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ABSTRACT OF THE DISSERTATION 
 

Relational Reasoning with Rational Numbers:  

Developmental and Neuroimaging Approaches 

 

by 

 

Melissa Elizabeth DeWolf 

Doctor of Philosophy in Psychology 

University of California, Los Angeles 2016 

Professor Keith J. Holyoak, Chair 

 

The study of how children and adults learn mathematics has given rise to a rich set of 

psychological phenomena involving mental representation, conceptual understanding, working 

memory, relational reasoning and problem solving.  The subfield of understanding rational 

number processing and reasoning focuses on mental representation and conceptual understanding 

of rational numbers, and in particular fractions.  Fractions differ from other number types, such 

as whole numbers, both conceptually and in format. Previous research has highlighted the extent 

to which fractions and other rational numbers pose challenges for children and adults with 

respect to magnitude estimation and misconceptions. The goal of this dissertation is to highlight 

the distinct differences in reasoning with different types of rational numbers. First, a 

neuroimaging study provides evidence that fractions yield a distinct pattern of neural activation 

during magnitude estimation that differs from both decimals and integers (Chapter 2). Second, a 

set of behavioral studies with adults highlights the affordances of the bipartite format of fractions 
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for relational reasoning tasks (Chapter 3). Finally, a developmental study with pre-algebra 

students provides evidence for a significant relationship between relational understanding of 

fractions and algebra performance, and specifically algebraic modeling. This work is presented 

in the context of viewing mathematical notation as a type of conceptual modeling. In particular, 

decimals have advantages in measurement and representing magnitude. Fractions, on the other 

hand, have advantages in relational contexts, due to the fact that fractions, with their bipartite 

(a/b) format, inherently specify a relation between the cardinalities of two sets. When 

mathematics is viewed as a type of relational modeling, rational expressions provide a gateway 

to more complex mathematical notations and concepts, such as those in algebra.  
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CHAPTER 1: INTRODUCTION 
 

American schools have struggled to teach many of their students a conceptual basis for 

understanding mathematics in a way that can support flexible transfer and generalization to novel 

problems in math, science and engineering. Many students in the United States lag behind 

students from other industrialized countries, with the US ranking 26th out of 34 industrialized 

nations on the Programme for International Student Assessment (PISA) math section (OECD, 

2012). Recent research has focused on two central areas of understanding in mathematics that 

seem to be critical gateways for future success: fractions and algebra. Algebra understanding is 

essential for success in college math and providing further career opportunities in STEM fields 

(NMAP, 2008; Sadler & Tai, 2007). Similarly, fraction knowledge in elementary school is 

uniquely predictive of high school success in mathematics controlling for family education and 

income, intellectual capacity, and knowledge of whole number arithmetic (Siegler et al., 2012).  

General difficulties often begin in elementary school when students first move beyond 

natural numbers. A great deal of evidence indicates that children have difficulty understanding 

fractions and decimals (Stafylidou & Vosniadou, 2004; Ni & Zhou, 2005; Vamvakoussi & 

Vosniadou, 2010).  Often, knowledge of natural numbers leads to initial misconceptions about 

fractions. One key difference between these number types is their perceptual form: fractions are 

not represented with a unitary symbol, but rather have a bipartite structure, with a separate 

numerator and denominator. This formal difference between fractions and natural numbers 

appears to contribute to early misconceptions, and also to later use of fallible short-cut strategies 

for performing computations with fractions (Bonato et al., 2007).  However, the bipartite 

structure of fractions may prove especially useful when it is construed as a relational structure, 

rather than only as a complex expression of magnitude. 
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Other misconceptions about rational numbers reflect negative transfer of natural numbers 

properties. For example, unlike natural numbers, fractions do not have unique successors. This 

and related conceptual differences make it difficult for children to integrate fractions into their 

already well-established understanding of natural numbers (Ni & Zhou, 2005; Stafylidou & 

Vosniadou, 2004; see Siegler et al., 2013, for a review).  For example, Vamvakoussi and 

Vosniadou (2010) found that Greek 12-, 14-, and 16-year-olds made several typical mistakes 

when completing tasks relating to the infinite number of rational numbers in any interval of a 

number line. Their misconceptions included the idea that fractions are discrete and have unique 

successors as natural numbers do; and that only fractions can lie between two fraction endpoints, 

whereas only natural numbers can lie between two whole-number endpoints. 

Like fractions, decimals denote rational numbers that lack a unique successor. But in 

terms of their form decimals are not explicitly decomposed into two major parts (numerator and 

denominator) as are fractions, but rather are more similar to natural numbers. Decimals are 

typically introduced into the curriculum after fractions (and natural numbers). Vamvakoussi and 

Vosniadou (2010) found that children inappropriately extend properties of natural numbers to 

decimals.  Rittle-Johnson, Siegler and Alibali (2001) found that children mistakenly view the 

number of digits in a decimal as an indication of its magnitude (e.g., a majority of fifth and sixth 

graders claimed that .274 is larger than .83).  Such misconceptions suggest that the conceptual 

distinctions that separate fractions and decimals from natural numbers may be especially 

significant in making the rational numbers harder to grasp. 

However, there is also evidence suggesting that children can integrate decimals into their 

mathematical knowledge more easily than they can fractions. Iuculano and Butterworth (2011) 

used a number line task to assess the accuracy of adults and children in locating natural numbers, 
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decimals, and fractions on a number line.  They found that performance was quite similar for 

decimals and natural numbers. In contrast, adults and children (aged 10 years) were the least 

accurate when placing a mark on the number line at a certain fraction value or generating a 

fraction value when shown a mark on a number line. Such findings suggest that, at least for well-

educated adults, magnitudes are easier to grasp using decimals than fractions, and that processing 

decimals may be more similar to processing natural numbers. 

Magnitude Representations of Rational Numbers 

While there is general agreement that rational numbers (especially fractions) pose 

difficulties for students, there has been some controversy regarding whether adults with high 

education levels (e.g., college students) eventually acquire magnitude representations for other 

rational numbers that are basically similar to their representations of natural number magnitudes. 

Many researchers have examined the extent to which the mental representation of fractions is the 

same as or different from representations of natural numbers (e.g., Bonato et al., 2007; Schneider 

& Siegler, 2010; Meert, Gregoire, & Noel, 2010). Bonato et al. (2007) found no evidence for a 

distance effect related to the magnitudes of the fractions in the comparisons.  These investigators 

argued that adults process fractions in a piece-meal manner, dividing up the parts of the fractions 

(the numerator and denominator), and using heuristics based on these separate parts to determine 

the relative sizes of the fractions. However, Schneider and Siegler (2010) found evidence that a 

distance effect can be obtained for fractions, but only if the stimuli require processing of the 

whole magnitude of the fraction, rather than just its parts.  For example, Bonato et al. (2007) 

examined unit fractions in the form 1/n, which do not require adults to compare the integrated 

magnitudes of the fractions.  Instead, people could use a simple heuristic: fractions that have 

larger denominators are smaller overall. When Schneider and Siegler (2010) tested comparisons 
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based on fractions for which this heuristic could not be used, they found a pattern consistent with 

the hypothesis that adults do in fact access the whole magnitude of the fraction to perform the 

comparison.   

DeWolf, Grounds, Bassok and Holyoak (2014) directly compared adult performance in 

comparing magnitudes with matched fractions, decimals, and multi-digit natural numbers.  Their 

results indicated that while the pattern of response times for comparing decimals is almost 

identical to that for comparing multi-digit natural numbers, the pattern for fraction comparisons 

is dramatically slower, and shows a more exaggerated distance effect, indicative of less precise 

magnitude representations for fractions. Thus, decimals appear much more effective than 

fractions in conveying information about magnitudes.   

In addition to using behavioral techniques, neuroimaging offers a complementary 

approach to building a more complete model of how rational numbers are mentally represented.  

Studies using fMRI and neuropsychological methods have provided insight into how numbers 

are processed and, more specifically, how numbers are processed in relation to the quantities that 

they are meant to model. In particular, magnitude processing appears to be a function of the 

intraparietal sulcus (IPS), as the horizontal segment of the IPS has been implicated in the 

processing of quantities, and is associated with a “mental number line” (Dehaene, Piazza, Pinel, 

& Cohen, 2003). 

 Neuroimaging studies of fraction processing have, much like behavioral research, 

focused on magnitude processing (for a review see Jacob et al., 2012).  For example, Ischebeck, 

Shocke and Delazer (2009) investigated whether adults process fractions holistically as single 

magnitudes, or separately based on their numerators and denominators.  Results from this study 

provided evidence that IPS activity was consistent with a distance effect between the whole 
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magnitude of the fraction, rather than comparisons between numerators and denominators.  This 

finding is consistent with the results of analogous behavioral studies that have investigated 

magnitude representation for fractions in adults (Schneider & Siegler, 2010).  However, 

Ischebeck et al. did not compare processing of fractions with other number types (as in DeWolf 

et al., 2014), leaving open the question of whether other regions are differentially recruited for 

fraction magnitude processing as compared to the IPS regions implicated in number processing 

for natural numbers (and perhaps decimals).  Other researchers have also found evidence for 

holistic processing of fractions and proportions.  Jacob and Nieder (2009) found activation in the 

anterior IPS and prefrontal cortex for processing of fractions represented with either numerals 

(e.g., ½) and or fraction words.  The authors interpreted this as evidence for holistic processing, 

but the additional activation in the prefrontal cortex may be indicative of higher-level relational 

processing. 

 Research on the neural basis of exact calculation suggests that different brain areas are 

recruited depending on an individual’s level of familiarity with the specific calculation.  

Butterworth and Walsh (2011) report that when students solve novel arithmetic problems, the 

IPS is engaged to represent the magnitude of the numbers in the problem.  In addition, the 

prefrontal cortex appears to be involved in goal setting, working memory, and attention during 

exact calculation.  In contrast, recall of previously-learned facts appears to be a memory-based 

process, primarily relying on the angular gyrus. Montojo and Courtney (2008) also observed 

prefrontal activity during a cue period in preparation for performing an exact calculation. Monti, 

Parsons and Osherson (2012) found that similar areas are recruited in the processing of more 

relationally complex expressions, such as algebraic operations. Jacob, Vallentin and Nieder 

(2012) review evidence that the same areas involved in mental calculation, such as the division 
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operation (the inferior frontal gyrus, premotor cortex, presupplementary motor area, and the 

IPS), are also involved in representation of fraction magnitudes.  However, a direct comparison 

of fractions and other types of numbers, such as decimals, has not yet been conducted. The 

present proposal aims to extend neuroimaging investigations of processing rational numbers 

beyond magnitude comparisons, by directly comparing regions involved in the processing of 

fraction versus decimal rational numbers during a novel mathematical judgment task.  

Rational Numbers as Relational Models 

If the only purpose of rational numbers was to convey information about magnitudes, 

then based on the research findings reviewed above, fractions would appear to be greatly inferior 

to decimals. However, it may be that rational numbers in general, and fractions in particular, 

should not be considered as solely a tool to express magnitudes, but also to model conceptual 

relations. Kieran (1976) argued that a key conceptual component of rational numbers is their 

ability to represent a variety of mathematical relations, such as part-whole, quotient, ratio 

number, operator and measure. Although both decimals and fractions can represent magnitudes 

of these types of relations, fractions seem to be particularly well-suited for representing relations 

between two distinct sets because of their bipartite structure, whereas decimals are better suited 

to represent one-dimensional measures of magnitude (DeWolf et al., 2014).  

More generally, I hypothesize that mathematical understanding fundamentally involves 

grasping that mathematics is a system of quantitative relations among concepts, and that one 

important goal of math education should be to teach how the formal rules of mathematics can be 

applied to real-life situations (Martin & Bassok, 2005).  When mathematics is viewed as a type 

of conceptual modeling, the notation serves a dual purpose: first as a bridge between quantitative 

concepts and the structure of the world being modeled, and second as a platform for performing 
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mathematical procedures to solve problems defined in relation to the structure of the world.  

Procedures then derive meaning from their place in the conceptual structure, rather than standing 

in isolation as rote routines (e.g., English & Halford, 1995; Hinsley, Hayes & Simon, 1977; 

Kintsch & Greeno, 1985; Mochon & Sloman, 2004). 

Previous research suggests that people’s grasp of intuitive relations in the real world can 

be used to bolster their understanding of quantitative relations within arithmetic.  For example, 

Bassok and her colleagues have shown that, in dealing with word problems, people are guided by 

semantic alignment: an analogical mapping between the relation between the objects in a 

problem statement and the relation between the arguments of arithmetic operations (see Bassok, 

2001, for a review). Bassok, Chase and Martin (1998) demonstrated that the basic mathematical 

operations of addition, subtraction, multiplication, and division are typically conceptualized 

within a system of relations between mathematical relations and the ontological relations among 

objects in the real world. For example, addition is aligned with categorical object relations (e.g., 

people find it natural to add two daffodils plus three tulips, because both are subtypes of a 

common category, flowers), whereas division is aligned with functional object relations (e.g., a 

natural problem would be to divide ten tulips between two vases). Both children and adults are 

sensitive to semantic alignment (e.g., Martin & Bassok, 2005), and for many adults the process is 

highly automatic (Bassok, Pedigo, & Oskarsson, 2008). Semantic alignment may thus offer a 

potential base for building deeper understanding of mathematics (cf. Goldstone & Barsalou, 

1998).   

Viewing mathematical competence in terms of modeling and alignment may help to 

understand the psychological representation of rational numbers, particularly fractions and 

decimals. Research on understanding of rational numbers has largely focused on their function as 
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notations for expressing numerical magnitudes. Indeed, fractions and decimals are typically 

viewed as simply alternative notations, which (other than rounding error) are equivalent in 

magnitude (e.g., 3/8 vs. 0.375).  Differences between notational variants have generally been 

treated as conceptually inconsequential (but see Cohen, Ferrell & Johnson, 2002, and Goldstone, 

Landy & Son, 2010, for important exceptions). 

 What is often overlooked within this standard conceptual framework is the fact that the 

core definition of a rational number (i.e., one that can be expressed as the quotient of two natural 

numbers, a/b, where b ≠ 0) is inherently relational. A rational number indeed expresses a 

magnitude, but one that quantifies the relation defining the number. Specifically, the bipartite 

structure of the a/b notation expresses a relational model for the quantities corresponding to the 

numerator and denominator. The form a/b expresses a division relation between natural numbers, 

which has the form of a fraction; whereas the output of the division, c, expresses the magnitude 

of that relation and can be a decimal (with magnitude less than one when a < b). The fraction 

and the decimal indeed convey the same magnitude, but their distinct roles in the relational 

model give rise to important conceptual distinctions. As illustrated in Figure 1.1, the bipartite 

structure of the fraction provides a direct mapping to countable subsets in a visual display (e.g., a  

 

 

 

 

 

Figure 1.1. The bipartite structure of a fraction maps to countable subsets in a visual display 

(left), whereas the decimal equivalent represents a one-dimensional magnitude (right). 
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subset of 3 white objects within a set of 8). In contrast, the decimal equivalent loses the two- 

dimensional structure of the fraction. Instead, it provides a one-dimensional measure of a portion 

of a continuous unit quantity.  

 In considering the role of modeling in understanding rational numbers, a particularly 

important ontological distinction involves the nature of the two be modeled quantities, which can 

be viewed as either discrete or continuous. Roughly, some entities are viewed as comprising a 

set of individual objects (e.g., a number of apples in a basket), whereas others are viewed as a 

continuous mass without individuation (e.g., a bucket of water). Continuous quantities can be 

subdivided into equal-sized units (i.e., discretized) for the purpose of measurement, but the 

divisions are arbitrary in the sense that they do not isolate conceptual parts (e.g., one can 

distinguish between specific subsets of red and green apples in a basket by noting that 2/3 of the 

apples are red and 1/3 are green, but there is no psychological difference between the water 

contained in 2/3 of a bucket and in the complementary 1/3 of the bucket). 

 Importantly, the contrast between discreteness versus continuity (closely related to the 

count versus mass distinction in linguistics; see Bloom, 1994; Bloom & Wynn, 1997) is based 

fundamentally not on physics, but on psychology. For example, a pile of sand is viewed as a 

continuous quantity even though we know it is composed of individual grains, because those 

units are too small and interchangeable to be typically viewed as “important”. The impact of this 

basic ontological distinction has been documented both in young babies (e.g., Spelke, Breilinger, 

Macomber, & Jacobson, 1992) and in adults (Bassok & Olseth, 1995). For example, Bassok and 

Olseth found that college students viewed an increase in attendance at an annual conference as 

discrete (since it is based on a change between magnitudes associated with two discrete events 
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well-separated in time), but viewed an annual increase in a city’s population growth as 

continuous (since it is based on changes stemming from the psychologically-constant process of 

gaining and losing undifferentiated individual residents). 

Rapp, Bassok, DeWolf and Holyoak (2015) surveyed a series of textbooks as well as 

college students to investigate how rational numbers are used with certain types of quantities.  

The results indicated that both textbook writers and college students construct a majority of 

decimal word problems with continuous quantities and fraction word problems with discrete 

quantities. One possible explanation for this mapping is that some discrete entities (e.g., a 

person, a ball) can be counted but cannot be partitioned. Sets of such entities can appear in the 

numerator and the denominator of fractions (e.g. 3/7 of the children are girls), but the decimal 

value of such fractions (~ 0.429) may be meaningless in a decimal representation. Continuous 

entities can be always partitioned into arbitrary units and can therefore be represented 

meaningfully by either fractions (e.g., 3/5 of a pie) or decimals (e.g., .60 of a pie).  Yet, decimals 

may be preferred over fractions for one-dimensional measurement, especially with standard 

metric units (centimeters, grams).  

Fractions as a Stepping Stone to Algebra 

Fractions thus have a dual status that poses a particular challenge for students: a fraction 

is at once a relationship between two quantities, expressed as a/b, and also the magnitude 

corresponding to the division of a by b. Similar dualities arise in algebra (Sfard & Linchevski, 

1994). There is evidence that children who initially struggle with fractions also struggle with 

algebra.  A survey of Algebra I teachers found that poor fraction knowledge is one of two major 

difficulties facing math students as they begin learning algebra (NORC, 2008).  Further, the 

National Mathematics Advisory Panel (2008) also found that learning of fractions is essential for 
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mastering algebra and more complex mathematics.  If students fail to grasp the concept of a 

fraction as a mathematical expression, this can make understanding algebraic expressions all the 

more difficult. 

In general, establishing a strong understanding of fractions is foundational for future 

math performance (Siegler et al., 2012, 2011, Booth et al., 2014).  Siegler et al. (2012) found that 

performance on conceptual fractions questions on a standardized math exam in middle school 

was uniquely predictive of overall math performance and math achievement into later high 

school.  However, the specific aspects of fraction understanding that are important for later 

performance have not yet been identified.  Booth and colleagues (Booth et al., 2014; Booth & 

Newton, 2012) found that performance on a fraction number line estimation task is predictive of 

algebra performance.  But they also found that other measures, including procedural and 

declarative fraction knowledge, are also predictive.  It is therefore hard to tease apart, based on 

prior studies, what specific aspects of fraction understanding are important for later math 

performance. 

I propose that while understanding fraction magnitudes is important, it is the 

understanding of fractions as a relational expression that is the gateway to future algebra 

performance.  One basic component of algebraic thinking is the understanding that algebraic 

expressions represent both a process (some number a times 4) and an outcome (the number 4a).  

Sfard and Linchevski (1994) have argued that this understanding is essential for the conceptual 

understanding of algebraic expressions.  Due to their two-dimensional structure, fractions can be 

understood as both the process (4 divided by 5) and the outcome or magnitude (4/5), introducing 

students for the first time to mathematical expressions that do not need to be “solved.”  Thus, 

given a bowl containing 3 red and 5 green apples, it is easy to count and determine that the 
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proportion of red apples is 3/8; there is no need to execute the further step of evaluating the 

magnitude of 3/8 (e.g., by applying division). The multidimensional structure of numbers 

eventually proves to be critical in understanding even the simplest algebraic expressions, such as 

!
"
𝑥. Thus, those students who eventually succeed in grasping the very concept of a 

multidimensional number, first instantiated by fractions, will have mastered a fundamental 

prerequisite for advanced mathematics. 

This approach to characterizing psychological understanding of fractions and relational 

reasoning may have implications for how these types of rational numbers could be most 

effectively taught. The difficulty in understanding a fraction as a relational expression may 

explain why young children appear to understand quantitative relations such as part-whole or 

proportions with visual displays (Goswami, 1989; Mix, Levine & Huttenlocher; Boyer, Levine & 

Huttenlocher, 2008; Sophian, 2000), but not when they have to answer comparable questions 

with fraction notation (Ball & Wilson, 1996; Mack, 1995).  For example, Ni and Zhou (2005) 

found that most children could answer the question, “How much is one third plus one third?” 

verbally as “two thirds”. But when asked the question using symbolic fraction notation, “1/3 + 

1/3 = ?”, most children answered “2/6” (often claiming that both 2/6 and 2/3 are correct 

answers). Children thus seem to have some intuitive understanding of how rational quantities 

relate to one another, but have difficulty understanding the novel symbolic expressions (perhaps 

because they are only taught as magnitudes, rather than as relations).  

The conceptualization of fractions as relations such as part/whole, subset/set, ratio and 

proportion may have implications for how children can be effectively taught to solve problems 

using fractions in these contexts. Typically, school instruction only emphasizes the part-to-whole 

relationship (Sophian, 2007; Mack, 1993), which most clearly relates to the understanding of 
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fractions as magnitudes. Children are first introduced to fractions using pictorial representations 

intended to help students understand the meaning of a value smaller than one. But as we 

observed earlier, magnitudes are far easier to process using one-dimensional decimals than 

bipartite fractions, even for adults (DeWolf et al., 2014). Thus, it might well be easier for 

children to learn about magnitudes less than one by being introduced to decimals prior to 

fractions. Fractions might first be introduced with an emphasis on their status as a relationship 

between two natural numbers (cf. Moss and Case, 1999). 

More generally, understanding how rational numbers align to specific types of quantities, 

and how the internal structure of mathematical expressions can affect ease of alignment to the 

perceptual or semantic relations being modeled, has important implications for how to best 

conceptualize and teach fractions and decimals. It is important to foster understanding of 

mathematics in a way that goes beyond teaching algorithmic procedures. A mathematical 

expression can represent not just a procedure, and not just a magnitude, but also a relational 

structure that maps onto the structure of the world.   

Teaching students rational numbers in a way that allows for a conceptually complex 

understanding can enhance students’ mathematics and science learning, as they will be better 

prepared to build connections between this foundational knowledge and its applications. Most 

importantly, most current practices do not encourage learners to build the necessary conceptual 

connections between different types of rational numbers and more complex relational concepts.  

In effect, students are left as “perpetual mathematical novices,” lacking the relational 

connections that define expertise (Chi, Feltovich & Glaser, 1981; diSessa, 1988; Larkin et al., 

1980). A goal of this research is to eventually lead to pedagogical innovations that have the 

potential to improve students’ understanding of rational numbers. 
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Goals of the Dissertation 

 This dissertation unites three lines of research that investigate how rational numbers are 

mentally represented (Chapter 2), how the differing formats of rational numbers might be 

differentially effective for various tasks (Chapter 3), and how rational expressions might build a 

foundation for more complex mathematical thinking like relational modeling in algebra (Chapter 

4). Together, these lines of research seek to advance our understanding of numerical cognition in 

general and to unite this line of research with the more general literature on mathematical and 

general problem solving. Specifically, a central goal of this dissertation is to point out that 

numerical cognition should not be thought of as isolated from other more general types of 

reasoning required for success in mathematics such as relational reasoning and abstract 

modeling. Indeed, uniting these various literatures and lines of research can help to make various 

educational interventions and improvements.  
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CHAPTER 2: 

NEURAL REPRESENTATIONS OF MAGNITUDE FOR NATURAL AND RATIONAL NUMBERS 

Introduction 

Representations of Symbolic Number Types 

Humans are unique in having developed symbolic notations for numbers. Given that a 

primary function of numbers is to convey magnitude values, it is important to understand the 

mental and neural representations of numerical magnitudes. The goal of the current study was to 

address the question of how different symbolic notations (natural numbers, fractions, and 

decimals) map onto magnitude codes. Specifically, we sought to determine whether different 

notations map onto a single, fully abstract, magnitude code, or whether separate representations 

exist for specific number types (e.g., natural versus rational) or number representations (e.g., 

base-10 versus fractions). 

Numerous studies of numerical magnitude comparisons have yielded a symbolic distance 

effect: comparisons of numbers that are closer in magnitude (e.g., 7 vs. 8) are slower and more 

error prone than comparisons of numbers that are farther apart (e.g., 2 vs. 8; Moyer & Landauer, 

1967; Holyoak, 1978). A similar distance effect is observed in children (Bath, La Mont, Lipton 

& Spelke, 2005; Brannon, 2002). Rhesus monkeys display a distance effect for numerosity 

comparisons; moreover, they are capable of learning shapes (Arabic numerals) corresponding to 

small numerosities (1-4 dots), such that the shapes acquire neural representations overlapping 

those of the corresponding perceptual numerosities (Diester & Nieder, 2007). 

The distance effect and other phenomena have been interpreted as indications that 

numerical magnitudes (at least for integers) are associated with an analog magnitude 

representation akin to a mental number line (Dehaene & Changeux, 1993; Gallistel, 1993; Opfer 
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& Siegler, 2012). Neuroimaging studies with both adults and children have implicated the 

intraparietal sulcus (IPS) as the central area for representing and comparing symbolic integer 

magnitudes (and also non-symbolic magnitudes) (Dehaene, Piazza, Pinel & Cohen, 2003; Nieder 

& Dehaene, 2009; Piazza, Pinel, Le Bihan, & Dehaene, 2007; Pinel, Dehaene, Riviere, & Le 

Bihan, 2001). Further, IPS activation is inversely related to the numerical distance between two 

numbers being compared (Cohen Kadosh et al., 2005; Kaufmann et al., 2005), consistent with 

the behavioral distance effect. 

While the representation of whole-number magnitude has received considerable attention, 

far less is known about the representation of other symbolic number types, such as the rational 

numbers (fractions and decimals). Some have argued that the representation of magnitude in 

general is entirely abstract, and that all symbolic and non-symbolic magnitudes can be 

represented using a single mental (and neural) number line (Eger, Sterzer, Russ, Giraud & 

Kleinschmidt, 2003; Naacache & Dehaene, 2001; Siegler, Thompson & Schneider, 2011). 

However, studies investigating this topic have as yet failed to reach a consensus. Previous 

behavioral research has mainly focused on the extent to which fractions are represented 

holistically. This work has focused on the issue of whether the overall (holistic) magnitude of a 

fraction is accessed automatically, like an integer (Kallai & Tzelgov, 2009; Meert, Gregoire & 

Noel, 2010a, 2010b; Schneider & Siegler, 2010; Sprute & Temple, 2011). Evidence for holistic 

magnitude representation come from studies examining the distance effect during fraction 

comparisons. Many studies (e.g. Schneider & Siegler, 2010) have found that adults show a 

distance effect when representing fractions during comparisons. However, other studies have 

shown that depending on the stimuli and availability of various shortcut strategies, adults may 
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represent only the whole-number components of the fraction and not its holistic magnitude (e.g. 

Bonato, Fabbri, Umilta & Zorzi, 2007; Fazio, DeWolf & Siegler, 2015). 

Moreover, other work has shown that even when a distance effect is found for fraction 

comparisons, the size and scale of the effect is entirely different for fractions relative to either 

integers or decimals.  DeWolf, Grounds, Bassok and Holyoak (2014) had adults compare 

fractions, matched decimals (rounded to three digits) and integers (created by multiplying the 

equivalent decimal by 1000 to obtain a three-digit integer). Comparisons for all three number 

types yielded reliable distance effects, based on the holistic magnitudes of the numbers being 

compared. Importantly, however, response times and error rates for the fraction comparisons 

were much higher than for comparisons of either decimals or integers, with the latter number 

types showing no differences in response times or errors. Moreover, the distance effect was 

much more pronounced for fractions, with response times averaging between 2 and 8 seconds for 

far versus near number pairs. In contrast, response times for integers and decimals overlapped 

with one another, and generally were no longer than 2 seconds. This dramatic difference in the 

scale of the distance effect across number types suggests that the magnitude information 

associated with fractions may be less precise than that associated with integers or decimals, and 

that the process of accessing magnitudes is more effortful and less automatic for fractions than 

for either integer or decimal formats.  

Using fMRI to Investigate Magnitude Representation 

Behavioral research investigating rational number magnitudes suggests there are 

important differences between magnitude processing for fractions relative to other number types. 

Although neuroimaging methods, and functional magnetic resonance imaging (fMRI) in 

particular, have been employed to assess the neural substrates of numerical magnitude 



 18 

representation (e.g., Darmla & Just, 2013), numerical symbols representations (see Ansari, 2016) 

and algebra (e.g., Monti, Parsons & Osherson, 2012), there is no consensus regarding the 

interpretation of the behavioral differences observed between fractions and other number types. 

The present study applied neuroimaging methods to assess the relationships among the neural 

representations of magnitude for different symbolic formats. If the representation of magnitude is 

entirely abstract, then the neural representations of a fraction and its magnitude-equivalent 

decimal (e.g., 2/5 vs. .40) in the IPS might be expected to be identical. In contrast, if fractions 

and decimals are processed very differently (as some behavioral studies suggest), then the neural 

codes for the different notations may differ. To date, these alternative predictions remain 

untested. In fact, only two studies have ever probed the neural representations underlying the 

processing of fractional numbers (Ischebeck, Schoke & Delazer, 2009; Jacob & Nieder, 2009a), 

and neither of these assessed the neural representations underlying decimal numbers, or the 

relationship between neural representations of magnitude across different formats for rational 

numbers. 

 A few other studies have examined how neural representations of magnitude differ as a 

function of notation by comparing neural responses to whole numbers versus their verbal 

equivalents (e.g., “12” versus “twelve”). Some studies have found that IPS activation was 

notation-independent (Eger et al., 2003; Naccache & Dehaene, 2001), whereas other studies 

suggest there may be both notation-specific and notation-independent areas (Bluthe, De Smedt & 

Beeck, 2015; Cohen Kadosh et al., 2007; Damarla & Just, 2013). However, these studies all 

compared a single mathematical notation (whole numbers) versus natural language (number 

names).  No work has been done to investigate the question of whether alternative mathematical 
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formats, such as fractions versus decimals, evoke similar or distinct neural representations of 

magnitude. 

 As noted above, only two studies have investigated the representation of symbolic 

fraction magnitudes using fMRI.  Jacob and Nieder (2009a) used an adaptation paradigm to test 

symbolic fraction magnitudes (single and multi-digit fractions). Recovery in the BOLD signal 

after habituation was observed in the frontoparietal cortex, and specifically the IPS. The pattern 

of signal recovery was the same after presentation of either a new symbolic fraction (e.g., “1/2”) 

or a new fraction written as a word (e.g., “half”), suggesting that fractions and their verbal 

equivalents recruit the same or overlapping neural areas. 

 The second study that investigated symbolic fraction notation with fMRI used a 

magnitude comparison paradigm, rather than an adaptation paradigm.  Ischebeck et al. (2009) 

had adult participants perform a simple magnitude comparison task with fractions, in which 

participants saw two fractions simultaneously on the screen and pressed a button to indicate 

which was larger in numerical magnitude.  The stimuli included different types of fraction pairs, 

some with common components, in order to enable a variety of potential strategies during the 

comparison process.  The results showed that activity in the right IPS was inversely correlated 

with the distance between the two fractions based on their holistic magnitude difference, and not 

with the distances between any component parts.  Ischebeck et al. interpreted their fMRI results 

as supporting the hypothesis that (despite an opportunity to use componential strategies) fraction 

comparisons were performed using holistic magnitudes.  

However, neither Ischebeck et al. (2009) nor Jacob and Nieder (2009a) directly compared 

processing of fractions with that of other symbolic formats. Although previous work indicates 

that magnitude representations for fractions involve roughly the same general neural area (the 
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IPS) as do magnitude representations for symbolic integers (and non-symbolic numerosities; see 

Jacob & Nieder, 2009b; Jacob, Vallentin & Nieder, 2012), the extent to which processing and 

representation of magnitude is the same or different for fractions relative to other number types 

has not been examined. Furthermore, the more general question of whether different symbolic 

formats for numbers evoke the same or different abstract magnitude representations remains 

unanswered. 

The Present Study 

In the present experiment, we employ univariate and multivariate analysis of fMRI data 

to compare, in a within-subject design, the neural representations of magnitude across different 

symbolic notations (integers, decimals, and fractions). We hypothesized that, consistent with 

previous research, all of the number types would activate the IPS.  The main questions concerned 

possible differences between the number types. If all number types activate the same abstract 

neural representation (based on relative rather than absolute magnitude, to take account of the 

scale difference between integers and rational numbers), then no differences among the number 

types would be expected. A second possibility is that neural activation of integers will differ 

from that of rational numbers (either fractions or decimals), both because the latter are more 

complex and because the overall magnitude scale differs. A third possibility, based on the 

behavioral findings of DeWolf et al. (2014), is that fractions will evoke a neural signature 

distinct from that of either magnitude-equivalent decimals or integers, whereas the latter two 

number types will evoke similar activation patterns.  
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Methods 

Participants 

 Sixteen participants (12 female, mean age 21 years) with no documented history of 

neurological disorders were recruited at the University of California, Los Angeles (UCLA) 

through a flyer distributed in the Psychology department.  Participants signed informed consent 

prior to the experimental session, and were paid $30 for their participation in the 1-hour study, in 

compliance with the procedures accepted by the local institutional review board (IRB). 

Stimuli 

 Stimuli consisted of pairs of numbers in one of three possible symbolic types: fractions 

(e.g., 1/2, 3/4), decimals (e.g., .50, .75) or integers (e.g., 50, 75). Table 2.1 lists the complete set 

of pairs for each number type. Within each pair, numbers were always of the same type. In order 

to control for the number of digits on the screen across symbolic types, only single-digit 

fractions, double-digit decimals, and double-digit whole numbers were presented. Thus, 

instances of the three symbolic number types were always constructed from exactly two digits. 

All of the fraction comparison pairs were comprised of fractions that did not have any common 

components.  This constraint served to minimize the use of shortcut strategies, thereby 

encouraging participants to access the holistic magnitude of each individual fraction.  

Magnitude-equivalent decimals were created by dividing out the corresponding fraction and 

rounding the result to two decimal places.1  Integers were created by multiplying the matched 

decimal by 100 to create a two-digit number. 

A total of 40 unique comparison pairs were generated for each number type.  Because the 

numbers in the comparisons were shown sequentially, rather than simultaneously, each pair was 
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shown twice, once in each order.  Accordingly, there were a total of 80 trials for each of the three 

number types. 

 

 

Table 2.1 List of the stimuli used for each of the fraction, decimal, and integer comparisons. 

Each pair was shown twice in each order. 

Fraction Pairs Decimal Pairs Integer Pairs 
1/9 3/7 .11 .43 11 43 
1/8 3/7 .13 .43 13 43 
1/8 4/9 .13 .44 13 44 
1/7 3/8 .14 .38 14 38 
1/6 2/7 .17 .29 17 29 
1/5 3/8 .20 .38 20 38 
1/5 7/8 .20 .88 20 88 
2/9 4/7 .22 .57 22 57 
1/4 2/7 .25 .29 25 29 
1/4 5/7 .25 .71 25 71 
2/7 5/8 .29 .63 29 63 
1/3 2/7 .33 .29 33 29 
1/3 3/4 .33 .75 33 75 
3/8 2/7 .38 .29 38 29 
2/5 5/9 .40 .56 40 56 
3/7 2/9 .43 .22 43 22 
3/7 5/9 .43 .56 43 56 
4/9 1/7 .44 .14 44 14 
4/9 2/3 .44 .67 44 67 
1/2 2/5 .50 .40 50 40 
1/2 2/3 .50 .67 50 67 
5/9 6/7 .56 .86 56 86 
4/7 1/4 .57 .25 57 25 
4/7 3/4 .57 .75 57 75 
3/5 2/9 .60 .22 60 22 
3/5 5/8 .60 .63 60 63 
5/8 1/9 .63 .11 63 11 
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2/3 1/8 .67 .13 67 13 
2/3 4/7 .67 .57 67 57 
5/7 4/9 .71 .44 71 44 
5/7 7/8 .71 .88 71 88 
7/9 1/3 .78 .33 78 33 
4/5 1/9 .80 .11 80 11 
4/5 7/8 .80 .88 80 88 
5/6 1/5 .83 .17 83 17 
5/6 7/9 .83 .78 83 78 
6/7 2/5 .86 .40 86 40 
6/7 3/5 .86 .60 86 60 
8/9 2/5 .89 .40 89 40 
8/9 3/4 .89 .75 89 75 
  

Behavioral Task 

Participants were given instructions before entering the scanning room, after performing 

a routine safety check.  Participants were told that they would see a series of numbers presented 

sequentially in pairs.  Each trial started with a fixation cross, at the middle of the screen, for .5 s 

followed by a brief blank screen jittered for .1-2 s. The first number was then presented for 1.5 s 

followed by a brief blank screen, which was jittered for 2-7 s, and then a second number (see 

Figure 2.1).  Participants controlled the length of presentation of the second number by pressing 

a button to indicate whether the second number was larger or smaller than the first number.  

They were instructed to try to go as fast as possible without sacrificing accuracy.   

 The 240 total trials (80 per symbolic type) were evenly distributed across four runs. 

Allocation of pairs across the four runs and order of presentation within each run was determined 

randomly for each participant. 
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Figure 2.1 Trial procedure for each of the number type conditions (integers, decimals, fractions). 
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fMRI Data Acquisition 

Data were acquired on a 3 Tesla Siemens Tim Trio Magnetic Resonance Imaging (MRI) 

scanner at the Staglin IMHRO Center for Cognitive Neuroscience at UCLA. Structural data were 

acquired using a T1-weighted sequence (MP RAGE, TR = 1,900 ms, TE = 2.26 ms, voxel size 1 

mm3 isovoxel). Blood oxygenation level dependent (BOLD) functional data were acquired with 

a T2-weighted Gradient Recall Echo sequence (TR = 2,000 ms, TE = 30 ms, 32 interleaved 

slices, voxel size 3 × 3 × 4 mm, Flip Angle = 78 degrees). Overall, individual runs lasted an 

average of 566 s (min=492 s, max = 756 s).  

fMRI Data-Analysis Procedures 

Data preprocessing. Data analysis was carried out using FSL (Smith et al., 2004). Prior 

to analysis, data underwent a series of conventional preprocessing steps including motion 

correction (Jenkinson et al., 2002), slice-timing correction (using Fourier-space time-series 

phase- shifting), spatial smoothing using a Gaussian kernel of 5 mm full-width half-max, and 

high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma = 

50 s). Data from each individual run were analyzed employing a univariate general linear model 

approach (Monti, 2011) with pre-whitening correction for autocorrelation (Woolrich et al., 

2001). 

Univariate analysis. For each run of each participant, a univariate GLM analysis was 

conducted with three regressors of interest marking the onset time and duration of the 

presentation of the first number of each pair, separately for each notation type (fractions, 

decimals, and integers). These analyses completely avoid any confounding with problem 

difficulty: because the second number is yet to be presented, the comparison process cannot yet 

be initiated. A number of additional regressors modeled the second number presentation, cue 
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periods, and motion (first and second derivatives, and their difference). Data from the 

presentation of the second number was not analyzed further because it was confounded with 

movement (from pressing the response button) and cognitive processes relating to the 

comparison task (cf., Todd, Nystrom, & Cohen, 2013). For each run we computed seven 

contrasts.  These were based on the data collected during the presentation of the first number in a 

comparison pair.  These included the simple effects of each notation type (fraction vs. baseline, 

decimal vs. baseline and integer vs. baseline), as well as the pairwise differences between them 

(fractions > decimals; fractions > integers; integers > decimals; and decimals > integers).  Prior 

to group analysis, individual statistical maps were transformed into MNI template space via a 2-

step procedure concatenating a boundary-based co-registration to align functional data to single-

subject anatomical data and a 12 degrees of freedom linear co-registration to align single-subject 

anatomical data to the MNI template. Data from individual runs were aggregated using a mixed-

effects model (i.e., employing both the within- and between-subject variance), using automatic 

outlier detection. Z (Gaussianised t) statistic images were thresholded using a cluster correction 

of Z > 2.3 and a (corrected) cluster significance threshold of p = .05. 

In order to avoid reverse subtractions (Morcom & Fletcher, 2007), for each A>B contrast 

(e.g., fractions > decimals), we employed a “greater-than-zero-sum” masking procedure. In this 

approach, analysis is restricted to voxels for which the sum of the Z statistic associated with task 

A (compared to fixation; ZA) and the Z statistic associated with task B (compared to fixation; ZB) 

resulted in a number greater than zero (i.e., (ZA+ZB)>0). In other words, for a voxel to be 

included in the contrast analysis, either ZA and ZB have to both be positive values (in which case 

it is not possible to have reverse subtractions), or ZA had to be more positive than ZB was 

negative, thereby preventing the possibility of a brain activation resulting from a weakly positive 
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ZA coupled with a strongly negative ZB. This latter point is particularly important since it 

highlights the advantage of our approach over the more conventional ZA>0 masking which, 

indeed, would return an activation in the case where a weakly positive ZA (e.g., ZA=0.01) were 

associated with a sufficiently negative ZB. Furthermore, our approach also has the advantage of 

not excluding voxels in which ZA might be strongly positive while ZB is (weakly) negative, 

unlike a ZB>0 masking procedure. 

MVPA analysis. The input to the multivariate pattern analysis (MVPA) was a set of 

volumes of regression coefficients (i.e., “beta” values) marking the magnitude of activation, for 

each voxel, in each trial (per participant). These trial-wise “patterns of activations” were 

obtained by employing the iterative Least Squares – Separate approach (LS-S; Mumford, Turner, 

Ashby & Poldrack, 2012) in which a separate GLM is run (here, using FILM with local 

autocorrelation; Woolrich et al., 2001) for each trial. The patterns of activation were then 

concatenated across time to construct a subject-wise “beta-series” of activation magnitude per 

trial per voxel (Rissman et al, 2004).  

Representational Similarity Analysis (RSA) was run on the beta-series of activation 

magnitudes, in MATLAB using the RSA toolbox (Nili et al., 2014). RSA characterizes the 

representation in a brain region by a representational dissimilarity matrix (RDM), and compares 

the empirical matrix with a model. An RDM is a square symmetric matrix, with each entry 

referring to the dissimilarity between the activity patterns associated with two trials (e.g., entry 

(1,2) would represent the dissimilarity between activity patterns of trial 1 and trial 2 for a given 

participant). Each element of the RDM is calculated as 1 minus the Spearman correlation 

between the beta-series for each pair of trials. Models were manually generated to reflect 

idealized RDMs expected if the group of voxels was indeed modulating its activity with respect 
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to the manipulation (see models in Figure 2.2). The Number Type Model (Figure 2.2a) was 

designed to test the overall ability to distinguish between each of the three number types. We 

then compared each of the pairwise number-type combinations to attempt to distinguish between 

each number type. The assumption behind the model RDMs was that a group of voxels sensitive 

to an experimental condition would display lower dissimilarity for same-condition trials as 

opposed to different-condition trials. 

 

Figure 2.2  Ideal models generated for the RSA searchlight MVPA.  Each matrix represents a 

dissimilarity matrix where yellow (1) denotes completely dissimilar items and blue (0) denotes 

maximally similar items. 
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The RSA was performed with a searchlight approach (searchlight radius: 6mm or 2 

voxels; cf. Kriegeskorte, Goebel & Bandettini, 2006) within an anatomical mask of the IPS as 

defined by the Jülich Histological Atlas (available in FSL; Choi et al., 2006; Scheperjan et al., 

2008). Within each searchlight sphere, a Spearman coefficient was computed between the 

empirical and model RDMs, yielding a single second-order similarity value per voxel, which 

reflected the resemblance of searchlight sphere activity with the hypothesized model. These 

coefficients were registered to the standard template, with the same 2-step procedure employed 

for univariate single-subject statistical parametric maps, and assessed for significance (ρ > 0) 

using FSL’s randomize with threshold-free cluster enhancement (corrected p < .05) (Smith & 

Nichols, 2009; Winkler et al., 2014). 

Results 

Behavioral Results 

Mean accuracy on the magnitude comparison task for each number type was obtained by 

averaging over all participants.  A one-way repeated measures ANOVA revealed a significant 

effect of number type (F(2, 30) = 23.23, MSE = .002, p < .001), with fractions having lower 

accuracy than decimals (fractions: 84% vs. decimals: 92%, t(15) = 6.72, p < .001) and integers 

(91%, t(15) = 4.82, p < .001).  There was no difference in accuracy between decimals and 

integers (t(15) = .69, p = .50). 

Mean response times (RTs) for correct trials were averaged for each number type across 

participants. A one-way repeated measures ANOVA revealed a significant effect of number type 

(F(2, 30) = 24.34, MSE = .09, p < .001), with fractions being compared more slowly than either 

decimals (fractions: 1.91 s vs. decimals: 1.30 s, t(15) = 5.22, p < .001) or integers (1.24 s, t(15) = 
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5.19, p < .001). There was no significant difference in response time between decimals and 

integers (t(15) = 1.15, p = .27). 

In order to assess the distance effect, average accuracies and response times were 

calculated for each trial across participants for fraction, decimal, and integer conditions. 

Regression analyses across individual items were conducted for accuracies and response times 

based on a logarithmic distance measure, log(|first number – second number|), which we will 

abbreviate as “log Dist” (see DeWolf et al., 2014; Hinrichs et al., 1981). Log Dist significantly 

predicted accuracy outcomes for fractions (𝛽 = -.65, t(37) = 26.91, p < .001) but not for decimals 

(𝛽 = .02, t(37) = .12, p = .90) or integers (𝛽 =.23, t(37) = 1.44, p = .16). The lack of a distance 

effect in accuracy for decimals and integers likely reflects the fact that accuracy for these number 

types was near ceiling. Accordingly, we focused more closely on distance effects based on RTs 

for correct responses.  Figure 2.3 shows the average RT for each trial across participants for 

fractions, decimals, and integers. Log Dist significantly predicted RT outcomes for each of the 

number types (fractions: 𝛽 =  -.64, t(37) = 5.01, p < .001; decimals: 𝛽	= -.33, t(37) = 2.16, p 

= .04; integers: 𝛽 = -.33, t(37) = 2.12, p = .04). These results replicate the pattern of distance 

effects observed by DeWolf et al. (2014), including (as evidenced by the much larger beta 

coefficient for fractions) a more pronounced distance effect for fractions than for either of the 

other two number types. 
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Figure 2.3 Average correct response times for each trial across participants for fractions, 

decimals, and integers. Fitted lines represent predictions derived from LogDist models for 

Fractions and Decimals. (Because predictions of the Integer model were nearly identical to those 

of the Decimal model, the Integer model is excluded here for simplicity.) 

 

fMRI Results 
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activations were observed in the cerebellum, with foci in Crus I and Lobules VI and VIIB (see 

Figure 2.4a and Table 2.2 for complete list of local maxima). 

 

 

 

 

Figure 2.4 Results of the univariate analysis for (a) comparison of fraction and decimal 

activation and (b) comparison of fraction and integer activation, from dorsal, posterior, and 

lateral views.  Red areas represent significant differences in activations. The color scale 

represents z-values for significant activations. 

 

 

 

 

 

b. 

L R 

Fraction > Integer 

a. 

L R 

Fraction > Decimal 

2.3 4.0 



 33 

Table 2.2 Local Maxima for the Fractions > Decimals Univariate Contrast (Abrev.: hIPS: 

horizontal segment of the intraparietal sulcus; IOS: intraoccipital sulcus; L: left; R: Right) 

MNI Coordinates       
x y z Hem Region Label (BA) Z 
Parietal  

 -42 -48 48 L Inferior Parietal Lobule (hIPS; 40) 4.30 
-30 -58 44 L Superior Parietal Lobule (hIPS; 7) 3.93 
-54 -38 48 L Inferior Parietal Lobule (40) 3.91 
-28 -70 38 L Occipito-Parietal Junction (hIPS/IOS;40/7) 3.75 
-28 -76 54 L Superior Parietal Lobule (hIPS; 7) 3.71 
-34 -50 42 L Inferior Parietal Lobule (hIPS; 40) 3.71 
Frontal   
-56 14 24 L Precentral Gyrus/Inferior Frontal Gyrus (6/44) 3.77 
-50 6 32 L Precentral Gyrus (6) 3.65 
-22 6 70 L Superior Frontal Gyrus (6) 3.27 
-30 2 62 L Precentral Gyrus/Superior Frontal Gyrus (6) 3.25 
-34 2 28 L Precentral Gyrus/Inferior Frontal Gyrus (6/44) 3.18 
-36 2 62 L Precentral Gyrus/Superior Frontal Gyrus (6) 3.16 
-54 8 46 L Precentral Gyrus (6) 2.93 
-40 -4 56 L Precentral Gyrus (6) 2.93 
-28 -8 58 L Precentral Gyrus (6) 2.91 
-18 12 66 L Superior Frontal Gyrus (6) 2.85 
-50 26 28 L Inferior Frontal Gyrus/Middle Frontal Gyrus (44/9) 2.70 
-44 -4 30 L Precentral Gyrus (6) 2.68 
Temporal  

 -50 -56 -22 L Inferior Temporal Gyrus (37) 3.18 
-56 -56 -14 L Inferior Temporal Gyrus (37) 3.13 
-48 -64 -4 L Inferior Temporal Gyrus (37) 3.03 
-50 -60 0 L Middle Temporal Gyrus (37) 2.84 
-48 -56 0 L Middle Temporal Gyrus (37) 2.60 
Cerebellum  

 38 -56 -32 R Crus I 3.88 
38 -60 -40 R Crus I 3.41 
28 -76 -50 R Lobule VIIB 3.19 
32 -72 -26 R Crus I 3.13 
44 -66 -30 R Crus I 2.86 
26 -60 -34 R Lobule VI 2.86 
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The contrast of fractions versus integers resulted in extensive activations in bilateral 

parietal cortex (with L>R), centered within and around the horizontal segment of the intraparietal 

sulci, spanning inferior (BA 40) and superior (BA 7) parietal lobuli.2 Similarly to the contrast of 

fractions versus decimals, left lateralized activations were also obtained in frontal cortices, 

mostly within the precentral gyrus (BA 6) together with foci across superior (BA 6, 8) and 

middle (BA 8) frontal gyri, and in the caudal section of temporal cortex, in the inferior and 

middle temporal gyri (BA 37). Finally, right hemispheric activations were again observed in the 

cerebellum, with foci in Crus I and II, and Lobule VI (see Figure 2.4b and Table 2.3 for a 

complete list of local maxima).   

Direct comparison of the decimal and integer conditions, in both directions (i.e., decimals 

> integers; integers > decimals), failed to reveal any significant activation. 

 

Table 2.3 Local Maxima for the Fractions > Integers Univariate Contrast (Abrev.: hIPS: 

horizontal segment of the intraparietal sulcus; L: left; R: Right) 

MNI Coordinates       
x y z Hem Region Label (BA) Z 
Parietal  

 -28 -62 46 L Superior Parietal Lobule (hIPS; 7) 4.71 
-30 -74 54 L Superior Parietal Lobule (hIPS; 7) 4.39 
-30 -70 54 L Superior Parietal Lobule (7) 4.21 
-48 -50 52 L Inferior Parietal Lobule (40) 3.99 
-48 -48 48 L Inferior Parietal Lobule (40) 3.98 
-40 -46 46 L Inferior Parietal Lobule (hIPS; 40) 3.82 
32 -68 48 R Inferior Parietal Lobule (40) 3.82 
30 -60 50 R Superior Parietal Lobule (hIPS; 7) 3.74 
28 -64 50 R Inferior Parital Lobule (40) 3.69 
24 -68 48 R Superior Parietal Lobule (7) 3.58 
42 -54 58 R Superior Parietal Lobule (7) 3.40 
22 -72 50 R Superior Parietal Lobule (7) 3.33 
Frontal   
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-50 10 28 L Precentral Gyrus (6) 3.88 
-52 12 24 L Precentral Gyrus (6) 3.78 
-52 10 36 L Precentral Gyrus (6) 3.62 
-24 16 54 L Superior Frontal Gyrus (8) 3.62 
-36 4 28 L Precentral Gyrus (6) 3.51 
-24 12 58 L Middle Frontal Gyrus (8) 3.51 
-46 6 34 L Precentral Gyrus (6) 3.41 
-36 2 62 L Precentral Gyrus (6) 3.37 
-52 2 42 L Precentral Gyrus (6) 3.34 
-18 12 64 L Superior Frontal Gyrus (6) 2.97 
-24 8 46 L Middle Frontal Gyrus (8) 2.82 
-24 14 66 L Superior Frontal Gyrus (8) 2.78 
Temporal  

 -50 -56 -10 L Inferior Temporal Gyrus (37) 3.76 
-54 -54 -14 L Inferior Temporal Gyrus (37) 3.65 
-42 -60 -6 L Inferior Temporal Gyrus (37) 3.08 
-56 -64 -10 L Inferior Temporal Gyrus (37) 2.98 
-48 -64 -4 L Inferior Temporal Gyrus (37) 2.96 
-48 -48 -14 L Inferior Temporal Gyrus (20/37) 2.76 
Cerebellum  

 38 -56 -30 R Crus I 3.87 
36 -64 -44 R Crus II 3.25 
40 -60 -38 R Crus I 3.24 
20 -66 -26 R Lobule VI 3.21 
38 -58 -42 R Crus II 3.18 
32 -72 -26 R Crus I 3.18 
 

 

Multivariate analyses. Because MVPA requires an equal number of trials across all conditions, 

one participant was excluded from this analysis because she did not finish one of the runs due to 

a computer error (missed two trials). 

 Figure 2.5 shows the areas within the IPS that yielded significant activations for each of 

the four models. The Number Type model (distinguishing between the three number types) 

shows a broad set of bilateral activations. Mirroring the results of the univariate analysis, the 

Fraction vs. Decimal model shows mostly left-lateralized IPS activation, whereas the Fraction 
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vs. Integer model shows bilateral IPS activation. Unlike the results of the univariate analysis, the 

Decimal vs. Integer model yielded a small number (~3) of significant voxels that distinguished 

between decimals and integers. While this is a small area, it points to a possible pattern 

difference in the encoding of decimals and integers beyond what the univariate analysis revealed. 

 

 

 

Figure 2.5 Results of the multivoxel pattern analysis (MVPA) from dorsal, posterior, and lateral 

views for each of the four hypothesized models (see Figure 2.2). The color scale represents 1 - p-

values (e.g., .95 to 1 would be significant). Note: The searchlight analysis was restricted to the 

IPS, which was selected as a region of interest. 
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Discussion 

Fraction Magnitudes are Neurally Distinct from Decimals and Integers 

The central goal of the present study was to distinguish between possible models of 

neural representation for different symbolic number formats.  The behavioral results showed that 

each of the number types elicited a reliable distance effect on correct RT. The presence of a 

distance effect suggests that all number types were processed holistically. However, the 

neuroimaging results showed that magnitudes evoked distinct neural patterns that distinguished 

the number types. Results of both a univariate analysis and MVPA indicate that while fractions, 

decimals, and integers all activate areas of the IPS, fractions yield a distinct pattern of activation 

associated with a unique subarea of the IPS.  In contrast, decimals and integers yielded very 

similar and overlapping patterns, with MVPA identifying only a very small set of voxels that 

distinguished the latter two number types. These results suggest that while neural 

representations, across notations, all elicit activation within the intraparietal sulcus, neural 

representation appear to be sensitive to number representation (notably, base-10 numbers versus 

fractions), but not to number type (natural versus rational).  

 To our knowledge, the present neuroimaging study is the first to compare fractions with 

both decimals and integers.  The two previous studies (Ischebeck et al., 2009; Jacob & Nieder, 

2009a) that investigated the representation of fraction magnitudes using fMRI had assumed that 

because fractions activate the IPS (as do integers), and because fraction activation was 

modulated by a distance effect based on holistic magnitude, the brain represents proportional 

(fraction) magnitudes in the same way that it does absolute (integer) magnitudes.  However, by 

making direct comparisons among all three number types, the present study was able to clearly 
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dissociate magnitude activations for fractions as compared to those for either integers or 

decimals. 

Isolating Magnitude Representations for Individual Numbers 

 An important methodological innovation of the present study is its use of a design based 

on sequential presentation of individual numbers in a magnitude comparison task. Compared to 

passive observation of numbers, the magnitude comparison task strongly guides participants to 

access holistic magnitude representations for individual numbers. Moreover, the behavioral 

results from the comparison task fully replicated previous work comparing performance with the 

three number types (DeWolf et al., 2014). Comparisons were less accurate and slower for pairs 

of fractions than for pairs of decimals or integers. A distance effect was obtained for all number 

types, but was most pronounced for fractions.  Our behavioral results thus confirm that 

participants in our neuroimaging paradigm were performing magnitude comparisons in 

essentially the same way as has been observed in previous behavioral studies. 

 At the same time, the sequential nature of the present design allowed us to decouple the 

process of accessing a magnitude representation for an individual number from the process of 

magnitude comparison. Our fMRI analyses focused solely on the initial 1.5s period when a 

single number was displayed. During this period participants were motivated to access the 

magnitude of the presented number, but were unable to initiate a comparison because the second 

number in the pair had not yet appeared. Previous neuroimaging studies with fractions recorded 

neural signals during the comparison process itself. In contrast, our findings provide a clear 

picture of the neural activity underlying access to the magnitude of a single individual number, 

isolated from the additional activity that would be triggered by comparing two magnitudes. 
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What is Special About Fraction Magnitudes? 

 We considered three hypotheses about the relation between magnitude representations for 

different symbolic notations. (1) All notations might evoke some universal, fully abstract 

magnitude code; (2) the magnitude code might differ between natural numbers (integers) and the 

more complex rational numbers (fractions and decimals); or (3) the magnitude code for fractions 

might differ from that for the base-10 notations (decimals and integers). Our findings clearly 

support the third of these hypotheses. To the best of our knowledge, no previous study has shown 

such a strong dissociation between the neural patterns elicited by alternative notations for the 

same magnitude. Even though 2/5 and .40 express the same magnitude, the brain processes the 

two symbols very differently. In contrast, the magnitude representations for a decimal (.40) and 

an integer expressing a magnitude 100 times larger (40) are very similar. Importantly, the latter 

result implies that the neural code for numerical magnitude is on a scale that is fundamentally 

relative rather than absolute. Thus base-10 notations evoke similar activation patterns based on 

their relative magnitudes, whereas the bipartite fraction notation is processed very differently 

from either. 

Future Directions 

 The present study lays the groundwork for further exploration of the differences among 

neural representations evoked by different symbolic number types. Behavioral evidence points to 

a major conceptual distinction between fractions and decimals, with the former being selectively 

used to code the magnitudes of discrete entities (which can be counted), and the latter selectively 

used to code the magnitudes of continuous quantities (which can be either estimated or measured 

by imposing arbitrary units; see Rapp, Bassok, DeWolf & Holyoak, 2015). In addition, it is 

important to examine neural processing in mathematical tasks other than those that focus on 
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magnitudes. Whereas fractions are disadvantaged relative to decimals in magnitude comparison 

tasks, fractions convey reliable advantages in a variety of reasoning tasks. Because of their 

bipartite structure, fractions have a much more natural correspondence to relational concepts 

based on ratios of countable sets (DeWolf, Bassok & Holyoak, 2015a). The relational aspects of 

fraction representations appear to make fraction understanding a critical bridge to learning 

algebra (DeWolf, Bassok & Holyoak, 2015b), which depends critically on grasping the concept 

of a variable (understood to represent a quantity of unknown magnitude). The “isolation” 

technique introduced in the present paper (imaging activity evoked by an individual number as 

the participant prepares for a specific mathematical task performed immediately afterwards) 

might usefully be extended to compare the neural patterns evoked by the same symbol (e.g., a 

fraction) in preparation for tasks that require different types of information (e.g., magnitudes or 

relational concepts). 
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Footnotes 

1. Behavioral work (DeWolf et al., 2014) has shown that decimals are processed in a similar 

fashion regardless of whether the stimulus set uses a fixed number of digits without a leading 

zero (e.g., .75), or includes numbers with leading zeros (e.g., 0.75) or additional digits after the 

decimal (e.g., .750). In the present study we used only 2-digit decimals without leading zeros in 

order to equate the number of constituent digits across the three number types. 

2. The analyses comparing fractions to decimals and fractions to integers revealed hemispheric 

differences, with the latter comparison resulting in bilateral parietal activations and the former 

resulting in left lateralized activations only. However, these differences were mainly attributable 

to the non-linear nature of the thresholding procedure. Inspection of uncorrected statistical 

parametric maps resulting from the fractions-minus-decimals contrast revealed clusters of above-

threshold voxels (i.e., individual Z > 2.3); however, these were too small to survive the cluster-

extent thresholding. These subthreshold activations explain why no difference was apparent 

when directly comparing decimals and integers. 
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CHAPTER 3: 

CONCEPTUAL STRUCTURE AND THE PROCEDURAL AFFORDANCES OF RATIONAL NUMBERS: 

RELATIONAL REASONING WITH FRACTIONS AND DECIMALS 

Introduction 

Mathematical Thinking as Modeling 

Mathematical understanding fundamentally involves grasping that mathematics is a 

system of quantitative relations among concepts. It has been argued that a core problem with 

math education, particularly in the United States, is that greater focus is placed on execution of 

mathematical procedures than on understanding of quantitative relations (Gonzales et al., 2008; 

Richland, Stigler & Holyoak, 2012; Stigler & Hiebert, 1999; Rittle-Johnson & Star, 2007).  

Nonetheless, educators do make an effort to convey the conceptual structure of mathematics, 

typically by presenting students with examples of analogous real-world situations. For example, 

the addition operation is often illustrated with examples of combining subsets of a superset 

category (e.g., 3 red + 5 blue marbles = 8 marbles). Adults prefer the operation of addition to be 

applied to sets of objects drawn from a common immediate superordinate (e.g., marbles) or from 

closely-related co-hyponyms (e.g., roses and daisies); in contrast, they expect division to be 

applied to sets that have a functional relationship (e.g., 9 cookies divided among 3 children). 

Such expectancies suggest that people use a process of semantic alignment (akin to analogical 

reasoning) to systematically connect arithmetic operations with conceptual categories (Bassok, 

Chase & Martin, 1998; Bassok, Pedigo, & Oskarsson, 2008). 

Other work also suggests that mathematical thinking involves various forms of mapping 

between numbers and concepts. By far the most attention has been directed at the unidimensional 

concept of magnitude, which in humans and other primates enables a mapping from numerical 
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quantities onto a mental (and neural) number line (e.g., Cantlon, Brannon, Carter & Pelphrey, 

2006; Dehaene & Changeux, 1993; Moyer & Landauer, 1969; Pinel, Piazza, Bihan & Dehaene, 

2004; for recent theoretical work on the acquisition of magnitudes, see Chen, Lu & Holyoak, 

2014). Another type of mapping links variations in symbolic notation at a perceptual level (e.g., 

spacing of operator symbols) with relations among procedures (e.g., order of operations; 

Braithewaite & Goldstone, 2013; Landy, Brookes & Smout, 2014; Landy & Goldstone, 2007; 

Zahner & Corter, 2010).  More generally, procedures appear to derive meaning from their place 

in a conceptual structure, rather than standing in isolation as rote routines (e.g., English & 

Halford, 1995; Hinsley, Hayes & Simon, 1977; Kintsch & Greeno, 1985; Mochon & Sloman, 

2004).  

Previous psychological work on mathematics as a form of modeling has focused either on 

the unidimensional concept of number magnitude, or on relations involving more complex 

mathematical expressions, such as equations. In the present paper we focus on the relational 

structure of numbers themselves. Whereas all numbers express a unidimensional magnitude, 

some notations for numbers also inherently represent multidimensional relationships. Such 

multidimensionality is apparent in numbers introduced in advanced mathematics (e.g., complex 

numbers); however, we argue it is also a property of relatively simple notations for rational 

numbers taught in elementary school—most notably, common fractions1 (e.g., 2/3, 13/4). 

Acquisition of Fractions and Decimals 

Our focus in this paper is on how well-educated reasoners understand fractions and 

decimals; however, developmental work sheds important light on the difficulties associated with 

each notation type. After the familiar natural numbers, fractions and then decimals are typically 

introduced in school (in that order, at least in the curricula generally adopted in the United 
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States) as new types of numbers that can express magnitudes less than one. Both symbolic 

notations often prove problematic for students. Children, and even some adults, exhibit 

misconceptions about the complex conceptual structure of fractions (Siegler et al., 2011, 2013; 

Ni & Zhou, 2005; Stigler et al., 2010).  Students often find it difficult to reconcile this 

perceptually and conceptually unfamiliar type of number with their well-established concept of 

natural numbers (Ni & Zhou, 2005; Vamvakoussi & Vosniadou, 2010), particularly in 

understanding how the whole numbers within the fraction contribute to its overall magnitude. 

Instead of processing fractions as one integrated quantity, both children and adults often process 

the natural number parts of the fraction separately (Kallai & Tzelgov, 2009; Bonato, Fabbri, 

Umiltà & Zorzi, 2007). Despite (or perhaps because of) their associated difficulties, an 

understanding of fractions appears to be very important for subsequent learning. For example, 

students’ ability to place fractions on a number line is uniquely related to their general arithmetic 

ability and later performance (Siegler et al., 2011, 2012).  Students also encounter problems in 

learning to understand decimals (Rittle-Johnson, Siegler & Alibali, 2001), but generally master 

the magnitudes of decimals before fractions (Iuculano & Butterworth, 2011). The relative ease of 

learning magnitudes of decimals presumably reflects the fact that their implicit denominator is a 

constant (base 10), rather than a variable, so that a decimal inherently expresses the 

unidimensional concept of magnitude (Halford et al., 1998, 2010).  

Bonato et al. (2007) argue that adults interpret fractions in terms of their component 

integer parts, suggesting that the natural alignment of fractions may resemble that of integers 

(i.e., a preference for discrete quantities). But fractions may also be interpreted as holistic 

numbers, providing a possible basis for them to align with continuous quantities.  Schneider and 

Siegler (2010) showed that when comparing fraction magnitudes, adults show a distance effect 
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(response times decrease as the difference between magnitudes increases), analogous to that 

found with natural numbers.  However, DeWolf, Grounds, Bassok and Holyoak (2014) found 

that while the pattern of response times for comparing decimals is almost identical to that for 

comparing multi-digit natural numbers, the pattern for fraction comparisons is dramatically 

slower, and shows a greatly exaggerated distance effect, indicative of less precise magnitude 

representations for fractions. Thus, decimals appear to be much more effective than fractions in 

conveying information about magnitudes.  This line of research suggests that fractions are not 

always interpreted as magnitudes, or at least that magnitudes are less easily derived from 

fractions than from decimals (perhaps because the two-dimensional format of fractions does not 

match the base-10 system associated with whole numbers).  

Acquisition of Discrete and Continuous Quantities 

A key conceptual distinction, which we will argue is intimately related to alternative 

notations for rational numbers, is the distinction between countable and continuous quantities, 

which align with integers and real numbers, respectively. This distinction has been highlighted in 

developmental research (e.g., Cordes & Gelman, 2005).  Counting is appropriate when the 

relevant entities are discrete objects (e.g., the number of girls in a group of children), whereas 

measurement is appropriate for continuous mass quantities (e.g., height of water in a beaker). 

Continuous quantities can be subdivided into equal-sized units (i.e., discretized) to render them 

measurable by counting (e.g., slices of pizza), but the divisions are arbitrary in the sense that they 

do not isolate conceptual parts.  Even for adults, the distinction between continuous and discrete 

quantities has a strong impact on transfer of mathematical procedures (Bassok & Holyoak, 1989; 

Bassok & Olseth, 1995). Procedures learned using discrete concepts transfer fairly readily to 

continuous concepts (which can be discretized); however, procedures learned using continuous 
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quantities are almost impossible to transfer to discrete concepts (because there is no sensible way 

to “fill gaps” between discrete elements to create a meaningful continuous entity). 

 Research suggests that appreciation of continuous magnitudes is an early developmental 

achievement. Prior to learning how to count, infants and young children are already able to 

distinguish the magnitudes of different continuous quantities (Clearfield & Mix, 2001; 

Feigenson, Carey & Spelke, 2002).  This ability to make distinctions between continuous 

quantities reflects an approximate number sense, which is evolutionarily more primitive than 

exact calculations (Feigenson, Dehaene & Spelke, 2004; Dehaene, 1997). However, school-aged 

children have an advantage when performing operations (e.g., counting) with discrete quantities 

(Gelman, 1993) over performing measurement operations using matched continuous quantities 

(Nunes, Light & Mason, 1993).  By this age, when students have learned to count, they can use 

numbers to achieve greater precision by counting than by estimation of continuous quantities. 

The accuracy advantage afforded by exact computation strategies depends on acquiring 

competence in the necessary computation. Because exact computation is acquired later than the 

more elementary approximation strategies, children still acquiring competence in calculation 

may actually make less accurate judgments when quantities are discretized rather than 

continuous. For example, Boyer, Levine and Huttenlocher (2008) found that when children were 

given a continuous quantity demarcated with lines to show equal parts, they were more likely to 

select an incorrect proportional match than when they made proportional judgments between two 

continuous quantities.  Despite the fact that continuous judgments could have been made in 

either condition (by simply ignoring the lines in the “discrete” displays), discretization 

apparently triggered (imperfect) use of an exact calculation strategy instead of the more primitive 

(but for novices, more accurate) approximation strategy. This finding provides evidence that 
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from a young age, the ontological concept of discreteness serves as a strong cue for use of an 

exact calculation strategy.  

Relational Structure of Rational Numbers 

In the present paper we focus on adult understanding of rational numbers in relation to 

discrete and continuous quantities. The core definition of a rational number—one that can be 

expressed as the quotient of two integers, a/b, where b ≠ 0—specifies a relation between the 

cardinality of two sets. As Kiernan (1976) has argued, a key conceptual function of rational 

numbers is to represent a variety of mathematical relations, such as part-whole, quotient, ratio 

number, operator and measure. As alternative notations for rational numbers, fractions and 

decimals have typically been viewed as simply equivalent in magnitude, other than rounding 

error (e.g., 3/8 vs. 0.375).  For example, the Common Core State Standards Initiative (2014) for 

Grade 4 refers to decimals as a “notation for fractions”.2 Research has shown that decimals are 

more effective than fractions for representing one-dimensional values of magnitude (DeWolf et 

al., 2014). However, because of their bipartite structure, factions seem to be better suited 

(relative to decimals) for representing relations between two distinct sets. A fraction represents 

the ratio formed between the cardinalities of two sets, each expressed as an integer. Because both 

the numerator and the denominator are free to vary, a fraction is inherently a two-dimensional 

structure (English & Halford, 1995; Halford, Wilson & Phillips, 1998, 2010).  Although fractions 

do express magnitudes, they first and foremost express relations between countable entities. The 

inherent relationality of fractions may make them an important precursor to algebra, consistent 

with the importance of performance with fractions as a predictor of subsequent success in 

mathematics (Siegler et al., 2011, 2012).  Figure 3.1 illustrates a relational structure, in the form 

a/b = c, that connects rational numbers to their magnitudes. Note that fractions and decimals 
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play distinct roles within this structure. Specifically, the a/b component, which expresses a ratio 

between integers, has the form of a fraction; in contrast, the output of the implied division, c, 

  

 

 

 

 

 

 

 

Figure 3.1. Modeling relations based on discrete or continuous quantities with fractions or 

decimals. 

 

expresses the magnitude of that relation, and can be expressed using the one-dimensional 

decimal notation (with magnitude less than 1 when a < b). 

Importantly, though a fraction and its corresponding decimal convey (to some arbitrarily 

close approximation) the same magnitude, their distinct roles in the relational model give rise to 

meaningful conceptual distinctions. The displays shown in Figure 3.1 involve two subsets that 

are either broken down into countable units (left) or shown together as one continuous mass 

(right). Both fractions and decimals can serve as models of such visual displays, but have 

different natural alignments. The bipartite structure of a fraction provides a direct mapping to 

countable subsets in a visual display (e.g., a subset of 3 white objects within a set of 8 white and 

black objects; see Figure 3.1, left). 
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In contrast, a decimal is inherently unidimensional because the implied denominator is 

fixed (base 10) rather than variable (see Halford et al., 1998, 2010). Accordingly, the decimal, 

relative to the fraction, yields a poorer conceptual match to the two-dimensional set structure of 

the discrete display. However, the decimal may provide a one-dimensional measure of a portion 

of a continuous unit, and hence is a better conceptual match to a visual display involving 

continuous masses (see Figure 3.1, right). Such continuous masses do not correspond to sets 

(without the additional step of dividing each mass into equal-sized discrete elements, thereby 

creating measurement units). Without first imposing such a measurement system on the 

continuous display, there is no basis for counting elements, and therefore there is no unique 

integer that characterizes the cardinality of each of the masses. Thus, the continuous display 

provides a poor conceptual match to the fraction notation. In contrast, because the decimal 

notation inherently represents a one-dimensional quantity conveyed by the relative magnitudes 

of the two masses, it yields a better conceptual match than does the fraction. 

These conceptual differences between fractions and decimals are intimately linked to 

differences in the mathematical procedures they afford. Table 3.1 summarizes the natural 

correspondences between fractions and decimals, respectively, with concepts and procedures. 

The experiments we report are all based on the 2 x 2 design outlined in Table 3.1, formed by the 

factorial combination of symbolic notation (fraction vs. decimal) and display type (discrete vs. 

continuous). Our central hypothesis is that fractions are conceptually linked to discrete sets and 

decimals to continuous masses. Because small sets of discrete elements can be counted, the  
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Table 3.1: Correspondences Between Notations for Rational Numbers and Concepts/Procedures 

Preferred Conceptual 
Quantity Type 

Symbolic 
Notation 

Preferred 
Procedure 

Back-up Procedure 

discrete sets fraction count continuous masses: impose 
measurement scale, then 
count units 
 

continuous masses decimal estimate 
relative 
magnitude 
(proportion) 

discrete sets: count and 
divide 
continuous masses: impose 
measurement scale, then 
count units, then divide 

 

preferred procedure for evaluating fractions relies on counting elements in sets. Thus, when 

fractions are applied to discrete displays, counting is likely to be evoked. Moreover, in many 

reasoning tasks, the solution can be achieved without converting the two-dimensional fraction 

into a one-dimensional magnitude. For example, to determine that the discrete display in Figure 

3.1 (left) conveys the relation 3/8, it suffices to count the elements of each set and form the 

resulting fraction, which matches that given; there is no need to execute the further step of 

evaluating the magnitude of 3/8 (e.g., by applying division). In contrast, evaluating the fraction 

with respect to the continuous display (right) would require imposing (perhaps by mental 

“slicing”) a measurement system on the masses to create equal-sized discrete units, which can 

then be counted (the “back-up procedure”; see Table 3.1).  

In contrast to a fraction, a one-dimensional decimal does not naturally align with the two 

components that form a ratio, but rather with the continuous quantity corresponding to its 

integrated magnitude (the value of a proportion). Hence the preferred procedure for evaluating a 

decimal as a match to a partitioned perceptual display would be estimation of a relative 

magnitude. People (and perhaps other animals) appear to be able to estimate proportions based 

on their system for approximate magnitude (Jacob, Vallentin & Nieder, 2012; Nieder & 
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Dehaene, 2009; Halberda & Fiegenson, 2008). However, by their very nature, approximate 

magnitudes will be more error-prone than exact calculations (assuming the reasoner is competent 

in counting). Thus, decimals will tend to evoke estimation procedures for both discrete and 

continuous displays, leading to reduced accuracy relative to fractions with discrete displays that 

afford use of a counting procedure. 

The “back-up” procedure for decimals would be to use a variant of a counting strategy 

(see Table 3.1). Counting is possible for a discrete display; however, it would directly create a 

fraction, which would then have to be converted to a decimal by division. The extra division step 

would create difficulty in evaluating the decimal. For a continuous display, it would be necessary 

to first impose a measurement scale on the continuous masses, a process likely to be cognitively 

demanding. Thus, the superior alignment of the conceptual structure of a decimal to the 

continuous display may not translate into greater accuracy or speed in evaluating a match 

between the value of the decimal and of the depicted relative magnitude. 

We will test the hypothesized differences between reasoning with fractions versus 

decimals in experiments using simple visual stimuli; however, there is reason to believe that the 

two-dimensional structure of fractions may also be the basis for other reasoning advantages 

associated with “natural frequency” formats (Gigerenzer & Hoffrage, 1995; Hoffrage, 

Gigerenzer, Krauss & Martignon, 2002; Tversky & Kahneman, 1983). In the terminology of the 

present paper, a natural frequency is a specific type of fraction format. We will consider the 

implications of our findings for understanding natural frequencies in the General Discussion. 
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Overview of Experiments on Reasoning with Rational Numbers 

Our analysis of fractions as relational models leads to the prediction that, even though 

decimals are more effective in conveying one-dimensional magnitudes than are fractions 

(DeWolf et al., 2014), fractions should allow more accurate reasoning about bipartite relational 

structures, such as ratios defined on components of discrete perceptual displays.  To test this 

basic hypothesis, we created pictorial displays of a set comprised of two subsets, paired with 

either a fraction or decimal value representing a certain ratio relation within the display (see 

Figure 3.2). The quantities in each display were either discrete, continuous, or continuous but 

divided into equal units (i.e., discretized). Experiment 1 tested the hypothesis that college-

educated adults will in fact exhibit a preferential alignment between fractions and sets of discrete 

quantities, and between decimals and portions of continuous quantities.  Importantly, we 

employed a task involving no computation, thus ensuring that the decision would be purely 

based on a conceptual preference for particular symbolic notations of rational numbers, rather 

than on the relative ease of performing computational procedures using these notations. 

The subsequent experiments involved tasks that do require computational procedures to 

reason about relations. We focused on two types of ratio relations, both of which can be mapped 

to the structure of a fraction. A part-to-part ratio (PPR) is the relation between the size of the two 

subsets of a whole, whereas a part-to-whole ratio (PWR) is the relation between the size of one 

subset and the whole.3 These two types of ratios were chosen in part because they offered a 

methodological advantage for administering a forced-choice task (Experiments 2-4).  However, 

there are also important conceptual differences between these two types of relationships.  The 

PWR is a conventional relationship for representing continuous magnitude.  Creating an 

equivalent decimal for a PWR fraction is conceptually straightforward, and simply indicates a 
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one-dimensional magnitude.  By contrast, the PPR more directly reflects the abstract relational 

nature of a fraction.  The decimal equivalent of a PPR is more difficult to understand in isolation, 

whereas a fraction highlights the comparison of interest (e.g., 2/3 might indicate 2 boys for every 

3 girls, whereas .67 would indicate .67 boy for every 1 girl).  We included both types of 

relationships in order to evaluate the generality of fractions as notations for expressing relations. 

The framework we propose (see Table 3.1) predicts that the two types of rational 

numbers are likely to evoke different procedures for evaluating such relations given different 

types of displays. When discrete units are provided, counting is a likely strategy, which (at least 

for well-educated students solving problems involving relatively small values) should generate 

accurate measures of subsets that align directly with the numerator and denominator of a 

fraction. For decimals, in contrast, counting of subsets/sets would require additional processing 

(e.g., mental division) to translate the result into decimal form.  Alternatively, decimal 

magnitudes may be estimated directly (Jacob et al., 2012). However, estimation is likely to be 

less accurate than counting, resulting in more errors when decimals, rather than fractions, are 

paired with displays of countable items. For continuous displays, the bipartite format of fractions 

may still encourage counting (e.g., by mentally slicing the display into units). However, accuracy 

is likely to be sacrificed, reducing or eliminating the advantage of fractions over decimals. 

Experiment 2 tested the hypothesis that adults will be more accurate in identifying ratio-

type relations (presented in displays similar to those illustrated in Figure 3.1) when using 

fractions than decimals, as long as the quantities are discrete or discretized (i.e., countable).  In 

Experiments 3-4, we extended this paradigm to examine the impact of the two types of rational 

numbers in a task that requires higher-order analogical reasoning.  Based on the hypothesized 

role of conceptual alignment in mathematical modeling, we predicted that for displays of 
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countable entities, fractions would yield greater accuracy than decimals in both relation 

identification and analogical reasoning. 

Experiment 1 

 In Experiment 1 we examined whether adults in fact show consistent preferences for 

particular types of symbolic notations depending on the type of entities being represented.  In 

particular, we tested the hypothesis that adults prefer to use fractions to represent countable ratio 

relationships and decimals to represent magnitudes of continuous quantities, even when no 

computation is required. 

Method 

Participants 

 Participants were 48 undergraduates at the University of California, Los Angeles (UCLA; 

mean age: 20.4 years; 37 females), randomly assigned in equal numbers to two between-subjects 

conditions (part-to-part vs. part-to-whole ratio; see below).  All participants received course 

credit. 

Materials and Design 

 The study was a 2 (relation type: part-to-part vs. part-to-whole ratios) X 3 (display type: 

continuous, discretized, discrete) design.  As noted earlier, a part-to-part ratio (PPR) is the 

relation between the size of the two subsets of a whole, whereas a part-to-whole ratio (PWR) is 

the relation between the size of one subset and the whole. In our subsequent experiments, using 

two different relation types allowed us to create tasks involving a two-alternative forced choice. 

In Experiment 1 relation type was a between-subjects factor, and display type was a within-

subjects factor.   
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Figure 3.2 depicts examples of the three display types. The discrete items were displays of 

circles, squares, stars, crosses, trapezoids, and cloud-like shapes.  The continuous items were 

displays of rectangles that could differ in width, height and orientation (vertical or horizontal).  

The discretized items were identical to the continuous displays except that the rectangles were 

divided into equal-sized units by dark lines. For the stimuli used in test trials, red and green were 

used to demarcate the two different subsets (in practice trials, yellow and blue colors were used). 

The displays varied which color represented the larger subset versus the smaller subset. Displays 

in all experiments were sized at approximately 700 pixels (width) x 800 pixels (height), viewed 

from a distance of about 50 cm. 

 

 

 

 

 

 

 

 

 

Figure 3.2. Examples of continuous, discretized and discrete displays used in experiments. 

 

Participants were given instructions for either the part-to-part ratio (PPR) or part-to-

whole ratios (PWR) condition.  They were given the following instructions for the PPR 

condition: “In this experiment, you will see displays that show various part to part relations.  In 
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the display below [display with 1 orange circle and 2 blue crosses] this would be the number of 

orange circles relative to the number of blue crosses.  Such relations can be represented with 

fractions (e.g. 3/4) or with decimals (e.g. .75).  For each display your task is to choose which 

notation is a better representation of the depicted relation—a fraction or a decimal.  Note that 

the specific values (i.e., 3/4 and .75) are just examples and do not match the values in the 

displays.”  For the PWR condition, the instructions were identical except for the description of 

the relations. In this condition the part-to-whole relation was defined using the example of the 

number of orange circles relative to the total number of blue crosses and orange circles. The 

relation type (PPR vs. PWR) was manipulated between subjects; thus participants in the PPR 

condition were only told about PPRs and participants in the PWR condition were only told about 

PWRs.  Participants were shown examples of the continuous and discretized displays, in addition 

to the discrete display, and were told that displays could appear in any of those formats.  

The task was simply to decide whether the relationship should be represented with a fraction or a 

decimal.  Figure 3.3 shows an example of a discretized trial.  In order to assess this preference on 

a conceptual level, the specific fraction and decimal shown to participants (3/4 and .75) were 

held constant across all trials, and never matched the number of items in the pictures. Thus 

(unlike the subsequent experiments we report), no mathematical task needed to be performed. 

There was therefore no requirement for accuracy, nor was any speed pressure imposed. Since the 

quantity shown in a display never matched the particular fraction and decimal values provided as 

response options, there was no real need to even determine the specific value represented in a 

display. The paradigm of Experiment 1 was thus intended to investigate participants’ conceptual 

representations for fractions and decimals, in a situation in which mathematical procedures were 

not required. 
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Figure 3.3. An example of a discretized trial from Experiment 1.  Participants were shown the 

same decimal (.75) and fraction (3/4) as alternatives on every trial. 

 

Procedure 

 Stimuli were displayed with Macintosh computers using Superlab 4.5 (Cedrus Corp., 

2004), and participant responses were recorded.  Participants were given the instructions 

described above for either the PPR condition or the PWR condition. Because the choice values 

provided did not match the values depicted in the picture (they were always .75 for decimal and 

3/4 for fraction), there was no accuracy measure.  Also, there was no speed pressure to respond.  

Participants were told to select the z key for decimals and the m key for fractions.  Participants 

completed 60 test trials (20 for each display type).  A fixation cross was displayed for 600 ms 

between each trial.  Display types were shown in a different random order for every participant. 
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Results and Discussion 

 Because participants were forced to choose either a fraction or a decimal for each trial, 

the preference for each is complementary.  For simplicity, we report the preference for fractions.  

The proportion of trials in which participants selected the fraction notation was computed for 

each display type for each participant.  Figure 3.4 shows the proportion of trials that participants 

picked either fractions or decimals for each display. A 2 (relation type: PPR vs. PWR) X 3 

(display type: discrete, discretized, continuous) ANOVA was used to assess differences in 

notation preference.  There was no interaction between relation type and display type, F(2, 45) = 

.53, p = .59; 𝜂p
2 = .02, and there was no significant difference between PPR and PWR 

conditions, .57 vs, .62, F(1, 46) = 1.74, p = .19, 𝜂p
2 = .04.  However, there was a significant main 

effect of display type, F(2, 45) = 23.33, p < .001, 𝜂p
2 = .31.   

 

 

 

 

 

 

 

 

 

Figure 3.4. Proportion of trials for each display type in which either a fraction or decimal were 

chosen (Experiment 1). 
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Planned comparisons showed that there was no overall difference between discrete and 

discretized displays, .68 vs. .77; F(1, 46) = 2.11, p = .15, 𝜂p
2 = .04.  However, the preference for 

fractions was significantly lower for continuous displays than for either the discrete, .33 vs. .68; 

F(1, 46) = 15.24, p < .001, 𝜂p
2 = .25, or discretized displays, .33 vs. .77; F(1, 46) = 45.59, p < 

.001, 𝜂p
2 = .50.  Thus, participants showed a strong preference for fractions with discrete and 

discretized displays, and a symmetrical preference for decimals with continuous displays. 

 The results of Experiment 1 revealed that adults prefer to represent both PPR and PWR 

ratio relationships with fractions when a display shows a partition of countable entities, but with 

decimals when the display shows a partition of continuous mass quantities.  Participants picked 

the number format that provided the best conceptual match to either continuous or discrete 

displays, even though no procedural computation was required to complete the task.  No 

mathematical task needed to be performed, and the specific quantities depicted in the displays 

did not match the numerical values of the fractions and decimals provided as choice options; 

hence our findings demonstrate that the preferential association of display types (discrete or 

continuous) and rational number formats (fractions or decimals) has a conceptual basis. The 

results of Experiment 1 closely align with evidence that college-educated adults show a 

preference for using continuous displays to represent decimals and countable displays to 

represent fractions (Rapp, Bassok, DeWolf & Holyoak, 2015). 

Experiment 1 thus provides strong support for the hypothesis that the natural alignment 

of different symbolic notations with different quantity types has a conceptual basis.  Experiments 

2-4 tested whether these conceptual alignments also hold for more complex tasks that require 

computations and procedures. 
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Experiment 2 

  Experiment 1 established a conceptual correspondence between quantity types and 

symbolic notations for rational numbers. Experiments 2-4 examined whether this conceptual 

correspondence also makes one or the other symbolic notation more effective in a relational 

reasoning task. Experiment 2 tested the hypothesis that adults would be better able to identify 

and evaluate ratio relationships using fractions than decimals, especially for discrete (or 

discretized) quantities.  

Method 

Participants 

 Participants were 58 UCLA undergraduates (mean age: 20.4 years; 49 females), 

randomly assigned in equal numbers to the two between-subjects conditions. Course credit was 

provided to participants. 

Materials and Design 

The study was a 2 (symbolic notation: fractions vs. decimals) X 2 (relation type: part-to-

part vs. part-to-whole ratios) X 3 (display type: continuous, discretized, discrete) design. 

Although the distinction between the two types of relations is of potential theoretical interest in 

its own right, our main reason for using the two types was methodological, as it enabled us to 

create a two-alternative forced-choice task. Symbolic notation was a between-subjects factor, 

and relation type and display type were within-subjects factors. 

 The displays were similar to those used in Experiment 1 (see Figure 3.2).   The 

magnitudes of fractions and decimals were matched. The values of the fractions and decimals 

were always less than one, and decimals were shown rounded to two decimal places. The values 

of the rational number presented on each trial represented one of two ratio relationships within 
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the display: part-to-whole ratio (PWR) or part-to-part ratio (PPR).  These were the same 

relationships used in Experiment 1, but the task in Experiment 2 explicitly required participants 

to identify on each trial which of the two relationships matched a presented number.  Thus, a 

number was paired with the display that specifically matched one of the relationships.  

 

 

 

 

 

 

 

Figure 3.5. Example of a ratio identification problem (Experiment 2). 

 

For example, Figure 3.5 shows an example of a PWR trial with a display with 9 red units 

out of a total of 10.  The number specified is 9/10 (or .90 in a matched problem using decimals), 

thus corresponding to a PWR.  For the corresponding PPR problem, the number would be 1/9 (or 

.11 in decimal notation). The smaller subset would be the numerator in this case, so that the 

overall magnitude was always less than one. 

Procedure 

Stimuli were displayed with Macintosh computers using Superlab 4.5 (Cedrus Corp., 

2004), and response times and accuracy were recorded. Participants received the following 

instructions: “In this experiment, you will see a display paired with a value.  You need to identify 

which of the two following relationships is shown.”  Below this, there were two different 
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displays showing the PWR and PPR relations, which were simply referred to as “Relation 1” and 

“Relation 2”. The assignment of the labels was counterbalanced for all subjects such that half 

were told Relation 1 was PPR and the other half were told Relation 1 was PWR.  The PPR 

display contained1 circle and 2 crosses. For the fractions condition this was labeled as “1/2 

amount of circles per amount of crosses;” for the decimals condition it was labeled as “.50 

amount of circles per amount of crosses.”  The PWR was represented by a display of 2 circles 

and 3 crosses.  For the fractions condition this was labeled as “2/5 of the total is the amount of 

circles;” for the decimal condition it was labeled as “.40 of the total is the amount of circles.”  

The first of these explanations of the PPR and PWR relations was shown with discrete items. 

The subsequent screen showed the same values paired with discretized displays.  A third 

screen showed the same values paired with continuous displays.  Half of the participants were 

told to select the z key for Relation 1 and to select the m key for Relation 2; the other half 

received the reverse key assignments.   

After this introduction, participants were given an example problem and asked to identify 

the relation.  After they made their judgment, an explanation was shown to participants about 

why the example showed the correct relation.  The explanation also stated what the numerical 

value would be for the problem if it had shown the alternative relation.  Participants were then 

given another example using the other relation, with the same explanation process.  A series of 

practice trials was then administered.  Participants had to complete at least 24 practice trials (four 

for each of the six within-subjects conditions).  If they scored at least 17 correct (i.e., about 70%) 

they were able to move on to the test trials.  If they did not score above this threshold, they 

continued with additional practice trials until they reached the threshold percentage correct. 

About 75% of participants passed the threshold after the first round of practice trials. The 
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remaining participants were able to advance after a second set of practice trials. All of the 

practice trials were different from those used in the test trials.  Feedback was given for incorrect 

trials, in the form of a red “X” on the screen.  After the practice trials had been completed, a 

screen was displayed informing participants that the actual test trials were beginning.  

Participants were told to try to go as quickly as possible without sacrificing accuracy.  They 

completed 72 test trials (12 for each of the 6 within subjects conditions).  A fixation cross was 

shown for 500 ms between each trial.  Feedback was continued for incorrect trials.  Relation 

types and display types were shown in a different random order for every participant. 

Results and Discussion 

 Accuracy and mean response time (RT) on correct trials were computed for each 

condition for each participant.  A 3 (display: continuous, discretized, discrete) X 2 (relation type: 

PPR vs. PWR) X 2 (symbolic notation: fraction vs. decimal) mixed factors ANOVA was used to 

assess differences in RT and accuracy.  As the three-way interaction was not reliable, F(2, 112) = 

.97, p = .38, 𝜂p
2 = .02,, all analyses are reported after collapsing across the factor of relation type. 

Figure 3.6 displays the pattern of accuracy, the primary dependent measure in Experiments 2-4. 

Accuracy exceeded chance level (50%) for all conditions.  For some conditions, accuracy was 

lower than the practice threshold level, likely because the practice trials comprised a different set 

of problems that were less challenging than the actual trials. There was a significant interaction 

between display type and symbolic notation, F(2, 55) = 24.57, MSE = 1.7, p < 0.001. 𝜂p
2 = .47. 

Planned comparisons revealed that participants were more accurate when using fractions than 

decimals for discrete displays, 81% vs. 63%; F(1, 56) = 23.64, MSE = 8.2, p < 0.001 𝜂p
2 = .30, 

and discretized displays, 78% vs. 63%; F(1, 56) = 13.92, MSE = 9.7, p < 0.001, 𝜂p
2 = .20.  In 

contrast, accuracy did not differ as a function of symbolic notation for continuous displays, 62% 
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vs. 67%; F(1, 56) = 1.52, MSE = 10.4, p = 0.22, 𝜂p
2 = .03. There was a significant main effect of 

relation type favoring PPR over PWR, 72% vs. 66%, F(1, 56) = 11.00, MSE = .024, p = .002, 𝜂p
2 

= .16; however, there was no interaction between relation type and number type, F(1, 56) = .03, 

MSE = .024, p = .87, 𝜂p
2 < .001, nor an interaction between relation type and display type, F(2, 

112) = 1.79, MSE = .02, p = .17, 𝜂p
2 = .03.  Thus, participants across all conditions performed 

better on the PPR problems than the PWR problems (perhaps because PWR problems require an 

extra computational step to add the two subsets to find the whole). 

We also analyzed reaction times (RTs), primarily to assess any possible speed-accuracy 

trade-offs. Figure 3.7 displays the pattern of mean correct RTs across conditions. As found for 

the accuracy analysis, a significant interaction was obtained between display type and symbolic 

notation, F(2, 55) = 3.52, MSE = 1369, p = 0.037, 𝜂p
2 = .11.  Although RTs tended to be faster 

 

 

Figure 3.6. Accuracy of relation identification using fractions and decimals across different types 

of displays (Experiment 2). Error bars indicate standard error of the mean. 
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Figure 3.7. Mean response time for relation identification using fractions and decimals across 

different types of displays (Experiment 2). Error bars indicate standard error of the mean. 

 

for fractions than decimals for discrete displays, the difference was not reliable, 4.20 s vs. 5.97 s;  

F(1, 56) = 2.40, MSE = 7607,  p = .13, 𝜂p
2 = .04. A non-significant trend was also obtained for 

discretized displays, 3.93 s vs. 4.59 s; F(1, 56) = 0.585, MSE = 4357 p = .45, 𝜂p
2 = .01. These RT 

analyses confirm that the accuracy advantage of fractions over decimals for countable displays is 

not attributable to speed-accuracy trade-offs. For continuous displays, however, response times 

were significantly slower with fractions than with decimals, 3.77 s vs. 2.88 s; F(1, 56) = 4.77,  

MSE= 9202, p = .03, 𝜂p
2 = .08. 

As in the accuracy analyses, there was also a significant main effect of relation type such 

that PPR problems were solved more quickly than PWR problems, 4.07 s vs. 4.37 s; F(1, 56) = 

8.45, MSE = 9455, p = .005, 𝜂p
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relation type and number type, F(1, 56) = .20, MSE = 9455, p = .67,  𝜂p
2 = .004, nor between 

relation type and display type, F(2, 112) = .65, MSE = 13693, p = .52, 𝜂p
2 = .01.   

In order to evaluate whether participants preferentially engaged in counting strategies 

when evaluating fractions rather than decimals, we conducted regression analyses on the 

averaged data for each individual trial. The main variable of interest was the size of the 

denominator for the correct ratio. If a counting strategy were used, then time to identify the 

correct ratio would be expected to increase with the size of the larger subset (i.e., the subset 

corresponding to the denominator of the ratio). For each symbolic notation, analyses were 

performed separately for accuracy and for response times on correct trials, for each display type.  

To increase the sensitivity of the analyses, we included ratio type as a covariate, and also the 

logarithm of the numerical difference between the correct ratio and the alternative ratio.  

Difference between alternatives was defined as the difference between the given value and the 

value that would be the result of the alternative ratio.  This factor was likely to predict problem 

difficulty, as previous research has shown that it is more difficult for adults to compare the 

relative sizes of two magnitudes (expressed as fractions or ratios) as the difference between the 

magnitudes decreases (DeWolf et al., 2014; Schneider & Siegler, 2010). Thus, we investigated 

whether evidence of a counting strategy would emerge after controlling for other likely sources 

of differences in problem difficulty. As no reliable effects of denominator size emerged for either 

symbolic notation in regression analyses based on accuracy, we only report analyses based on 

response times. 

In accord with the hypothesis that fractions will be associated with use of counting, 

denominator size emerged as a significant predictor of RTs (after controlling for the two 

covariates) for each of the three display types: discrete, b = .284, t(20) = 6.76, p < .001, 
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discretized, b = .247, t(20) = 7.83, p < .001, and continuous, b = .16, t(20) = 4.56, p < .001.  The 

fact that denominator size was reliable even for the continuous displays suggests that participants 

who evaluated fractions used a counting-like strategy even when the display did not provide 

measurement units (perhaps by imagining such units using the back-up procedure specified in 

Table 3.1). A very different pattern emerged when evaluations were based on decimals. 

Denominator size was not a reliable predictor of response times for either discrete, b = .164, 

t(20) = .958, p = .35, or continuous displays, b = -.01, t(20) = .267, p = .79, though it was 

marginally significant for discretized displays. b =  .285, t(20) = 2.09, p = .05. The regression 

analyses on RTs thus supported the hypothesis that counting strategies tend to be used when 

evaluating fractions. Decimals, by contrast, may have been evaluated using an estimation 

procedure, which we hypothesize is preferred (see Table 3.1), and which would be more direct 

(and no less accurate) than a “count-and divide” strategy.  

Overall, the results of Experiment 2 revealed an advantage for identifying ratio 

relationships in displays when these ratios were represented by fractions rather than decimals.  

However, this pattern was moderated by the nature of the visual displays. When displays 

conveyed countable entities (sets of discrete objects, or continuous displays parsed into units of 

measurement), ratios were evaluated more accurately when the symbolic notation was a fraction 

rather than a decimal. In contrast, when the display showed continuous quantities without 

measurement units, accuracy in evaluating ratio relations did not differ, and decisions were made 

more quickly for decimals than fractions. 

Although the relation-identification task used in Experiment 2 yielded an interaction 

between number type and display type, its quantitative form (at least for the accuracy measure) 

differed from the similar interaction obtained in the purely conceptual task used in Experiment 1. 
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Experiment 1 revealed a significant preference for decimals over fractions with continuous 

entities, but Experiment 2 did not find a clear accuracy advantage for decimals in any condition, 

even when paired with continuous displays (though the accuracy trend in the latter condition did 

favor decimals, and decimals yielded faster response times).  The lack of a clear accuracy 

advantage for decimals paired with continuous displays in Experiment 2 likely reflects the 

important role that mathematical procedures play in relation identification (see Table 1). In 

particular, comparing the value of a decimal to a display requires either estimation or (for 

discrete or discretized displays) counting and division. As estimation is inherently more error-

prone than counting strategies (at least for college students), this procedural requirement 

prevented decimals from showing a clear accuracy advantage over fractions even in the 

continuous condition. However, the estimation procedure apparently used for decimals in the 

continuous condition does seem to be faster to execute than the procedure used in this condition 

for fractions. 

Overall, the findings of Experiment 2 highlight the importance of the relational structure 

internal to fractions. When the values within the fraction can be mapped to particular entities 

(i.e., when they are countable), identifying ratio relationships in visual displays is greatly 

facilitated.  Decimals, in contrast, do not exhibit the same type of internal structure; hence it is 

more difficult to map the integrated decimal value to two separate subsets within a display.  

However, when displays are continuous, the two subsets are difficult to measure exactly. 

Presumably people are then forced to use more approximate estimate strategies, for which 

decimals yield about the same accuracy as fractions, with greater processing speed.  
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Experiment 3 

 Experiment 2 demonstrated an advantage of fractions over decimals in the identification 

of ratio relationships in displays with countable subsets and values.  In Experiment 3 we 

investigated whether the fraction advantage (modulated by the nature of the visual displays) 

would extend to a more complex analogical reasoning task. To address this question, we 

extended the ratio-identification paradigm used in Experiment 2. In the analogy task introduced 

in Experiment 3, participants had to use the ratio relationship they identified in an initial source 

display to select an analogous value for the same type of ratio in a target display. Whereas the 

task used in Experiment 2 required identification of a first-order relation in a display (ratio 

between two quantities), the task used in Experiment 3 required computing a higher-order 

relation between the ratio relation extracted in the source display and the analogous relation in a 

target display.  This reasoning task is more complex than that used in Experiment 2 because 

participants must not only identify the relationship between display and number, but also apply 

this relationship to a novel display and identify the correct value.  If the internal relational 

structure of a fraction is an important aspect of its meaning, then the general pattern of 

performance differences observed in Experiment 2 should also be obtained in a task involving 

high-level analogical reasoning. 

Method 

Participants 

Participants were 52 undergraduates at UCLA (mean age = 21; 30 females) who received 

course credit. They were randomly assigned in equal numbers to the two between-subjects 

conditions. 
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Materials and Design 

 Similar to Experiment 2, a 2 (symbolic notation: fractions vs. decimals) X 2 (relation 

type: part-to-part vs. part-to-whole ratios) X 3 (display type: continuous, discretized, discrete) 

design was employed.  Symbolic notation was manipulated between subjects whereas relation 

type and display type were manipulated within subjects. As in Experiment 2, discrete, 

discretized, and continuous displays were paired with either a fraction or decimal that 

represented a PPR or PWR.  The analogy problems used in Experiment 3 (see Figure 3.8) can be 

viewed as a generalization of the proportional analogy format A:B :: C:D vs. D’, where A and C  

 

 

 

 

 

 

 

Figure 3.8. Example of an analogy trial used in Experiments 3-4.  

 

 are ratios in the source and target displays, respectively, and C, D and D’ are corresponding 

rational numbers. (Since ratios are themselves relations, these analogy problems actually 

involved a third-order relation.) The source analogs (A:B) were identical to the problems used in 

Experiment 2.  Participants needed to identify which of two numbers in the target (D vs. D’) 

correctly matched the display with the same relationship specified in the source.  The analogy 

task required making a choice of the correct number to complete the target analog using the same 



 78 

relation as in the source. The symbolic notation (fraction or decimal) was always the same across 

the source and target. Solving an analogy problem required first identifying the ratio relation in 

the A display characterized by the number given as B (as in Experiment 1). Once the higher-

order relation between A and B was extracted, the solution required identifying the same relation 

type in target display C, and choosing the corresponding number as the D term. The D’ foil was 

always chosen to match the alternative ratio relation in the C display.   

As the analogy problems were constructed using the problems from Experiment 2 as the 

A:B source, the specifications of the stimuli are the same.  The same two colors, green and red, 

were used in the A and C displays, and the color relationship was maintained, such that the same 

color mapped to the same part of the relation in both A and C. This constraint served to identify 

which part (lesser or greater) mapped to the numerator in a ratio relation.  As in Experiment 2, 

color assignments varied across trials, so the same color might indicate the lesser subset on one 

trial and the greater subset on another.  For each trial, the source and target were randomly 

assigned for each participant. Thus the only aspect that was consistent between the two analogs 

was the higher-order relationship (PPR or PWR) and the color mapping.   

Procedure 

The procedure was identical to Experiment 2, except expanded to constitute an analogy 

task.  Participants were given the following instructions: “In this experiment, there will be two 

different types of relations between the picture and the numerical value shown below.”  Below 

this instruction appeared the same two displays for the two types of ratios, as in Experiment 2 

with the same labeling.  Participants were then told: “The first step is to identify the relation 

between the top picture and numerical value [shown with an example of a source display as in 

the top of Figure 3.8]. The second step is to select one of the two numerical values on the right 
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that shares the same relationship with the bottom picture as the top picture” [shown with an 

example of a target display as in the bottom of Figure 3.8]. For the first step, instead of hitting a 

key that corresponded to a specific relationship (as in Experiment 2), participants simply hit the 

space bar when they had identified the relationship.  After the space bar was pressed, the target 

(C:D vs. D’) was shown on the screen below the source, so that both the source and target were 

on the screen simultaneously. Participants were asked to select which of two numbers (D or D’) 

shared the same relationship with this display as the relationship from the source. Half of the 

time, D appeared on the right side of the screen.  They made their selection by pressing the z key 

for the number shown on the left and the m key for the number shown on the right.  The z and m 

keys were labeled with “L” and “R”, respectively, so that participants could remember which key 

corresponded to each number.   As in Experiment 2, participants were told to try to go as quickly 

as possible without sacrificing accuracy.  After reading the instructions and completing 12 

practice trials with feedback, participants proceeded to the 72 test trials.   

Results and Discussion 

 As in Experiment 2, accuracy (the primary dependent measure) and mean RT on correct 

trials were computed for each condition for each participant.  RTs were measured from the onset 

of the source problem to the selection of the correct value for the target display.  A mixed factors 

ANOVA was used to compare differences in RT and accuracy.  No reliable overall differences 

were obtained between the two relation types (PPR and PWR) on either measure, accuracy: F(1, 

50) = 2.58, p = 0.11, 𝜂p
2 = .05; RT: F(1,50) = 0.73, p = .40, 𝜂p

2 = .01, so all results reported here 

are collapsed across this factor, as in Experiment 2. 

As shown in Figure 3.9 the pattern of results for analogical accuracy largely followed the 

pattern observed in Experiment 2 for the simpler relation identification task. A significant 
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interaction was obtained between display type and symbolic notation, F(2, 49) = 20.59, MSE = 

1.8 p < .001,	𝜂p
2 = .46.  Planned comparisons indicated that accuracy was higher for fractions 

than decimals in the discrete condition, 87% vs. 66%; F(1, 50) = 28.96, MSE = 7.3 p < .001, 𝜂p
2 

= .37, and discretized condition, 80% vs. 67%; F(1, 50) = 10.06, MSE = 8.3, p = .003, 𝜂p
2 = .17, 

but did not differ across the two symbolic notations for the continuous condition, 61% vs. 65%; 

F(1, 50) = 0.86, MSE =  7.7, p = .36, 𝜂p
2 = .02. 

The accuracy analysis yielded a reliable 3-way interaction between relation type, display 

type and number type, F(2, 100) = 6.89, MSE = .02, p = .002, 𝜂p
2 = .12. This interaction was 

driven by a significant advantage in accuracy for PWR problems over PPR problems only for 

decimals paired with continuous displays, 74% vs. 55%, F(1, 50) = 23.76, MSE = .04, p < .001, 

𝜂p
2 = .32.  No such interaction was apparent in Experiment 2, and we have no explanation for 

this finding. 

 

Figure 3.9. Accuracy of analogical inferences using fractions and decimals across different types 

of displays (Experiment 3). Error bars indicate standard error of the mean. 
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Figure 3.10. Mean response time for analogical inference using fractions and decimals across 

different types of displays (Experiment 3). Error bars indicate standard error of the mean. 

 

In analyzing RTs, response times for incorrect answers were excluded, as were RT outliers that 

were greater than three standard deviations from the mean (roughly 2% of response times). As 

shown in Figure 3.10, the RT pattern is consistent with the pattern of accuracy results, and 

largely replicates the pattern observed in Experiment 2 (though RTs in Experiment 3 were of 

course much longer, as they reflect the duration of the entire analogy problem, not just  

processing of the source).  In particular, there was a reliable interaction between symbolic 

notation and display type, F(2, 49) = 16.19, MSE = 2721, p < .001, 𝜂p
2 = .40. Planned 

comparisons indicated that RTs were faster with fractions than decimals for the discrete 

condition, 8.5 s vs. 12.8 s; F(1, 50) = 7.10, p = .01, 𝜂p
2 = .12, with a trend for the discretized 

condition, 8.3 s vs. 11.2 s; F(1, 50) = 3.51, p = .07, 𝜂p
2 =.07.  For the continuous conditions, RTs 
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for fractions versus decimals did not differ reliably, 9.3 s vs. 7.7 s; F(1, 50) = 2.12, p = .15, 𝜂p
2 = 

.04. The general pattern of RT differences was thus similar to that observed in the simpler 

relational verification task (Experiment 2), except that there was a general shift toward an RT 

advantage for fractions over decimals. 

No reliable interaction was observed between relation type and number type, F(1, 50) = 

.27, MSE = 3718, p = .61, 𝜂p
2 =.01, nor between relation type and display type, F(2, 49) = 1.85 

MSE = 2721, p = .16, 𝜂p
2 = .03. The 3-way interaction between the three factors was also not 

reliable, F(2, 100) = 3.24, MSE = 2728, p = .05, 𝜂p
2 = .06. 

 As was the case for the ratio identification task used in Experiment 2, the analogy task 

used in Experiment 3 showed an overall advantage for solving problems using fractions as 

compared to decimals.  In Experiment 3, participants not only had to correctly identify a 

particular relationship between a numerical value and a ratio relation in a display, but also had to 

use this relationship to identify which of two values correctly mapped to the same type of ratio 

relation in a new display (where the ratio quantity differed between source and target). Unlike 

Experiment 2, RTs in Experiment 3 showed a significant RT advantage for fractions over 

decimals in solving problems using discrete and discretized displays, whereas RTs for the two 

symbolic notations did not differ for continuous displays (rather than showing a reversal as in 

Experiment 2).  Thus if anything, the overall fraction advantage was yet more pronounced in the 

complex analogical reasoning task employed in Experiment 3. These findings imply that people 

are able to more quickly identify a number that correctly maps to a ratio relation when the 

symbolic notation of that number affords a one-to-one mapping to the conceptually relevant units 

within the displays, as is the case for a fraction.  The fraction advantage extends beyond the 
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identification of ratio relationships, as fractions also facilitate mapping of higher-order relations 

between types of ratios. 

Experiment 4A 

 In the fraction conditions used in Experiments 2 and 3, the number of items in the display 

directly corresponded to the paired fraction value.  For example, if the number was 2/3 and the 

ratio relation was a PPR, then the display would display 2 items of one type and 3 items of 

another type.  In the corresponding decimal condition, the number would appear as .67.  

However, there are many item arrangements that could fit this ratio (2/3, 4/6, 8/12, etc.).  

Experiment 4A was designed to determine whether the fraction advantage found in the analogy 

task used in Experiment 3 would still be obtained if the numbers in the numerator and 

denominator did not directly match the specific quantities shown in the display. Experiment 4A 

included fractions that were equivalent in overall value, but did not map one-to-one with the 

quantities in the displays.  For example, a display with two items of one type and three items of 

another might be paired with 4/6, rather than 2/3.   

Method 

Participants 

 Participants were 75 UCLA undergraduates (mean age = 20.4; 53 females) who received 

course credit, randomly assigned in equal numbers to the three between-subjects conditions. 

Materials and Design 

 Experiment 4A had one within-subjects factor (relation type) with 2 levels: PPR vs. 

PWR, and one between-subjects factor  (symbolic notation) with 3 levels: one-to-one (OTO) 

fractions, non-one-to-one (NOTO) fractions, and decimals.  Because the findings of the previous 

experiments demonstrated that the largest advantage in accuracy for fractions over decimals is 
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found for the discrete display type, only problems based on discrete displays were tested.  All 

conditions included exactly the same set of displays. However, the OTO fractions condition used 

values that mapped one-to-one with the displays (e.g., if the relation was PWR with 3 items out 

of 7 items, the fraction would be 3/7). In contrast, NOTO fractions had numerators and 

denominators that were either two or three times greater or smaller than the actual number of 

items shown (e.g., 3 out of 7 items paired with 6/14). In the decimal condition, the same display 

was paired with the decimal equivalent (e.g., 3 out of 7 items paired with .43). There were 24 

problems for each of the two relation conditions (PPR, PWR) for a total of 48 problems. 

Procedure 

 The procedure was basically the same as in Experiment 3, except that only discrete 

displays were shown.  Participants saw the same directions as in Experiment 3 (with only 

discrete examples and discrete practice questions).   They were told to try to go as quickly as 

possible without sacrificing accuracy. After completing 12 practice trials with feedback, 

participants continued on to the test trials and were given feedback throughout the task. 

Results and Discussion 

As in the previous experiments, accuracy and mean RTs on correct trials were computed 

for each condition for each participant.  RTs were again measured from the onset of the source 

displays to the selection of the correct value for the target display.  A mixed factors ANOVA was 

used to compare differences in RT and accuracy. Figure 3.11 shows the pattern of accuracy 

across conditions. There was a significant main effect of symbolic notation, F(2, 72) = 27.79, 

MSE = 4.2, p < .001, 𝜂p
2 = .44, and relation type, F(1, 72) = 8.33, MSE = 1.1, p = .005, 𝜂p

2 = .11.  

Planned comparisons showed that accuracy for OTO fractions was significantly higher than 

accuracy for decimals, 95% vs. 65%, F(1, 72) = 55.24, MSE = 8.4, p < .001, 𝜂p
2 = .44, or for 
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NOTO fractions, 95% vs. 78%, F(1, 72) = 17.56, MSE = 8.4, p < .001, 𝜂p
2 = .20.  Accuracy for 

NOTO Fractions was significantly higher than accuracy for decimals, 78% vs. 65%, F(1, 72) 

=10.02, MSE = 8.4, p = .002, 𝜂p
2 = .12.. Thus, fractions maintained an accuracy advantage over 

decimals for analogical reasoning with discrete displays, even when the numerator and 

denominator of the fraction do not equal the corresponding quantities in the visual display 

(NOTO fraction condition).  

Unlike Experiment 3, a significant main effect of relation type was found in Experiment 

4A, F(1, 72) = 8.33, MSE = 1.1, p = .005, 𝜂p
2 = .11.  Mean accuracy was 82% for PPR problems 

and 77% for PWR problems.  In addition, a small but significant interaction was obtained 

between relation type and symbolic notation, F(2, 72) = 3.18, MSE = 1.1, p = .047, 𝜂p
2 = .08.  As 

this interaction did not replicate in Experiment 4B, we do not consider it further. 

Figure 3.12 shows the corresponding pattern of response times.  For RTs, the interaction between 

relation type and symbolic notation was not reliable, F(2, 72) = 1.63, MSE = 4304, p = .20, 𝜂p
2 = 

.04, nor was the main effect of relation type, F(1, 72) = 3.00, MSE = 4304,  p = 0.09,  

 

 

 

 

 

 

 

Figure 3.11. Accuracy of analogical inferences using fractions and decimals across different 

types of displays (Experiment 4A). Error bars indicate standard error of the mean. 
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Figure 3.12. Mean response time for analogical inference using fractions and decimals across 

different types of displays (Experiment 4A). Error bars indicate standard error of the mean. 

 

𝜂p
2 = .04, nor the main effect of symbolic notation, F(1, 72) = 1.78, MSE =2648757, p = .18, 𝜂p

2 

= .05. There was no effect of relation type, PPR vs. PWR: 15.2 s vs. 17.0 s, F(1, 71) = 3.00, MSE 

= 43004, p = .09, 𝜂p
2 = .04, and no  interaction between relation type and number type, F(2,71) = 

1.63, MSE = 43004, p = .20, 𝜂p
2 = .04. Clearly the considerable variance in RTs contributed to 

the lack of statistically reliable RT differences. Nonetheless, it is of note that the NOTO fractions 

condition yielded mean RTs considerably longer than those for either of the other two symbolic 

notations.  
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Experiment 4B 

 In Experiment 4A, response times for the NOTO fraction condition were considerably 

longer than those for the OTO fraction and decimal conditions.  One explanation for this pattern 

is that the components of NOTO fractions are proportional to the relevant quantities in the 

displays. Even though extra time is required for a NOTO fraction because the depicted quantities 

do not equal the numerator and denominator, a counting strategy can yield higher accuracy than 

the approximate strategy associated with decimals.  Nonetheless, an alternative possibility is that 

the accuracy advantage of the NOTO fraction condition over decimals in Experiment 4A was 

simply the consequence of a speed-accuracy tradeoff. To evaluate the latter possibility, 

Experiment 4B used an identical design and procedure as Experiment 4A, except that the 

instructions were altered to encourage participants to take their time and try to achieve high 

accuracy (whereas in Experiment 4A, participants were told to go as fast as possible without 

sacrificing accuracy).  If decimals are able to support analogical reasoning with ratios just as well 

as NOTO fractions, then the two conditions should not differ in accuracy in the absence of speed 

pressure. 

Method 

 Participants were 66 UCLA undergraduates (mean age: 20.6; 53 females) who received 

course credit, randomly assigned in equal numbers to the three between-subjects conditions. 

The design and procedure was identical to Experiment 4A with the exception that participants 

were directed to spend as much time as necessary on each problem to achieve high accuracy. 
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Results and Discussion 

 Figure 3.13 shows the pattern of accuracy across conditions.  Consistent with the removal 

of time pressure, accuracy was generally higher in Experiment 4B than 4A. The analysis 

revealed a significant effect of symbolic notation, F(2, 63) = 10.23, MSE = 5, p < .001, 𝜂p
2 = .25.  

Planned comparisons revealed that OTO fractions yielded higher accuracy than decimals, 94% 

vs. 73%, F(1, 63) = 20.30, MSE = 9.9, p < .001, 𝜂p
2 = .24. Moreover, NOTO fractions also 

yielded significantly higher accuracy than decimals, 85% vs. 73%, F(1, 63) = 6.802, MSE  = 9.9, 

p = 0.01, 𝜂p
2 = .10. There was a trend toward greater accuracy for OTO fractions compared to 

NOTO fractions, 94% vs. 85%, F(1, 63) = 3.60, MSE = 9.9, p = .06, 𝜂p
2 = .05.  

In contrast to Experiment 4A, the interaction between relation type and symbolic notation 

was not reliable in Experiment 4B, F(2, 63) = .68, MSE = 1.2, p = .51, 𝜂p
2 = .02.  However, there 

was again a significant effect of relation type, F(1, 63) = 4.11, MSE = 1.2, p =.047, 𝜂p
2 = .06. 

Mean accuracy was 86% for PPR problems and 82% for PWR problems.  

Figure 3.14 shows the pattern of RTs across conditions.  As in Experiment 4A, there was 

no reliable interaction, F(2, 63) = 2.30, MSE = 7983, p = .11, 𝜂p
2 = .07, or main effect for 

relation type, F(1, 63) = 0.95, MSE  = 7983, p = 0.33, 𝜂p
2 = .02; however, there was a significant 

effect of symbolic notation, F(2, 63) = 7.59, MSE = 132138, p = .001, 𝜂p
2.19.  Planned 

comparisons showed that there was no significant RT difference between NOTO fractions and  
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Figure 3.13. Accuracy of analogical inferences using fractions and decimals across different 

types of displays (Experiment 4B). Error bars indicate standard error of the mean. 

 

 

 

Figure 3.14. Mean response time for analogical inference using fractions and decimals across 

different types of displays (Experiment 4B). Error bars indicate standard error of the mean. 
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decimals, 20.17 s vs. 19.47 s, F(1, 63) = 0.01, MSE = 264737, p = .91, 𝜂p
2 = 0.  However, OTO 

fractions yielded faster RTs than NOTO fractions, 11.06 s vs. 20.17 s (F(1, 63) = 11.02, MSE = 

264737, p = .002, 𝜂p
2 = .15, and also decimals, 11.06 s vs. 19.46 s, F(1, 63) = 11.75, MSE = 

264737, p = .001, 𝜂p
2 = .16. There was no reliable difference in RTs between PPR and PWR 

problems, 16.82 s vs. 16.33 s, F(1, 63) = .95, MSE = 79832, 𝜂p
2 = .02, and no interaction 

between relation type and number type, F(2, 62) = 2.30, p = .11, 𝜂p
2 = .07. 

 The results of Experiment 4B demonstrated that even when participants solve analogy 

problems without any speed pressure, and RTs for the two critical conditions are quite closely 

matched, accuracy is higher for NOTO fractions than for decimals.  Accuracy did not 

significantly differ between NOTO and OTO fractions, indicating that the fraction advantage is 

not dependent on whether they were reduced or not.  It appears that decimals simply do not align 

well with ratios defined over discrete visual quantities; thus allowing extra time does not 

eliminate their disadvantage in accuracy. Fractions with a numerator and denominator that are 

proportional but not equal to the depicted quantities (NOTO fractions) add extra processing time 

relative to fractions that have a one-to-one (OTO) mapping. But in the absence of speed pressure, 

even NOTO fractions yield greater accuracy in analogical reasoning with discrete displays than 

do decimals. 

General Discussion 

Summary 

The present study, to the best of our knowledge, provides the first evidence that the 

internal structure of an individual number can provide a model of relations in the external 

environment, thereby altering performance in tasks that require reasoning about these relations. 
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Specifically, we tested the hypotheses that fractions are conceptually linked to countable discrete 

entities, and naturally express a two-dimensional relationship between the cardinal values of sets; 

whereas decimals are conceptually linked to continuous masses, and more naturally express the 

relative magnitude of a proportional relation. Previous work has shown that although decimals 

and fractions can express equivalent magnitudes (subject to rounding error on decimals), the one-

dimensional nature of decimals is in fact advantageous in representing magnitudes (DeWolf et 

al., 2014). Here, we found that the bipartite notation of fractions is advantageous in reasoning 

about ratio relations (either part-to-whole or part-to-part). 

Our experiments used visual displays showing either two countable subsets or two parts 

of a continuous area. Experiment 1 demonstrated that college-educated adults prefer to use 

fractions to represent ratio relations between countable sets, and prefer to use decimals to 

represent ratio relations of continuous masses, in a task that does not require any mathematical 

procedures. Hence, these findings indicate that the selective affinity of fractions with discrete 

entities and decimals with continuous entities has a conceptual basis. 

Experiments 2-4 examined relational reasoning with fractions and decimals when 

procedural computations were required. The bipartite structure of fractions (a/b) invites counting 

the size of two separate sets, whereas the decimal notation invites an estimate of the one-

dimensional magnitude of a ratio—a procedure that does not depend on discrete elements, but 

that is less accurate than counting discrete elements. The results of Experiments 2-4 

demonstrated an overall advantage for fractions over decimals in relational tasks based on 

ratios—both relation identification (Experiment 2) and higher-order analogical reasoning 

(Experiments 3-4). However, this advantage was moderated by the nature of the depicted 

quantities.  Fractions allowed more accurate relational reasoning when the depicted quantities 
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were discrete elements, or continuous quantities that had been discretized by introducing units 

suitable for measurement. This fraction advantage reflects the fact that fractions align well with 

discrete quantities, which in turn support exact calculation procedures, such as counting. 

Fractions may still encourage counting (by mental “slicing” into units) even for continuous 

displays (as suggested by the regression analyses performed in Experiment 2), though accuracy 

is reduced. Performance with decimals was relatively equal, and less accurate, for all quantity 

types, suggesting that decimals are preferentially evaluated using estimation rather than 

counting. Although decimals naturally align with continuous quantities and fractions do not (as 

shown in Experiment 1), decimals support less accurate computational procedures in these 

relational tasks, and hence are no more effective than fractions when such tasks require 

performing computations on continuous quantities. 

Alternative Interpretations 

Several “deflationary” accounts of the present findings deserve consideration. It might be 

argued that the observed differences in reasoning with fractions versus decimals are simply 

another example of the general phenomenon that alternative notation systems for number provide 

dramatically different algorithmic affordances (e.g., computing 73 x 27 using Arabic numerals is 

considerably easier than LXXIII x XXVII using Roman numerals; see Zhang & Norman, 1995, 

for a general analysis of number systems used in different cultures). However, the differences in 

the affordances offered by fractions and decimals do not involve comparisons between notations 

drawn from different cultures and historical periods. Rather, fractions and decimals are both 

familiar number types defined within the Arabic system, in common use throughout the world 

today. The present findings show that even within the basic number system in near-universal use 
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in the modern world, different number formats vary in their affordances for both calculation and 

reasoning. 

It also might be argued that our findings simply show that discrete quantities elicit 

counting, a procedure associated with fractions, whereas continuous quantities elicit magnitude 

estimation, which is associated with decimals. This is indeed a reasonable summary of much of 

our findings, but we believe the empirical phenomena are more meaningful when placed in a 

theoretical framework based on the properties of symbolic notations as models. First of all, it is 

by no means obvious a priori that fractions are necessarily associated with discrete 

representations. Fractions might be interpreted as holistic numbers (Schneider & Siegler, 2010), 

providing a possible basis for them to align with continuous quantities.  More generally, the 

primary focus of psychological research on numerical cognition in recent years has been on 

magnitude representation, the common property associated with all number concepts.  However, 

the present findings do not show evidence that adult process fractions holistically.  Rather, 

componential processing of the magnitudes associated with the numerator and denominator 

appeared to be sufficient to identify the relations, and thus seemed to provide the preferred 

strategy.  Further, adults did not seem to adopt a holistic strategy even for continuous displays, as 

demonstrated by the poorer performance for fractions with such displays. 

The framework we have presented here serves to call attention to another basic property 

of numerical systems—the representation of quantitative relations and procedures for reasoning 

with them. An analysis of the internal structure of rational numbers makes it clear why fractions 

are especially suited for reasoning about relations between the cardinality of sets, whereas 

decimals are better-suited for magnitude comparisons. We suspect that the relational structure of 
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fractions is closely linked to the acquisition of more complex relational concepts involved in 

algebra, and hence has important implications for instruction (as elaborated below). 

The high-level summary of our findings also misses important nuances in our data. In 

particular, Experiment 1 showed that adults preferentially associate discrete displays with 

fractions, and continuous displays with decimals, even when the task does not require any kind 

of computation. Thus, the conceptual linkage between fractions and decimals with discrete and 

continuous quantities, respectively, holds even when neither counting nor magnitude estimation 

is required. (Below we discuss implications of our framework for reasoning tasks involving 

natural frequencies, which also do not require counting.) Indeed, the pattern of results changed in 

an important way in the later experiments, for which computation was critical to perform the 

task. In these reasoning tasks people showed an advantage for fractions with discrete displays, 

but relatively equal (and poorer) performance for both symbol types with continuous displays. 

The lack of a decimal advantage for continuous displays when computation is required can best 

be understood by taking account not only of the preferred associations between symbol types and 

procedures, but also of the relative precision of those procedures. Finally, Experiments 4A and 

4B showed that the advantage of fractions over decimals for discrete displays is obtained even 

when the numerator and denominator of the fraction do not match the cardinality of the relevant 

sets, as long as the proportional relation is maintained. Thus, the strategy underlying the fraction 

advantage is more complex than a simple “count and match”.  

Natural Frequencies as Fraction-like Representations 

The theoretical framework we have presented has the advantage of connecting work on 

numerical cognition with other research areas related to quantitative reasoning. In particular, the 

present evidence that fractions can function as relational models provides insight into other 
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findings indicating that people’s accuracy in relational reasoning depends on the format of 

rational numbers. For example, studies of tasks that require Bayesian inference (in particular, 

integration of base rates with likelihoods) have consistently found an advantage for natural 

frequency formats over probabilities, percentages, and other formats that have been “simplified” 

by removing or standardizing the size of the specified population (Gigerenzer & Hoffrage, 1995; 

Hoffrage et al., 2002; Tversky & Kahneman, 1983). For example, observing that 40 of 1000 

people have a certain disease can be summarized as a natural frequency, 40/1000. As a type of 

fraction, the numerator and denominator in this bipartite frequency format align with the sizes of 

the subset and the population, respectively. In the terminology of the present paper, a natural 

frequency is a fraction with a one-to-one relationship to a part-to-whole ratio (a symbolic 

notation tested in all our reported experiments). In contrast, reduced expressions equivalent in 

magnitude, such as a decimal representing the proportion (0.04), or a percentage (4%), are one-

dimensional, expressing the magnitude of the natural frequency but not its internal structure 

(Halford et al., 1998, 2010). Moreover, as Hoffrage et al. (2002) correctly emphasized, relative 

frequencies that use a standardized denominator, such as 100, also lose information about the 

size of the population. For example, although the natural frequency 40/1000 is equivalent in 

magnitude to the standardized relative frequency 4/100, the denominator in the latter is a 

constant rather than a variable, which means that the dimensionality of the structure has been 

reduced from two to one. Though the magnitude has been preserved, the relational structure has 

been obscured. 

Based on a literature review, Hoffrage et al. (2002) report that Bayesian inference tends 

to be more accurate with natural frequencies than with any of the various one-dimensional 

notations (including standardized relative frequencies) that express equivalent magnitudes. 



 96 

Importantly, the frequencies in these tasks were directly stated to participants as summary 

statistics; no counting or estimation was required. Gigerenzer and Hoffrage (1995) interpret the 

natural frequency advantage in terms of the evolutionary origins of frequency information in 

animal activities such as foraging. However, since all explicit number notations are human 

cultural artifacts, the connection to biological evolution would appear to be tenuous (see Barbey 

& Sloman, 2007, for discussion of alternative hypotheses). From our perspective, the proximal 

basis for the advantage of natural frequencies in supporting certain types of inferences is simply 

that their format affords closer alignment between the mathematical model and the structure of 

relevant relations in the world (as was also the case for the relational reasoning tasks investigated 

in the present study). This interpretation is consistent with the hypothesis that natural frequencies 

are particularly good cues to the structure of problems involving nested sets (e.g., “10 out of 

1000 smokers in the sample developed lung cancer;” see Tversky & Kahneman, 1983; Barbey & 

Sloman, 2007). For different reasoning tasks (notably, magnitude comparison) where the set 

structure is not critical (and indeed may be a distraction), we would expect other formats (e.g., 

proportions) to be more effective than natural frequencies (for an example, see Over, 2007). 

Thus, although the present study involved reasoning with simplified visual displays devoid of 

meaning, our findings have implications for real-world reasoning tasks involving relations 

between the cardinalities of sets. 

Approximate Estimation Versus Exact Calculation 

The present findings are consistent with the hypothesis that decimals invite an 

approximate strategy for estimating magnitudes of ratios (Jacob et al., 2012). For continuous 

quantities, this estimation strategy is about as effective as the best strategy available for fractions. 

However, for discrete displays that enable exact calculations, fractions support a more accurate 
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strategy. When the numbers forming the fraction match the quantities in the display, decisions 

based on fractions were more accurate than those based on decimals, with no cost in response 

time. Decisions for fractions were slower when their constituent numbers were not in one-to-one 

correspondence with the displayed quantities (NOTO fractions; Experiment 4A). However, 

NOTO fractions (which preserve proportionality though not equality with the displayed 

quantities) still yielded greater accuracy than decimals, even when time pressure was eliminated 

and response times equated (Experiment 4B). The fraction advantage thus extends beyond the 

benefit of a direct match between the numbers in the fraction and the numbers of entities in the 

displays.  Rather, fractions have a more basic advantage attributable to the ease of aligning their 

bipartite structure with the natural situation model. As long as the depicted quantities are 

countable, fractions enable use of a more precise computation strategy, yielding greater accuracy 

than the estimation strategy encouraged by decimals.   

It should be emphasized that the accuracy advantage afforded by exact computation 

strategies depends on acquiring competence in the necessary computation. For our college-

student participants, exact computation of relatively small discrete quantities was presumably a 

well-learned skill. But because exact computation is acquired later than the more elementary 

approximation strategies, young children may make less accurate judgments when quantities are 

discretized rather than continuous (Boyer et al., 2008). The paradigms introduced in the present 

study may provide useful diagnostic tools for tracking developmental changes in reasoning with 

rational numbers 

The present findings lend support to the hypothesis that fractions are not automatically 

processed as a holistic magnitude.  In the reasoning tasks we assessed, for which holistic 

processing is not beneficial, participants were able to perform well using componential 
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processing of fractions.  Previous research on magnitude representations of fractions has shown 

that fractions can indeed be processed holistically (Schneider & Siegler, 2010), but this process 

in not automatic (DeWolf et al., 2014) and is not necessarily preferred over componential 

processing (Bonato et al., 2007).  Our results support the hypothesis that the processing of 

fractions is task-dependent.  Adults often seem to be able to adopt whatever strategy for 

processing fractions is most suitable for the task at hand.  

In many instances of mathematical problem solving, it is not important for students to 

actually calculate or find a magnitude in order to solve a problem.  Rather, simply understanding 

the relation is sufficient, and sometimes can be more useful and adaptive.  For example, when 

deciding which is larger, '
(
 vs. '

)
 , knowing the actual magnitude of x is impossible. To find the 

correct answer, it is sufficient to note that the same number, x, is divided either by a larger 

number, 6, or a smaller number, 5.  If one knows that division by larger numbers results in 

smaller numbers (assuming x is positive), it follows that  '
(
 is larger than '

)
.  Thus the answer can 

be inferred by using relational knowledge about relative sizes, division, and equivalence, without 

any direct assessment of magnitudes.  Similarly, if one knows that 𝑚	×	"
(
= 𝑛 , one can infer that 

𝑛	×	(
"
= 𝑚 without any information about the magnitudes of m and n, simply by understanding 

multiplication and reciprocal relations.  For higher levels of mathematics, such as algebra and 

calculus, problems are often solved not by identifying specific magnitudes, but by understanding 

mathematical relationships. 

Implications for Teaching Rational Numbers 

The present findings, in conjunction with previous research on processing of fractions 

and decimals, may have implications for how these types of symbolic notations could be most 

effectively taught. The present analysis and findings shed light on why fractions are especially 
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difficult for students to learn (Siegler et al., 2013; Ni & Zhou, 2005; Stigler et al., 2010; 

Vamvakoussi & Vosniadou, 2010), and also are especially important predictors of success in 

acquiring more advanced mathematical knowledge in high school (Siegler et al., 2011, 2012). In 

the United States, fractions are generally the first number type introduced in school after the 

familiar natural numbers. Whereas natural numbers fundamentally express a unidimensional 

magnitude, fractions are two-dimensional. Not only is their bipartite format unfamiliar, but their 

conceptual structure is inherently more complex than that of natural numbers, placing greater 

demands on working memory (English & Halford, 1995; Halford et al., 1998, 2010). Although 

fractions indeed represent magnitudes, magnitudes do not fully capture their meaning. 

Elementary-school students (who are likely to be unevenly developed with respect to working 

memory capacity) may have difficulty grasping the two-dimensional structure of fractions, 

particularly if instruction focuses on their magnitudes rather than on their relational meaning. But 

in many reasoning tasks, including those investigated in the present paper, the two-dimensional 

structure of fractions can in fact be exploited to advantage. Although fractions are relatively 

inefficient as representations of magnitudes, they can be very effective as representations of 

relations. 

Fractions thus have a dual status that poses particular challenges for students: a fraction is 

at once a relationship between two quantities, expressed as a/b, and also the magnitude 

corresponding to the division of a by b.  Gray and Tall (1994) have argued that children’s 

understanding of arithmetic is dependent on their “proceptual” understanding: grasping that a 

mathematical expression containing an arithmetic operation embodies the process of obtaining a 

certain result (similar to the “process-product dilemma” in algebra discussed by Sfard & 

Linchevski, 1994).  Gray and Tall (1994) found that students who become proficient in 
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arithmetic at an earlier age show greater ability to move back and forth flexibly between an 

arithmetic expression and the result of that expression. The difficulty in understanding a fraction 

as a relational expression may explain why young children appear to understand quantitative 

relations such as part-whole or proportions with visual displays (Goswami, 1989; Mix, Levine & 

Huttenlocher; Boyer, Levine & Huttenlocher, 2008; Sophian, 2000), but not when they have to 

answer comparable questions with fraction notation (Ball & Wilson, 1996; Mack, 1995).  For 

example, Ni and Zhou (2005) found that most children could answer the question, “How much is 

one third plus one third?” verbally as “two thirds”. But when asked the question using symbolic 

fraction notation, “1/3 + 1/3 = ?”, most children answered “2/6” (often claiming that both 2/6 and 

2/3 are correct answers). Children thus seem to have some intuitive understanding of how 

rational quantities relate to one another, but have difficulty understanding the novel symbolic 

expressions.  

It is therefore important to convey the dual nature of fractions to students, with a focus on 

their relational structure. The multidimensional structure of numbers eventually proves to be 

critical in understanding even the simplest algebraic expressions, such as !
"
𝑥. Thus, those 

students who eventually succeed in grasping the very concept of a multidimensional number, 

first instantiated by common fractions, will have mastered a fundamental prerequisite for 

advanced mathematics. 

The conceptualization of fractions as relations such as part/whole, subset/set, ratio and 

proportions may have implications for how children are able to solve problems using fractions in 

these contexts. Typically, school instruction in the United States only emphasizes the part-to-

whole relationship (Sophian, 2007; Mack, 1993), which most clearly relates to the understanding 

of fractions as magnitudes. Children are first introduced to fractions using pictorial 
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representations intended to help students understand the meaning of a value smaller than one. As 

we observed earlier, magnitudes are far easier to process using one-dimensional decimals than 

bipartite fractions, even for adults (DeWolf et al., 2014). Thus, it might well be easier for 

children to learn about magnitudes less than one by being introduced to decimals prior to 

fractions. Fractions might be taught later than decimals, with an emphasis on their status as a 

relationship between two natural numbers and that multiple possible relationships can be of 

interest.  For example, teaching students about the part-to-part relation in addition to the part-to-

whole relation might help to expand children’s understanding of fractions.  This more general 

understanding might in turn aid students in eventually learning more abstract mathematics, such 

as algebra. 

In fact, Moss and Case (1999) implemented a curriculum with 4th graders in Canada that 

reorganized the usual order of instruction in rational numbers. Children were first taught 

percentages (in the context of volumes, and on number lines), then decimals, and lastly fractions. 

Fractions were explained simply as another way to represent a decimal. By contrast, typical 

curricula describe teaching decimals as another way to represent a fraction. Moss and Case found 

that children taught the symbolic notations in this novel sequence suffered less interference from 

whole-number strategies when using other rational numbers, and achieved a deeper 

understanding of them.  This approach to teaching rational numbers is supported by our 

framework, as this instructional method encourages students to first master the concept of 

rational-number magnitude with the symbolic notation that more effectively represents such 

magnitude: decimals. Though Moss and Case did not emphasize the role of fractions in the types 

of relational contexts we have discussed here, this type of curriculum could be used to allow 

students to master decimal magnitudes and then later learn about fractions in the context of 
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modeling types of relations.  Thus, a major issue that arises for students using current curricula in 

the U.S.—understanding fraction magnitudes—might be deemphasized in this context. 

More generally, understanding how types of rational numbers align to specific types of 

quantities, and how the internal structure of mathematical expressions can affect ease of 

alignment to the perceptual or semantic relations being modeled, has important implications for 

how to best conceptualize and teach fractions and decimals. It is important to foster 

understanding of mathematics in a way that goes beyond teaching algorithmic procedures. A 

mathematical expression can represent not just a procedure, and not just a magnitude, but also a 

relational structure that maps onto the structure of the world. 
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Footnotes 

1. Throughout this paper we will refer to common fractions (i.e., numbers formed by a ratio of 

integers) simply as “fractions”. 

2. At a deeper level of analysis, the two number types are not representationally equivalent. 

Fractions represent rational numbers, whereas unbounded decimals represent the real numbers, 

of which the rational numbers are a subset. If decimals are bounded, they cannot exactly capture 

the magnitude of all real (or rational) numbers (e.g., 1/3); if unbounded, they also capture the 

irrational numbers (e.g., p), which have no exact fraction equivalent. Experimental work has for 

obvious reasons only used bounded decimals, the magnitudes of which at least closely 

approximate the magnitudes of matched fractions. However, the fundamental definition of 

common fractions (but not decimals) in terms of the cardinality of sets demonstrates that the two 

formats represent conceptually distinct number types, rather than simply alternative notations or 

typographical conventions. 

3. The term “fraction” is most commonly applied to part-whole or subset-set relations, which we 

term part-to-whole ratios. The term “ratio” is more commonly used for subset-subset relations. 

In the present paper we refer to the latter as part-to-part ratios, and use the term “fraction” to 

embrace both.  Similarly, we use the standard fraction notation (a/b) to represent ratios (more 

commonly notated a:b). In short, we use the familiar term “fraction” and its notation to cover a 

variety of bipartite structures based on a division relation. 
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CHAPTER 4: 

FROM RATIONAL NUMBERS TO ALGEBRA: SEPARABLE CONTRIBUTIONS 

OF DECIMAL MAGNITUDE AND RELATIONAL UNDERSTANDING OF FRACTIONS 

Introduction 

Given the well-documented difficulties that American students often experience learning 

algebra and more advanced topics in mathematics (Gonzales et al., 2008; Richland, Stigler & 

Holyoak, 2012; Smith & Thompson, 2007), it is important to identify those aspects of earlier 

mathematics that predict success or failure on advanced topics.   Decomposing the prerequisites 

for success at algebra can potentially guide theoretical analyses of the mental representation of 

mathematics, and also aid in developing more effective instructional strategies. Recent work 

suggests that knowledge of rational numbers, notably fractions, is closely linked to later success 

in mathematics.  For example, in a large sample of students from the United States and United 

Kingdom, Siegler et al. (2012) found that fraction knowledge, measured by basic arithmetic and 

conceptual questions, predicted algebra knowledge and math achievement in general at age 16 

(beyond what could be predicted from knowledge of whole numbers).   Other researchers have 

also found significant connections between fraction knowledge (including basic conceptual 

knowledge and performance on tasks that assess grasp of fraction magnitude) and algebra 

performance (Booth & Newton, 2012; Booth, Newton & Twiss-Garrity, 2014; Brown & Quinn, 

2007; Empson & Levi, 2011). 

Though there seems to be an important link between fraction understanding and algebra 

performance, the nature of this link has yet to be firmly established. Wu (2009) and Siegler et al. 

(2011) have emphasized the fact that a fraction, like any other type of number, can be placed on 

a number line.  This understanding requires an integration of procedural and conceptual 
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knowledge about fractions and magnitudes.  Two recent studies by Booth and colleagues (Booth 

& Newton, 2012; Booth et al., 2014) have provided support for this hypothesis.  Among middle-

school students taking elementary algebra classes, a significant correlation was observed 

between performance on a task requiring estimates of the positions of fractions on a number line, 

and a subsequent algebra test that included problems requiring solving problems, knowledge of 

critical features in algebraic equations, and coding of equations. Number-line estimation with 

fractions was a stronger predictor of algebra performance than declarative fraction knowledge, a 

measure of procedural knowledge of how to use fractions in equations, or number-line estimation 

with whole numbers. These findings raise the possibility that a key link between knowledge of 

rational numbers and algebra performance may involve understanding of fraction magnitudes. 

Although understanding of magnitudes is without question a core aspect of mathematical 

knowledge, there are good reasons to believe that understanding of mathematical relations is also 

critical in grasping algebra. For example, in the algebraic expression x = 4y, the value of the 

variable x is expressed in relation to that of y without any specific magnitude being assigned to 

either. In recent work (DeWolf, Bassok & Holyoak, 2015; Rapp, Bassok, DeWolf, & Holyoak, 

2015), we have emphasized that fractions, with their bipartite a/b structure, naturally convey the 

relations between the numerator and the denominator (most typically, two countable sets). Of 

course, a fraction also represents the magnitude that corresponds to the division of a by b. This 

duality in the roles of fractions as mathematical representations of relations and magnitudes is 

similar to the duality of algebraic expressions (Sfard & Linchevski, 1994).  Students must 

understand that they can use algebraic expressions to represent both the relations between 

quantities and also the process used to find an unknown quantity.  For example, the quantity of 4 

boxes of equal weight can be represented as 4w, without knowing the actual magnitude of a 
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box’s weight.  The expression 4w represents the combined weight of the boxes and the process 

(multiplication) that could be used to determine the total weight given the actual weight of one 

box. Thus, students’ conceptual understanding of fractions as representing both relations and 

magnitudes may be an important precursor for their subsequent understanding of algebraic 

expressions. 

Interestingly, whereas fractions represent both relations and numerical magnitudes, 

magnitude-equivalent decimals lose the relational structure inherent in a fraction and more 

directly express one-dimensional magnitude. Studies have shown that magnitude comparisons 

can be made much more quickly and accurately with decimals than with fractions (Iuculano & 

Butterworth, 2011; DeWolf, Grounds, Bassok & Holyoak, 2014), but that fractions are more 

effective than decimals in tasks such as relation identification or analogical reasoning, for which 

relational information is paramount (DeWolf et al., 2015). Since fractions are the first numbers 

with an internal relational structure that students are taught, understanding of fractions as 

relations may be a key predictor of early algebra success. Insofar as understanding magnitudes is 

also important for grasping algebra, magnitude tasks involving decimals (which express 

magnitudes more directly than do fractions) may be more predictive than are magnitude tasks 

based on fractions. 

At present, no study has assessed tasks involving fractions as well as tasks involving 

decimals as predictors of algebra performance, nor has any study attempted to tease apart 

relational and magnitude knowledge as predictors. Hence, our aim in the current study was to 

better distinguish among possible links between specific types of rational-number knowledge 

and early algebra performance. We extended the general design of the studies by Booth and 

Newton (2012) and Booth et al. (2014).  In addition to assessing magnitude knowledge using 



 115 

number-line tasks with whole numbers and fractions, we also included a similar task with 

decimals. By comparing the predictive power of magnitude tasks with fractions and with 

decimals, we sought to determine whether fraction magnitude is a uniquely important predictor 

of algebra performance, or whether knowledge of rational-number magnitude in general (perhaps 

better assessed using decimals than fractions) is what is critical. 

In addition, we added a measure designed to test students’ understanding of fractions as 

relations.  Importantly, performing well on this task did not require calculation of any particular 

magnitude.  If knowledge of fractions predicts algebra performance because of transfer based on 

the status of fractions as relational expressions, then the relational test may provide a novel and 

unique predictor of success in algebra. 

Method 

Participants 

 All students were enrolled in introductory pre-algebra courses from two suburban Los 

Angeles schools.  A total of 65 seventh-grade middle-school students (mean age 12.4 years; 26 

male, 39 female) participated in the study near the end of the school year.  Students were from 

five different classes consisting of students with a substantial range of skill levels. 

Measures and Materials 

Number-line Estimation Tasks. To measure magnitude knowledge, we adopted a pencil-

and-paper number-line estimation task that has been used in many previous studies, including 

that of Booth et al. (2014).  Our aim was to closely replicate the number-line estimation findings 

of Booth et al. (2014); hence we adopted their three number-line estimation tasks.  In addition, 

we included a fourth decimal number-line task, which was created by translating the fractions 

used in the fraction estimation task into magnitude equivalent decimals. Thus, in total four scales 
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were used: 0-1,000,000 Whole Numbers (12 trials), 0-62,571 Whole Numbers (12 trials), 0-1 

Fractions (18 trials), and 0-1 Decimals (18 trials).  The two measures of whole-number 

magnitude (regular scale of 0-1,000,000 and atypical scale of 0-62,571) were combined to create 

a composite measure of whole-number magnitude knowledge (as in Booth & Newton, 2012; 

Booth et al., 2014).   

The two whole-number tasks (replications of those used by Booth et al., 2014) were 

completed with a packet of 8 1/2” x 11” paper with a 20 cm line printed across the middle.  The 

line was marked with 0 at the left end and 1,000,000 (or 62,571) at the right end.  On each page, 

a number was written at the top and students were instructed to put a hatch mark on the line 

where that number would go.  The numbers used were the same as those used by Booth et al. 

(2014). For the 0-1,000,000 scale, these were: 3123, 7604, 12129, 20394, 85261, 132694, 

298237, 358742, 453903, 595246, 724859, and 953271; for the 0-62,571 scale: 19, 44, 176, 

1059, 6426, 15023, 21649, 27393, 33691, 42672, 49126, 54705. 

The fraction number-line task was identical to the whole-number line tasks, except that 

the scale of the number line was from 0 to 1 and numbers given were fractions rather than whole 

numbers.  The fractions used were again identical to those used by Booth et al. (2014): 1/360, 

1/180, 1/45, 5/118, 1/12, 13/85, 1/5, 3/11, 2/7, 1/3, 83/215, 177/352, 3/5, 5/8, 33/47, 7/9, 5/6, and 

146/149. 

The decimal number-line task (a new task introduced in the present study) was identical 

to the fraction number-line task except that each of the fractions used in the fraction number line 

task were given as their decimal equivalents.  The decimals varied in length from 2 to 6 digits, 

including some decimals with initial or terminating 0’s, in order to avoid any perceptual cues that 

might lead students to interpret decimals using a whole-number strategy.  The decimals used 
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were:  .00278, .0056, .022, .042373, .08, .1529, .200, .27, .28571, .3333, .386, .3324, .60, .62500, 

.702128, .78, .83333, .980.  

Students were randomly assigned to complete the four scales in one of six possible 

orders.  The trials within each of the scales were randomized.  Students were given the same 

instructions to complete the number-line task as in Booth et al. (2014): “First we’re going to 

work with four sets of number lines.  You remember what a number line is, right? A number line 

is just a line with numbers across that shows us all of the numbers in order.  In these number 

lines, only the numbers at the ends of the line will be marked, but not the ones in between.  Your 

job is going to be to mark where you think some other numbers would go.  Above each number 

line, there will be a number.  Whenever you decide where you think the number goes, you need 

to place a mark on the number line where you think it goes.  Make sure to pay attention to what 

the numbers are on the ends of the number lines because there are three different scales in your 

packet.  Go ahead and work through your packet.” 

 Similar to the procedure used by Booth et al. (2014), the distance between the left 

endpoint and the student’s hatch mark on the number line was measured with millimeters (using 

a standard ruler).  These measurements were then recorded on a computer, and used to compute 

what the corresponding value would be at that hatch mark on the number-line scale.   These 

values were calculated as (distance from the left endpoint/total distance) x length of number-line 

scale.  For example, if a student placed a hatch mark for 2500 on the 0-1,000,000 line at 40 mm, 

the corresponding value would be (40/2000) X 1000000 = 200000 (i.e., the student placed 2500 

where 200000 should go).  These estimated values were plotted against the actual values that 

were given, and the R2
lin for each participant was calculated.  In addition, the percent absolute 
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error (PAE) was also computed for each participant as ((Estimate - Actual)/(Scale)) * 100), 

following the procedure used by Booth et al. (2014). 

Fraction Relations Task. This measure (a novel addition in the present study) consisted of 

a range of questions that measured students understanding of different relational uses for 

fractions (see Appendix B). For example, questions measured knowledge of fraction 

equivalence, division, inverse, multiplying by the reciprocal, and identifying part-to-part ratios 

vs. part-to-whole ratios in countable sets.  These questions were taken from previous published 

work and research projects designed to investigate conceptual rather than procedural 

understanding of fractions. (Sources are noted in Appendix B.)  Importantly, for all of the 

problems, there was no need to calculate the magnitude of any fraction.  These questions were 

therefore quite distinct from the pure measure of magnitude understanding provided by the 

fraction number-line estimation task.  The Fraction Relations Task consisted entirely of multiple-

choice questions that were scored on a binary basis (0 for incorrect, 1 for correct). 

Fraction Procedures Task. An additional measure focusing on knowledge of fraction-

related procedures consisted of problems taken from the “Declarative Fraction Knowledge” 

items used by Booth et al. (2014).  These questions were mainly designed to measure 

understanding of how to manipulate fractions as they appear in equations (see Appendix B).  For 

example, questions included asking students to identify what the next procedural step would be 

to solve a problem.  This measure was designed to control for connections between fractions and 

algebra that are based on simply knowing how to perform particular procedures that are common 

between fractions and algebra (e.g., manipulation of fractions, and the division operation).  To 

solve all of these questions, participants must be able to identify correct procedures that are used 

when algebra problems involve fractions. 



 119 

The questions assessing knowledge of fraction relations and fraction procedures were 

intermixed within a single battery, with questions presented to each student in one of six random 

orders.  All of the questions used in the battery are shown in Appendix B. 

Algebra Knowledge Task. Algebra knowledge was measured with a variety of questions 

(see Appendix B).  Some of the questions were adapted from Booth et al.’s (2014) measure of 

algebra knowledge, which included equation solving and “feature knowledge”—i.e., 

understanding of properties of algebraic equations (e.g., is 4x - 3 equivalent to 3 - 4x?).  This 

task also included three algebra word problems and other algebra problems taken from a bank of 

questions involving understanding and creating algebra expressions used in Algebra 1 courses.1 

Of the 14 total questions, six were in multiple-choice format and were scored on a binary basis (0 

for incorrect, 1 for correct).  The remaining eight items were equation-solving and word-problem 

questions, which were scored as correct if the student found the correct value for the missing 

variable, and wrong otherwise.  No partial credit was awarded if the student wrote out the correct 

procedure but failed to find the correct answer. 

Procedure 

 Students received all of these measures as pencil-and-paper tests in the following order: 

1) number-line estimation, 2) fractions (relational and procedural tasks), and 3) algebra 

knowledge similar to the procedure followed by Booth et al. (2014) and Booth and Newton 

(2012).  The fixed order was used mainly due to practical limitations of controlling the packet 

completion in a classroom setting. Students were given about 50 minutes to complete all three 

packets, though most took less than 30 minutes.  Students were not allowed to use calculators to 

complete the problems, and were encouraged to write out their work on the paper. 
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Results 

Distributions of Performance for Each Measure 

 Multiple regression analyses were performed to identify those tasks that reliably 

accounted for unique variance in algebra performance. As a prerequisite to these analyses, we 

examined histograms and standard descriptive statistics of performance for each measure to 

ensure that all measures showed a reasonable degree of variability across our participants. For 

the number-line tasks, the pattern of performance was very similar using either R2
lin  or Percent 

Absolute Error (PAE) to assess level of performance. These two measures have often been used 

interchangeably in previous number-line estimation studies (Booth et al., 2014; Siegler & Booth, 

2004).  For simplicity we only report results based on PAE.  Average PAE scores for both the 

fraction number line (FNL) and decimal number line (DNL) measures were 15%. Variance for 

the DNL was slightly higher (𝜎2 = 122) than the variance in performance for FNL (𝜎2 = 101).  

The average PAE score for the Whole Number Line measure (WNL) was almost identical at 

16%, but variance in performance was considerably smaller (𝜎2 = 49).   Average proportion 

correct on Fraction Procedures questions was .57 (𝜎2 = .04).  Performance on Fraction Relations 

questions was slightly lower (mean = .42, 𝜎2 = .05).  Performance on Algebra questions was also 

in the same range (mean = .48, 𝜎2 = .02).  All the measures showed substantial variability in 

performance across students, satisfying a prerequisite for serving as potential predictors.  

Intercorrelations Among All Measures 

 Table 1 shows the raw correlations between the three number-line measures (WNL, FNL 

and DNL), the fraction relations and fraction procedures measures, and the algebra measure.   

Note that correlations of the number-line measures with the other measures are negative, because 

PAE is a measure of error.  As observed by Booth et al. (2014), the PAE for FNL was 
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significantly correlated with algebra performance (r = -.39, p = .001), whereas the PAE for WNL 

was not (r = -.14, p = .26).  In addition, based on the new measures introduced in the present 

study, we found that the PAE for DNL (r = -.58, p  < .001), performance on fraction relations (r 

= .47, p < .001) and on fractions procedures (r = .33, p = .008) were all significantly correlated 

with algebra performance. (Again, note that significant negative correlations indicate that higher 

performance on number-line tasks is associated with higher performance on other tasks.) 

 

Table 4.1. Raw correlations between measures 

 Fraction 
Relations 

Fraction 
Procedures 

Fraction 
Number line 

Decimal 
Number line 

Whole 
Number line 

Fraction 
Procedures 

.38**     

Fraction Number 
line 

-.38** -.19    

Decimal Number 
line 

-.45*** -.27* .50***   

Whole Number 
line 

.07 -.07 .08 .03  

Algebra 
Performance 

.47*** .33** -.39** -.58*** -.14 

* .01 < p < .05 
** .001 < p < .01 
*** p < .001 
 

Multiple Regression Analyses 

 Because several predictor variables showed reliable intercorrelations, we performed a 

series of multiple regression analyses to distinguish among the different predictors, and to 

identify those that best accounted for unique components of variance in algebra performance.  

We first used the three number-line measures as predictors in order to distinguish among these 
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three measures of magnitude processing.  The predictors were entered first as FNL, then DNL, 

then WNL (as  Booth et al., 2014, found FNL to be the leading predictor). The overall model 

accounted for a significant amount of variance in algebra performance (F(3, 61) = 11.5, p < 

.001); however, only DNL contributed a significant proportion of variance (Beta = -.51, t(61) = 

4.28, p < .001; WNL: Beta = -.12, t(61) = 1.15, p = .27; FNL: Beta = -.14, t(61) = 1.14, p = .26). 

We repeated the regression analysis using a different order of variables (DNL, then FNL, then 

WNL) and obtained the same pattern of results. 

 

 

Figure 4.1. Predictive model for algebra performance derived from multiple-regression analyses. 

 

A second set of regressions was then performed, including the Fraction Relations and 

Fraction Procedures measures in addition to the three number-line estimation measures.  The 

Fraction Relations predictor was inserted first, as we hypothesized this would be a strong 

predictor of algebra performance. Given that DNL was shown to be the most predictive 
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magnitude measure, we then entered DNL, then FNL, and finally WNL.  The last predictor 

entered was Fraction Procedures, which we did not expect to be closely related to algebra 

performance. The model, which is depicted in Figure 4.1, accounted for a significant amount of 

variance in algebra performance (F(5, 59) = 8.64, p < .001).  However, only scores on the DNL 

(Beta = -.42, t(59) = 3.43, p = .001) and the Fraction Relations task (Beta = .24, t(59) = 2.12, p = 

.03) accounted for a significant proportion of variance over and above the other three predictors 

(WNL: Beta = -.13, t(59) = 1.31, p = .19; FNL: Beta = -.08, t(59) = .69, p = .50, Fractions 

procedures: Beta = .11, t(59) = 1.03, p = .31).  We also tested the model by entering the 

magnitude measures first, followed by Fraction Relations and Fraction Procedures, and obtained 

the same pattern of results. Thus, among all the predictor measures that were examined, only 

fractions relations and decimal number-line performance predicted unique components of 

variance in algebra performance while controlling for the other measures.   

Discussion 

 The present study provides evidence that both understanding of decimal magnitudes, as 

assessed by a number-line task, and relational understanding of fractions, are strong predictors of 

algebra performance.  We replicated the empirical finding of Booth et al. (2014) and Booth and 

Newton (2012) that accuracy in number-line estimation with fractions is related to algebra 

performance (whereas accuracy with whole numbers is not); however, multiple regression 

analyses revealed that this linkage no longer holds when performance with decimals on the same 

task is considered.  In addition, we show for the first time that a different and distinct aspect of 

fraction knowledge—a measure of understanding relations involving fractions—adds a unique 

contribution to predicting algebra performance. Together, measures of decimal magnitude 

understanding and relational fraction understanding reliably predict early algebra performance. 
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 Many previous studies have focused primarily on number-line estimation and its 

predictive power. Successful performance on the fraction number-line estimation task appears to 

involve two components: 1) performing a division operation based on the relation between the 

numerator and denominator, and 2) approximating the resulting magnitude on the physical line.  

Our results suggest that these two skills can be distinguished by separate measures. The former 

can be assessed by a test of relational knowledge with fractions, and the latter by the number-line 

task using decimals (since decimals obviate the need to perform division). These two specific 

measures provide more accurate predictors of algebra performance than does the fraction 

number-line task.  

 Further research is needed to understand why the number-line task with decimals predicts 

algebra performance more effectively than the same task with other number types. As rational 

numbers, both fractions and decimals are more complex than whole numbers, But as noted 

above, number-line placement with decimals may provide a “purer” measure of magnitude 

comprehension than the same task with fractions, because decimal magnitudes can be accessed 

without performing a division operation. Interpreting a multi-digit decimal value certainly 

requires a form of relational processing, as does interpretation of a multi-digit whole number.  

Decimal notation is distinct from that of whole numbers (particularly because a leading zero can 

appear to the right of the decimal point and left of any other integers). However, research on 

magnitude comparisons has shown that performance with decimals is similar in accuracy and 

speed to performance with multi-digit whole numbers, whereas comparisons with fractions are 

much more difficult (Iuculano & Butterworth, 2011; DeWolf et al., 2014; Huber et al., 2014).  It 

thus seems that decimals, like whole numbers but unlike fractions, can be readily interpreted as 

expressing a one-dimensional magnitude. 
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However, there are other possible interpretations for the greater predictive power of the 

decimal version of the number-line task. Decimal performance was somewhat more variable than 

performance with other number types.  This greater variability might reflect the fact that 

decimals are introduced to students later than fractions, and hence are the number type with 

which the students in our study had had the least experience. Consequently, the decimal number-

line estimation task may simply be measuring general math ability (as the more precocious 

students may have mastered decimal magnitudes earlier than their age-matched peers).  Previous 

research has shown that as number-line estimation tasks (with whole numbers or fractions) 

become progressively more difficult (by increasing the size of the scale, using unusual scales, or 

including fractions), performance on these tasks is correlated with the overall development of 

general math ability (Booth & Siegler, 2008; Siegler et al., 2011; Ramani & Siegler, 2008).  

Further research is needed to determine whether decimal number-line estimation is especially 

correlated with overall math knowledge.   

An equally intriguing finding from the present study is that understanding of fraction 

relations is a reliable additional predictor of algebra performance, separable from measures of 

magnitude understanding. Relational understanding of fractions thus appears to provide a 

stepping-stone towards acquiring the cognitive skills needed to form and understand algebraic 

expressions.  The bipartite format of fractions sets them apart from all other number types, 

enabling them to convey relations between sets more effectively than their decimal magnitude 

counterparts (DeWolf et al., 2015).  Fractions thus provide an early opportunity for students to 

understand the concept of expressing relations between quantities. In fact, excessive emphasis on 

understanding fraction magnitudes may obscure their relational meaning. 
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In particular, it appears that this type of relational understanding might be most useful for 

understanding algebraic expressions.  Understanding how to create and manipulate algebra 

expressions is a crucial aspect of mastering algebra, and is important for solving word problems 

and equations.  In general, understanding how to appropriately construct and manipulate fraction 

expressions is necessary for successful construction and manipulation of algebraic expressions.  

However, this linkage goes beyond simply being able to perform the same rote procedures, as 

success on the common procedures measured by the Fraction Procedures questions did not 

uniquely predict algebra performance.  Based on this finding, it seems that algebra instruction 

should be related more closely to fraction instruction in order to bootstrap students’ 

understanding of algebra. 

Other researchers have pointed out the connections between understanding relational 

concepts in arithmetic and in algebra.  Empson and colleagues (Empson & Levi, 2011, Empson, 

Levi & Carpenter, 2011) have suggested that students’ basic intuitions about arithmetic functions 

(across both whole numbers and fractions) can be exploited to build basic relational concepts 

linking arithmetic to algebra.  In particular, learning about fraction relations may help students to 

acquire some implicit understanding of general regularities such as the associative property. For 

example, to add 3/4 + 1/2, a student might reason that 3/4 is equal to 1/2 + 1/4.  Accordingly, one 

can add 1/2 + 1/2 to get 1, and have 1/4 left over (Empson, 1999). Empson argues that fraction 

learning can be connected to basic understanding of properties of algebra (e.g., the use of the 

distributive property of multiplication over addition to add 7a + 4a to get 11a, which is similar to 

the reasoning required to understand how to add 70 + 40 or 7/5 + 4/5). 

As discussed earlier, fractions are the first example of a number that is a relational 

expression to which students are exposed.  Their format has implications for the types of 
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procedures that are appropriate for students to perform.  Taking the example from Empson and 

colleagues used above, one could consider 7a to be an expression of 7 units each of size a.  This 

interpretation is similar to the interpretation of the fraction 7/5 as an expression of 7 units of 1/5.  

Such an understanding of 7/5 has implications for the appropriate ways to perform arithmetic 

operations, such as grasping the constraint that “unlike terms” cannot be combined in algebra 

(e.g., 7a + 8b does not equal 15ab, just as 7/5 and 8/9 cannot be combined to get 15/45 or 15/14).  

As students become fluent with the concept of a relational expression, their understanding of 

fraction relations may help to bootstrap their learning about similar relations within algebra.  

Thus, as the present findings suggest, a conceptually rich understanding of fractions may be 

especially important for understanding algebra. 

The current research establishes a correlation between fraction understanding and algebra 

performance, and shows that this factor is separable from the predictive power of measures of 

magnitude.  However, further research is required to determine whether these linkages between 

rational-number knowledge and learning of algebra are causal. Future studies should test whether 

direct instruction in relations involving fractions improves algebra performance, over and above 

the potential usefulness of instruction focusing on magnitudes of rational numbers.  A program 

of research aimed at assessing the effectiveness of alternative instructional interventions would 

help to determine whether fraction understanding has a causal impact on algebra performance.   

 Currently, recommendations to educators highlight the importance of teaching students 

the magnitudes of fractions, and especially emphasize use of the number-line representation to 

highlight relative magnitudes (NMAP, 2008; Siegler et al., 2010).  The present findings suggest 

that training placement of decimals on a number-line representation may be at least as effective 

for instruction.  Of equal importance, teachers may need to focus on highlighting the connections 
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between fraction and algebraic expressions, thereby capitalizing on the relational parallels 

between these two important domains of mathematical knowledge. 
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Footnote 

1. A sample of problems were taken from a pool of problems used by Belinda Thompson in work 

performed for her PhD dissertation (in progress) at the University of California, Los Angeles, 

which she kindly allowed us to use in the present study. 
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CHAPTER 5: GENERAL DISCUSSION AND CONCLUSION 

Summary 

 The research presented in this dissertation has investigated (1) the mental representation 

of rational numbers, (2) the benefits of alternative rational number formats for relational 

reasoning, and (3) the importance of rational expressions for later mathematics achievement, 

especially in algebra. Chapter 2 presented a neuroimaging study that provided evidence for a 

distinct mental representation of fractions compared to decimals and integers (which seem to be 

indistinguishable on a neural basis). Importantly, this work shows that fraction magnitude 

representation necessarily involves a mental calculation process that is more effortful and 

recruits distinct areas of the IPS compared to either decimals or integers which are fairly 

automatic by comparison. Chapter 3 presented behavioral evidence for the potential benefits of 

fractions in tasks that do not require representation of a fraction’s integrated or holistic 

magnitude. Instead, adults show superior performance with fractions compared to decimals when 

the goal of the task is to identify the relation between two subsets and a numerical value. Thus, 

fractions are not necessarily more complex than other number types and indeed have contexts in 

which their unique format actually presents advantages. Finally, Chapter 4 presented 

developmental evidence that shows that fraction relational understanding is significantly linked 

and uniquely predictive of algebra performance. Together, this research suggests that mastering 

fractions is essential for success in later mathematics. But, importantly, this mastery requires a 

deep conceptual understanding of fractions that relies on understanding the relational expression 

and not just the magnitude. 
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Rational Numbers as Relational Models 

When thinking of this work within the broader context of the numerical cognition and 

math education literature, it seems to unite two separate lines of research. The previous literature 

on misconceptions and on children and adults’ understanding of fraction magnitudes is 

disconnected from an earlier line of research on rational numbers, which pointed out that 

fractions can be used in a variety of roles. Ohlsson (1988) summarized various definitions and 

uses of fractions as described by many researchers in math education and psychology (e.g., 

Kieren, 1975, 1980; Behr, Lesh, Post, & Silver, 1983; Vergnaud, 1983).  The compiled list 

included representing part/whole relationships, ratio or multiplicative comparison between two 

quantities, probability, operator, quotient, and points on a number line.  Ohlsson argued that 

fractions can be understood by any of three basic interpretations: comparisons (e.g., ratio), 

partitioning (e.g., division), and composite operations (e.g., rates).  He argued that these types of 

interpretations are applied when students use fractions to model physical quantities in the real 

world. Thus, not only is it difficult for students to interpret the symbolic notation of fractions due 

to their competing conceptions of other number types, but in addition fractions themselves may 

vary in meaning and purpose depending on the context. However, the research presented in this 

dissertation suggests that the variety of uses and contexts may actually be advantageous when 

rational numbers are considered as mathematical modeling tools. 

A central goal of this work is to view mathematical notation as a type of conceptual 

modeling. In the case of fractions, the bipartite notation can be used to represent a relation 

between two distinct, countable quantities. By contrast, decimals provide a one-dimensional 

notation and therefore are best used to represent magnitudes and used as a measurement system 

for continuous quantities. Indeed, empirical tests show that well-educated adults and educators 
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prefer to represent discrete sets with fractions and continuous quantities with decimals. 

Furthermore, adults show advantages in using fractions in relational contexts over decimals. 

Conversely, decimals are advantageous in contexts that involve magnitude representation. This 

also has implications for how fractions and decimals form foundations for to be learned math 

concepts. Increased prowess and understanding of decimal magnitudes seems to be important for 

number sense and potentially for overall math achievement. Fractions seem to lay a foundation 

for contexts that require mode abstract relational modeling. This type of knowledge may also 

relate to build off of more general relational reasoning ability and problem solving which is also 

an important component to overall success in mathematics. 

Future research might further explore the links between fraction knowledge and relational 

reasoning in general such as in tasks like the Ravens Progressive Matrices or abstract analogical 

reasoning tasks. More research could also be done to explore the links between decimal 

magnitude representation and enhanced number sense and general math achievement. At present, 

relatively few studies exist examining decimal magnitude estimation. Instead, many have 

focused on ways to improve fraction number line estimation. 

This research provides evidence for a different approach for rational number education. 

Instead of a focus on overcoming misconceptions or issues related to fraction magnitude 

estimation, learners might develop a deeper understanding of rational number magnitude if they 

were first introduced to more straightforward magnitude representations for rational numbers 

(e.g. decimals; c.f. Moss & Case, 1998). Lessons on fractions could then be focused on 

understanding the various meanings of fractions in different contexts. Proportions and ratios 

could be taught within the larger umbrella of the “fraction.” Fraction notation could even be 

introduced as just another way to represent a division operation. More direct studies could test 
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how to best implement these interventions to improve rational number understanding and 

appreciation for the affordances of alternative mathematical notations. 
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APPENDICES 

APPENDIX A: MATERIALS USED FOR EXPERIMENTS IN CHAPTER 3 

Table A1. Ratios Used in Experiment 1 

Continuous Discretized Discrete 
1/10 
1/6 
1/4 
4/13 
3/6 
3/9 
4/11 
5/12 
3/7 
4/9 
5/11 
5/9 
5/14 
4/7 
6/10 
9/13 
8/10 
5/6 
7/8 
8/15 

2/11 
2/10 
2/9 
2/7 
2/6 
4/13 
5/15 
4/10 
5/12 
3/7 
5/9 
4/7 
7/12 
5/8 
5/13 
4/6 
7/9 
8/10 
7/8 
4/5 

2/9 
2/7 
2/10 
3/10 
3/9 
3/11 
3/8 
4/10 
4/14 
3/7 
3/4 
4/9 
5/10 
6/11 
4/7 
6/10 
2/3 
7/10 
8/10 
4/6 

Note: In Experiment 1, participants were not told the actual ratio given, nor were they asked to 

identify this ratio.  The numbers in this table indicate the number of pieces in the red and green 

subsets for the various displays. 
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Table A2. Ratios Used in Experiment 2 

 

 PPR PWR 
Fraction Decimal Fraction Decimal 

Discrete 5/7 
4/6 
6/10 
6/8 
4/8 
4/5 
2/7 
3/9 
4/9 
3/8 
4/10 
3/7 

.71 

.67 

.60 

.75 

.50 

.80 

.29 

.33 

.44 

.38 

.40 

.43 

7/10 
10/15 
5/6 
7/8 
4/7 
6/11 
2/9 
2/5 
5/15 
3/10 
4/14 
3/7 

.70 

.67 

.83 

.88 

.57 

.55 

.22 

.40 

.33 

.30 

.29 

.43 
Discretized 6/8 

7/8 
5/8 
5/9 
4/5 
4/7 
3/7 
2/9 
2/10 
2/7 
1/4 
3/9 

.75 

.88 

.63 

.56 

.80 

.57 

.43 

.22 

.20 

.29 

.25 

.33 

9/10 
5/8 
7/12 
4/6 
7/9 
4/5 
4/13 
2/9 
4/10 
2/7 
5/12 
1/9 

.90 

.63 

.58 

.67 

.78 

.80 

.31 

.22 

.40 

.29 

.42 

.11 
Continuous 4/5 

4/7 
7/8 
6/8 
5/6 
5/9 
4/13 
5/15 
4/9 
2/8 
4/11 
5/12 

.80 

.57 

.88 

.75 

.83 

.56 

.31 

.33 

.44 

.25 

.36 

.42 

9/16 
7/8 
3/5 
9/13 
11/14 
9/15 
1/10 
6/13 
3/9 
6/14 
4/11 
2/12 

.56 

.88 

.60 

.69 

.79 

.60 

.10 

.46 

.33 

.43 

.36 

.17 
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Table A3. Ratios Used for Target Displays in Experiment 3. 

 PPR PWR 
Fraction Decimal Fraction Decimal 
Target Foil Target Foil Target Foil Target Foil 

Discrete 3/5 
6/7 
5/9 
3/10 
3/7 
2/9 
4/7 
2/8 
6/8 
4/10 
2/6 
4/9 

3/8 
6/13 
5/14 
3/13 
3/10 
2/11 
4/11 
2/10 
6/14 
4/14 
2/8 
4/13 

.60 

.86 

.56 

.30 

.43 

.22 

.57 

.25 

.75 

.40 

.33 

.44 

.38 

.46 

.36 

.23 

.30 

.18 

.36 

.20 

.43 

.29 

.25 

.31 

3/7 
2/5 
3/8 
1/6 
4/13 
2/12 
4/9 
5/13 
6/14 
3/11 
2/8 
2/11 

3/4 
2/3 
3/5 
1/5 
4/9 
2/10 
4/5 
5/8 
6/8 
3/8 
2/6 
2/9 

.43 

.40 

.38 

.17 

.31 

.17 

.44 

.38 

.43 

.27 

.25 

.18 

.75 

.67 

.60 

.20 

.44 

.20 

.80 

.63 

.75 

.38 

.33 

.22 
Discretized 5/7 

3/4 
3/5 
2/5 
3/10 
5/11 
7/8 
4/6 
7/8 
3/11 
2/12 
1/5 

5/12 
3/7 
3/8 
2/7 
3/13 
5/16 
7/15 
4/10 
7/15 
3/14 
2/14 
1/6 

.71 

.75 

.60 

.40 

.30 

.45 

.88 

.67 

.88 

.27 

.17 

.20 

.42 

.43 

.38 

.29 

.23 

.31 

.47 

.40 

.47 

.21 

.14 

.17 

5/12 
6/13 
5/11 
2/11 
3/10 
2/12 
3/7 
5/13 
4/9 
4/13 
2/9 
2/14 

5/7 
6/7 
5/6 
2/9 
3/7 
2/10 
3/4 
5/8 
4/5 
4/9 
2/7 
2/12 

.58 

.46 

.45 

.18 

.30 

.17 

.43 

.38 

.44 

.31 

.22 

.14 

.71 

.86 

.83 

.22 

.43 

.20 

.75 

.63 

.80 

.44 

.29 

.17 
Continuous 4/6 

6/7 
6/11 
2/9 
3/8 
3/16 
7/12 
5/6 
7/9 
4/13 
2/6 
4/10 

4/10 
6/13 
6/17 
2/11 
3/11 
3/19 
7/19 
5/11 
7/16 
4/17 
2/8 
4/14 

.67 

.86 

.55 

.22 

.38 

.19 

.58 

.83 

.78 

.31 

.33 

.40 

.60 

.46 

.35 

.18 

.27 

.16 

.37 

.45 

.44 

.24 

.25 

.29 

7/15 
3/11 
7/16 
2/14 
4/17 
2/7 
6/13 
7/17 
8/18 
4/14 
3/14 
2/11 

7/8 
3/8 
7/9 
2/12 
4/13 
2/5 
6/7 
7/10 
8/10 
4/10 
3/11 
2/9 

.47 

.27 

.44 

.14 

.24 

.29 

.46 

.41 

.44 

.29 

.21 

.18 

.88 

.38 

.78 

.17 

.31 

.40 

.86 

.70 

.80 

.40 

.27 

.22 
*Note: Each of these target and foil combinations were randomly matched with a source picture 

of the same entity type and ratio type from Experiment 2 (as shown in Table A2). 
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Table A4. Ratios Used for Source Displays in Experiments 4A and 4B. 

PPR PWR 
OTO 
Fraction 

NOTO 
Fraction 

Decimal OTO 
Fraction 

NOTO 
Fraction 

Decimal 

5/7 
4/6 
6/10 
6/8 
4/8 
4/5 
2/7 
3/9 
4/9 
3/8 
4/10 
3/7 
6/11 
7/8 
5/8 
5/9 
12/14 
4/7 
4/11 
2/9 
2/10 
3/10 
1/4 
1/8 

10/14 
2/3 
3/5 
3/4 
2/4 
8/10 
4/14 
1/3 
8/18 
6/16 
2/5 
6/14 
12/22 
14/16 
10/16 
10/18 
6/7 
8/14 
8/22 
4/18 
1/5 
6/20 
3/12 
3/24 

.71 

.67 

.60 

.75 

.50 

.60 

.29 

.33 

.44 

.38 

.40 

.43 

.55 

.88 

.63 

.56 

.86 

.57 

.36 

.22 

.20 

.30 

.25 

.13 

7/10 
10/15 
5/6 
7/8 
4/7 
6/11 
2/9 
2/5 
5/15 
3/10 
4/14 
3/7 
9/10 
5/8 
7/12 
4/6 
7/9 
4/5 
4/13 
2/9 
4/10 
2/7 
5/12 
1/9 

14/20 
2/3 
10/12 
14/16 
12/21 
12/22 
4/18 
6/15 
1/3 
6/20 
2/7 
6/14 
18/20 
10/16 
14/24 
8/12 
14/18 
12/15 
8/26 
6/27 
2/5 
6/21 
10/24 
3/27 

.70 

.67 

.83 

.88 

.57 

.55 

.22 

.40 

.33 

.30 

.29 

.43 

.90 

.63 

.58 

.67 

.78 

.80 

.31 

.22 

.40 

.29 

.42 

.11 
*Note: In Experiments 4A and 4B all displays were discretized. 
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Table A5. Ratios Used for Target Displays in Experiments 4A and 4B. 

PPR PWR 
OTO Fraction NOTO 

Fraction 
Decimal OTO 

Fraction 
NOTO 
Fraction 

Decimal 

Target Foil Target Foil Target Foil Target Foil Target Foil Target Foil 
3/5 
6/7 
5/9 
3/10 
3/7 
2/9 
4/7 
2/8 
6/8 
4/10 
2/6 
4/9 
5/7 
3/4 
4/5 
2/5 
2/7 
5/11 
7/8 
4/6 
8/9 
3/11 
2/12 
1/5 

3/8 
6/13 
5/14 
3/13 
3/10 
2/11 
4/11 
2/10 
6/14 
4/14 
2/8 
4/13 
5/12 
3/7 
4/9 
2/7 
2/9 
5/16 
7/15 
4/10 
8/17 
3/14 
2/14 
1/6 

6/10 
12/14 
10/18 
6/20 
6/14 
4/18 
8/14 
1/4 
3/4 
2/5 
1/3 
8/18 
10/14 
6/8 
8/10 
4/10 
4/14 
10/22 
14/16 
2/3 
16/18 
6/22 
1/6 
3/15 

6/16 
12/26 
10/28 
6/26 
6/20 
4/22 
8/22 
1/5 
3/7 
2/7 
1/4 
8/26 
10/16 
6/14 
8/18 
4/14 
4/18 
10/32 
14/30 
2/5 
16/34 
6/28 
1/7 
3/18 

.60 

.86 

.56 

.30 

.43 

.22 

.57 

.25 

.75 

.40 

.33 

.44 

.71 

.75 

.80 

.40 

.29 

.45 

.88 

.67 

.89 

.27 

.17 

.20 

.38 

.46 

.36 

.23 

.30 

.18 

.36 

.20 

.43 

.29 

.25 

.31 

.42 

.43 

.44 

.29 

.22 

.31 

.47 

.40 

.47 

.21 

.14 

.17 

3/7 
2/5 
3/8 
1/6 
4/13 
2/12 
4/9 
5/14 
6/14 
3/11 
2/8 
2/11 
5/12 
6/13 
5/11 
4/14 
3/10 
2/12 
5/15 
4/12 
4/9 
7/15 
2/9 
2/14 

3/4 
2/3 
3/5 
1/5 
4/9 
2/1
0 
4/5 
5/8 
6/8 
3/8 
2/6 
2/9 
5/7 
6/7 
5/6 
4/1
0 
3/7 
2/1
0 
5/9 
4/8 
4/5 
7/8 
2/7 
2/1
2 

6/14 
4/10 
6/16 
3/18 
8/26 
1/6 
8/18 
10/26 
3/7 
6/22 
1/4 
4/22 
10/24 
12/26 
10/22 
2/7 
6/20 
1/6 
10/28 
2/6 
8/18 
14/30 
4/18 
1/7 

6/8 
4/6 
6/10 
3/15 
8/18 
1/5 
8/10 
10/16 
3/4 
6/16 
1/3 
4/18 
10/14 
12/14 
10/12 
2/5 
6/14 
1/5 
10/18 
2/4 
8/10 
14/16 
4/14 
1/6 

.43 

.40 

.38 

.17 

.31 

.17 

.44 

.38 

.43 

.27 

.25 

.18 

.42 

.46 

.45 

.29 

.30 

.17 

.36 

.33 

.44 

.47 

.22 

.14 

.75 

.67 

.60 

.20 

.44 

.20 

.80 

.63 

.75 

.38 

.33 

.22 

.71 

.86 

.83 

.40 

.43 

.20 

.56 

.50 

.80 

.88 

.29 

.17 

*Note: In Experiments 4A and 4B all displays were discretized. 
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APPENDIX B: MATERIALS USED FOR EXPERIMENTS IN CHAPTER 4 
Fraction Problems 
Procedural Fraction Questions (from Booth et al., 2014, “Declarative Fractions Questions”) 

Are either of these an effective first step toward solving for z in the equation z
13 =

 ?  
Circle yes or no.  
 
a. Multiply both sides by z.  Yes No 

 
b. Divide both sides by 3.  Yes No 

 
Would any of the following steps be an effective first step toward solving the  
equation  )

/
= 2 ? Circle yes or no. 

 
a. Subtract 2 from both sides.  Yes No 

 
b. Multiply both sides by d. Yes No 

 
If y = 3x + 2, which of these expresses x in terms of y? Circle the correct answer. 
 

 a. 3
2−= yx

         b. 3
2+= yx

         c. 
2

3
−= yx

        d. 
2

3
+= yx

 
 
On Planet Zebula, zeds are a unit of money.  On this planet, Carla paid x zeds for 3 cartons of 
juice.  What is the price in zeds of 1 carton of juice?  Circle all that apply. 
 

a. 3
x

         b. x
3

         c. x+3        d.  1
"
	x   e. x3  

 
Relational Fraction Questions 
Multiplicative/Division Relations  
(adapted from Thompson, 2014, unpublished dissertation) 
Which expression shows a way to find half a number, n?  Circle yes/no for each expression: 
 
 𝑛	 ÷	1

!
  yes    no 

 
 𝑛 −	1

!
  yes    no 

 
 𝑛	 ÷ 2  yes    no 
 
 𝑛	×	1

!
  yes    no 

 
(adapted from Brown & Quinn, 2006) 
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What is 45
6
 equal to? 

 
a. 7	×	"

(
 

 
b. "

(
	÷ 7 

 
c. "(

"
 

 
d. !1

(
 

 
Inverse Relation (adapted from Brown & Quinn, 2006) 
 
(n is an integer greater than 0) 
If n increases in value, then 1/n  
 
a. gets very close to 1 
 
b. gets very close to 0 
 
c. increases in value, too 
 
 
Equivalence Relation (adapted from Thompson, 2014, unpublished dissertation) 
Which fraction is equal to 15/20? 
 
a. 20/25 
 
b. 9/12 
 
c. 20/15 
 
d. none of these 
 
 
 
Which fraction is equal to 8/12? 
 
a. 24/48 
 
b. 16/36 
 
c. 12/18 
 
d. none of these 
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Identifying Ratio Relations (adapted from DeWolf, Bassok & Holyoak, 2015) 
In the pictures below, there are two types of relationships: part to part ratio (number of crosses to 
the number of clouds) and part to whole ratio (number of crosses to the total number of crosses 
and clouds OR number of clouds to the total number of crosses and clouds).  Circle the 
relationship that each fraction represents: 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
!
4
   a) part to part ratio  b) part to whole ratio 

 
8
19

   a) part to part ratio  b) part to whole ratio 
 
18
19

   a) part to part ratio  b) part to whole ratio 
 
4
:
   a) part to part ratio  b) part to whole ratio 
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Algebra Problems 
Equation Solving (from Booth et al., 2014) 
Solve the equations: 
 
1. 5 = 𝑥 − 7 
 
2. 9

<
= 4 

 
3. −4𝑥 + 5 = 8 
 
4. )

@
= 9 

 
5. −3𝑦 + 6 = 8 + 5𝑦 
 
Feature Knowledge (from Booth et al., 2014) 
 
Which of the following is equal to −4𝑥 + 3 ? 
 
a. 4𝑥 + 3    yes no 
 
b. 3 − 4𝑥    yes no 
 
c. 4𝑥 − 3    yes no 
 
d. 3 + (−4𝑥)    yes no 
 
e. 3 + 4𝑥    yes no 
 
If 10𝑥 − 12 = 17 is true, which of the following must also be true? 
 
a. 10𝑥 − 12 + 12 = 17 + 12  yes no 
 
b. 𝑥 − 2 = 17    yes no 
 
c. 10𝑥 = 29    yes no 
 
d. 10𝑥 = 17    yes no 
 
e. 10𝑥 − 10 − 12 − 10 = 17  yes no 
 
f. 10𝑥 − 12 + 12 = 17  yes no 
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Word Problem Solving (from Booth et al., 2014) 
The Carlson family is moving today.  It took 89 boxes to pack up all of their things. Dad told 
each of his four children to carry 16 boxes to the truck and then he would get the rest.  How 
many boxes did Dad have to carry? 
 
Tommy bought a pair of shoes on sale.  It was 1/4 off the original price.  He paid $42.  What was 
the original price of the shoes? 
 
(not taken from Booth et al., 2014) 
Ted has $12 more than Carla, and Carla has $8 more than Devon. Together, Ted and Carla have 
four times as much as Devon.  How much money does each person have? 
 
Understanding Algebra Expressions (adapted from Thompson, 2014, unpublished dissertation) 
Each of these three boxes weighs the same amount. If the weight of one box is x, what is the 
weight of the three boxes together? 
 
 
 
 

a. 3x 
b. x + 3 
c. 3 
d. It’s impossible to tell 

 
What could be the value of x that makes this equation true? 
                x + x + x = 15 
 

a. 5,5,5 
b. 4,5,6 
c. 3,3,9 
d. all of these 

 
If a+b=c and d+e=c, when is a+b=d+e true? 

a. always 
b. never 
c. it depends on the values of a,b,c,d, and e  

 
If n is some number, and k is 4 less than n, which expression represents k? 

a. 4 
b. n-4 
c. 4-n 
d. It’s impossible to tell 
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