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Abstract 
 

This study uses latent class modeling (LCM) to explore the effects of channel-

specific perceptions, along with other variables, on purchase channel intention. 

Using data on book purchases collected from an Internet-based survey of two 

university towns in Northern California, we develop a latent class model with two 

segments (final N=373). Age turns out to be the only observed determinant of class 

membership, and in the intention model, the mostly-younger segment is more cost-

sensitive and the mostly-older segment appears to be more convenience-sensitive. 

The results clearly demonstrate the effects on purchase intention of channel-

specific perceptions, purchase experience, context and sociodemographics. 

Comparing the LCM to the unsegmented model and to models deterministically 

segmented on age indicates that the LCM is slightly better from the statistical 

perspective, but arguably weaker from the conceptual perspective. However, a 

model that interacts age with the explanatory variables in the conventional 

unsegmented model outperforms all the others (though not overwhelmingly so), 

including the LCM. Thus, our results suggest that using LCM as an initial stage in 

model exploration allows us to more intelligently specify a model where the taste 

heterogeneity is (potentially) specified deterministically in the end, which often 

yields a more parsimonious model, and may in fact fit the data better. 

 

Keywords: Internet/online shopping, store shopping, taste heterogeneity, latent   

class model, market segmentation  
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1 Introduction  
 

As an alternative channel to traditional store shopping, Internet shopping has been 

steadily increasing for the last decade. According to US Census Bureau data
1
, Internet-

based retail sales in the US constituted about 1.0% of total retail sales
2
 in 2001 and 

1.9% of total retail sales in 2004. By 2006, online retail, at $100.1 billion, accounted 

for 2.6% of total retail sales. Online purchases of the product type of particular interest 

to the present study are also increasing. Specifically, the percentage of retail spending 

on books, music, and videos that takes place online has nearly doubled in five years, 

from 7.7% in 2001 to 14.6% in 2006
3
. It is predicted that online retail sales (excluding 

travel) will reach $184.4 billion in 2008, rising to $271.1 billion in 2011
4
. Compared 

to traditional store shopping, the steadily rising trend of online retail sales and the 

confident predictions of how intensively online shopping (also known as e-shopping) 

will be adopted in the future make it increasingly important to understand more about 

the circumstances under which it is adopted, and its potential impacts on other 

activities, such as travel. 

Although many studies of e-shopping intention have appeared in the marketing 

research literature, most of them have at least one of two deficiencies: (1) they tend to 

focus only on the perceptions of the internet (e.g. Ahn et al. 2004), or at best a directly 

comparative judgment of the internet relative to stores (e.g. Farag et al. 2006)
5
; and 

(2) the perceptions are typically gathered without regard to product type, which can 

yield vague or inconsistent results since it may overstate or understate consumers‟ e-

shopping intention and fail to identify explanatory variables that are important to some 

product types but not others. With respect to these issues, in this study, we separately 

capture people‟s perceptions of Internet and store (as well as catalog, which is not 

included in the present paper). In addition, we explicitly focus on a specific product 

category: book/CD/DVD/videotape (henceforth “book”).  

Besides the improvements in the above two respects, this paper offers two other 

distinctive contributions. (1) We examine a rich set of explanatory variables, including 

general shopping-related attitudes, channel-specific perceptions, shopping experience, 

Internet usage and sociodemographics. Although subsets of most of these variables 

have been used in one or another study, the combined availability of all of them is 

virtually unique. (2) We explore the development of latent class models (LCMs, where 

                                           
1
 Source: http://www.census.gov/compendia/statab/tables/08s1015.pdf and 

http://www.census.gov/compendia/statab/tables/08s1022.pdf, accessed Dec. 1, 2008. 
2
 Excluding food service. 

3
 Table 1022, http://www.census.gov/compendia/statab/tables/08s1022.pdf, accessed Dec. 1, 2008. 

4
 http://www.census.gov/compendia/ statab/tables/08s1021.pdf, accessed Dec. 1, 2008. 

5
 In principle, for discrete choice models such as those we are exploring here, “only differences 

in utility in matter” (Train 2009, p. 19), and in fact, in this study we only analyze perception 

differences even though we measured perceptions separately for each channel. In general, 

however: (1) Understanding individual channel perceptions is also of interest in its own right. 

If a perception difference between channels is zero, it matters whether both perceptions are 

highly positive, or both are highly negative: in the latter case, there is the opportunity for one 

channel to gain a competitive advantage by improving how it is perceived on that dimension. 

(2) The empirical existence of alternative-specific coefficients testifies that the same 

explanatory variable can be weighted differently in a utility function depending on the 

alternative with which it is associated (as we are finding to be the case for further e-shopping 

modeling work in progress). Testing this possibility is precluded if the variable is only 

measured in “difference” or relative form, not separately for each channel. 

http://www.census.gov/compendia/statab/tables/08s1015.pdf
http://www.census.gov/compendia/statab/tables/08s1022.pdf
http://www.census.gov/compendia/statab/tables/08s1022.pdf
http://www.census.gov/compendia/%20statab/tables/08s1021.pdf
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the “M” can refer to “model” or “modeling”, depending on the context) of intended 

purchase channel. LCM postulates the existence of different market segments, which 

place different importance weights on the variables explaining choice. The segment 

membership of a given person is not known (hence, “latent”), but can be predicted on 

the basis of a separate class membership model, with explanatory variables of its own. 

The choice
6
 model is estimated simultaneously with the class membership model, and 

the classes are defined specifically so as to best discriminate between different market 

segments with respect to the choice in question. Thus, LCM is theoretically superior to 

the conventional deterministic two-stage market segmentation approach, in which 

cluster analysis (or some other deterministic rule) is first applied to identify different 

segments (but where the resulting segments may not be the best segments with respect 

to the choice of interest), and then discrete choice models are estimated for each 

segment separately. To investigate whether LCM is also superior from a practical 

standpoint, we will conduct a partial comparison of the two approaches. In addition, 

we will use the LCM results to improve the unsegmented conventional model, and 

compare those two models. 

The organization of the paper is as follows. The next section briefly reviews 

previous related research. The subsequent section describes data collection, the survey 

contents and variables used in this study. We then introduce the methodology we used 

and explain the model results, followed by comparisons of our best LCM with five 

deterministically-segmented choice models and an unsegmented model with interac-

tion terms. The last section offers some concluding remarks and future research 

directions.  

  

2 Literature Review 
 

Numerous studies have analyzed e-shopping intention in the past decade. Many 

different methodologies have been used to conduct the research, such as discriminant 

analysis (Phau and Poon 2000), ANOVA and t-tests (Van den Poel and Leunis 1999), 

regression (Liao and Cheung 2001; Belanger et al. 2002), structural equation modeling 

(SEM) (Shim et al. 2001; Chen and Tan 2004), and binary logit (BL) modeling (Van 

den Poel and Buckinx 2005). However, we are not aware of other applications of 

LCM to e-shopping intention so far. 

As early as 1968, Haley pointed out that “the benefits which people are seeking in 

consuming a given product are the basic reasons for the existence of true market 

segments” (p. 31). Three years later, Darden and Reynolds (1971) found significant 

differences with respect to consumers‟ shopping orientations, supporting Stone‟s 

(1954) classification of shoppers as economic, personalizing, ethical or apathetic. 

These studies suggested the necessity of considering shopper segments “by their 

preferences for the alternative benefits they obtain from shopping” (Tauber 1972, p. 

49). Mokhtarian (2004) also advocated that when modeling e-shopping adoption 

behavior as affected by a variety of factors, we should “seek to identify segments of 

the population that have distinct [tastes] among those factors” (p. 263). As a tool for 

market segmentation, the latent class model has been used extensively in the 

marketing research literature (Greene 2003; Louviere et al. 2005), and to a lesser 

extent in the transportation field out of which this study arose (Walker and Li 2007). 

                                           
6
 Although there is a difference between a revealed choice and a stated intention, in this paper 

we will often use the word “choice” interchangeably with “intention”, in view of the fact that 

the choice of interest to this study is the choice of intended purchase channel. 
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In the remainder of this section, we briefly review selected studies from each field in 

turn. 

In the context of seeking latent predisposition segments with respect to retail 

store format (e.g. hypermarket, supermarket, and local discount store) selection, 

Gonzalez-Benito (2004) found that various segments exist. He assumed a discrete 

probability distribution for response parameters (just as the semi-parametric LCM 

approach does), based on the conclusion from the study of Chintagunta et al. (1991) 

that segmenting the population by a family of response parameters (corresponding to 

the coefficients of the segmentation variables of our study) is more suitable than 

relying on a prior distribution assumption (as mixed logit modeling does). Bhatnagar 

and Ghose (2004) segmented a sample of national survey data collected online, based 

on respondents‟ perceptions of the benefits and risks of Internet shopping. The LCM 

approach was used to identify the latent segments and the results largely supported 

their hypotheses that the importance placed on the two dimensions of risk (product 

risk vs. security risk) vary across segments (specifically, they hypothesized that the 

importance of product risk would decrease with age and Internet experience and that 

of security risk would decrease with education). 

With respect to travel/activity-oriented studies, Bhat (1997) applied an 

endogenous segmentation approach to model mode choice on a Canadian intercity 

travel dataset (N=3593); the multinomial-logit based Expectation-Maximization 

algorithm was used in his study. The results show that the endogenous segmentation 

model fits the data best and yields more reasonable and interpretable results compared 

to other approaches (i.e. refined utility function specification models and limited-

dimensional exogenous segmentation models). Greene and Hensher (2003) proposed a 

semi-parametric extension of the multinomial logit (MNL) model (based on the latent 

class formulation), and then compared it with the fully parametric mixed logit model. 

The comparison was performed in an application to the choice of long distance car 

travel by three road types in New Zealand, and the results revealed both merits and 

limitations of both models. The LCM frees the researcher from the necessity of 

making possibly unwarranted distributional assumptions about the population hetero-

geneity, but can only accommodate a finite (small) number of segments, while the 

mixed logit model (MLM) allows infinite variability in individuals‟ unobserved 

heterogeneity. Thus to some degree the flexibility of the MLM specification offsets 

the distributional assumptions required, and the study did not certify either approach 

as unambiguously preferred.  

Kemperman and Timmermans (2006) used diary data from 803 residents living in 

the Eindhoven region in the Netherlands to identify their leisure activity patterns and 

in turn to analyze the relationship between leisure activity participation and character-

istics of the built environment, controlling for sociodemographic characteristics. Four 

latent segments were identified: low frequency recreational users, traditionalists, urban 

cultural participants and club recreationers. Besides sociodemographic characteristics 

(gender and education level), the degree of urbanization and green space accessibility 

were also found significant to segment discrimination.  

Walker and Li (2007) conducted latent class choice modeling on stated prefer-

ence data obtained from a household activity and travel behavior survey (conducted in 

Portland, Oregon in 1994), to represent the effect of heterogeneous lifestyles on resi-

dential location choice. Their final model segmented the population into three latent 

classes, which they referred to as suburban dwellers, urban dwellers and transit-riders 

(in terms of their attitudinal orientations). Their research provided a behavioral model 

for understanding the relationship of lifestyle and residential location selection, and 
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also demonstrated the potential of LCM in “uncovering discrete heterogeneity of 

lifestyle preferences” (p. 21). 

These studies demonstrate that the LCM approach has been used in many appli-

cations. They provide basic knowledge and help us understand the fundamental model 

structure and application, as well as in which contexts it is suitable to be used. Our 

approach is similar to the studies of Bhat (1997) and Walker and Li (2007), but we use 

a totally different dataset to model different variables of interest in the e-shopping 

behavior context.  

 

3 Data and Variables 

 
3.1 Data collection 

 
The data used in this study were collected from an Internet-based survey of Northern 

California residents (see Ory and Mokhtarian 2007 for more details). The purpose of 

the study is to identify potential population segments and then to investigate e-

shopping behavior for each segment by analyzing relationships among the measured 

variables, rather than to report descriptive statistics of the sample distributions and 

expect them to reflect the corresponding population. Accordingly, the representa-

tiveness of the sample is not our primary concern, because the conditional relation-

ships of interest can be reliably measured even if the sample is not strictly represent-

tative (Babbie 1998; Brownstone 1998).  

To maximize the computer literacy and knowledge of e-shopping in the sample, 

two university communities were selected as study sites: Santa Clara and Davis. Some 

8,000 recruitment letters were mailed in June 2006 to randomly-selected households in 

those two cities. Approximately 6,500 letters apparently reached their intended 

addressee and around 1,000 respondents went to the website to complete the survey. 

Overall, the response rate was 16%, which we considered quite good for an Internet 

survey of this length (117 web pages; the paper version has 19 pages) and complexity. 

Typical response rates for mail-out/mail-back surveys of the general population are 

10-40% (Babbie 1998). We presume the higher end of that range to be unlikely for a 

survey as long as ours, with the additional barrier of being administered over the 

Internet. 

After eliminating surveys with incomplete responses on important questions and 

filling very small amounts of missing data with category-specific means, a working 

sample of 967 cases containing relatively complete data was established. Because the 

catalog channel was not well-represented in the sample, we focused this study on the 

individual‟s purchase intention between store and Internet. Accordingly, we excluded 

64 catalog-related cases, leaving 903 cases. Among those, 450 cases involved a recent 

book purchase and 453 involved a clothing purchase. Considering that the impact of 

variables influencing purchase channel intention may substantially vary for different 

product types, it is reasonable to estimate purchase behavior on the book and clothing 

subsamples separately. In this empirical study, we only analyze the 450 book cases 

(although the final model has only 373 cases due to missing data on variables included 

in the model).  

Table 1 presents a few major characteristics of the sample, including sample 

statistics for the variables significant in the final model. A respondent who is average  
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Table 1. Selected Characteristics of the Sample (book cases) 

 
Characteristic (sample sizes) N  (%) 

Total number of cases 450 

Number of females (446) 214 (48.0) 

Average age (years) (440) 45.4 

Average educational level
 a

 (450) 5.81 

Annual household income (433) 

Less than $15,000 

$15,000 to $29,999 

$30,000 to $49,999 

$50,000 to $74,999 

$75,000 to $124,999 

$125,000 or more 

 

22 (4.9) 

29 (6.4) 

61 (13.6) 

100 (22.2) 

129 (28.7) 

92 (20.4) 

Home internet access
 b

 (450) 

Low speed 

Broadband 

Work internet access
 b

 (446) 

Low speed 

Broadband 

 

92 (20.4) 

366 (81.3) 

 

20 (4.5) 

366 (82.1) 

 Mean (s.d.) 

Shopping attitudinal factors  

Post-purchase satisfaction
 c

 

Convenience
 c
 

0.825 (1.745) 

-1.589 (1.582) 

Purchase experiences 

Activeness of searching
 d

 

Context-specific cost difference
 e
 

 

2.660 (0.670) 

0.130 (0.731) 
a
 1=Some grade school or high school; 2=High school diploma or equivalent; 3=Some college 

or technical school; 4=Two-year college associates degree; 5=Four-year college/technical 

school degree; 6=Some graduate school; 7=Completed graduate degree(s). 
b 
Categories are not mutually exclusive. 

c
 Difference between channel-specific perceptions: store factor score minus Internet factor 

score. 
d
 1=I had not previously thought about buying such an item – I just came across it; 2=I had 

previously thought about buying such an item if I found it, but I was not actively looking for it 

on this occasion; 3=I was actively looking for such an item on this occasion. 
e
 A qualitative measure of the perceived cost difference between store and Internet with respect 

to the recent purchase; a higher value means the store channel costs more (-1=store is cheaper; 

0=about the same price; 1=store is more expensive).  

 

on all traits would be middle-aged (45), slightly more likely to be male (52%) than 

female (48%), and have education beyond a four-year college or technical school 

degree. About 70 percent of the households have annual incomes higher than $50,000. 

More than four-fifths of the respondents have broadband Internet access either at work 

or at home. The attitudinal factor scores are discussed when those variables are 

introduced in Section 3.2.2. 

 

3.2 Variables 

 
The survey started with a welcome question, followed by seven parts asking questions 

related to general and channel-specific shopping attitudes, previous general purchasing 
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experience by channel and a specific recent purchase, shopping frequency for specific 

product types, usage of the Internet, and sociodemographics. A more detailed descrip-

tion is presented below. 

As mentioned above, some portions of the survey focus on a specific product type 

– either book or clothing. We chose these two relatively low-cost and frequently-

purchased product categories to ensure the presence of sufficient recent purchase 

occasions in the sample. Each respondent answered detailed questions with respect to 

a recent purchase (referred to as the “key purchase”) of one of the two product types, 

which could have been bought over the Internet or in a store. 

 

3.2.1 Dependent variable 

 
Although the survey obtains information for a number of potential dependent variables 

of interest, this study analyzes people‟s intended shopping channel for a future 

purchase similar to the recent one for which the detailed information had just been 

obtained. The dependent variable is created from the survey question which asks “If 

you were going to make a similar purchase today, how would you do so?”, with four 

possible response options: “In a store”, “Over the internet”, “Through a catalog” and 

“Other (please specify)”. In the current study we concentrate on the first two channels: 

store and Internet. As a result, our dependent variable is binary. 

 

3.2.2 Explanatory variables 

 
Developed from an extensive literature review (Cao and Mokhtarian 2005), the 

explanatory variables measured by the survey fall into five main categories, each 

described below. 

 

General shopping-related attitudes: In Part A, the survey presented a series of 42 

general shopping-related statements, with responses ordered on a 5-point scale from 

“strongly disagree” (1) to “strongly agree” (5). Common factor analysis was used to 

extract 13 (obliquely-rotated) factors (see Mokhtarian et al. 2009 for the detailed 

results), and standardized scores on these 13 factors were included as potential 

explanatory variables. Table 2 presents the strongly-loading statements for each factor. 

While some of these factors (e.g. impulse-buying, materialism, shopping enjoyment) 

could apply about equally well to either shopping channel (and were developed 

primarily for models of shopping frequency), many of them (e.g. pro-technology, pro-

environmental, caution, time consciousness, trustingness, pro-exercise and store 

enjoyment) could differentially affect individuals‟ shopping channel intentions. 

  

Purchase experiences: In survey Part C, several questions related to the key 

purchase were asked, such as how much money was spent, how the item was obtained, 

the purchase location, and the availability of alternative channels for that specific 

purchase. All these are possibly relevant explanatory variables giving important 

information on why the particular channel was adopted. Obviously, whether the 

experience is satisfying or not could play a very important role with respect to the next 

purchase intention. 

 

Channel-specific attitudes: In survey Part D, respondents were asked to agree or 

disagree (on a five-point scale) with 28 channel-specific statements, assuming they 

were to make a purchase similar to the one discussed in Part C. To reduce the burden 
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on the respondents, they were asked to complete such a set of statements for two of the 

three main shopping channels (store, Internet, and catalog) – the channel chosen for 

the key purchase, and one alternative. Store was always assumed to be an alternative, 

so most (927) respondents completed the store-Internet pair, with the remainder (40) 

reporting for store and catalog (38 for clothing and 2 for book). As mentioned earlier, 

these 40 cases, together with 24 whose future intended purchase channel was either 

catalog or missing, were excluded from the present analysis. 

Common factor analysis was also conducted for this set of statements. The 

statements were pooled across channel and factor-analyzed to find eight underlying 

dimensions, as shown in Table 2. Standardized scores on the final extracted factors 

will help us examine how attitudes differ by channel and product type. And they can 

serve as a useful complement to the general (Part A) shopping attitudes, allowing us to 

model e-shopping behavior from a more specific and concrete perspective. Channel-

specific attitudes such as “post-purchase satisfaction”, “cost savings”, “convenience” 

and “enjoyment” are all likely to affect people‟s intention for a future similar pur-

chase. In this study, these variables are represented in the model as differences 

between the store and Internet scores on each factor. 

 

Use of Internet and communication technology: In Part F, the survey asked some 

general questions about the respondents‟ usage of the Internet, as well as other 

communication technologies. The information captured in this part reflects the 

individual‟s overall computer-use pattern, which can help to explain the propensity to 

choose the Internet shopping channel in particular. 

 

Sociodemographic characteristics: Part G of the survey captured an extensive list 

of sociodemographic variables such as gender, age, employment status (part time or 

full time), available work arrangements, and educational background, as well as 

household information such as household income, household size, number of clothing 

and book stores near home and work, and so on. 

 

4 LCM Methodology and Model Results 

 
4.1 LCM methodology 

 
The purpose of the study is to model shopping channel intention for a “future similar 

purchase” of a book, identifying and accounting for taste heterogeneity. LCM, which 

(as described in the Introduction) allows model coefficients to differ by latent 

segment, is one increasingly popular way of doing so. In LCM, the probability that 

person n chooses alternative i (Pn(i)) can be expressed as the product of the 

(unconditional) probability of belonging to a given latent class g (Png) and the 

corresponding conditional response probability for choosing the alternative given that 

the person belongs to that class (Pn|g(i|n g)), summed over classes (Magidson and 

Vermunt 2003): |( ) ( )Pn g n g ngP i P i n g   .  
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Table 2. General Attitudes and Channel-specific Perceptual Factors 

 

Factor Survey Statement (Loading) 

General Attitudes/Personality Traits/Values Factors
 a b

 

Pro-credit card Credit cards encourage unnecessary spending (-0.573); I prefer to pay for things by cash rather than credit card (-0.514). 

Pro-environmental 
We should raise the price of gasoline to reduce congestion and air pollution (0.605); To improve air quality, I am willing to pay a little more to use a 

hybrid or other clean-fuel vehicle (0.556); Shopping travel creates only a negligible amount of pollution (-0.447); A lot of product packaging is 

wasteful (0.388); Whenever possible, I prefer to walk or bike rather than drive (0.354). 

Pro-exercise I follow a regular physical exercise routine (0.562); Whenever possible, I prefer to walk or bike rather than drive (0.540). 

Impulse buying 
I generally stick to my shopping lists (-0.586); When it comes to buying things, I‟m pretty spontaneous (0.565); I like a routine (-0.289); If I got a lot 

of money unexpectedly, I would probably spend more of it than I saved (0.273). 

Caution 
“Better safe than sorry” describes my decision-making style (0.634); Taking risks fits my personality (-0.509); I like a routine (0.319); I am generally 

cautious about accepting new ideas (0.316); I prefer to see other people using new products before I consider getting them myself (0.265). 

Materialism 
For me, a lot of the fun of having something nice is showing it off (0.604); I would/do enjoy having a lot of expensive things (0.495); Buying things 

cheers me up (0.363); My lifestyle is relatively simple, in terms of material goods (-0.302). 

Price consciousness 
It‟s too much trouble to find or take advantage of sales and special offers (-0.648); It‟s important to me to get the lowest prices when I buy things 

(0.604). 

Time consciousness I‟m often in a hurry to be somewhere else when I‟m shopping (0.580); I‟m too busy to shop as often or as long as I‟d like (0.425).  

Trend-setting I often introduce new trends to my friends (0.604); I like to track the development of new technology (0.392). 

Trustingness People are generally trustworthy (0.469); I tend to be cautious with strangers (-0.408); I enjoy the social interactions shopping provides (0.343). 

Store enjoyment 
Even if I don‟t end up buying anything, I still enjoy going to stores and browsing (0.769); I like to stroll through shopping areas (0.752); Shopping  

helps me relax (0.586); Shopping is fun (0.529); For me, shopping is sometimes an excuse to get out of the house or workplace (0.427); Shopping is  

usually a chore for me (-0.389); Buying things cheers me up (0.293); Shopping is too physically tiring to be enjoyable (-0.285). 

Shopping enjoyment 
Shopping is too physically tiring to be enjoyable (-0.440); Shopping is usually a chore for me (-0.408); My lifestyle is relatively simple, in terms of 

material goods (-0.309); “Variety is the spice of life” (-0.267). 

Pro-technology 
Computers are more frustrating than they are fun (-0.735); The internet makes my life more interesting (0.582); I like to track the development of 

new technology (0.478); Technology brings at least as many problems as it does solutions (-0.444). 
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Table 2 (continued) 

 

Channel-specific Perceptual Factors 
c
  

Convenience 

When it comes to buying books/CDs/DVDs/videotapes, I can find anything I want in stores (0.640); A lot of times, products I want are unavailable in 

stores (-0.636); The product information I need is easy to find in stores (0.615); Stores are open whenever I want to shop (0.518); When shopping in 

stores, it is easy to check the availability of products (0.475); The stores I want/need to shop at are conveniently located (0.447); All things 

considered, buying in stores saves me time (0.413); I often find shopping in stores to be frustrating (-0.345). 

Product risk 

I‟m concerned that a product I purchase in a store will not perform as expected (e.g. quality, etc.) (0.469); When shopping in stores, I am able to 

experience products before buying, to the extent that I want to (-0.374); I am concerned that unfamiliar stores will fail to meet my expectations 

(0.334). 

Enjoyment 
Shopping in stores is boring (-0.768); I enjoy shopping in stores (0.760); I often find shopping in stores to be frustrating (-0.407); With respect to 

buying books/CDs/DVDs/videotapes, I am always on the lookout for a new store to check out (0.323).  

Financial/identity risk It is risky to release credit card information to stores (0.838); I am uncomfortable about providing personal information to stores (0.627). 

Efficiency/inertia 

I value stores that allow me to fulfill many of my shopping needs in just one location (0.449); When it comes to books/CDs/DVDs/videotapes, I have 

a strong preference for shopping at one or a few particular stores (0.414); When shopping in stores, I am able to experience products before buying, 

to the extent that I want to (0.322).  

Cost saving 
All things considered, buying in stores saves me money (0.760); Considering taxes and other costs, books/CDs/DVDs/videotapes are usually more 

expensive when purchased in stores (-0.753). 

Store brand independence 
I prefer to shop at independent stores rather than national chains (0.561); With respect to buying books/CDs/DVDs/videotapes, I am always on the 

lookout for a new store to check out (0.389). 

Post-purchase satisfaction 

I often have to wait too long for a store to obtain the product I want to purchase (-0.594); Stores typically provide poor after-purchase customer 

service (-0.559); If necessary, it is easy to return a product purchased at a store (0.486); When shopping in stores, I am able to immediately obtain the 

products I purchase (0.412); It is difficult to compare products at stores (-0.316). 

a Adapted from Mokhtarian et al. (2009).  Based on oblique rotation of the common factor analysis solution (Rummel 1970). 
b Pattern matrix loadings, reflecting the contribution each factor makes to the variance of each observed variable (higher-magnitude loadings reflecting a greater association 

between variable and factor). Only loadings greater than 0.25 in magnitude are displayed. 
c Pattern matrix loadings greater than 0.30 in magnitude are displayed. 
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Accordingly, estimating a LCM involves two components: (1) modeling class mem-

bership ( ngP ) as a function of segmentation variables, that is, variables considered 

likely to impact the importance given to variables affecting the discrete responses; and 

(2) simultaneously modeling the discrete choice behavior | ( )n gP i n g  for each latent 

class (market segment) separately, using utility maximization theory (UMT) as the 

basis for the individual‟s response. As mentioned earlier, which individual belongs in 

which class is unknown (although the expected segment sizes in the sample can be 

determined through summing across the sample the predicted probabilities of indi-

viduals belonging to each class). Researchers can, however, explore the nature of each 

segment through analyzing (1) the segment membership model, (2) the segment-

specific coefficients of the discrete response model, and (3) the expected character-

istics of each segment (using the function given in Section 4.2). 

 

4.2 Model results 
 

It is conventional practice to start from a single-segment model (that is, a conventional 

pooled discrete choice model) and then keep adding one more segment at a time. To 

obtain the optimal number of segments, we compare model statistics such as the 

Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and 

the Consistent Akaike Information Criterion (CAIC) (Akaike 1974; Bhat 1997; 

Walker and Li 2007). In this exploratory study, we were unable to find an appropriate 

model with more than two segments. All of the three- and four-segment models we 

attempted resulted in either too many segments (based on the p-values of 1 for all the 

choice model variables of one or more segments), or computation failures due to a 

singular variance-covariance matrix.  

Table 3 summarizes our two-class LCM results for purchase channel intention, 

with the same results obtained from both the software packages of Limdep 9.0/Nlogit 

4.0 (Greene 2007) and Mplus 5.1 (Muthén and Muthén 1998-2007). A number of 

different specifications were tested, drawing from the variety of possible explanatory 

variables available in the data. However, insignificant variables were excluded from 

the final model, and only the remaining, significant, variables are shown in the table 

and discussed below. Due to missing data on significant variables, the final sample 

size is 373 cases; the expected segment shares are 48% (180) and 52% (193). The 2
 

value (Ben-Akiva and Lerman 1985) of the LCM is 0.365 (with the equally-likely 

pooled model as base), which is considered quite acceptable in the context of disag-

gregate discrete choice models. The BL model on the unsegmented (pooled) sample 

with the same choice model explanatory variables yields a 2
 of 0.319. For compari-

son, the 2
 of the market share (constant-term-only) model on the pooled sample is 

only 0.015, since the intention shares are relatively balanced (store 43%; internet 

57%). The relevant chi-squared test shows that the latent segmentation model is 

significantly better than the model on the pooled data (p = 0.001). 

In lieu of reporting elasticities (which were not available as an option in the LCM 

modules of Limdep/Nlogit nor Mplus), we (as endorsed by Miller 2005 for logistic 

regression models) report the coefficients obtained when all explanatory variables are 

standardized (as well as the conventional unstandardized coefficients), which, similar 

to elasticities (and analogous to the standardized coefficients in regression), serves the 

purpose of making the coefficients independent of the scale of the explanatory 

variables. 
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Table 3. Latent Class Model of Purchase Channel Intention (sample size: 373) 

 

Model 
  

Variables 
Segment 1   Segment 2 

  Coefficient P-value   Coefficient P-value 

Unstandardized coefficients 

Segmentation model 
  Constant -3.633  * 0.064    

Base Segment 
  Respondent's age 0.079  ** 0.013    

Segment-specific choice 

model 

  Constant -1.698   0.225    1.032    0.448  

 Post-purchase satisfaction perception difference
 a
 1.556  ** 0.048   0.067   0.829  

 Convenience perception difference
 a
 1.431  *** 0.005   0.354   0.161  

 Broadband Internet accessibility at work 2.707  * 0.078   -0.796   0.468  

  Context-specific cost difference
 b
 -1.009   0.146    -2.328  ***  0.001  

Standardized coefficients 

Segmentation model 
 Constant

c 
-0.034  0.970  

Base Segment 
 Respondent's age 1.198 ** 0.013  

Segment-specific choice 

model 

 Constant -0.594  0.213  -0.425  0.215 

 Post-purchase satisfaction perception difference
 a
 2.712 ** 0.048   0.116  0.829  

 Convenience perception difference
 a
 2.260 *** 0.005   0.559  0.161  

 Broadband Internet accessibility at work 1.039 * 0.078   -0.305  0.468  

 Context-specific cost difference
 b
 -0.736  0.146   -1.700 *** 0.001  

a
 Difference between channel-specific perceptions: store factor score minus Internet factor score. 

b
 See Table 1 for definition. 

c
 Ordinarily a constant would not be included in a standardized model, but one is automatically supplied by the software; not surprisingly, its estimate is 

essentially zero. 

Note: *10% significance level, ** 5% significance level, *** 1% significance level. The log-likelihood value at zero is -258.544; the log-likelihood value for the 

unsegmented model with only a constant term is -254.766 (the intention shares are 42.9% store, the “1” alternative, and 57.1% internet, the “0” alternative); the 

log-likelihood value for the unsegmented model with only choice model variables (including the constant) is -176.149; the log-likelihood value at convergence 

for the two-segment solution is -164.261. 
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Turning to the model interpretation, only one segmentation variable (besides the 

constant term) is significant for the membership model, that is, the respondent‟s age. 

Its positive coefficient indicates that older respondents are more likely to belong to 

Segment 1. Candidly, we expected a more “interesting” class membership model. 

Specifically, we expected some general shopping-related attitudes to be significant, in 

keeping with the recognition that class membership variables constitute moderators of 

the coefficients of the choice model, and that moderators are likely to be fairly stable 

individual traits (Wu and Zumbo 2008). It is quite possible, however, that age is 

serving as a single marker for a complex bundle of traits associated with age in a non-

straightforward way. For example, age is significantly correlated with employment 

status (0.49), with Internet usage diversity (-0.52), with the time consciousness factor 

(-0.18), with income (0.17), and with some other variables. Thus, although none of 

those variables was individually significant in the class membership model, it could be 

that age is representing a non-linear combination of them (and others) that is 

significant. And from a practical standpoint, it is certainly convenient for age to be the 

only segmentation variable, not only because having only one variable keeps the 

model relatively simple, but also because that particular variable is easy to forecast, 

and constitutes a clear-cut basis on which to target marketing messages. Accordingly, 

what in this case is a necessity, is also a virtue. 

At the suggestion of a reviewer, to further explore the effects of the segmentation 

variable (i.e. age) on class membership, we tried creating three dummy variables for 

different age groups (i.e. for age “younger than 40”, “between 40 and 60, including 

40” and “60 or older”), and then interacted age with two of those three dummy 

variables in the class membership model. This, in effect, created a piecewise-linear 

function for the coefficient, reflecting that the marginal impact on the probability of 

class membership of being another year older might differ depending on one's age 

group. However, this approach did not improve the model. 

With respect to the choice model component of the LCM, four variables (besides 

the constant term) were significant: two channel-specific perceptions (post-purchase 

satisfaction and convenience), one purchase experience variable (context-specific cost 

difference) and one Internet usage variable (broadband Internet accessibility at work). 

Each of these variables is significant to only one of the two segments, indicating that 

the LCM has identified two classes that have almost completely distinct tastes – at 

least as far as the variables observed in this study are concerned. 

As mentioned in Section 3.2.2, channel-specific perceptions are represented in the 

model by differences between store and Internet factor scores. Not surprisingly, the 

more positively store is perceived relative to the Internet on post-purchase satisfaction 

and convenience, the more likely store is to be the intended channel for the next 

purchase. However, while these variables are strongly significant for Segment 1, the 

older group (respectively the first- and second-most important variables in the model 

for that segment, based on the standardized coefficients), they are quite insignificant 

for the younger segment. Similarly, the dummy variable representing broadband 

Internet accessibility at work is also significant for the older segment but not the 

younger one. The positive sign (indicating that those who have broadband Internet 

access at work are more likely to intend to purchase in a store) seems counterintuitive 

because (particularly for the book product type) we would expect ease of access to the 

Internet to support intentions to buy online. However, we believe that (for the older 

segment particularly) it may be a marker for individuals holding a largely sedentary 

desk job, who, to the extent they associate shopping with the work environment, 

would prefer store shopping (e.g. during the lunch hour) for exercise and a change of 
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scenery. Especially, considering the higher age of Segment 1, they may possibly prefer 

physical store shopping as a pleasant way to get more exercise. 

The context-specific cost difference variable is the only variable significant in the 

choice model for Segment 2 (and, not surprisingly then, by far the most important 

variable according to the standardized coefficients). A higher value of this variable 

indicates that store was perceived to be more expensive than Internet for the specific 

purchase made recently. As a result, it is natural that people with higher values of this 

variable are more likely to intend the more economical channel – Internet – for their 

next purchase.  

The picture that emerges from the distinctive variables significant to each seg-

ment is that Segment 1 places a higher value on convenience (including concerns 

about the potential hassle of customer service and/or returns if the item purchased is 

not satisfactory), whereas Segment 2 is mainly concerned about cost. It is not sur-

prising that these heterogeneous tastes are closely associated with age – older people 

will tend to have higher incomes and more time pressure, whereas younger people 

may tend to have more time than money. 

 

4.3 Additional interpretation of the segments 

 
To better understand the respective natures of the two segments, it is useful to com-

pute their (estimated) expected values on a number of attributes of interest. For a given 

attribute x, this is done using the formula 
n ng n

g

n ng

P x
x

P





. That is, we compute the 

weighted average value of attribute x for segment g, where the weights are the proba-

bilities that each case in the sample belongs to segment g. 

Table 4 lists the expected values of the significant variables in the final LCM 

model, together with several other important variables. We see, for example, that the 

mean age of people in Segment 1 is 52.6 years, while that of Segment 2 is 38.3 years. 

Both segments perceive store to be superior to the Internet on post-purchase satis-

faction; interestingly, Segment 2‟s perception of that difference is even more positive 

than that of Segment 1, but that variable is not significant to Segment 2‟s intention. 

Conversely, both segments perceive the Internet to be superior to stores on conveni-

ence; Segment 2 favors the Internet on that dimension even more strongly than Seg-

ment 1, but again, that variable is not significant to Segment 2. These results illustrate 

the obvious (but occasionally neglected) point that finding one alternative to be superi-

or to another on a given characteristic is only relevant if that characteristic is important 

to choice. This is all the more critical when a given characteristic is important to some 

market segments but not others. 

Several variables support our interpretation of Segment 1 as being more time-

pressured and less money-sensitive than Segment 2, and also less Internet-savvy. For 

example, people in Segment 1 tend to be less price conscious (-0.170) than those in 

Segment 2 (-0.024). Segment 1 has somewhat higher education and income than 

Segment 2 (consistent with their age differences). People in Segment 1 on average use 

the Internet for fewer types of functions (5.48 vs. 7.09), which also makes sense in 

view of the age difference between the segments, and further, less often have broad-

band Internet access at work (78% vs. 90%). On the other hand, on average there is 

little difference between the segments (at least, as measured by the statements shown 

in Table 2) with respect to their time consciousness and attitudes toward exercise. 
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Table 4. Average Characteristics of the Segments 

 

 

 

  
Variables 

Attribute Means 

  Segment 1 (48.3%) Segment 2 (51.7%) 

Segment-specific choice 

model variables 

 Post-purchase satisfaction perception difference
 a
 0.817  0.898   

 Convenience perception difference
 a
 -1.392  -1.757  

 Broadband Internet accessibility at work (dummy variable) 0.779  0.901  

  Context-specific cost difference
 b
 0.118  0.144  

Segmentation model variable   Respondent's age (years) 52.571  38.313   

Dependent variable   Intended channel for future book purchase (1=store; 0=internet) 0.445  0.414   

Other important variables 

 Chosen channel for the recent book purchase 0.558  0.516  

 Store enjoyment factor 
c 

-0.158  -0.051  

 Price consciousness factor 
c 

-0.170  -0.024  

 Time consciousness factor -0.058  0.058  

 Pro-exercise factor -0.013  0.028  

 Cost saving factor
 a, c

 -1.068  -1.362  

 Activeness of searching
 b

      2.670  2.645  

 Internet usage diversity 
d 

5.478  7.086  

 Education level 
b
 5.908  5.759  

  Annual household income 
e
 4.612  4.316   

a
 Difference between channel-specific perceptions: store factor score minus Internet factor score. 

b
 See Table 1 for definition. 

c
 The means for both segments can have the same sign because the factor scores were standardized across the entire sample, including the clothing-purchase 

segment not analyzed in this study. Thus, for example, both segments of book purchasers analyzed here have lower store enjoyment scores, on average, than do 

the clothing purchasers in the rest of the sample. 
d
 Index variable created by summing the 14 binary variables indicating usage of the Internet for “Email”, “Instant messaging”, “Audio conversations”, “Video 

conversations”, “Chat rooms”, “Viewing blogs/bulletin boards”, “Blogging”, “Making own website”, “Internet radio or television”, “Banking/paying bills”, 

“Selling goods”, “Personal networking”, “Job search” and “Collaborative professional work”. 
e
 Categories numbered 1 through 6 correspond to those in Table 1. 



Tang, W. and Mokhtarian, P. L., Journal of Choice Modelling, 2(2), pp. 31-55   

46 

 

However, given the central tendencies of the variables shown in Table 4, the taste dif-

ferences that do exist between the segments do not overwhelmingly favor one channel 

over the other. For Segment 1, for example, there is a clear tradeoff: the importance of 

the post-purchase satisfaction factor tends to favor store, but the importance of the 

convenience factor tends to favor the Internet. For Segment 2, the perceived cost dif-

ference between the two channels is the only significant observed variable, but its 

value does not always favor the Internet. Overall, people in Segment 1 are more likely 

than those in Segment 2 to have chosen store for their recent book purchase (56% vs. 

52%), and to intend to make a similar future purchase in a store (45% vs. 41%) – but 

only marginally so
7
. 

 

5 Comparison of LCM with Deterministic Approaches to 

Treating Taste Heterogeneity 

 
5.1 Deterministic market segmentation 

 
As mentioned in the Introduction, LCM is theoretically superior to the conventional 

deterministic two-stage market segmentation approach, because in LCM the choice 

model is estimated simultaneously with the class membership model, and the classes 

are defined specifically so as to best discriminate between different market segments 

with respect to choice. As a result, we expect LCM to give us models that have better 

goodness-of-fit (GOF) and interpretability. However, it is relevant to wonder how 

large the improvement from using LCM is in practical terms, and in particular whether 

it is sufficiently large to justify the increased complexity of implementation. Accor-

dingly, in this section we conduct a limited comparison of the two approaches. That is, 

we restrict the deterministic segmentation to using the same class membership variable 

identified by the LCM, namely age. 

For this initial comparison, we divided the sample into two segments based on 

age. To reflect the fact that the best cutpoint for the two segments would not be known 

in advance, we prepared five different segmentations, using different segment shares. 

Specifically, the second segment (i.e. those who tend to be younger) contains 10 per-

cent, 24 percent, 50 percent, 73 percent and 90 percent of the total number of cases 

respectively, corresponding to highest ages of 26, 31, 45, 55, and 63. The second and 

fourth segmentations are slightly irregular (with Segment 2 shares originally planned 

to be 25 and 75 percent, respectively), to avoid placing people of the same age into 

different segments. The cutpoint of 45 for the third (50-50) segmentation also corres-

ponds both to the age beyond which the LCM first predicts a higher probability of 

belonging to Segment 1, and to the weighted average of the two mean ages of the 

latent segments (38.3 and 52.6), where the weights are the expected segment sizes. 

Thus, if one took the results of the LCM and subsequently deterministically assigned 

each case to its highest-probability segment (as seems to be done astonishingly often, 

despite the practice being “opposed to the meaning of probabilities and the purpose of 

specifying choice probabilities”; Train 2009, p. 69), the 50-50 segmentation would 

result. 

                                           
7
 Due to the essentially choice-based nature of the sampled channel choices, the specific shares 

presented here should not be taken as representative of the population shares; it is the 

comparison between Segments 1 and 2 that is relevant. 
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The overall comparisons of the LCM, the pooled model, and the five determinis-

tically-segmented (DS) choice models are shown in Table 5. For deterministically seg-

mented choice models, overall log-likelihoods are equal to the sum of the correspond-

ding log-likelihoods of each segment (Ben-Akiva and Lerman 1985), and thus all 

models have the same log-likelihood for the equally-likely model (-258.544). As ex-

pected, the LCM has the highest log-likelihood at convergence (-164.261), with all the 

DS model final log-likelihoods falling below -168. Interestingly, among the DS 

models, DS1 and DS2 (with the smallest shares of younger people) are little better 

than the pooled model, while at the other extreme, just peeling off the oldest 10% of 

cases into a separate segment yields the best DS model (DS5) among those tested, one 

that is almost as good as the LCM (specifically, the LCM final log-likelihood is only 

2.4% higher, -164.261 vs. -168.377, and the adjusted 2
 is only 2.6% higher, 0.318 vs. 

0.310). On the other hand, the fit of the “naïve” 50-50 split model (DS3) is essentially 

identical to that of DS5, while that of DS4 is worse than either. 

Given the foregoing discussion, and especially the similar fits of DS3 and DS5, it 

is natural to want to compare the (choice model) coefficients estimated from the LCM, 

pooled, and five DS models. Figure 1 charts the coefficients for each segment. The 

results are interesting. The coefficients of Segment 1 for the DS models generally get 

closer to those of the LCM as the size of Segment 1 (the older segment) decreases (i.e. 

going from DS1 to DS5), suggesting that the oldest slice of Segment 1 dominates the 

estimation of its coefficients for the LCM. On the other hand, for DS1 – DS4, the 

context-specific cost difference variable is significant for Segment 1, whereas it is not 

significant in the LCM (nor in DS5). For DS1 – DS3, in fact, all four explanatory vari-

ables are significant for Segment 1, so that an analyst might well consider any of those 

models to be preferable to the LCM (for which one of those four variables, the cost 

difference, is not significant) on conceptual grounds, if just viewing these results. In 

any case, however, it is worth noting that although the fits of DS3 and DS5 are essen-

tially equal as mentioned above, their Segment 1 coefficients are not. 

The situation for Segment 2 is somewhat different. The coefficients are generally 

more stable across the DS models, with the exception of those for broadband Internet 

accessibility, which are never significant. In particular (with that same exception), the 

coefficients for DS3 and DS5 are quite similar, with those of DS3 being somewhat 

closer to those of the LCM. Here, the DS coefficients for post-purchase satisfaction (in 

models DS3-DS5) and convenience (DS2-DS5) are significant for Segment 2 although 

the LCM coefficients for the same variables are not. 

Looking across both segments, then, it appears that the naïve, 50-50, segmen-

tation produces a model which for Segment 2 is rather close to that of the LCM (but 

with two additional, conceptually relevant, variables achieving statistical significance), 

and for Segment 1 is arguably better (since one additional conceptually relevant vari-

able is significant). The slight statistical edge gained by the LCM is due to its ability to 

use all cases in the estimation of the coefficients for both latent class segments, which 

of course is desirable when class membership is unknown a priori. 

Thus, while LCM is the theoretically superior model, at least in this particular 

application its GOF is not substantially higher than that of models involving deter-

ministic segmentation on the same variable, and its conceptual relevance is arguably 

somewhat weaker. However, this comparison presupposes that the “right” segmen-

tation variable is known in advance, and also involves just one segmentation variable. 

For LCMs in which more than one variable is significant in the class membership 

model, it would be far less clear how to find the best deterministic
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Table 5. Goodness-of-Fit Comparison of the Models 

 

  
Segment Log(beta) Log(EL) No. of Parameters 

2   
2   No. of Cases 

LCM  -164.261  -258.544  12  0.365  0.318  Seg. 1: expected 180; Seg. 2: expected 193. 

Pooled model  -176.149  -258.544  5  0.319  0.299  373 

DS Model 1 
1 -158.227  -232.897  5  

0.325  0.287  
336 

2 -16.228  -25.646  5  37 

DS Model 2 
1 -127.411  -196.161  5  

0.329  0.290  
283 

2 -46.166  -62.383  5  90 

DS Model 3 
1 -82.912  -128.925  5  

0.348  0.310  
186 

2 -85.559  -129.619  5  187 

DS Model 4 
1 -45.510  -68.622  5  

0.343  0.305  
99 

2 -124.282  -189.922  5  274 

DS Model 5 
1 -10.949  -26.340  5  

0.349  0.310  
38 

2 -157.428  -232.204  5  335 

Notes:  

(1) The log-likelihood increases of the LCM compared to the pooled and the five DS models are: 6.7%, 5.8%, 5.4%, 2.5%, 3.3% and 2.4%, respectively. 

(2) The rho-square and adjusted rho-square for DS models 1 to 5 were computed using formulas for deterministically-segmented choice models (Ben-Akiva and 

Lerman 1985). 
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 Figure 1. Coefficient Comparisons of the Seven Models
8
 for Segments 1 and 2 

 

                                           
8
 The numbers in parentheses are the corresponding sample sizes of each model; DS models 1 

to 5 are the deterministically segmented choice models containing 90%, 76%, 50%, 27% and 

10% of the total cases, respectively, in Segment 1. 

Note: * if 0.05 < p-value  0.1; ** if p-value  0.05. 
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segmentation using the same variables, even aside from the issue of knowing what 

variables were best for segmenting in the first place. 

 

5.2 Unsegmented model with interaction terms 

 
Given that LCM is not strongly superior to the deterministic market segmentation 

approach in this instance, a reviewer‟s comment led us to try using the LCM results to 

improve the BL model on the pooled data. Specifically, we interacted the age variable 

(i.e. the only segmentation variable identified by the LCM) with the choice model ex-

planatory variables (allowing both the original variables and the corresponding new 

interaction variables to enter the model, if both were significant), to create a new BL 

model on the pooled data. This has the effect of allowing the coefficient of an original 

variable such as the cost difference (“cost_D”) to be a linear function of age, rather 

than purely a single constant as in the conventional pooled model: 

 

C cost_D + A*C (age* cost_D) = (C + A*C age) cost_D. 

 

In this case, it is not clear a priori which model will be superior: if the effect of cost_D 

on choice does change more or less continuously (and linearly) with age, the interact-

tion terms approach could be better; if the effect of cost_D on choice is more or less 

constant within latent segment, the LCM approach could be better. Scarpa et al. (2003) 

conducted a comparison similar to ours, and found that in their application LCM was 

not substantially better than the conventional BL representation via interaction vari-

ables (final log likelihoods are -1238 vs. -1289). 

Table 6 summarizes the original BL model (model 1, identical to the pooled 

model referred to by Table 5) and the new BL-with-interaction-terms model (model 

2). Model 1 contains the same four variables (besides the constant term) as the choice 

model of the LCM, with consistent signs and similar explanations to those described 

in Section 4.2. However, in model 2, the first three variables are replaced by their 

corresponding interaction terms, with the positive signs indicating that the marginal 

effect of each variable on the utility difference (between store and Internet) increases 

linearly with age. For example, the marginal effect on utility of post-purchase satis-

faction ranges from 0.180 for the youngest person in our sample (18 years old), to 

0.869 for the oldest (87). For the final variable, context-specific cost difference, both 

the original variable and its interaction term counterpart are significant. The latter two 

variables have the nice interpretation that the total impact on utility of changing 

cost_D by one unit is equal to (-2.670 + 0.0269 age). This value remains negative (as 

expected) for ages up to 99 (i.e. beyond the range of ages found in our sample), but 

indicates that the sensitivity to cost steadily diminishes the older one gets. This is 

consistent with the LCM result showing that the older segment was less money-

sensitive than the younger one, but allows that taste heterogeneity to be expressed in a 

different way.  
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Table 6. Comparison of Binary Logit Models with and without Interaction Terms 

 

Variable Name 

Model 1  

(w/o interaction terms) 
  

Variable Name 

Model 2 

 (with interaction terms) 

Coefficient P-value  
Coefficient 

(value when age = 18, 87)
d
 

P-value 

Constant -0.191 0.583   Constant -0.327 0.292 

Post-purchase satisfaction perception difference
 a
 0.424 0.000  Age * pps_D

 c
   0.0100 (0.180, 0.869) 0.000 

Convenience perception difference
 a
 0.594 0.000  Age * convenience_D

 c
 0.0129 (0.232, 1.123) 0.000 

Broadband Internet accessibility at work 0.575 0.122  Age * bbw
 c
 0.0145 (0.261, 1.262) 0.041 

Context-specific cost difference
 b
 -1.453 0.000  Age * cost_D

 c
 0.0269 (0.485, 2.343) 0.064 

      Context-specific cost difference
 b
 -2.670 0.000 

Valid number of cases, N  373   373 

Final log-likelihood, LL(b) -176.149  -168.396 

Log–likelihood for equally-likely (EL) model, LL(0) -258.544  -258.544 

Number of estimated parameters 5  6 

ρ
2
 0.319  0.349 

Adjusted ρ
2
 0.299   0.325 

a
 See Table 3 for definition. 

b
 See Table 1 for definition. 

c
 We abbreviate the variable names to fit the table size; they correspond to the names which are in the 1

st
 column for the same row. 

d
 The lowest and highest ages in the sample. 

 Note: the adjusted ρ
2
 test for these two non-nested models shows that model 2 is significantly better than model 1, with a p-value of 0.00007.
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Which way is better? The ρ
2
 GOF measure is still higher for the LCM (0.365) than for 

the interaction-terms model (0.349), but requires six more parameters to achieve it. 

The adjusted ρ
2
 measure, which penalizes for lack of parsimony, is actually higher for 

the interaction-terms model (0.325) than for the LCM (0.318). The adjusted ρ
2 

test for 

non-nested models cannot be performed in this case
9
, but it can be argued on the 

grounds of parsimony, simplicity, and the numerically better adjusted ρ
2
 that the inter-

action-terms model is superior in this instance. 

 

6 Conclusions 

 
This study modeled shopping channel intention (store versus Internet) with respect to 

a future purchase of a book/CD/DVD/videotape, using a sample (final N=373) of 

residents of two university towns (Santa Clara and Davis) in Northern California, with 

particular attention to shopping attitudinal factors and the taste heterogeneity of the 

population. In view of the targeted (and choice-based) nature of the sample, we do not 

claim that our models per se are necessarily representative of a broader population. 

However, it is possible that the multivariate relationships between variables, as ex-

pressed by the models, are more generalizable than the univariate distributions of 

those variables are (Babbie 1998; Brownstone 1998). In any case, the methodology is 

generally applicable, and our specific empirical results are of interest in that Internet-

literate residents of university communities may serve as harbingers of future adoption 

in the population as a whole. 

Our original expectation was that our best model would be the latent class model 

(LCM), and it was only a question of whether it was empirically enough better than 

more conventional deterministic market segmentation models to justify the added con-

ceptual complexity. Instead, we found the LCM playing a different role: rather than 

being the apex of the model-building process, it became more of a signpost along the 

way. Specifically, development of the class membership component of the LCM 

pointed toward an improvement in the specification of the unsegmented model (i.e. the 

inclusion of interaction terms) whose outcome turned out to be superior to that of the 

LCM. 

Latent class modeling is still a powerful tool, in that it can help identify the set of 

variables that best addresses the taste heterogeneity relevant to the choice at hand; in 

that respect it can replace a great deal of ad hoc stumbling around to develop the 

“best” deterministic segments. But then rather than stopping there, the LCM results 

can point toward improving an unsegmented (or deterministically-segmented) model. 

Two reasons to expect results even better than LCM from this process are that (1) an 

unsegmented model with interaction terms (such as our best model turned out to be) 

could be considerably more parsimonious than a LCM, which has a full set of choice 

model coefficients for each segment, plus segment membership model coefficients for 

each class except the base; and (2) the LCM (in its standard form) assumes constant 

                                           
9
 Under the null hypothesis that the model with the lower adjusted ρ

2
 is the true model (model 

1), then the probability of finding a model with an adjusted ρ
2
 more than z points greater is 

bounded by the expression   1/22 2

2 1 2 1Pr[ ] 2 ln , 0z Nz J K K z           

(Ben-Akiva and Lerman 1985). In our case, with z=0.007 (the difference in adjusted ρ
2
s be-

tween the two models), N = 373, J = 2, K2 = 6, and K1 = 12, the argument of the square root 

function in this expression becomes -2.380. In such cases, the test cannot be performed, as is 

implicitly remarked in Ben-Akiva and Swait (1984). 
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choice model coefficients within segment, which may or may not be the best reflection 

of reality in any given application. It is possible to allow the choice model coefficients 

of the LCM to be randomly-distributed (i.e. constituting a mixed logit model within an 

LCM) – an extension we leave for future analysis of these data – but even that 

complex structure may not represent reality better than coefficients of an unsegmented 

model that are simple functions of variables explaining taste heterogeneity (linear 

functions of age, in the present case).  

Our empirical results can be summarized as follows. The single variable age of-

fers a valuable means of delineating taste heterogeneity in this application context, re-

vealing (in the LCM) two segments with substantively different tastes, or (in the 

pooled model with interaction terms) coefficients whose magnitudes are intensified or 

diminished with age. In general, the impacts of post-purchase satisfaction, conveni-

ence, and work-based broadband Internet accessibility increase with age, while the 

sensitivity to cost decreases. These are generally logical results, suggesting that money 

is more critical to the young, while convenience and time are more important to older 

shoppers. We speculate that age may be an efficient marker for the complex impacts 

of a bundle of variables with which it is correlated (e.g. employment status (+), Inter-

net usage diversity (–), time consciousness (–), and income (+)). 

Several directions for future research with these data are indicated. Beginning 

with the context studied here (channel intention for book purchases), we can continue 

to refine the model specifications, for example by allowing continuously-distributed 

coefficients within latent class as mentioned above. Using the same book subsample, 

we can also explore people‟s (past) shopping channel adoption instead of (future) 

intention, and then compare the results to those obtained here, to identify variables sig-

nificant to choice but not intention, and conversely. In addition, parallel intention and 

adoption models will be developed for the clothing subsample as well, enabling the 

identification of factors relevant to channel choice for one product type but not the 

other. In each of these cases, we will continue to explore the role of LCM in identi-

fying taste heterogeneity, and compare the models resulting from that approach to 

those obtained from deterministic segmentation and unsegmented models with inter-

action terms  
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