 0, and zi 6= 0 otherwise, and computes HD(S, C) =
∑n

i=1(zi).

Our implementation uses the additive ElGamal encryption scheme, secure under the Deci-

sional Diffie-Hellman (DDH) assumption in the standard model. Let p, q (s.t., q|p− 1), and

a generator g of a subgroup of Z∗p of order q be public parameters. Let x← Zq be the private

key sk and y = gx mod p the public key pk. (pk is transferred to server as the first step

of the interaction). Encryption of message m ∈ Zq is Encpk(m) = 〈c1, c2〉 = 〈gr, hr · gm〉

9

for r ← Zq. Decryption is Decsk(Encpk(m)) = c2/c1
x = gm, thus, one can efficiently test

whether Encpk(m) is an encryption of 0.

1.3 Highlighted Security Properties

Our protocols operate in several varied security models. Primarily we prove our schemes in

the standard secure computation syntactic framework. In several instances we deviate from

what is done typically in the literature. Specifically, we create protocols that offer bi-lateral

security, both parties learn the output result; authorization, some or all inputs have been

authorized by a third party; and/or size-hiding, input size is hidden from one party. We

detail the basic adversary model below, followed by a more in-depth discussion of some of

the more interesting deviations.

Adversarial Model. Unless otherwise noted we use standard security models for secure

two-party computation, which assume adversaries to be either semi-honest or malicious.

Hereafter, the term adversary refers to protocol participants, since actions of outside ad-

versaries can be mitigated via standard network security techniques. Following [Gol04],

protocols secure in the presence of semi-honest adversaries assume that parties faithfully

follow all protocol specifications and do not misrepresent any information related to their

inputs, e.g., size and content. However, during or after protocol execution any party might

(passively) attempt to infer additional information about other party’s input whereas secu-

rity in the presence of malicious parties allows arbitrary deviations from the protocol. As

this thesis focuses on practical applications of privacy preserving protocols, security argu-

ments are often made with respect to semi-honest participants; however, efficient extensions

to malicious participant security have already been developed for many of our cryptographic

building blocks, and extensions to malicious are presented where applicable.

10

Briefly, the standard secure computation syntactic framework of [Gol04] in the semi-honest

model corresponds to considering an ideal implementation where a trusted third party (TTP)

receives the inputs of both parties and outputs the result of the defined function. Protocols

are secure if in the real implementation of the protocol (without a TTP), each party does

not learn more information than in the ideal implementation.

Nonetheless, semi-honest security definitions are not always sufficient for our needs. They

typically don’t capture the concept of unlinkability that refers to the impossibility for a party

to learn whether any two protocol executions are related, i.e., executed by the other party

on the same input. Additionally, they aren’t suited to handle authorized input particularly

in the case of bilateral or two-way protocols in which both parties operate over input that

has been independently validated as authentic and each expects a result.

To this end we modify the standard definitions where applicable.

Bilateral Security. In the literature it is often mentioned that two simultaneous instances

of a one-way (one party learns the result) secure computation protocol can lead to a two-way

(both parties learn the result) secure computation protocol. We find for practical PSI this is

not the case. Typical PSI protocols offer no mechanism to prevent an adversarial party from

entering differing inputs into both executions. While a theoretical HbC adversary can be

easily instructed to use the same input, when building for practical applications the power

of the HbC assumption quickly falls apart. This problem is compounded when considering

parties instructed to operate over authentic input. This issue is studied in greater detail in

Chapter 3.

Size Hiding. The majority of secure computation protocols in the literature do not consider

the size of parties input at all. For set intersection and pattern matching problems this

information can be extremely sensitive depending on the application. Recent research has

discovered that hiding size for both generic and specialized protocols is exceedingly difficult

11

and costly. Further, hiding the input size of both parties remains an open problem, and in

some cases it is impossible. In line with this, our size-hiding protocols focus on hiding the

size of only one participant. As covered in Chapter 5, size-hiding is of particular interest to

genomic applications where, due to the small alphabet size, a pattern’s size may be enough

to identify the pattern in its entirety.

Traditional definitions and proofs of both PSI and SPM omit the input size from their

descriptions. However, due to its importance to this work, our definitions typically include

this information. Note, that while they appear slightly altered these definitions are in-line

with the standard definitions; for example, the work of [FNP04]. That said, on occasion, we

too will leave out these sizes where they are not relevant in order to ease exposition.

As others have discovered one of the most basic ways to hide size is by padding input elements

to some fixed maximum. Such a solution, however, is both inelegant and often impractical.

Especially when considering large inputs, as is the case in genomics. As such this solution,

while feasible, is not covered in great detail.

Additionally, hiding size can have negative consequences. A party whose size is hidden can

have an input as long as they wish. This is particularly important for set intersection where

inputs may be drawn from a small domain. While not part of this work, we derive a solution

dubbed Bounded Size Hiding Private Set intersection that addresses this issue by allowing

a public cap to the size of any input[BFT16].

1.4 Practical Applications

The research presented in this work can be used in many applications. In this section, we

briefly detail some of the most prominent motivators. As we will show, our implementations

offer solutions to these problems that are practical today.

12

1.4.1 Genomics

As fast and accurate sequencing of human genomes becomes affordable, it is expected that

individuals will soon be able to carry around copies of their sequenced DNA, using it for

medical, identification, and social purposes. This will undoubtedly prompt a wide range

of new and interesting genomic applications. However, the very same progress raises some

worrisome privacy issues, since a genome represents a treasure trove of highly personal and

sensitive information. Genomes are especially sensitive in comparison to other forms of

data and require special precautions. Once information derived from ones genome is leaked,

it cannot be revoked. Further, its efficacy lifetime may be nearly indefinite as genomic

information is relevant beyond the affected individual.

PSI protocols and their variants allow us to keep this new and exciting frontier at significantly

reduced risk. Chapters 2 and 5 give an analysis of the privacy challenges raised by the advent

of ubiquitous genomic computing and how PSI and SPM can help.

1.4.1.1 Genomics Primer

Below is a detailed description of the genomic terms used in this work.

Genomes carry hereditary information needed to build and maintain an organism. Aside

from certain kinds of viruses, genomes are encoded in double-stranded DeoxyriboNucleic

Acid (DNA) molecules, i.e., two long polymer chains of four units called nucleotides. A

nucleotide is represented by one of the four letters: A, C, G, and T. A human genome

consists of around 3.2 billion nucleotides.

Whole Genome Sequencing (WGS) is the process of determining the complete and exact

DNA sequence of an organism’s genome. Today, sequencing techniques extract, from a DNA

13

sample (e.g., saliva, hair, nails blood and skin flakes), short DNA reads with hundreds of

nucleotides, that are then analyzed and aligned to a so-called reference genome. This allows

progressive reconstruction of the whole genome. Data produced by sequencing machines is

usually in the form of a set of aligned strings, with associated accuracy scores. Thus, in

order to represent a genome as input to SPH-PSM, we need to convert it to a single-string

representation where each character in the string corresponds to the letter in the sequenced

genome at the same offset.

Indels are occasional, naturally occurring insertions or deletions in genomes. A deletion

happens when one or more base pairs are removed from a DNA segment. Analogously, an

insertion represents a mutation where one or more nucleotides are inserted in a particular

DNA fragment. Insertions are rare in human genomes and are not relevant for the majority

of tests considered (see paragraph on SNPs below); thus we typically ignore them. Further,

sequencing involves alignment to a reference genome and indels are always detectable. To

contend with deletions we can introduce a special symbol ‘−’ in lieu of a deleted letter at a

specific location in the genome. This new symbol should be treated as any other base pair,

and could potentially exist within a search pattern.

Single Nucleotide Polymorphisms (SNPs) are the most common form of DNA variation

occurring when a single nucleotide (A, C, G, or T) in the genome differs between members of

the same species or paired chromosomes of an individual [S+09]. The average SNP frequency

in the human genome is approximately 1 per 1,000 nucleotide pair. (See [Nat16] for a

complete collection of all known SNPs). SNP variations are often associated with how

individuals develop diseases and respond to pathogens, chemicals, drugs, vaccines, and other

agents, and constitute the main focus of personalized medicine testing [Car08].

Restriction Fragment Length Polymorphisms (RFLPs) refers to a difference between

samples of homologous DNA molecules that come from differing locations of restriction en-

14

zyme sites, and to a related laboratory technique by which these segments can be illustrated.

In RFLP analysis, the DNA sample is broken into pieces (digested) by restriction enzymes

and the resulting restriction fragments are separated according to their lengths by gel elec-

trophoresis. Thus, in short, RFLP provides information about the length (and not the

composition) of the DNA sub-sequences occurring between known sub-sequences that are

recognized by particular enzymes. Although it is being progressively superseded by inex-

pensive DNA sequencing technologies, RFLP analysis was the first DNA profiling technique

inexpensive enough to see widespread application and is still in use today. RFLP probes

are frequently used in genome mapping and in variation analysis, such genotyping, forensics,

paternity tests, hereditary disease diagnostics. (For more details, see [Nat11].)

Notation. In the rest of this work, we denote a digital copy of an individual’s fully se-

quenced genome by G = {(b1||1), . . . , (bn||n)}, where bi ∈ {A, G, C, T, –}, n is the genome

length, and “||” denotes concatenation. The “–” symbol is needed to handle DNA mutations

corresponding to deletion. In case of insertion mutation in the genome, e.g., an ‘A’ is added

between positions x and x + 1, we add (A||x||1). Similarly, if insertion involves multiple

nucleotides. Since insertions are rare in human genomes (in the order of 0.1%), we typically

do not consider them. Where relevant we discuss how to amend presented protocols to be

insertion aware.

We use the |str| to denote the length of string str and |A| to denote the cardinality of set A.

1.4.2 Privacy Aware Consumer Applications

The recent decade has witnessed a rapid increase in popularity of mobile personal devices

(notably, smartphones) t hat function as all-purpose personal communication portals. Con-

currently, On-line Social Networks (OSNs) have continued their impressive proliferation.

Meanwhile, the notion of “OSN privacy” remains elusive and even self-contradictory. Cen-

15

tralized nature of prominent OSNs is unlikely to change, which does not bode well for OSN

users’ privacy. However, some user privacy can be gained from making certain OSN func-

tionality available off-line, such as discovering common contacts and other features, as well

as establishing affinity-based connections. OSN providers stand to gain from this, since users

could avail themselves of OSN functionality in scenarios where none currently exists, e.g.,

whenever Internet connectivity is unavailable, expensive or insufficient. At the same time,

OSN users benefit from increased privacy because off-line interactions can be made opaque

to OSN providers.

Chapter 3 explores off-line private proximity-based use of OSNs. Although our approach is

quite general, the proposed system (called UnLinked) is grafted atop a specific and popular

OSN – LinkedIn. The chapter describes and evaluates a practical prototype that allows

physically proximate LinkedIn users to commit to a connection if they have a mutually

acceptable number of common connections.

This work gives evidence that this and other consumer applications running on resource

constrained devices are capable of utilizing PSI and its variants today. While the protocols

are not inexpensive, they operate fast enough in most scenarios to be realized with little to

no delay to the consumer.

1.4.3 Inter-Organization Information Sharing

Over the past decade, privacy issues have risen regarding the desire to share data between

local law enforcement, state and local governments, first responders, and international gov-

ernments. A recent example of such discord was the European Court of Justice ruling in May

2006 that ordered the cessation of passenger name record data-sharing with the U.S. Though

the data required was relatively innocuous, it took two years to implement a new agreement.

Further, privacy advocates within Europe remain who oppose the sharing of data without

16

stronger data privacy safeguards [KE09]. Even more difficult is sharing sensitive intelligence

or law enforcement data among the tens of thousands of state, local, and tribal governments

just within the United States alone. Balancing security concerns with information sharing

remains a top priority for several intelligence and law enforcement agencies. Solutions must

simultaneously provide strong protection for privacy and security while enabling access to

real time intelligence and law enforcement databases. While many secure computation proto-

cols can aid in this effort, secure pattern matching and private set intersection are especially

useful. These tools can enable secure evaluation of an expressive set of queries to search such

data including: exact matching, substring and approximate matching, and range queries for

numerical data.

Many of the ideas and protocols in this work give partial solutions to these issue. That said,

solutions provided in Chapter 6 are in many cases deployable today.

17

Chapter 2

Privacy Preserving Genomic Testing

on Smartphones

This chapter addresses the problem of using Private Set Intersection to build efficient pri-

vacy preserving genomic testing on smartphones. It is based on my publication Genodroid:

are privacy-preserving genomic tests ready for prime time? published in the Workshop on

Privacy in the Electronic Society written along with Emiliano De Cristofaro, Paolo Gasti,

and Gene Tsudik [DCFGT12]. While the presentation has changed no extenstions have been

made.

During the last several decades, the scientific community made significant efforts to improve

accuracy, and reduce the cost of, Full Genome Sequencing (FGS), making prices drop signif-

icantly faster than Moore’s law would otherwise predict [NHG12, Sin12]. (See, for instance,

the $3B, 13-year Human Genome Project [Int01] and [Kai08, Siv08].)

A genome represents the entirety of a specific organism’s biological information. The avail-

ability of fully sequenced – and not only human – genomes naturally opens up new and

exciting frontiers in numerous fields, including bioinformatics, genomics, genetics, and med-

18

icine. In particular, the vision of personalized medicine has been one of the driving forces

behind FGS research. Its goal is a set of genomic tests that assess individuals’ risk for major

diseases such as diabetes and cancer as well as targeted screening and preemptive interven-

tion [Cas10]. Indeed, genetic information already guides doctors toward accurate diagnosis

and treatment. However, while some diseases (e.g., Huntington’s) are caused by mutations

in a single gene and are easily tested in vitro, the risk of developing other diseases depends on

multiple genes which makes them difficult to identify. Low-cost genetic sequencing provides

researchers with much more genomic information, and enables them to identify new genetic

variations as well as run more complicated tests.

Full genome sequencing also facilitates other new applications, such as as paternity, ancestry

and genetic compatibility testing. Although less critical than personalized medicine, these

more “social” applications are no less exciting partly because of their (expected) broader

appeal. Current lab-based, physical versions of these tests are both time-consuming and

privacy-invasive. Performing them computationally makes them much more enticing and

accessible.

More generally, we believe that in not-too-distant future, numerous genomic tests and op-

erations will no longer be performed in vitro but in silico, i.e., using digitized genomes and

specialized computational techniques [Hof07], possibly without the involvement of third-

party testing facilities.

Despite numerous benefits of low-cost FGS, a number of serious ethical and privacy con-

cerns have emerged [Col99, CM01, TBHB11]. Besides uniquely identifying its owner, a

fully sequenced human genome contains information about one’s ethnic heritage, pheno-

typic traits, and predisposition to numerous diseases and conditions, including mental disor-

ders [FSC11, Can07, F+09]. A virtual treasure trove of frighteningly personal and sensitive

information is contained in one’s genome. Traditional approaches to health care privacy, such

as de-identification or aggregation [Mal05, H+08] are not helpful in this context since the

19

genome is the ultimate identifier [MS00, MS01]. A recent study [SWH12] shows that a per-

son’s DNA could even be inferred from RNA data (often published in research repositories)

even though it was previously assumed not to yield any information about its owner.

Consequently, in order for computational genetic tests on fully sequenced genomes to become

accepted and commonplace, efficient and privacy-preserving versions of such tests need to

be developed. This poses a number of challenges:

1. Privacy: Given its extreme sensitivity, an individual should ideally never disclose

personal genomic information. However, one should be able to allow others (e.g.,

individuals, doctors, or researchers) to run specific genetic tests that yield nothing

beyond their intended results.

2. Accuracy: Computational genomic tests should guarantee accuracy and reliability

comparable to current (and widely accepted) lab-based in-vitro equivalents. For exam-

ple, a software implementation of the paternity test on fully sequenced genomes should

offer at least the same confidence as its in-vitro counterpart, currently admissible in a

court of law.

3. Efficiency: Computational genomic tests should incur minimal storage, communica-

tion, and computational costs, while satisfying privacy requirements associated with a

given test type.

4. Portability and Accessibility: Since a genome is arguably the most sensitive type

of personal information, how and where should a user’s genome (that contains about

3 · 109 letters) be stored? In the cloud? On a home PC? In a physician’s office? On

a smartphone? At the health insurance site? A closely related issue is: how should

genomes be accessed?

5. Usability: Computational genomic tests should be usable by, and meaningful to,

regular non-tech-savvy users. This translates into non-trivial questions, such as: how

20

much understanding should be expected from a user running a test? What information

(and at what level of granularity) should be presented to the user as part of a test and

as its outcome?

Although widespread and affordable availability of fully sequenced human genomes makes

it increasingly appealing to perform computational genetic tests, it also raises concerns in

terms of simultaneously guaranteeing security, privacy and efficiency. The security research

community has been attuned to the emergence of full genome sequencing and a few special-

ized privacy-preserving cryptographic techniques have been proposed in recent literature.

However, to the best of our knowledge, practicality and usability of such techniques have

not been assessed thus far. This is the main goal of this chapter.

By carefully designing privacy-preserving mechanisms that emulate in-vitro, highly accurate

tests, our work demonstrates that secure computational genomic tests are viable today. We

present a framework and an implemented toolkit, called GenoDroid. It incorporates several

techniques offering efficient privacy-preserving genomic testing that meets most aforemen-

tioned challenges. In order to demonstrate ubiquity, GenoDroid runs on commodity Android

smartphones (though it is not limited to this platform). We also conducted a pilot user study

to explore usability and acceptability of proposed techniques.

We focus on the following tests:

• RFLP- and SNP-based Paternity Tests establish whether or not a male individ-

ual is the biological father of another individual, using genetic fingerprinting based

on either Restriction Fragment Length Polymorphisms (RFLP) or Single-Nucleotide

Polymorphism (SNP).

• Ancestry and Genealogical Testing allows individuals to trace their lineage by

analyzing their genomic information. The scope of such tests is often quite hetero-

21

geneous. Ancestry testing is useful in a myriad of health-related applications (e.g.,

susceptibility to diseases common to certain populations). It is also increasingly used

in social or recreational scenario, e.g., to map one own genetic heritage or find common

ancestry.

• Personalized Medicine (PM) Testing provides a significant paradigm shift in

health care, aiming at a more precise and powerful type of medicine [WH04], where

diagnosis, treatment, and medication is tailored to the precise genetic makeup of the

individual patient. For example, the US Food and Drug Administration (FDA) already

recommends testing for mutations in the thiopurine S-methyltransferase (tpmt) gene,

prior to prescribing 6-mercaptopurine and azathioprine – two drugs used for treating

childhood leukemia and autoimmune diseases [Abb03].

Due to extreme sensitivity of human genomic material, for each considered test, we design

and implement a privacy-preserving protocol that securely realizes the corresponding com-

putation. Our protocols only yield the test results and do not disclose individuals’ genomic

information. Furthermore, if the the nature of the test involves sensitive information (e.g.,

it is a trade secret or is covered by a patent), the contents of the test are also concealed.

2.1 GenoDroid Framework

As discussed, full genome sequencing is revolutionizing diagnosis and treatment of certain

diseases while producing new and more effective techniques for personalized medicine as well

as ancestry and genealogy discovery. The next logical step is to transform paper-based re-

search results into actual working computational tests available to individuals. As mentioned

above, this poses challenges pertaining to usability, portability, accuracy, security, privacy

and efficiency. To this end, our work focuses on the construction of efficient and privacy-

22

preserving techniques that allow individuals to perform genomic tests while disclosing only

the required minimal information to other parties. Furthermore, we aim at ubiquitous avail-

ability of genomic tests, by designing protocols that run on current (off-the-shelf) Android

smartphones.1

2.1.1 Smartphone Rationale

We chose to focus on the smartphone environment for several reasons, chief among them

is the pervasive proliferation of smartphones into many spheres of everyday life [Can16]

and their tendency to take over tasks previously relegated to desktop or laptop comput-

ers [ATT10]. Furthermore, the demand for smartphone use in health care applications is

skyrocketing [PP12, SK10]. Modern smartphone’s unparalleled portability makes it a true

anytime-anywhere computing device and its highly personal nature (even laptops are of-

ten shared) motivates using it to store private information, such as cryptographic keys,

PINs/passwords as well as one’s genome.

Furthermore, computational power and storage capacity of today’s smartphone are compa-

rable to those of a laptop from a few years ago. Also, smartphone vendors and mobile OS

developers (e.g., Apple, Google, RIM, and Microsoft) provide programming environments

that facilitate quick and efficient implementation of complex applications. From the user’s

perspective, smartphones are relatively easy to use and are customarily carried almost ev-

erywhere. Thus, we believe that smartphones represent a viable and an appealing platform

for performing personal genomic computations.

Clearly, the smartphone is not the only choice. A genome could also be stored at a physician’s

office. However, an individual may visit many types of medical specialists and/or change

physicians. Secure storage, replication (e.g., if a specialist needs a copy) and migration

1 Source code for all GenoDroid applications and framework components is available at http://sprout.
ics.uci.edu/projects/privacy-dna.

23

http://sprout.ics.uci.edu/projects/privacy-dna
http://sprout.ics.uci.edu/projects/privacy-dna

(e.g, from one physician to another) are not trivial issues. Moreover, with health care costs

already very high, the public would be unhappy to bear the costs of additional insurance

that doctors would incur in order to protect their patients’ DNA. Another option is to store

and process genomes on a more powerful computing device, e.g., a desktop or a laptop. In

both cases, portability is a major issue since a desktop is generally stationary, whereas a

laptop, though portable, is much more burdensome to carry than a smartphone. This would

rule out or limit social and recreational types of genomic tests (e.g., paternity or genetic

compatibility). As mentioned above, desktops and laptops can be shared by multiple users,

thus, making them more vulnerable to attacks.

Alternatively, genomes could be stored in the increasingly omni-present and (hopefully)

benevolent cloud. Like a smartphone, the cloud allows anytime-anywhere access and offers

computation services, in addition to storage. However, the cloud also requires reliable and

pervasive Internet connectivity for its clients. A cloud vendor is also subject to unpredictable

service outages and, of course, DoS/DDoS attacks. Moreover, cloud vendor privacy breaches

can and should be expected; therefore, storing highly sensitive personal information in the

cloud is perhaps not advisable. Even if a genome is stored in its encrypted form, unless and

until fully homomorphic encryption becomes practical, complex computation on encrypted

genomes stays out of reach. Naturally, in the course of a genomic test, an encrypted genome

can be communicated from the cloud to the user’s smartphone and the latter could perform

the necessary computation. The main problem with this scenario is its cost; recall that a

genome includes about 3 · 109 symbols. Finally, there is an issue of encryption longevity: a

genome encrypted with, say, 128-bit (equivalent) key today is likely to remain secure for a

few (20-25?) years. However, assuming that the cloud never ”forgets” its hosted data, we

need to wonder how secure would the same encryption key be 30 or 40 years from now.

24

2.1.2 Framework Structure

GenoDroid incorporates a number of building blocks for privacy-preserving genomic com-

putations, e.g., decoding DNA strings produced by sequencing machines, privacy-preserving

protocols, as well as auxiliary components, such as mutual authentication and device (smart-

phone) pairing.

One key feature of GenoDroid is its extensibility: although this chapter focuses on only

three concrete genomic tests, our framework facilitates the development of other types of

tests without re-implementing basic components from scratch. Future chapters use the

cryptographic module of GenoDroid for rapid prototype development.

Overview. The framework currently supports two flavors of genomic tests: (i) both parties

run on input of their respective entire genomes, e.g., to perform a paternity or ancestry

test, or (ii) one party’s input is an entire genome, while the other’s – is a short sequence of

letter-position pairs, e.g., a disease marker for personalized medicine tests. (Note that, in

the latter case, letters do not have to be consecutive.)

GenoDroid integrates offline non-interactive pre-processing (e.g., on a desktop or a laptop),

with online interactive computation on smartphones. Thus, computation occurs in two

phases: (1) the entire genome is pre-processed, yielding a representation suitable for a given

genomic test, and (2) the actual test is performed as a two-party protocol, where at least

one party uses a smartphone. The pre-processing phase is particularly appealing since it

separates software development from the knowledge of biological details that are not directly

related to specific tests. For example, all genomic tests discussed in this chapter, as well

as most others, require conversion of raw output produced by a sequencing machine to a

“single-string representation”.2

2Incidentally, to the best of our knowledge ours is the first concrete implementation of this functionality.
In fact, standard genomic tools rely on a multi-string representation for human genomes, and all publicly
available fully-sequenced genomes are encoded using multi-file formats (e.g., [10016]).

25

2.1.2.1 Pre-processing Components

Genomic data conversion. Independent of the specific test, we need to convert data

produced by the sequencing machine in genetic laboratory – i.e., a set of aligned strings

with the associated accuracy score – to a single-string representation, where each letter in

the string corresponds to the letter in the sequenced genome at the same offset. GenoDroid

can support most common formats currently used by sequencing labs, i.e., SAM, BAM,

FastQ, and FastA. However, in our experiments, we use BAM-formatted files downloaded

from the publicly available DNA database [10016]. This BAM format provides access to

individual fragment reads, their alignment and accuracy scores, as reported by the sequenc-

ing equipment. For this particular format, our implementation uses the popular BamTools

library [D. 16] to access raw (binary) data.

Test-dependent genome pre-processing. As discussed in the rest of the chapter, compu-

tational genomic tests often require an offline phase whereby the entire genome is scanned/processed

to emulate in-vitro techniques. This is often needed to reduce the size of the input to the se-

cure computation protocol that performs the test. GenoDroid includes a number of common

DNA operations, e.g., digestion, probing, and sampling.

Cryptographic pre-processing. As mentioned earlier, privacy-preserving genomic tests

in GenoDroid are based on two-party cryptographic protocols that yield nothing beyond in-

tended test results. In many occasions, such protocols entail certain operations that can be

pre-computed once offline. Offline costs can then be amortized over numerous (online) proto-

col runs. Such operations include key generation as well as protocol-specific pre-processing.

In some cases, input to cryptographic pre-processing operations may depend on output of

genome pre-processing (described above).

26

Each pre-processing component is assumed to be executed on a desktop or a laptop computer.

(All information used in this phase must be securely erased immediately thereafter. Secure

erasing is a well studied problem [Gut96], and is out of the scope of this dissertation.)

We utilize all available computing cores and facilitate single-pass genome processing, i.e.,

whenever possible, operations are executed concurrently, so that information is read from

disk only once. We also minimize memory usage, especially during pre-processing, and do

not assume that, at any time, the entire genome is stored in RAM.

2.1.2.2 Smartphone Components

Once the pre-processing phase is completed, results are transferred to an Android smart-

phone. All smartphone-resident GenoDroid code is written in Java and executed in the

Dalvik virtual machine [Goo16], a fast mobile-friendly JVM implementation that supports

Just-in-Time compiling. As of mid-2012, high-end Android smartphones typically comes

equipped with 1GB RAM and a dual- or quad-core ARM A9 processor running at 1.2-

1.7GHz.

Secure Computation. GenoDroid implements several two-party cryptographic protocols,

optimized for the Android platform: PSI-CA, SHD, and APSI. They represent the main

building blocks for the genomic tests presented in this chapter. However, additional protocols

can be easily integrated; in fact, GenoDroid already includes Private Set Intersection (PSI)

from [DT10].

As mentioned above, we aim to minimize online (smartphone-bound), and maximize offline

(desktop-bound), computation in all cryptographic protocols. However, in some cases, this

can hinder protocol unlinkability. For example, in the SHD protocol we could minimize

client’s online work by pre-computing all public key encryptions. However, server would

then learn whether client input changes over multiple interactions. One possible remedy

27

is to perform pre-computation for multiple interactions. This would put a strain on the

smartphone’s storage. However, some operations can be pre-computed, periodically, on the

smartphone too, e.g., when it is idle and connected to an external power source. On the

other hand, the argument for unlinkability is, in general, not particularly convincing in the

context of personalized genomic tests since one’s DNA stays (almost) the same throughout

one’s life and, even in a social setting, one is not likely to conduct, say, a paternity test with

a random stranger.

Communication. GenoDroid supports multiple wireless communication technologies, se-

lectable based on specific test requirements. It currently supports secure and authenticated

communication over Bluetooth, Wi-Fi and cellular networks; this includes device discovery

and secure device pairing. Depending on the underlying communication technology, we use

different device pairing techniques. We use Bluetooth v2.1 (or higher), which offers Secure

Simple Pairing (SSP) [Blu07] that allows two parties to bootstrap a public key authenticated

channel. Over Wi-Fi, we perform both local (broadcast-based) and server-aided discovery.

When using the cellular network, we also use server-aided discovery. This allows two parties,

in two broadcast domains, to find a common rendezvous point. To do so, we implement

a publicly available server, to which devices can advertise their presence using a human-

readable ID and the fingerprint of their public key. As an alternative, the parties could

identify themselves using X.509 certificates or anonymous credentials [CL01]: afterwards,

the server reveals the counterpart’s IP address and both parties can communicate directly.

(If one or both parties are behind a NAT box, they would have to use the server to tun-

nel data.) Finally, remark that all tests presented in this chapter will be instantiated over

Bluetooth.

Additional Components. GenoDroid also includes auxiliary components that implement

storage management and user interface design. Since their development prompts no research

issues, we do not discuss them in detail.

28

2.2 Paternity testing

We use the paternity test as one of the “measuring sticks” for assessing viability of privacy-

preserving genetic computations. This might not seem like a natural choice: a paternity test

is not a trifle but a highly personal matter, i.e., not something we could imagine doing in a

social environment. It is also usually not performed upon a routine visit to a doctor’s office.

Current applications of this test are generally found in legal or law enforcement settings.

However, since it is arguably the most common genetic test today, we use it as a gateway

to other types of tests. Coincidentally, as discussed below, it also happens to be the least

expensive. Thus, if the targeted smartphone platform cannot handle a privacy-preserving

paternity test, it would also not be able to support more complicated test types.

A genetic paternity test determines whether two individuals have a father-child relationship.

In this section, we use paternity test to denote a protocol involving two parties (Alice and

Bob) using their respective genomes as input such that they learn the binary outcome.

A privacy-preserving version of the paternity test involves disclosing minimum amount of

genomic information.

Experts claim that one individual is the father of another if the Hamming distance between

their genomes is below a well-defined threshold. Thus, the two individuals could run an SHD

protocol to obtain a privacy-preserving paternity test. However, this would be relatively inef-

ficient: even without privacy, computing the Hamming distance between two whole genomes

would generate traffic in the order of 1GB and require the comparison of about 3 billion

elements. Such a protocol would be prohibitively expensive on smartphones. Alternatively,

since about 99.5% of the human genome is the same, the two parties could, in theory, com-

pare only the remaining 0.5%. Unfortunately, there is not enough current understanding of

the genome structure to pinpoint exactly where this 0.5% occurs.

29

Our solution reduces the size of the problem by drawing from optimizations used in in-vitro

tests. Specifically, we simulate court-admissible in-vitro RFLP-based paternity tests. DNA

is digested using a set of restriction enzymes and a small number of fragments, typically

between 19 and 25, is selected using probes, defined by well-known markers [End89]. If two

individuals are indeed father and child, then, with very high probability, the length of these

fragments matches for at least a given number of fragments. This method is very reliable:

with 25 fragments, its accuracy is estimated to be about 99.999% [End89, Lan89].

There are several advantages in performing genetic paternity test computationally, rather

than in vitro. From the privacy prospective, participants do not need to disclose to a testing

lab their identity or their entire genome, nor do they have to deliver swabs to a third-party

facility and wait for the outcome. Instead, they can learn the test outcome immediately.

Furthermore, as recently shown in [BBD+11], RFLP paternity testing can be simulated in

computation and a corresponding privacy-preserving construction can be obtained if frag-

ment lengths are compared privately, using Private Set Intersection Cardinality (PSI-CA).

2.2.1 An Optimized Implementation

We now present GenoDroid implementation of privacy-preserving paternity test. It includes

two versions: the first, similar to [BBD+11], uses PSI-CA as the underlying cryptographic

building block, and the second – SHD. Our implementation supports Bluetooth as the com-

munication channel between interacting parties, to demonstrate feasibility of our approach to

location-aware, bandwidth-constrained and easy-to-bootstrap settings. However, GenoDroid

seamlessly lets us choose Wi-Fi or cellular networks.

While designing this application, our main objective is to reduce online computational over-

head – crucial to guarantee a positive user experience – through protocol optimization and

maximal pre-processing.

30

Pre-processing. We emulate RFLP-based enzyme digestion and marker-based fragment

selection, in a single pass. We design an algorithm that compares a genome to all markers

in parallel. (According to genomics experts, each marker appears at most once in the entire

genome, thus, as soon as a match is found, the corresponding marker is removed from the

set of available ones.) As a result, a set of n (in practice, 25) elements (mi, `i) is produced,

where mi is the i-th marker and `i is the length of the corresponding fragment. This set

constitutes the input to PSI-CA/SHD protocol run on the smartphones (see below).

Furthermore, pre-processing also performs offline operations related to PSI-CA or SHD proto-

cols. However, as discussed in Section 2.1.2.1, if different runs of the test must be unlinkable,

we can either: (i) perform pre-computation multiple times and transfer the corresponding

output to the smartphone, or (ii) let the smartphone periodically perform pre-computation

when idle and connected to a power source.

Smartphone Interaction. Using RFLP-based techniques, we reduce privacy-preserving

paternity testing to privately comparing how many of the n fragments have the same length

across the two individuals. That is, after independently applying the digestion/probing

algorithm, parties learn how many fragments have the same length, and nothing else. Even

if the test result is negative, this does not reveal any sensitive information. Hence, security

of this construction only depends on that of the cryptographic protocol used for private

comparison.

Furthermore, since input to this protocol is very small (only 25 “lengths”) it can be exe-

cuted efficiently. Nonetheless, we develop an optimized implementation of both PSI-CA and

SHD using pipelined communication, i.e., both parties start transmitting processed data

as soon as it is available, without waiting for the entire computation to finish. While one

could choose any PSI-CA/SHD instantiation, our implementation (and experimental eval-

31

uation) employs the protocol from [DT11] (for PSI-CA) and the one based on additively

homomorphic encryption (for SHD).

2.2.2 Performance Evaluation

We now evaluate GenoDroid’s implementation of privacy-

preserving paternity test. Let Client denote the party that successfully completes Bluetooth

discovery and initiates the connection, and Server – the other entity. This also corresponds

to the Client-Server nomenclature in PSI-CA and SHD protocols that we use. Recall that

only Client obtains the test result from the interaction, however, in our implementation, it

communicates it to Server over the secure channel. (This assumption does not violate our

security model, since we assume that both parties are semi-honest.)

Genomes used in our experiments are downloaded from the 1,000 Genomes Project [10016],

and pre-processed with enzymes from [R. 16].

Our measurements, presented in Table 2.1, are performed on two Nexus Galaxy phones,

running Android 4.0, with a 1.2GHz TI OMAP 4460 ARM Cortex-A9 dual-core CPU, and

communicating over an encrypted Bluetooth channel (as discussed in Section 2.1.2.2). In

our experiments, we used 25 markers (corresponding to 99.999% accuracy) and tested both

PSI-CA and SHD variants. Specifically, we measured:

1. Offline Time – time for both Server and Client to perform pre-computation pertain-

ing to PSI-CA/SHD, on the smartphone. (Only if unlinkability is desired.)

2. Online Time – interval between the time Client starts communicating with Server

and parties outputting the final result.

32

Also, we compare our optimized PSI-CA implementation with its non-optimized counterpart

(without pre-processing and pipelining). Run-times are averaged over 1,000 trials to mini-

mize measurement variations. Bandwidth measurements include all information transmitted

by both Client and Server.

Our tests show that the optimized PSI-CA [DT11] yields the best results. Additively homo-

morphic encryption-based SHD is about 1.5 times slower than PSI-CA in the online phase.

Our tests also show that pipelining and pre-computation significantly enhance user experi-

ence, since they allow the online protocol run-time to be over 3 times faster.

From the security point of view, the two instantiations – while both secure under the De-

cisional Diffie-Hellman (DDH) assumption – rely on different models: the SHD construct

is secure in the standard model, whereas, selected PSI-CA is instantiated in the Random

Oracle Model (ROM).

2.3 Genetic Ancestry Testing

Genetic ancestry testing allows individuals to trace their lineage through the analysis of

their genomic information. Increasing understanding and availability of fully sequenced ge-

nomes makes commensurably more effective to study how susceptibility to common diseases

varies among individuals and populations [RJ10]. Also, Genome-Wide Association Studies

(GWAS) [B+07b] are gaining momentum as they study common genetic variants in different

Offline Online
Server Client Time Bandwidth

Optimized PSI-CA 399 ms 383 ms 244 ms 14.1 KB
Optimized SHD 736 ms 507 ms 376 ms 31.5 KB

PSI-CA no pipelining
– – 784 ms 14.1 KBno pre-computation

Table 2.1: Computation & Communication costs of GenoDroid paternity test. Online cost
reflect wall-clock-based run-times.

33

individuals to see if any variant is associated with, e.g., a disease, and possibly correlate such

disease to a given ancestry line.

Besides health-related application, ancestry testing is becoming more and more popular for

personal and social purposes. For instance, an increasing number of people is interested in

tracing biological relatives and researching genealogical records, and discovering their family

histories. Others are searching for connections to ethnic groups or geographical locations.

The business side of recreational genetics is growing very fast, with scores of companies

already offering ancestry tests costing only a few hundred dollars [B+07a].

Today’s genetic ancestry tests analyze either: (1) mitochondrial DNA (mtDNA), based on se-

quencing of maternally-inherited DNA material, or (2) the Y-chromosome, based on genomic

information transmitted from father to son [B+07a]. In both cases, individual’s genomic in-

formation is compared with that of a sample individual.3 Several commercial entities (e.g.,

23andMe [23a16]) maintain a collection of sample genomes from individuals belonging to

different ethnic groups, and compare them against their customers’ genomic information to

understand how they relate to known ethnic groups.

Alternatively, ancestry testing can be performed on two individuals in order to determine

their genetic relationship. In this case, individuals learn whether or not they are “related” or

even their distance in their common genealogical tree. Additionally, since the Y-chromosome

is passed essentially unchanged from father to son, tests based on such portion of DNA pro-

vide precise information about paternal lineage. Similarly, mtDNA-based tests offer insight

into one’s maternal lineage.

The availability of full genome sequencing will soon allow performing more efficient compu-

tational analogs of tests that are now conducted exclusively in labs. However, privacy issues

must be taken into account by both users and testing companies. Users might be unwilling

3For improved efficiency, rather than comparing the whole mtDNA or Y-chromosome, labs usually com-
pare only a few (e.g., 50) SNPs across the entire genome or focus on a subset of insertions.

34

to surrender their entire genomes, while companies might not wish to disclose their test de-

tails (which could represent proprietary information or trade secrets). Also, as in the case of

paternity, computational genetic ancestry testing does not require parties to ship biological

samples to a lab, thus, test results may be obtained significantly faster and without expo-

sure of genetic material to third parties. Nonetheless, even without an external lab, ancestry

testing between two individuals may pose privacy concerns, whenever parties may not be

willing to mutually disclose their ancestry or their complete genomic information. To this

end, we need a privacy-preserving protocol that allows two parties to determine the extent of

their genetic proximity without revealing any additional information about their respective

genomes.

A simple way to realize a privacy-preserving ancestry test is to allow two parties to compare

their entire genomes in an oblivious manner. This way, they can learn their genetic prox-

imity without leaking additional information. However, since genomes include around three

billion letters, such computation would be rather inefficient, both in computation and com-

munication overhead. Therefore, currently popular tests restrict the comparison to either

mtDNA or Y-chromosome, obtaining a slightly less accurate, yet still meaningful, metric.

Nonetheless, the size of the input to the privacy-preserving computation would still be rel-

atively large. Specifically, there are about 16,000 nucleotides in mtDNA and 58 million in

the Y-chromosome. This is unlikely to yield an efficient implementation on a smartphone.

A better approach combines the use of mtDNA/Y-chromosome information with either the

knowledge of a subset of SNPs suitable for the test (as currently performed by commercial

labs) or, if this information is unavailable, selecting a random subset as described next.

35

2.3.1 Construction

Preliminaries. This section presents a protocol for secure genetic ancestry testing based on

Jaccard similarity index [Jac01]. This measures the similarity of sets A and B, as J(A,B) =

|A ∩ B|/|A ∪ B|. High values of the index suggest that two sets are very similar, whereas,

low values indicate that A and B are almost disjoint.

To realize privacy-preserving computation of J(A,B), we only need secure computation of

|A ∩B|, since J(A,B) = |A ∩B|/(|A|+ |B| − |A ∩B|), and this can be done using PSI-CA.

However, when two parties compute the Jaccard index, with or without privacy, they incur

computation and communication complexity (at least) linear in the size of their sets. Thus,

if performed over a whole genome, this computation might be relatively expensive. In fact,

for any new comparison, the Jaccard index must be computed from scratch – i.e., no infor-

mation used to calculate J(A,B) can be re-used for J(A,C). As a result, an approximation

of the Jaccard index is often preferred, as it can be obtained at a significantly lower cost,

e.g., using so-called MinHash techniques [Bro97]. Informally, MinHash techniques extract a

small representation hk(S) of a set S through deterministic (salted) sampling. This repre-

sentation has a constant size O(k), i.e., independent from |S|, and can be used to compute

an approximation of the Jaccard index, again as the ratio between the intersection and the

union of the samples. The parameter k also defines the expected error with respect to the

exact Jaccard index – it is bounded by O(1/
√
k) [Bro97].

Observe that, while the computation of hk(S) also incurs communication and computation

complexity linear in set sizes, it must be performed only once per set, for any number of

comparisons. Thus, with MinHash techniques, evaluating the similarity of any two sets

requires only a constant number of comparisons. Further, we can privately approximate the

Jaccard index of two sets by executing PSI-CA on input MinHash samples (and not the

entire sets).

36

Ancestry Testing. Using MinHash, we implement an efficient privacy-preserving genetic

ancestry testing protocol that can be executed on smartphones. Our protocol leverages

a pre-processing phase performed on a desktop or laptop computer. The pre-processing

phase in our construction takes as input the set representation of an individual’s mtDNA

or Y-chromosome. It extracts a compact representation, using MinHash, and also performs

the offline computation phase for the PSI-CA protocol of [DT11]. Finally, the two parties

perform the (PSI-CA) online computation on their smartphones and obtain the test result,

i.e., estimate how similar their genomes are, based on one of the following datasets: (1) a

small selection of SNPs; (2) an entire Y-chromosome; (3) the whole mtDNA material; (4)

all known SNPs (approximately 3 million).

2.3.2 Implementation Details

Our implementation realizes privacy-preserving genetic ancestry testing by privately (and

probabilistically) comparing how many common SNPs, mtDNA or Y-chromosome base pairs

two individuals share, using MinHash and PSI-CA from [DT11].

Pre-processing. Depending on whether the test is performed using SNPs, mtDNA or Y-

chromosome, the offline phase of our protocol – performed on a desktop computer – involves

slightly different computation. SNP-based testing requires iterating over the entire genome

(about three billion base pairs) to extract all known SNPs. The output of this phase is

composed of around 3 million elements, which we represent as (bi||loci) where bi corresponds

to the i-th SNP and loci to its position in the genome. The set {(b1||loc1), . . . , (bn||locn)} is

then used as input for the offline phase of the PSI-CA protocol in [DT11].

The pre-processing phase of both mtDNA- and Y-chromosome based tests consists in the

offline phase of selected PSI-CA instantiation, executed on input the whole mtDNA (16,000

37

base pairs) or the Y-chromosome (58 million nucleotides), represented as in the SNP-based

test.

Smartphone Interaction. Regardless of the dataset used for the test, the online compu-

tation involves the comparison of a subset of the parties’ input, extracted using MinHash.

Once they establish a connection, two parties negotiate a common salt, which is used by

MinHash to extract k elements from their respective input. These k elements are then used

as the input to the PSI-CA protocol.

2.3.3 Performance Evaluation

We evaluate GenoDroid’s implementation of privacy-preserving ancestry test using the same

setup as in Section 2.2.2. We measure the offline overhead as the time required to perform

the PSI-CA pre-computation. Online cost is measured as the online part of PSI-CA. We also

include time, bandwidth and pre-computation storage requirements of the protocol executed

without the use of MinHash on the entire genome, mtDNA, Y-chromosome and all SNPs.

We also perform our measurements on input 50 randomly-selected SNPs, to simulate the

test performed by 23andMe (note that the actual SNPs used by 23andMe are not publicly

known).

Measurements are presented in Table 2.2. We instantiate MinHash with k= 10,000, leading

to an error of about 1% in the final result. Run times are averaged over 1,000 trials to

minimize measurement variations.4 Pre-computation storage requirements for MinHash are

identical to that of performing the same test without MinHash – i.e., 8.5 MB for mtDNA,

366 MB for SNPs and 6.9 GB for Y-chromosome tests. Bandwidth measurements include all

information transmitted by both parties. Similar to paternity test, Client denotes the party

4For tests longer than one day, running times have only been estimated by running tests on smaller inputs
– this was possible as tested protocols incur linear complexities.

38

that successfully completes Bluetooth discovery and initiates the connection, and Server – the

other entity, and this also corresponds to Client and Server nomenclature in PSI-CA [DT11].

Offline Online
Pre-comp. Size Server Client Time Bandwidth

Full Genome 358 GB 494 days 494 days 273 days 1544 GB
Y-chromosome 6.9 GB 9.5 days 9.5 days 5.3 days 29.9 GB
All SNPs 366 MB 11.9 hours 11.9 hours 6.6 hours 1.5 GB
mtDNA 8.5 MB 227.7 s 227.0 s 125.3 s 8.5 MB

MinHash (all tests) – – – 220.6 s 5.2 MB
MinHash w/

depends on test 142.3 s 141.9 s 78.3 s 5.2 MB
pre-comp. (all tests)

50 SNPs (23andMe) 6.25KB 713 ms 711 ms 394 ms 27 KB

Table 2.2: Computation & Communication Costs of our Privacy-Preserving Ancestry Test.

Our experiments show that, without using MinHash, only mtDNA-based tests can be exe-

cuted on smartphones in a reasonable amount of time and with acceptable communication

overhead. Due to our choice of k, the use of MinHash improves the performance of all pro-

tocols. Specifically, it takes, 78 seconds with (and 220 seconds without) pre-computation,

to execute privacy-preserving genetic ancestry testing between two parties equipped with

Android smartphones, with all datasets. (In fact, k is a constant, thus, it is independent of

size of the original sampled set).

The amount of space required to store precomputed values prompts an interesting tradeoff.

While it is easy to justify the use of 8.5 MB of memory for storing the elements precomputed

from mtDNA genetic material, users may prefer not to store 366 MB or 6.9 GB of data (in

the case of SNPs and Y-chromosome respectively) and rather perform the whole PSI-CA

protocol online, incurring an additional two minutes of computation.

It is interesting to observe that our simulation of the 23andMe tests shows that, with the

appropriate knowledge, genetic ancestry testing can be performed in near real time on current

smartphones.

39

2.4 Personalized Medicine

Recall that PM aims at identifying genomic information needed to accurately predict: (1)

a susceptibility to a given disease, (2) the course of a disease, and (3) response to treat-

ment. For example, before treating leukemia and other autoimmune diseases, physicians

are required, by the US Food and Drug Administration (FDA), to test patients for certain

mutations of the tpmt gene. This particular gene codes the enzyme responsible for metabo-

lization of a number of drugs. Thus, sensitivity and toxicity response to these drugs varies

according to tmpt mutations. In general, PM entails testing for numerous genetic markers,

ranging from one to a few hundred mutations.

With growing availability and better understanding of genomic information, future health-

care will be tailored to the patient’s DNA and genetic PM tests are soon likely to become

commonplace. This prompts some concerns about the entities (e.g., hospitals, doctors,

insurance carriers and labs) that could obtain genomic information to perform such tests.

Besides obvious privacy issues due to bulk access to patients’ genomes, there is a more subtle

problem involving liability and long-term safety of genomic data. We alluded to it earlier,

in Section 2.1.1. Entities handling genomic data need to demonstrate that it was treated

appropriately and disposed of when no longer needed. Storing genomic information, even

for a short time, creates potentially attractive targets for breaches and attacks.

One intuitive approach is to let the patient independently run specialized software over her

genome and check for a match (or lack thereof) against a given drug’s fingerprint. However,

pharmaceuticals usually consider DNA fingerprints of their drugs to be trade secrets and thus

are not expected to reveal them. At the same time, for every new drug, pharmaceuticals

are required to obtain approval from some government agency, e.g., the Food and Drug

Administration (FDA) in the United States. Therefore, an ideal scenario would be a privacy-

preserving PM test, whereby: (1) the patient learns the outcome but not the drug’s DNA

40

markers, (2) the patient is somehow assured that the drug has been authorized by the

relevant government agency, and (3) neither the pharmaceutical nor any other party learns

any information about the patient’s genome.

The rest of this section presents a technique for privacy-preserving PM testing, implemented

in GenoDroid. Similar to other GenoDroid tests, it runs in real-time and involves a patient

with an Android smartphone and a tester, e.g., a medical lab or a physician’s office. We

begin by discussing a strawman construction that, albeit privacy-preserving, is not suitable

for a smartphone platform and proceed to illustrate our practical cloud-aided approach.

2.4.1 Initial Construction

Similar to [BBD+11], our initial approach to privacy-preserving PM testing relies on APSI.

We use the particular construction from [DCKT10] where the patient plays the role of Server,

the tester – Client, and the FDA – mutually trusted CA. The APSI protocol from [DCKT10]

is secure in the malicious model. However, we argue that malicious player security may be

not needed for the PM setting that usually takes place in a medical lab or a physician’s

office. This is because there is generally some basic trust between a patient and a doctor

(or a lab performing the test). Also, computational tests can be audited, e.g., if protocol

transcripts are mandated to be kept. Furthermore, there could be severe consequences for

malicious behavior, e.g., loss of medical license. Thus, we slightly modify the construction

from [DCKT10] to only achieve semi-honest security.

Specifically, protocol executes on common input CA’s RSA public key (N, e), a generator

g of QRN , and two cryptographic hash functions H,H ′, modeled as random oracles. (All

computation is performed mod N). For each element ci ∈ C = {c1, . . . , cv} in its input,

Client obtains σi such that σi
e = H(ci), i.e., a CA-issued signature warranting authorization.

The interaction starts with client sending {ai = σi · gRc:i}vi=1 (for Rc:i ← ZN/2) to server.

41

Then, Server selects Rs ← ZN/2 and returns (Z = g2eRs , {a′i = ai
2eRs}vi=1). Also, for each

element sj ∈ S = {s1, . . . , sw} in its input, Server sends {tsj = H ′(H(sj)
2Rs)}wj=1 to Client.

Finally, Client computes {tci = H ′(a′i · Z−Rc:i)}vi=1 and outputs intersection S ∩ C = {ci ∈

C | tci ∈ {tsj}wj=1}.

APSI-based privacy-preserving PM testing is as follows. The patient uses her smartphone

that stores pre-processed genomic information as well as various cryptographic material.

We assume that, well ahead of running the protocol and after positive clinical trials, the

FDA granted authorization (auth) to the pharmaceutical for a specific DNA fingerprint (fp),

corresponding to a genomic test. We denote fp= {(b∗j ||j)}, where each symbol b∗j is expected

to occur at position j of a fully sequenced genome, and auth= {H(b∗j ||j)d mod N}, where N

and d are FDA’s RSA modulus and private key, respectively. The patient’s private input is

her entire genome. (This is unavoidable since the test fingerprint can occur anywhere.) The

tester’s input is (fp, auth), as defined above.

Tester and patient engage in APSI protocol, as described above, and, at the end of the

protocol, the tester learns whether the patient’s genome matches fp, provided that auth is a

valid authorization of fp. Furthermore, the tester learns nothing further about the patient’s

genome, and (2) the patient learns nothing about fp or auth.

We note that server-side (patient’s) computation can be partitioned into offline and online

phases. Specifically, {tsj}wj=1 can be pre-computed once for any number of tests. Therefore,

while offline computation is linear in the size of the genome, its online counterpart is linear in

the number of tested loci. However, {tsj}wj=1 values must still be transferred, implying that

online communication complexity is linear in the genome size. This translates into several

gigabytes and obviously hinders adoption on modern smartphones.

42

2.4.2 Cloud-Aided Variant

We now show how to modify the initial approach to make it amenable for smartphones. The

main idea is to off-load some of the patient’s (Server’s) computation to the cloud. However,

we immediately acknowledge that involving the cloud triggers the risks discussed at the end

of Section 2.1.1.

The patient needs to pre-process the genome and upload the result to a (semi-honest) cloud

provider. Clearly, such pre-processing must include some form of encryption, to conceal

the genome from the cloud. Moreover, the encrypted elements must be shuffled in order

to (partially) hide access patterns from the cloud. When the test is conducted, the patient

explicitly grants the tester (Client) access to cloud-resident genomic information, such that

only the test result is learned. This operation must be efficient and should prevent the tester

from colluding with the cloud provider and learning any additional genomic information.

Unlike paternity and ancestry testing, the pre-processing phase in this cloud-aided variant

results in two output sets: one uploaded to the patient’s smartphone, and the other – to the

cloud provider. Despite the presence of the cloud provider, the actual protocol is still based

on APSI from [DCKT10].

Pre-processing. Besides genomic pre-processing (e.g., format transformation), patient pre-

computes, e.g., on a desktop, {tsj =

H ′(H(b∗j ||j)2Rs)}wj=1 and uploads the result, after shuffling, to the cloud. This does not reveal

any information about the genome. Then, public cryptographic parameters (N, e, g,H,H ′),

along with private random value (Rs), are uploaded to the patient’s smartphone. (Note that

there is no pre-computation on the tester side.)

Interaction. This phase transpires between a smartphone-equipped patient and a tester on

a desktop or a laptop connected to the Internet. Together, they execute the online phase of

43

APSI, i.e., the tester sends the patient {ai}vi=1 and receives {a′i}vi=1. The tester then computes

{tci}vi=1 and finds matching tsj-s using the cloud provider. There are at least three ways for

tester to do so:

1. Query the cloud using {tci}vi=1.

2. Download all {tsj}wj=1 from the cloud.

3. Privately query the cloud using, e.g., Private Information Retrieval (PIR) [CGKS95].

GenoDroid currently implements (1) since it is the most efficient of the three. Of course,

since the tester is running on a regular computer, we could choose option (2). However, even

on a desktop with a wired Internet connection, downloading approximately 60GB of data is

time-consuming for the tester and unscalable for the cloud provider.5 As far as option (3),

recent advances in, and optimization of, single-server PIR techniques have yielded promising

results that might be efficient enough for the tester’s desktop or laptop, especially if queried

database is maintained in a cloud cluster [BPMO12]. However, since our emphasis in this

chapter is on the smartphone platform, we leave this item for future work.

Threat Model and Security. We assume that each participant is semi-honest, i.e., inter-

acts with the other two participants while following all protocol specifications. However, a

participant might attempt to surreptitiously learn further information about others’ inputs.

The underlying APSI protocols, as mentioned earlier is secure in the semi-honest model,

with two parties. In the presence of the cloud provider (the 3rd party), collusions should

be considered. If a tester colludes with a cloud provider, the only danger is that the former

might obtain the entire “encrypted” genome – i.e., does not learn any meaningful informa-

tion. Whereas, if a patient colludes with a cloud provider, they could learn some information

5GenoDroid assumes 20-byte H ′(), thus, since the genome contains approx. w = 3 · 109 nucleotides,
{tsj}wi=1 values amount to (20 · 3 · 109)B =60GB.

44

about the proprietary (to the pharmaceutical) DNA fingerprint fp. In particular, the col-

luding parties could learn which (letters, positions) of the patient’s DNA are specified in

fp. However, this can occur only for the portion of the fingerprint matching the patient’s

genome. The case of a tester colluding with a patient might seem uninteresting; however,

even though a tester acts on behalf of a pharmaceutical, their collusion can result in leakage

of portions of fp, similar to the previous case.

In summary, we envision multiple entities (including generic cloud providers, HMO-s and

insurance companies) will offer genomic cloud services to the public. Our foray into privacy-

preserving personalized medicine testing is just one example of what can be achieved by

combining the power of cloud computing/storage with smartphones in genomic computation

and calls for further research.

2.4.3 Performance Evaluation

We now evaluate GenoDroid’s implementation of privacy preserving PM testing. To compare

with previous work, we use the same genetic fingerprints as in [BBD+11], i.e., the ones

describing mutations hla-B*5701 and tpmt. The former is associated with extreme sensitivity

to abacavir, an HIV drug, and its fingerprint is composed of 2 nucleotide positions; the latter

is tested before prescribing 6-mercaptopurine to leukemia patients. The tpmt fingerprint

contains 6 nucleotide positions.

Measurements presented in Table 2.3 were obtained using the same setup as in Section 2.2.2,

i.e., we used two Android smartphones communicating over Bluetooth. As discussed in

Section 2.4.2, the tester can use a desktop computer and parties could communicate over

Wi-Fi. However, we use Bluetooth for consistency’s sake and in order to provide conservative

results: our measurements represent an upper bound for the cost in a real-world setting.

45

Online Bandwidth
Patient Tester Tester-Cloud Tester-Patient

hla-b*5701 78 ms 141 ms 0.40 KB 0.40 KB
tpmt 187 ms 301 ms 1.77 KB 1.77 KB

Table 2.3: Computation & Communication costs of GenoDroid’s cloud aided hla-b and tpmt
tests. Online cost reports wall-clock running time.

Patient and tester interact via an APSI protocol where the patient acts as Server, and the

tester – Client. Client does not perform any precomputation, and we assume that Server up-

loads its encrypted genome to the cloud ahead of time. Measurements reported in Table 2.3

reflect the online phase of the APSI protocol. The Cloud does not perform any crypto-

graphic operation, and therefore, we do not consider any of its computation costs. Band-

width is measured for tester’s interaction with patient and with cloud separately (bandwidth

measurements are independent of the transmission medium).

Our experiments show that both tests for tpmt and hla-b can be executed on smartphones

in well under a second. Our implementation compares favorably with that of [BBD+11]

in terms of both bandwidth – due to the use of cloud-aided computation – and offline

computation. Although our online phase runs slower than experiments reported in [BBD+11],

we emphasize that (1) our timing include not only the cryptographic blocks, but rather a

whole implementation over networked devices; (2) the Android smartphones used in our tests

are significantly slower than the desktop platform used in [BBD+11].

2.5 Usability Study

One of the goals of the GenoDroid framework is to guarantee portability and accessibility,

to average non-tech-savvy users, of privacy-preserving genomic tests. Thus, usability is one

of the key factors influencing its acceptance. To this end, we conducted a usability study to

46

obtain feedback on our prototype applications as well as to assess the sensitivity of subjects

to privacy concerns related to their genomic information.6

The study was conducted on 16 subjects (8 male and 8 female), sampling a diversified

population of students, researchers, and non-scientific personnel. 90% of subjects belong

to the 25-to-40 age range. Applications were run over mock human genomes, with same

length and comparable nucleotide distribution as real human genomes. Our test mock-up

was implemented using two Android-equipped Samsung Galaxy Nexus phones and used

Bluetooth as the wireless communication medium.

As discussed in Section 2.2, we use paternity test as one of the “measuring sticks” for assessing

viability and usability of privacy-preserving genetic computations. Arguably, paternity test

is the most common genetic test today and non-tech-savvy users would likely relate to it

more than to any other test. The chain of events is as follows: since the pre-computing phase

takes place on desktops, the app is pre-loaded with the result of the RFLP-driven digestion

and probing. Once the app is launched, the user is prompted with the Android interface to

carry out secure Bluetooth pairing with another device and establish an authenticated and

encrypted channel. Upon successful connection establishment, both users see a “Start Test”

button; the first user to click is prompted with a “Waiting for other party” message, and,

after the counterpart also hits start, the test is initiated. Finally, users are displayed with

the test result, i.e., “Tested individuals are/are not father and child”. (In our user studies,

the result is negative.)

After the test, subjects were asked to fill out a questionnaire corresponding to Brooke’s well-

known 10-item System Usability Scale (SUS) [Bro96], where answers indicate the degree of

agreement or disagreement with the corresponding statement on a 5-point scale. Subjects

rated application’s usability, on average, at 82/100 on the SUS scale. Such a high score

6Our study received the “Exempt Registration” status from UC Irvine’s Institutional Review Board
(IRB).

47

can be safely considered above industry average and confirms that the perceived usability

of the software is high enough to be deployed in practice. This is not surprising since the

application is straightforward to use, does not require any high-end technical skill, and test

running time is extremely low (in fact, a delay of 250ms is barely noticeable by users, and

provides a seamless experience [Nie97]).

We also asked subjects to answer a few questions about privacy concerns related to genomic

information. Subjects were asked to indicate their agreement on a statement using a 5-

point scale, where 1 corresponds to “strongly disagree” and 5 – to “strongly agree”. A

few interesting findings follow. Subjects were “concerned with potential privacy exposure

of (their) genomic information” (average 4.21/5 agreement). Somewhat more surprising is

that our test subjects were “concerned with privacy even if tests are beneficial to (their)

health” (average 3.08 agreement), while they were “in favor of genetic tests if they do not

invade (their) privacy” (4.81 average agreement). Note that subjects in our study are not

privacy/security researchers.

48

Chapter 3

Private Proximity-based Off-line

Social Network Interaction

This chapter addresses the problem of bi-lateral (two-way) private set intersection over au-

thorized input and its use in providing trusted offline social network interactions on smart-

phones. It is based on my publication UnLinked: Private Proximity-based Off-line OSN

Interaction published in the Workshop on Privacy in the Electronic Society written along

with Ronald Petrlic and Gene Tsudik [FPT15]. While the presentation has changed no

extentions have been made.

Building trust in previously unfamiliar people based on common factors – such as interests,

backgrounds, friends, or co-workers – has been practiced by the human race since time

immemorial and has been thoroughly studied as a subject. In the last decade, due to the

popularity of on-line social networks (OSNs), the process of finding and connecting to other

people (based on something in common) has become easier due to OSNs’ integrated search

functionality and ability to trawl through public profiles and friends lists of one’s own friends.

49

At the same time, despite very broad appeal, OSNs have encountered certain limitations to

their proliferation. One reason is the fundamental connectivity requirement, i.e., the ”O” in

OSN: in order to use an OSN, one must be connected to the Internet and logged into the OSN

provider. This is not surprising since most OSNs – including Twitter, Facebook, LinkedIn,

VK and RenRen – are centralized.1 In other words, there is no option for disconnected OSN

usage. Consider the following scenarios:

• Low bandwidth or intermittent Internet connectivity, e.g., due to lossy and/or error-

prone wireless links.

• Expensive Internet connectivity, e.g., abroad, on trains, planes and cruise ships.

• Complete lack of Internet access, e.g., in planes, under water, under ground or in

remote locations.

We believe that such scenarios are fairly common for OSN users who travel. and they

share a common feature in that OSN access is difficult: too slow, too expensive or simply

impossible. However, there is no fundamental reason why two nearby OSN users – who

either have no OSN access or do not want to connect to the OSN, could not have some

limited OSN functionality. This observation is the premise and one of the motivating factors

for this chapter.

Our second motivating factor is privacy. In general, lack of privacy is not a fair complaint

against OSNs. Most people join an OSN for social reasons and privacy is not their primary

concern. Although privacy advocates often decry brazen collection, marketing, mining and

selling of OSN-derived user information, expecting OSNs to behave in a privacy-friendly

manner is unrealistic. On one hand, it seems reasonable to observe and retain behavior (i.e.,

actions) and locations of users connected to the OSN. On the other hand, if OSN users are

1Although decentralized OSNs exist, e.g., Diaspora [Dia13] and Safebook [CMS09], they have not managed
to attract many users.

50

communicating off-line, i.e., without involving the OSN infrastructure, it is no longer clear

whether the OSN ought to have access to user behavior and location.

We note that there are two types of off-line user (inter-)actions: (1) those that lead to direct

consequences to the OSN, and (2) those that do not. For example, consider two OSN users:

Alice and Bob, who interact verbally and in-person while being disconnected from the OSN.

During the chat, they exchange information about their friends, work history and educational

background. If they have nothing in common, they do not subsequently connect on the OSN.

However, if they discover some common factors (e.g., some number of shared friends), they

might decide to connect later. In the former case, the OSN clearly learns nothing about their

encounter. In the latter, the OSN observes spontaneous establishment of their subsequent

connection.

By analogy with the above example, suppose that Alice and Bob interact electronically while

being off-line (with respect to the OSN) and their interaction leads to some impact on the

OSN, e.g., they later connect or “friend” each other, thus changing their profiles. In this

case, the OSN will rightfully learn about their prior off-line interaction. Otherwise, if Alice’s

and Bob’s off-line activity does not lead to anything and there is no reason for the OSN to

learn about their off-line interaction.

To summarize, this chapter is prompted by the need to support limited off-line interaction

between nearby OSN users. We believe that supporting this type of interaction would be

beneficial for OSN users, for two reasons: (1) they would engage in social networking in a

wider range of settings, and (2) they would do so knowing that positive outcomes can lead to

new OSN connections, while inconsequential activity remains private. Furthermore, off-line

user interaction is advantageous to OSN providers, since it would extend the reach of social

networking. At the same time, we recognize that not all privacy issues stem from the OSN

itself. If users communicate directly with no OSN involvement, their mutual privacy is very

51

important in cases that do not lead to a later OSN connection. We make this one of the

main design goals.

Another key goal is information authenticity. When two OSN users interact on-line (via an

OSN provider), information in their profiles can not be changed arbitrarily. For example,

friends in Facebook or connections in LinkedIn are not added gratuitously. In the context

of off-line interaction, we need to make sure that OSN profile information exchanged as part

of that interaction is authentic and corresponds to the appropriate users.

In this chapter, we design an architecture and a system, called UnLinked. The main idea is to

combine users’ social proximity with their physical proximity to privately discover common

factors and later possibly establish OSN relationships. UnLinkedsupports private off-line

discovery of nearby users with authentic common friends or connections, without direct user

interaction. Although conceptually applicable to many current OSNs, UnLinked is grafted

onto one specific OSN, LinkedIn aimed at professionals who use their profiles as a sort of

an online CV.

This work makes several technical contributions in addition to the overall UnLinked system

design. As part of UnLinked, we come up with an efficient Authorized Two-Way Private

Set Intersection (ATW-PSI) protocol and demonstrate its security. Current protocols are

one-way, which means that only one party learns the intersection of the two input sets.

Furthermore, they only certify one party’s inputs. In our ATW-PSI, both participants

learn the intersection only if each has a valid authorization issued by a trusted third party

(TTP). This has been identified as a major problem with prior techniques, e.g., [DCMP13].

Moreover, in contrast to prior work on protocols with linear complexity [DCT09, JL10,

NDCD+13], participants in our protocol can not transfer authorizations for individual set

elements to others. We also present a new approach to the well-studied friend of friends

(FoF) discovery problem. By using LinkedIn as a concrete OSN platform and developing

52

a fully functional prototype23 of UnLinked, we show that ATW-PSI protocols are usable in

realistic settings.

3.1 Design Goals

Before proceeding with the system design, we overview and motivate key desired features

that are mainly derived from the above discussion:

D0 Off-Line Interaction: support for efficient communication among two physically

proximate OSN peers.We restrict the number of peers to two since the ultimate outcome

of a fruitful off-line interaction is a two-way OSN connection.

D1 Peer Anonymity: persistent user identifiers (names, user ids, email addresses) asso-

ciated with OSN members must be kept confidential in off-line interaction, unless the

two decide to connect later by jointly revealing their identities at the end of off-line

interaction. We require anonymity despite user’s apparent proximity, since, in many

situations the peers may be physically close, yet still unaware of each other’s precise

location or other identifying information.

D2 Profile Privacy wrt Peers: ability to perform certain OSN profile operations (e.g.,

compare respective sets of friends/connections) with mutual privacy. In other words,

information learned from such operations must be limited to what is common to both

peers.

D3 Interaction Privacy wrt OSN: non-disclosure to the OSN of off-line peer interac-

tions and their locations. This specifically applies to interactions that have no impact

on OSN peers’ profiles, i.e., no eventual connection establishment.

2The prototype Android app can be downloaded from https://db.tt/XQXE9pqF.
3Due to a recent change in the LinkedIn developer agreement, our latest prototype uses Twitter as an

example OSN.

53

D4 OSN Connection Spillover: ability to later establish actual OSN connections, based

on prior off-line interaction that resulted in mutual agreement to connect. That is, it

should be possible for two peers to connect via the OSN at some point when they are

on-line, if they have decided to do so as a result of sufficient degree of commonality

among their profiles, e.g., at least k shared friends.

D5 OSN Profile Authenticity and Owner Authentication: authenticity (including

timeliness) of OSN profile information as well as authentication of each peer as part

of off-line interaction. This is needed to protect OSN members from impostors (non-

members) as well as malicious members.

D6 OSN-Independent Operation: ability to operate along-side (or on top of) an exist-

ing OSN, i.e., no requirement to introduce changes within an OSN; also, no restriction

against an OSN implementing proposed functionality.

D7 OSN-Agnostic Design: minimal reliance on OSN-specific features, i.e., applicability

to the broad spectrum of OSNs.

D8 Voluntary Participation: OSN users must opt in to participate in off-line interac-

tion.

Note that off-line interaction between users of different OSNs, while desirable in the long

term, is not among our goals for now.

3.2 UnLinked System Design

Based on the goals outlined above, our system architecture (called UnLinked) includes two

main software components:

54

1. UnLinked App (ULA): an application that runs on the OSN user’s personal device,

such as a smartphone or a laptop, that takes part in off-line interaction, and performs

auxiliary tasks on-line. ULA primarily supports D0, D2, D3, described in Section 3.1

above.

2. UnLinked Server (ULS): a stand-alone server program that supports D1, D5, D6, D7

and D8.

There are several practical reasons for ULS to be stand-alone, as opposed to being a com-

ponent of an OSN. First, it allows us to support desired off-line functionality without any

involvement of – or permission from – any specific OSN provider (D6). Second, ULS can be

expanded to support multiple OSNs (D7). Third, ULS can operate as a registration portal

where OSN users can enroll to participate in off-line interaction (D8). Fourth, acting as a

neutral and independent trusted third party (TTP), ULS can certify (authenticate) profile

information of OSN users (D5). Last but not least, ULS serves as a sort of a privacy buffer

between the OSNs and ULA users. Although it can be argued that, from the complexity

perspective, it makes more sense to integrate ULS into the OSN itself, independent operation

of ULS insulates the OSN from its natural lack of motivation to respect user privacy (D3).

That said, most privacy guarantees still hold if ULS is integrated into the OSN.

3.2.1 OSN Requirements

Following D7, we need to minimize assumptions about the underlying OSN. The only re-

quirement of UnLinked is that the OSN must offer a secure automated way to export member

profiles in some well-defined format, i.e., something that can be parsed by ULS. This feature

is supported, via REST APIs, by most major OSN providers, such as Twitter, Facebook,

Google+ and LinkedIn.

55

OSN

(a) (b) (c) (d)
OSN

ULS

OSN

ULA

PW

(1)

(3)

(4)
(5)

(6)

(2)

Figure 3.1: Interaction in UnLinked: (a) Regular OSN interaction, (b) Setup, (c) Offline,
(d) OSN Spillover

3.2.2 Types of Communication in UnLinked

UnLinked involves several types of communication, shown in Fig. 3.1. To start, a user who

chooses to use UnLinked needs to download and install ULA. Then, a user needs to interact

with the OSN and facilitate secure export of her profile to ULS (Fig. 3.1b). This involves

user-OSN and ULS-OSN communication. Finally, the main purpose of UnLinked is direct

communication between off-line users, i.e., a pair of end-devices running ULA (Fig. 3.1c).

If two users decide to later connect or become OSN friends, UnLinked helps facilitate this

interaction, per Fig. 3.1d.

3.2.3 Communication Channels

UnLinked does not restrict the means of communication between the OSN and its users, or

between ULS and OSN. We assume that both transpire over the Internet. Off-line interac-

tion between users is assumed to involve a wireless broadcast communication medium that

facilitates seamless discovery of peers, e.g., via periodic beaconing. We believe that this is a

natural requirement for several reasons. First, per D0, two users need to be physically near

each other. Second, virtually all modern personal devices (from laptops to smartphones)

communicate over broadcast wireless channels.

56

Obvious candidates for off-line communication between OSN users are: WiFi, Bluetooth

and NFC. Of these, NFC is less appealing than others since it requires the two devices to

be very near each other. This might be “too close for comfort” in scenarios where users are

separated by some distance – e.g., on planes, trains and ships – or whenever they prefer to

maintain some physical space and personal privacy. Further, broadcast based user discovery

would be impossible via NFC. Both Bluetooth and WiFi are available on a wide range of

devices types.

3.2.4 Cryptographic (Privacy) Requirements

Based on design goal D2, we need to support private computation of common factors in

OSN profiles of two users. These common factors could include: friends, friends-of-friends,

educational and employment histories, as well as various group memberships. Furthermore,

D5 requires authenticity of computed common factors.

While online, the OSN allows users to restrict profile information visible to others. Most

OSNs only allow friends or friends of friends to view one’s profile content. For example,

LinkedIn requires that two users have some shared profile information before allowing one

of them to request a connection. We aim for the same amount of peer privacy but in off-line

operation where the OSN itself can not provide it. Thus, we clearly can not stipulate that

users simply download and exchange ULS-certified copies of their OSN profiles. Instead,

we need to run a set of cryptographic protocols that maintain a comparable (to on-line)

level of privacy and allow users to learn only their common factors. This motivates the use

of 2-party protocols that perform private set operations, such as Private Set Intersection

(PSI) and Private Set Intersection Cardinality (PSI-CA). Furthermore, based on D5, these

protocols must operate on user-bound and authenticated input (i.e., profile information),

thus guaranteeing authenticity of the result.

57

3.3 LinkedIn

Most popular OSNs offer users a personal profile page to describe themselves: provide infor-

mation on their place of residence, educational and professional backgrounds, memberships,

interests, as well as share photos, videos and other information. Generally, two users can

connect to each other by becoming contacts or friends. Depending on the individual’s privacy

settings, one typically sees more information about friends, contacts or connections. (We

use these three terms interchangeably.) Most OSNs allow users to hide profile information

from those who are not direct contacts.

Why LinkedIn? Although, based on D7, the general design of UnLinked is OSN-agnostic,

we needed to make an initial choice of a specific OSN platform. LinkedIn’s strong emphasis on

validity and integrity of user’s connections is important for UnLinked. Also, LinkedIn appeals

mainly to adult professionals who generally tend to value privacy, serious communication and

maintaining real world links more than the younger and/or more socially-minded population

of Tumblr or Facebook. Furthermore, considering D7 and Section 3.2.1, LinkedIn facilitates

secure export of user profiles via OAuth and a REST API.

LinkedIn, with more than 250 million users worldwide, is a global OSN that provides a

networking platform for professionals. As such, it is widely considered to be more serious

or “grown-up” than its more social counterparts, such as Facebook. To this end, a typical

LinkedIn profile page resembles a CV or a resumè, rather than a dynamic scrapbook.

Connections play a major role on LinkedIn. One user gets connected to another by sending

an invitation. Such a “direct connection” between two users is established only if the invitee

accepts the invitation. The invitee can refuse it and report the inviter as unknown, or

the invitation – as spam. An inviter who accumulates many invitation refusals might get

her account restricted [Lin13]. This approach constitutes an entry barrier for fraudsters

who attempt to join groups of professionals and provides some level of trusted relationships

58

among users. Moreover, users can benefit from their contact network by getting introduced

to new contacts, by their existing contacts. This way, a user has “access” to second-degree

and even third-degree connections.

The main idea is that this “get introduced” approach might lead a user not just to new

contacts but possibly to new companies or jobs, as recommended by their connections.

Thus, a major goal for LinkedIn users is to discover and establish new connections based on

criteria such as: common connections, interests, membership and educational or professinal

experience.

3.4 Cryptographic Tools

As discussed in Sect. 3.2.4, in order to support off-line interaction, we need privacy-preserving

protocols that operate over generic and authenticated input. Furthermore, following design

goal D5, a participant’s input must accurately reflect its real OSN profile. To accomplish

this, we rely on a trusted third party that verifies participant’s input and issues a signed

certificate of authenticity. ULS functions as this trusted third party: it validates user profile

information by direct communication with OSN. We stress that ULS is only needed at setup

time and it is not involved in any off-line interaction.

A setup phase is performed while A is on-line and connected to the OSN. In this phase, A

inputs its profile information a and obtains the corresponding certificate authA issued by

ULS. This certificate is later used in off-line interactions with other OSN users, i.e., any B

that receives authA in the off-line phase, can validate a without learning its value.

Generally speaking, our goal in the off-line phase is for A and B to privately compute

a function P (a, b) via a two-party protocol P ∗ that realizes P (). To do so, we need to

construct authA such that a is bound to a specific evaluation of P ∗ on partial input a. That

59

is, authA bootstraps evaluation of P (a, ·). Later, when B presents authB to A, continued

execution of P ∗ can only be used to compute P (a, b). The basis for our constructions is that

ULS signs the initial message of P ∗ which is later used as certified input to the off-line phase

of the protocol. For this to work, P ∗ must have the following properties:

1. Limited-Round: ULS only signs the initial message sent by each party. All subse-

quent messages are open to manipulation. By minimizing the number of rounds, we

also minimize potential impact of malicious participants who might deviate from the

protocol.

2. Mirrored: All protocol actions are identical for A and B. This includes cryptographic

operations and message transmission order. Thus, allows the same certificate can be

used to both initiate and respond to P ∗.

3. Two-Way: Both parties learn the same correct result P (a, b). We note that this

does not hold for two separate instantiations of a one-way protocol, since a malicious

participant could provide different input in each one-way instance.

For the two certified private set operation protocols (ATW-PSI and ATW-PSI-CA) used

in UnLinked we denote the first signed message as BAS(·), and BASCA(·), respectively.

Description of our cryptographic building blocks and notation follows.

3.4.1 Building Blocks

Prime Order Groups

Many of our schemes require a prime order subgroup with a generator g, along with a full

domain cryptographic hash-function H(·) with a range of this subgroup. When needed, we

use a Diffie-Hellman subgroup defined by primes p and q where p = tq + 1, for some integer

60

t [LK08]. As an instantiation of H(·) we use the SHA-1 hash function, whereby, on input x,

H(x) = (SHA-1(x))t mod p.

Public Key Signature Scheme

We assume the existence of a public key signature scheme secure against existential forgery

under an adaptive chosen message attack [GMR88]. Given a public/private key-pair (PK, SK)

we denote such a scheme as a pair of protocols: sign – SIGSK(·), and verify – V ERPK(·, ·).

These protocols operate on message m: σ = SIGSK(m) and V ERPK(m,σ). Verify returns

true if and only if σ was computed using knowledge of SK.

Signatures Of Knowledge

We use two popular signature-of-knowledge (SoK) schemes. They operate similar to zero

knowledge proofs in that they allow a party to demonstrate knowledge of secret without

revealing any additional information (given some shared public knowledge). However, SoK

can be performed without interaction, via Schnorr signatures [Sch91]. Specifically, we rely on

signatures demonstrate knowledge of (1) a discrete logarithm and, (2) two discrete logarithms

(with different bases) being equal. These signatures operate over the same cyclic subgroup

as discussed above.

To show knowledge of discrete log of gx, a party computes SK-LOG as:

SKLOG(gx, g,m) = (c, s) = (h(gx||g||gt||m), t− cx)

where t is chosen randomly. Upon receipt of (c, s, y = gx), one can verify that c =

h(y||g||gsyc||m).

61

Similarly we can construct an SoK proving equality of two discrete logs with different bases

SK-EQ-LOG, i.e., given (gx, f y), show that x = y. This is done by constructing:

SK-EQ-LOG(y = gx, z = fx, g, f,m) =

(c, s) = (h(gx||fx||g||f ||gt||f t||m), t− cx)

Verification is perfomed as: c = h(y||z||g||f ||gsyc||f szc||m).

For more details we refer to [ACJT00].

3.4.2 Adversarial Model

Our initial goal is security in the so-called Honest-but-Curious (HbC) (aka semi-honest)

model. In it, the adversary is a protocol participant who follows the protocol while passively

trying to learn as much information as possible. However, as discussed in Sect. 3.4.4.4, we

can achieve security in the stronger Malicious model with some simple extensions. In this

model, the adversary can arbitrarily deviate from the protocol.

ULS is assumed to be trustworthy, i.e., it honestly and correctly certifies a user’s input. We

do not consider external adversaries, since standard network security techniques (e.g., TLS

and IPSec) can mitigate outsider attacks. Finally, due to the use of hash functions, our

constructs are secure in the Random Oracle Model [BR93].

3.4.3 Security Properties

We informally summarize desired security properties:

62

Correctness. We say that a protocol is correct if, whenever both A and B are honest, each

outputs P (a, b) at the end of protocol execution, except with negligible probability.

Peer-Privacy. We require secrecy of elements of a and b, unless they appear in the output

of P (a, b). For the case of P ∗ computing a private set intersection, secrecy holds only for

elements not in {a ∩ b}. In other words, no information beyond P (a, b) is learned by either

party.

Pseudonymity. By executing P ∗, A and B must not learn each other’s identities.

Authenticity. P ∗ aborts if a or b are not certified by ULS or if either authA or authB is

expired. Thus, the adversary can not learn P (a, b) for any a or b for which it does not hold

authA or authB.

Binding. To prevent transferability, an authorization provided to U on input u = u1, . . . , un,

must be bound to all of u. That is, U can not transfer or omit any ui-s.

Output Integrity. If a and b are certified by ULS, then P ∗ outputs P (a, b). In the HbC

model, output integrity is directly implied by authenticity and correctness.

Early Termination Resistance (ETR). If either party aborts the protocol, both must

learn nearly4 equal amounts of information. For an HbC adversary, termination may occur

accidentally, e.g., A and B lose connectivity in the middle of the protocol or one of their

devices dies. In the malicious model, no protocol can be guaranteed to be Two-Way. One

party always learns the result first, at which point it can simply abort execution. ETR

attempts to remedy this imbalance by limiting information conveyed by the final message.

4The meaning of nearly depends on the specific P ∗. The less information revealed in each message, the
closer the outputs will be.

63

3.4.4 Two-Way Private Set Intersection

Authorized Two-Way Private Set Intersection (ATW-PSI) is a protocol between users A and

B on respective inputs: (a = {a1, . . . , am}, authA, RA) and (b = {b1, . . . , bn}, authB, RB):

FATW−PSI(a,b)→

⊥ iff ¬V ERPK(BAS(a),authA)

or ¬V ERPK(BAS(b),authB)

{xi|xi∈a∩b} otherwise

We claim that the combination of the setup and offline execution phases described below

yields a concrete instantiation of the ATW-PSI protocol. This construction is based loosely

on the One-Way PSI variant from [JL10].

3.4.4.1 Setup

Certification of user input is shown in Fig. 3.2. For user U , let u = {u1, . . . , un} denote the

set of U ’s inputs. ULS, on input of its private key SK, generates a random value RU ← Zp∗

(step 1) and signs all hashes of elements in u, masked with RU (step 2). Both authU and Ru

are transferred to U (step 3). Note that all exponentiations are mod p.

3.4.4.2 Offline Execution

User A on input (a = {a1, . . . , am}, authA, RA) and user B on input (b = {b1, . . . , bn}, authB,

RB) execute the protocol shown in Fig. 3.3. First, A computes a set Z = {z1, . . . , zm} where

each zi = H(ai)
RA . A forwards Z along with authA, to B. This allows B to verify whether

A sent valid zis by computing V ERPK(z1, . . . , zm, authA) in step (2). In concurrent steps

(3) and (4), B computes Y (mirroring A’s computation of Z) and forwards Y and authB

to A. Next, A exponentiates B’s yjs with RA and returns the results to B (step 5). B

64

CA User U

(1) RU ←$ Z
∗

q

(2) authU = SIGSK((H(u1)
RU , . . . , H(un)

RU))

(3) RU , authU

msc Certification

Figure 3.2: Setup

does the same with A’s zis and its own RB (step 6). Note that protocol steps are executed

concurrently when applicable. e.g., (1) and (3), (2) and (4). Also, in steps (5) and (6), each

element sent by A is followed by one element sent by B. In step 7, both A and B output the

intersection of a and b, i.e., a set of elements at (resp. bs) where yRAs = zRBt for 1 ≤ s ≤ m

and 1 ≤ t ≤ n.

3.4.4.3 Security Considerations

We claim that ATW-PSI is a peer-private, pseudonymous instantiation of PSI, with binding

in the presence of malicious adversaries in the Random Oracle Model [BR93]. Furthermore,

ATW-PSI provides protocol execution integrity in the HbC model. We sketch the proof

below. Since ATW-PSI is Mirrored, we assume w.l.o.g. that B plays the role of the adversary

B∗.

Correctness follows trivially from the protocol description. If both parties are honest, both

compute:

{H(a1)RARB , . . . , H(am)RARB} ∩

{H(b1)RARB , . . . , H(bn)RARB}

65

User A User B

(1) ∀i : zi = H(ai)
RA , authA

(2) assert: V ERPK(z1, . . . , zm, authA), if not: abort

(3) ∀j : yj = H(bj)
RB , authB

(4) assert: V ERPK(y1, . . . , yn, authB), if not: abort

(5) ∀j : yRA

j

(6) ∀i : zRB

i

(7) output {yRA

1
, . . . , yRA

n } ∩ {zRB

1
, . . . , zRB

m }

(7) output {yRA

1
, . . . , yRA

n } ∩ {zRB

1
, . . . , zRB

m }

msc PSI Execution Phase

Figure 3.3: Offline Execution Phase

This is equivalent to: {H(ai)
RARB |s.t. ∀i ∃j ai == bj}. Thus, both parties output the

intersection a ∩ b.

Peer-Privacy. For an HbC adversary, privacy is provided by the One-More Gap Diffie

Hellman Assumption (OMG-DH) [Fre05]. Informally, this provides indistinguishability of

exchanged elements of the form H(x)R, even with adversarial access to a Diffie-Hellman

oracle. Only matching elements are learned in step (7). All privacy arguments (in the HbC

model) from [JL10] apply to ATW-PSI with minor adjustments.

However, our protocols offer privacy in the malicious model with no further modifications.

Since it can not deviate from the protocol without forging ULS’s signature, B∗ can only

manipulate its response to A’s initial message, in step 6. However, this message is completely

66

de-coupled from any of A’s responses. Thus, no matter what it sends, B∗ learns no any

additional information.

Pseudonymity. Peer-Privacy implies privacy of A’s and B’s identities during one protocol

instance. However, further information can be learned from multiple protocol executions.

As long as A re-uses the same authA, all off-line interactions are initiated with this value,

and B can easily correlate multiple encounters with A.

However, whenever it is on-line, A can always contact ULS and request a fresh certificate,

i.e., a new pseudonym auth′A, thus preventing B from linking future interactions with auth′A

to any prior interactions involving authA. This is because any two protocol transcripts, both

involving A on input a, with different blinding factors RA and R′A, are indistinguishable.

As discussed in Sect. 3.6.3, pseudonymity can be strengthened if a user obtains a batch of

pseudonyms for each off-line epoch. In a single on-line interaction with ULS, A can request

a batch of certificates and use each one as few or as many times as it wants. Clearly, if each

authA is only used once, pseudonymity transitions into anonymity.

Authenticity follows directly from unforgeability of the underlying signature scheme SIG.

If either authA or authB does not verify in steps (2) or (4), execution is aborted.

Binding. Each authU is bound to the entire set u. Therefore, binding is trivially achieved

due to unforgeability of SIG.

Output Integrity. In HbC, this follows directly from security of SIG used by ULS and

correctness of ATW-PSI. However, in the malicious model, A can convince an honest B that

the protocol output is any subset of a ∪ b.

67

3.4.4.4 Malicious Security

In its current form, ATW-PSI does not provide Integrity of Output in the malicious model.

To achieve this stronger security, we need to modify steps (5) and (6) in Fig. 3.3 to force

users to adhere to the protocol. This can be done using techniques similar to [JL10], i.e.,

by introducing two Schnorr-based signature of knowledge (SoK) constructs: SK-LOG and

SK-EQ-LOG [ACJT00], described in Section 3.4.1.

First, we modify setup to include gRa within authA. During Offline Execution, A provides a

single (Schnorr) signature SK-LOG proving knowledge of Ra. Later, in step (5), A provides a

proof of correctness that shows, via SK-EQ-LOG, that each exponentiation yj
Ra is performed

with the same Ra supplied earlier in gRa . These measures demonstrate that: (1) A indeed

uses the same Ra in all exponentiations of yjs, and (2) A uses the Ra as signed by ULS and

included in authA. For B’s part, Step (6) is modified similarly.

Early Termination Resistance (ETR). Even with the Integrity feature, a malicious

participant can abort the protocol at any time. We counter this by enforcing concurrent

execution of steps (5) and (6). Specifically, messages between A and B are “interleaved”,

i.e., each party alternates between transmitting and receiving a specific set element zi
Rb or

yj
RA . The two will only swap once the computation has been verified, using SoK. This way,

at any point during protocol execution, parties compute a equal portion of the intersection.

A malicious participant learns at most one additional element; thus, its advantage is very

low.

Clearly, ETR does not come for free. The modified protocol incurs O(max(n,m)) rounds,

instead of the previous two. Although in some scenarios this added complexity might make

the protocol impractical, recall that UnLinked users are expected to be near each other and

transmission latency is therefore expected to be negligible.

68

3.4.5 Two-Way PSI Cardinality

As the privacy and usability of UnLinked can be greatly enhanced by additional crypto

primatives, we present here an extension of PSI-CA form [DGT12] to construct a linear-time

Two-Way Private-Set Intersection Cardinality protocol with Authenticity (ATW-PSI-CA).

We follow a similar procedure to ATW-PSI with minor modifications to setup and offline

phases. Resulting protocols are shown in Fig. 3.4 and Fig. 3.5 respectively. They rely on

two random permutations Π, and Π′.

ATW-PSI-CA provides the same security as ATW-PSI, however, at additional cost. Unlike

ATW-PSI, authorizations (authU) cannot be reused. Instead, U must obtain from CA a

distinct authU for each future off-line interaction. In Sect. 3.7 below, we argue that, in the

context of UnLinked, this is a small price to pay for better privacy.

CA User U

(1) ∀i : u′

i = Π′(ui)

(2) RUs
←$ Z

∗

q , RUc
←$ Z

∗

q

(3) authU = SIGSK((H(u1)
RUc , . . . , H(un)

RUc),
(H ′(H(u′

1)
RUs), . . . , H ′(H(u′

n)
RUs)))

(4) RUs
, RUc

, authU

msc Certification for PSI-CA

Figure 3.4: Setup w/ Cardinality

69

User A User B

(1) ∀i : zi = H(ai)
RAc , vi = H ′(H(ai)

RAs), authA

(2) ∀j : yj = H(bj)
RBc , wi = H ′(H(bi)

RBs), authB

(3) assert: V ERPK(({z1, . . . , zm}, {v1, . . . , vm}) , authA), if not: abort

(4) assert: V ERPK(({y1, . . . , yn}, {w1, . . . , wn}) , authB), if not: abort

(5) (y′
1
, . . . , y′n) = Π(y

RAs

1
, . . . , y

RAs

n)

(6) (z′
1
, . . . , z′m) = Π(z

RBs

1
, . . . , z

RBs

m)

(7) ∀i : hbi = H ′(z′
R

−1

Ac

i)

(7) ∀i : hai = H ′(y′
R

−1

Bc

i)

(8) output {w1, . . . , wm} ∩ {hb1, . . . , hbm}

(8) output {ha1, . . . , han} ∩ {v1, . . . , vn}

msc PSI-CA Execution Phase

Figure 3.5: Offline Execution Phase w/ Cardinality

3.5 System Architecture

UnLinked includes two phases: Setup and Off-line. This section describes basic system

assumptions and the details of each phase.

3.5.1 Requirements

Although UnLinked is OSN-agnostic, there are a few requirements:

• In order to support meaningful off-line interactions, OSN profile information must

contain at least a unique owner’s user id and a list of connection’s ids. Also, OSN

must provide the ability to securely export a user profile once authorized by the user.

This is offered – via OAuth2 API [Har12] – by several popular OSNs, e.g., LinkedIn,

70

Facebook, Twitter, and Google+. In our setting, an OAuth2 interface allows ULA and

ULS to communicate to OSN on behalf of the user.

• ULS requires a public key signature scheme [SIGSK(·), V ERPK(·, auth)] with a pub-

lic/private key-pair: [PK, SK]. ULS retains no state information about its interactions

with any ULA or OSN.

• ULA needs access to a broadcast medium, in order to support nearby peer discovery.

ULA is also responsible for storing all user’s private cryptographic information, includ-

ing BASU . In addition, ULA must trust ULS’s PK; this is provided by including PK

in the ULA installation package.

3.5.2 Setup Phase Details

The goal of this phase is for ULA to obtain enough information to be able to later operate

independently from OSN and ULS. Since a typical OSN user’s profile can change fairly often,

e.g., on a daily basis, we need to ensure that users have up-to-date profile information. For

this reason, ULS issues BASU with a relatively short lifespan, e.g., one week in the current

implementation, as described in Sect. 3.6.4. Setup proceeds as follows:

1. Via local web browser, Alice logs in to OSN, retrieves and stores an OAuth token tok.

Alice’s password is not revealed to ULA.

2. Alice’s ULA presents tok to OSN, retrieves her profile P and stores it locally.

3. Alice’s ULA presents tok to ULS.

4. ULS relays tok to OSN

5. OSN sends Alice’s profile P .

71

6. ULS parses P into basic components:

[c = connections, identity,misc]

where identity consists of the user-name or identifier as well as a profile picture, if any.

The misc field is partitioned into OSN-specific sub-fields, i.e., education, employment

and residence.

7. ULS computes and sends to ULA:

σid = SIGSK(identity), along with σ1 = SIGSK(BAS(c)), σ2 = SIGSK(BAS(misc))

and the corresponding random blinding factors Ru1, Ru2
5.

3.5.3 Off-line Phase Details

This phase handles communication between peer ULAs. Once connected, ULAs privately

compute common information of their profiles. Depending on user policy, this may entail

multiple rounds of communication and executions of both ATW-PSI (defined in Sect. 3.4.4)

and ATW-PSI-CA (defined in Section 3.4.5). We now describe the interaction between two

nearby ULAs: Alice and Bob, assuming that the former starts the interaction.

1. Without involvement of the actual human users (i.e., in the background) Alice and

Bob emit broadcast “pings” or beacons at fixed time intervals6, advertising their mem-

bership in UnLinked.

2. Alice detects Bob’s broadcast and responds with a PID. PID selection is discussed

in Section 3.6.2 below.

3. If Bob wishes to continue communication, it responds with its own PID.

4. Using standard techniques (TLS, in our case), ULAs establish a secure channel.

5If requested by ULA, ULS uses BASCA(·) (Blinded Attribute Set for ATW-PSI-CA) instead of BAS(·)
6Typical interval between pings is 30-60 secs.

72

5. ULAs execute a series of ATW-PSI-CA protocols, privately computing the size of

their common connections and miscellaneous fields. Comparing connections means

exchanging σ1, BAS(c), followed by a series of short computation and transmission

rounds. See Sect. 3.4.4, and Sect. 3.4.5 for more details.

6. Next, ULAs perform one or all of the following, depending on their mutual desire to

continue interaction, either by explicit user action, or by policy. Their choices are

conveyed across the secure channel.

(a) ULAs perform a series of ATW-PSI protocols to compute the actual set inter-

section of their profiles, analogous to computation and communication in Step

5. Each instance of ATW-PSI is performed over a different type of data, e.g.,

connections, employers and educational institutions.

(b) ULAs exchange authenticated identities of the form (identity, σid). Upon receipt,

identity is validated and results are displayed to the user.

(c) ULAs exchange messages via a simple chat interface.

(d) If both decide to later connect through OSN, each ULA stores the peer’s identity.

At a later time, when it is on-line, ULAcan use the OSN to request a connection

to the peer.

3.5.4 Notification Policy

As mentioned earlier, during the off-line phase, ULAs perform a series of cryptographic

tests, each on one of various profile fields. A ULA determines explicitly which tests are

conducted and, for every test, based on its results, whether it wants to continue interacting

with a particular peer. However, such fine-grained control over every interaction can be

cumbersome. We envision numerous scenarios where large numbers of OSN users, all with

something in common, are in physical proximity. For instance, on a university campus, most

73

users will have the same employer (or educational institution) and several connections in

common. In such settings, most users would rather not to be notified of every nearby peer.

In other settings (e.g., on a plane, or simply far from home) a user may wish to be notified

of any nearby peer even with very little in common between their profiles.

To increase flexibility, we introduce the notion of personal policy. Each policy includes a set

of conditions for ULA to initiate each of the following actions:

1. Execute a more revealing protocol. i.e., ATW-PSI instead of ATW-PSI-CA.

2. Alert the user to the presence of a peer.

3. Exchange identifying information, e.g., name, image, or OSN profile id.

4. Send a message to a peer.

5. Receive and display messages and requests to exchange ids.

Criteria for these actions can be any combination of the following:

1. A threshold or a range based the size of the intersection of connections or any misc

sub-field.

2. Presence or absence of a specific value in the intersection.

Note that criteria of the first kind can be applied using only the result of ATW-PSI-CA.

Whereas, the second type of criteria relies on successful ATW-PSI execution for that field.

While our policy language for UnLinked is flexible, ULA is pre-configured with a few default

policies. All such policies require explicit user actions to exchange identifying information

and send messages. Furthermore, criteria for notifying the user of a message or identity

74

exchange are identical to that for ULA to be alerted to the presence of a nearby peer. This

simplifies effects of policy to the user.

The most permissive supported policy, Open, allows ULA to run ATW-PSI with any Un-

Linked peer. This policy is useful for maximizing off-line interactions. A slightly more

restrictive policy, Low, is designed for use away from one’s typical locations, e.g., on travel.

In this case, the user is alerted of a nearby peer’s presence if any of the following conditions

are satisfied:

1. At least one friend in common, and one school or employer.

2. At least three friends in common.

3. A common current employer or current academic institution.

We also provide a third default policy, Medium, designed for use at everyday locations, such

as work-place or school. In this case, having an employer or a school in common is not very

meaningful. Instead, we add extra weight to the value of past employers and connections.

Users are notified if any of the following occurs:

1. At least three connections in common, and at least one common employer or academic

institution, other than the current one.

2. At least five connections and one institution in common.

3. More than seven connections in common.

Preventing SPAM: User policy also controls the amount of communication with peers. If

Alice and Bob have different policies, Bob might wish to contact Alice but not vice versa.

Suppose that Alice is not alerted of Bob’s presence. Should Bob’s contact attempts be

transmitted to Alice? This decision is based upon Alice’s policy. If desired, Alice can specify

75

a different threshold for receiving messages from a peer than that for being initially alerted

to the peer’s presence. Without this feature, Bob could bombard Alice’s ULA with spam

messages or connection requests simply by acquiring many fake OSN identities.

3.6 Discussion and Extensions

We now discuss some system considerations and extensions.

3.6.1 Minimizing Irrelevant Connections

In some settings, ULA may encounter the same peer multiple times. Being notified of each

such encounter is burdensome to the user and costly in terms of device resource consump-

tion. To this end, ULA has a mechanism for preventing repeated interactions. However, a

given user’s profile information might change frequently and to ensure new information is

considered in future encounters this process is time-dependent. To this end, the prevention

mechanism operates on two levels. First, ULA maintains a list of recently encountered de-

vice MAC addresses. Entries in this list have a lifespan of one day. We consider this to be

an acceptable granularity, since user profiles rarely change dramatically within a single day.

Second, each ULA broadcasts its own public identifier PID. Upon connecting to a new de-

vice, ULAs exchange PIDs. If a PID has been seen recently, communication is terminated.

When an off-line interaction completes, the peer device address is added to the avoid list.7

In addition to avoiding recently seen peers, we consider a likely scenario where two users

who are already each other’s connections discover each other anew and attempt to connect.

Clearly such unnecessary interactions should be avoided. For this purpose, we provide a

simple mechanism that allows users to learn, and to be optionally alerted, when current

7PIDs are refreshed when new profile information is downloaded.

76

connections are nearby. As part of every interaction with ULA, ULS inserts a “dummy” tuple

corresponding to that ULA into the set of connections returned to ULA. Upon interacting

with a peer, this tuple will appear in the result set if and only if the two are already connected.

3.6.2 Authenticated Channels

There are many ways to select PIDs. To easily establish an authentic channel we take

advantage of the trusted ULS. The basic idea is that each PID is the public portion of a

Diffie-Hellman key exchange. Specifically, for a user U , PID = gRu . To fully prevent man

in the middle attacks, ULS includes this PID in all authorizations returned to U . This

effectively binds all certificates to the corresponding user.

3.6.3 Unlinkability

For a privacy conscious user, UnLinked can also operate in an unlinkable mode. In it, ULA

contacts ULS and receives a new authorization along with a new private key Ru, whenever

possible. This provides the user with a unique pseudonym linked to the specific Ru and

allows the user to control the degree of unlinkability. Of course, other factors influence

both privacy and performance. To be completely unlinkable, a user might wish to avoid

redundant connection optimizations discussed previously. Using the mechanism for detecting

pre-existing connections would significantly lower the level of anonymity to their connections,

and could trivially reveal their identity in some cases. Furthermore for each pseudonym, ULA

needs to reset the list of previously discovered peers. Otherwise unwillingness to participate

in an interaction may itself be used to link pseudonyms. Finally, ULA may need to make

device configuration changes dependent on the medium, e.g., change MAC addresses.

77

Nonetheless, even with these safeguards, peers always learn the outcome and input size of

cryptographic protocols. This information could be used to help identify the other user.

Exact severity of this de-anonymization is dependent on the uniqueness of one’s contact

graph and common profile traits.

3.6.4 Freshness of Credentials

In order to operate offline, UnLinked relies on authenticated profile information. Since

profiles can change with arbitrary frequency, ULAs should be assured of freshness of peer

profiles. Otherwise, misbehaving users with stale or outdated information could claim con-

nections they no longer have. Intuitive ways of dealing with this problem rely on either

time-stamped signatures or revocation lists. Since UnLinked operates off-line and aims to

minimize overhead, distributing periodic revocation information is not feasible. Instead, all

ULS signatures include a global timestamp and a relatively short validity interval of one

week. We believe that this is sufficiently long for ULA to regain connectivity to ULS. At the

same time, it is short enough to minimize the impact of malicious peers. To support this

feature, we assume that each ULA’s clock is loosely synchronized with that of ULS. This is

a reasonable assumption for most modern devices, even when operating off-line.

3.6.5 Detecting Misbehavior

Since ATW-PSI and ATW-PSI-CA do not offer output integrity from a malicious peer by

default, UnLinked provides an alternative to handle malicious behavior. This is achieved

by allowing ULS to audit communication traces from offline interactions. A ULA records

every protocol transcript. Later, when it re-gains connectivity, ULA sends a transcript

to ULS along with its current profile. ULS audits every message in the transcript and

determines whether peers behaved correctly. ULS can then blacklist misbehaving users or

78

take other measures to prevent further cheating. However, auditing interaction transcripts

imposes considerable storage and computation burden on ULS and exposes ULA’s off-line

interactions to ULS. Consequently, auditing is an optional feature, disabled by default. Only

a user who suspects fraud should submit transcripts for auditing.

3.7 Implementation & Evaluation

We developed and benchmarked a fully functioning prototype of UnLinked, consisting of

an Android application implementing the functionality of the ULA and a Ruby on Rails

application implementing ULS.

For the signature scheme ULS computes “attached” RSA signatures (those that include the

signed data in the signature) using PKCS7 implemented over OpenSSL. Currently, ULA

supports a wide range of communication technologies: WiFi Direct, Bluetooth, and WLAN

based Network Service Discovery. Any subset of these can be used concurrently. The cur-

rent prototype only supports ATW-PSI without extensions for malicious security. For the

purposes of benchmarking, ULA was tested on two Nexus 5 smartphones communicating

over Bluetooth. Each phone has a 2.26GHz processor and 2GB of RAM. ULS was tested on

a desktop running Ubuntu 12.10, with an Intel i7-3770 3.4GHz quad-core CPU and 16GB

of RAM.

Performance: UnLinked was tested on several input sizes: 10, 100, 1000, and 10,000 friends.

As expected, protocol execution time was linear in the number of friends. For 100 friends,

ULS signature computation completed in 0.83s, and used 25.2kb of storage. Also, each

ULA completed the Offline Phase of the ATW-PSI protocol in under 1 second, with 526kb

exchanged. See Tab. 5.2 for detailed results. We note that, even with 1,000 friends, infor-

mation returned by ULS in the setup phase only consumed 243kb. One could easily batch

79

100 of such signatures to interact with unlinkability off line, without significant storage im-

pact. Similarly, authorizations for ATW-PSI-CA can be batched without significant storage

costs. Finally, round-trip times between devices was, on average, only 7.86ms. When using

ATW-PSI with interleaving this amounts to less than 1 second of overhead for the input size

of 100 friends.

Table 3.1: Evaluation of UnLinked.

Input Size
Setup
Time (s)

Signature
Size (kb)

Offline
Time (ms)

Offline
Band. (kb)

10 0.0739 3.41 143 9.2
100 0.837 25.2 508 75
1000 8.57 243 8790 2941
10000 86.4 2420 14530 7337

3.8 Operational Algorithims

Below are the specific algorithms used in UnLinked in greater detail.

Setup: The setup phase assumes that OSN user Alice already installed client on her mobile

device:

1. Alice logs into OSN.

2. Alice invokes client which communicates to server.

3. Alice authorizes server to export her profile from OSN.

4. server authorizes Alice for off-line interaction by signing a blinded representation of

Alice’s profile attributes (e.g., her connections), referred to as a Blinded Attribute Set

(BASA).

The setup phase is repeated periodically to refresh authorizations.

80

Off-line: The off-line phase assumes that Alice and Bob have previously completed their

respective setup phases:

1. Alice and Bob discover each other via location-limited beaconing by respective client.

2. Using BASA and BASB, respectively, Alice and Bob execute a cryptographic protocol

that yields either the number, or the set of, common factors (e.g., shared connections).

3. Alice and Bob optionally choose to reveal their signed OSN identities to each other.

On-line: The on-line phase assumes that Alice and Bob have already performed an off-line

phase and revealed identities to each other:

1. Alice issues an OSN contact request for Bob.

2. At some point, Bob accepts the request.

81

Chapter 4

Secure Pattern Matching

This chapter details existing secure computation protocols for pattern matching and their

uses in today’s society. It is based on my publication Blindfolded Data Search via Secure Pat-

tern Matching published in IEEE Computer written along with Karim El Defrawy [EDF13].

While the presentation has changed no extentions have been made.

Secure computation protocols have recently attracted considerable attention. This may

be attributed to the fact that various organizations and users are adopting software and

computation as a service, instead of building their own computation infrastructure. Secure

computation protocols in general allow two or more distrusting parties to collectively perform

computation that requires inputs from the parties and deliver outputs to some, or all, of

them. Typically, two properties have to be guaranteed during operation of such protocols:

(1) correctness of performed computation, and (2) privacy of inputs and outputs of parties.

This chapter describes some of the best known techniques to securely search data while

guaranteeing the two general properties required in secure computation. This is achieved by

securely and efficiently performing one of the most fundamental types of computation often

encountered in computer science: pattern matching.

82

Roadmap: The need for blindfolded searching of data is highlighted by several applications;

we describe some representative application domains in Section 4.1. We proceed to provide

background on the general problem of pattern matching then that of secure pattern matching

in Section 4.2. We define the pattern matching problem with its different variations that are

often encountered in modern applications; we then describe relevant security and adversary

models. Section 4.3 follows with an overview of some recent protocols that efficiently perform

secure pattern matching. We conclude with a discussion of open problems and future research

directions in Section 4.4.

4.1 The Need for Blindfolded Searching of Data

We begin by describing two application domains that highlight the need for secure and

privacy-preserving searching of data and how secure pattern matching can help address them.

In the considered notional applications an information requester will be able to privately

query an information provider’s database and retrieve only the records that match its query

pattern, without revealing the query or its results to the provider. The provider would like

to prevent revealing any information about its database other than matched records.

1. Sharing of Data in Intelligence and Law Enforcement Communities: Over

the past decade, issues have arisen regarding the desire to share data with local law

enforcement, state and local governments, first responders, and international govern-

ments versus potential privacy concerns. A recent example of such discord was the

European Court of Justice ruling in May 2006 that ordered the cessation of passenger

name record data-sharing with the U.S. Though the data required was relatively in-

nocuous, it took two years to implement a new agreement and there are still privacy

advocates within Europe who oppose the sharing of data without stronger data privacy

safeguards [KE09]. More difficult is sharing sensitive intelligence or law enforcement

83

(a) Medical Diagnosis/Treatment (b) Intel Sharing

Figure 4.1: A patient visits a doctor who privately examines his genome for treatment (a). FBI privately examines a passenger
list for a suspect with name like ”Rob” (b).

data with the tens of thousands of state, local, and tribal governments within the USA.

Balancing security concerns with information sharing remains a top priority for several

intelligence and law enforcement agencies. Developing solutions that simultaneously

provide strong protection for privacy and security while enabling access to the latest

intelligence and law enforcement databases remains an open problem. Secure pattern

matching as will be described in detail later, can enable secure evaluation of an ex-

pressive set of queries to search such data including: exact matching, substring and

approximate matching, and range queries for numerical data. See Figure 4.1(a) for a

demonstrative example.

2. Sharing of Medical and Health Data: The standards for “Privacy of Individually

Identifiable Health Information” establish a set of national standards for the protection

of individuals’ health information. The U.S. Department of Health and Human Services

(HHS) issued such standards to implement the requirement of the Health Insurance

Portability and Accountability Act of 1996 (HIPAA) [CHLR96]. These standards ad-

dress the use and disclosure of individuals’ health information by organizations subject

to the standards, as well as standards for individuals’ privacy rights to understand and

84

control how their health information is used. A major goal of the standards is to en-

sure that individuals’ health information is properly protected while allowing the flow

of health information needed to provide and promote high quality health care. The

standards aim to strike a balance that permits important uses of information, while

protecting the privacy of people who seek care and healing. Secure pattern matching

can ensure privacy of such personal health information while at the same time allowing

doctors, hospitals and other health organizations to use such information in medical

care. A notable example highlighted in the security community [KM10b] is to securely

and privately search personal DNA sequences. It is obviously important to prevent

leakage of an individual’s DNA sequencing data because it may, among other things,

indicate pre-exposure to certain health risks which may cause insurance providers to

deny them coverage (or even increase their premiums).

4.2 Background and Overview of Secure Pattern Match-

ing

We first describe the problem of insecure pattern matching and its variations. We then

describe various adversary and security models to be considered when developing a secure

pattern matching protocol.

4.2.1 Insecure Pattern Matching

Pattern matching is fundamental to the field of computer science. It finds applications in

searching databases, networking and security and recently in the context of bio-informatics

and DNA analysis [KM10b]. Pattern matching has been extensively researched, resulting

in several efficient algorithms and approaches to solve various insecure flavors thereof, e.g.

85

[Tsa06, KR87]. Nonetheless, there is currently no single algorithm that performs well in

all cases and is efficient in both its speed and memory usage in addition to handling exact,

approximate matches and wildcards. There are many interpretations of the pattern matching

problem, the most common being the following: given an alphabet Σ, a text T ∈ Σn, the

exact pattern matching decision problem requires one to decide if a pattern appears at all

in the string. In the case of the exact pattern matching search problem the requirement is a

little different, it is finding all indicies i of T (if any) where P occurs as a substring. If T̄i

denotes the m-character substring of T starting at position i, the output should be the set

{i|T̄i = P}. Throughout this chapter we use DNA as our alphabet, i.e., Σ = {A,C,G, T},

to simplify illustrations.

In addition to the exact matching problem, the following generalizations are often encoun-

tered:

1. Pattern matching with single character wildcards: there is a special character, ∗ /∈ Σ,

that is not part of the alphabet and could match any single character of the alphabet.

This special character can be repeated several times in the pattern P indicating that the

positions where it is present could contain any of the alphabet’s characters. The output

in this case should also be the set of indicies: {i|Ti = P}. Using such a “wildcard”

character allows one pattern to be specified that could match several sequences of

characters. For example the pattern “TA∗” , would match any of the following words

in a text: TAA, TAC, TAG, and TAT

2. Substring pattern matching1: In this version a parameter k ≤ m is fixed. A match for

P is found whenever there exists in T an m-length string that differs in m−k characters

from P (i.e., has Hamming distance m − k from P). For example, the pattern TAC

has m = 3. If k = 2, then any of the following words would match (∗ indicates that

any character from the alphabet could be substituted): ∗AC, T ∗C, or TA∗. Note that

1 Also sometimes called approximate or threshold pattern matching.

86

results from single character wildcard matching will also be captured with substring

matching. Referring to the previous example, a substring matching with the pattern

TAC and k = 2 will also capture all occurrences of TA∗.

4.2.2 Security and Adversary Models

A protocol that performs secure pattern matching on a text T held by a server and using

a pattern P held by a client can be defined as an interactive two-party protocol. Typically,

both parties are assumed to be probabilistic polynomial time algorithms. The view of a

party in this interactive protocol is defined as its private input and its private randomness

as well as the protocol transcript.

The informal security requirements 2 of secure pattern matching dictate that the party

holding the text learns nothing, except the upper-bound on the length of the pattern, while

the one holding the pattern only learns either a binary (yes/no) answer for the decision

problem or the matching positions (if any), and nothing else.

The security of secure computation protocols, and thus secure pattern matching, is typically

demonstrated using the so-called ideal/real world simulation paradigm. In order to prove

security using that paradigm one imagines what properties a protocol should have in an

ideal world. In the ideal world all parties send their input to a trusted third party (TTP)

3 that computes the functionality in question and returns the output to each party. The

TTP is assumed to be incorruptible and thus by definition the ideal world is secure. An

adversary can not influence the inputs of any parties other than the ones it corrupts, neither

can it learn outputs of any other parties. A protocol is considered secure if the real (the

constructed) protocol has similar views as in the corresponding ideal world.

2 For a formal definition of secure pattern matching check [BEM+12].
3 Also called ideal functionality.

87

The main adversary models considered when constructing secure protocols per paradigm

above are:

1. Honest-but-Curious Adversaries: Honest-but-curious (HBC) adversaries do not

deviate from the steps prescribed by the protocol specifications. HBC adversaries may

try to violate privacy of the other party by storing exchanged messages, snooping on

messages and trying to analyze whatever data they receive to infer more information

than they are supposed to. Such adversaries are often also called passive or semi-

honest adversaries, because they passively listen to messages and try to violate privacy

and confidentiality but do not actively modify, fabricate or delete messages in order to

launch any kinds of active attacks.

2. Malicious Adversaries: Malicious adversaries are expected to launch different types

of passive and active attacks and are not assumed to fear being caught cheating. They

are expected to deviate arbitrarily from the prescribed protocol and are not trusted

to perform correctly whatever computation is required from them. They may send

garbage and/or inconsistent data, and even replay messages. Malicious adversaries are

typically assumed to not be stealthy, i.e., they are not trying to hide the fact that

they cheat. Protecting against malicious adversaries provides a very strong level of

security, but usually can only be achieved using expensive cryptographic primitives

such as zero-knowledge proofs and commitment schemes.

3. Other Adversary Models: Other models capture adversaries that are more powerful

than HBC but less powerful than malicious ones. Notably are covert adversaries, which

may deviate arbitrarily from the protocol specication in an attempt to cheat, but do

not wish to be caught doing so [AL07].

88

Protocol Client BW Server BW Total Client CC Total Server CC WC Security
SM Models

1 (Sec.4.3.1) O(mnk2) O(mnk2) O(mnk log2 k) O(mnk log k) Yes M/HBC

2 (Sec.4.3.2) O((n+m)k2) O((n+m)k2) O(mnk log2 k) O(mnk log k) Yes M/HBC

3 (Sec.4.3.3) O((n+m)k2) O((n+m)k2) O(mnk log2 k) O(mnk log k) Yes M/HBC

4 (Sec.4.3.4) O(mk′) O(nk +mk′) O(n+mk log2 k) O((n+m)k log2 k) No 1S/HBC

Table 4.1: Comparison of pattern matching protocols.

Comparison assumes protocols requiring public-key operations use ElGamal encryption with a
k-bit security parameter. BW = Bandwidth, CC = Computation complexity, M = Malicious

model, HBC = Honest-but-curious model, 1S = One-sided Simulation. WCSM = wild card and
substring matching. All protocols run in O(1) rounds.

4.3 Overview of Secure Pattern Matching Protocols

We overview below the design and performance of some recently developed secure pattern

matching protocols. Recall that the secure exact pattern matching setting consists of a

server holding text T ∈ Σn and a client holding P ∈ Σm. We let T̄i represent the m length

substring rooted at position i of the text. Further, the wild card pattern matching problem

allows an additional wild card character denoted as ∗.

4.3.1 Protocol 1: Integer Comparison Based Pattern Matching

The authors in [HT10] present protocols, secure against malicious adversaries, that can

compute variants of the pattern matching problem. The security of their protocols are based

on the security of (additive) ElGamal encryption, a well known vetted cryptosystem. The

protocols come in three flavors to solve a specific variant of the pattern matching problem.

The first two variants rely on turning the pattern, and each of the m length sub-strings of

text into an encryption of a single integer via a function h(x). These encryptions are then

compared obliviously. Each of these two variants can support alphabets of any size, and

without loss of generality we assume that the alphabet is a subset of the integers. Thus,

each sub-string is encoded as a base |Σ| integer. i.e. h(x) =
m∑
i=0

xi ∗ |Σ|i.

89

For exact matching, the client encodes the pattern as P ′ = E(
∑m

i=1 Pi ∗ |Σ|i−1). The server

computes for each T̄i, T̄i
′

= E(
∑m−1

j=0 Ti+j ∗ |Σ|j). P ′ is then compared against each T̄i
′

to

identify a match. This can be performed using the homomorphic properties of (additive)

ElGamal encryption. ∀i the two parties compute (P ′)−1 ∗ T̄i
′
, which is an encryption of 0

if and only if the two are equal. The two parties then jointly check, in zero-knowledge, if

this is indeed an encryption of 0, and thus a matching position in T . See Figure 4.2(a) for a

detailed example. In order to ensure correctness under a malicious adversary, both parties

perform all computation. Further, correctness of the inputs and the computation is verified

using zero-knowledge proofs. The exact matching protocol requires O(n+m) cryptographic

computation and communication.

(a) Exact Matching (b) Wildcard

Figure 4.2: Client queries using the exact matching from [HT10] “TACT” (a) and wild card matching“TAC*” (b). Server’s
text remains “GATTACT” with a single match in both cases.

The authors of [HT10] also present a slightly modified protocol to handle wildcard matching.

The main idea is that wildcards in the pattern will be selectively removed before being

encoded as in the previous protocol. The client replaces wildcard characters (∗) in the

pattern with 0. The client then sends an m length vector of encrypted bits, called the

Selection Vector, that can be used to effectively ”select” the non wildcard characters from

90

each T̄i. Thus the client sends

svi =

 E(0) if Pi = ∗

E(1) otherwise

This vector is verified by the server and the encrypted text T is returned. The client then

computes, verifies, and randomizes for the ith position of the jth T̄j

T̂i,j = T svij+i−1

Again, due to the homomorphism, any character paired against a wildcard in the pattern is

an encryption of 0, as is the wildcard in the pattern. With wildcards removed the protocol

continues as before, computing P ′ = E(
∑m

i=1 Pi ∗ |Σ|i−1), and T̄i = E(
∑m−1

j=0 T̂i+j ∗ |Σ|j). See

Figure 4.2(b) to see an example run on small DNA string.

For every possible matching position in the text the protocol performs O(m) cryptographic-

operations to remove the wild cards. This results in an overall complexity of O(nm) com-

munication and computation.

The final protocol securely computes the secure approximate matching problem, for bit

strings only, in O(nm) computation and communication. This limitation can severely affect

its practical applications4. The protocol relies on securely computing the hamming distance

of P and each T̄i. A match is found if this distance is above a specified threshold τ . The crux

of the protocol is the computation of the hamming distance. As before, the server sends the

encrypted text as Ti = E(ti). The client computes and sends for the ith position of the jth

sub-string, Πi,j = T Pij+i−1. Effectively, this is an encryption of Pi ∧ Tj+i−1. They then both

compute Xi,j = T(j+1−1) ∗ Pi ∗ 2Πi,j. This is the encryption of Pi ⊕ Tj+i−1, or the hamming

distance in binary.

4A pattern in an encoded binary string does not necessarily correspond to a pattern in the original text

91

4.3.2 Protocol 2: Fast Fourier Transform (FFT) Based

The authors in [Ver11] solve the pattern matching problem by utilizing the Fast Fourier

Transform (FFT). The key observation is that one can use an FFT algorithm to quickly

compute sums of products of entries in a vector. [Ver11] derives a protocol for exact, ap-

proximate, and wildcard matching. The wildcard matching protocol runs with O(nlog(m))

exponentiations, O(nm) multiplications, and O(n) communication. It works by first map-

ping wildcards in the text and pattern to 0 and every other character to a positive integer,

as in Protocol 1. Then, the protocol solves for the sum of squared error between the pattern

and each possible matching sub-string of the text. Both securely compute ∀i ∈ [n−m+ 1]

m∑
j=1

Pj ∗ Ti+j−1(Pj − Ti+j−1)2 =
m∑
j=1

P 3
j ∗ Ti+j − 2P 2

j ∗ T 2
i+j−1 + Pj ∗ T 3

i+j−1

Notice that if Pj or Tj+i−1 is a wildcard the jth term in the sum will always be 0. Similarly,

if Pj = Tj+i−1 the jth term is also 0. Thus the entire sum evaluates to 0 if and only if the

pattern matches the ith sub-string, i.e. the error between strings is 0.

All of these sums can be computed securely in O(n log m) using a protocol that securely

computes polynomial multiplication via convolution (FFT). To see how this works, first we

look at the first term in the sum P 3
j ∗ ti+j−1 We treat each of the P 3

i as coefficients of an m

degree polynomial A(x). Similarly, we let ti be the coefficients of an n degree polynomial

B(x). If we can quickly determine the coefficients of A(x)B(x) we will be able to calculate

P 3
i ∗ Tj ∀i, j. Using these values we easily compute the appropriate terms in the sum. We

can compute the other two terms similarly. For an in-depth explanation of polynomial

multiplication using FFT see [Ver11] which provides such a protocol secure in the presence

of malicious adversaries. This protocol also relies on the security of (additive) ElGamal

encryption.

92

4.3.3 Protocol 3: Matrix Multiplication Based Pattern Matching

The authors in [BEM+12] construct a two party protocol, 5PM, that can securely calculate

the exact, wildcard, and approximate pattern matching problems for any alphabet. The

protocol is secure against a malicious adversary provided the underlying homomorphic en-

cryption scheme is semantically secure. The crux of the protocol is a reduction from pattern

matching to a non-FFT based matrix multiplication. Their algorithm requires O(nm) cryp-

tographic operations, and O(n+m) communication. It is worth noting that this is the only

protocol mentioned with an accompanying implementation. The protocol for wildcards is

explained in detail below.

5PM first preprocesses the pattern to obtain a Character Delay Vector (CDV) for each letter

in the alphabet. These CDVs are used to compute, for each character in the text, the position

where a matching pattern could possibly end. A counter at this location is incremented. If

a match occurs in the text, than all m characters in the matching T̄i would have caused the

counter to increment. Thus, if at the end of the protocol any counter equals m a match

exists.

Insecurely the algorithm is as follows. For each character in the alphabet a m length CDV

is created initialized to all 0’s. Next, for each character Pi in the pattern a 1 is set in

the corresponding CDV indicating a possible ending m − i characters away. That is, ∀i

CDV (Pi)[m − i] = 1. Observe, for all CDVs and all i, the ith position is 1 in exactly

one CDV. Next, the Activation Vector (AV), a length n array of counters, is created and

initialized to 0 element wise. The AV is then computed as

∀i ∈ [1..n], j ∈ [1..m] AV [i+ j] = CDV (Ti)[j] + AV [i+ j]

Finally, we output i if AV [i] = m. See Figure 4.3 for CDVs of the pattern TACT .

93

Figure 4.3: Character Delay Vectors for “TACT” and their application to the Activation Vector during processing.

The algorithm can be easily extended to handle wildcard pattern matching. Upon CDV

creation wildcard characters are not processed. Further, in the final matching phase we

check AV [i] against m− k where k is the number of wildcards in the pattern.

This same algorithm can be computed using a combination of three linear operators, equiv-

alent to matrix multiplication. Briefly, ColSum(M) computes the sum of each column and

stores the result in a length n vector. Cut(M) removes both the left m columns and the

right m columns. Stretch(M) shifts the ith row of M right i columns, and places 0 in empty

locations. The resulting matrix has an extra n columns. See Table 4.4 for an example. For

a more detailed explanation of these operations consult [BEM+12].

To use these operators the text is first transformed into a binary n × |Σ| matrix Mt such

that Mt(i, Ti) = 1. Essentially, each row in Mt encodes a 1 in the location correspond-

ing to the correct letter in Σ. We also encode the CDVs as a matrix, by concatenating

each CDV together. We then calculate the matrix Mt(CDV) corresponding to a copy of

the appropriate CDV in row i for each text position Ti. This is a simple multiplication,

Mt(CDV) = Mt ∗MCDV . We then Stretch(Mt(CDV)) to center the ith CDV at position (i, i).

94

MT MCDV MT (CDV) MT (CDV)

n×Σ Σ×m n×m n×(n+m−1)
 ·

 =

v1,1 v1,2 · · · v1,m

v2,1 v2,2 · · · v2,m

...
...

. . .
...

vn,1 vn,2 · · · vn,m

 Stretch−−−−−→

v1,1 v1,2 · · · v1,m 0 · · · 0

0 v2,1 v2,2 · · · v2,m

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · · · · · · · · · · vn,m−1 vn,m

n×(n−m+1)

Cut−−−→

v1,m 0 · · · 0 0 · · · 0

v2,m−1 v2,m 0 · · · v2,m

. . .
...

...
. . .

. . .
. . .

. . .
. . . vn−1,2

0 · · · · · · · · · · · · 0 vn,1

ColSum−−−−−−→ [1 . . . 1] ·

v1,m 0 · · · 0 0 · · · 0

v2,m−1 v2,m 0 · · · v2,m

. . .
...

...
. . .

. . .
. . .

. . .
. . . vn−1,2

0 · · · · · · · · · · · · 0 vn,1

AV

1×(n−m+1)

= [(v1,m + ...+ vm,1) ...]

Figure 4.4: Insecure Pattern Matching Expressed as Linear Matrix and Vector Operations.

Finally we compute the activation vector by cutting the extraneous rows where a match

can not occur, and summing the columns to calculate the counter at each position i. i.e.

AV = ColSum(Cut(Stretch(Mt(CDV)))). As before, i is returned if AV [i] = m.

Using this construction, creating a secure protocol is straight forward. The server computes

and sends an encryption of his text matrix Mt. The client computes and sends an encryp-

tion of the CDV matrix MCDV . Using an additive homomorphic encryption scheme both the

server and the client compute an encryption ofAV as E(AV) = ColSum(Cut(Stretch(Mt(CDV)))),

which due to linearity of matrix multiplication is computable if either Mt or MCDV is en-

crypted. The two parties then subtract m from each element in E(AV) and jointly test for

an encryption of 0, indicated a match. [BEM+12] include variants of this idea secure against

HBC and malicious adversaries.

95

4.3.4 Protocol 4: Garbled Circuit Based Text Processing

For some applications, additional text processing may be required once a match is found.

In this setting the server and client will perform a secure protocol in which the client learns

a function f(P, Ti, i) for only indicies i where the pattern matches, P = T̄i. The authors in

[KM10b] develop a protocol to securely compute this functionality by relying on two cryp-

tographic primitives keyword search and garbled circuits [Yao82]. Briefly, keyword search

allows a client to query for matching keywords from a server’s database, returning an arbi-

trary payload upon match. Garbled circuits allow for arbitrary secure function evaluation

via boolean circuits, however it requires computation linear in the circuit size. They use

keyword search to solve the exact pattern matching problem, and garbled circuits to com-

pute the generic functionality f on the matched results. First, they solve the exact pattern

matching problem, by requiring the pattern P to be a query, and each T̄i to be a keyword By

customizing the payload of the servers keywords they can transmit information allowing the

client to securely compute f(T̄i, i, P). A variety of information could be sent for specific f ’s,

however the authors observe that, in most cases, f is small enough to be easily computed

using Yao’s garbled circuits [Yao82]. First, the server transmits u garbled circuits to the

client. u being an upperbound on the number of matches of P in T . Next, the server sets

the payload for each keyword T̄i to the keys corresponding to his input of f , (T̄i; i). In this

way the client can add his input, P , and securely compute f for each match.

The novelty in this protocol is it’s ability to quickly compute a large class of text processing

functions while still remaining efficient. The protocol runs in O(n + m) exponentiations

for the keyword search phase, and with O(u) gates. For circuits secure against the HBC

adversary each gate requires several symmetric key operations. While powerful, we note

that it has limitations. Primarily, it provides weaker than full malicious security. It also

cannot handle substring or wildcard pattern matching (Although inefficient extensions exist).

96

In addition, for efficient preprocessing of most circuits the server must know the value of m

before meeting with a client.

4.4 Open Problems

Despite the recent focus on developing secure pattern matching protocols, there still remain

several open problems. First, all of the secure pattern matching protocols, except for 5PM,

have not been implemented and thus little is known about their concrete timing and memory

requirements; such analysis is critical to assess the applicability of such protocols to real-life

scenarios. Second, most secure pattern matching protocols are either designed for the HBC

adversary model or the malicious adversary model. To the best of our knowledge, there are

no secure pattern matching protocols for other adversary models, such as covert adversaries.

As explained earlier, the covert adversary model is much stronger than the HBC model and

provides adequate security for real world application, typically without requiring expensive

cryptographic primitives such as zero-knowledge proofs. Third, as multimedia and images

constitute a significant fraction of today’s (and future) data, it is natural to ask whether

one can devise more efficient secure pattern matching protocols for multidimensional data

instead of adopting protocols that are designed for one-dimensional data. As an example

of multidimensional data, biological data, e.g., proteins, may require matching in multiple

dimensions. Finally, with the recent emphasis on streaming and ”big” data it is natural to

require secure generic pattern matching to operate efficiently on large amounts of streaming

data with constant memory and reasonable processing and timing constraints. This area

still remains largely unexplored.

97

Chapter 5

Size- and Position-Hiding Private

Substring Matching

This chapter addresses the problem of size and position hiding private substring matching

and its use in privacy-preserving genomics. It is based on my publication Secure Genomic

Testing with Size-and Position-hiding Private Substring Matching published in the Workshop

on Privacy in the Electronic Society written along with Emiliano De Cristofaro and Gene

Tsudik [DCFT13]. While the presentation has changed no extentions have been made.

Whole Genome Sequencing (WGS) is a revolutionary technology that determines the com-

plete genetic blueprint of any organism. In the context of human genomics, WGS is expected

to foster significant progress in the quality of healthcare [CM01]. In particular, genetic fea-

tures and mutations are being increasingly and more effectively studied in relation to treat-

ment of – as well as predisposition to – diseases and genetic conditions, such as Alzheimer’s,

diabetes and various types of cancer. Availability of fully sequenced genomes makes such

testing seamless and low-cost, since complex operations can now be executed in software, in

a matter of seconds [GW09]. This fuels the race toward cheaper, faster, and more accurate

98

sequencing technologies. Naturally, progress in genomics and WGS prompts numerous im-

mediate and anticipated benefits. At the same time, it amplifies security, privacy and ethical

concerns that stem from unprecedented sensitivity of genomic data. The human genome con-

tains detailed and extremely personal information, e.g., susceptibility to somatic and mental

conditions as well as ethnicity and ancestry. Therefore, potential disclosure triggers fears of

genetic discrimination, aka “eugenism”. Moreover, due to its hereditary (cumulative) nature,

the human genome encodes information beyond the individual: it also contains information

about one’s siblings, parents as well as other ancestors and descendants.

A genome uniquely identifies its owner, which makes anonymization and de-identification

techniques ineffective [GMG+13, Mal05, H+08, W+09, ZPL+11]. Security and privacy issues

in genomics have been studied by security experts [BBD+11, Mal05] as well as biologists,

ethicists [SOJH09, H+08, GSMG11] and policy-makers [Pre12]. We refer to [ADHT13] for a

comprehensive overview.

Risks of disclosure motivate the need for secure storage and testing of human genomes. In

particular, there is a need for genetic testing by physicians and/or laboratories without full

access to individuals’ genomes. In an idealized future setting, genetic tests should only

disclose the required minimum amount of information. At the same time, genomics and

biotechnology companies often treat test details as trade secrets, since they represent valuable

intellectual property [Gen12b, Gen12a]. For instance, Myriad Genetics recently attempted

to patent two human genes, which, if mutated, are associated with significantly increased risk

for breast and ovarian cancers [Pol13]. The legality of these patents was recently challenged

and the US Supreme Court has declared them invalid [Wol13]. This decision was based on

the premise that, owing to its natural occurrence, no part of a genome is patentable. We

believe that, because of this landmark decision, the commercial sector will have no choice

but to keep its test specifics (e.g., genetic markers) proprietary. Thus, while the outcome

99

of a genetic test might be made available to the patient and/or the testing laboratory, test

specifics would be kept confidential by the latter.

These challenges extend to the emerging field of personalized medicine, i.e., the practice of

tailoring diagnoses, pre-symptomatic examinations, and treatments to the precise genetic

makeup of individual patients. Already today, a number of companies (e.g., 23andme, i-gene

and Knome) provide customers with detailed reports about their predisposition to diseases

and conditions. Several drugs (e.g., for treating cancer, HIV and leukemia) are coming

to market accompanied by related genetic tests, that are necessary to assess correct dosage

and/or expected effectiveness [Bur12, Abb03, PB08]. Again, while details of such tests might

be proprietary, patients are strongly dis-incentivized from submitting their entire genomes

for testing.

Motivated by the above discussion, this chapter explores efficient cryptographic protocols

for genomic testing that satisfy aforementioned privacy requirements. Specifically, we focus

on a setting where one party, server, holds a copy of his digitized genome and the other,

client, holds a (possibly non-contiguous) substring that might occur in a certain location

of server’s genome. The specific problem at hand is: how to allow server to test for the

presence of client’s substring at a certain location in his genome, such that server learns

nothing about the substring (including its position and its size), while client learns nothing

about the genome?

We address this problem by building a novel cryptographic primitive, called Size- and

Position-Hiding Private Substring Matching (SPH-PSM) Despite its genomics-based

motivation, SPH-PSM is appealing in any substring-testing setting where size and position

(and, clearly, the contents) of the partial substring should be concealed, since both values

can leak information about the nature of the test.

100

We also describe a prototype of SPH-PSM and demonstrate its practicality via a thorough

performance evaluation, which shows that many genomics tests can be conducted today in

under a minute.

Chapter Organization: The next section presents the problem statement. Section 5.1.2

describes and analyzes the SPH-PSM protocol. Next, Section 5.2 presents efficient instan-

tiations of SPH-PSM and introduces several optimizations. Finally, Section 5.3 discusses

further extensions and variations.

5.1 Problem Statement

The quest for Predictive, Preventive, Participatory, and Personalized (P4) medicine [HG09]

has been one of the main motivating factors in genomics research. With the advent of low-cost

sequencing technologies, the natural next step is to provide physicians and testing facilities

with computational means to query, correlate, and analyze entire digitized genomes [You12].

One prominent challenge is where and how to store a digitized genome, i.e., 3.2 billion letters.

This issue is rife with privacy and trust considerations. As noted in [BBD+11], individuals

should ideally retain ownership of their sequenced genome and selectively allow partially

trusted third parties (such as physicians, clinicians and testing facilities) to query it.

Privacy and ethical concerns prompt the need for secure genomic tests that offer simultaneous

confidentiality of the individual’s genome and test specifics. Since data obfuscation and

anonymization tools are ineffective in the genomic context [GMG+13, Mal05, H+08, W+09],

secure computation techniques are needed to realize privacy-preserving versions of these

tests, whereby only the test result is disclosed to one or both participants. This presents

some challenges: First, secure computation techniques must contend with the sheer size of

the genome, which makes it crucial to maximize pre-computation and minimize protocol

101

input size. Furthermore, each current genetic test needs to be mapped to a function with

output conveying nothing beyond the test outcome. For example, a testing facility may want

to check for the presence of a few DNA markers in a patient’s genome to determine correct

dosage for a blood thinning drug: a privacy-preserving version of this test would disclose

nothing beyond whether this patient has these exact markers.

Specifically, the test should not leak:

1. Position(s) of tested markers,

2. How many markers are being tested, and

3. The subset of matched markers, in case of an overall negative result.

In the genomic setting, where the number of current genomic tests is relatively small, the

size- and position-hiding are particularly important. This is because disclosure of the number

or positions of markers could allow the adversary to infer test specifics. Satisfying aforemen-

tioned three requirements is an open problem, which we address in this chapter.

5.1.1 Definitions & Notation

We now introduce a technique for private genomic testing, whereby a testing facility checks

for the presence of a substring or a pattern in a patient’s genome, such that the latter learns

the outcome and no other knowledge is obtained by either party. We do so by introduc-

ing a cryptographic primitive called Size- and Position-Hiding private Substring Matching

(SPH-PSM). After defining privacy requirements, we present a generic construction based

on additively homomorphic encryption and analyze its security.

Our notation is reflected in Table 5.1.

102

a←$ A Variable a chosen uniformly at random from A
Σ={A,G,C, T,−} DNA Alphabet (‘−’ denotes deletion)
p = {Σ}m Potential substring held by client, of length m
t = {Σ}n String held by server, of length n
i ∈ [1,m], j ∈ [1, n] Indices of characters in p and t, respectively
pi, tj Elements in positions i and j, of p and t, respectively
t[j : x] Substring in t starting at tj , of length x
s Presumed starting location of p in t
λ Security parameter
AddHomEnc An IND-CPA additively homomorphic cryptosystem
PK,SK server’s private and secret key for AddHomEnc
E(·), D(·) Encryption (with PK) and decryption (with SK) in AddHomEnc
G Plaintext group of E
q = ord(G) The order of the plaintext group
E(a) · E(b) = E(a+ b) Multiplication of two ciphertexts resulting in addition of two plaintexts
E(a)c = E(a · c) Exponentiation resulting in multiplication of plaintext by constant
⊥ No output
≡c Computational indistinguishability

Table 5.1: Notation used throughout the chapter.

Definition 5.1 (Size- and Position-Hiding Private Substring Matching (SPH-PSM).). A

protocol involving two parties: Client, on input ((p = p1, ..., pm), s), and Server, on input

(t = t1, ..., tn):

FSPH-PSM((p, s), t)→ (⊥, b),where b =

 1 iff t[s : m] = p

0 otherwise

Correctness. If both parties are honest and run on correct input (as above), at the end

of the protocol, server outputs 1 iff t[s : m] = p and 0 otherwise (except with negligible

probability).

Notation used throughout the rest of the chapter is reflected in Table 5.1.

Adversarial Model. We use standard security models for secure two-party computation

and assume the Honest-but-Curious (HbC) model. The term adversary refers to insiders,

i.e., protocol participants. Outside adversaries are not considered, since their actions can be

103

mitigated via standard network security techniques. Protocols secure in the HbC adversarial

model assume that all parties faithfully follow all protocol specifications. However, during or

after protocol execution, any party might (passively) attempt to infer additional information

about the other party’s input.

We argue that, in the genomic testing setting, HbC security is sufficient. Genomic testing

usually takes place in a medical lab or a physician’s office and we therefore expect some

degree of trust between the patient and the testing lab. Thus, we envision no incentive for

participants to arbitrarily deviate from the protocol. Also, due to their sensitivity, genomic

tests can be audited and there might be legal consequences for malicious behavior by either

party. Furthermore, in the event of a testing facility breach and/or data loss, privacy of the

genome holder remains guaranteed.

The HbC model is formalized by considering an ideal implementation where a trusted third

party (TTP) receives the inputs of both parties and outputs the result of the desired function.

Security in this model requires that, in the real implementation of the protocol (without a

TTP), each party does not learn more information than in the ideal implementation. We

introduce simulation-based privacy definitions below.

NOTE: Recall that, in our setting, Client plays the role of the testing laboratory and Server

is the individual in possession of a digitized genome.

Client’s Privacy. Let V iewB((p, s), t) be a random variable representing server’s view during

the real execution of SPH-PSM. We say that SPH-PSM guarantees Client’s privacy if there

exists a Probabilistic Polynomial Time (PPT) algorithm B∗ such that, given server’s output

b, the following holds:

{B∗(t, b)}((p,s),t) ≡c {V iewB((p, s), t)}((p,s),t)

104

That is, for all possible inputs, with the knowledge of the output bit b and server’s input,

B∗ can efficiently simulate the view of server.

Server’s Privacy. Similarly, let V iewA((p, s), t) be a random variable representing client’s

view during the real execution of SPH-PSM. We say that SPH-PSM guarantees server’s

privacy if there exists a PPT algorithm A∗ such that, given n = |t|:

{A∗((p, s), n)}((p,s),t) ≡c {V iewA((p, s), t)}((p,s),t)

Although we require knowledge of text length for efficient simulation, in many applications

this variable is public or fixed, e.g., 3.2 billion for human genomes.

Additively Homomorphic Encryption. We assume the existence of an efficient addi-

tively homomorphic public-key cryptosystem with indistinguishability under CPA attacks

(IND-CPA). To ease presentation, we denote it as AddHomEnc. Recall that there are sev-

eral AddHomEnc instantiations, including: Paillier [Pai99], Dramgard-Jurik [DJ01], as well

as the Additively Homomorphic ElGamal variant [ElG85].

For each instantiation application of homomorphic operations vary slightly. As described in

Table 5.1, we denote the homomorphic addition operation as multiplication of ciphertexts.

Further, we denote multiplication by a constant by the exponentiation of a ciphertext.

5.1.2 Proposed Construction

We now present an SPH-PSM protocol that involves server on input a string t (i.e., a

genome), and client who holds a substring p (of length m) that might occur at location s in

t. We later extend this protocol to support multiple starting locations. At the end of the

105

interaction, server learns nothing about client’s substring, not even its length or intended

position, while client learns the test outcome, i.e., b = 1 iff t[s : m] = p and b = 0 otherwise.

Protocol. Figure 5.1 illustrates the protocol. It relies on an additively homomorphic cryp-

tosystem AddHomEnc, composed by KeyGen(1λ), E(·), and D(·). It assumes that server

has previously generated a keypair (PK, SK) for AddHomEnc, as part of KeyGen.

First, server encrypts, under its own public key, each nucleotide of the genome and sends

client the resulting ciphertexts. Starting at position s, client homomorphically adds each

encrypted nucleotide to the encryption (under PK) of the inverse of each substring character.

If the corresponding plaintexts match, the product of the two ciphertexts is an encryption of

zero, due to the homomorphic property of AddHomEnc. To guarantee privacy, each product

is re-randomized by exponentiating it to a random value. Then, client multiplies all products

so that, if the substring is found in server’s genome, the result would still be an encryption

of zero. Otherwise, it corresponds to an encryption of a random number. Finally, this

cumulative ciphertext (denoted as acc) is sent to server. Upon decryption, server learns the

test outcome: positive if the ciphertext decrypts to zero and negative otherwise.

Complexity. Communication overhead amounts to O(n) ciphertexts, i.e., ≈ 3.2 billion

encrypted nucleotides. Although this might seem overwhelming, we discuss how to reduce

online costs in Section 5.3.4. On the other hand, computational complexity is minimal, since

the only operation that involves all n nucleotides is encryption of server’s genome. This

needs to be done only once, ahead of time, for all possible tests. In fact, it could even be

done by the sequencing lab, at sequencing time. Whereas, online computational complexity

is linear in the size of the substring, i.e., m = |p|. Specifically, client needs to perform O(m)

operations (where m << n), while server’s overhead is constant — one decryption.

106

Common input: E(·), D(·), PK, q

client on input: (p={p1, ..., pm}, s) server on input: SK, t={t1, ..., tn}

[Offline]

For 1 ≤ j ≤ n:

etj = E(tj)

[Either Online or Offline] [Either Online or Offline]

{et1, ..., etn}
oo

[Online] [Online]

acc = E(0)

For s ≤ j < s+m,

i = j − s+ 1
ri ←$ Zq
acc = acc · ((E(−pi) · etj)ri)

acc
// If D(acc) == 0 : Output b = 1

Else: Output b = 0

Figure 5.1: Base-line SPH-PSM Protocol.

Finally, client only performs computation on ciphertexts etj for s ≤ j < s + m. All other

ciphertexts can be discarded. Also, client’s computation can start as soon as ets is received.

Therefore, client requires only a negligible amount of local storage.

107

Common input: (g, P, q, y = gx mod P,H(·))

client on input: (p={p1, ..., pm}, s) server on input: sk=x, t={t1, ..., tn}

[Offline] [Offline]

For 1 ≤ i ≤ m: For 1 ≤ j ≤ n:

ri ←$ Zq rj ←$ Zq
hpi = H(pi||i+ s) htj = H(tj ||j)
epi = (gri , g−hpiyri) etj = (grj , ghtjyrj)

[Either Online or Offline] [Either Online or Offline]

{et1, ..., etn}
oo

[Online] [Online]

α←$ Zq
acc = (gα, g0yα)

For s ≤ j < s+m,

i = j − s+ 1
acc = acc · etj · epi

β ←$ Zq
acc = (acc)β

acc = (c1, c2)
// If (c1)x == c2 : Output b = 1

Else: Output b = 0

Figure 5.2: AH-ElGamal based SPH-PSM. (Computation is done mod P).

5.1.3 Security Analysis

Theorem. If AddHomEnc is an IND-CPA additively homomorphic cryptosystem, the pro-

tocol in Figure 5.1 correctly computes SPH-PSM with both server’s and client’s privacy.

Proofs. We now show that the protocol satisfies correctness and both parties’ privacy, as

defined in Section 5.1.3.

Correctness. We show that b = 1 if and only if t[s : m] = p except for probability negligible

in λ. First, we note that:

108

t[s : m] = p ⇐⇒ ∀i=1,...,m ts+i−1 = pi=⇒
m∑
i=1

(ts+i−1 − pi)ri = 0

Furthermore, since:

acc =
m∏
i=1

(E(ts+i−1) · E(−pi))ri = E

(
m∑
i=1

(ts+i−1 − pi)ri
)

it follows that:

t[s : m] = p =⇒
∑m

i=1(ts+i−1 − pi)ri = 0 ⇐⇒ acc = E(0)

⇐⇒ b = 1

To complete the proof, we only need to show that:

m∑
i=0

(ts+i−1 − pi)ri = 0 =⇒ t[s : m] = p

Note that, if pi does not match ts+i, then the i-th element in the sum is a random group

element r′i.

ts+i−1 6= pi =⇒ (ts+i−1 − pi)ri = r′i

Thus, the sum comprises m random group elements. However, it equals zero with probability

1/q, which is negligible in λ. Hence, if the sum is zero, then it must hold that t[s : m] = p,

with overwhelming probability.

Client’s Privacy. To show that server’s view can be efficiently simulated, we construct a

simulator B∗. On input of (t, b), B∗ outputs the real transcript, except for acc – the only

value received by server– which B∗ computes as: acc = E(0) if b = 1 and acc = E(r) for

r ←$ Zq, otherwise. Note that acc is distributed identically to the real execution, since, as

noted above, if b = 0, then acc is the encrypted sum of one or more random group elements

and/or many zeros, and is itself an encryption of a random group element.

109

Server’s Privacy. To show Server’s privacy, we construct a simulator A∗. On inputs

((p, s), n), A∗ first outputs {et′1, ..., et′n} where et′j = {E(rj)} and rj ←$ Zq. Then, A∗

outputs the rest of the view, as usual. Based on indistinguishability of AddHomEnc, it holds

that: ∀j et′j ≡c etj, hence the view and the simulation are computationally indistinguishable.

5.1.4 Timing Attacks

client’s and server’s privacy properties discussed above guarantee that each party only learns

what it is intended to learn, based on the information (i.e., protocol messages) exchanged.

However, they do not take into account auxiliary means of information leakage, such as the

timing channel.

It is easy to see that client’s computation in the online phase of the protocol is proportional

to m – search substring size. Thus, assuming negligible message transmission delay and

knowledge of the client’s computing platform, server (or anyone observing the protocol)

could estimate m.1

There are several ways to counter such timing attacks. One trivial counter-measure is for

client to pipeline (or parallelize) transfer of the encrypted genome, i.e., {et1, ..., etn}, with

the computation of acc in the loop of Figure 5.1. Since m << n, O(m) computation

overhead at client is dominated by the O(n) communication overhead incurred by transfer

of the encrypted genome. Though this is easy to achieve, client would have to wait to reply

with acc until all ciphertexts are received, regardless of the starting location of the search

substring.

Alternatively, we could consider transfer of the encrypted genome as part of the protocol’s

offline phase. Then, the online phase begins with client performing O(m) operations and

no other party can infer m since it is not privy to client’s actual starting time. This might,

1Note that timing attacks against server are not meaningful in our context.

110

in fact, reflect a real-world setting where a testing facility receives encrypted genomes from

many patients and batches computation.

Finally, client could delay sending the final protocol message containing acc for a certain

period. If this delay matches the time to compute a pattern of length m′, client can effec-

tively pad m to m′. With the optimized version of our protocol (see Section 5.2.2), client’s

O(m) operations reflect inexpensive modular multiplications, which can be completed, for

m ≤ 108, in under one minute. Thus, m′ can be several orders of magnitude greater than

m, without unduly affecting the overall run-time of the protocol.

5.2 SPH-PSM in Practice

We now discuss some practical considerations for implementing SPH-PSM.

5.2.1 Instantiating AddHomEnc

As discussed in Section 5.1.2, SPH-PSM relies on availability of AddHomEnc, i.e., IND-CPA-

secure additively homomorphic encryption. There are several suitable candidates, including

Paillier [Pai99], Dramgard-Jurik [DJ01], and Okamato-Uchiyama [OU98].

However, it is easy to see that SPH-PSM does not actually require ability to decrypt arbitrary

ciphertexts. In fact, for the purposes of SPH-PSM, it suffices to test whether a ciphertext

is an encryption of zero. This allows us to consider the Additively Homomorphic ElGamal

variant (AH-ElGamal) as one of the choices.

AH-ElGamal involves the following algorithms:

111

• Key Generation: On input of security parameter λ, select public parameters (g, P, q)

for primes P, q and g generator of subgroup of ZP of order q. (Note: we use P instead

of more customary p, since, in our notation, p denotes client’s substring). Private key

SK is x←$ Zq and public key PK is y = gx mod P .

• Encryption: EPK(m) = (c1, c2), where c1 = gr mod P and c2 = gmyr mod P , for

r ←$ Zq.

• Testing for Encryption of Zero: DSK(c1, c2) = 0 if and only if c2 = (c1)x mod P .

There is also an Elliptic Curve-based ElGamal variant (EC-ElGamal) that is additively

homomorphic [UWL+09]. It involves the following algorithms:

• Key Generation: On input of security parameter λ, select public parameters (P, e,G, η),

where e is an elliptic curve over finite field GF(P), η is the order of curve e, and G is

the generator point of e. SK is integer x ∈ GF(P), and PK is Y = xG.

• Encryption: EPK(m) = (R, S), where R = rG and S = M + rY , for r ∈ [1, η − 1].

• Decryption: DSK(R, S) = −xR + S.

Naturally, to efficiently realize SPH-PSM, we need an AddHomEnc instantiation that meets

the following criteria: (1) ability to test for encryption of zero, (2) small ciphertext size, (3)

fast encryption, and (4) fast homomorphic addition operations.

Actually, the “weight” of such factors depends on whether transfer of server’s encrypted

genome is part of the offline phase. If so, complexity of SPH-PSM is clearly dominated

by client’s O(m) computation overhead. Thus, the preferred instantiation is AH-ElGamal

due to its computational efficiency. Since random exponents can be taken from a subgroup

(e.g., 160-bit), encryptions and re-randomizations can be computed efficiently, e.g., relative

to Paillier.

112

AH-ElGamal EC-ElGamal
m = |p| Online Online Optimized Substring Prepr. Online Online Optimized Substring Prepr.

10 0.76ms 0.1ms 0.46ms 12.71ms 0.78ms 7.05ms
102 4.51ms 0.22ms 4.05ms 66.15ms 3.77ms 36.9ms
103 28.72ms 0.68ms 20.35ms 635.99ms 32.64ms 317.62ms
104 291.12ms 6.02ms 168.28ms 6.41s 318.65ms 3.17s
105 2.86s 60.18ms 1.63s 1m 7s 3.28s 31.95s
106 28.61s 647.05ms 16.9s 10m 35s 31.85s 5m 17s
107 4m 45s 6.25s 2m 41s 1h 45m 5m 19s 52m 55s
108 47m 37s 1m 2s 26m 53s 17h 38m. 53m 17s 8h 49m
109 7h 56m 10m 25s 4h 28m 7d 8h 8h 52m 3d 16h

3 · 109 23h 48m 31m 16s 13h 26m 22d 1h 1d 2h 11d 54s

Table 5.2: SPH-PSM: computation time for varying substring lengths.

Conversely, if transferring the encrypted genome is part of the online phase, transfer domi-

nates complexity of SPH-PSM. Thus, the preferred instantiation is EC-ElGamal, since group

elements are much smaller (160-bit), as opposed to 1024-bit in AH-ElGamal and 2048-bit in

Paillier, using the same security parameters.

5.2.2 ElGamal-based SPH-PSM

We now present an ElGamal-based instantiation of SPH-PSM and introduce some optimiza-

tions. We focus on reducing computational complexity of the online phase. Although we

describe this instantiation in terms of AH-ElGamal, the discussion applies to EC-ElGamal

as well.

In AH-ElGamal, multiplying two ciphertexts (adding two corresponding plaintexts) is markedly

more efficient than exponentiating a ciphertext with a constant (multiplying the correspond-

ing plaintext by the constant). Therefore, we modify the basic protocol of Figure 5.1 such

that client’s online phase only involves multiplications. Rather than encrypting a raw nu-

cleotide, server encrypts the hash of the nucleotide along with its corresponding position in

the genome. To this end, we need a hash function H : {0, 1}∗ → Zq (modeled as a random

oracle)2.

2Without a hash function, there can be cross cancellation between positions.

113

The resulting protocol is shown in Figure 5.2. client performs O(m) modular multiplications

and only O(1) modular exponentiations during the online phase. This greatly reduced online

overhead also helps thwart timing attacks discussed in Section 5.1.4.

5.2.3 Performance Evaluation

Protocols discussed in this chapter have been implemented in C++, and tested on a desktop

machine running Ubuntu 12.10, with an Intel i7-3770 3.4GHz quad-core CPU and 16GB

of RAM. We implemented 1024-bit AH-ElGamal using the gmp [gmp16] library and 160-

bit EC-ElGamal – using the OpenSSL library [Ope16]. We break up the measurements as

follows:

1. Genome Encryption – time for Server to encrypt his genome.

2. Data Transfer – time for client to download server’s genome.

3. Substring Pre-processing – time for Client to pre-process her substring.

4. Online Phase – time elapsed after genome is received, until server outputs the result,

i.e., b. (This phase is dominated by client’s computation).

Experiments were conducted with client’s substring size ranging from 10 to 3 · 109 letters.

For tests taking longer than several hours, run-times have been estimated by performing

tests on a “smaller” genome (107 nucleotides). This is justifiable since tested protocols incur

linear complexities.

We also note that our experiments were conducted rather conservatively, using a single thread

on a regular (mid-range) desktop machine. More realistic scenarios would involve machines

with multiple cores, much bigger RAM and higher-end CPU-s.

114

First, we measured genome encryption: it took approximately 115 hours using AH-ElGamal

and an impressive 2, 580 hours using EC-ElGamal. This significant difference can be ex-

plained by the fact that AH-ElGamal is implemented using gmp, whereas, EC-ElGamal –

using OpenSSL, which is markedly slower. While we do plan to optimize EC-ElGamal per-

formance, this issue is somewhat secondary, since: (1) EC-ElGamal is used in settings where

first priority is to minimize communication overhead, and (2) a genome is encrypted only

once, ahead of time, and (3) encryption can be easily parallelized, using multiple cores.

Next, we estimate the time to transfer the encrypted genome. On a 1Gbps link, it takes

approximately 2.7 hours with EC-ElGamal and 8.7 hours with AH-ElGamal. Due to linear

complexity of SPH-PSM, transfer times over networks with different speed can be straight-

forwardly inferred, e.g., 27 hours with EC-ElGamal and 87 hours with AH-ElGamal over a

100Mbps link.

Finally, Table 5.2 reports on run-times for client’s substring pre-processing and for the online

phase dominated by client’s computation. For the latter, we quantify the speedup due to

the optimization presented in Section 5.2.2.

Although we report on tests conducted up to the largest possible substring, i.e., the entire

genome (3 ·109 letters), most genomic applications used today require testing of significantly

smaller substrings. For example, prior work in [BBD+11] and [DCFGT12] supported per-

sonalized medicine testing with fewer than 1, 002 markers, e.g., analysis of the tpmt gene

common in leukemia patients, or testing for hla-b variants associated to sensitivity to some

HIV drugs. For this class of tests, our optimized SPH-PSM protocol completes in less than

minute. However, it is still feasible to securely conduct future tests with much larger sub-

strings.

115

5.3 Extensions

We now discuss some natural extensions to the basic SPH-PSM protocol.

5.3.1 Revealing Test Outcome to Alice

Under some circumstances, it might be necessary for both server and client to learn the test

outcome. For example, “client” might actually be a medical laboratory and it could be in

the patient’s best interest to reveal the test outcome to a specialist as soon as possible.

In the HbC model,we can trivially extend the basic SPH-PSM protocol to allow server to

communicate b to client. Nonetheless, we leave it for future work to explore the use of

threshold cryptosystems to provably enforce mutual output in SPH-PSM, e.g., by relying on

threshold ElGamal [DF89] or threshold Paillier [FP01, DJ01].

5.3.2 Fixed-Size Wildcards and Non-Contiguous Substrings

client’s substring might contain fixed-length wildcards or it might be non-contiguous. There

is no real difference between a substring such as “ACG??TAAC” (where “?” is a single-

character wildcard) and a two-part (non-contiguous) substring “ACG” and “TAAC”, with

each part starting at some locations s1 and s2, that are arbitrary number of positions apart,

e.g., s2 = s1 + 5.

It is easy to see that our basic protocol is independent of contiguity of Client’s substring.

Computational complexity remains O(m).

116

5.3.3 Multiple Substrings/Starting Locations

In some applications, client might not know the exact starting position of a particular search

substring: it could begin in several (v) possible positions. This situation is typical in genomic

testing since alignment of the patient’s genome may not always be exactly precise. We can

easily extend SPH-PSM such that client only learns whether any one of these positions

match. The resulting extension is a trivial variation of the basic version. The resulting

protocol only incurs O(m ∗ v) computation overhead, at client’s side, as compared to O(m)

in the basic protocol; communication and server’s computation overheads are unaltered.

A similar case occurs when, even if the exact starting position is known, a particular position

in a search substring can be one of several choices. For example, “GA[G,T]TACA”

denotes that position 3 in the substring can be either G or T. This is clearly distinct from a

single-character wildcard, since neither A nor C is allowed in this position. The natural way

to deal with such disjunctive conditions is to try to match two substrings: “GATTACA”

and “GAGTACA” starting at the same position. The very same protocol extension applies

here.

Yet another variation occurs whenever multiple distinct substrings (p1, . . . , pw) are matched

in parallel or disjunctively. In this case server learns how many matches occur. This case

is slightly different from that of non-contiguous substrings or wildcards mentioned above,

where server only learns the result of a single test. Again, the same extension handles this

case. Communication and server’s computation complexities are unaltered, while client’s

computation overhead would amount to O(
∑w

i=1 |pi|), as compared to O(|p| = m) in the

basic version.

117

5.3.4 Reducing Data Transfer Time

The basic protocol entails server sending the entire letter-by-letter encrypted genome to

client. This constitutes the most costly part of the protocol – about 3.2 · 109 ciphertexts.

With EC-ElGamal, where each ciphertexts is a 320-bit value, transferring the encrypted

genome translates into roughly 100GB of data.

However, this massive data transfer needs to happen only once for many tests that server

(e.g., a given patient) conducts with client (e.g., a particular medical facility). Also, while

transmitting encrypted genomes in real time might be unfathomable today, it will likely

become realistic in not-so-distant future. Plus, most genomic tests are not typically spon-

taneous, i.e., patients plan and schedule them in advance. Consequently, transfer of the

encrypted genome can take place incrementally over some period preceding the actual test.

In fact, a testing facility could interact with many patients at a time, gradually upload-

ing their encrypted genomes. Once a given patient’s genome is fully uploaded, the actual

protocol begins.

Physical Transfer. For some tests, server might physically visit the testing facility (client).

In that setting, server might be asked to bring along a dedicated device, e.g., a USB stick or

a portable flash drive, containing the entire encrypted genome. Such passive devices capable

of storing over 1TB of data are readily available today and cost well below US$100. Once

plugged into client’s computing equipment, much faster transfer rates apply: for example,

USB 3.0 offers transfer rates of up to 4.8Gbps, which translates into about 3 minutes for

transferring the encrypted genome.

Alternatively, client could simply read the desired m ciphertexts directly from server’s drive

and perform computation on them, without bothering with any other data. This would

clearly minimize communication delay. However, care must be taken to prevent attacks that

118

might exploit the portable drive’s logs or other data to later infer locations that have been

read by client.

Leveraging Cloud Storage. Another possibility is to use the cloud. By storing server’s

encrypted genome at a cloud provider, transfer of the encrypted genome would need to be

performed only once, for all possible tests and testing facilities. The cloud provider can

offer both higher bandwidth and availability. However, if the cloud provider is also trusted

not to collude with server, client could avoid bulk transfer and selectively fetch only desired

ciphertexts. (A collusion would reveal the size and position of the substring held by client.)

One potential concern, even without any collusion, is that the cloud provider would learn

the size and position of client’s substring. Fortunately, the latter can be mitigated by letting

client and server pre-agree on a common secret that server could later use to shuffle encrypted

nucleotides before uploading to the cloud. This way, ordering of ciphertexts (but not m –

the substring size) would be obscured from the cloud provider.

Alternatively, client could rely on cryptographic techniques for Private Information Retrieval

(PIR) [CGKS95] to securely retrieve m desired ciphertexts from the cloud. Despite PIR’s

computational overhead, recent results [BPMO12, MBC13] show that PIR can be efficiently

adapted to cloud settings where a static database is maintained in a MapReduce cluster.

However, the size of client’s substring would be revealed to the cloud provider.

5.3.5 Coping with (Some) Malicious Input

We now consider the case where malicious server tries to guess the specifics of client’s test,

by verifying its guess of client’s input. Let (p, s) denote client’s input and (p′, s′) – server’s

guessed version. While faithfully following all SPH-PSM protocol steps, server inputs a

concocted genome t′ where t′[s′ : m′] = p′ and m′ = |p′|. In other words, the substring

119

in t′ starting at position p′ is set to s′. (We assume, without loss of generality, that s

and s′ are contiguous substrings). For all other positions, server sets tj = X for some

X /∈ {A,C,G, T,−}. Then, server uses t′ as input for SPH-PSM with client. It is easy to

see that, if acc decrypts to zero, server learns that (p, s) = (p′, s′).

On one hand, in the HbC model, server is assumed not to deviate from the protocol, which

should rule out this guessing attack. On the other hand, while HbC is clear with respect to

participants scrupulously following all protocol steps, it is somewhat murky with regard to

the validity or goodness of participants’ input. To err on the side of caution, we can address

server’s input validity (and hence guessing attacks such as the one above) by indirectly

integrating the genome sequencing lab into the domain of SPH-PSM.

Specifically, at sequencing time, the genome sequencing facility (denoted by Charlie) could

offer some additional services beyond supplying a digitized genome:

• Encrypt the genome, one nucleotide at a time, under server’s public key to produce

et1, ..., etn. This is a reasonable service for Charlie to provide, since it anyhow learns

server’s genome and must communicate it back securely.

• Sign the encrypted genome (et1, ..., etn) as a whole. Similarly, to prevent any kind of

future disputes and provide overall integrity as well as origin authenticity, it makes

sense for Charlie to sign what it produces.

Armed with these modifications we can easily amend SPH-PSM to let server send client

a signed encrypted genome. By verifying Charlie’s signature, client can be assured that

server’s input is a valid genome sequenced by a reputable entity – Charlie. This change has

negligible effect on performance if transfer of the encrypted genome is part of the online

phase. This is because client needs to anyway receive all ciphertexts; it can gradually hash

the encrypted genome as it is being received and, at the end, verify Charlie’s signature.

120

However, if transfer is done off-line (as in Section 5.3.4) or the encrypted genome is accessed

piece-meal from a cloud provider, signing the entire encrypted genome is not useful. In this

case – also at sequencing time – Charlie could individually sign each ciphertext (encrypted

nucleotide). During the off-line phase, client can obtain selected ciphertext directly (from

the cloud provider or from server’s flash drive or USB stick) and easily verify that each etj,

for s ≤ j < s+m, is accompanied by a valid Charlie’s signature.

121

Chapter 6

Efficient Pattern Matching on

Symetrically Encrypted Data

This chapter addresses the problem of private pattern matching over large amounts of sy-

metrically encrypted data. It is based on my publication It is based on my publication Rich

Queries on Encrypted Data: Beyond Exact Matches published in the European Symposium

on Research in Computer Security written along with Stanislaw Jarecki, Hugo Krawczyk,

Quan Nguyen, Marcel Rosu, and Michael Steiner [FJK+15]. While the presentation has

changed no extentions have been made.

Searchable symmetric encryption (SSE) addresses a setting where a client outsources an

encrypted database (or document/file collection) to a remote server E such that the client,

which only stores a cryptographic key, can later search the collection at E while hiding

information about the database and queries from E . Leakage to E is to be confined to

well-defined forms of data-access and query patterns while preventing disclosure of explicit

data and query plaintext values. SSE has been extensively studied [SWP00, Goh03, CM05,

CGKO06, CK10, vLSD+10, KPR12, KO12, KP13, CJJ+13, JJK+13, CJJ+14, PVK+14,

122

NPG14], particularly in last years due to the popularity of clouds and data outsourcing,

focusing almost exclusively on single-keyword search.

Recently, Cash et al. [CJJ+13] and Pappas et al. [PVK+14] presented the first SSE solu-

tions that go well beyond single-keyword search by supporting Boolean queries on multiple

keywords in sublinear time. In particular, [CJJ+13, CJJ+14] build a very scalable system

with demonstrated practical performance with databases containing indexes in the order of

tens of billions document-keyword pairs. In this chapter we extend the search capabilities of

the system from [CJJ+13] (referred to as the OXT protocol) by supporting substring queries

(e.g., return records with textual information containing a given pattern, say ‘crypt’), wild-

card queries (combining substrings with one or more single-character wildcards), and phrase

queries (return records that contain the phrase “searchable encryption”). Moreover, by pre-

serving the overall system design and optimized data structures of [CJJ+14], we can run

any of these new queries in combination with Boolean-search capabilities (e.g., combining a

range and/or substring query with a conjunction of additional keywords/ranges/substrings)

and we can do so while preserving the scalability of the system and additional properties

such as support for dynamic data.

We also show how to extend our techniques to the more involved multi-client SSE scenarios

studied by Jarecki et al. [JJK+13]. In the first scenario, denoted MC-SSE, the owner of the

data, D, outsources its data to a remote server E in encrypted form and later allows multiple

clients to access the data via search queries and according to an authorization policy managed

by D. The system is intended to limit the information learned by clients beyond the result

sets returned by authorized queries while also limiting information leakage to server E . A

second scenario, OSPIR-SSE or just OSPIR (for Outsourced Symmetric PIR), addresses the

multi-client setting but adds a requirement that D can authorize queries to clients following

a given policy, but without D learning the specific values being queried. That is, D learns

123

minimal information needed to enforce policy, e.g., the query type or the field to which the

keyword belongs, say last name, but not the actual last name being searched.

The queries we support, i.e. substrings, wildcards and phrases, are all derived from a novel

technique that allows us to search on the basis of positioning information (where the data and

the position information are encrypted). This technique can be used to implement any query

type that can be reduced to Boolean formulas on queries of the form “are two data elements

at distance ∆?”. For example, in the case of substring queries, the substring is tokenized

(i.e., subdivided) into a sequence of possibly-overlapping k-grams (strings of k characters)

and the search is performed as a conjunction of such k-grams. However, to avoid false

positives, i.e., returning documents where the k-grams appear but not at the right distances

from each other, we use the relative positions of the tokens to ensure that the combined

k-grams represent the searched substring. Wildcard queries are processed similarly, because

t consecutive wildcard positions (i.e., positions that can be occupied by any character) can

be implemented by setting the distance between the two k-grams that bracket the string of

t wildcards to k + t. Phrase queries are handled similarly, by storing whole words together

with their encrypted positions in the text.

The crux of this technique is a homomorphic computation on encrypted position information

that gives rise to a very efficient SSE protocol between client C and server E for computing

relative distances between data elements while concealing this information from E . This

protocol meshes naturally with the homomorphic properties of OXT but in its general form

it requires an additional round of interaction between client and server. In the SSE setting,

the resulting protocol preserves most of the excellent performance of the OXT protocol (with

the extra round incurring a moderate increase in query processing latency). For the OSPIR

setting we resort to bilinear groups for some homomorphic operations, hence impacting

performance in a more noticeable way which we are currently investigating.

124

We prove the security of our protocols in the SSE model of [CGKO06, CK10, CJJ+13], and

the extensions to the MC-SSE and OSPIR settings of [JJK+13], where security is defined

in the real-vs-ideal model and is parametrized by a specified leakage function L(DB,q). A

protocol is said to be secure with leakage profile L(DB,q) against adversary A if the actions

of A on adversarially-chosen input DB and query set q can be simulated with access to the

leakage information L(DB,q) only (and not to DB or q). This allows modeling and bounding

the partial leakage incurred by SSE protocols. It means that even an adversary that has

full information about the database and queries, or even chooses them at will, does not

learn anything from the protocol execution other than what can be derived solely from the

defined leakage profile. We achieve provable adaptive security against adversarial servers E

and D, and against malicious clients. Servers E and D are assumed to return correct results

(e.g., server E returns all documents specified by the protocol) but can otherwise behave

maliciously. However, in the OSPIR setting, query privacy from D is achieved as long as D

does not collude with E .

Practicality of our techniques was validated by a comprehensive implementation of the SSE

protocols for substring and wildcard queries, and their combination with Boolean functions

on exact keywords. These implementations (extending those of [CJJ+13, JJK+13, CJJ+14])

were tested by an independent evaluator on DB’s of varying size, up to 10 Terabytes with

100 million records and 25.6 billion record-keyword pairs. Performance was compared to

MariaDB’s (an open-source fork of MySQL) performance on the same databases running on

plaintext data and plaintext queries. Due to the highly optimized protocols and careful I/O

management, the performance of our protocols matched and often exceeded the performance

of the plaintext system. These results are presented in Section 6.4.

Related Work. The only work we are aware of that addresses substring search on sym-

metrically encrypted data is the work of Chase and Shen [CS14]. Their method, based on

suffix trees, is very different than ours and the leakage profiles seem incomparable. This is

125

a promising direction, although the applicability to (sublinear) search on large databases,

and the integration with other query types, needs to be investigated. Its potential general-

ization to the multi-client or OSPIR settings is another interesting open question. Range

and Boolean queries are supported, also for the OSPIR setting, by Pappas et al. [PVK+14]

(building on the work of Raykova et al [RVBM09]). Their design is similar to ours in re-

ducing range queries to disjunctions (with similar data expansion cost) but their techniques

are very different offering an alternative (and incomparable) leakage profile for the parties.

The main advantages of our system are the support of the additional query types presented

here and its scalability. The scalability of [PVK+14] is limited by their crucial reliance on

Bloom filters that requires database sizes whose resultant Bloom filters can fit in RAM. A

technique that has been suggested for resolving range queries in the SSE setting is order-

preserving encryption (e.g., it is used in the CryptDB system [PRZB11]). However, it carries

a significant intrinsic loss of privacy as the ordering of ciphertexts is visible to the holding

server (and the encryption is deterministic). Range queries are supported in the multi-writer

public key setting by Boneh-Waters [BW07] and Shi et al. [SBC+07] but at a significantly

higher computational cost.

6.1 Preliminaries

Our work concerns itself with databases in a very general sense, including relational databases

(with data arranged in “rows” and “columns”), document collections, textual data, etc.

We use interchangeably the word ‘document’ and ‘record’. We think of keywords as (at-

tribute,value) pairs. The attribute can be structured data, such as name, age, SSN, etc., or

it can refer to a textual field. We sometimes refer explicitly to the keyword’s attribute but

most of the time it remains implicit. We denote by m the number of distinct attributes and

use I(w) to denote the attribute of keyword w.

126

SSE protocols and formal setting (following [CJJ+13]). Let τ be a security parameter.

A database DB = (indi,Wi)
d
i=1 is a list of identifier and keyword-set pairs, where indi ∈ {0, 1}τ

is a document identifier and Wi = DB[indi] is a list of its keywords. Let W =
⋃d
i=1 Wi. A

query PSI is a predicate on Wi where DB(PSI) is the set of identifiers of document that satisfy

PSI. E.g. for a single-keyword query we have DB(w) = {ind s.t. w ∈ DB[ind]}.

A searchable symmetric encryption (SSE) scheme Π consists of an algorithm Setup and a

protocol Search fitting the following syntax. Setup takes as input a database DB and a

list of document (or record) decryption keys RDK, and outputs a secret key K along with

an encrypted database EDB. The search protocol Search proceeds between a client C and

server E , where C takes as input the secret key K and a query PSI and E takes as input

EDB. At the end of the protocol, C outputs a set of (ind, rdk) pairs while E has no output.

We say that an SSE scheme is correct for a family of queries Ψ if for all DB,RDK and all

queries PSI ∈ Ψ, for (K,EDB) ← Setup(DB,RDK), after running Search with client input

(K,PSI) and server input EDB, the client outputs DB(PSI) and RDK[DB(PSI)] where RDK[S]

denotes {RDK[ind] | ind ∈ S}. Correctness can be statistical (allowing a negligible probability

of error) or computational (ensured only against computationally bounded attackers - see

[CJJ+13]).

Note (retrieval of matching encrypted records). Above we define the output of the SSE

protocol as the set of identifiers ind pointing to the encrypted documents matching the

query (together with the set of associated record decryption keys rdk). The retrieval of the

document payloads, which can be done in a variety of ways, is thus decoupled from the

storage and processing of the metadata which is the focus of the SSE protocols.

Multi-Client SSE Setting [JJK+13]. The MC-SSE formalism extends the SSE syntax

by an algorithm GenToken, which generates a search-enabling value token from the secret key

K generated by the data owner D in Setup, and query PSI submitted by client C. Protocol

127

Search is then executed between server E and client C on resp. inputs EDB and token, and

the protocol must assure that C outputs sets DB(PSI) and RDK[DB(PSI)].

OSPIR SSE Setting [JJK+13]. An OSPIR-SSE scheme replaces the GenToken procedure,

which in MC-SSE is executed by the data owner D on the cleartext client’s query q, with

a two-party protocol between C and D that allows C to compute the search-enabling token

without D learning PSI. However, D should be able to enforce a query-authorization policy

on C’s query. We consider attribute-based policies, where queries are authorized based on

the attributes associated to keywords in the query (e.g., a client may be authorized to run

a range query on attribute ‘age’ but not on ‘income’, or perform a substring query on the

’address’ field but not on the ‘name’ field, etc.). Later, we will consider extensions where

the policy can define further constraints, e.g., the total size of an allowed interval in a range

query, or the minimal size of a pattern in a substring query. An attribute-based policy for

any query type is represented by a set of attribute-sequences P s.t. a query PSI involving

keywords (or substrings, ranges, etc) (w1, ..., wn) is allowed by policy P if and only if the

sequence of attributes av(PSI) = (I(w1), ..., I(wn)) ∈ P. Using this notation, the goal of

the GenToken protocol is to let C compute token corresponding to its query on PSI only

if av(w̄) ∈ P. Note that different query types will have different entries in P. Reflecting

these goals, an OSPIR-SSE scheme is a tuple Σ = (Setup,GenToken, Search) where Setup

and Search are as in MC-SSE, but GenToken is a protocol run by C on input PSI and by D

on input (P, K), with C outputting token if av(PSI) ∈ P, or ⊥ otherwise, and D outputting

av(PSI).

6.2 Substring Queries

Our substring-search capable SSE scheme is based on the conjunctive-search SSE protocol

OXT of [CJJ+13], and it extends that protocol as follows: Whereas the OXT scheme of

128

[CJJ+13] supported efficient retrieval of records containing several required keywords at

once (i.e. satisfying a conjunction of several keyword-equality search terms), our extension

supports efficient retrieval of records containing the required keywords at required relative

positions to one another. This extension of conjunctive search with positional distance

criteria allows us to handle several query types common in text-based information retrieval.

To simplify the description, and using the notation from Section 6.1, consider a database

DB = (indi, Ti) containing records with just one free text attribute, i.e. where each record Ti

is a text string. We support the following types of queries q:

Substring Query. Here q is a text string, and DB(q) returns all indi s.t. Ti contains q as a

substring.

Wildcard Query. Here q is a text string which can contain wildcard characters ′?′ (matching

any single character), and DB(q) returns all indi s.t. Ti contains a substring q′ s.t. for all j

from 1 to |q|, qj =′ ?′ ∨ qj = q′j, where qj and q′j denote j-th characters in strings q and q′.

If the query should match only prefixes (suffixes) of Ti, the query can be prefixed (suffixed)

with a ′ˆ′ (′$′).

Phrase Query. Here q is a sequence of words, i.e. text strings, q = (q1, . . . , ql), where each

qi can equal to a wildcard character ′?′. Records Ti in DB are also represented as sequences

of words, Ti = (T 1
i , . . . , T

n
i). DB(q) returns all indi s.t. for some k and for all j from 1 to l, it

holds that qj =′ ?′ ∨ qj = T k+j
i . (Note that phrase queries allow a match of a single wildcard

with a whole word of any size, while in a wildcard query a single wildcard can match only a

single character.)

All these query types utilize the same crypto machinery that we describe next for the sub-

string case. In Section 6.2.2 we explain briefly how to adapt the techniques to these queries

too.

129

6.2.1 Basic SSE Substring Search

Here we present protocol SUB-SSE-OXT that supports substring search in the basic SSE

model (i.e., a single client C outsources its encrypted database to server E) and where the

query consists of a single substring. This simpler case allows us to explain and highlight

the basic ideas that we also use for addressing the general case of boolean expressions that

admit substrings as the expression terms as well as for extending these solutions to the more

involved MC and OSPIR settings.

Figure 6.1 describes the protocol where shadowed text highlights the changes with respect to

the original OXT protocol from [CJJ+13] for resolving conjunctive queries in the SSE model

(the reader can visualize the underlying OXT protocol by omitting the shadowed text). We

first explain the basic rationale and functioning of the conjunctive-search OXT protocol, and

then we explain how we extend it by imposing additional constraints on relative positions of

the searched terms, and how this translates into support for substring-search SSE.

The Conjunctive SSE Scheme OXT. Let q = (w1, . . . , wn) be a conjunctive query where

DB(q) = ∩ni=1DB(wi). Let FG be a Pseudorandom Function (PRF) with key KG. (This

PRF will map onto a cyclic group G, hence the name.) Let the setup algorithm create as

metadata a set of (keyed) hashes XSet, named for “cross-check set”, containg the hash values

xtagw,ind = FG(KG, (w, ind)) for all keywords w ∈ W and records ind ∈ DB(w). Let the setup

also create the matadata needed to quickly retrieve the set of record indexes DB(w) matching

any given single keyword w ∈ W. The OXT protocol is based on a simple conjunctive

plaintext search algorithm which identifies all records corresponding to a conjunctive query

q = (w1, . . . , wn) as follows: It first identifies the set of indexes DB(w1) satisfying the first

term w1, called an s-term, and then for each ind ∈ DB(w1) it returns ind as part of DB(q)

if and only if hash value xtagwi,ind = FG(KG, (wi, ind)) is in XSet for all x-terms (i.e. “cross-

check terms”) w2, . . . , wn. If group G is sufficiently large then except for negligible collision

130

probability, if xtagwi,ind ∈ XSet for i ≥ 2 then ind ∈ ∩ni=2DB(wi), and since ind was taken

from DB(w1) it follows that ind ∈ DB(q). Since this algorithm runs in O(|DB(w1)|) time w1

should be chosen as the least frequent keyword in q.

To implement the above protocol over encrypted data the OXT protocol modifies it in three

ways: First, the metadata supporting retrieval of DB(w) is implemented using single-keyword

SSE techniques, specifically the Oblivious Storage data structure TSet [CJJ+13, CJJ+14],

named for “tuples set”, which reveals to server E only the total number of keyword occur-

rences in the database,
∑

w∈W |DB(w)|, but hides all other information about individual sets

DB(w) except those actually retrieved during search. (A TSet can be implemented very effi-

ciently as a hash table using PRF F whose key KT is held by client C, see [CJJ+13, CJJ+14].)

Secondly, the information stored for each w in the TSet datastructure, denoted TSet(w),

which E can recover from TSet given F (KT , w), is not the plaintext set of indexes DB(w)

but the encrypted version of these indexes using a special-purpose encryption. Namely, a

tuple corresponding to the c-th index indc in DB(w) (arbitrarily ordered) contains value

yc = Fp(KI , indc) · Fp(Kz, c)
−1, an element in a prime-order group Zp where Fp is a PRF

onto Zp, and KI , Kz are two PRF keys where KI is global and Kz is specific to key-

word w (derived e.g. via another PRF on input w). This encryption enables fast secure

computation of hash xtagwi,indc between client C and server E , where E holds ciphertext

yc = Fp(KI , indc) · Fp(Kz, c)
−1 of c-th index indc taken from TSet(w1) and C holds keyword

wi and keys KI , Kz. Let FG(KG, (w, ind)) = gFp(KX ,w)·Fp(KI ,ind) where g generates group G

and KG = (KX , KI) where KX is a PRF key. C then sends to E :

xtoken[c, i] = gFp(KX ,wi)·Fp(Kz ,c)

for i = 2, . . . , h and c = 1, . . . , |TSet(w1)|, and E computes FG(KG, (wi, indc)) for each c, i as:

(xtoken[c, i])yc = (xtoken[c, i])Fp(KI ,indc)·Fp(Kz ,c)−1

131

Since Kz is specific to w1 mask zc = Fp(Kz, c) applied to indc in yc is a one-time pad, hence

this protocol reveals only the intended values FG(KG, (wi, indc)) for all indc ∈ DB(w1) and

w2, . . . , wn.

Extending OXT to Substring SSE. The basic idea for supporting substring search is

first to represent a substring query as a conjunction of k-grams (strings of length k) at given

relative distances from each other (e.g., a substring query ‘yptosys’ can be represented as

a conjunction of a 3-gram ‘tos’ and 3-grams ‘ypt’ and ‘sys’ at relative distances −2 and 2

from the first 3-gram, respectively), and then to extend the conjunctive search protocol OXT

of [CJJ+13] so that it verifies not only whether the conjunctive terms all occur within the

same document, but also that they occur at positions whose relative distances are specified

by the query terms. We call representation of a substring q as a set of k-grams with relative

distances a tokenization of q. We denote the tokenizer algorithm as T , and we denote

its results as T (q) = (kg1, (∆2, kg2), . . . , (∆h, kgh)) where ∆i are any non-zero integer values,

including negatives, e.g. T (‘yptosys′) can output (‘tos′, (−2, ‘ypt′), (2, ‘sys′)), but many other

tokenizations of the same string are possible. We call k-gram kg1 an s-gram and the remaining

k-grams x-grams, in parallel to the s-term and x-term terminology of OXT, and as in OXT the

s-gram should be chosen as the least frequent k-gram in the tokenization of q. Let KG be a list

of k-grams which occur in DB. Let DB(kg) be the set of (ind, pos) pairs s.t. DB[ind] contains

k-gram kg at position pos, and let DB(ind, kg) be the set of pos’s s.t. (ind, pos) ∈ DB(kg).

The basic idea of the above conjuctive-search protocol to handling substrings is that the

hashes xtag inserted into the XSet will use PRF FG applied to a triple (kg, ind, pos) for

each kg ∈ KG and (ind, pos) ∈ DB(kg), and when processing search query q where T (q) =

(kg1, (∆2, kg2), . . . , (∆h, kgh)), server E will return (encrypted) index ind corresponding to

some (indc, posc) pair in DB(kg1) if and only if

FG(KG, (kgi, indc, posc + ∆i)) ∈ XSet for i = 2, . . . , h

132

Setup(DB,RDK)

• Select keysKS , KT for PRF Fτ andKI ,KX for PRF Fp, and parse DB as (indi, posi , kgi)
d
i=1.

(PRF Fτ maps onto {0, 1}τ and Fp onto Zp.)

• Initialize T to an empty array and XSet to an empty set. For each k-gram kg ∈ KG do the
following:

– Set strap← Fτ (KS , kg), (Kz,Ke, Ku)← (Fτ (strap, 1), Fτ (strap, 2), Fτ (strap, 3)).

– For c = 1, . . . , |DB(kg)|, for (ind, pos) a c-th tuple in DB(kg) (randomly permuted) do:

∗ Set rdk← RDK(ind), e← Enc(Ke, (ind|rdk)), xind← Fp(KI , ind).

∗ Set xtag← gFp(KX ,kg)·xindpos 2and add xtag to XSet.

∗ Set z ← Fp(Kz, c), u← Fp(Ku, c) , y ← xind · z−1, v ← xindpos · u−1 .

∗ Append (e, y, v) to T[kg].

• Set TSet← TSetSetup(T, 〈Fτ 〉,KT). Output K = (KS ,KX ,KT) and EDB = (TSet,XSet).

Search protocol

Client C, on input K = (KS ,KX ,KT) defined above and query q s.t. T (q) =
(kg1, (∆2, kg2), . . . , (∆h, kgh)):

• Set stag← Fτ (KT , kg1), strap← Fτ (KS , kg1).

• (Kz,Ke, Ku)← (Fτ (strap, 1), Fτ (strap, 2), Fτ (strap, 3)), and {xtrapi ← gFp(KX ,kgi)}hi=2.

• Send (stag, ∆2, . . . ,∆h) to E , and for c = 1, 2, . . ., until E sends stop, do the following:

– Set zc ← Fp(Kz, c), uc ← Fp(Ku, c) , and {xtoken[c, i]← (xtrapi)
((zc)

∆i · (uc)) }hi=2.

– Send xtoken[c] = (xtoken[c, 2], . . . , xtoken[c, h]) to E .

Server E , on input EDB = (TSet,XSet), responds with a set ESet formed as follows:

• On message (stag, ∆2, . . . ,∆n) from C, retrieve t← TSetRetrieve(TSet, stag) from TSet.

• For c = 1, ..., |t|, retrieve c-th tuple (e, y, v) in t.

• On xtoken[c] from C, add e to ESet if ∀i = 2, . . . , h : (xtoken[c, i])
(y∆i · v) ∈ XSet. When

c = |t| send stop to C.

Client C computes (ind|rdk)← Dec(Ke, e) for each e in ESet and adds (ind, rdk) to its output.

Figure 6.1: SUB-SSE-OXT: SSE Protocol for Substring Search (shadowed text indicates
additions to the basic OXT protocol for supporting substring queries)

133

To support this modified search over encrypted data the setup procedure Setup(DB,RDK)

forms EDB as a pair of data structures TSet and XSet as in OXT, except that keywords are

replaced by k-grams and both the encrypted tuples in TSet and the hashes xtag in XSet will

be modified by the position-related information as follows. First, the tuple corresponding

to the c-th (index,position) pair (indc, posc) in DB(kg) will contain value yc = Fp(KI , indc) ·

Fp(Kz, c)
−1 together with a new position-related value vc = Fp(KI , indc)

posc · Fp(Ku, c)
−1,

where Kz, Ku are independent PRF keys specific to kg. Secondly, XSet will contain values

computed as:

FG((KX , KI), (kg, ind, pos)) = gFp(KX ,kg)·Fp(KI ,ind)pos (6.1)

In the Search protocol, client C will tokenize its query q as T (q) = (kg1, (∆2, kg2), . . . , (∆h, kgh)),

send stagkg1
= FT (KT , kg1) to server E , who uses it to retrieve TSet(kg1) from TSet,

send the position-shift vectors (∆2, . . . ,∆h) to E , and then, in order for E to compute

FG(KG, (kgi, indc, posc + ∆i)) for all c, i pairs, client C sends to E :

xtoken[c, i] = gFp(KX ,kgi)·(Fp(Kz ,c))∆i ·Fp(Ku,c)

which lets E compute FG(kgi, indc, posc+∆i) as (xtoken[c, i]) exponentiated to power (yc)
∆i ·vc

for (yc, vc) in the c-th tuple in TSet(kg1), which computes correctly because

y∆i
c · vc = Fp(KI , indc)

∆i+posc · Fp(Kz, c)
−∆i · Fp(Ku, c)

−1

6.2.2 Wildcards and Phrase Queries

Any sequence of single character wildcards within regular substring queries can be handled

by changing tokenization to allow gaps in the query string covered by the computed tokens,

e.g. T (′ypt??yst′) would output (′ypt′, (5,′ yst′)).

134

In addition to support wildcard queries matching prefixes and/or suffixes, we add special

“anchor” tokens at the beginning (′ˆ′) and end (′$′) of every record to mark the text bound-

aries. These anchors are then added during tokenization. This allows searching for sub-

strings at fixed positions within a record. For these queries T (′ypt??yst′) would output

(′ˆyp′, (1,′ ypt′), (6,′ yst′), (7,′ st$′))

Still, this simple change limits us to queries which contain k consecutive characters in-

between every substring of wildcards. However, we can remove this restriction if we add to

the the XSet all unigrams (i.e. k = 1) occurring in a text in addition to the original k-grams.

Adding support for phrase queries is another simple change to the way we parse DB. Instead

of parsing by (k-gram,position) pairs, we parse each record by (word,position). Tokenization

of q then becomes splitting q into its component words and relative position of each word to

the s-term word. As with substrings, wildcards in q result in a gap in the returned ∆’s.

6.2.3 Query Flexibility

While many queries can be formed by using substring or wildcard queries independently,

many queries are not computable. We can greatly increase the number of available queries

by combining the two query types. This allows us to answer any query q s.t. all non-

wildcard characters in q are part of at least one k length substring containing no wildcards

and q starts and ends with a non-wildcard character. This may require a sufficiently large k

(a performance benefit) but limit the type of queries supported. To further increase flexibility

we can index fields with multiple values for k or with a different k for each data structure:

kx for XSet and ks for TSet. The result is a very flexible policy that we can support any

query q that meets the following: (1) there exists at least one consecutive ks length sequence

of non-wildcards in q, (2) all non-wildcard characters in q are part of at least one kx length

substring containing no wildcards, and (3) q starts and ends with a non-wildcard character.

135

Condition (3) above can be avoided if we have an index for k = 1 by exploiting OXT’s general

support of boolean expressions including negation: To handle queries q with n leading (resp.

trailing) wildcards, we take the tokenization t of the query string stripped of the leading

(resp. trailing) wildcards q′ and search for q′ but make sure to exclude matches which

would be a distance less than n from an anchor. Formally we query: t ∧ ¬ ∨ni=1 (−i, ˆ)

(resp. t ∧ ¬ ∨ni=1 (δmax + i, $)) with ˆ and ˆ the anchors and δmax the relative position of the

right “edge” of q′. The OXT support for general boolean expressions can also be used to

support some subset of regular expressions: besides the already implicitly used conjunctions,

we could support queries containg: disjunctions to handle alternative sub-patterns such as

“Court (Road|Street)”, negations to explicitly exclude sub-patterns such as “Michael!(a)”

and combinations thereof.

6.2.4 Substring Protocol Extensions

Firstly, we generalize the substring-search protocol SUB-SSE-OXT to support any Boolean

query where atomic terms can be formed by any number of substring search terms and/or

exact keyword terms.

We note that in above protocol substring/wildcard terms have to be s-terms which restricts

the task to handle general queries. Nevertheless, we still can trivially extend above to handle

cases where there is at most one substring or wildcard term per conjunction at the “top-

level” of the query expression (tree): we just append any additional top-level conjuncts to the

substring/wild-card term as x-terms and compose them as in OXT with any other top-level

disjuncts.

Furthermore, we note that a pattern matching only a single k-gram (singleton) can be treated

as a normal equality-match term and for many environments the set of lengths of queried

sub-sequences can be fairly small, e.g., in one government sponsored project it was 3. To

136

exploit this at only moderate cost, we can add a k-gram index for all k values in the set of

queryable sub-sequence lengths and include in the index position information as normal and

also as information for equality-matching (i.e. we add two tags to the XSet). During query-

processing we always try to select a k for a sub-sequence term which results in a singleton

and correspondingly compute the equality-term tag rather than the k-gram-tag in such a

case. With this strategy, we can handle multiple substring/wildcard terms as long as all but

one are singletons per top-level conjuncts. These additional indexes have the added benifit

of increased query-time performance.

However, to allow for arbitrary queries we have to extend our protocols. We call the resulting

protocol MIXED-SSE-OXT, so named because it freely mixes substring and exact keyword

search terms, and present it in Section 6.5. The ability to handle Boolean formulas on ex-

act keywords together with substring terms comes from the similarities between substring-

handling SUB-SSE-OXT and Boolean-formula-handling OXT of [CJJ+13]. However, one

significant adjustment needed to put the two together is to disassociate the position-related

information vc in the tuples in TSet(kg) from the index-related information yc in these tu-

ples. This is because when all k-gram terms are x-terms (as would be the the case e.g.

when an exact keyword is chosen as an s-term) then E must identify the position-related

information pertaining to a particular (kg, ind) pair given the (kg, ind)-related xtoken value.

Our MIXED-SSE-OXT protocol supports this by adding another oblivious TSet-like datas-

tructure which uses xtagkg,ind to retrieve the position-related information, i.e. the vc’s, for all

pos ∈ DB(ind, kg).

A second extension generalizes the SUB-SSE-OXT protocol to the OSPIR setting [JJK+13]

where D can obliviously enable third-party clients C to compute the search-enabling tokens

(see Section 6.1). The main ingredient in this extension is the usage of Oblivious PRF

(OPRF) evaluation for several PRF functions used in MIXED-SSE-OXT for computing

search tokens. Another important component is a novel protocol which securely computes

137

the xtagkg,ind,pos values given these obliviously-generated trapdoors, in a way which avoids

leaking any partial-match information to C. This protocol, named MIXED-OSPIR-OXT

and presented in Section 6.5.2, uses bilinear maps which results in a significant slowdown

compared to the MIXED-SSE-OXT in the (single client) SSE setting.

6.3 Security Analysis

Privacy of an SSE scheme, in the SSE, Multi-Client, or OSPIR settings, is quantified by a

leakage profile L, which is a function of the database DB and the sequence of client’s queries

q. We call an SSE scheme L-semantically-secure against party P (which can be C, E , or D) if

for all DB and q, the entirety of P ’s view of an execution of the SSE scheme on database DB

and C’s sequence of queries q is efficiently simulatable given only L(DB,q). We say that the

scheme is adaptively secure if the queries in q can be set adaptively by the adversary based

on their current view of the protocol execution. An efficient simulation of a party’s view in

the protocol means that everything that the protocol exposes to this party carries no more

information than what is revealed by the L(DB,q) function. Therefore specification of the

L function fully characterizes the privacy quality of the solution: What it reveals about data

DB and queries q, and thus also what it hides. (See [CJJ+13, JJK+13] for a more formal

exposition.)

6.3.1 Security of Substring Queries

Here we prove the security of protocol SUB-SSE-OXT against server E . Our security argu-

ments are based on the following assumptions: the T-set implementation is secure against

adaptive adversaries [CJJ+13, CJJ+14]; Fp and Fτ are secure pseudorandom functions; the

138

hash function H is modeled as a random oracle; and the q-DDH assumption [BB04] (see

Section 6.6) holds in the group G.1

Security Against Server E. We first describe the leakage function corresponding to server

E . It is an adaptation of the leakage for the conjunctive protocol from [CJJ+13] to our

setting. To simplify presentation (avoiding complex notation) and focus on the important

aspects of this leakage function, our description assumes that substring queries contain a

single substring tokenized into two k-grams, i.e., one s-term k-gram and one x-term k-gram.

The extension to the general case is similar to the extension from two-term conjunctions to

general conjunctions in [CJJ+13].

Leakage to Server E. We represent a sequence of Q non-adaptive substring queries by q =

(s,x,∆) s.t. (s[i], (x[i],∆[i])) is the tokenization T (q[i]) of the i-th substring query q[i],

where s[i],x[i] are k-grams, and ∆[i] is an integer between −k + 1 and k − 1. For notation

simplicity we assume that vector q does not contain repeated queries, although E would

learn that a repeated query has been made. Function LE(DB,q) which specifies leakage to

E outputs (N, s, SP,RP,DP, IP) defined as follows:

• The (N, s, SP,RP) part of this leakage is exactly the same as in the conjunctive SSE

protocol SSE-OXT of [CJJ+13] on which our substring-search SUB-SSE-OXT protocol is

based. N =
∑d

i=1 |Wi| is the total number of appearances of all k-grams in all the docu-

ments, and it is revealed simply by the size of the EDB metadata. s ∈ [m]Q is the equal-

ity pattern of s ∈ KGQ indicating which queries have the equal s-terms. For example, if

s = (abc, abc, xyz, pqr, abc, pqr, def, xyz, pqr) then s = (1, 1, 2, 3, 1, 3, 4, 2, 3). SP is the s-

term support size which is the number of occurrences of the s-term k-gram in the database,

i.e. SP[i] = |DB(s[i])|. Finally, RP is the results pattern, i.e. RP[i] is the set of (ind, pos) pairs

1 The extension to the OSPIR model also assumes the One-More Gap Diffie-Hellman assumption and
assumes bilinear groups where the linear DH assumption [BBS04, Sha07] holds.

139

where ind is an identifier of document which matches the query q, and pos is a position of

the s-term k-gram s[i] in that document.

• DP is the Delta pattern ∆[i] of the queries, i.e. the shifts between k-grams in a query which

result from the tokenization of the queries.

• IP is the conditional intersection pattern, which is a Q by Q table IP defined as follows:

IP[i, j] = ∅ if i = j or x[i] 6= x[j]. Otherwise, IP[i, j] is the set of all triples (ind, pos, pos′)

(possibly empty) s.t. (ind, pos) ∈ DB(s[i]), (ind, pos′) ∈ DB(s[j]), and pos′ = pos + (∆[i] −

∆[j]).

Understanding Leakage Components. Parameter N is the size of the meta-data, and leaking

such a bound is unavoidable. The equality pattern s, which leaks repetitions in the s-term

k-gram of different substring queries, and the s-term support size SP, which leaks the total

number of occurrences of this s-term in the database, are both a consequence of the optimized

search that singles out the s-term in the query, which we adopt from the conjunctive SSE

search solution of [CJJ+13]. RP is the result of the query and therefore no real leakage in the

context of SSE. Note also that the RP over-estimates the information E observes, because

E observes only a pointer to the encrypted document, and a pointer to the encrypted tuple

storing a unique (ind, pos) pair, but not the pair (ind, pos) itself. DP reflects the fact that

our protocols leak the relative shifts ∆ between k-grams which result from tokenization of

the searched string. If tokenization was canonical, and divided a substring into k-grams

based only on the substring length, the shifts ∆ would reveal only the substring length.

(Otherwise, see below for how ∆’s can be hidden from E .)

The IP component is the most subtle. It is a consequence of the fact that when processing the

q[i] query E computes the (pseudo)random function FG(x[i], ind, pos+∆[i]) for all (ind, pos) ∈

DB(s[i]), and hence can see collisions in it. Consequently, if two queries q[i] and q[j] have

the same x-gram then for any document ind which contains the s-grams s[i] and s[j] in

140

positions, respectively, pos and pos′ = pos + (∆[i] −∆[j]), server E can observe a collision

in FG and triple (ind, pos, pos′) will be included in the IP leakage. Note, however, that

IP[i, j] defined above overstates this leakage, because E does not learn the ind, pos, pos′ values

themselves, but only establishes a link between two encrypted tuples, one containing (ind, pos)

in TSet(s[i]) and one containing (ind, pos′) in TSet(s[j]). To visualize the type of queries

which will trigger this leakage, take k = 3, q[i] = *MOTHER*, q[j] = *OTHER*, and

let q[i] and q[j] tokenize with a common x-gram, e.g. T (q[i]) = (MOT, (HER, 3)) and

T (q[j]) = (OTH, (HER, 2)). The IP[i, j] leakage will contain tuple (ind, pos, pos′) for pos′ =

pos+ (∆[i]−∆[j]) = pos+ 1 iff record DB[ind] contains 3-gram s[i] = MOT at position pos

and 3-gram s[j] = OTH at position pos + 1, i.e. iff it contains substring MOTH. The IP

leakage can be seen as the price we pay for the rich functionality enabled by our x-terms and

XSet approach that allows for the computation of arbitrary Boolean queries. This leakage

follows from the fact that given a query q s.t. T (q) = (s, (x,∆)), our protocol allows E to learn

the value of function FG(x, ind, pos+∆) for every (ind, pos) in DB(s). Therefore if two queries

q[i] = (s[i],x[i],∆[i]) and q[j] = (s[j],x[j],∆[j]) have the same x-terms x[i] = x[j] = x,

E could compare the results of this function for every (indi, posi) in the Tset DB(s[i]) and

every (indj, posj) in DB(s[j]) and discover if F (x, indi, posi + ∆[i]) = F (x, indj, posj + ∆[j]),

which by the collision-resistant property of FG implies that indi = indj.

Theorem 6.1. Protocol SUB-SSE-OXT (restricted to substrings which tokenize into two k-

grams) is adaptively LE-semantically-secure against malicious server E, assuming the security

of the PRF’s, the encryption scheme Enc, and the TSet scheme, the random oracle model

for hash functions, and the q-DDH assumption on the group G of prime order.

The proof of Theorem 6.1 is included in Section 6.6.

Hiding Deltas. Since the tokenizer T should pick the least frequent k-gram as an s-gram, the

information on which k-gram was chosen, which is visible from the vector of ∆’s, can leak

some sensitive statistics about the substring term. For example, if the tokenizer chooses the

141

s-gram based on the k-gram frequency statistics, but then determines all the x-grams in a

canonical way, then there are n− k+ 1 ways of tokenizing an n-character substring, hence E

learns to which of the n−k+1 partitions the client’s substring term belongs. If this moderate

information leakage is unacceptable, it can be eliminated entirely at a moderate cost incurred

by a ∆-hiding variant of the Search protocol. This can be done by relying on a multiplicative

homomorphism of either ElGamal or linear encryption to create a multiplicative sharing of

xind∆ without revealing ∆ to E , and then combine it with the multiplicative sharing of xindpos

in the xtag computation.

6.4 Implementation and Performance

Here we provide testing and performance information for our prototype implementation of

the SUB-SSE-OXT protocol described in Section 6.2.1. The results confirm the scalability of

our solutions to very large databases and complex queries. The prototype is an extension of

the OXT implementation of [CJJ+14]. Both the description of the changes and performance

information are limited, to the extent possible, to the protocols introduced in this chapter.

Prototype Summary. The three components of our system are the preprocessor, the

server, and the client. The preprocessor generates the encrypted database from the cleart-

ext data. The client, which implements a representative set of SQL commands, ’encrypts’

end-user requests and ’decrypts’ server responses. The server uses the encrypted database

to answer client SELECT-type queries or expands the encrypted database on UPDATE,

INSERT, and (even) DELETE queries [CJJ+14].

Support for substring and wildcard queries required redesigning pre-processing to take into

account the k-gram position information, adding support for ’k-gram’-based record tokeniza-

tion to the client, and changing the Search protocol to support position-enhanced computation

142

(see Section 6.2) and authorization. A few other changes were necessary in order to continue

handling UPDATE, INSERT and DELETE queries. These extensions largely follow the

update mechanics outlined in [CJJ+14], with the addition of a new PSet+ data structure.

To match the SQL standard, our implementation uses the LIKE operator syntax for substring

and wildcard queries: ’ ’ (’%’) represent single-character (variable-length) wildcards and

the query must match the complete field, i.e, unless a query must match the prefix (suffix)

of fields, it should begin (end) with a ’%’.

Experimental Platform. The experiments described in the remainder of this section were

run on two Dell PowerEdge R710 systems, each one of them equipped with two Intel Xeon

X5650 processors, 96GB RAM (12x8 1066MHz), an embedded Broadcom 1GB Ethernet

with TOE and a PERC H700 RAID controller with a 1GB Non-Volatile Cache and 1 or 2

daisy-chained MD1200 disk controllers each with 12 2TB 7.2k RPM Near-Line SAS hard

drives configured for Raid 6 (19TB and 38TB total storage per machine).

An automated test harness, written by an independent evaluator [VPH+15], drives the eval-

uation, including the set of queries and the dataset used in the experiments.

Dataset. The synthetic dataset used in the reported experiments is a US census-like table

with twenty one columns of standard personal information, such as name (first, last), address

(street, city, state, zipcode), SSN, etc. The values in each column are generated according to

the distributions in the most recent US census. In addition, the table has one XML column

with at most 10000 characters, four text columns with varying average lengths (a total of at

most 12300 characters or ≈ 2000 words), and a binary column (payload) with a maximum

size of 100KB. Our system can perform structured queries on data in all but the XML and

binary columns. The size of (number of records in) the table is a parameter of the dataset

generator. We tested on a wide variety of database sizes, but we focus our results on a table

with 100 million records or 10TBytes.

143

Experimental Methodology. In the initial step, the encrypted database is created from

the cleartext data stored in a MariaDB (a variant of open-source MySQL RDBMS) table.

Then, a per-protocol collection of SQL queries, generated by the harness to test its features,

is run against the MariaDB sever and against our system. The queries are issued sequentially

by the harness, which also records the results and the execution times of each query. Finally,

the harness validates the test results by comparing the result sets from our system and from

the MariaDB server. Not only does this step validate the correctness of our system, it also

ensures our system meets our theoretical false positive threshold over large, automatically

generated, collections of queries.

Encrypted Index. We built a searchable index on all personal information columns (twenty

one) in the plaintext database but we only use a small subset of these indexes for the

following experiments. Note that we support substring and wildcard queries simultaneously

over a given column using a single shared index. We built a substring-wildcard index for four

columns (average length of 12 characters) and a range index for five columns of varying types

(one 64 bit integer, one date, one 32 bit integer, and one enum). Each substring-wildcard

index was constructed with a single k value of 4. Each range index has a granularity of

one. For the date type, this equates to a day. We support date queries between 0-01-01 and

9999-12-31, and integer queries between 0 and integer max (232 − 1 or 264 − 1).

On average each record generates 256.6 document-keyword pairs (tuples) among all indexes.

This equates to a total encrypted index for our largest database of ≈ 20TB. We back our

XSet by an in memory Bloom filter with a false positive rate of 2−12; this allows us to save

unnecessary disk accesses and it does not influence the false positive rate of the system.

Performance Costs by Query Type. Our complex query types have both increased

storage overhead and query time costs as compared to the keyword only implementation of

[CJJ+14]. In order to support substring and wildcard queries on a column, we must store

144

additional tuples: for a record of length l (for the indexed field) we must store (l − k) + 3

tuples. Note that we must pay this cost for each k we chose to create the index for. The

choice of k also affects query time performance. For a query q, it’s performance is linearly

dependent on the number of tokens generated by the tokenization T (q). A smaller k results

in a larger number of tokens. Specifically for subsequence queries there will be d|q|/ke-1

xtokens2. k also impacts the number of matching documents returned by the s-term. A

larger k results in a higher entropy s-term. The choice of k is a careful trade-off between

efficiency and flexibility.

Phrase queries incur storage costs linear in the total number of words in a column. Specif-

ically for every record with n free-text words, the index stores n tuples. Although phrase

queries and free-text queries can be supported via the same index, we have to pay the

marginally higher price of the phrase index in which we must store even repeated words.

Encrypted Search Performance. We illustrate the performance of our system using the

latency (i.e., total time from query issuing to completion) of a large number of representative

SELECT queries. The independent evaluator selected a representative set of queries to test

the correctness and performance of the substring and wildcard queries (phrase queries were

not implemented). The two leftmost columns in Table 6.1 show how many unique queries

were selected for each query type. The third, fourth and fifth columns characterize the 95%

fastest queries of each type. Finally, the rightmost column shows the percentage of queries

that complete in less than two minutes.

All queries follow the pattern SELECT id FROM CensusTable WHERE ..., with each query

having a specific WHERE clause. Specific queries were chosen to assess the performance

effect of differing result set sizes.

2Wildcard queries pay a similar overhead, related to the size of each contiguous substring within the
query.

145

Query # of fastest 95% % ≤
type queries avg min max 120 secs
range 197 .37 .19 .61 100

substring 939 40 0.22 166 93
wildcard 511 31.22 6.7 224 93

Table 6.1: Latency (in secs) for 10 TByte DB, 100M records, 25.6 billion record-keyword
pairs

Our instantiation of SUB-SSE-OXT includes extensions for supporting substring and wild-

card searches simultaneously. However, to evaluate the effects of each specific extension we

measure them individually. Both query types use the LIKE operator in the WHERE clause.

Substring queries use the variable-length wildcard ’%’ at the beginning, at the end, or at

both ends of the LIKE operand, as in WHERE city LIKE ’%ttle Falls%’. Wildcard queries

use the single-character wildcard (’ ’) anywhere in the LIKE operand, provided the query

criteria dictated by k is still met.

In addition, we noticed that the choice of s-gram dominates the latency of the substring

queries. Our analysis shows that low performing queries can often be tied to high-frequency

s-terms (e.g., “ing ” or “gton ”), which are associated with large Tsets. By default, the

current implementation uses the first k characters in the pattern string as s-gram. Thus,

implementing a tokenization strategy guided by the text statistics (which we leave for future

work) can significantly reduce query latency for many of the slow performers. To estimate

the potential benefits of such a strategy, we added the STARTAT ’n’ option to the LIKE

’pattern’ operator, where ’n’ is the starting position of the s-gram. Experiments using

the ’%gton Colle%’ pattern show latency improvements of up to 32 times when the s-gram

starts at the third or fourth character in the pattern string.

Comparison to Cleartext Search. Here we include the most relevant aspects of the

performance comparison between our prototype and MariaDB. In the case of the 100 mil-

146

lion record database, for ≈ 45% of the range queries, the two systems have very similar

performance. For the remaining 55%, our system is increasingly (up to 500 times!) faster.

The large variations in MariaDB performance seem to arise from its reliance on data (and

index) caching, which is hindered by large DBs. In contrast, our system issues between log2 s

and 2 log2 s disk accesses in parallel (where s is the size of the cover). On smaller census

databases (with fewer records) that fit in RAM, MariaDB outperforms our system, some-

times by more than one order of magnitude, although in this case all query latencies (ours

and MariaDB’s) are under a second. Additionally, for substring and wildcard queries and the

largest, 100 million records, database our system always outperforms MariaDB, admittedly

due to MariaDB’s lack of support for a specialized-index based substring search. Instead, it

often scans the dataset to resolve queries involving the LIKE operator.

6.5 Substring SSE Extensions

6.5.1 MIXED-SSE-OXT: Substring Terms in General Boolean For-

mula Queries

We show how to generalize the SUB-SSE-OXT protocol so that it supports conjunctions (or

indeed, any Boolean formula) whose atomic terms can be formed by any number of substring

search terms and/or exact keyword terms, with flexible choice of s-term as either one of the

exact keyword terms or a k-gram in one of the substring terms. The resulting protocol,

shown in Figure 6.2, is called MIXED-SSE-OXT because it freely mixes substring and exact

keyword search terms.

Protocol SUB-SSE-OXT stores in each tuple of T[kg] the (encrypted) values of xind and

xindpos. In MIXED-SSE-OXT we decouple these two values: We store in T[kg] only the

xind values, and we create a separate data structure for the (encrypted) position-related

147

Setup(DB,RDK)

• Pick keys KS ,KT for PRF Fτ , KI ,KX for PRF Fp, parse DB as (indi,Wi)
d
i=1 and (indi, posi, kgi)

d′
i=1.

• Initialize T and P to empty arrays and XSet to an empty set. For each w ∈W ∪ KG do the following:

– Set strap← Fτ (KS , w) and (Kz ,Ke)← (Fτ (strap, 1), Fτ (strap, 2)).

– For c = 1, . . . , |DB(w)|, for ind a c-th element in DB(w) (randomly permuted) do:

∗ Set rdk← RDK(ind), e← Enc(Ke, (ind|rdk)), xind← Fp(KI , ind).

∗ Set z ← Fp(Kz , c), y ← xind · z−1, and append (e, y) to T[w].

∗ If w ∈W then set xtag← gFp(KX ,w)·xind and add xtag to XSet.

∗ If w ∈ KG then for c′ = 1, . . . , |DB(ind, w)|, for pos a c′-th element in DB(ind, w) do:

· Set ptag← gFp(KX ,w)·xind,Ku ← Fτ (strap, 3, ptag), u← Fp(Ku, c′), v ← xindpos · u−1, append v to P[(w, ind)].

· Set xtag← gFp(KX ,w)·Fp(KI ,ind)
pos

and add xtag to XSet.

• Set TSet← TSetSetup(T, 〈Fτ 〉,KT) and PSet← TSetSetup(P, (KX ,KI)).

• Output K = (KS ,KX ,KT), EDB = (TSet,XSet,PSet).

Search protocol

• Client C, on input key K = (KS ,KX ,KT) and conjunctive query w̄ consisting of a single (for simplicity) substring-search term q,
tokenized as (kg1, (kg2,∆2), . . . , (kgh,∆h)), and exact-keyword terms w1, . . . , wn, with w1 as the s-term of the query:

– Set stag← Fτ (KT , w1), strap← Fτ (KS , w1), (Kz ,Ke)← (Fτ (strap, 1), Fτ (strap, 2)).

– Set {xtrapi ← gFp(KX ,wi)}ni=2, {xtrapkgi ← gFp(KX ,kgi)}hi=1, and strapkg1
← Fτ (KS , kg1).

– Send (stag,∆2, . . . ,∆h) to E.

– For c = 1, 2, . . ., until E sends stopc do:

∗ Set zc ← Fp(Kz , c); Set {xtoken[c, i]← (xtrapi)
zc}ni=2 and ptoken[c]← (xtrapkg1

)zc .

∗ Send xtoken[c] = (xtoken[c, 2], . . . , xtoken[c, n], ptoken[c]) to E.

∗ On ptag[c] from E, set Ku ← Fτ (strapkg1
, 3, ptag[c]), and for c′ = 1, 2, . . ., until E sends stopc,c′ do:

· Set uc′ ← Fp(Ku, c′) and
{
xtokenkg[c, c′, i]← (xtrapkgi)(zc)∆i ·(uc′)

}h

i=2
.

· Send xtokenkg[c, c′] = (xtokenkg[c, c′, 2], . . . xtokenkg[c, c′, h]) to E.

• Server E, on input EDB = (TSet,XSet,PSet), responds with a set ESet formed as follows:

– On (stag,∆2, . . . ,∆h) from C, retrieve t← TSetRetrieve(TSet, stag).

– For c = 1, ..., |t|, on xtoken[c] from C, retrieve c-th tuple (e, y) in t, set (OK1
c ,OK2

c)← (0, 0).

∗ Set OK1
c ← 1 if ∀i = 2, . . . , n : (xtoken[c, i])y ∈ XSet.

∗ Set ptag[c]← ptoken[c]y , retrieve p← PSet[ptag[c]], send ptag[c] to C.
∗ If |p| = 0 send stopc,c′ to C and continue (to next c). Otherwise, for c′ = 1, . . . , |p| do:

· On xtoken[c, c′] from C, retrieve c′-th element v from p;

· Set OK2
c ← 1 if ∀i = 2, . . . , h : (xtokenkg[c, c′, i])y

∆i ·v ∈ XSet; Send stopc,c′ to C when c′ = |p|.

∗ If (OK1
c ,OK2

c) = (1, 1) then add e to ESet. When c = |t| send stopc to C.

• Client C computes (ind|rdk)← Dec(Ke, e) for each e in ESet, and adds (ind, rdk) to its output.

Figure 6.2: MIXED-SSE-OXT: SSE for Conjunctions of Multiple Substring and Exact Key-
word Terms

148

values xindpos. By shifting the encrypted xindpos values to another data structure, we can

combine the k-gram and keyword indexes together so that for all a ∈ (KG ∪ W) and all

ind ∈ DB(a), list T[a] will include an entry (y, e) at some position c s.t. e = Enc(Ke, (ind|rdk))

and y = xind/z, for xind = Fp(KI , ind), rdk = RDK[ind], z = Fp(Kz, c), and keys Kz, Ke

derived from strap = Fτ (KS, a) similarly as in the SUB-SSE-OXT. Treating the k-gram and

exact keywords in this uniform way allows us to compose the substring search capability of

SUB-SSE-OXT with the Boolean search on exact keywords of SSE-OXT.

For storing the position-related information for resolving subsequence queries, namely the

encrypted xindpos values, we use a separate look-up table P. Let F ′G denote a “truncated”

version of function FG from equation (6.1), namely

F ′G((KX , KI), (kg, ind)) = gFp(KX ,kg)·Fp(KI ,ind) (6.2)

For every (kg, ind) s.t. k-gram kg appears in DB[ind], P[(kg, ind)] stores a list of values v =

xindpos/u, where xind = Fp(KI , ind), for each pos s.t. (ind, pos) ∈ DB(kg). The value u that

masks c-th value xindpos is computed as u = Fp(Ku, c) where Ku = Fτ (strapkg, ptag(kg,ind)) and

ptag(kg,ind) = F ′G((KX , KI), (kg, ind)) (ptag serves a similar purpose as stag but for positioning

information). Finally, we store P in another instance of the TSet data structure, called

PSet, where a handle for identification and decryption of a list P[(kg, ind)] is an output of

F ′G((KX , KI), ·) on (kg, ind), i.e. ptag(kg,ind).

Lastly, the data-structure XSet will store the xtag values for both exact keywords and for

(k-gram,position) pairs, i.e. it will contain values FG((KX , KI), (kg, ind, pos)) for all kg ∈ KG

and (ind, pos) ∈ DB(kg) and values F ′G((KX , KI)(w, ind) for all w ∈ W and ind ∈ DB(w).

The three data structures (TSet,PSet,XSet) are used in Search to combine the substring

processing in SUB-SSE-OXT with the Boolean search (on exact keywords) of the original

SSE-OXT. Assume that C’s query q is a conjunction of n exact query terms w1, . . . , wn and

149

a single substring search term q′ tokenized as T (q′) = (kg1, (∆2, kg2), . . . , (∆h, kgh)). Assume

also that the exact keyword w1 is chosen as an s-term. All these assumptions are not necessary

and are used solely to simplify the protocol description below. Client C sends stagw1
=

FT (KT , w1) to E , who uses it to retrieve t = T[w1] from TSet. For each (encrypted) ind in t,

C and E perform the following: First they compute (in parallel, and following the combined

operations of SSE-OXT and SUB-SSE-OXT) values ptag(kg1,ind) = F ′G((KX , KI), (kg1, ind))

and xtag(wi,ind) = F ′G((KX , KI), (wi, ind)) for i = 2, . . . , n. If xtag(wi,ind) 6∈ XSet for any

i = 2, . . . , n or if the list p = P[ptag(kg1,ind)] is empty, we can conclude that ind 6∈ DB(q), and

so E moves on to the next (encrypted) ind in t. Otherwise, E sends back ptag(kg1,ind) to C,

who uses it to derive the key Ku, and then for each (encrypted) indpos value in p, C and E

jointly compute xtag(kgi,ind,pos+∆i)
= FG((KX , KI), (kgi, ind, pos + ∆i)) for i = 2, . . . , h. The

latter computation is similar to the one described for SUB-SSE-OXT above, except that the

(encrypted) ind value comes from list t while (encrypted) indpos value comes from list p. If

xtag(kgi,ind,pos+∆i)
∈ XSet for some pos in the p list and all i = 2, . . . , h, we can conclude

(except for probability of collision in FG) that substring q′ appears in DB[ind] at position

pos, and hence that ind ∈ DB(q). Therefore in that case E sends ciphertext e corresponding

to this ind to C, which allows C to retrieve and decrypt record DB[ind].

If query q involves more substring terms, each of them is processed as the substring term q′

above. Since T[w] for w ∈ W and T[kg] for kg ∈ KG are implemented in the same way, an s-

gram kg1 from any substring search term can play the role of the s-term. Finally, the protocol

can be easily modified to support any query expressed as w∧Φ(w1, . . . , wn, q
′
1, . . . , q

′
k), where

w is either an exact keyword term or a substring term, w1, . . . , wn are exact keyword terms,

q′1, . . . , q
′
k are substring terms, and Φ is any Boolean formula. The protocol cost is upper-

bounded by (n + h1 + . . . + hk) exponentiations per party per each tuple in T[w], where hi

is the number of k-grams in the tokenization of q′i.

150

Note that MIXED-SSE-OXT adds an extra communication round compared to SUB-SSE-

OXT.However, E can generate its responses ptag(kg1,ind) (one for each c = 1, . . . , |t| and each

substring term qi, i = 1, . . . , k) without retrieving list PSet[(kg1, ind)] from the disk (except

for a small probability of a false positive error) if E keeps a Bloom filter which is small

enough to fit in the memory and which allows E to check if any ptag value corresponds to a

non-empty list in PSet.

6.5.2 MIXED-OSPIR-OXT: Substring and Keyword Search in OS-

PIR Setting

The MIXED-SSE-OXT protocol extends to the Multi-Client and OSPIR settings. Because

of the similarity between MIXED-SSE-OXT with the SSE-OXT protocol of [CJJ+13], we can

re-use all the techniques of [JJK+13], which adopted protocol SSE-OXT to the Multi-Client

and OSPIR settings. Here we recall these techniques briefly: First, we modify several PRF’s

used by C in MIXED-SSE-OXT so that they can be efficiently computed via an Oblivious

PRF (OPRF) protocol between C and the data owner D. (In particular we replace gxtrap for

xtrap = Fp(KI , kg) with xtrap = H(kg)KI , so e.g. FG(kg, ind, pos) becomes xtrap
Fp(KI ,ind)pos

kg .)

The security of the OPRF protocol implies that all the individual terms in C’s query are

hidden from D. However, just like in the OSPIR-OXT protocol of [JJK+13], we ask client C

to reveal the attributes of every term (exact keyword or k-gram) in its query, which allows D

to apply an attribute-based access control policy. To make this policy enforcement effective,

we replace PRF keys involved in these OPRF instances with an array of keys, one for each

database attribute. Third, to prevent malicious C from mixing and matching the trapdoors

received for different query terms, and thus potentially violate D’s access control policy, we

use the same technique as [JJK+13], i.e. D blinds each trapdoor it obliviously computes, for

each term wi or kgi, by a random blinding factor ρi used in the exponent, e.g. C computes

xtrapi
ρi instead of xtrapi. D then puts the vector of these ρi factors in an authenticated

151

envelope encrypted under a symmetric key shared by D and E . During the Search protocol,

E receives this envelope from C, authenticates it, decrypts it, and then adds factor ρ−1
i in the

exponent to de-blind the xtag (or ptag) value it computes jointly with C, where C enters a

trapdoor blinded by the corresponding factor ρi. In this way ρi and ρ−1
i factors cancel each

other out in the exponent.

However, while all the above mentioned methods carry over from the OSPIR-OXT protocol

of [JJK+13], protocol MIXED-SSE-OXT differs fundamentally from SSE-OXT in one aspect

for which we need new techniques. Namely, MIXED-SSE-OXT contains an extra round

of interaction in which C learns the ptag(kg1,ind) values, potentially for each ind encrypted

in T[w1]. Consider two queries q(i) and q(j) whose s-terms are different, i.e. w1
(i) 6= w1

(j),

but their substring queries have the same s-gram i.e. kg1
(i) = kg1

(j). Since ptag(kg1,ind) is

a deterministic function of (kg1, ind), the ptag values leak the number of common ind’s in

DB(w1
(i)) and DB(w1

(j)), regardless of what information the client C legitimately gets in

DB(q(i)) and DB(q(j)).

We address this problem by modifying the function FG and the way position information

indpos is encrypted in the P[(kg1, ind)] list, which in turn allows us to modify the two-party

computation of xtag’s FG(KG, (kgi, ind, pos + ∆i)), for i = 2, . . . , h, in a way that prevents

leakage of any information to C and at the same time assures that D learns only the final

output of FG on these inputs. We have several ways of doing this, relying on different compu-

tational assumptions and resulting in different pre-computation/on-line efficiency trade-offs.

One solution comes from using an elliptic curve group G with a bilinear map e : G×G→ GT ,

where FG can be defined as FG((KX , KI), (kg, ind, pos)) = e(xtrapkg, h)xind
pos

, and using a

variant of ElGamal encryption based on Linear Diffie-Hellman (LDH) assumption on G to

jointly compute FG given the position-related information in P in the form of encrypted

hind
pos

values.

152

MIXED-OSPIR-SSE using Bilinear Maps. We provide a more detailed description

of the MIXED-OSPIR-SSE variant which uses a group with a bilinear map to allow for

a practical two-party computation of xtag’s, i.e. of function FG((KX , KI), (·, ·, ·)). Let G

be a group of a prime order p with a bilinear map e : G × G → GT . Assume that the

Linear Diffie-Hellman (LDH) assumption holds onG [BBS04]. Consider function FG modified

as FG((KX , KI), (kg, ind, pos)) = e(xtrapkg, h)xind
pos

, where xtrapkg and xind are defined as

before, i.e. xtrapkg = H(kg)KX [I(kg)] for H mapping onto G, and xind = Fp(KI , ind). We

also change the way values indpos are encrypted in list P[(kg, ind)], namely for every pos

at which kg appears in DB[ind], P[(kg, ind)] contains a Linear Encryption (LE) ciphertext

(a, b, c) = Enc(x1,x2)(h
indpos) where h is a generator of G and the encryption key (x1, x2) ∈

Zp × Zp is set as (Fp(strapkg, n1), Fp(strapkg, n2)). The encryption Enc(x1,x2)(m) on message

m ∈ G picks random r, s in Zp, and outputs (a, b, c) = (hs, hr,m ·hx1·s+x2·r). The decryption

Dec(x1,x2)(a, b, c) outputs a−x1 · b−x2 · c.

In the Search protocol, when E identifies a non-empty list P[(kg, ind)], then for each ci-

phertext Enc(x1,x2)(h
indpos) in this list, and each x-gram kgi in the tokenization of C’s sub-

string search term, the two parties perform a sub-protocol whose goal is for E to compute

xtagi = e(xtrapkgi , h)xind
pos+∆i . Recall that for each x-gram kgi, C holds the shift ∆i corre-

sponding to kgi and a blinded trapdoor (xtrapkgi)
ρi , while E holds the corresponding de-

blinding factor ρ−1
i . Recall also that C and E hold a multiplicative sharing, z and y s.t.

z · y = xind, hence z∆i · y∆i = xind∆i . Let B = ((xtrapkgi)
ρi)

z∆i
, let v = y∆i · ρ−1, and

denote hind
pos

encrypted in (a, b, c) as m. The goal of the sub-protocol therefore reduces to

computing e(B,m)v, on E ’s input (a, b, c) = Enc(x1,x2)(m) and v, and C’s input (x1, x2) and

B. Note that e(B,m)v = e(xtrapkgi , h)t for t = (ρi · z∆i) · indpos · (y∆i · ρ−1) = ind∆i+pos. An

additional input into this computation is E ’s LE private key (k1, k2) and the corresponding

public key (K1, K2) = (hk1 , hk2) held by C. The computation proceeds as follows:

153

(1) E sends the following three tuples to C:

(αa, βa, γa)← Enc(k1,k2)(a)

(αb, βb, γb)← Enc(k1,k2)(b)

(αc, βc, γc)← Enc(k1,k2)(c)

(2) C picks rδ, sδ at random in Zp, computes

ᾱ = (αa)
−x1 · (αb)−x2 · αc · hrδ

β̄ = (βa)
−x1 · (βb)−x2 · βc · hsδ

γ̄ = (γa)
−x1 · (γb)−x2 · γc · (K1)rδ · (K2)sδ

and sends (α, β, γ) = (e(B, ᾱ), e(B, β̄), e(B, γ̄)) to E .

(3) E outputs xtag = (α−k1 · β−k2 · γ)v[= e(B,m)v].

The crucial point is that when C uses the decryption key (x1, x2) on the twice-encrypted

values – first under (x1, x2) and then under (k1, k2) – then by exponentiation commutativity

the result (ᾱ, β̄, γ̄) is an encryption under key (k1, k2) of the same plaintext m which was

encrypted under key (x1, x2) in (a, b, c). (Terms hrδ , hsδ , and (K1)rδ(K2)sδ randomize this

re-encryption.)

We note that only the computation of the xtag’s corresponding to k-gram positions, i.e. to

(ind, kg, pos) triples, will be computed using the above approach, while the xtag’s correspond-

ing to exact keywords, i.e. to (ind, kg) pairs, will still be computed as in MIXED-SSE-OXT.

This modification does not add new rounds to MIXED-SSE-OXT: Instead of ptag, E will now

154

send the three tuples computed as in step (1) above for each pos encrypted in p = PSet[ptag].

Moreover, for large databases E will now have to access the disk to retrieve p from the disk

before it can send its response to C. As for pre-computation, the computational cost increase

incurred by this method will be moderate, because the bilinear map operation is done only

once per each kg in KG, and the linear encryption operations involve fixed-base exponenti-

ations. However, the on-line procedure cost will be dominated by three pairings per each

x-gram kgi for i = 2, . . . , h in the search term and each indpos s.t. (ind, pos) ∈ DB[kg1] (and

s.t. ind ∈ DB[w1]). We are currently investigating the exact effects of these changes on the

overall performance of the protocol.

Security in the OSPIR Setting. The privacy profile of the MIXED-OSPIR-OXT proto-

col against malicious data owner D, malicious clients C, and honest but curious server E , are

very similar to those of the OSPIR-OXT protocol of [JJK+13] for the case of exact-keyword

conjunctions. Privacy profile against D is similar because we use the same mechanisms for

adapting our MIXED-SSE-OXT protocol to the OSPIR setting as [JJK+13], namely obliv-

ious computation of the PRF’s. However, in addition to revealing the vector of attributes

pertaining to the query terms, which enables attribute-based access policy control by D,

the MIXED-OSPIR-OXT protocol additionally reveals the number of k-grams in each sub-

string term and their relative positions ∆2, . . . ,∆h. Formally, if q is a vector of queries

of the form q = (w1, . . . , wn, q
′
1, . . . , q

′
k) where each wi is an exact query term, with w1

chosen as the s-term (to simplify the presentation), and each q′i is a substring term s.t.

T (q′i) = (kgi,1, (kgi,2,∆i,2), . . . , (kgi,hi ,∆i,hi)), then LD(DB,q) consists of DB (since D is the

owner of the database DB) and the following information for each q in q: a vector of at-

tributes (I(w1), . . . , I(wn), I(q′1), . . . , I(q′k)), and the vectors of shifts (∆i,2, . . . ,∆i,hi) for each

substring term q′i in q. We note that if the moderate leakage of information on the substring

terms leaked in the ∆ vectors is unacceptable, it can be eliminated by a ∆-hiding variant of

our protocol.

155

The privacy profile to the malicious C is also very similar to the OSPIR-OXT protocol.

As in there, the client learns the size of the TSet list for the s-term keyword or k-gram

in the search query. However, since we handle position-related information by the PSet’s,

one for every substring term in the search query, C also learns the sizes of these PSet’s.

Formally, if q is a vector of queries of the form q = (w1, . . . , wn, q
′
1, . . . , q

′
k) where each

wi is an exact query terms, and w1 is the s-term, and each q′i is a substring term, and if

T (q′i) = (kgi,1, (kgi,2,∆i,2), . . . , (kgi,hi ,∆i,hi)), then LC(DB,q) consists of |DB(w1)| for s-term

w1 in each query q in q, and |DB(kgi,1)| for s-term k-gram kgi,1 in each substring term qi in

each query q in q.

The privacy profile to the honest-but-curious server E is similar as that specified for the

SUB-SSE-OXT protocol in Section 6.3.1, but it contains some new elements. For simplicity

of notation we will assume that each query has n exact terms and k substring terms, and

that each substring search term tokenizes to h k-grams. Building on the above notation,

denote the i-th query as q(i) = (w1
(i), . . . , wn

(i), q′1
(i), . . . , q′k

(i)) where w1
(i) is an s-term, and

let T (q′j
(i)) =

(
kgj,1

(i), (kg
(i)
j,2,∆j,2

(i)), . . . , (kgj,h
(i),∆j,h

(i))
)

. Define function LE(DB,q) which

specifies leakage to E as a vector (N, s, SP,RP,DP, IP,PSP). Leakage elements N, s, SP,RP

are defined exactly the same as in Section 6.3.1, or indeed as in the underlying OXT protocol

of [CJJ+13]. The delta-pattern DP is defined as in Section 6.3.1, except that it is general-

ized to k substring terms with h k-grams each. (Formally, DP[i] is the sequence of vectors

{(∆j,2
(i), . . . ,∆j,h

(i))} for j = 2, . . . , k.)

The conditional intersection pattern IP in E ’s leakage function LE contains the leakage due

to exact keyword terms and the s-grams of the substring terms, which is the same as in the

OXT protocol of [CJJ+13], and the leakage due to the remaining k-grams in the substring

terms, which is the generalization of the IP leakage described in Section 6.3.1 to the case

of multiple substring terms each with multiple k-grams. Formally, we define IP as a tuple

(IPw, IPs, IPk). The IPw part contains the leakage due to the exact keyword x-terms, exactly

156

as in the OXT protocol of [CJJ+13]. The IPs part contains the leakage due to the s-grams,

i.e. the s-term k-grams in each substring term, which is similar to the leakage IPw because in

the MIXED-OSPIR-OXT protocol E computes a ptag for each s-gram in the same way as it

computes an xtag for each exact keyword x-term, namely as a PRF of the (keyword,record-

index) pair, and thus both have the same value whenever the (keyword,record-index) pair

repeats. Formally, IPw is a Q × Q × n × n table (where Q is the number of queries) where

IPw[i1, i2, j1, j2] is non-zero only if i1 6= i2, i.e. if this entry relates to two different queries,

and if wj1
(i1) = wj2

(i2) and 2 ≤ j1, j2 ≤ n, i.e. if the j1-th keyword in i1-th query is the

same as the j2-th keyword in the i2-th query (with both keywords being x-terms), in which

case IPw[i1, i2, j1, j2] contains all indexes ind in DB(w1
(i1))∩DB(w1

(i2)), i.e. indexes of records

that contain the s-terms of both i1-th and i2-th queries. IPs is a Q×Q× k × k table where

IPs[i1, i2, j1, j2] is non-zero only if i1 6= i2 and kgj1,1
(i1) = kgj2,1

(i2), i.e. if the s-gram in the j1-th

substring term in i1-th query is the same as the s-gram in the j2-th substring term in the i2-th

query, in which case IPs[i1, i2, j1, j2] contains all indexes ind in DB(w1
(i1))∩DB(w1

(i2)), exactly

as in the case of IPw leakge above. The third part of IP leakage is IPk, the leakage due to E ’s

computation of xtag’s for each (k-gram,position,record-index) tuple. This leakage is exactly

the same as the IP leakage in the SUB-SSE-OXT protocol described in Section 6.3.1, but

generalized to multiple substring terms and k-grams. Formally, IPk is a Q×Q×k×k×h×h

table, where IPk[i1, i2, j1, j2, `1, `j] is non-zero only if i1 6= i2 and kgj1,`1
(i1) = kgj2,`2

(i2),

i.e. if the `1-th k-gram in the j1-th substring term in i1-th query is the same as the `2-th

k-gram in the j2-th substring term in the i2-th query, in which case IP[i1, i2, j1, j2, `1, `j]

contains the set of all triples (ind, pos1, pos2) (possibly empty) s.t. (ind, pos1) ∈ DB(w1
(i1)),

(ind, pos2) ∈ DB(w1
(i2)), and pos2 = pos1 + (∆j1,`1

(i1) − ∆j2,`2
(i2)), i.e. indexes of records

which contain the s-terms of the i1-th and the i2-th queries, at positions whose relative

distance matches the difference between the ∆’s associated with the above two k-grams in

the tokenization of the corresponding queries.

157

The last component of E ’s leakage function is a PSet size pattern PSP, which is a Q×k table

whose entry PSP[i, j] contains a sequence of integers (s1, s2, . . . , sm) where m = |DB(w1
(i))|,

s.t. sc is the number of occurrences of kgj,1
(i), i.e. the s-gram in the j-th substring term in

the i-th query, in record DB[indc], where indc is the c-th record index in DB(w1
(i)). This

leakage comes from the fact that for each s-gram in each query E retrieves the (possibly

empty) PSet associated with ptag[c] for c = 1, . . . ,m, and the size of this PSet reflects the

number of occurrences of k-gram kgj,1
(i) in the c-th record in DB(w1

(i)).

Note: We stress that that above formal specification of E ’s leakage is in many ways an

overstatement. Most importantly, the real information E learns due to the IP leakage does

not contain the indexes (even randomized) of the records which satisfy the conditioned

formed by the two queries, but only the fact that the corresponding TSet entries contain the

same index ind.

The proof of theorem 6.2 below is very simple, while the proofs of theorem 6.3 and 6.4,

although more complex, are similar to the proof of security against the client and the server

of the OSPIR-OXT protocol of [JJK+13]. All proofs are omitted.

Theorem 6.2. Protocol MIXED-OSPIR-OXT is LD-semantically-secure against malicious

data owner D.

Theorem 6.3. Protocol MIXED-OSPIR-OXT is LC-semantically-secure against a malicious

client C, assuming the security of the encryption Enc, the authenticated encryption, the TSet

implementation, the PRF’s Fp and Fτ , assuming the random oracle model for hash functions,

the One-More GDH and the LDH assumptions on the group G with a bilinear map, the q-

DDH assumption on its target group GT , and the One-More GDH assumption on a standard

prime-order group.

Theorem 6.4. Protocol MIXED-OSPIR-OXT is LE-semantically-secure against honest-but-

curious server E, assuming the security of the encryption Enc, the TSet implementation, the

158

PRF’s Fp and Fτ , the random oracle model for hash functions, and the LDH assumptions

on group G.

6.6 Security Proof for Substring Search SSE

Here we present the proof of Theorem 6.1 stated in Section 6.3, which describes the security

property of protocol SUB-SSE-OXT, the basic substring search SSE protocol shown in Figure

6.1. We simplify notation by focusing on substrings which tokenize into two k-grams. The

extension to any number of k-grams is straightforward.

Hardness assumptions. We recall the q-DDH assumption (we assume familiarity with the

DDH assumption). Let G be a prime order cyclic group of order p generated by g. We say

that the q-decision Diffie-Hellman (q-DDH) assumption holds in G if Advq−ddh
G,A is negligible

for any generator g and all efficient adversaries A,

Advq−ddh
G,A = Pr[A(g, ga, ga

2

, . . . , ga
q−1

, ga
q

) = 1]

−Pr[A(g, ga, ga
2

, . . . , ga
q−1

, gb) = 1]

where the probability is over the randomness of A and uniformly chosen a, b from Zp∗.

Note that the q-DDH assumption implies the DDH assumption. We will use the following

lemma in the argument below. Let α, β be integers, let a ∈ (Zp∗)α, b ∈ (Zp∗)β, and let

q = (1, 2, . . . , q). Let a · bq be the (α × β × q) array M s.t. M[i, j, k] = a[i] · b[j]k, and let

ga·b
q

be the (α× β × q) array MG s.t. MG[i, j, k] = gM[i,j,k] where M = a · bq.

159

Lemma 6.1. If the q-DDH assumption holds in G then for any integers α, β (polynomial in

|p|) and any efficient adversary A, we have that AdvAG is negligble, where

AdvAG = Pr[A(g, ga·b
q

) = 1]− Pr[A(g,MG) = 1]

where a is uniform over (Zp∗)α, b is uniform over (Zp∗)β, and MG is uniform over Gα×β×q.

Let K,X, Y be sets, and let F : K × X→ Y be a family of keyed functions. We say that

F is a pseudorandom function (PRF) if for all efficient adversaries A, Advprf
F,A is negligible,

where

Advprf
F,A = Pr[AF (k,·) = 1]− Pr[Af(·) = 1]

where the probability is over the randomness of A, k
$← K, and f

$← Fun(X, Y).

As a corollary of lemma 6.1 we get the following, where [q] stands for the set of integers

{1, . . . , q}:

Corollary 6.4.1. If the q-DDH assumption holds in G, if FG : K1 × X → G and Fp :

K2×Y →Zp∗ are PRF’s then F : (K1×K2)× (X×Y × [q])→G where F ((k1, k2)(x, y, i)) =

(FG(k1, x))(Fp(k2,y))i is a non-adaptive PRF.

We will also use the following well-known fact:

Lemma 6.2. Under the DDH assumption on G, for any set X, if H is a hash function

mapping X to G then under the DDH assumption function F : Zp∗ × X → G defined as

F (k, x) = H(x)k for k uniform in Zp∗, is a PRF in the random oracle model (ROM) for H.

Proof of Theorem 6.1 from Section 6.3. Let DB be any text strings database and

q be any sequence of Q queries to it as described above. Let (N, s, SP,DP,RP, IP) ←

160

LE(DB,q) (note that algorithm LE is deterministic). Let A be an efficient algorithm which

plays the role of E , i.e. receives the (TSet,XSet) input generated by Setup(DB) and in-

put (stag,∆1, xtoken[1], xtoken[2], . . .) generated by the client C on input q[τ] (and K =

(KS, KX , KT) generated in the same Setup(DB) procedure). We will first make several mod-

ifications in the way we look at this information, at some point involving the simulator SIMT

for the underlying T-set implementation, arguing that A’s view remains indistinguishable

between each consecutive modification. Finally we show a simulator which generates this

modified view given only input (N, s, SP,DP,RP, IP), which will complete the proof.

(1) First, we replace strap = H(w)s values generated in Setup and GenToken with random

elements in group G. This modification results in an indistinguishable change in A’s view

because by Lemma 6.2, H(w)s is a PRF (since q-DDH implies DDH), and key s is never

exposed to A. We will denote strap and stag values generated for keyword w1 as strapw1
and

stagw1
.

(2) Secondly, we replace each (Kz, Ke, Ku) triple generated for a given strapw1
with random

τ -bit strings. This modification results in an indistinguishable change in A’s view because Fτ

is a PRF and strapw1
values are never exposed to A. We will denote the key triple generated

for a particular strapw1
as (Kw1,z, Kw1,e, Kw1,u).

(3) Third, we replace each (zc, uc) pair generated for a given (Kw1,z, Kw1,u) key and counter

c, with random values in Zp∗. This modification results in an indistinguishable change in

A’s view because (Kw1,z, Kw1,u) keys are not exposed to A, and Fp is a PRF. Let us denote

the tuple (zc, uc) generated for counter c from keys (Kw1,z, Kw1,u) as (zw1,c, uw1,c).

(4) Next, we replace generation of ciphertext e in a (e, y, [u]) tuple with e← Enc(Kw1,e(0
2λ))

instead of Enc(Kw1,e, (ind|rdk)) (since ind and rdk are both λ-long bit strings). This modifi-

cation results in an indistinguishable change in A’s view because (Enc,Dec) is a CPA secure

encryption, and the keys Kw1,e are never exposed to A. We will denote the tuple (e, y, u) gen-

161

erated for s-term w1 and counter c as (ew1,c, yw1,c, uw1,c). We will also designate ind, pos, xind

values corresponding to the c-th position in T(stagw1
) as indw1,c, posw1,c, xindw1,c.

For convenience of notation, we will denote the pair of keys (KX , KI) as KXI . Define

function Fxtag : (((Zp∗)m×{0, 1}λ)×({0, 1}λ×{0, 1}λ×[q]))→G as Fxtag(KXI , (w, ind, pos)) =

(FG(KX , w))(Fp(KI ,ind))pos . Note that XSet consists of values Fxtag(KXI , (w, ind, pos)) computed

for every (w, ind, pos) tuple s.t. (ind, pos) ∈ DB(w). Observe that values xtokenkg[c, i] sent by

C in the Search are of the form

xtokenkg[c, i] = xtag

(
(yw1,c)

(∆i)·vw1,c

)−1

(6.3)

for xtag = Fxtag(KXI , (wi, indw1,c, posw1,c + ∆i)).

(5) Since the value satisfying this equation is unique, we will have Charlie generate the

xtokenkg[c, i] values by equation (6.3).

(6) The next modification is that we change the way Setup generates yw1,c and vw1,c elements

in each T[stagw1
] tuple, by choosing both of them at random in Zp∗, and then defining

zw1,c and uw1,c generated by C in Search as xind/yw1,c and xindpos/vw1,c, respectively. This

modification does not change A’s view because either way yw1,c, vw1,c are random elements

in Zp∗. Note that after the above modification xtokenkg[c, i] elements C sends depend only

on yw1,c, vw1,c, and no longer on zw1,c, uw1,c.

(7) Therefore, after this modification C will skip generating zw1,c, uw1,c in the Search proce-

dure. In fact, these values will not be generated anywhere in the game.

Let us look closer now at where the Setup procedure, at this point in our series of mod-

ifications, needs the key KXI = (KX , KI) and the ind, xind, pos values. Note that Setup

no longer uses ind, xind, and xindpos to generate the (ew1,c, yw1,c, vw1,c) tuples in T[stagw1
],

and therefore in particular it does not use the KI key at this point either. The only place

162

key KXI = (KX , KI) (and value xind) is used is in the generation of the xtag value in-

serted into XSet, i.e. in the generation of Fxtag(KXI , (w, ind, pos)). Note that by Lemma 6.2,

function FG : Zp∗ × {0, 1}λ→ G where FG(KX , w) = H(w)ei is a PRF, for i = I(w) and

KX = (e1, . . . , em) is chosen uniformly in (Zp∗)m. Therefore, by Corollary 6.4.1, assuming

q-DDH, ROM, and the fact that Fp is a PRF, function Fxtag is a PRF.

(8) Consequently, in the next modification we replace Fxtag(KXI , ·) with a random function

Fxtag(·), which assigns a random element in G to every (w, ind, pos) triple. Since, as we

discussed above, key KXI = (KX , KI) is not used anywhere else at this point except in the

computation of Fxtag, and A’s view can be generated using black-box access to Fxtag, this

modification results in an indistinguishable change in A’s view.

Let us reassess what A’s view consists of at this point. First, recall that by Lemma 6.2,

function FG : Zp∗ × {0, 1}λ → G where FG(KT , w) = H(w)ki is a PRF, for i = I(w)

and KT = (k1, . . . , km) is chosen uniformly in (Zp∗)m. Using this notation, T-set tuples

(e, y, v) are formed as an encryption of 02λ (e) and random Zp∗ nonces (y and v), and

inserted into TSet with an stag handle computed as stagw = FG(KT , w), while X-set is

populated with values of Fxtag(ind, w, pos) for all w ∈ KG and all (ind, pos) ∈ DB(w). Then,

for each query q[i], tokenized as (s[i], (x[i],∆[i])), procedure Search sends to A a singleton

(∆2[i]) (since we assume that each query tokenizes into two k-grams, we have h = 2), value

stags[i] = FG(KT , s[i]), and a stream of xtokenkg[c, 2] values (again, recall that h = 2) for

c = 1, 2, In the i-th query we will denote these values as xtokenkg[c, 2][i]. These values

are computed as in equation (6.3), but modified by replacing Fxtag(KXI , ·) with Fxtag(·), and

with (w1, w2,∆2) terms set to the corresponding values in query q[i], i.e., they are computed

as:

xtokenkg[c, 2][i] = xtag

(
(ys[i],c)

(∆[i])·vs[i],c

)−1

(6.4)

163

for xtag = Fxtag(KXI , (x[i], inds[i],c, poss[i],c + ∆[i])).

Therefore, since function FG(KT , ·) is a PRF and the T-set implementation is secure, in

the next change (9) we will use simulator SIMT instead of the T-set implementation. In

other words, we compute T[s[i]] for each i = 1, . . . , Q as the set of SP[i] = |DB(s[i])| triples

(e, y, v) computed as above, and we run SIMT (N,T) to generate the TSet datastructure and

the search handles stags[i] for i = 1, . . . , Q. By the security of the T-set implementation, this

modification results in an indistinguishable change in A’s view.

(10) Finally, we change the generation of the xtag values in XSet and the xtokenkg generated

in Search as follows: To generate xtag’s in XSet we simply chose N random elements in G.

We also keep a table XT indexed by (w2, ind, pos) triples to which we assign some elements

in G as the game progresses. Then, we generate xtokenkg[c, 2][i] as follows.

1. First we check if XT (x[i], inds[i],c, poss[i],c + ∆[i]) is already defined. If it is, we move

to the second step, but if it is not then we first define this entry in the XT table as

follows:

(a) If (inds[i],c, poss[i],c) is in DB(w) then we assign to this entry in the XT table to a

random un-used value in XSet (i.e. to a random value which is not yet assigned

to any other entry in the XT table).

(b) Otherwise, i.e. if (inds[i],c, poss[i],c) is not in DB(w) then we assign a random ele-

ment in G to this entry in the XT table.

2. Secondly, we take xtag← XT (x[i], inds[i],c, poss[i],c+∆[i]) and we compute xtokenkg[c, 2][i]

as xtag exponentiated to
(
(ys[i],c)

(∆[i]) · vs[i],c

)−1
.

It follows by the randomness of Fxtag and by equation (6.4) that the above modification does

not change A’s view: The xtag values remain random and the only thing that A can observe

164

is whether or not the xtag’s computed for each [c, 2, i] hit some previously observed xtag

value, and whether this value is in XSet or not.

We will argue that the above view can be generated given only leakage (N, s, SP,DP,RP, IP)

generated by (DB,q). By the security of the T-set implementation A’s views of TSet, of

the stags[i] values, and hence also of the T[s[i]] vectors of (e, y, v) tuples retrieved from TSet

via stags[i]’s, is simulated correctly on input (N, s, SP). Leakage DP[i] is used directly as

∆[i]. The result pattern RP[i] is used to assign some random positions c for each T[s[i]]

to the (ind, pos) values in RP[i], and to decide whether the xtag computed for this position

should be from XSet or not. Finally, the IP leakage is used to detect repetitions in the xtag

values, i.e. to simulate the view from step (10) above without the XT table. (Note that

the XT table keeps all the xtag’s which A sees/computes during Search not only for values

(x[i], ind, pos+∆) corresponding to (ind, pos+∆) in DB(x[i]) and (ind, pos) in DB(s[i]), which

the simulator can simulate using RP[i], but also for values which are not in DB. Here is where

IP table is necessary: For every q[i],q[j] pair, IP gives to the simulator the set of ind’s with

the corresponding positions posi, posj, s.t. x[i] = x[j] and posi + ∆[i] = posj + ∆[j], which

is precisely the information needed to detect when some xtag value (i.e. some entry in the

XT table) should repeat. Since this simulated view is identical to the view in step (10), the

theorem follows.

165

Chapter 7

Related Work

In this chapter, we provide an overview of prior work related to this dissertation. We discuss

related work on: GenoDroid, UnLinked and SPH-PSM.

7.1 Privacy Preserving Genomic Testing on Smartphones

This section discusses prior work on security and privacy of genomics, as well as secure

computation focusing on mobile devices.

7.1.1 Secure Testing on Fully Sequenced Human Genomes

Non-cryptographic approaches to privacy, such as de-identification, are often ineffective on

genomic data, as shown by some recent studies [Mal05, H+08, W+09, ZPL+11]. As a result,

several privacy-preserving cryptographic techniques have been proposed. We now review

techniques for secure testing on fully sequenced human genomes.

166

Baldi, et al. [BBD+11] recently introduced several cryptographic protocols for privacy-

preserving testing of fully sequenced human genomes, including RFLP-based paternity test

and genetic screening for personalized medicine or recessive genetic diseases. Similar to

our setting, individuals obtain their genomes and allow authorized parties (e.g., doctors) to

run genetic tests such that only test results are disclosed to one or both parties. However,

[BBD+11] only addresses the issue of designing cryptographic protocols, and does not deal

with real-world issues. In particular: genome conversion, extensibility, fine-grained optimiza-

tions on mobile devices and usability, are not considered. Whereas, our work provides a set

of working practical instantiations of genomic tests on a popular smartphone platform. Also,

in contrast with the PM technique in [BBD+11], our work includes a cloud-aided variant that

facilitates much more efficient operation. Finally, we design and implement new operations,

such as privacy-preserving genetic ancestry testing.

Chen, et al. [CPWT12] studied the problem of privacy-preserving mapping and aligning of

human genomic sequences to a reference genome, by outsourcing work to the cloud and

protecting sensitive DNA information. Since [CPWT12] does not consider genomic testing,

it is orthogonal to our work.

7.1.2 Secure Computation on DNA Fragments

We now review prior work realizing secure computation on DNA fragments, as opposed to

fully sequenced genomes.

Bruekers, et al. [BKKT08] presented privacy-preserving techniques for some DNA operations,

based on Short Tandem Repeat (STR). Proposed techniques use homomorphic encryption

on DNA fragments to perform comparisons. Testing protocols are resilient to small numbers

of errors, however, their complexity increases with the number of tolerated errors [BA10].

Also, [BKKT08] leaves as an open problem the scenario where an attacker faithfully runs the

167

protocol but with arbitrary inputs. In this setting, an attacker, given STR’s limited entropy,

can “lie” about its STR profiles and run multiple dependent protocols, thus reconstructing

the other party’s profile.

Wang, et al. [WWL+09] developed techniques for computation on genomic data stored at a

data provider, including: edit distance, Smith-Waterman and search for homologous genes.

Program specialization is used to partition genomic data into “public” (most of the ge-

nome) and “sensitive” (a very small subset of the genome). Sensitive regions are replaced

with symbols by data providers (DPs) before data consumers (DCs) have access to genomic

information.

Troncoso-Pastoriza, et al. [TPKC07] proposed an error-resilient privacy-preserving protocol

for string searches. One party, on input of its DNA snippet, can verify the existence of a

short template (e.g., a genetic test held by the service provider) within its (short) snippet.

This technique handles errors and maintains privacy of both the template and the snippet.

Each query is represented as an automaton executed using a finite state machine (FSM) in

an oblivious manner. However, the number of FSM states is always revealed to all parties.

The work of Katz, et al. [KM10a] also considers DNA testing. Specifically, it realizes secure

computation of the CODIS test [The11] (run by the FBI for DNA identity testing), that

could not be otherwise implemented using pattern matching or FSM.

Another set of cryptographic results focus on privately computing the edit distance for two

strings α, β. (Edit distance is defined as the minimum number of operations, such as, delete,

insert, or replace, needed to transform α into β.) Privacy-preserving computation of Smith-

Waterman scores [SW81] has also been investigated and used for sequence alignment. Jha,

et al. [JKS08] show how to securely compute edit distance using garbled circuits [Yao82],

and demonstrate that the resulting overhead is acceptable only for small strings (e.g., a

200-character strings require 2GB circuits). For longer strings, they propose two optimized

168

techniques, that exploit the structure of the dynamic programming problem (intrinsic to

the specific circuit) and split the computation into smaller component circuits. However, a

quadratic number of oblivious transfers is needed to evaluate garbled circuits, thus limiting

scalability of this approach. Nonetheless, 500-character string instances take almost one hour

to complete, according to [JKS08]. Optimized protocols also extend to privacy-preserving

Smith-Waterman scores [SW81], a more sophisticated string comparison algorithm, where

costs of delete/insert/replace operations, instead of being equal, are determined by special

functions. Again, scalability is limited: experiments in [JKS08] show that evaluation of

Smith-Waterman for a 60-character string takes about 1,000 seconds.

7.1.3 Secure Computation on Mobile Devices.

In [HCE11], Huang, et al. present a preliminary analysis of the performance of pipelined

garbled circuits on smartphones and deploy optimized circuit-based techniques for secure

computation [HEKM11]. [HCE11] mentions personal genetics as a possible application,

showing that two individuals could compare 25 genetic features (e.g., common recessive

genetic diseases) in about 7 seconds. Although, in this work, we do not focus on this test, we

observe that only if all known recessive diseases are compared, the test becomes truly privacy-

preserving. (In fact, an individual who requests a specific subset of tests may be revealing

the disease he/she suffers). While it may be reasonable today to assume that the number of

known recessive diseases is in the order of 25, this may soon become unrealistic, as full genome

sequencing continuously enables better understanding of the genome and discovery of new

diseases. Also, [HCE11] presents, as an application example, CommonContacts, an Android

app that privately discovers the contacts common between two users. It realizes Private

Set Intersection [FNP04], where sets correspond to contact lists. However, computation

overhead appears to be still too high, in practice, to scale up to fully sequenced genomes,

since executing CommonContacts on lists with 256 entries takes about 10 minutes [HCE11].

169

Carter, et. al [CADT11] presented the concept of Efficient Mobile Oblivious Computation

(EMOC), i.e., a technique that completely replaces garbled circuits with homomorphic op-

erations on ciphertexts. EMOC is used to solve Yao’s millionaires problem [Yao82] and

compute common friends in a social network. Finally, Mood, et al. [MLB12] have recently

proposed a memory optimization for garbled-circuit based applications for generic secure

computation on mobile phones.

7.1.3.1 Cloud-Aided Secure Computation

With the increasing availability of low-cost, high-performance computing platforms in the

cloud, the research community has started proposing protocols for secure computation that

rely on cloud providers to help increase their efficiency.

Kamara, et. al [KMR11] propose a server-aided setting for Secure Multi-party Computation

(SMC) where interacting parties have access to a single server that does not have any input

or output to/from the computation but has a vast (yet bounded) amount of computational

resources. In this setting, they design protocols that minimize the computation of the parties

at the expense of the server. A similar intuition has also been used in previous work, such

as, [FKN94, Bea97, Cac99, P+11, DLT11]. However, none of these techniques apply to the

setting of human genome testing.

7.2 Private Off-line Social Network Interactions

Most related work falls into two groups: (1) private discovery of common friends and (2)

cryptographic protocols for private set operations.

170

7.2.1 Private Friends Discovery

In von Arb et al. [vABKW08] privacy is considered in the friend-of-friends scenario where

two users want to learn whether they have the same contacts on their mobile phones, based on

phone numbers. The proposed technique, based on [HFH99], uses commutative encryption:

each party encrypts its own elements and gets the resulting ciphertexts encrypted by the

other party. By comparing encrypted ciphertexts both parties identify common elements.

This approach offers no authorization of set elements. Thus, parties can use any phone

numbers as protocol input and learn the other party’s contacts. Moreover, there are no

ETR features, meaning that a malicious party can end the protocol as soon as it learns the

intersection.

De Cristofaro et al. [DCMP13] introduced the concept of private contact discovery that

offers privacy-preserving computation of common contacts. The proposed scheme uses index-

based message encoding [MPP10]. Unauthorized relaying of contact set elements is addressed

via contact certification which requires no trusted third party. The main idea is that each

user U issues to its every contact V a contact certificate, which is essentially U ’s signature

on V ’s id. Thus a certificate is bound by the issuer to a specific user (contact) and can

not be relayed. As [vABKW08], this scheme is prone to early protocol termination attacks.

Also, it is limited to connections and does not consider other types of profile information,

e.g., educational insitutions or past employers, for which such contact certificates are not

applicable.

Nagy et al. [NDCD+13] construct a Common Friends protocol that allows two parties to

privately learn whether they are already friends or share some OSN friends. The protocol uses

so-called bearer capabilities [TMvR86] for authenticity of friends lists. Bearer capabilities

constitute proofs of friendship. Other than containing IDs of OSN users, those capabilities

are considered to be “high-entropy objects”. Consequently [NDCD+13] claims that using

171

full-blown (standard) PSI protocols is overkill since set elements are not “predictable”. This

allows the usage of more efficient PSI protocols based on Bloom filters [Blo70]. Concerning

authenticity, [NDCD+13] acknowledges that re-distribution of contacts is not addressed.

7.2.2 Private Set Intersection

Private set intersection (PSI) protocols [DCT09], [JL10], [CZ09], [FNP04], [HL08] allow two

parties, each with its own set, to privately compute a set intersection. In other words, if two

parties’ (private) sets include common elements, one or both learn(s) these elements and no

information about other set elements (other than their number) is revealed. If both parties

learn the result, the protocol is called mutual or two-way PSI. It is claimed in [DCT09] that

mutual PSI can be obtained by two instantiations of one-way PSI. However, we believe that

this holds only in the semi-honest model, where protocol executions require no binding. In

an authorized PSI protocol, set elements need to be signed beforehand by a trusted third

party. In this setting, special care must be taken to disallow trading authorized inputs. This

is typically not addressed.

7.2.3 Policy-Enhanced Private Set Intersection

Another class of related protocols is called Policy-Enhanced Private Set Intersection (PE-

PSI) [SSS12]. These allow a ATW-PSI to be constructed from any PSI protocol secure

against a malicious adversary. The scheme from [SSS12] offers super-linear computational

complexity. Also, binding is not provided: any individually authorized set element can be

omitted from the intersection. Furthermore, this scheme requires a PSI protocol secure

in the malicious model, which may not be two-way. Thus, in some instantiations, output

integrity is not provided. In a practical deployment, such as UnLinked, the added costs of

such schemes may be prohibitive. In contrast, ATW-PSI and ATW-PSI-CA provide efficient

172

binding, as well as ETR in the malicious model, and can be optionally extended to provide

output integrity.

7.3 Secure Genomics Pattern Matching

Related work falls into several categories described separately below.

7.3.1 Secure Genomics

Motivated by extreme sensitivity of DNA data, the security research community proposed

some cryptographic techniques for secure computation on short DNA fragments, such as:

searching [BKKT08, BA10, TPKC07], computing distance between snippets [WWL+09,

JKS08] and related functionalities [FDH+12, KM10a]. With the advent of affordable tech-

nologies for WGS, focus shifted to protocols that can scale to the entire genome. In particular,

[BBD+11] introduced protocols for paternity testing and personalized medicine. Similar to

our work, it is assumed that an individual retains control of (i.e., securely stores) his digitized

genome. The protocol for secure personalized medicine testing in [BBD+11] involves (i) a

patient, on input her genome, and (ii) a testing facility, on input a list of DNA mutations,

along with their corresponding positions. The testing facility needs to check for the presence

of these markers in the patient’s genome. At the end of the interaction, the patient has no

output, while the testing facility learns which markers appear in the patient’s genome. The

construction in [BBD+11] is based on the Private Set Intersection (PSI) concept [FNP04]

and thus has the following limitations:

• If the patient’s genome contains only a subset of tested mutations, this subset is re-

vealed to the testing facility, hence violating the goal of only disclosing the test outcome.

173

• The number of tested markers is revealed to the patient. This information might

be enough to (partially or entirely) disclose the nature of the test, thus potentially

violating the requirement of hiding test specifics from the patient.

Subsequently, [DCFGT12] extended the work in [BBD+11] by implementing privacy-preserving

ancestry (e.g., paternity) testing on Android devices and demonstrating its current viability.

However, these results exhibit the same limitations as [BBD+11]. The work in [CKM12]

proposed to secure biomedical data using cryptographic hardware, and [KJLM08] used ho-

momorphic encryption to perform scientific investigations on integrated genomic data. Fi-

nally, [CPWT12] proposed techniques to securely map and align human genomic sequences

to a reference genome, while outsourcing computation to a hybrid cloud.

7.3.2 Secure Pattern Matching

There are a few cryptographic techniques for Secure Pattern Matching (SPM) [HL08, GHS10,

HT10, BEM+12], where one party (P1) holds a pattern and the other party (P2) holds a text

string. P1 learns where the pattern appears in the text, without revealing it to P2, or

learning anything else about P2’s input. However, the size of P1’s pattern is always revealed

to P2. Although [HT10] sketched out a way to hide the pattern size by means of wildcard

padding, the upper bound on the size is still revealed. Plus, supporting wildcards causes

a communication and computational performance increase from linear to multiplicative in

the size of the text (n) and the size of the pattern (m). In the genomic setting, even a

pattern of length 4 would result in around 12 billion modular exponentiations. In order

to completely hide the pattern size, communication and computational complexity further

increases to O(n2).

174

Moreover, SPM actually reveals all occurrences of P1’s pattern in P2’s string. Therefore,

it is not well-suited for the problem at hand, since, our setting only needs a binary output

indicating whether a substring, representing the marker(s) to be tested, appears in a larger

string (i.e., the patient’s genome) at some specific position(s). It is possible to extend SPM

to only disclose the presence of a contiguous substring in a string at a specific location, e.g.,

by modifying parties’ inputs from a sequence of letters to a sequence of hash(letter||position).

However, there is no straightforward way to adapt SPM to match non-contiguous substrings,

except for surrounding the pattern with single-character wild cards, which (as noted earlier)

considerably increases protocol complexity.

Based on the above discussion and to the best of our knowledge, no SPM technique can

efficiently handle genomic-scale inputs. Moreover, there are scarcely any SPM implemen-

tations; one is described [BEM+12]. Whereas, we report on the performance of an actual

prototype which confirms the practicality of the proposed SPH-PSM technique.

7.3.3 Input-Size Hiding

There are only a few constructions that support hiding input size in secure computation

protocols. Ishai and Paskin [IP07] did so in the generic context of branching programs:

one party can evaluate a program on some encrypted input, in such a way that the size of

the program is not revealed to the other party. In [ACT11], Ateniese et al. showed that

the assumption that secure multi-party computation necessitates revealing input sizes does

not always hold. [ACT11] demonstrated a Size-Hiding Private Set Intersection (SHI-PSI)

protocol where the size of the set held by the party receiving the intersection (client) is not

disclosed.

Although somewhat relevant to the problem at hand, SHI-PSI cannot be used for private

substring matching, since, as discussed above, any known linear reduction to PSI leaks

175

the subset of matching mutations. Note, however, SHI-PSI could be reduced to substring

matching (only for contiguous substrings) with quadratic computation and communication

complexities: the text holder could encode each possible substring as a set element, thus

creating a set with n2 elements; meanwhile, the pattern could be represented as a single

element set, and substring matching can be executed as a set intersection. Finally, Lindell

et al. [LNO12] recently presented some feasibility results on hiding input size in secure

computation, based on Fully Homomorphic Encryption (FHE).

176

Chapter 8

Conclusions

This dissertation showcased the practicality of Private Set Intersection (PSI) and related

variants in solving real world problems.

Chapter 2 explored the viability and practicality of privacy-agile computational genomic

tests in the portable and pervasive setting of modern smartphones. We combined domain

knowledge in biology, genomics, ubiquitous computing, and applied cryptography, to design

and build a personal genomic toolkit called GenoDroid. We implemented it on the Android

platform, assessed its performance and conducted a pilot usability study that produced some

encouraging results. We have an ongoing effort to incorporate support for additional genetic

tests in GenoDroid, broadening its impact. One promising direction is organ donor-recipient

genetic compatibility testing. We also intend to look into computational genetic tests for non-

human digitized genomes, e.g., plants as well as pets and livestock. Finally, work remains

to be done in terms of user perception (and general usability) of personal computational

genetic tests and our framework.

In Chapter 3, we reported on the design of UnLinked that supports private off-line interaction

among nearby OSN users. As part of this work, we developed a novel ATW-PSI protocol that

177

allows two parties to learn the intersection of their pre-authorized private input sets. Pre-

authorization of these input sets by ULS prevents transfer and manipulation of individual

set elements. A fully functional prototype of UnLinked is available for Android smartphones,

allowing LinkedIn users to automatically discover nearby peers who share a sufficient number

of friends or other profile features. This discovery happens seamlessly in the background and

requires no user interaction until a match is found.

We intend to integrate information from multiple OSNs, e.g. Facebook, Google+ and Twitter.

This will allow for more flexible policies and would allow us to tap into a greater user pool.

Furthermore, we plan to investigate whether our approach is applicable to other application

scenarios, such as mobile social services relying on encounter-based trust.

Chapter 5 presented a novel cryptographic primitive called Size- and Position-Hiding Private

Substring Matching (SPH-PSM) that appeals to the increasingly relevant scenario of privacy-

preserving genomic testing (Personalized Medicine). A prototype implementation attests to

the practicality of the proposed technique.

We intend to explore the use of SPH-PSM in the context of unordered sets, i.e., to realize

efficient two-party private set disjointness test, while hiding the size of one party’s set. Let

one party (P1) represent its set as a polynomial P (with roots corresponding to set items)

and send encrypted coefficients to the other party (P2). P2, for each element yj in its set,

can obliviously evaluate P at yj using additively homomorphic encryption and compute

eej = E(rjP(yj)) for a random value rj. After multiplying all eej values, P2 can send the

result to P1 which upon decryption only learns whether the sets are disjoint.

We also intend to distribute an optimized open-source implementation of SPH-PSM along

with implementations of some common Personalized Medicine tests such as: hla-B, tpmt, as

well as API support for application developers. This update will be released as a new version

of and extension to the GenoDroid framework.

178

Finally, Chapter 6 presents a significant advance in the ability to run truly complex queries

on encrypted data in a variety of operational and trust models. Specifically, we augmented

the capabilities of the OXT protocol from the works of [CJJ+13, JJK+13, CJJ+14] to support

substring, wildcard and phrase queries, and to allow any combination of these query types

under boolean expressions. By leveraging and expanding the underlying machinery of OXT

we were able to build on the impressive scalability of the protocol, and while the new query

types carry costs in performance and storage, we demonstrated their practicality through a

prototype implementation tested under large scale databases by an independent evaluator.

One important conclusion is that searching on outsourced encrypted data with significant

functionality and privacy-preserving properties is practical today even for large databases.

We would like to see a deployment of these technologies in the near future.

179

Bibliography

[10016] 1000 Genomes Project. A Deep Catalog of Human Genetic Variation. http:

//www.1000genomes.org/, 2016.

[23a16] 23andMe. https://www.23andme.com/, 2016.

[Abb03] A. Abbott. Special section on human genetics: With your genes? Take one of
these, three times a day. Nature, 425(6960), 2003.

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical
and provably secure coalition-resistant group signature scheme. In CRYPTO
2000, pages 255–270. Springer, 2000.

[ACT11] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters:
Size-hiding private set intersection. In Public Key Cryptography, volume 6571
of Lecture Notes in Computer Science, pages 156–173. Springer, 2011.

[ADHT13] Erman Ayday, Emiliano De Cristofaro, Jean-Pierre Hubaux, and Gene Tsudik.
The Chills and Thrills of Whole Genome Sequencing. To Appear in IEEE
Computer. Available from http://arxiv.org/abs/1306.1264, 2013.

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
efficient protocols for realistic adversaries. In Proceedings of the 4th conference
on Theory of cryptography, TCC’07, pages 137–156, Berlin, Heidelberg, 2007.
Springer-Verlag.

[ATT10] ATT. Mobilizing Enterprise Applications, 2010.

[B+07a] D. Bolnick et al. GENETICS: The Science and Business of Genetic Ancestry
Testing. Science, 318(5849), 2007.

[B+07b] P. Burton et al. Genome-wide association study of 14,000 cases of seven com-
mon diseases and 3,000 shared controls. Nature, 447, 2007.

[BA10] M. Blanton and M. Aliasgari. Secure outsourcing of dna searching via finite
automata. In DBSec, 2010.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based en-
cryption without random oracles. In Christian Cachin and Jan Camenisch,

180

http://www.1000genomes.org/
http://www.1000genomes.org/
https://www.23andme.com/
http://arxiv.org/abs/1306.1264

editors, EUROCRYPT, volume 3027 of Lecture Notes in Computer Science,
pages 223–238. Springer, 2004.

[BBD+11] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik. Countering
GATTACA: Efficient and Secure Testing of Fully-Sequenced Human Genomes.
In CCS, 2011.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Advances in Cryptology–CRYPTO 2004, pages 41–55. Springer, 2004.

[Bea97] D. Beaver. Commodity-based cryptography. In STOC, 1997.

[BEM+12] Joshua Baron, Karim El Defrawy, Kirill Minkovich, Rafail Ostrovsky, and Eric
Tressler. 5PM: Secure pattern matching. In Ivan Visconti and Roberto De
Prisco, editors, SCN 12: 8th International Conference on Security in Commu-
nication Networks, volume 7485 of Lecture Notes in Computer Science, pages
222–240, Amalfi, Italy, September 5–7, 2012. Springer, Berlin, Germany.

[BFT16] Tatiana Bradley, Sky Faber, and Gene Tsudik. Bounded size-hiding private
set intersection. In International Conference on Security and Cryptography for
Networks, pages 449–467. Springer, 2016.

[BKKT08] F. Bruekers, S. Katzenbeisser, K. Kursawe, and P. Tuyls. Privacy-Preserving
Matching of DNA Profiles. http://eprint.iacr.org/2008/203, 2008.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[Blu07] Bluetooth SIG, Simple Pairing Whitepaper. http://preview.tinyurl.com/

bluetooth-simple-pairing, 2007.

[BPMO12] E. Blass, R. Di Pietro, R. Molva, and M. Onen. PRISM: Privacy-Preserving
Searches in MapReduce. In PETS, 2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM conference on
Computer and communications security, pages 62–73. ACM, 1993.

[Bro96] J. Brooke. SUS-a quick and dirty usability scale. Usability evaluation in In-
dustry, 189, 1996.

[Bro97] A. Broder. On the resemblance and containment of documents. In Compression
and Complexity of Sequences, 1997.

[Bur12] A. Burke. Foundation Medicine: Personalizing Cancer Drugs. http://is.gd/
foundation_medicine, 2012.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on
encrypted data. In Theory of cryptography, pages 535–554. Springer, 2007.

181

http://eprint.iacr.org/2008/203
http://preview.tinyurl.com/bluetooth-simple-pairing
http://preview.tinyurl.com/bluetooth-simple-pairing
http://is.gd/foundation_medicine
http://is.gd/foundation_medicine

[Cac99] C. Cachin. Efficient private bidding and auctions with an oblivious third party.
In CCS, 1999.

[CADT11] H. Carter, C. Amrutkar, I. Dacosta, and P. Traynor. Efficient Oblivious Com-
putation Techniques for Privacy-Preserving Mobile Applications. Technical
report, 2011. http://smartech.gatech.edu/handle/1853/42367.

[Can07] T. Canli. The emergence of genomic psychology. Nature, 8, 2007.

[Can16] Canalys Research. Smart phones overtake client PCs in 2011. http://www.

canalys.com/newsroom/smart-phones-overtake-client-pcs-2011, 2016.

[Car08] B. Carlson. SNPs – A shortcut to personalized medicine. Genetic Engineering
& Biotechnology News, 2008.

[Cas10] S. Cass. Cheap DNA sequencing will drive a revolution in health care. http:

//www.technologyreview.com/biomedicine/24587/, 2010.

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Search-
able symmetric encryption: improved definitions and efficient constructions. In
Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM CCS 06: 13th Conference on Computer and Communications Security,
pages 79–88, Alexandria, Virginia, USA, October 30 – November 3, 2006. ACM
Press.

[CGKS95] B. Chor, Oded Goldreich, E. Kushilevitz, and Madhu Sudan. Private informa-
tion retrieval. In FOCS. IEEE, 1995.

[CHLR96] H.R. Chaikind, J. Hearne, B. Lyke, and S. Redhead. The health insurance
portability and accountability act (hipaa) of 1996: Overview and guidance on
frequently asked questions. 1996.

[CJJ+13] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-
Cătălin Roşu, and Michael Steiner. Highly-scalable searchable symmetric
encryption with support for boolean queries. In Advances in Cryptology–
CRYPTO 2013, pages 353–373. Springer, 2013.

[CJJ+14] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo
Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable
encryption in very large databases: Data structures and implementation. In
Symposium on Network and Distributed Systems Security (NDSS 2014), 2014.

[CK10] Melissa Chase and Seny Kamara. Structured encryption and controlled disclo-
sure. In Masayuki Abe, editor, Advances in Cryptology – ASIACRYPT 2010,
volume 6477 of Lecture Notes in Computer Science, pages 577–594, Singapore,
December 5–9, 2010. Springer, Berlin, Germany.

182

http://smartech.gatech.edu/handle/1853/42367
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
http://www.technologyreview.com/biomedicine/24587/
http://www.technologyreview.com/biomedicine/24587/

[CKM12] M. Canim, M. Kantarcioglu, and B. Malin. Secure Management of Biomedi-
cal Data With Cryptographic Hardware. IEEE Transactions on Information
Technology in Biomedicine, 16(1), 2012.

[CL01] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. EUROCRYPT,
2001.

[CM01] F. Collins and V. McKusick. Implications of the Human Genome Project for
medical science. Jama, 285(5), 2001.

[CM05] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword
searches on remote encrypted data. In John Ioannidis, Angelos Keromytis,
and Moti Yung, editors, ACNS 05: 3rd International Conference on Applied
Cryptography and Network Security, volume 3531 of Lecture Notes in Computer
Science, pages 442–455, New York, NY, USA, June 7–10, 2005. Springer, Berlin,
Germany.

[CMS09] Leucio Antonio Cutillo, Refik Molva, and Thorsten Strufe. Safebook : a privacy
preserving online social network leveraging on real-life trust. ”IEEE Commu-
nications Magazine”, Vol 47, N12, 12 2009.

[Col99] F. Collins. Medical and societal consequences of the human genome project.
New England Journal of Medicine, 341(1), 1999.

[CPWT12] Y. Chen, B. Peng, X. Wang, and H. Tang. Large-Scale Privacy-Preserving
Mapping of Human Genomic Sequences on Hybrid Clouds. In NDSS, 2012.

[CS14] Melissa Chase and Emily Shen. Pattern matching encryption. Cryptology
ePrint Archive, Report 2014/638, 2014. http://eprint.iacr.org/.

[CZ09] Jan Camenisch and GregoryM. Zaverucha. Private intersection of certified
sets. In Roger Dingledine and Philippe Golle, editors, Financial Cryptography
and Data Security, volume 5628 of Lecture Notes in Computer Science, pages
108–127. Springer Berlin Heidelberg, 2009.

[D. 16] D. Barnett. BamTools. https://github.com/pezmaster31/bamtools, 2016.

[DCFGT12] Emiliano De Cristofaro, Sky Faber, Paolo Gasti, and Gene Tsudik. Genodroid:
are privacy-preserving genomic tests ready for prime time? In WPES, pages
97–108. ACM, 2012.

[DCFT13] Emiliano De Cristofaro, Sky Faber, and Gene Tsudik. Secure genomic testing
with size- and position-hiding private substring matching. In WPES, pages
107–118. ACM, 2013.

[DCKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity
private set intersection protocols secure in malicious model. In Advances in
Cryptology-ASIACRYPT 2010, pages 213–231. Springer, 2010.

183

http://eprint.iacr.org/
https://github.com/pezmaster31/bamtools

[DCMP13] Emiliano De Cristofaro, Mark Manulis, and Bertram Poettering. Private dis-
covery of common social contacts. International Journal of Information Secu-
rity, 12(1):49–65, 2013.

[DCT09] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection pro-
tocols with linear computational and bandwidth complexity. IACR Cryptology
ePrint Archive, 2009:491, 2009.

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In CRYPTO, 1989.

[DGT12] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and private com-
putation of cardinality of set intersection and union. In Cryptology and Network
Security, 11th International Conference, CANS 2012, Darmstadt, Germany,
December 12-14, 2012. Proceedings, pages 218–231, 2012.

[Dia13] Diaspora Foundation. Webpage, 2013. https://diasporafoundation.org/.

[DJ01] Ivan Damgrard and Mads Jurik. A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In PKC, 2001.

[DLT11] E. De Cristofaro, Y Lu, and G. Tsudik. Efficient techniques for privacy-
preserving sharing of sensitive information. In Trust, 2011.

[DT10] E. De Cristofaro and G. Tsudik. Practical Private Set Intersection Protocols
with Linear Complexity. In FC, 2010.

[DT11] E. De Cristofaro and G. Tsudik. Fast and Private Computation of Set Inter-
section Cardinality. Cryptology ePrint Archive, 2011.

[EDF13] Karim El Defrawy and Sky Faber. Blindfolded data search via secure pattern
matching. Computer, 46(12):68–75, 2013.

[ElG85] T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE transactions on Information Theory, 31(4), 1985.

[End89] D. Endean. RFLP analysis for paternity testing: observations and caveats. In
Human Identification, 1989.

[F+09] M. Fumagalli et al. Parasites represent a major selective force for interleukin
genes and shape the genetic predisposition to autoimmune conditions. Experi-
mental Medicine, 206(6), 2009.

[FDH+12] M. Franz, B. Deiseroth, K. Hamacher, S. Jha, S. Katzenbeisser, and
H. Schröder. Towards secure bioinformatics services (short paper). Financial
Cryptography and Data Security, 2012.

[FJK+15] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel Rosu,
and Michael Steiner. Rich queries on encrypted data: Beyond exact matches.
In Proceedings of the Twentieth European Symposium on Research in Computer

184

https://diasporafoundation.org/

Security (ESORICS), volume 9327 of Lecture Notes in Computer Science, pages
123–145. Springer-Verlag, Berlin Germany, 2015. Part II.

[FJKW15] Sky Faber, Stanislaw Jarecki, Sotirios Kentros, and Boyang Wei. Three-party
oram for secure computation. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 360–385. Springer,
2015.

[FKN94] U. Feige, J Killian, and M. Naor. A minimal model for secure computation. In
STOC, 1994.

[FNP04] MichaelJ. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private match-
ing and set intersection. In Christian Cachin and JanL. Camenisch, editors,
Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes
in Computer Science, pages 1–19. Springer Berlin Heidelberg, 2004.

[FP01] Pierre-Alain Fouque and David Pointcheval. Threshold cryptosystems secure
against chosen-ciphertext attacks. In ASIACRYPT, 2001.

[FPT15] Sky Faber, Ronald Petrlic, and Gene Tsudik. Unlinked: Private proximity-
based off-line osn interaction. In Proceedings of the 14th ACM Workshop on
Privacy in the Electronic Society, pages 121–131. ACM, 2015.

[Fre05] David Freeman. Pairing-based identification schemes. arXiv preprint
cs/0509056, 2005.

[FSC11] J. Fowler, J. Settle, and N. Christakis. Correlated genotypes in friendship
networks. Proceedings of the National Academy of Sciences, 108(5), 2011.

[Gen12a] Genomics Law Report. Patenting and Personal Genomics: 23andMe Receives
its First Patent, and Plenty of Questions. http://preview.tinyurl.com/

7ebpft9, 2012.

[Gen12b] Genomics Law Report. Some Thoughts on Myriad After the Supreme Court
Argument. http://preview.tinyurl.com/bqy25wz, 2012.

[GHS10] R. Gennaro, C. Hazay, and J. Sorensen. Text Search Protocols with Simulation
Based Security. In PKC, 2010.

[GMG+13] Melissa Gymrek, Amy L McGuire, David Golan, Eran Halperin, and Yaniv
Erlich. Identifying personal genomes by surname inference. Science,
339(6117):321–324, 2013.

[gmp16] The gnu multiple precision arithmetic library. http://gmplib.org/, 2016.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, 1988.

185

http://preview.tinyurl.com/7ebpft9
http://preview.tinyurl.com/7ebpft9
http://preview.tinyurl.com/bqy25wz
http://gmplib.org/

[Goh03] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216,
2003. http://eprint.iacr.org/.

[Gol04] Oded Goldreich. The Foundations of Cryptography: Volume 2, Basic Applica-
tions. Cambridge University Press, 2004.

[Goo16] Google. Dalvik. http://code.google.com/p/dalvik/, 2016.

[GSMG11] D. Greenbaum, A. Sboner, X.J. Mu, and M. Gerstein. Genomics and privacy:
Implications of the new reality of closed data for the field. PLoS Computational
Biology, 7(12), 2011.

[Gut96] P Gutmann. Secure Deletion of Data from Magnetic and Solid-state Memory.
In Usenix Security, 1996.

[GW09] G. Ginsburg and H. Willard. Genomic and personalized medicine: foundations
and applications. Translational Research, 154(6), 2009.

[H+08] N. Homer et al. Resolving individuals contributing trace amounts of DNA
to highly complex mixtures using high-density SNP genotyping microarrays.
PLoS Genetics, 4(8), 2008.

[Har12] D. Hardt. The OAuth 2.0 authorization framework, Oct. 2012.

[HCE11] Y. Huang, P Chapman, and D. Evans. Privacy-preserving applications on
smartphones. In HotSec, 2011.

[HEKM11] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party compu-
tation using garbled circuits. In Usenix Security, 2011.

[HFH99] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy
and trust in electronic communities. In In Proc. of the 1st ACM Conference
on Electronic Commerce, pages 78–86. ACM Press, 1999.

[HG09] L.E. Hood and D.J. Galas. P4 Medicine: Personalized, Predictive, Preventive,
Participatory A Change of View that Changes Everything. http://www.cra.

org/ccc/docs/init/P4_Medicine.pdf, 2009.

[HL08] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and
pattern matching with security against malicious and covert adversaries. In
Theory of Cryptography, pages 155–175. Springer, 2008.

[Hof07] M. Hoffman. The genome-enabled electronic medical record. Journal of
Biomedical Informatics, 40(1), 2007.

[HT10] Carmit Hazay and Tomas Toft. Computationally secure pattern matching in
the presence of malicious adversaries. In ASIACRYPT, pages 195–212, 2010.

[Int01] International Human Genome Sequencing Consortium. Initial sequencing and
analysis of the human genome. Nature, 409, 2001.

186

http://eprint.iacr.org/
http://code.google.com/p/dalvik/
http://www.cra.org/ccc/docs/init/P4_Medicine.pdf
http://www.cra.org/ccc/docs/init/P4_Medicine.pdf

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted
data. In TCC, volume 4392 of Lecture Notes in Computer Science, pages 575–
594. Springer, 2007.

[Jac01] P. Jaccard. Etude comparative de la distribution florale dans une portion des
Alpes et du Jura, 1901.

[JJK+13] Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu, and Michael
Steiner. Outsourced symmetric private information retrieval. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security,
pages 875–888. ACM, 2013.

[JKS08] S. Jha, L. Kruger, and V. Shmatikov. Towards practical privacy for genomic
computation. In S&P, 2008.

[JL10] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection.
In JuanA. Garay and Roberto Prisco, editors, Security and Cryptography for
Networks, volume 6280 of Lecture Notes in Computer Science, pages 418–435.
Springer Berlin Heidelberg, 2010.

[Kai08] J. Kaiser. A plan to capture human diversity in 1000 genomes. Science, 319,
2008.

[KE09] William J. Krouse and Bart Elias. Terrorist watchlist checks and air passenger
prescreening. In Congressional Research Service, 2009.

[KJLM08] M. Kantarcioglu, Wei Jiang, Ying Liu, and B. Malin. A Cryptographic Ap-
proach to Securely Share and Query Genomic Sequences. IEEE Transactions
on Information Technology in Biomedicine, 12(5):606–617, 2008.

[KM10a] J. Katz and J. Malka. Secure text processing with applications to private dna
matching. In CCS, 2010.

[KM10b] Jonathan Katz and Lior Malka. Secure text processing with applications to
private dna matching. In Proceedings of the 17th ACM conference on Computer
and communications security, CCS ’10, pages 485–492, New York, NY, USA,
2010. ACM.

[KMR11] S. Kamara, P Mohassel, and M. Raykova. Outsourcing multi-party computa-
tion. Cryptology ePrint Archive, Report 2011/272, 2011.

[KO12] Kaoru Kurosawa and Yasuhiro Ohtaki. UC-secure searchable symmetric en-
cryption. In Angelos D. Keromytis, editor, FC 2012: 16th International Con-
ference on Financial Cryptography and Data Security, volume 7397 of Lecture
Notes in Computer Science, pages 285–298, Kralendijk, Bonaire, February 27 –
March 2, 2012. Springer, Berlin, Germany.

187

[KP13] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic search-
able symmetric encryption. In Ahmad-Reza Sadeghi, editor, FC 2013: 17th
International Conference on Financial Cryptography and Data Security, volume
7859 of Lecture Notes in Computer Science, pages 258–274, Okinawa, Japan,
April 1–5, 2013. Springer, Berlin, Germany.

[KPR12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic search-
able symmetric encryption. In Ting Yu, George Danezis, and Virgil D. Gligor,
editors, ACM CCS 12: 19th Conference on Computer and Communications
Security, pages 965–976, Raleigh, NC, USA, October 16–18, 2012. ACM Press.

[KR87] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching
algorithms. IBM J. Res. Dev., 31:249–260, March 1987.

[Lan89] E. Lander. DNA fingerprinting on trial. Nature, 339(6225), 1989.

[Lin13] LinkedIn Help Center. Account Restricted. Webpage, Mar. 2013. https:

//help.linkedin.com/app/answers/detail/a_id/1386.

[LK08] M Lepinski and S Kent. Additional diffie-hellman groups for use with IETF
standards, January 2008. RFC 5114.

[LNO12] Yehuda Lindell, Kobbi Nissim, and Claudio Orlandi. Hiding the input-size
in secure two-party computation. IACR Cryptology ePrint Archive, 2012:679,
2012.

[Mal05] B. Malin. An evaluation of the current state of genomic data privacy protection
technology and a roadmap for the future. Journal of the American Medical
Informatics Association, 12(1), 2005.

[MBC13] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. PIRMAP: Efficient
Private information Retrieval for MapReduce. In FC, 2013.

[MLB12] B. Mood, L Letaw, and K. Butler. Memory-Efficient Garbled Circuit
Generation for Mobile Devices. In FC, 2012. http://fc12.ifca.ai/

pre-proceedings/paper_71.pdf.

[MPP10] Mark Manulis, Benny Pinkas, and Bertram Poettering. Privacy-preserving
group discovery with linear complexity. In Proceedings of the 8th international
conference on Applied cryptography and network security, ACNS’10, pages 420–
437, Berlin, Heidelberg, 2010. Springer-Verlag.

[MS00] B. Malin and L. Sweeney. Determining the identifiability of DNA database
entries. In AMIA, 2000.

[MS01] B. Malin and L. Sweeney. Re-identification of DNA through an automated
linkage process. In AMIA, 2001.

188

https://help.linkedin.com/app/answers/detail/a_id/1386
https://help.linkedin.com/app/answers/detail/a_id/1386
http://fc12.ifca.ai/pre-proceedings/paper_71.pdf
http://fc12.ifca.ai/pre-proceedings/paper_71.pdf

[Nat11] National Center for Biotechnology Information (US). Restriction Fragment
Length Polymorphism (RFLP). http://1.usa.gov/pha5sw, 2011.

[Nat16] National Center for Biotechnology Information (US). Single Nucleotide Poly-
morphism Database. http://www.ncbi.nlm.nih.gov/projects/SNP/, 2016.

[NDCD+13] Marcin Nagy, Emiliano De Cristofaro, Alexandra Dmitrienko, N. Asokan, and
Ahmad-Reza Sadeghi. Do i know you?: Efficient and privacy-preserving com-
mon friend-finder protocols and applications. In Proceedings of the 29th Annual
Computer Security Applications Conference, ACSAC ’13, pages 159–168, New
York, NY, USA, 2013. ACM.

[NHG12] NHGRI. DNA Sequencing Costs – Data from the NHGRI Large-Scale Genome
Sequencing Program. http://www.genome.gov/sequencingcosts, 2012.

[Nie97] Jakob Nielsen. Usability Engineering. 1997.

[NPG14] Muhammad Naveed, Manoj Prabhakaran, and Carl A Gunter. Dynamic search-
able encryption via blind storage. In 35th IEEE Symposium on Security and
Privacy, 2014, pages 639–654. IEEE Computer Society Press, 2014.

[Ope16] OpenSSL. http://www.openssl.org/, 2016.

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem
as secure as factoring. In EUROCRYPT, 1998.

[P+11] V. Pappas et al. Private search in the real world. In ACSAC, 2011.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, 1999.

[PB08] A. Prat and J. Baselga. The role of hormonal therapy in the management of
hormonal-receptor-positive breast cancer with co-expression of her2. Nature
Clinical Practice Oncology, 5(9), 2008.

[Pol13] Andrew Pollack. Justices Consider Whether Patents on Genes Are Valid. http:
//nyti.ms/XB7Tf9, 2013.

[PP12] G. Putzer and Y. Park. Are Physicians Likely to Adopt Emerging Mobile
Technologies? Attitudes and Innovation Factors Affecting Smartphone Use in
the Southeastern United States. HIM, 2012.

[Pre12] Presidential Commission for the Study of Bioethical Issues. PRIVACY and
PROGRESS in Whole Genome Sequencing. http://www.bioethics.gov/

cms/sites/default/files/PrivacyProgress508.pdf, 2012.

[PRZB11] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-
akrishnan. CryptDB: Protecting confidentiality with encrypted query process-
ing. In Proceedings of the 23rd ACM Symposium on Operating Systems Prin-
ciples (SOSP’11). ACM, October 2011.

189

http://1.usa.gov/pha5sw
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.genome.gov/sequencingcosts
http://www.openssl.org/
http://nyti.ms/XB7Tf9
http://nyti.ms/XB7Tf9
http://www.bioethics.gov/cms/sites/default/files/PrivacyProgress508.pdf
http://www.bioethics.gov/cms/sites/default/files/PrivacyProgress508.pdf

[PVK+14] Vasilis Pappas, B Vo, F Krell, SG Choi, V Kolesnikov, A Keromytis, and
T Malkin. Blind Seer: A scalable private DBMS. In 35th IEEE Symposium
on Security and Privacy, 2014, pages 359–374. IEEE Computer Society Press,
2014.

[R. 16] R. Roberts. REBASE, The Restriction Enzyme Database. ftp://ftp.neb.

com/pub/rebase/commdata.txt, 2016.

[RJ10] C. Rotimi and B. Jorde. Ancestry and disease in the age of genomic medicine.
The New England journal of medicine, 363(16), October 2010.

[RVBM09] Mariana Raykova, Binh Vo, Steven M Bellovin, and Tal Malkin. Secure anony-
mous database search. In Proceedings of the 2009 ACM workshop on Cloud
computing security, pages 115–126. ACM, 2009.

[S+09] P. Stenson et al. The human gene mutation database: 2008 update. Genome
Medicine, 1(1), 2009.

[SBC+07] Elaine Shi, John Bethencourt, T-HH Chan, Dawn Song, and Adrian Perrig.
Multi-dimensional range query over encrypted data. In Security and Privacy,
2007. SP’07. IEEE Symposium on, pages 350–364. IEEE, 2007.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
cryptology, 4(3):161–174, 1991.

[Sha07] Hovav Shacham. A cramer-shoup encryption scheme from the linear assump-
tion and from progressively weaker linear variants. Cryptology ePrint Archive,
Report 2007/074, 2007. http://eprint.iacr.org/.

[Sin12] E. Singer. Democratizing DNA Sequencing. http://www.technologyreview.
com/biomedicine/26850, 2012.

[Siv08] N. Siva. 1000 Genomes project. Nature biotechnology, 26(3), 2008.

[SK10] J. Sarasohn-Kahn. How smartphones are changing health care for consumers
and providers. California HealthCare Foundation, 2010.

[SOJH09] S. Sankararaman, G. Obozinski, M. Jordan, and E. Halperin. Genomic privacy
and limits of individual detection in a pool. Nature Genetics, 41(9), 2009.

[SSS12] Emil Stefanov, Elaine Shi, and Dawn Song. Policy-enhanced private set inter-
section: Sharing information while enforcing privacy policies. In Public Key
Cryptography–PKC 2012, pages 413–430. Springer, 2012.

[SW81] T. Smith and M. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147, 1981.

[SWH12] E. Schadt, S Woo, and K. Hao. Bayesian method to predict individual SNP
genotypes from gene expression data. Nature Genetics, 2012.

190

ftp://ftp.neb.com/pub/rebase/commdata.txt
ftp://ftp.neb.com/pub/rebase/commdata.txt
http://eprint.iacr.org/
http://www.technologyreview.com/biomedicine/26850
http://www.technologyreview.com/biomedicine/26850

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques
for searches on encrypted data. In 2000 IEEE Symposium on Security and
Privacy, pages 44–55, Oakland, California, USA, May 2000. IEEE Computer
Society Press.

[TBHB11] H.K. Tabor, B.E. Berkman, S.C. Hull, and M.J. Bamshad. Genomics really
gets personal: How exome and whole genome sequencing challenge the ethical
framework of human genetics research. American Journal of Medical Genetics,
2011.

[The11] The Federal Bureau of Investigation. Combined DNA Index System (CODIS).
http://www.fbi.gov/about-us/lab/codis, 2011.

[TMvR86] Andrew S. Tanenbaum, Sape J. Mullender, and Robbert van Renesse. Using
sparse capabilities in a distributed operating system. In International Confer-
ence on Distributed Computing Systems (ICDCS), pages 558–563, 1986.

[TPKC07] J. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik. Privacy preserving error
resilient dna searching through oblivious automata. In CCS, 2007.

[Tsa06] Tsung-Hsi Tsai. Average case analysis of the boyer-moore algorithm. Random
Struct. Algorithms, 28:481–498, July 2006.

[UWL+09] Osman Ugus, Dirk Westhoff, Ralf Laue, Abdulhadi Shoufan, and Sorin A Huss.
Optimized implementation of elliptic curve based additive homomorphic en-
cryption for wireless sensor networks. arXiv preprint 0903.3900, 2009.

[vABKW08] Marco von Arb, Matthias Bader, Michael Kuhn, and Roger Wattenhofer.
VENETA: Serverless friend-of-friend detection in mobile social networking. In
IEEE Conference on Wireless & Mobile Computing, Networking & Communi-
cation, 2008.

[Ver11] Damien Vergnaud. Efficient and secure generalized pattern matching via fast
fourier transform. In Abderrahmane Nitaj and David Pointcheval, editors,
Progress in Cryptology AFRICACRYPT 2011, volume 6737 of Lecture Notes
in Computer Science, pages 41–58. Springer Berlin / Heidelberg, 2011.

[vLSD+10] P. van Liesdonk, S. Sedhi, J. Doumen, P. H. Hartel, and W. Jonker. Com-
putationally efficient searchable symmetric encryption. In Proc. Workshop on
Secure Data Management (SDM), pages 87–100, 2010.

[VPH+15] Mayank Varia, Benjamin Price, Nicholas Hwang, Ariel Hamlin, Jonathan Her-
zog, Jill Poland, Michael Reschly, Sophia Yakoubov, and Robert K. Cunning-
ham. Automated assesment of secure search systems. Operating Systems Re-
view, 49(1):22–30, 2015.

[W+09] R. Wang et al. Learning your identity and disease from research papers: infor-
mation leaks in Genome Wide Association Study. In CCS, 2009.

191

http://www.fbi.gov/about-us/lab/codis

[WH04] A. Weston and L. Hood. Systems biology, proteomics, and the future of health
care: toward predictive, preventative, and personalized medicine. Journal of
Proteome Research, 3(2), 2004.

[Wol13] Richard Wolf. Justices rule human genes cannot be patented.
http://www.usatoday.com/story/news/nation/2013/06/13/

supreme-court-gene-breast-ovarian-cancer-patent/2382053/, 2013.

[WWL+09] R. Wang, X. Wang, Z. Li, H. Tang, M. Reiter, and Z. Dong. Privacy-preserving
genomic computation through program specialization. In CCS, 2009.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science, SFCS ’82, pages 160–
164. IEEE Computer Society, 1982.

[You12] S. Young. Knome Software Makes Sense of the Ge-
nome. http://www.technologyreview.com/news/428179/

knome-software-makes-sense-of-the-genome/, 2012.

[ZPL+11] X. Zhou, B. Peng, Y. Li, Y. Chen, H. Tang, and X.F. Wang. To Release Or
Not To Release: Evaluating Information Leaks in Aggregate Human-Genome
Data. In ESORICS, 2011.

192

http://www.usatoday.com/story/news/nation/2013/06/13/supreme-court-gene-breast-ovarian-cancer-patent/2382053/
http://www.usatoday.com/story/news/nation/2013/06/13/supreme-court-gene-breast-ovarian-cancer-patent/2382053/
http://www.technologyreview.com/news/428179/knome-software-makes-sense-of-the-genome/
http://www.technologyreview.com/news/428179/knome-software-makes-sense-of-the-genome/

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Private Set Intersection
	Secure Pattern Matching
	Highlighted Security Properties
	Practical Applications
	Genomics
	Privacy Aware Consumer Applications
	Inter-Organization Information Sharing

	Privacy Preserving Genomic Testing on Smartphones
	GenoDroid Framework
	Smartphone Rationale
	Framework Structure

	Paternity testing
	An Optimized Implementation
	Performance Evaluation

	Genetic Ancestry Testing
	Construction
	Implementation Details
	Performance Evaluation

	Personalized Medicine
	Initial Construction
	Cloud-Aided Variant
	Performance Evaluation

	Usability Study

	Private Proximity-based Off-line Social Network Interaction
	Design Goals
	UnLinked System Design
	OSN Requirements
	Types of Communication in UnLinked
	Communication Channels
	Cryptographic (Privacy) Requirements

	LinkedIn
	Cryptographic Tools
	Building Blocks
	Adversarial Model
	Security Properties
	Two-Way Private Set Intersection
	Two-Way PSI Cardinality

	System Architecture
	Requirements
	Setup Phase Details
	Off-line Phase Details
	Notification Policy

	Discussion and Extensions
	Minimizing Irrelevant Connections
	Authenticated Channels
	Unlinkability
	Freshness of Credentials
	Detecting Misbehavior

	Implementation & Evaluation
	Operational Algorithims

	Secure Pattern Matching
	The Need for Blindfolded Searching of Data
	Background and Overview of Secure Pattern Matching
	Insecure Pattern Matching
	Security and Adversary Models

	Overview of Secure Pattern Matching Protocols
	Protocol 1: Integer Comparison Based Pattern Matching
	Protocol 2: Fast Fourier Transform (FFT) Based
	Protocol 3: Matrix Multiplication Based Pattern Matching
	Protocol 4: Garbled Circuit Based Text Processing

	Open Problems

	Size- and Position-Hiding Private Substring Matching
	Problem Statement
	Definitions & Notation
	Proposed Construction
	Security Analysis
	Timing Attacks

	SPH-PSM in Practice
	Instantiating AddHomEnc
	ElGamal-based SPH-PSM
	Performance Evaluation

	Extensions
	Revealing Test Outcome to Alice
	Fixed-Size Wildcards and Non-Contiguous Substrings
	Multiple Substrings/Starting Locations
	Reducing Data Transfer Time
	Coping with (Some) Malicious Input

	Efficient Pattern Matching on Symetrically Encrypted Data
	Preliminaries
	Substring Queries
	Basic SSE Substring Search
	Wildcards and Phrase Queries
	Query Flexibility
	Substring Protocol Extensions

	Security Analysis
	Security of Substring Queries

	Implementation and Performance
	Substring SSE Extensions
	MIXED-SSE-OXT: Substring Terms in General Boolean Formula Queries
	MIXED-OSPIR-OXT: Substring and Keyword Search in OSPIR Setting

	Security Proof for Substring Search SSE

	Related Work
	Privacy Preserving Genomic Testing on Smartphones
	Secure Testing on Fully Sequenced Human Genomes
	Secure Computation on DNA Fragments
	Secure Computation on Mobile Devices.

	Private Off-line Social Network Interactions
	Private Friends Discovery
	Private Set Intersection
	Policy-Enhanced Private Set Intersection

	Secure Genomics Pattern Matching
	Secure Genomics
	Secure Pattern Matching
	Input-Size Hiding

	Conclusions
	Bibliography

