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Convolutional Dictionary Learning through Tensor Factorization

Furong Huang ∗ Animashree Anandkumar †

Abstract

Tensor methods have emerged as a powerful paradigm for consistent learning of many latent variable

models such as topic models, independent component analysis and dictionary learning. Model parameters

are estimated via CP decomposition of the observed higher order input moments. However, in many

domains, additional invariances such as shift invariances exist, enforced via models such as convolutional

dictionary learning. In this paper, we develop novel tensor decomposition algorithms for parameter

estimation of convolutional models. Our algorithm is based on the popular alternating least squares

method, but with efficient projections onto the space of stacked circulant matrices. Our method is

embarrassingly parallel and consists of simple operations such as fast Fourier transforms and matrix

multiplications. Our algorithm converges to the dictionary much faster and more accurately compared

to the alternating minimization over filters and activation maps.

Keywords: Tensor CP decomposition, convolutional dictionary learning, convolutional ICA, blind de-
convolution.

1 Introduction

The convolutional dictionary learning model posits that the input signal x is generated as a linear combination
of convolutions of unknown dictionary elements or filters f∗

1 , . . . f
∗
L and unknown activation maps w∗

1 , . . . w
∗
L:

x =
∑

i∈[L]

f∗
i ∗w∗

i , (1)

where [L] := 1, . . . , L. The vector w∗
i denotes the activations at locations, where the corresponding filter

f∗
i is active. Convolutional models are ubiquitous in machine learning for image, speech and sentence
representations [7, 15, 21], and in neuroscience for modeling neural spike trains [10, 18]. Deep convolutional
neural networks are a multi-layer extension of these models with non-linear activations. Such models have
revolutionized performance in image, speech and natural language processing [14, 14, 21].

In order to learn the model in (1), usually a square loss reconstruction criterion is employed:

min
fi,wi:‖fi‖=1

‖x−
∑

i∈[L]

fi∗wi‖2. (2)

The constraints (‖fi‖ = 1) are enforced, since otherwise, the scaling can be exchanged between the filters fi
and the activation maps wi. Also, an additional regularization term is usually added to the above objective,
e.g. to promote sparsity on wi, an ℓ1 term is added.

A popular heuristic for solving (2) is based on alternating minimization [8], where the filters fi are
optimized, while keeping the activations wi fixed, and vice versa. Each alternating update can be solved
efficiently (since it is linear in each of the variables). However, the method is computationally expensive in
the large sample setting since each iteration requires a pass over all the samples, and in modern machine
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learning applications, the number of samples can run into billions. Moreover, the alternating minimization
has multiple local optima and reading the global optimum of (2) is NP-hard in general. This problem is
severely amplified in the convolutional setting due to additional symmetries, compared to the usual dictionary
learning setting (without the convolutional operation). Due to shift invariance of the convolutional operator,
shifting a filter fi by some amount, and applying a corresponding negative shift on the activation wi leaves
the objective in (2) unchanged. Thus, solving (2) is fundamentally ill-posed and has a large number of
equivalent solutions. On the other hand, imposing shift-invariance constraints directly on the objective
function in (2) results in non-smooth optimization which is challenging to solve.

Can we design methods that efficiently incorporate the shift invariance constraints into the learning
problem? Can they break the symmetry between equivalent solutions? Are they scalable to huge datasets?
In this paper, we provide positive answers to these questions. We propose a novel framework for learning
convolutional models through tensor decomposition. We consider inverse method of moments to estimate the
model parameters via decomposition of higher order (third or fourth order) input cumulant tensors. When
the inputs x are generated from a convolutional model in (1), with independent activation maps w∗

i , i.e. a
convolutional ICA model, we show that the moment tensors have a CP decomposition, whose components
form a stacked circulant matrix. We propose a novel method for tensor decomposition when such circulant
(i.e. shift invariance) constraints are imposed.

Our method is a constrained form of the popular alternating least squares (ALS) method for tensor
decomposition1. We show that the resulting optimization problem (in each ALS step) can be solved in
closed form, and uses simple operations such as Fast Fourier transforms (FFT) and matrix multiplications.
These operations have a high degree of parallelism: for estimating L filters, each of length n, we require
O(log n + logL) time and O(L2n3) processors. Thus, our method is embarrassingly parallel and scalable
to huge datasets. We carefully optimize computation and memory costs by exploiting tensor algebra and
circulant structure. We implicitly carry out many of the operations and do not form large (circulant) matrices
to minimize storage requirements.

Moreover, our method requires only one pass over data to compute the higher order cumulant of the input
data or its approximation through sketching algorithms. This is a huge saving in running time compared
to the alternating minimization method in (2) which requires a pass over data in each step. Decoding all
the activation maps wi in each step of (2) is hugely expensive, and our method avoids it by estimating only
the filters fi in the learning step. In other words, the activation maps wi’s are averaged out in the input
cumulant. After filter estimation, the activation maps are easily estimated using (2) in one data pass.

Experiments further demonstrate superiority of our method compared to alternating minimization. Our
algorithm converges accurately and much faster to the true underlying filters compared to alternating mini-
mization. Our algorithm is also orders of magnitude faster than the alternating minimization.

1.1 Related Works

The special case of (1) with one filter (L = 1) is a well studied problem, and is referred to as blind deconvo-
lution [13]. In general, this problem is not identifiable, i.e. multiple equivalent solutions can exist [9]. It has
been documented that in many cases alternating minimization produces trivial solutions, where the filter
f = x is the signal itself and the activation is the identity function [17]. Therefore, alternative techniques have
been proposed, such as convex programs, based on nuclear norm minimization [2] and imposing hierarchical
Bayesian priors for activation maps [20]. However, there is no analysis for settings with more than one filter.
Incorporating Bayesian priors has shown to reduce the number of local optima, but not completely eliminate
them [16, 20]. Moreover, Bayesian techniques are in general more expensive than alternating minimization
in (2).

The extension of blind deconvolution to multiple filters is known as convolutive blind source separation or
convolutive independent component analysis (ICA) [13]. Previous methods directly reformulate convolutive
ICA as an ICA model, without incorporating the shift constraints. Moreover, reformulation leads to an

1The ALS method for tensor decomposition is not to be confused with the alternating minimization method for solving (2).
While (2) acts on data samples, ALS operates on averaged moment tensors.
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increase of number of hidden sources from L to nL in the new model, where n is the input dimension,
which are harder to separate and computationally more expensive. Complicated interpolation methods [13]
overcome these indeterminacies. In contrast, our method avoids all these issues. We do not perform Fourier
transform on the input, instead, we employ FFTs at different iterations of our method to estimate the filters
efficiently.

The dictionary learning problem without convolution has received much attention. Recent results show
that simple iterative methods can learn the globally optimal solution [1,5]. In addition, tensor decomposition
methods provably learn the model, when the activations are independently drawn (the ICA model) [3] or are
sparse (the sparse coding model) [4]. In this work, we extend the tensor decomposition methods to efficiently
incorporate the shift invariance constraints imposed by the convolution operator.

2 Model and Formulation

Notation: Let [n] := {1, 2, . . . , n}. For a vector v, denote the ith element as v(i). For a matrix
M , denote the ith row as M i and jth column as Mj . For a tensor T ∈ R

n×n×n, its (i1, i2, i3)
th entry

is denoted by [T ]i1,i2,i3 . A column-stacked matrix M consisting of M ′
is (with same number of rows) is

M := [M1,M2, . . . ,ML]. Similarly, a row-stacked matrix M from M ′
is (with same number of columns) is

M := [M1;M2; . . . ;ML].

Cyclic Convolution: The 1-dimensional (1-D) n-cyclic convolution f ∗w between vectors f and w is
defined as v = f ∗n w, v(i) =

∑

j∈[n] f(j)w((i− j+1) mod n). On the other hand, linear convolution is the

combination without the modulo operation (i.e. cyclic shifts) above. n-Cyclic convolution is equivalent to
linear convolution, when n is at least twice the support length of both f and w [19], which will be assumed.
We drop the notation n in ∗ for convenience. Cyclic convolution in (2) is equivalent to f ∗w = Cir(f) · w,
and

Cir(f) :=
∑

p

f(p)Gp ∈ R
n×n, (Gp)

i

j
:= δ {((i− j) mod n) = p− 1} , ∀p ∈ [n]. (3)

defines a circulant matrix. A circulant matrix Cir(f) is characterized by the vector f , and each column
corresponds to a cyclic shift of f .

Properties of circulant matrices: Let F be the discrete Fourier transform matrix whose (m, k)-th

entry is Fm
k = ω

(m−1)(k−1)
n , ∀m, k ∈ [n] where ωn = exp(− 2πi

n
). If U :=

√
nF−1, U is the set of eigenvectors

for all n×n circulant matrices [12]. Let the Discrete Fourier Transform of a vector f be FFT(f), we express
the circulant matrix Cir(f) as

Cir(f) = Udiag(F · f)UH = Udiag(FFT(f))UH. (4)

This is an important property we use in algorithm optimization to improve computational efficiency.

Column stacked circulant matrices: We will extensively use column stacked circulant matrices F :=
[Cir(f1), . . . ,Cir(fL)], where Cir(fj) is the circulant matrix corresponding to filter fj .

2.1 Convolutional Dictionary Learning/ICA Model

We assume that the input x ∈ R
n is generated as

x =
∑

j∈[L]

f∗
j ∗w∗

j =
∑

j∈[L]

Cir(f∗
j )w

∗
j = F∗ · w∗, (5)

where F∗ := [Cir(f∗
1 ),Cir(f

∗
2 ), . . . ,Cir(f

∗
L)] is the concatenation or column stacked version of circulant ma-

trices and w∗ is the row-stacked vector w∗ := [w∗
1 ;w

∗
2 ; . . . w

∗
L] ∈ R

nL. Recall that Cir(f∗
l ) is circulant matrix

3
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(a)Convolutional model (b)Reformulated model

Figure 1: Convolutional tensor decomposition for learning convolutional ICA models.(a) The convolutional
generative model with 2 filters. (b) Reformulated model where F∗ is column-stacked circulant matrix.

= ++ . . .. . .

C3 λ1(F∗
1 )

⊗3 λ2(F∗
2 )

⊗3 . . .

Figure 2: Convolutional tensor decomposition for learning convolutional ICA models. The third order
cumulant is decomposed as filters.

corresponding to filter f∗
l , as given by (4). Note that although F∗ is a n by nL matrix, there are only nL

free parameters. We never explicitly form the estimates F of F∗, but instead use filter estimates fl’s to
characterize F . In addition, we can handle additive Gaussian noise in (5), but do not incorporate it for
simplicity.

Activation Maps: For each observed sample x, the activation map w∗
i in (5) indicates the locations

where each filter f∗
i is active and w∗ is the row-stacked vector w∗ := [w∗

1 ;w
∗
2 ; . . . w

∗
L]. We assume that

the coordinates of w∗ are drawn from some product distribution, i.e. different entries are independent of
one another and we have the independent component analysis (ICA) model in (5). When the distribution
encourages sparsity, e.g. Bernoulli-Gaussian, only a small subset of locations are active, and we have the
sparse coding model in that case. We can also extend to dependent distributions such as Dirichlet for w∗,
along the lines of [6], but limit ourselves to ICA model for simplicity.

Learning Problem: Given access toN i.i.d. samples,X := [x1, x2, . . . , xN ] ∈ R
n×N , generated according

to the above model, we aim to estimate the true filters f∗
i , for i ∈ [L]. Once the filters are estimated, we

can use standard decoding techniques, such as the square loss criterion in (2) to learn the activation maps
for the individual maps. We focus on developing novel methods for filter estimation in this paper.

3 Form of Cumulant Moment Tensors

Tensor Preliminaries We consider 3rd order tensors in this paper but the analysis is easily extended to
higher order tensors. For tensor T ∈ R

n×n×n, its (i1, i2, i3)
th entry is denoted by [T ]i1,i2,i3 , ∀i1 ∈ [n], i2 ∈

[n], i3 ∈ [n]. A flattening or unfolding of tensor T ∈ R is the column-stacked matrix of all its slices, given

by unfold(T ) := [[T ]:,:,1, [T ]:,:,2, . . . , [T ]:,:,n] ∈ R
n×n2

. Define the Khatri-Rao product for vectors u ∈ R
a and

v ∈ R
b as a row-stacked vector [u⊙ v] := [u(1)v;u(2)v; . . . ;u(a)v] ∈ R

ab. Khatri-Rao product is also defined
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for matrices with same columns. ForM ∈ R
a×c andM ′ ∈ R

b×c, M⊙M ′ := [M1⊙M ′
1, . . . ,Mc⊙M ′

c, ] ∈ R
ab×c,

where Mi denotes the ith column of M .

Cumulant: The third order cumulant of a multivariate distribution is a third order tensor, which uses
(raw) moments up to third order. Let C3 ∈ R

n×n2

denote the unfolded version of third order cumulant
tensor, it is given by

C3 := E[x(x ⊙ x)⊤]− unfold(Z) (6)

where [Z]a,b,c := E[xa]E[xbxc] + E[xb]E[xaxc] + E[xc]E[xaxb]− 2E[xa]E[xb]E[xc], ∀a, b, c ∈ [n].
Under the convolution ICA model in Section 2.1, we show that the third order cumulant has a nice tensor

form, as given below.

Lemma 3.1 (Form of Cumulants). The unfolded third order cumulant C3 in (6) has the following decom-
position form

C3 =
∑

j∈[nL]

λ∗
jF∗

j (F∗
j ⊙F∗

j )
⊤ = F∗Λ∗ (F∗ ⊙F∗)

⊤
, where Λ∗ := diag(λ∗

1, λ
∗
2, . . . , λ

∗
nL) (7)

where F∗
j denotes the jth column of the column-stacked circulant matrix F∗ and λ∗

j is the third order cumulant
corresponding to the (univariate) distribution of w∗(j).

For example, if the lth activation is drawn from a Poisson distribution with mean λ̃, we have that λ∗
l = λ̃.

Note that if the third order cumulants of the activations, i.e. λ∗
j ’s, are zero, we need to consider higher order

cumulants. This holds for zero-mean activations and we need to use fourth order cumulant instead. Our
methods extend in a straightforward manner for higher order cumulants.

F = blk1(F) . . . blkL(F)

Figure 3: Blocks of the column-stacked circulant matrix F .

The decomposition form in (7) is known as the Candecomp/Parafac (CP) decomposition form [3] (the
usual form has the decomposition of the tensor and not its unfolding, as above). We now attempt to recover
the unknown filters f∗

i through decomposition of the third order cumulants C3. This is formally stated
below.

Objective Function: Our goal is to obtain filter estimates fi’s which minimize the Frobenius norm ‖ ·‖F
of reconstruction of the cumulant tensor C3,

min
F

‖C3 −FΛ (F ⊙ F)⊤‖2
F
,

s.t. blkl(F) = Udiag(FFT(fl))U
H, ‖fl‖2 = 1, ∀l ∈ [L], Λ = diag(λ). (8)

where blkl(F) denotes the lth circulant matrix in F . The conditions in (8) enforce blkl(F) to be circulant
and for the filters to be normalized. Recall that U denotes the eigenvectors for circulant matrices. The rest
of the paper is devoted to devising efficient methods to solve (8).

Throughout the paper, we will use Fj to denote the jth column of F , and blkl(F) to denote the lth

circulant matrix block in F . Note that F ∈ R
n×nL, Fj ∈ R

n and blkl(F) ∈ R
n×n.

4 Alternating Least Squares for Convolutional Tensor Decompo-
sition

To solve the non-convex optimization problem in (8), we consider the alternating least squares (ALS) method
with column stacked circulant constraint. We first consider the asymmetric relaxation of (8) and introduce
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separate variables F ,G and H for filter estimates along each of the modes to fit the third order cumulant
tensor C3. We then perform alternating updates by fixing two of the modes and updating the third one. For
instance,

min
F

‖C3−FΛ (H⊙ G)⊤‖2
F
s.t. blkl(F) = U · diag(FFT(fl)) · UH, ‖fl‖22 = 1, ∀l ∈ [L] (9)

Similarly, G and H have the same column-stacked circulant matrix constraint and are updated similarly in
alternating steps. The diagonal matrix Λ is updated through normalization.

We now introduce the Convolutional Tensor (CT) Decomposition algorithm to efficiently solve (9) in
closed form, using simple operations such as matrix multiplications and fast Fourier Transform (FFT). We
do not form matrices F ,G and H ∈ R

n×nL, which are large, but only update them using filter estimates
f1, . . . , fL, g1, . . . , gL, h1, . . . hL.

Using the property of least squares, the optimization problem in (9) is equivalent to

min
F

‖C3((H⊙ G)⊤)†Λ† −F‖2
F
s.t. blkl(F) = U · diag(FFT(fl)) · UH, ‖fl‖22 = 1, ∀l ∈ [L] (10)

when (H⊙G) and Λ are full column rank. The full rank condition requires nL < n2 or L < n, and it is a
reasonable assumption since otherwise the filter estimates are redundant. In practice, we can additionally
regularize the update to ensure full rank condition is met. Denote

M := C3((H⊙ G)⊤)†, (11)

where † denotes pseudoinverse. Let blkl(M) and blkl(Λ) denote the lth blocks of M and Λ.Since (10) has
block constraints, it can be broken down in to solving L independent sub-problems

min
fl

∥

∥blkl(M) · blkl(Λ)† − U · diag(FFT(fl)) · UH
∥

∥

2

F
s.t. ‖fl‖22 = 1, ∀l ∈ [L] (12)

We present the main result now.

Theorem 4.1 (Closed form updates). The optimal solution fopt
l for (12) is given by

fopt
l (p) =

∑

i,j∈[n]

‖ blkl(M)j‖−1 · blkl(M)ij · Iqp−1

∑

i,j∈[n]

Iqp−1

, ∀p ∈ [n], q := (i− j) mod n. (13)

Further Λ = diag(λ) is updated as λ(i) = ‖Mi ‖, for all i ∈ [nL].

Thus, the reformulated problem in (12) can be solved in closed form efficiently. A bulk of the compu-
tational effort will go into computing M in (11). Computation of M requires 2L fast Fourier Transforms of
length n filters and simple matrix multiplications without explicitly forming G or H. We make this con-
crete in the next section. The closed form update after getting M is highly parallel. With O(n2L/ logn)
processors, it takes O(log n) time.

5 Algorithm Optimization for Reducing Memory and Computa-
tional Costs

We now focus on estimating M := C3((H ⊙ G)⊤)† in (11). If done naively, this requires inverting n2 × nL
matrix and multiplication of n×n2 and n2×nL matrices with O(n6) time. However, forming and computing
with these matrices is very expensive when n (and L) are large. Instead, we utilize the properties of circulant
matrices and the Khatri-Rao product ⊙ to efficiently carry out these computations implicitly. We present
our final result on computational complexity of the proposed method.

Lemma 5.1 (Computational Complexity). With multi-threading, the running time is O(log n+ logL)
per iteration using O(L2n3) processes.

We now describe how we utilize various algebraic structures to obtain efficient computation.

6



Property 1 (Khatri-Rao product): ((H⊙G)⊤)† = (H⊙G)((H⊤H). ⋆ (G⊤G))†, where .⋆ denotes element-
wise product.

Computational Goals: Find ((H⊤H). ⋆ (G⊤G))† first and multiply the result with C3(H⊙G) to find M.

We now describe in detail how to carry out each of these steps.

5.1 Challenge: Computing ((H⊤H). ⋆ (G⊤G))†

A naive implementation to find the matrix inversion ((H⊤H). ⋆ (G⊤G))† is very expensive. However, we in-
corporate the stacked circulant structure of G and H to reduce computation. Note that this is not completely
straightforward since although G and H are column stacked circulant matrices, the resulting product whose
inverse is required, is not circulant. Below, we show that however, it is partially circulant along different
rows and columns.

Property 2 (Block circulant matrix): The matrix (H⊤H). ⋆ (G⊤G) consists of row and column stacked
circulant matrices.

We now make the above property precise by introducing some new notation. Define column stacked
identity matrix I := [I, . . . , I] ∈ R

n×nL, where I is n × n identity matrix. Let U := Blkdiag(U,U, . . . U) ∈
R

nL×nL be the block diagonal matrix with U along the diagonal. The first thing to note is that G and H,
which are column stacked circulant matrices, can be written as

G = I ·U · diag(v) ·UH

, v := [FFT(g1);FFT(g2); . . . ;FFT(gL)], (14)

where g1, . . . gL are the filters corresponding to G, and similarly for H, where the diagonal matrix consists
of FFT coefficients of the respective filters h1, . . . , hL.

blk11(Ψ) . . . blk1L(Ψ)

Ψ = . . . . . . . . .

blkL1 (Ψ) . . . blkLL(Ψ)

Figure 4: Blocks of the row-and-column-stacked diagonal matrices Ψ. blkij(Ψ) is diagonal.

By appealing to the above form, we have the following result. We use the notation blkij(Ψ) for a matrix

Ψ ∈ R
nL×nL to denote (i, j)th block of size n× n.

Lemma 5.2 (Form of (H⊤H). ⋆ (G⊤G) ). We have

((H⊤H). ⋆ (G⊤G))† = U ·Ψ† ·UH, (15)

where Ψ ∈ R
nL×nL has L by L blocks, each block of size n× n. Its (j, l)th block is given by

blkjl (Ψ) = diag
H(FFT(gj)) · diagH(FFT(hj)) · diag(FFT(gl)) · diag(FFT(hl)) ∈ R

n×n (16)

Therefore, the inversion of (H⊤H). ⋆ (G⊤G) can be reduced to the inversion of row-and-column stacked
set of diagonal matrices which form Ψ. Computing Ψ simply requires FFT on all 2L filters g1, . . . , gL and
h1, . . . , hL, i.e. 2L FFTs, each on length n vector. We propose an efficient iterative algorithm to compute
Ψ† via block matrix inversion theorem [11] in Appendix B.

7



5.2 Challenge: Computing M = C3(H⊙ G) · ((H⊤H). ⋆ (G⊤G))†

Now that we have computed ((H⊤H). ⋆ (G⊤G))† efficiently, we need to compute the resulting matrix with
C3(H⊙ G) to obtain M. We observe that the mth row of the result M is given by

Mm =
∑

j∈[nL]

UjdiagH (z)Φ(m)diag (v) (Uj)HUjΨ†UH, ∀m ∈ [nL], (17)

where v := [FFT(g1); . . . ;FFT(gL)], z := [FFT(h1); . . . ;FFT(hL)] are concatenated FFT coefficients of the
filters, and

Φ(m) := UHI⊤Γ(m)IU, [Γ(m)]ij := [C3]
m
i+(j−1)n, ∀i, j,m ∈ [n] (18)

Note that Φ(m) and Γ(m) are fixed for all iterations and needs to be computed only once. Note that Γ(m)

is the result of taking mth row of the cumulant unfolding C3 and matricizing it. Equation (17) uses the
property that C3

m(H⊙G) is equal to the diagonal elments of H⊤ Γ(m) G.
We now bound the cost for computing (17). (1) InvertingΨ takesO(logL+logn) time withO(n2L2/(logn+

logL)) processors according to appendix B. (2) Since diag(v) and diag(z) are diagonal and Ψ is a matrix
with diagonal blocks, the overall matrix multiplication in equation (17) takes O(L2n2) time serially with
O(L2n2) degree of parallelism for each row. Therefore the overall serial computation cost is O(L2n3) with
O(L2n3) degree of parallelism. With multi-threading, the running time is O(1) per iteration using O(L2n3)
processes. (3) FFT requires O(n log n) serial time, with O(n) degree of parallelism. Therefore computing 2L
FFT’s takes O(log n) time with O(Ln) processors.

Combining the above discussion, it takes O(logL+ logn) time with O(L2n3) processors.

6 Experiments: Compare with Alternating Minimization
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Figure 5: Error comparison (on filters and reconstruct tensor) between our convolutional tensor method
(proposed CT) and the baseline alternate minimization method (baseline AM).
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Figure 6: (a) Running time comparison between our proposed CT method and the baseline AM method
under varying L. (b) Running time comparison between our proposed CT method and the baseline AM

method under varying N .

We compare our convolutional tensor decomposition framework with alternating (between filters and
activation map) minimization method in equation (2) where gradient descent is employed to update fi and
wi alternatively.

The error comparison between our proposed convolutional tensor algorithm and the alternating minimiza-
tion algorithm is in figure 5. We evaluate the errors for both algorithms by comparing the reconstruction
of error and filter recovery error. Our algorithm converges much faster to the solution than the alternating
minimization algorithm. In fact, the alternating minimization leads to spurious solution where the recon-
struction error decreases but filter estimation error increases. Note that in experiments, we observe a more
robust performance if we do deflation, meaning that we recover the filters one by one. The error bump in
the reconstruction error curve in figure 5 is due to the random initialization.

The running time is also reported in figure 6 between our proposed convolutional tensor algorithm and
the alternating minimization. Our algorithm is orders of magnitude faster than the alternating minimization.
Both our algorithm and alternating minimization scale linearly with number of filters. However convolutional
tensor algorithm scales constantly with the number of samples whereas the alternating minimization scales
linearly.

7 Discussion

There are number of questions for future investigation. We plan to extend learning sentence embeddings to
handle more challenging tasks involving long documents such as plagiarism detection and reading compre-
hension since our framework is scalable. Since our framework is parallelizable, it can handle long vectors and
learn in an efficient manner. Our framework easily extends to convolutional models for higher dimensional
signals, where the circulant matrix is replaced with block circulant matrices [12]. More generally, our frame-
work can in principle handle general group structure which are diagonalizable. Deploying the frameworks
in settings which incorporate Lie algebra is of great practical interest in computer vision and robotics. By
combining the advantages of tensor methods with a general class of invariant representations, we expect to
have a powerful paradigm for learning efficient embeddings.

9



Acknowledgments

We thank Cris Cecka for helpful discussion on fast implementation of block matrix inverse and initial dis-
cussions with Majid Janzamin and Hanie Sedghi on Toeplitz matrices.

References

[1] A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and R. Tandon. Learning Sparsely Used Overcom-
plete Dictionaries. In Conference on Learning Theory (COLT), June 2014.

[2] Ali Ahmed, Benjamin Recht, and Justin Romberg. Blind deconvolution using convex programming.
Information Theory, IEEE Transactions on, 60(3):1711–1732, 2014.

[3] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor decom-
positions for learning latent variable models. The Journal of Machine Learning Research, 15(1):2773–
2832, 2014.

[4] Animashree Anandkumar, Rong Ge, and Majid Janzamin. Learning overcomplete latent variable models
through tensor methods. In Conference on Learning Theory (COLT), June 2015.

[5] Sanjeev Arora, Rong Ge, and Ankur Moitra. New algorithms for learning incoherent and overcomplete
dictionaries. In Conference on Learning Theory (COLT), June 2014.

[6] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the Journal of machine
Learning research, 3:993–1022, 2003.

[7] Hilton Bristow, Anders Eriksson, and Simon Lucey. Fast convolutional sparse coding. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 391–398. IEEE, 2013.

[8] Hilton Bristow and Simon Lucey. Optimization methods for convolutional sparse coding. arXiv preprint
arXiv:1406.2407, 2014.

[9] Sunav Choudhary and Urbashi Mitra. Sparse blind deconvolution: What cannot be done. In Information
Theory (ISIT), 2014 IEEE International Symposium on, pages 3002–3006. IEEE, 2014.

[10] Chaitanya Ekanadham, Daniel Tranchina, and Eero P Simoncelli. A blind sparse deconvolution method
for neural spike identification. In Advances in Neural Information Processing Systems, pages 1440–1448,
2011.

[11] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.

[12] Robert M Gray. Toeplitz and circulant matrices: A review. Communications and Information Theory,
2(3):155–239, 2005.

[13] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent component analysis, volume 46. John
Wiley & Sons, 2004.

[14] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for mod-
elling sentences. arXiv preprint arXiv:1404.2188, 2014.

[15] Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor, Michaël Mathieu, and Yann L
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Appendix for Convolutional Dictionary Learning
through Tensor Factorization

A Cumulant Form

In [3], it is proved that in ICA model, the cumulant of observation x is decomposed into multi-linear transform
of a diagonal cumulant of h. Therefore, we aim to find the third order cumulant for input x.

As we know that the rth order moments for variable x is defined as

µr := E[xr ] ∈ R
n×n×n (19)

Let us use [µ3]i,j,k to denote the (i, j, k)th entry of the third order moment. The relationship between 3th

order cumulant κ3and 3th order moment µ3is

[κ3]i,j,k = [µ3]i,j,k − [µ2]i,j [µ1]k − [µ2]i,k[µ1]j − [µ2]j,k[µ1]i + 2[µ1]i[µ1]j [µ1]k (20)

Therefore the shift tensor is in this format: We know that the shift term

[Z]a,b,c := E[xi
a]E[x

i
bx

i
c] + E[xb]E[xax

i
c] + E[xc]E[xaxb]− 2E[xa]E[xb]E[xc], a, b, c ∈ [n] (21)

It is known from [3] that cumulant decomposition in the 3 order tensor format is

E[x⊗ x⊗ x]− Z =
∑

j∈[nL]

λ∗
jF∗

j ⊗F∗
j ⊗F∗

j (22)

Therefore using the Khatri-Rao product property,

unfold(
∑

j∈[nL]

λ∗
jF∗

j ⊗F∗
j ⊗F∗

j ) =
∑

j∈[nL]

λ∗
jF∗

j (F∗
j ⊙F∗

j )
⊤ = F∗Λ∗ (F∗ ⊙F∗)⊤ (23)

Therefore the unfolded third order cumulant is decomposed as C3 = F∗Λ∗ (F∗ ⊙F∗)
⊤
.

B Parallel Inversion of Ψ

We propose an efficient iterative algorithm to compute Ψ† via block matrix inversion theorem [11].

Lemma B.1. (Parallel Inversion of row and column stacked diagonal matrix) Let JL = Ψ be partitioned
into a block form:

JL =

[

JL−1 O

R blkLL(Ψ)

]

, (24)

where O :=







blk1L(Ψ)
...

blkL−1
L (Ψ)






, and R :=

[

blk1L−1(Ψ), . . . , blkLL−1(Ψ)
]

. After inverting blkLL(Ψ) which takes

O(1) time using O(n) processors, there inverse of Ψ is achieved by

Ψ† =

[

(JL−1 −OblkLL(Ψ)
−1

R)−1 −(JL−1)
−1

O(blkLL(Ψ)−R(JL−1)
−1

O)−1

−blkLL(Ψ)
−1

R(JL−1 −OblkLL(Ψ)
−1

R)−1 (blkLL(Ψ) −R(JL−1)
−1

O)−1

]

(25)

assuming that JL−1 and blkLL Ψ are invertible.
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This again requires inverting R, O and JL−1. Recursively applying these block matrix inversion theorem,
the inversion problem is reduced to inverting L2 number of n by n diagonal matrices with additional matrix
multiplications as indicated in equation (25).

Inverting a diagonal matrix results in another diagonal one, and the complexity of inverting n × n
diagonal matrix is O(1) with O(n) processors. We can simultaneous invert all blocks. Therefore with
O(nL2) processors, we invert all the diagonal matrices in O(1) time. The recursion takes L steps, for step
i ∈ [L] matrix multiplication cost is O(lognL) with O(n2L/ log(nL)) processors. With L iteration, one
achieves O(log n+ logL) running time with O(n2L2/(logL+ logn)) processors.
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