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Abstract

Coronary artery disease is a major cause of death in women. Breast arterial calcifications (BACs), 

detected in mam-mograms, can be useful risk markers associated with the disease. We investigate 

the feasibility of automated and accurate detection of BACs in mammograms for risk assessment 

of coronary artery disease. We develop a twelve-layer convolutional neural network to 

discriminate BAC from non-BAC and apply a pixel-wise, patch-based procedure for BAC 

detection. To assess the performance of the system, we conduct a reader study to provide ground-

truth information using the consensus of human expert radiologists. We evaluate the performance 

using a set of 840 full-field digital mammograms from 210 cases, using both free-response 

receiver operating characteristic (FROC) analysis and calcium mass quantification analysis. The 

FROC analysis shows that the deep learning approach achieves a level of detection similar to the 

human experts. The calcium mass quantification analysis shows that the inferred calcium mass is 

close to the ground truth, with a linear regression between them yielding a coefficient of 
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determination of 96.24%. Taken together, these results suggest that deep learning can be used 

effectively to develop an automated system for BAC detection in mammograms to help identify 

and assess patients with cardiovascular risks.

Keywords

Index Terms; deep learning; breast arterial calcification; coronary artery disease; mammography

I. Introduction

Cardiovascular disease is the first cause of mortality in women in the world [1]. Coronary 

artery disease is one of the most common types of cardiovascular disease, leading to 1 out of 

7 deaths in the United States [2]. Various studies have demonstrated that breast arterial 

calcifications (BACs), detected on mammogram images, can be a useful risk marker for 

coronary artery disease [3, 4]. For example, Pecchi et al. [5] and Matsumura et al. [6] 

independently studied the association between BACs in mammograms and coronary artery 

calcifications (CACs) quantified by multislice CT and found a strong correlation between 

them. Maas et al. [7] investigated whether BACs on mammograms can predict future 

development of CACs and showed that BACs are predictive of subsequent development of 

CACs. Thus automated identification of BACs in mammograms could provide a cost-and 

labor- effective strategy for the risk assessment of coronary artery disease and subsequent 

triage in women.

BACs are calcium deposits which line up the walls of the arteries in the breast. As shown in 

Figure 1, they appear as parallel or tubular tracks on mammograms [8], which are taken very 

frequently. Indeed, mammography is a routine screening tool for detection and diagnosis of 

breast cancer in women. The American Cancer Society recommends that women 40 years 

and older undergo annual mammography screening [9]. It is estimated that nearly 40 million 

mammography exams are performed annually in the United States alone [10]. However, 

BACs detected in mammograms are considered to be irrelevant for the diagnosis of breast 

cancer [11], and thus are treated as false positives (FPs) and are not reported in current mam-

mography screenings. Rather than discarding this information, the automated detection of 

BACs in mammograms could take advantage of routine mammography screening.

In spite of the advantages mentioned above, in most (if not all) clinical studies to date [4, 12, 

11], BACs in mammograms were manually detected by radiologists. Such manual process is 

necessary in the early stages of technology development, but it is time-consuming, 

subjective, and tedious, thus hampering large-scale clinical testing and deployment of this 

new screening approach. Therefore, it is now becoming essential to develop computerized 

algorithms for the automated detection of BACs in mammograms. Moreover, besides 

cardiovascular disease [13, 14], BACs are also useful biomarkers associated with chronic 

kidney disease [15], bone mineral density reduction [16], diabetes [17], hypertension [18], 

and stroke and heart failure [3]. Therefore, automated detection of BACs can be helpful in 

diagnosis of multiple diseases. In addition to the application to these non-cancer diseases 

[19, 20, 21], the automated detection of BACs in mammograms could also be used to 
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improve microcalcification (MC) detection for breast cancer itself, essentially by subtracting 

BACs from the images [8, 22].

Given the growing interest, several algorithms have been proposed for BAC detection in the 

literature. For example, Cheng et al. [19, 20, 21] developed a two-step procedure by 

considering both the calcification and vesselness cues, using first a tracking method with 

uncertainty scheme to generate multiple sampling paths, and then applying a compiling and 

linking algorithm to group the resulting BAC paths into BACs. Ge et al. [8] adopted a k-

segments clustering algorithm to model BACs in the vessel walls as line segments during 

BAC detection, and then subtracted these BACs during MC detection for breast cancer 

screening. Finally, Mordang et al. [22] applied a GentleBoost classifier to remove BACs as 

FPs in MC detection by a set of manually designed features, including shape, topology and 

texture.

Despite these efforts, the accurate and automated detection of BACs in mammograms 

remains an unsolved task and the technology is far from clinical deployment. This is 

primarily because BACs in mammograms vary in size, shape, and contrast. For example, in 

Figure 1(a) we show three regions of interest (ROIs) cropped from mammograms, all 

containing BACs; and in Figure 1(b) we show the corresponding BACs with contour 

boundaries marked by radiologists. In these figures, BACs appear as bright spots forming 

elongated patterns along the walls of the arteries in the breast; however, these patterns vary 

considerably and can be long and strong (left), intersected with each other (left), short and 

weak (middle), or disconnected along an artery (right).

In recent years [23], neural networks and deep learning have been used to successfully tackle 

a variety of problems in engineering, ranging from computer vision [24, 25, 26, 27] to 

speech recognition [28], as well as in the natural sciences, in areas ranging from high energy 

physics [29, 30], to chemistry [31, 32, 33], and to biology [34, 35, 36]. Convolutional neural 

network architectures [37, 38] in particular have led to several successful pattern 

classification and detection in natural images [24, 25, 27]. Thus it is natural to consider 

applying deep learning methods also to biomedical images. For example, in [39] a deep 

learning architecture was applied to each pixel to address problems of membrane 

segmentation in electron microscopy images; in [40] a deep convolutional neural network 

(CNN) was used as the 2nd tier in a two-tiered, coarse-to-fine cascade framework, to refine 

the candidate lesions from the first tier for sclerotic spine metastases detection in CT images; 

in [41] a multi-scale CNN was developed for lung nodule detection in CT images; and in 

[42] a GoogLeNet-based method was adopted for automated detection and diagnosis of 

metastatic breast cancer in whole slide images of sentinel lymph node biopsies.

In this study, we investigate the feasibility of automated and accurate BAC detection on 

mammograms by deep learning methods in support of the long-term goal of developing an 

automated BAC detector which can be used to provide risk markers for coronary artery 

disease [3, 4, 12]. We formulate the problem as a pixel-wise, patch-based two-class 

classification problem. That is, for any pixel under consideration, we utilize an image patch 

around it. The image patches are fed to a deep CNN which is trained to classify whether the 

central pixel belongs to the BAC class or not. Compared to other machine learning and other 
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algorithms, the deep CNN can extract features automatically while achieving good 

classification performance. It has been demonstrated that features automatically learnt by 

deep CNNs tend to outperform features that are handcrafted by human experts [43, 44].

II. Methods

A. Deep convolutional neural network architecture

The deep CNN architecture considered in this study consists of a cascade of several 

convolutional (Conv), batch normalization, nonlinearity, max-pooling (Pooling), and fully 

connected (FC) layers. Each convolutional layer is followed by a batch normalization layer 

and a nonlinearity layer. In Table I, we illustrate the architecture used, in which the batch 

normalization layer and nonlinearity layer following each convolutional layer are omitted to 

save space. This leads to a 12-layers neural network, consisting of 10 convolutional layers 

and two fully connected layers. The convolutional layers can be viewed as feature extractors, 

while the fully connected layers are used for the final classification.

In the development phase, we experimented with many other architectures and in Table I we 

report only the one with lowest classification error for the samples in the validation set (see 

Section III-C). The architecture has a sequence of 2, 2, 3, and 3 convolutional layers before 

the four max-pooling layers, respectively. In one experiment, for instance, we started from 

an architecture with seven layers, which includes a sequence of 1, 1, 1, and 2 convolutional 

layers before the four max-pooling layers. We then gradually increased the number of 

convolutional layers and stopped when no further improvement was observed.

Convolutional layers generate an output feature map by convolving the input feature map 

with a set of convolution filters implemented by weight sharing. Typically, in deep CNNs, 

the majority of the trainable parameters are associated with convolutional layers. In this 

study, the size of 3 × 3 is used for all of the convolutional filters as illustrated in Table I.

Batch normalization layers are introduced to deal with the internal covariate shift, which 

refers to the phenomenon that the distribution of each layer's inputs changes during training 

when the parameters of the previous layers change [45]. It independently achieves z-score 

normalization on each feature in the feature maps, so that each resulting feature has zero 

mean and unit standard deviation. The mean and standard deviation for the z-score 

normalization are estimated from all the samples in each training batch. This batch 

normalization has been shown to speed up learning and improve classification performance 

[45].

Nonlinearity layers are implemented by associating a nonlinear activation function with the 

corresponding neurons. Unlike the convolutional and batch normalization layers which 

produce linear transformations, these layers produce a nonlinear transformation, ultimately 

yielding a highly non-linear classifier. In this study, we use leaky rectified linear units 

(ReLU) [46] with leakiness of 0.5.

Max-pooling layers summarize the outputs of neighboring regions in the same feature map. 

The output of a max-pooling unit corresponds to the maximum of its input features, taken 
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over a certain region. In this study, the output is generated for every other location (i.e. with 

stride 2) by considering the 3 × 3 neighborhood region of the location, denoted as 3×3s2 in 

Table I.

Fully connected layers correspond to pairs of consecutive layers with full connectivity 

between all the corresponding units. All the connection weights are trainable.

After the last fully connected layer, a softmax activation function [25] is employed, the 

output of which can be interpreted as the probability that the pixel at the center of the initial 

input belongs to a BAC.

In total, the architecture has around 1.51 million parameters to be trained. These are trained 

by stochastic gradient descent to minimize the cross entropy between true class labels and 

predicted class labels, together with standard L2 regularization.

To further avoid potential overfitting problems, dropout [47, 48] is applied to the input of the 

first fully-connected layer. Dropout can be viewed as a regularization technique, which 

randomly drops neural units from the neural network with a certain probability during 

training. In this study, dropout with probability 0.5 is used.

B. Testing

During testing, for each mammogram image in the test set, the optimal CNN model is 

applied to each pixel in the tissue region of the image (value 0 is assigned to the pixels out of 

the tissue region, since they cannot belong to BAC regions), yielding a probability map with 

the same size as the image under consideration. The value of each pixel in the probability 

map indicates the probability of that pixel being in the BAC class.

When a pixel is close to the image border, its corresponding feature input (i.e. the image 

patch centered around it) includes pixels outside the image, thus image padding is required. 

In this study, we use a symmetric image padding scheme.

The tissue region of an image is obtained as the largest connected region with intensity value 

larger than the mean intensity of the whole image. A morphology open operator with 

circular structuring element of diameter 21 pixels is used to smooth the boundary of the 

tissue region.

C. Postprocessing

BACs can be detected by a thresholding method, that is, by applying a threshold to the 

probability map obtained in Section II-B. However, the BACs obtained with such method 

tend to be too wide, especially when the threshold is low. To mitigate this effect and obtain 

accurate BAC detections, we consider a post-processing procedure as follows. For a 

candidate BAC obtained from the thresholding method, we first extract its skeleton, and then 

apply a morphology dilation operator to the skeleton, such that the dilated region has a width 

of 2.1 mm, the typical width of a breast artery. Finally, the BAC is detected as the 

overlapping region between the candidate BAC produced by the thresholding methods, and 

its dilated skeleton region. In the experiments, the skeleton of a region is mainly obtained by 
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the pattern thinning algorithm in [49]; to refine the thinned pattern for BACs, we further 

remove its small branches and extend its two endpoints.

III. Experiments

A. Dataset

In this study, we make use of a set of 840 standard screening full-field digital mammograms 

(FFDMs) from 210 cases. Each case includes mammography images from four standard 

views: a cranial-caudal (CC) view and a mediolateral-oblique (MLO) view, from both the 

left and right breasts. All the mammogram images were collected at 9 Kaiser Permanente of 

Northern California facilities (Oakland, Richmond, Walnut Creek, San Francisco, Santa 

Clara, Mountain View, Pleasanton, Campbell and Antioch). They were acquired from 23 

different machines using a Senographe Essential FFDM system (General Electric Medical 

Systems; Milwaukee, WI) or Lorad Selenia FFDM system (Hologic Inc.; Bedford, MA), 

with spatial resolution of 100 μm/pixel, or 70 μm/pixel. In our experiments, raw imaging 

data from the FFDM systems was used, and thus the mammogram images were pre-

processed with a standard logarithmic transformation [50] before BAC detection.

B. Ground-truth acquisition

For training and evaluating the BAC detection algorithm, we conducted a reader study on the 

mammogram images. Three experts in breast imaging, referred as reader A, B, and C 

respectively, participated in the study. Reader A has more than 10 years of experience in 

interpreting mammograms, and readers B and C have more than 3 years of experience in 

interpreting mammograms. The readers manually marked the boundaries of the BACs in the 

mammogram images, as shown in Figure 1(b).

Considering the subjective nature of the readers and the subtlety of the BACs, we applied a 

two-round procedure: in the first round, each mammogram image in the dataset was read 

twice by two readers independently, yielding two readings for each mammogram; and in the 

second round, the two readings provided in the first round were reevaluated and corrected by 

the corresponding two participating readers together, resulting in the third reading for each 

mammogram. The third reading is treated as the ground truth in this study, during both 

training and testing.

In the first round, the two readings are obtained as follows: 1) for each mammogram image 

in the dataset, reader A manually provided the boundaries of its BACs, yielding the first 

reading; and 2) the dataset was randomly divided into two non-overlapping subsets, one with 

160 cases and the other with the remaining 50 cases. The subset with 160 cases was 

annotated by reader B, and the subset with 50 cases was annotated by reader C.

In the second round, for each mammogram image, the two readers who examined the image 

in the first round– i.e. reader A and B, or reader A and C– reevaluated the reading results 

together. In particular, when there was major disagreement between the two reading results 

(i.e. one reader marked one region as BAC but the other reader did not), the two readers 

discussed the situation together and made corrections accordingly. It must be noted that the 

determination of a BAC boundary is considerably more subjective than the location of the 
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BAC; for consistency among all of the images in the dataset, when the two readers agreed on 

the presence of a BAC region, we used the boundary provided by reader A as the ground 

truth.

In the end, this curation process yields 146 cases in the dataset with BACs in at least one 

breast, while the remaining 64 cases are BAC free. At the level of individual images, BACs 

are present in 506 images, and absent in the remaining 334 images.

C. Experimental setup

In the experiments, to evaluate the performance on the whole dataset, we applied a case-

based three-fold cross-validation (CV) procedure as follows: the dataset was first randomly 

divided into three equally-sized subsets; in each run, a subset is hold out for performance 

evaluation (“testing subset”) and the other two subsets are further randomly partitioned into 

two subsets, one containing 75% of the cases for training (“training subset”) and the other 

containing 25% of the cases for validation (“validation subset”). To avoid any potential bias, 

the four mammogram images associated with one case were always assigned together to 

either the training subset, or validation subset, or testing subset, but never to two different 

subsets.

The neural network was trained by stochastic gradient descent (SGD) [51], with a batch size 

of 256, a learning rate of 0.006, and a momentum of 0.9. Each feature in the samples was 

normalized before training. The mean and standard deviations for the normalization were 

estimated from a random sample taken from the training set.

D. Training and validation data preparation

To curate the training and validation data, we extracted a large set of image patches of size 

95 × 95 pixels, as indicated in Table I, with the following procedure. For each mammogram 

image with the presence of BACs in the training set, we randomly extracted a number P of 

patches associated with BAC regions; we also randomly extracted an equal number P of 

patches from non-BAC regions, in order to achieve balance between the positive and 

negative classes. In the experiments, P was determined by the area of the BAC regions 

(measured by the number of pixels A) as follows:

(1)

where ⌊·⌋ is the floor operator. Note that the mammogram images with no BACs were not 

used to prepare the training sets.

Various studies have demonstrated that data augmentation by enlarging the number of 

available training examples using various kinds of image transformations can improve the 

performance of deep learning approaches [24, 52]. In our experiments, we applied data 

augmentation procedures to the samples in the training set by: 1) flipping the sample 

window from left to right; 2) flipping the sample window from top to bottom; 3) rotating the 

sample window by 90°, 180°, and 270°, respectively. In total, the patch selection and data 
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augmentation procedures result in approximately 1.94 million training examples extracted 

for each of the three runs in the case-based three-fold CV procedure.

To obtain the “BAC” and “non-BAC” samples for validation, the sample extraction 

procedure described above was applied to each image in the validation set. No data 

augmentation was applied in this case.

E. Performance evaluation and metrics

For evaluation purposes, we used two kinds of performance analysis techniques: a free-

response receiver operating characteristic (FROC) analysis and a calcium mass 

quantification analysis. The FROC analysis evaluates the overall BAC detection performance 

with respect to the ground truth provided by the readers, while the calcium mass 

quantification analysis summarizes the detected BACs into a single number to be used as a 

risk marker for coronary artery disease.

1) Free-response receiver operating characteristic analysis—FROC analysis is a 

technique which has been widely used for detection performance evaluation in medical 

imaging [8, 53]. Here the FROC curve is a plot of the true-positive (TP) rate on the y-axis 

versus the false-positive (FP) area, averaged over all images, on the x-axis. All areas are 

measured in cm2 units.

In the FROC analysis, for each mammogram image, the TP rate is calculated as the ratio of 

the area of the predicted BACs over the corresponding ground truth area. For any region 

predicted to be in the BAC class, only its subregions overlapping with the BAC ground truth 

are considered as TPs. All other subregions, which do not overlap with the ground truth 

BAC, are considered as FP regions. In this study, the TP rate was calculated using only the 

mammograms containing BACs, since it is not well-defined when BACs are absent in an 

image. Intuitively, a TP rate of 0 or 1 could be assigned to the images containing no BACs, 

but doing so would yield overly pessimistic or optimistic TP rates, depending on the 

distribution of the cases.

2) Calcium mass quantification analysis—Calcium mass, a quantitative assessment 

of total calcium associated with BACs, provides a global numerical summary of all the 

BACs in a mammogram image. It is used clinically by radiologists for assessing the risk of 

coronary artery disease. The calcium mass quantification is performed by considering the 

BAC regions, and estimating and subtracting their surrounding local anatomical background 

using a linear interpolation algorithm [12].

For each case in the dataset, calcium mass for each of the corresponding four mammograms 

is calculated. The calcium mass of a breast is calculated as the average of the calcium mass 

from its two views (i.e. CC and MLO views). The calcium mass of a case is calculated as the 

sum of the calcium mass of the corresponding left and right breasts.

To evaluate the calcium mass provided by our approach and compare it with the calcium 

mass resulting from the ground truth annotations, we use linear regression analysis. The 

corresponding coefficient of determination, denoted by R2, is used to measure the quality of 
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the fit. The coefficient of determination varies between 0 and 1, where 1 indicates that the 

model fits the ground truth perfectly.

IV. Results

A. FROC analysis

In Figure 2 we show the FROC curve obtained by the proposed approach for the 210 cases 

in the dataset (denoted as CNN, 210 cases). As can be seen, with a TP rate of 60%, the 

average FPs are 0.4762 cm2. To facilitate the comparison with the performance of individual 

readers, we also examined the two subsets associated with the 160 cases read by reader B, 

and the 50 cases examined by reader C. Note that we do not have a FROC curve for the 

readers, only a single operational point.

In Figure 2, one can see that reader B achieves TP rate = 42.19% and FPs = 0.2127 cm2, 

which is close to the proposed CNN approach (FPs = 0.2212 cm2 when TP rate = 42.19%). 

This assessment is made on 640 images associated with the 160 cases given to reader B. In 

short, these results show that the proposed methods has similar BAC detection performance 

as reader B.

In Figure 2, we also show the FROC curve obtained by the CNN on the same 200 images 

from the 50 cases assigned to reader C. It can be seen that reader C achieves TP rate = 

56.28% with FPs = 0.2895 cm2. For the same TP rate, the proposed approach achieves FPs = 

0.5203 cm2, which is worse than reader C.

Figure 2 shows that the FROC curve obtained from the 160 cases is higher than the one 

obtained from the 50 cases. This FROC difference results from differences in the case 

distribution, i.e. the distribution of images containing BACs and those without BACs. For 

the BAC-free images, the only source of the FPs is the the false detection of isolated regions; 

in contrast, for the images containing BACs, both the false detection of isolated regions and 

the inaccurate detection of boundaries contribute to FPs, thus yielding higher FP rates. 

Indeed, BACs are absent in 51.88% images (i.e. 332 images) for the 160 cases examined by 

reader B, compared to 1.0% images (i.e. 2 images) for the 50 cases examined by reader C. 

However, it has to be noted that such variation in case distribution does not change the 

relative performance between a reader and the proposed approach when the same test data is 

being considered.

The FROC analysis above evaluates the overall performance of the proposed approach on 

BAC detection. In many applications, a decision threshold is usually pre-defined and only 

the corresponding results matter. To further evaluate the performance of the proposed 

approach in such potential application, a fixed decision threshold of 0.99 is applied. The 

value of 0.99 is selected to ensure a low false positive rate. At this threshold, the proposed 

approach achieves performance of TP rate = 57.43% and FPs = 0.4198 cm2.

In Figure 3 we show the scatter plot of the size of the BACs (in cm2) for all of the 840 

images in the dataset. In this plot, each point represents the total size of the BACs in an 

image; the x-axis and y-axis are the sizes of the BACs according to the proposed method and 
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the ground truth, respectively. The diagonal line in this plot corresponds to a perfect match 

in BAC sizes. It can be seen that the size of the automatically detected BACs is highly 

correlated with that of the ground truth. The Pearson's correlation coefficient is 0.9386.

To further demonstrate the BAC detection results obtained from the deep learning approach, 

in Figure 4(a) we show the BAC detection for a mammogram using the selected decision 

threshold of 0.99. In this figure, the true BACs are marked by red contours, and the predicted 

BACs are marked by blue contours. It can be seen that most BACs are correctly detected. To 

visualize the detections in greater detail, in Figure 4(b)-(d) we also show the magnified 

views of the three ROIs in Figure 4(a) (marked by black dotted squares).

Finally, we examine the results obtained when the method is applied to images with no 

BACs. For the 334 images in the dataset with no BACs, we obtain an average FPs area of 

0.0336 cm2, using the selected threshold of 0.99. Moreover, in Table II, we list the number 

of images in this subset associated with different FPs areas in cm2. As can be seen, the 

method finds no BACs in 256 images, out of 334 images; and no image has predicted BAC 

area larger than 0.5 cm2. For comparison, the average BAC area per image, computed on the 

images that contain BACs, is 1.5367 cm2. In combination, these results show that the 

proposed method works also well when applied to BAC-free images.

B. Calcium mass quantification analysis

To evaluate the performance of the detected BACs as risk markers for coronary artery 

disease, in Figure 5 we show the scatter plot of the calcium mass ground truth versus the 

predicted calcium mass, using the same decision threshold as above (0.99). In this plot, each 

point marked by a red circle represents one of the 210 cases. The x-axis corresponds to 

automatically inferred calcium masses, while the y-axis corresponds to ground truth calcium 

masses. From the scatter plot, it can be seen that there is a robust linear trend between the x 

and y values, with a regression line slope close to 1.

A Bland-Altman plot of the predicted and ground-truth calcium masses (Figure S1 in 

Supplementary Materials), shows no obvious structural (linear or non-linear) trend for the 

differences with respect to the means, indicating that the proposed approach tends to work 

equally well across the range of calcium masses. The mean of the differences is -0.6165, 

indicating a small bias which can easily be corrected at the time of deployment. The four 

outliers marked in Figure 5 correspond to the only differences that fall outside the 99% 

confidence interval.

To quantitatively measure the agreement of the calcium masses produced by the proposed 

approach (denoted as x) with the ground truth values (denoted as y), we conducted a linear 

regression analysis, excluding outliers. The linear regression analysis yields a linear model y 
= 0.9099x+0.1874. The positive bias term of 0.1874 in the model agrees with the slightly 

negative mean difference described above. From Figure 5, it can be seen that the fitted line 

has only a small deviation from the perfect line, indicating that the proposed approach works 

well on the BAC detection. Furthermore, the coefficient of determination R2 of the fitted 

model is 0.9624, which indicates that 96.24% of the calcium mass from the ground truth is 

explained by the calcium mass from the detections.
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Furthermore, we examine the results obtained when the method is applied to cases with no 

BACs. For the 64 BAC-free cases, we obtain an average calcium mass 0.2205 mg, using the 

selected threshold of 0.99. Moreover, in Table III, we list the number of cases in this subset 

associated with different calcium mass in mg. As can be seen, the method finds no BACs in 

35 out of 64 cases; and no case has predicted calcium mass larger than 1.5 mg. For 

comparison, the average calcium mass per case, computed on the cases that contain BACs, is 

19.1475 mg. In combination, these results show that the proposed method works well when 

applied also to BAC-free cases.

Finally, to evaluate the robustness of the proposed method in relation to breast density, in 

Figure 6 we show a plot of the breast density (x-axis) versus the differences between the true 

calcium mass and the predicted calcium mass (y-axis) for each breast, resulting in 420 data 

points. The breast density is calculated using the Quantra software (Hologic Inc.; Bedford, 

MA). For better visualization, in Figure 6, the range of the differences is set to be [−20, 20], 

thus one outlier with difference = 77.4980 mg and breast density = 8.5% is invisible. As can 

be seen, there is no linear, or nonlinear, systematic trend of the differences in relation to the 

breast density up to 50%, indicating that the proposed method works on Breast Imaging 

Reporting and Data System (BI-RADS) types 1-2. Unfortunately, in the available data there 

are not enough breasts in the BI-RADS type 3 category, and no breasts in the BI-RADS type 

4 category, for drawing more general conclusions. It would be interesting to include these 

categories in future studies.

C. Additional Results

As an additional consistency analysis, we examined the correlations in both the ground-truth 

and predicted BAC areas, or calcium values, between the two views (CC vs MLO), and 

between the two breasts (R vs L). Intuitively, it is reasonable to expect a significant degree 

of correlation between the two views, and between the right and left breast, although these 

phenomena have not been studied systematically in the literature. The only exception we are 

aware of is the study in [11] which reports significant correlation in BAC area and 

calcification between the left and right breasts. Indeed, using for instance the BAC areas, we 

find a correlation coefficient between the CC and MLO views of: 0.9394 for the readers, and 

0.9351 for our method. Likewise, we find a correlation coefficient between the right and left 

breast of: 0.8821 for the readers, and 0.8752 for our methods. This shows that not only the 

correlations are high, but also the performances of the readers and our method are correlated. 

A full scatter plot of the two views is given in Figure 7. For brevity, the scatter plot of the 

two breasts is shown in Figure S2 in Supplementary Materials.

Finally, we also evaluate the exchangability of the distinctive views in model training. For 

this purpose, we train the model using samples extracted from images in a single view (i.e. 

CC or MLO view) in the training set, and evaluate the performance using samples extracted 

from images in a single view in the testing set. The results are shown in the first two rows in 

Table IV. For comparison, the model trained using samples from both CC and MLO views 

are shown in the third row in Table IV as well. As can be seen, the model trained in one view 

works well on the samples in the other view; the model trained by the samples from both 

views achieves lowest classification error, indicating that combining samples from both 
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views can improve BAC detection performance. In Table IV, the model trained on the MLO 

views has better performance when compared with the model trained on the CC views. This 

may be the result of having relatively larger BAC regions in the MLO views, which in turn 

results in 15.79% more training samples being generated from MLO views. This trend can 

be observed in Figure 7 as well.

D. Discussion

1) FROC criteria for BAC detection—It has to be noted that the FROC curve is 

sensitive to the criteria used [53]. The definition of FPs in Section III-E1 is very stringent. It 

considers that detected regions connected to, but not overlapping with, true BACs are FPs. 

For example, in Figure 4(d), the regions outside the red contours (i.e. ground truth), but 

inside the blue contours (i.e. detections) are treated as FPs.

However, the boundaries of the BACs are somewhat subjective, and small differences in 

BAC boundaries have a limited effect on the calcium mass quantification resulting from the 

procedure described in Section III-E2. Therefore, it is not unreasonable to exclude detected 

regions that are connected to, but not overlapping with, the ground truth from the FPs. In this 

case, only detected regions which are not connected to any ground truth BAC region, are 

considered to be FPs. Using this less stringent but still reasonable criterion, the FPs are equal 

to 0 cm2 for the mammogram image in Figure 4(a). For convenience, for this alternative 

definition of FPs, we refer to the FPs as alternative FPs, and the corresponding FROC as 

alternative FROC.

In Figure 8, we show the alternative FROC curve obtained by the proposed approach for the 

210 cases in the dataset. For comparison, we also re-plot the FROC defined in Section III-E1 

for the 210 cases in the dataset. As can be seen, with a TP rate of 60%, the alternative FPs 

are 0.1007 cm2, compared to FPs = 0.4762 cm2. The difference between them is 0.3755 

cm2, and corresponds to image regions that have limited effect on the calcium mass 

estimation. This shows that most of the FPs in Figure 2 come from the regions connected to, 

but not overlapping with, the true BACs.

2) Calcium mass for coronary artery disease—For the risk assessment of coronary 

artery disease, the calcium mass quantification is relatively insensitive to the presence of 

false negatives (FNs). This is due both to how calcium mass is used for risk assessment in 

clinical settings and to the property of FNs in detection algorithm. In clinical settings, the 

calcium mass is discretized into different non-overlapping ranges for assessing coronary 

artery disease risk. Thus, small differences in predicted calcium mass usually do not change 

the resulting diagnosis, which results in its tolerance to the FNs. Moreover, automated 

detectors tend to miss weak BACs, if any are present. This is because of the subtle nature of 

weak BACs. But weak BACs usually have a limited contribution to the total calcium mass, 

helping the robustness of the calcium estimation against FNs.

However, in contrast to FNs, the presence of FPs may increase the calcium mass 

considerably. To demonstrate a possible effect of FPs on calcium mass, in Figure 9, we show 

a mammogram example with FPs. This mammogram is selected from the outliers in Figure 

5, and represents the case where the calcium mass is overestimated the most by the proposed 
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approach (reader = 94.63 mg and machine = 126.48 mg). For this image, the calcium mass 

of the true BACs is 43.91 mg, while the calcium mass from the detections is 62.91 mg. From 

Figure 9, it can be seen that the proposed approach detected most of BACs, while also 

including several FPs in the detections. Thus the difference between the ground truth and 

estimated value are mostly due to FPs. Therefore, it is important to keep the FPs low when 

the automated BAC detections are used for calcium mass quantification.

3) Learnt features—Finally, to demonstrate the effectiveness of the proposed method for 

feature learning, we show the feature maps obtained after the third max-pooling layer, which 

is deep enough both to produce interesting classification features and be able to visualize 

them. In Figure 10(a), we show examples of feature maps obtained from 100 BAC samples, 

one for each BAC sample. For each BAC sample, the feature map with highest energy is 

selected. As can be seen, tubular patterns at different orientations are prominent. For 

comparison, we also show examples of feature maps obtained from 100 non-BAC samples 

in Figure 10(b). Similarly, for each non-BAC sample, the feature map with highest energy is 

selected. As can be seen, when compared with the feature maps in Figure 10(a), the feature 

maps in Figure 10(b) have lower values, indicating the absence of BACs.

For better visualization of the learnt features, we also show the feature maps obtained after 

the first, second, and fourth max-pooling layers. The results are shown in Figures S3-S5 in 

Supplementary Materials.

V. conclusion

We have investigated the feasibility of building an automated system for BAC detection and 

calcification estimation in mammograms as possible risk markers for coronary artery 

disease. For this purpose, we first formulated the problem as a two-class classification 

problem. We considered a pixel-wise, patch-based procedure for BAC detection and applied 

a twelve-layer CNN to discriminate BAC pixels from non-BAC pixels. For a pixel under 

consideration, the input of the CNN is an image patch of size 95 × 95 centered on it. To 

compare the performance of the proposed approach to human performance, we conducted a 

two-round reader study. In the experiments, the performance was evaluated by both FROC 

analysis and calcium mass quantification analysis on a set of 840 FFDM images from 210 

cases. The FROC analysis shows that the proposed approach obtains FPs of 0.4762 cm2 with 

a TP rate of 60%, comparable to the performance of at least one of the readers. The calcium 

mass quantification analysis shows that the calcium mass inferred from the BAC detections 

is close to the ground-truth calcium mass; the linear regression analysis between them yields 

a coefficient of determination of 96.24%. Thus, while larger-scale studies are required to 

further refine and assess the approach, the results indicate that it brings automated BAC 

detection much closer to clinical translation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) Examples of regions of interest (ROIs) cropped from mammograms containing BACs; 

(b) the corresponding BACs associated with the ROIs, with BAC boundaries marked by red 

contours. For better visualization, a background removal process is applied to each ROI; the 

background of a pixel is estimated as the average intensity of its circular neighborhood with 

a radius of 50 pixels.
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Fig. 2. 
Comparison of FROC performance in BAC detection between the proposed CNN approach 

and the individual readers, on various subsets of the data.
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Fig. 3. 
Scatter plot of the size of the BACs (in cm2) for al 840 images in the dataset. The x-axis and 

y-axis corres to the sizes associated with the predictions (Machine) an ground truth 

(Reader), respectively.
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Fig. 4. 
(a) Demonstration of the detection results by the proposed approach for a mammogram 

image, in which the true BACs are marked by red contours, and the automatically detected 

regions are marked by blue contours. (b)-(d) the magnified views of the three ROIs in (a) 

(marked by black dotted squares). For better visualization, a histogram equalization process 

is applied to the mammogram image.
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Fig. 5. 
Scatter plot of calcium mass (in mg) for all the 210 cases in the dataset, in which each point 

represents the calcium mass of a case. The x-axis corresponds to the predicted values 

(Machine), and the y-axis correspond to the ground truth values (Reader). There are four 

outliers marked by blue crosses.
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Fig. 6. 
Robustness of the proposed method in relation to breast density. Breast density, in 

percentage, is on the x-axis. Difference between the true calcium mass and the predicted 

calcium mass is on the y-axis.
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Fig. 7. 
Scatter plot of BAC areas in cm2 corresponding to the CC and MLO views. The red circles 

correspond to the readers, and the blue crosses to the predicted values.
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Fig. 8. 
The alternative FROC, associated with a less stringent definition of false positives, for the 

160 cases in the dataset. For comparison, the FROC associated with the stringent definition 

of false positives is shown as well.
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Fig. 9. 
One mammogram outlier example with FPs, in which the BACs provided by readers are 

marked by red contours, and the predictions are marked by blue contours. The presence of 

FPs leads to calcium overestimation. This image corresponds to the only outlier in Figure 5 

located below the regression line. For better visualization, a histogram equalization process 

is applied to the mammogram image.

Wang et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
(a) Examples of feature maps obtained from 100 BAC samples; (b) examples of feature 

maps obtained from 100 non-BAC samples. The feature maps are the output of the third 

max-pooling layer. For each sample, only the feature map with highest energy is selected for 

display.
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Table I

Architecture of the deep CNN used in this study. Each convolutional layer is followed by a batch 

normalization layer and a nonlinearity layer, omitted here to save space. In total, there are 10 convolutional 

layers and two fully connected layers.

Layer # filters Size Output size

input - - 95 × 95

Conv 32 3×3 95 × 95

Conv 16 3×3 95 × 95

Pooling - 3×3s2 47 × 47

Conv 64 3×3 47 × 47

Conv 32 3×3 47 × 47

Pooling - 3×3s2 23 × 23

Conv 128 3×3 23 × 23

Conv 128 3×3 23 × 23

Conv 128 3×3 23 × 23

Pooling - 3×3s2 11 × 11

Conv 256 3×3 11 × 11

Conv 128 3×3 11 × 11

Conv 128 3×3 11 × 11

Pooling - 3×3s2 5×5

FC 128 - 128

FC 2 - 2
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Table III

The predicted calcium mass in mg (denoted as x) for cases with the absence of BACs.

x 0 0<x≤0.5 0.5<x≤1 1<x≤1.5

# cases 35 17 6 5
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Table IV

The classification error when the samples from images in a single view was used for training and testing. For 

comparison, the performance of the model trained by both views is shown as well.

Testing

CC MLO

Training

CC 7.13% 6.88%

MLO 6.85% 6.17%

CC+MLO 6.07% 5.51%
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