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Abstract
Rationale Mice lacking metabotropic glutamate receptors 5
(mGluR5) exhibit reduced glutamatergic function and
behavioral abnormalities, including deficits in prepulse
inhibition (PPI) of the startle response that may be relevant
to schizophrenia. Thus, these mice are an animal model that
may be used for preclinical evaluation of potentially new
classes of antipsychotic compounds. Recent clinical studies
have suggested several compounds that modulate glutama-
tergic transmission through distinct mechanisms, such as
potentiation of the N-methyl-D-aspartate (NMDA) receptor
glycine site, activation of group II mGluR, and activation of
glutamate-cysteine antiporters, as being efficacious in the
treatment of schizophrenia.
Objectives The aim of this work is to evaluate the effects of
sarcosine (a selective inhibitor of the glycine transporter 1
[GlyT1]), LY379268 (a group II mGluR agonist), and N-
acetylcysteine (a cysteine prodrug that indirectly activates
cystine-glutamate antiporters to increase glutamate levels in
the extrasynaptic space) on PPI deficits in mGluR5
knockout mice.

Results Sarcosine and N-acetylcysteine, but not LY379268,
ameliorated PPI deficits in mGluR5 knockout mice. The
ability of N-acetylcysteine to restore PPI deficits was not
blocked by the group II mGluR antagonist LY341495,
indicating that the effects of N-acetylcysteine were not
attributable to activation of group II mGluRs by glutamate.
Conclusions These findings provide evidence that the
interactions between mGluR5 and NMDA receptors are
involved in the regulation of PPI and suggest that activation
of glutamate receptors, other than group II receptors, by
increased endogenous glutamate transmission, may amelio-
rate the behavioral abnormalities associated with mGluR5
deficiency.

Keywords Schizophrenia . Glycine transporter inhibitor .

NMDA receptor . mGluR2 agonist

Introduction

The glutamatergic hypothesis of schizophrenia suggests
that dysfunction in glutamatergic signaling contributes to
the pathophysiology of this disorder (Coyle et al. 2003;
Stahl 2007). This hypothesis derives from observations of a
schizophrenia-like syndrome evoked by pharmacological
blockade of N-methyl-D-aspartate (NMDA) receptor chan-
nels with phencyclidine (PCP) or ketamine (Adler et al.
1999; Krystal et al. 1994; Lindsley et al. 2006). Metabo-
tropic glutamate receptor 5 (mGluR5) has an expression
pattern mirroring that of NMDA receptors, indicating the
interaction between these two receptor types (Awad et al.
2000; Pisani et al. 2001). Furthermore, mGluR5 is linked to
the NMDA receptor via Homer, Shank, and postsynaptic
density protein of 95 kDa (PSD-95; Tu et al. 1999). Such
linkages allow for reciprocal potentiation of function and
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synergistic activity between these two receptors. Indeed,
many of the outcomes of mGluR5 blockade or ablation may
stem from loss of the cooperative effects of mGluR5 and
NMDA receptors. The disturbances in hippocampal long-
term potentiation (LTP) observed in mGluR5 knockout
mice are restricted to NMDA receptor-dependent pathways
(Jia et al. 1998; Lu et al. 1997). Moreover, the mGluR5
antagonists 2-methyl-6-(phenylethynyl)pyridine (MPEP)
and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine
(MTEP) augment the behavioral effects induced by the
NMDA receptor antagonists PCP and MK-801, including
locomotor hyperactivity, prepulse inhibition (PPI) deficits,
and learning impairments (Campbell et al. 2004; Henry
et al. 2002; Homayoun et al. 2004; Kinney et al. 2003;
Pietraszek et al. 2005). In contrast, the mGluR5 agonist
(RS)-2-chloro-5-hydroxyphenylglycine (CHPG) effectively
reverses these behavioral effects of ketamine (Chan et al.
2008). Altogether, the data suggest that mGluR5 plays an
important role in the dysregulation of NMDA-mediated
neurotransmission in schizophrenia-related processes.

Sensorimotor gating, measured by PPI of the startle
response, is a fundamental form of information processing
that may be deficient in some schizophrenia patients and
rodents treated with NMDA receptor antagonists (al-Amin
and Schwarzkopf 1996). Therefore, PPI is widely used to
study the neurobiology of schizophrenia (Braff et al. 2001;
Geyer et al. 2001, 2002). Although PPI deficits have been
found in schizophrenia (Braff et al. 2005), such PPI deficits
are not diagnostic or unique to schizophrenia, because they
are found in unaffected siblings (Wynn et al. 2004), and
women with schizophrenia did not differ in PPI from
healthy women (Kumari et al. 2004). Moreover, PPI
deficits have been reported in many other nonpsychotic,
psychiatric, and neurological disorders, suggesting that PPI
deficits may reflect cognitive deficits in general (Geyer 2006).
The mGluR5 antagonist MPEP has no effect on PPI by itself
but potentiates PCP-induced disruptions of PPI (Henry et al.
2002). Mice lacking mGluR5 exhibit PPI deficits (Brody et
al. 2004a; Kinney et al. 2003; Lipina et al. 2007) that are
reversible by chronic (Gray et al. 2009), but not acute (Brody
et al. 2004a), treatment with clozapine. This reversal of PPI
deficits by clozapine has been attributed to upregulation of
NMDA receptors (Gray et al. 2009). Moreover, a positive
modulator of α-amino-3-hydroxy-5-methyl-4-isoxazole-pro-
pionic acid (AMPA) receptors, CX546, restored PPI deficits
in mGluR5 knockout mice (Lipina et al. 2007). PPI deficits
seen in mGluR5 knockout mice are not mimicked by acute
administration of mGluR5 antagonists, and these deficits are
most likely attributable to compensatory alterations in
neuronal circuitry occurring during development (Kinney
et al. 2003). The reduced physiological responses associated
with NMDA receptor function are suggested to play a critical
role in the behavioral alterations seen in mGluR5 knockout

mice. mGluR5 knockout mice, therefore, may represent a
model of diseases characterized by PPI deficits and NMDA
receptor hypofunction, such as schizophrenia. Thus, this
genetic model may offer a unique opportunity to develop
antipsychotic compounds with novel mechanisms of action
working through the glutamatergic system.

To verify the predictive validity of this model (Geyer
and Markou 1995; Markou et al. 2009), the effects of a
variety of compounds that have been shown in earlier
clinical trials of schizophrenia to modulate the glutamater-
gic system through distinct mechanisms and with therapeu-
tic potential were evaluated on PPI deficits in mGluR5
knockout mice. The glutamate modulating agents included
sarcosine, a glycine transporter-1 (GlyT-1) inhibitor,
LY379268, an mGluR2/3 agonist, and N-acetylcysteine, a
cysteine prodrug that indirectly activates cystine-glutamate
antiporters located in the glial cells to increase glutamate
levels in the extrasynaptic space. After demonstrating that
sarcosine and N-acetylcysteine, but not the mGluR2/3
agonist LY379268, reversed PPI deficits in mGluR5
knockout mice, we examined whether the mGluR2/3
antagonist LY341495 can block the ameliorating effects of
N-acetylcysteine on PPI deficits in mGluR5 knockout mice.

Materials and methods

Animals

mGluR5 knockout mice (Grm5tm1Rod; Jia et al. 1998)
were backcrossed to C57BL/6J for at least 10 generations.
Wild-type and knockout mice used in our study were
generated by mating male and female heterozygous parents.
Wild-type mice were littermates of the knockout animals,
with the genotypes determined by polymerase chain
reaction. Mice were housed in groups of four, with food
and water available ad libitum. The animal holding room
was maintained on a 12-h light/dark cycle (lights off at
0700 hours). All experiments were conducted in accordance
with the guidelines of the American Association for the
Accreditation of Laboratory Animal Care and the National
Research Council's Guide for Care and Use of Laboratory
Animals and were approved by the University of Califor-
nia, San Diego, Institutional Animal Care and Use
Committee.

Prepulse inhibition apparatus and procedure

Three startle chambers were used to measure the startle
response (SR-LAB, San Diego Instruments, San Diego,
CA, USA). Each chamber consisted of a nonrestrictive
Plexiglas cylinder mounted on a frame inside a lit,
ventilated box (39×38×58 cm). Movements within the
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cylinder were detected by a piezoelectric accelerometer that
was attached beneath the cylinder. Vibrations detected by
the accelerometer were transduced into analog electrical
signals that were subsequently digitized and stored by a
computer. A total of 65 readings were recorded at 1-ms
intervals, commencing at stimulus onset, and the average
amplitude was used to describe the acoustic startle
response. A high-frequency loudspeaker inside the box,
mounted 24 cm above the chamber, generated the broad-
band background noise and acoustic stimuli, which were
controlled by the SR-LAB software system and interface.
The PPI chambers and cylinders were cleaned with 70%
ethanol between mice.

The experimental session consisted of a 10-min accli-
matization period in which only broadband background
noise (65 dB) was presented. The acclimatization was
followed by a PPI session that consisted of five different
trial types: no stimulus trials (NOSTIM), a startle pulse
alone trial of 40 ms at 120 dB (P120), and three prepulse+
pulse trials of a 20-ms noise prepulse at 69, 73, or 77 dB,
followed by a 80-ms delay, then a 40-ms 120 dB startle
pulse. The NOSTIM trial consisted of only broadband
background noise. All test sessions commenced and
concluded with five presentations of the P120 trial, and
the remainder of the session consisted of 10 presentations
of each trial type in a pseudorandom order, with varying
intertrial intervals (mean, 15 s; range, 12–30 s). Each
animal was always tested in the same startle chamber. The
startle magnitude was calculated as the average of all pulse
alone trials, excluding the first and last five such trials in
each session. PPI was calculated as the percent inhibition of
the startle amplitude evoked by the pulse alone: % PPI ¼
magnitude on pulse alone trial�magnitude on prepulse plusð
pulse trialÞ= magnitude on pulse alone trialÞ�100ð .

Drugs

Sarcosine and N-acetylcysteine were purchased from Sigma
(St. Louis, MO, USA) and were dissolved in saline.
LY379268 and LY341495 were purchased from ANAWA
(Wangen, Switzerland) and Tocris (Bristol, UK), respec-
tively, and were dissolved in sterile water, pH adjusted to
7.4 with sodium hydroxide. All drugs were administered
intraperitoneally in a volume of 10 ml/kg.

Experimental design

Experiment 1: effect of sarcosine on PPI in wild-type and
mGluR5 knockout mice Wild-type and mGluR5 knockout
mice (male, n=4; female, n=4) were pretreated with
sarcosine (0, 100, or 300 mg/kg, i.p.) 30 min prior to the
start of the PPI test in a counterbalanced order, using a
within-subjects design.

Experiment 2: effect of LY379268 on PPI in wild-type and
mGluR5 knockout mice Wild-type and mGluR5 knockout
mice (male, n=4; female, n=3) were administered with the
mGluR2/3 agonist LY379268 (0, 3, or 10 mg/kg, i.p.)
30 min prior to the start of the PPI test in a counterbalanced
order, using a within-subjects design.

Experiment 3: effect of N-acetylcysteine on PPI in wild-type
and mGluR5 knockout mice Wild-type and mGluR5
knockout mice (male, n=5; female, n=3) were pretreated
with N-acetylcysteine (0, 50, or 100 mg/kg, i.p.) 90 min
prior to the start of the PPI test in a counterbalanced order,
using a within-subjects design.

Experiment 4: combined effects of LY341495 and N-
acetylcysteine on impaired PPI in mGluR5 knockout
mice Eight mGluR5 knockout mice (male, n=4; female, n=
4) received drug treatment according to a within-subjects
Latin-square design. mGluR5 knockout mice were pretreated
with N-acetylcysteine (100 mg/kg, 90 min) and the mGluR2/
3 antagonist LY341495 (0, 1, or 5 mg/kg, 60 min) prior to
the start of the PPI test.

The animals were only used for one experiment. Each
test session was separated by at least 5 days.

Data analyses

Multiple factor analysis of variance (ANOVA) tests were
employed to assess group variations across the data.
Statistically significant effects in the ANOVA were fol-
lowed with Student–Newman–Keuls post hoc comparisons.
The level of significance was set at 0.05. Variation with sex
was tested within each dataset (as a factor in the ANOVA)
before combining groups for further analysis; in no case
was a significant main effect or interactive effect of sex
observed. However, the limited availability of animals of
each sex does not give this study statistical power to
identify subtle or complex sex-related variations.

Results

Experiment 1: effect of sarcosine on PPI in wild-type
and mGluR5 knockout mice

Four-way repeated measures ANOVA on PPI values
revealed a main effect of sarcosine treatment (F2,42=
6.599, p<0.01), genotype (F1,42=35.97, p<0.001), and
prepulse intensity (F1,42=82.385, p<0.001), but no main
effect of sex. Then, the sexes were collapsed, and a three-
way ANOVA was run. A significant sarcosine treatment×
genotype interaction (F2,42=5.69, p<0.01) was shown. Post
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hoc tests indicated that this interaction effect was attribut-
able to statistically lower PPI in mGluR5 knockout mice
compared with wild-type mice. Furthermore, sarcosine
significantly increased PPI in knockout mice, but not in
wild-type mice. Specifically, statistically significant differ-
ences were observed between wild-type and knockout mice
treated with vehicle, but no differences between wild-type
and knockout mice treated with sarcosine at prepulse
intensities of 69 and 73 dB, indicating a reversal of PPI
deficits in the knockout mice. Three-way ANOVA revealed
that sarcosine treatment, genotype, and sex had no effect on
startle amplitude (Fig. 1b).

Experiment 2: effect of LY379268 on PPI in wild-type
and mGluR5 knockout mice

Four-way repeated-measures ANOVA on PPI values
revealed a main effect of genotype (F1,36=35.66, p<

0.001) and prepulse intensity (F1,36=106.52, p<0.001),
indicating that the mGluR5 knockout mice exhibited a PPI
deficit. There was no effect of sex or LY379268 treatment.
After the sexes were collapsed and a three-way ANOVA
was run, no LY379268 treatment×genotype interaction was
found (Fig. 2a), and treatment (LY379268) and genotype
did not affect startle amplitude (Fig. 2b).

Experiment 3: effect of N-acetylcysteine on PPI
in wild-type and mGluR5 knockout mice

Four-way repeated-measures ANOVA indicated a main
effect of N-acetylcysteine treatment (F2,42=6.996, p<0.01),
genotype (F1,42=46.71, p<0.001), and prepulse intensity
(F2,42=107.56, p<0.001), but no main effect of sex. After
the sexes were collapsed and a three-way ANOVA was run,
no N-acetylcysteine treatment×genotype interaction was
found, which was attributable to N-acetylcysteine enhancing
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Fig. 1 Effects of sarcosine on PPI in mGluR5+/+ and mGluR−/− mice.
Percentage of PPI (a) and startle amplitude (b) at each of three
prepulse levels (69, 73, and 77 dB) are presented. Data are expressed
as mean±SEM (n=8). * p<0.05, compared with vehicle-treated group
of the same genotype; # p<0.05, compared with the same treatment
group of wild-type mice
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Fig. 2 Effects of the mGluR2/3 agonist LY379268 on PPI in
mGluR5+/+ and mGluR−/− mice. Percentage of PPI (a) and startle
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presented. Data are expressed as mean±SEM (n=7). # p<0.05,
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PPI in both wild-type and knockout mice at prepulse
intensities of 69 and 73 dB (Fig. 3a). Treatment (N-
acetylcysteine) and genotype did not affect startle amplitude
(Fig. 3b).

Experiment 4: combined effect of LY341495
and N-acetylcysteine on impaired PPI in mGluR5
knockout mice

Three-way repeated-measures ANOVA revealed a main
effect of drug treatment (F3,42=8.37, p<0.001) and
prepulse intensity (F2,42=41.36, p<0.001), but no effect
of sex. Post hoc analysis indicated that the LY341495 (1
and 5 mg/kg) plus N-acetylcysteine-treated groups were not
different from the N-acetylcysteine only-treated group. This
pattern of results demonstrates that the mGluR2/3 antago-
nist LY341495 did not block the beneficial effects N-

acetylcysteine on PPI deficits in mGluR5 knockout mice
(Fig. 4a). No significant difference was found between
groups in startle amplitude (Fig. 4b).

Discussion

Confirming previous findings (Brody et al. 2004a, b; Gray
et al. 2009; Kinney et al. 2003; Lipina et al. 2007), our
results showed that mGluR5 knockout mice exhibited
pronounced deficits in PPI of the startle response. Impor-
tantly, the present data showed that these PPI deficits in
mGluR5 knockout mice were ameliorated by acute treat-
ment with the GlyT-1 inhibitor sarcosine and the cysteine
prodrug N-acetylcysteine, but not by the group II mGluR
agonist LY379268. Furthermore, the reversal of PPI deficits
by N-acetylcysteine in mGluR5 knockout mice was not
blocked by the group II mGluR antagonist LY341495.
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prepulse levels (69, 73, and 77 dB) are presented. Data are expressed as
mean±SEM (n=8). * p<0.05, compared with the vehicle-treated group
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group of wild-type mice
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mGluR5 knockout mice are resistant to acute treatment
with typical and atypical antipsychotics (Brody et al.
2004a). However, our results showed that acute sarcosine
treatment effectively ameliorated PPI deficits in mGluR5
knockout mice, consistent with the positive results reported
in antipsychotic-naive acute schizophrenia patients (Lane et
al. 2005, 2008), whereas other NMDA receptor-enhancing
agents, including glycine and D-cycloserine, have not been
effective antipsychotics (Buchanan et al. 2007). Sarcosine
increases the availability of the NMDA receptor co-agonist
glycine via inhibition of GlyT-1, as well as directly
enhances NMDA receptor function as a co-agonist (Zhang
et al. 2009). The dual mechanism by which sarcosine
enhances NMDA receptor function might explain why
sacrosine is superior to D-serine for the treatment of
schizophrenia (Lane et al. 2005). Several studies have
demonstrated the ameliorating effects of GlyT-1 inhibitors
on neurochemical and behavioral disturbance related to
NMDA receptor hypofunction. For example, N[3-(4′-
flurophenyl)-3-(4′-phenylphenoxy) propyl]sarcosine (NFPS),
a more potent Gly-T1 inhibitor than sarcosine, rescues LTP
(Manahan-Vaughan et al. 2008) and cognitive impairment
(Karasawa et al. 2008) induced by administration of the
NMDA receptor antagonist MK-801 in rats, prevents
dopaminergic dysregulation observed after subchronic or
chronic administration of the NMDA receptor antagonist
PCP (Javitt et al. 2004), and ameliorates cognitive deficits in
mice chronically treated with PCP (Hashimoto et al. 2008).
Sarcosine, at the same dose as we used (100 mg/kg), has been
found to effectively reduce ketamine-induced PPI deficits and
c-Fos expression in certain brain regions (Yang et al. 2009).
Together with the observations that mGluR5 knockout mice
are resistant to the disruptive effects of MK-801 on PPI and
that a positive modulator of AMPA receptors restores PPI
deficits in mGluR5 knockout mice (Lipina et al. 2007), our
findings further support a hypofunctional state of NMDA
receptors in mGluR5 knockout mice which leads to behav-
ioral abnormalities with potential relevance to schizophrenia.

Our data showed that LY379268 had no effect on PPI
deficits in mGluR5 knockout mice. At the same dose levels
(3 and 10 mg/kg), LY379268 significantly reduced PCP-
evoked hyperactivity and behavioral alterations (i.e., cir-
cling, falling, stereotypy, and ataxia, as well as
amphetamine-evoked hyperactivity; Woolley et al. 2008).
Additionally, LY379268 (1–3 mg/kg) reduced ketamine-
evoked hyperlocomotion and ketamine-induced changes in
glutamate in the dentate gyrus. However, this compound
(3–12 mg/kg) did not restore PPI deficits induced by
ketamine (Imre et al. 2006b). Similarly, other mGluR2/3
agonists, such as LY354740 or LY314582, did not
ameliorate either PPI deficits induced by PCP (Henry et
al. 2002; Ossowska et al. 2000; Schlumberger et al. 2009;
Schreiber et al. 2000) or subchronic ketamine administra-

tion (Imre et al. 2006a). Although PPI cannot be considered
to be a cognitive process per se, abnormalities in pre-
attentive information processing may be predictive of, or
lead to, complex cognitive deficits (Geyer 2006). Moreover,
LY354740 alone produces cognitive impairments (Higgins
et al. 2004). Thus, the therapeutic potential of mGluR2/3
agonists may be specific to the positive and negative
symptoms, but not against sensorimotor and cognitive
deficits in schizophrenia.

Clinically, N-acetylcysteine has been found to improve
mismatch negativity, a deficit seen in schizophrenia patients
(Lavoie et al. 2008), and to ameliorate positive and negative
symptoms as an add-on treatment (Berk et al. 2008) in
schizophrenia patients. Our results demonstrate that N-
acetylcysteine significantly ameliorated the pronounced PPI
deficits observed in mGluR5 knockout mice. Recently, N-
acetylcysteine has been reported to block PCP-evoked
extracellular glutamate in the prefrontal cortex and social
withdrawal and memory deficits in rats, and these effects
require cystine-glutamate exchange and group II mGluR
activation (Baker et al. 2008). Thus, the present study
sought to determine whether group II mGluR activation is
involved in the ameliorating effects of N-acetylcysteine on
PPI deficits in mGluR5 knockout mice. We found that the
ability of N-acetylcysteine to restore PPI deficits in
mGluR5 knockout mice was not blocked by the mGluR2/3
antagonist LY341495. Consistent with the lack of effect of
the mGluR2/3 agonist LY379268 on PPI deficits, the
mechanism underlying the reversal of PPI deficits by N-
acetylcysteine in mGluR5 knockout mice probably does not
involve mGluR2/3 activation by the enhanced glutamate
release induced by N-acetylcysteine administration. Notably,
a large portion of mGluR1 is distributed extrasynaptically
(Hubert and Smith 2004). Moreover, recent evidence has
linked activation of extrasynaptic NMDA receptors with
astrocytic gliotransmission (Fellin et al. 2004; Le Meur
et al. 2007). It is possible that extrasynaptic mGluR1 and
NMDA receptors are implicated in the ameliorating effect
of N-acetylcysteine on PPI deficits in mGluR5 knockout
mice.

In addition to regulating the levels of extrasynaptic
glutamate, N-acetylcysteine-evoked elevations of cysteine
can trigger glutathione synthesis in neurons and glial cells.
Glutathione is known to potentiate the NMDA receptor
response to glutamate (Kohr et al. 1994), either by acting at
redox modulatory sites (Sullivan et al. 1994) or by
blocking high-affinity Zn2+ inhibition through Zn2+ chela-
tion (Paoletti et al. 1997). The attenuation of PPI deficits in
mGluR5 knockout mice by N-acetylcysteine might be
attributable to the potentiation of NMDA receptors through
glutathione. Several lines of evidence suggest that oxidative
stress associated with impaired metabolism of the antiox-
idant glutathione plays a key role in the pathophysiology of
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schizophrenia. Glutathione levels in cerebrospinal fluid were
significantly lower in drug-free patients with schizophrenia
than in control subjects (Do et al. 2000). Furthermore,
decreased levels of glutathione, glutathione-peroxidase, and
glutathione reductase in the caudate region were observed in
postmortem brain samples from patients with schizophrenia
(Do et al. 2000). Whether the levels of glutathione are lower
in mGluR5 knockout mice compared with wild-type animals
remains to be determined.

In summary, the present results indicate that lack of
mGluR5 during development and in adulthood is associated
with PPI deficits relevant to schizophrenia that can be
improved by acute treatment with sarcosine, a GlyT-1
inhibitor and NMDA receptor co-agonist, or N-acetylcys-
teine, a precursor of glutathione and also a prodrug of
cysteine, but not with the mGluR2/3 agonist LY379268.
Our results, together with an earlier report showing that the
AMPA receptor modulator CX546 restored PPI deficits in
mGluR5 knockout mice (Lipina et al. 2007), support the
hypothesis that mGluR5 knockout mice represent an
animal model to preclinically detect antipsychotic com-
pounds with novel mechanisms of action that may involve
potentiation of NMDA receptor function for the treatment
of sensorimotor gating and cognitive impairments. Addi-
tionally, these findings provide evidence that interactions
between mGluR5 and NMDA receptors, but not mGluR2/3,
are involved in the regulation of PPI and suggest that
positive modulation of NMDA receptor function may
ameliorate the behavioral abnormalities associated with
mGluR5 deficiency.
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