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Abstract

Adenosine mediates immunosuppression within the tumor microenvironment through triggering 

adenosine 2A receptors (A2AR) on immune cells. To determine whether this pathway could be 

targeted as an immunotherapy, we performed a phase 1 clinical trial with a small molecule A2AR 

antagonist. We find that this molecule can safely block adenosine signaling in vivo. In a cohort of 

68 renal cell cancer (RCC) patients, we also observe clinical responses alone and in combination 

with an anti-PD-L1 antibody, including subjects who had progressed on PD-(L)1 inhibitors. 

Durable clinical benefit is associated with increased recruitment of CD8+ T cells into the tumor. 

Treament can also broaden the circulating T cell repertoire. Clinical responses are associated with 

an adenosine-regulated gene expression signature in pre-treatment tumor biopsies. A2AR 

signaling, therefore, represents a targetable immune checkpoint distinct from PD-(L)1 that restricts 

anti-tumor immunity.

INTRODUCTION

Overcoming immunosuppressive barriers within the tumor microenvironment has become an 

important strategy in treating cancer in the era of immunotherapy.[1] Accumulation of the 

nucleoside adenosine in the tumor microenvironment has been shown to inhibit the anti-

tumor function of various immune cells, including cytotoxic T cells and natural killer cells, 

by binding to cell surface adenosine 2A receptor (A2AR).[2–9] Adenosine further restricts 

anti-tumor immunity by augmenting the immunosuppressive activity of myeloid and 

regulatory T (Treg) cells.[10–13] Adenosine is generated in tumors through the coordinated 

activity of the ectonucleotidases CD39 (also known as ENTPD1) and CD73 (also known as 

5’-NT and NT5E) that together convert extracellular adenosine triphosphate (ATP), an 

inflammation-inducing factor, to adenosine. In turn, adenosine inhibits the pro-inflammatory 

effects of ATP released by injured or dying cells, and its generation can be co-opted by 

tumors as a mechanism to suppress anti-tumor immunity.[4, 14]

Renal cell carcinoma (RCC) may be particularly influenced by the effects of adenosine in 

the tumor microenvironment. The adenosine pathway genes ADORA2A (A2AR) and NT5E 
(CD73) are both highly expressed in RCC compared to other solid tumor histologies (Figure 

S1). Intra-tumoral hypoxia may contribute to the the production of extracellular adenosine in 

RCC tumors by upregulating CD39 and CD73 expression and stimulating the release of 

intracellular ATP.[2, 15–18] Adenosine pathway genes may also be induced as a 
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consequence of somatic mutations in the von Hippel–Lindau (VHL) gene, which are 

common in RCC, that increase levels of hypoxia inducible factor-1 (HIF-1) and HIF-2 

activity to mimic conditions of intra-tumoral hypoxia.[2, 16, 19]

The treatment landscape of RCC has evolved dramatically in recent years, with promising 

results and/or approvals for therapies targeting the PD-(L)1 pathway alone or in combination 

with anti-CTLA-4, VEGF inhibitors, and tyrosine kinase inhibitors (TKIs).[20–22] 

However, complete remissions remain uncommon and metastatic RCC is still by in large 

incurable, with responses short lived in later lines of therapy. Studies in animal models have 

shown that prior treatment with anti-PD-1 antibodies results in increased expression of 

A2AR and CD73, suggesting that the adenosine pathway may contribute to therapeutic 

resistance to immunotherapy.[23, 24] There is a need for new combination therapies that 

prevent or overcome resistance to PD-(L)1 blockade, and for biomarkers to identify and 

predict resistance mechanisms with the goal of selecting the most appropriate therapy.

Ciforadenant (previously known as CPI-444) is a small molecule that potently and 

selectively binds A2AR, and competitively inhibits the binding and signaling of adenosine.

[25] Ciforadenant has been shown to be active in multiple preclinical tumor models both as a 

monotherapy and in combination with anti-PD-(L)-1.[25, 26] We conducted a first-in-human 

Phase 1 dose-escalation study with ciforadenant monotherapy and combination with 

atezolizumab in pateints with advanced refractory cancers (Figure S2). The primary 

objectives were to 1) evaluate the safety and tolerability of multiple doses of ciforadenant 

administered on a daily schedule to subjects with selected incurable cancers as single agent 

and in combination with atezolizumab, 2) identify a recommended dose and schedule for 

further study of ciforadenant on the basis of safety, pharmacokinetic (PK), and 

pharmacodynamic (PD) data, and 3) evaluate the anti-tumor activity of ciforadenant as 

single agent and in combination with atezolizumab. Secondary objectives included a 

characterization of ciforadenant pharmacokinetics, biomarkers associated with the efficacy 

or safety of ciforadenant, and PD effects of ciforadenant on lymphocyte substes, cytokine 

production, immune function, tumor immunohistochemistrym or gene expression patterns. 

Based on the observation of early evidence of anti-tumor activity in patients with RCC, we 

expanded the study (Phase 1b) to gain more experience with monotherapy and combination 

therapy in this disease. Here we report the safety and efficacy of adenosine blockade in 

patients with advanced refractory RCC. We have also identified a gene expression signature 

that associates with treatment related disease control, which may be useful as a predictive 

biomarker.

RESULTS

PATIENTS CHARACTERISTICS

A total of 68 patients with RCC were enrolled over a 24 month period ending in April 2018. 

Thirty-three patients received ciforadenant monotherapy and 35 patients received the 

combination of ciforadenant and atezolizumab. Median on-treatment time was 5.0 (1.0, 

21.7) months. Baseline demographics and disease characteristics are shown in Table 1. All 

patients had documented disease progression at the time of study entry and had failed 

multiple previous therapies (median=3) including TKIs and anti-PD-1 antibodies (Table 1). 
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More than 72 percent of patients were resistant or refractory to previous anti-PD-(L)1 

antibody treatment; median time since last dose of anti-PD-(L)1 was 3.1 months (range 1.2 – 

70.4 months) and 1.7 months (range 0.9–23.6 months) for monotherapy and combination 

therapy cohorts, respectively (Table 1). Nine percent of evaluable patients had ≥ 5% PD-L1 

expression on tumor or immune cells in pretreatment tumor biopsy specimens (Table 1).

TREATMENT RELATED ADVERSE EVENTS

Immune-related adverse events were observed in patients receiving combination therapy and 

resolved upon discontinuation of treatment (Table 2). Grade 3 or 4 adverse events were 

infrequent with ciforadenant monotherapy. There were no treatment or disease related deaths 

while on therapy. At the time of data cut-off, 3% of monotherapy and 17% of combination-

treated patients remained on therapy. 65% of patients discontinued therapy due to disease 

progression.

MODULATION OF A2AR SIGNALLING

Pharmacokinetic and pharmacodynamic studies were conducted in a Phase 1 portion of the 

study which enrolled patients with multiple different histologies. Signaling through A2AR 

induces phosphorylation of CREB downstream of protein kinase A activation.[27] In vivo 
blocking of the adenosine pathway by ciforadenant was examined by determining if A2AR 

on patient’s peripheral blood lymphocytes could be stimulated ex vivo with the adenosine 

receptor agonist NECA, as determined by measurement of phosphorylation of CREB by 

flow cytometry. There was an exposure-response relationship between plasma drug 

concentrations and inhibition of CREB phosphorylation (pCREB), with nearly complete 

inhibition at drug levels exceeding 2000 ng/mL (Figure 1A). Pharmacokinetic measurements 

revealed that plasma Cmin and Cmax concentrations exceeding 2000 ng/mL were consistently 

achieved at the 100 mg BID dose of ciforadenant, and this dose was selected for efficacy 

evaluation during the expansion stage of this study. There were no significant differences in 

pharmacokinetics between ciforadenant monotherapy and combination treatment (Table S1).

EFFICACY

RECIST-defined partial responses were seen in 1 of 33 (3%) RCC patients treated with 

ciforadenant monotherapy (Figure S3A) and 4 of 35 (11%) RCC patients receiving the 

combination (Figure S3B). An additional 24% (15 of 63 evaluable) of patients experienced 

tumor regression that did not meet the RECIST criteria for a partial response (Figure 1B).

17% of patients receiving ciforadenant monotherapy and 39% of patients in the combination 

groups had confirmed disease control for at least 6 months (Table 3); The median 

progression-free survival was 4.1 months and 5.8 months for ciforadenant monotherapy and 

combination treatment, respectively (Figure 1C). The estimated overall survival (OS) 

exceeded 90% at 25 months for the combination group and is over 69% at 16 months for the 

ciforadenant monotherapy group (Figure 1D).

Significant tumor regression was observed in heavily pre-treated patients receiving either 

ciforadenant monotherapy or combination treatment, including patients who failed prior 

therapy with anti-PD-(L)1 therapy. The median time to best tumor response was 3.4 and 5.5 
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months for monotherapy and combination, respectively. The kinetics of tumor response were 

prolonged in some patients as seen in the spider plots (Figure S4). Of note, this included one 

patient receiving ciforadenant monotherapy who demonstrated initial tumor progression 

followed by durable tumor regression lasting almost one year (Figure S4) while on 

continuous therapy. This patient was scored as having progressive disease.

CIFORADENANT EFFICACY IS ASSOCIATED WITH CD8+ T CELL INFILTRATION

The extent of CD8+ T cell infiltration present in pre-treatment and on-treatment tumor 

biopsies was evaluated using immunohistochemistry. Increases in tumor infiltrating CD8+ T 

cells were significantly higher in patients with at least 6-month disease control compared to 

patients with shorter periods of disease control (Figure 2A, left panel). Representative 

images of CD8+ T cell infiltration into the tumor microenvironment following ciforadenant 

monotherapy are shown in Figure 2A, right panel. We did not observe an association 

between tumor response and baseline CD8+ T cell infiltration or CD73 expression, as 

assayed by both NanoString (Figures S5A–B, S5E) and immunohistochemistry (Figure 

S5C–S5E)

CIFORADENANT EFFICACY IS ASSOCIATED WITH DIVERSIFICATION OF TCR 
REPERITOIRE

We have previously shown that CTLA-4 blockade can modulate the TCR reperitoire.[28] 

The effect of adenosine blockade on the TCR repertoire was investigated by sequencing the 

TCR Vβ genes in patients receiving ciforadenant alone and in combination with 

atezolizumab. The Morisita Index, which is a measure of change in TCR repertoire in the 

peripheral blood on drug treatment, was greater (median=0.15, SD=0.23) in subjects with a 

more diverse baseline TCR repertoire than in subjects with a higher clonality (median=0.03, 

SD=0.01) (Figure 2B ). These results would suggest that ciforadenant exerts 

immunomodulatory effects on the adaptive compartment in patients with broader TCR 

repertoires that may include pre-existing tumor-reactive T cells. 8 of the 13 patients with 

diverse baseline TCR repertoires, but none of patients with more narrow repertoires, 

exhibited a Morisita Index above 0.1 compared to post-treatment samples (Figure 2B ), a 

threshold previously shown to be associated with anti-CTLA-4 mediated changes in TCR 

repertoire.[28] Similar findings were observed in both the ciforadenant monotherapy and the 

ciforadenant plus atezolizumab combination group.

RESPONSES TO CIFORADENANT ARE ASSOCIATED WITH EXPRESSION OF AN 
ADENOSINE-RELATED GENE SIGNATURE

It is not practical to routinely measure the concentration of extracellular adenosine in tumors 

due to its short half life (plasma t1/2 ≤ 10 seconds).[29] Therefore, we investigated the 

effects of adenosine on gene expression prolife (GEP) in PBMCs to identify a potential 

molecular surrogate for adenosine exposure in the tumor microenvironment. Adenosine 

responsive genes were identified by in vitro stimulation of normal human peripheral blood 

mononuclear cells with NECA (Figure S6A). A dose-dependent increase in the expression 

of CXCR2 ligands (CXCL1,2,3,5,8) and mediators of neutrophil/MDSC (myeloid derived 

suppressor cells) biology, such as IL-23, were observed (Table S2, see Figure S6B for 

graphical representation of analysis). Increased expression of monocyte/macrophage 
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inflammatory mediators such as IL-1β, IL-6, and PTGS2 were also observed, as were 

increases in CD14, SLC11A1, and THBS1 (Table S2). In contrast, CXCL10 expression was 

decreased by NECA in a dose dependant manner (Figure S6B). These gene expression 

changes were also reflected in the protein levels of CXCL1, CXCL5 (both increased) and 

CXCL10 (decreased) in culture supernatants (Figure 3A and 3B). Addition of the A2AR 

antagonist ciforadenant (1 μM) to PBMC cultures fully neutralized the induction of CXCL5 

by 0.1 μM and 1 μM NECA, but not at 10 μM NECA (Figure 3C). This result is expected as 

NECA is a much more potent agonist of A2AR (35-fold) and A2BR (72-fold) than 

adenosine.[30] Dose dependant increases in CCL2, CXCL1, CXCL5, and CXCL8 protein 

expression were also observed by intracellular flow cytometry (Figure 3D–3G). 

Interestingly, these protein changes occurred specifically in CD14+ monocytes and not CD8+ 

T cells or CD19+ B cells. (Figure 3D–3G), indicating that the source of many adenosine 

signature chemokines any cytokines is likely to be of monocytic lineage. Our findings 

suggest that adenosine signaling not only directly dampens T cell immunity, but also shifts 

the balance away from T effector responses and toward myeloid suppressor recruitment and 

functions.[25]

We next evaluated the expression of adenosine-induced genes in tumor biopsies collected 

from 30 patients prior to treatment initiation with ciforadenant alone or in combination with 

atezolizumab. Patient tumors that demonstrated high levels of adenosine gene signature 

expression (AdenoSigHigh, see Methods – Adenosine Gene Signature in RCC Tumors) were 

almost exclusively low for an angiogenesis GEP (VEGFA, PECAM1, CD34) (Figure 4A). 

Gene expression of markers for baseline T cell activation neither associated with tumor 

response nor expression of the AdenoSig (Figure 4A). High levels (top two tertiles) of 

AdenoSig expression in baseline tumor biopsies was significantly associated with tumor 

regression (Figure 4B, p<0.008). These AdenoSigHigh patients also demonstrated more 

durable PFS, the tail of the PFS curve (40+ weeks) was comprised of 5/16 subjects with high 

AdenoSig expression compared to 0/8 with little or no expression (Figure 2C). These results 

suggest ciforadenant anti-tumor activity in RCC is associated with high levels of expression 

of the AdenoSig in pretreatment biopsies and that the AdenoSig may be useful as a 

predictive biomarker to select patients more likely to respond to agents that antagonize 

adenosine production or signaling.

DISCUSSION

This is the first clinical report confirming the activity of adenosine pathway antagonism for 

cancer immunotherapy. Patients in this trial were often resistant or refractory to anti-PD-

(L)1 antibodies, and had predominantly PD-L1 negative tumors, suggesting that these 

patients harbored tumors that were not immune suppressed through the PD-1/PD-L1 axis. 

The A2AR antagonist ciforadenant demonstrated monotherapy activity in immunotherapy 

naïve patients as well as patients who were resistant or refractory to prior anti-PD-(L)1 

treatment. Although this trial was not designed to compare monotherapy to the combination, 

treatment with ciforadenant plus atezolizumab appeared to improve efficacy and resulted in 

a partial response rate of 11%, a 6-month DCR of 39%, progression free survival of 5.8 

months, and 90% overall survival at 25 months. Ciforadenant treatment was well tolerated, 

both alone and in combination with atezolizumab. The observations of anti-tumor activity of 
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ciforadenant in RCC are consistent with several biological observations, including a 

significant association between the adenosine-related gene expression signature and tumor 

response. We also observed an association with T cell infiltration induced by treatment and 

prolonged disease control. T cell receptor diversity was also more frequently increased in 

patients following treatment.

Of interest in this study is the finding of encouraging disease control and survival benefit 

without high objective response rates. As recently reported by others in a large meta analysis 

of 87 clinical trials of solid tumors treated with checkpoint inhibitors, there is a lack of 

correlation between response rate and survival.[31] The reasons for this are uncertain, but 

could be due to the triggering of a persistent immune response that maintains durable tumor 

growth control despite the absence of an immediate elimination of tumor cells. Response 

rates may also be underestimated on account of the inherent problems of differentiating 

between tumor cell volume and residual inflammation and fibrosis following tumor 

elimination by computerized tomography scan.

In this study we characterized an adenosine-related gene expression signature in tumor 

biopsies as a surrogate biomarker to identify patients with adenosine-rich tumors (Figures 

4A and 4B). In vitro stimulation of human PBMCs with A2AR agonists enabled us to 

identify a specific gene signature which in biopsies from RCC patients was associated with 

tumor responses to ciforadnant alone or in combination with atezolizumab. The efficacy data 

presented here suggest that resistance to anti-PD-(L)1 may be reversed by ciforadenant in 

the AdenoSigHigh patients. Indeed, 72% of the RCC patients enrolled in our study had 

received prior anti-PD-(L)1 therapy. In preclinical studies, treatment with anti-PD-1 led to 

increases in A2AR and CD73 expression and were associated with enhanced tumor 

responses to A2A receptor blockade.[24] Additionally, CD38-mediated production of 

adenosine has been shown to suppress anti-tumor immunity following anti-PD-1 treatment.

[32] It is currently unclear if adenosine-mediated resistance to checkpoint blockade exists at 

the time of tumor diagnosis or evolves as a resistance mechanism during the course of anti-

PD-(L)1 treatment. Interestingly, our AdenoSig substantially overlaps with an independently 

derived “myeloid inflammation” signature that was negatively associated with progression 

free survival following front-line treatment with atezolizumab in RCC.[21] We also found 

that high expression of the AdenoSig identified patients with low expression of an 

angiogenesis gene signature; low angiogenesis gene expression is associated with inferior 

PFS following treatment with sunitinib.[21, 33] We therefore hypothesize that the 

AdenoSigHigh patients will be poor responders to anti-angiogenesis agents due to the low 

expression of angiogenesis genes and expect ciforadenant plus anti-PD-(L)1 treatment to 

compare favorably to such agents.

The studies reported here with ciforadenant confirm the immune-enhancing and therapeutic 

potential of adenosine pathway blockade. Several other antagonists of A2AR and A2BR are 

currently under active clinical evaluation, both as monotherapies and in combination with 

PD-1 blockade, chemotherapy, or targeted agents. Early preliminary data has revealed signs 

of clinical activity in RCC, NSCLC, prostate cancer, endometrial cancer, anal cancer, and 

head & neck cancer.[34–37] In many cases, these treatments have demonstrated activity in 

both IO naïve and reistant/refractory patients. These promising results validate the adenosine 
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axis as a viable immunotherapy target, but more data will be required to determine which 

molecule or which combinations will be most effective, and what biomarker assays will be 

most informative.

The patinets enrolled in this trial were heavily pretreated, with a median of 3 prior treatmens 

(range 1–5). It’s possible that ciforadenant and other adenosine pathway antagonists will be 

most effective when used in earlier lines of therapy where the immune system is less 

compromised from prior immunosuppressive regimens. Previous studies in preclinical 

mouse models have suggested that the efficacy of adenosine pathway antangonists may be 

predicated on the presence of a sufficient number of anti-tumor T cells.[2] While it is not yet 

possible to prospectively screen patients to ensure a specific frequency or distribution of 

tumor-reactive T cells, an alternative strategy may be to administer ciforadenant in 

combination chimeric antigen receptor T cells (CAR-T) or ex vivo amplified tumor 

infiltrating lymphocytes (TILs) to exogenously supplement tumor reactive T cells. We note 

that ciforadenant treatment potentiated the generation of novel T cell clones appearing in the 

peripheral blood, however more studies will be required to determine if this effect alone is 

robust enough to generate an effective supply of anti-tumor T cells in otherwise deficient 

patient or if the the T cell-autonomous effects of A2AR blockade are more prominent in 

preclinical models.

The unique mechanism of action and favorable safety profile suggest that ciforadenant may 

be valuable, particularly in patients who have failed anti-PD-(L)1 therapy or in combination 

with PD-(L)1 blockade to prevent the development of resistance. While our study combined 

ciforadenant with a PD-L1 antagonist, there is compelling preclinical evidence for 

combining adenosine pathway antagonists with other immunotherapies, chemotherapy, and 

tumor vaccines.[8, 23, 24, 26, 38–44] Recent success combining anti-PD-1 with tyrosine 

kinase inhibitors (TKIs) and other angiogenesis inhibitors suggests there is rationale to 

explore triplet combination involving ciforadenant to further enhance responses.[21, 45, 46] 

Future studies are also expected to evaluate the utility of the AdenoSig as a predictive 

biomarker to select patients most likely to benefit from treatments based on adenosine 

blockade.

METHODS

PATIENTS

In the Phase 1A portion of the study, patients at least 18 years of age were eligible for 

enrollment if they had non-small cell lung cancer (NSCLC), clear-cell RCC, melanoma, 

triple negative breast (TNBC), bladder, prostate, head and neck or colorectal cancer 

(microsatellite instability high), and had failed approved therapies for their cancers []. 

Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 and adequate 

hematologic, hepatic and renal functions were required. Prior treatment with an anti-PD-

(L)1 or anti-CTLA-4 antibody was allowed. PD-L1 expression in the tumor was not used to 

select patients. This open-label, multicenter, phase 1/1b trial enrolled patients in 30 centers 

in the United States, Canada and Australia (see protocol design in Figure S2). Ciforadenant 

was evaluated at 50 mg and 100 mg twice a day for 14 days and 28 days; 200 mg once a day 

for 14 days, of a 28 day cycle. In patients receiving the combination, atezolizumab was 
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given 840 mg intravenously every 14 days. The analysis of pharmacokinetics and 

pharmacodynamics was performed in patients from the Phase 1A portion of the study. The 

selected dose of ciforadenant for the Phase 1B portion was 100 mg twice daily for 28 days 

as monotherapy and in combination with atezolizumab. Both RCC monotherapy and 

combination cohorts were expanded per protocol based on the demonstration of early signs 

of efficacy, defined as observing one or more responses in the first eleven patients (Figure 

S3). All patients with RCC that were enrolled in the Phase 1B portion of the trial are 

included in the safety, efficacy, and biomarker analyses reported here (see Figure S3 for 

overall trial design).

Patients were followed for safety during treatment and follow up and every two to three 

months for investigator-assessed tumor response using Response Evaluation Criteria in Solid 

Tumors (RECIST) version 1.1. Responses and stable disease required confirmation by 

subsequent CT scan. All patients continued treatment until confirmed disease progression or 

unacceptable toxicity. At investigators discretion, patients with disease progression could 

continue on therapy if they were thought to be deriving clinical benefit. Objective response, 

disease control rate (DCR, complete or partial response or stable disease for ≥ 3 months), 

and duration of response were evaluated. Progression-free survival (PFS) and overall 

survival were calculated using Kaplan-Meier analysis.[47]

The study was designed by the sponsor (Corvus Pharmaceuticals) and academic advisors. 

This trial was performed in accordance with the ethics and principles of the Declaration of 

Helsinki and the International Council for Harmonisation Good Clinical Practice Guidelines. 

All patients provided written informed consent. The protocol and informed consent forms 

were approved by an institutional review board or independent ethics committee at each 

study site. The data were collected and analyzed by the sponsor and reviewed by a data and 

safety monitoring committee that consisted of members from the sponsor and independent 

reviewers. The manuscript was written, reviewed, and approved by the authors. 

ClinicalTrials.gov Number .

PHARMACOKINETIC AND PHARMACODYNAMIC MEASUREMENTS

Blood was collected prior to treatment initiation and again on day 14 just prior to, and at 1.5 

hour, 3 hours, 5 hours and 8 hours post administration of ciforadenant. The concentration of 

ciforadenant was determined by liquid chromatography with tandem mass spectrometry 

following protein precipitation from plasma with methanol/acetonitrile using an internal 

standard/peak area method. For assessment of A2AR occupancy with ciforadenant, pCREB 

(phosphorylated cAMP response element binding protein) measurements were conducted by 

flow cytometric analysis in whole blood that was stimulated with 1μM of the stable 

adenosine analog NECA (5’(N-ethylcarboxamido)adenosine, Sigma-Aldrich) for 15 

minutes. Cells were then fixed (Lyse/Fix buffer from Becton Dickinson) and stored in 

methanol at −80°C for flow cytometry with antibodies including anti-CD19 (Becton 

Dickinson) and anti-pCREB (Cell Signaling Technologies).
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ASSESSMENT OF PD-L1, CD8, AND CD73 EXPRESSION

Core needle tumor biopsies were collected prior to therapy and while on treatment (range 1–

4 months on treatment, median 1.5 months), and fixed in formalin, embedded in paraffin, 

and processed into 5 μm sections. Immunohistochemistry (IHC) for PD-L1 protein 

expression was performed using the Ventana PD-L1 (SP142) assay (Ventana, Tucson AZ), 

and scored using a cut-off of 5% tumor cell or immune cell staining and positivity according 

to the diagnostic label for the assay. CD8 clone C8/144B was used to evaluate CD8 positive 

cell staining (HistoGeneX, Antwerpen, Belgium). To calculate the change in CD8+ T cell 

infiltration, a noise floor of 0.5% was applied to the percentage of the tumor area positive for 

CD8 staining, and then Log2 (the area of on-treatment CD8+ / pre-treatment CD8+) was 

calculated for each patient with paired biopsies. An unpooled two-tailed t-test was 

performed comparing the patients with DCR < 6mo and DCR ≥ 6mo to calculate the p-

value. CD73 clone D7F9A was used to evaluate CD73 positive cell staining (HistoGeneX, 

Antwerpen, Belgium).

ANALYSIS OF CD73 AND A2AR EXPRESSION IN TUMORS

RNASeq gene expression data from The Cancer Genome Atlas (TCGA) was downloaded 

from the cBioPortal (http://www.cbioportal.org). cBioPortal processed and normalized the 

data using RSEM to translate the raw data into TPM (transcripts per million). For each 

indication, median tumor expression levels were calculated, as well as 2.5% and 97.5% 

percentiles for plotting the 95% confidence intervals. Average expression levels for 

ADORA2A and NT5E were determined by calculating the mean expression within each 

indication, and then calculating the mean of all indications.

T CELL RECEPTOR (TCR) REPERITOIRE ANALYSIS

Sequencing of the CDR3 regions of human TCRβ chains was performed using the 

immunoSEQ® Assay (Adaptive Biotechnologies, Seattle, WA). Extracted genomic DNA 

was amplified in a bias-controlled multiplex PCR, followed by high-throughput sequencing 

and the abundance of each unique TCRβ CDR3 region was quantified.[48–50]

ADENOSINE GENE SIGNATURE

Human peripheral blood mononuclear cells (PBMCs) were isolated from buffy coat samples 

by density centrifugation with Histopaque 1077 (400*g, 30 min). Cells were washed and 

resuspended at a density 2*106 cells/ml in RPMI + 10% human serum (Sigma-Aldrich, Cat. 

No. H4522). PBMCs (10 mL) were stimulated with DMSO or 5’-N-

Ethylcarboxamidoadenosine (NECA, Tocris, Cat. No. 1691) at 0.1, 1, or 10 μM for one hour. 

T cells were then activated with anti-CD3 (clone HIT3a, 1 μg/ml) and anti-CD28 (clone 

CD28.2, 1 μg/ml) antibodies and incubated for 48 hours at 37 degrees. Purified RNA was 

collected using a Qiagen RNAEasy Kit according to manufacturers protocol. NanoString 

analysis was performed according to manufacturers protocol on a NanoString Sprint 

instrument using the NanoString PanCancer Immune Panel with PLUS codeset. Normalized 

counts were obtained using NanoString nSolver Software. Log2 transformed expression data 

were fit to a linear model comprised of donor and treatment effects. Genes which showed a 

statistically significant treatment effect (i.e. gene expression level increased or decreased as 
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NECA level increased) were identified in 3 initial donors. Adjusted p-values were used to 

correct for multiple hypothesis testing using the Benjamini-Hochberg procedure. Cuture 

supernatants from three donors were assessed with human CXCL5 ELISA kit (R&D 

Systems, DX000).

INTRACELLULAR FLOW CYTOMETRY

Purified human PBMCs from three healthy donors were co-cultured with various 

concentrations of NECA and were stimulated with anti-human CD3 and CD28 antibody (at 

1 μg/mL). Cells were kept in culture for 48 hours days. Golgi block was added 4 hours prior 

to intracellular flow cytometry analysis. Antibodies used in analysis include: anti-human 

CD8a (Clone RPA-T8, BioLegend Cat No. 301048), anti-human CD3 (Clone OKT3, 

BioLegend Cat No. 317322), anti-human CD4 (clone OKT4, BioLegend Cat No. 317436), 

anti-human CD56 (clone 5.1H11, BioLegend Cat No. 362546), anti-human CD205 (clone 

HD30, BioLegend Cat No. 342210) anti-human CD14 (clone 63D3, BioLegend Cat No. 

367118), anti-human CD19 (clone SJ25C1, BioLegend Cat No. 363034), anti-human 

CXCL5 (clone J111B7, BioLegend Cat No. 524104), anti-human MCP-1 (clone 2H5, 

BioLegend Cat No. 505904), anti-human IL-8 (clone E8N1, BioLegend Cat No. 511408), 

anti-human CXCL1 (clone 20326, R&D Systems Cat No. IC275P). Data was acquired on a 

CytoFLEX flow cytometer (Beckman Coulter) and analyzed in FlowJo software v10.

ADENOSINE GENE SIGNATURE IN RCC TUMORS

Tumor biopsies were obtained from RCC patients prior to treatment. RNA was extracted 

from tumor tissue macrodissected from 5 μm sections cut from FFPE specimens. 70–100 ng 

of purified RNA was analyzed on the NanoString Sprint instrument using the PanCancer 

Immune Panel (NanoString) at HistoGeneX. Nanostring data was normalized to 

housekeeper genes, and bridging of normalized data between Nanostring codeset lots was 

performed. A noise floor of 30 counts was applied to normalized and bridged Nanostring 

data.

The expression of eight NECA-induced immune-related genes (IL1B, PTGS2, and 

CXCL1,2,3,5,6,8) were selected to comprise the ‘Adenosine Signature’ (AdenoSig) because 

they were expressed at detectable levels in the patient tumor samples from this study and 

were found to be significantly induced in normal PBMCs upon exposure to NECA. 

AdenoSig gene expression profile scores were calculated as the mean of the Log2 value of 

the counts for each gene component. The distribution of the adenosine signature for all 

evaluated RCC patients was determined, and a cut-point at the first tertile was selected as 

optimal to differentiate patients with low expression from high expression. An unpooled 

two-tailed t-test was performed to calculate the p-value for the comparison between the 

AdenoSig low and AdenoSig high patient groups for the best change in the sum of the 

longest dimensions of the target lesions. Normalized gene expression data was z-scale 

transformed for heatmap visualization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF SIGNIFICANCE

This first-in-human study of an adenosine 2A receptor antagonist for cancer treatment 

establishes the safety and feasibility of targeting this pathway by demonstrating anti-

tumor activity with single-agent and anti-PD-L1 combination therapy in patients with 

refractory renal cell cancer. Responding patients possess an adenosine-regulated gene 

expression signature in pre-treatment tumor biopsies.
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FIGURE 1: Pharmacokinetics, pharmacodynamics, and tumor response to ciforadenant alone 
and in combination with atezolizumab.
A) Blood was collected from subjects with different dosing regimens during an eight-hour 

time course on treatment day 14 and activated with exogenous 1 μM NECA. Concurrent 

pharmacokinetic assessment were also performed. The graph shows the relationship between 

plasma concentration of ciforadenant and inhibition of NECA-induced pCREB, with data 

from individuals dosed with 50mg BID (blue), 100mg BID (red) or 200mg QD (green). B) 

Waterfall plot showing best overall response in sum of longest diameter measurements of 

target lesions. Patients naïve to immunotherapy at time of enrollment are designated with an 
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asterisk. All others were resistant or refractory to prior immunotherapy treatment. C-D) 

Progression free survival (C) and overall survival (D) in patients treated with ciforadenant or 

the ciforadenant plus atezolizumab combination.
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FIGURE 2: Tumor response to ciforadenant is associated with T cell infiltration and expression 
of an TCR diversification
A) Immunohistochemistry of CD8 was performed pre- treatment and 1 – 4 months post 

treatment, and the ratio of the CD8+ tumor area was determined. Representative images of 

CD8+ T cell infiltration following ciforadenant monotherapy treatment are shown in the 

right panel. B) TCR sequencing was performed on blood samples obtained pre- and post-

treatment. Morisita’s Index (Changes in TCR repertoire) after ciforadeant alone or in 

combination with atezolizumab was mapped as a function of baseline clonality. Horizontal 

dashed line indicates a threshold previously shown to be associated with anti-CTLA-4 

mediated changes in TCR repertoire.
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FIGURE 3: In vitro characterization of gene expression signature related to adenosine exposure
A-B) Adenosine signature related chemokine concentrations exhibited dose a dependent 

increase (CXCL1, panel A) or decrease (CXCL10, panel B). C) Addition of ciforadenant (1 

μm) neutralizes the induction of CXCL5 by NECA as determined by ELISA. D-G) Purified 

human PBMCs from healthy donors were co-cultured with indicated the concentrations of 

NECA and were stimulated with anti-human CD3 and CD28 antibodies. Cells were kept in 

culture for 2 days. Golgi block was added 4 hours prior to collecting cells for intracellular 

flow cytometry analysis. CD14+ monocytic cells exhibited elevated expression of adenosine 
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signature (as determined by mean fluorescence intensity, MFI) related cytokines and 

chemokines including CXCL5 (D), CCl2 (E), IL-8 (F), and CXCL1 (G) as NECA 

concentration increased. Lymphocytes including CD8+ T cells and CD19+ B cells had 

minimal changes. Error bars represent SEM.
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FIGURE 4: Tumor response to ciforadenant is associated with expression of an adenosine gene 
expression signature
A) Genes of interest (rows) were assessed from tumors collect pre-treatment from 30 

patients (columns). Gene expression was z-score transformed with high (yellow) and low 

(purple) expression normalized for each gene. The median expression of IFNG, EOMES, 

FOXP3, and PTGS2 was equivalent to the noise floor so for these genes expression at the 

noise floor is colored gray and above the noise floor is yellow. Genes are grouped by 

biological functions of angiogenesis (orange), immune and antigen presentation (blue), and 

adenosine signature (green). B) The waterfall plot shows the best change in the sum of the 

longest dimensions for patients with low (left) or high (right) expression of the adenosine 

signature.
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Table 1.

Baseline Characteristics of All Enrolled Patients

Characteristic Ciforadenant (N=33) Ciforadenant + Atezolizumab (N=35)

Age (years, median (range) 60 (47, 76) 65 (44, 77)

Gender, male n (%) 25 (75.8) 28 (80)

Sites of Disease, n (%)

 Lung 22 (66.7%) 27 (77.1%)

 Lymph Node 19 (57.6%) 21 (60%)

 Bone 16 (48.5%) 15 (42.9%)

 Liver 10 (30.3) 9 (25.7%)

Number of prior tderapies

 Median, range 3 (1, 5) 3 (1, 5)

Prior IO, number of subjects n (%) 24 (72.7) 25 (71.4)

Months since prior IO

 Median, range 3.1 (1.2, 70.4) 1.7 (0.9, 23.6)

PD-L1 IHC Status

 ≥ 5% PD-L1+ on TC or IC, n (%) 2/27 (7.4%) 3/31 (9.7%)

Prior Anti-Cancer Therapy, n (%)

 TKI 27 (81.8) 30 (85.7)

 mTor 9 (27.3) 11 (31.4)

 Anti-PD-1 23 (69.7) 25 (71.4)

 Anti-VEGF, bevacizumab 6 (18.2) 4 (11.4)

 IL-2 7 (21.2) 9 (25.7)
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Table 2.

Treatment Related Adverse Events

Ciforadenant (N=33) Ciforadenant + Atezolizumab (N=35)

Event, Number of pts, (%) Any Grade Grade 3/4 Any Grade Grade 3/4

Fatigue 13 (39.4) 0 (0.0) 16 (45.7) 0 (0.0)

Pruritus 7 (21.2) 0 (0.0) 9 (25.7) 0 (0.0)

Decreased appetite 4 (12.1) 1 (3.0) 6 (17.1) 0 (0.0)

Dizziness 4 (12.1) 0 (0.0) 1 (2.9) 0 (0.0)

Nausea 3 (9.1) 0 (0.0) 7 (20.0) 1 (2.9)

Pyrexia 3 (9.1) 0 (0.0) 1 (2.9) 0 (0.0)

Anemia 2 (6.1) 1 (3.0) 4 (11.4) 0 (0.0)

Arthralgia 2 (6.1) 1 (3.0) 5 (14.3) 1 (2.9)

Chills 2 (6.1) 0 (0.0) 1 (2.9) 0 (0.0)

Cough 2 (6.1) 0 (0.0) 3 (8.6) 0 (0.0)

Diarrhea 2 (6.1) 0 (0.0) 5 (14.3) 0 (0.0)

Epistaxis 2 (6.1) 0 (0.0) 0 (0.0) 0 (0.0)

Gastroesophageal reflux 2 (6.1) 0 (0.0) 0 (0.0) 0 (0.0)

Hyperhidrosis 2 (6.1) 0 (0.0) 1 (2.9) 0 (0.0)

Hypophosphatemia 2 (6.1) 0 (0.0) 3 (8.6) 1 (2.9)

Musculoskeletal chest pain 2 (6.1) 0 (0.0) 2 (5.7) 0 (0.0)

Myalgia 2 (6.1) 0 (0.0) 2 (5.7) 0 (0.0)

Edemia peripheral 2 (6.1) 1 (3.0) 1 (2.9) 0 (0.0)

Osteoarthritis 2 (6.1) 0 (0.0) 2 (5.7) 0 (0.0)

Rash 2 (6.1) 0 (0.0) 4 (11.4) 0 (0.0)

Vomiting 2 (6.1) 0 (0.0) 4 (11.4) 0 (0.0)

Abdominal pain 1 (3.0) 0 (0.0) 3 (8.6) 1 (2.9)

AST increased 1 (3.0) 0 (0.0) 2 (5.7) 1 (2.9)

Blood creatinine increased 1 (3.0) 0 (0.0) 2 (5.7) 0 (0.0)

Insomnia 1 (3.0) 0 (0.0) 2 (5.7) 0 (0.0)

Dysgeusia 0 (0.0) 0 (0.0) 2 (5.7) 0 (0.0)
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Table 3.

6 Month Disease Control Rate

Ciforadenant (N=29) Ciforadenant + Atezolizumab (N=33)

Prior Anti-PD-(L)1 25% (5/20) 35% (8/23)

Naive 0% (0/9) 50% (5/10)

Total 17% (5/29) 39% (13/33)
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