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ABSTRACT OF THE DISSERTATION 

Investigation of genomic mechanisms regulating adipose tissue function and influencing body 

mass index and waist-hip-ratio 

by 

David Zhi-Chao Pan 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2020 

Professor Päivi Pajukanta, Chair 

 

Obesity is a well-established risk factor for multiple common disorders, such as type 2 diabetes 

(T2D), hypertriglyceridemia, non-alcoholic fatty liver disease (NAFLD), coronary artery disease 

(CAD), and certain cancers. The rates of obesity-related deaths have risen sharply globally over 

the last 20 years, with over 70% of adults in the United States now classified as overweight or 

obese according to the Centers for Disease Control (CDC). Currently, as the world faces one of 

the worst infectious-disease outbreaks in a century, new data are also emerging showing that 

obesity is a key risk factor for severe forms of COVID-19. However, the complex underlying 

mechanisms of obesity, especially the susceptibility genes and their regulatory mechanisms, 

remain elusive. To address this scientific knowledge gap, we have employed integrative multi-

omics approaches on human subcutaneous adipose RNA-sequencing (RNA-seq) data from 

multiple cohorts; epigenomic data from chromosomal interactions and open chromatin in 

relevant adipose cell-types; large scale obesity genome-wide association studies (GWAS) for 

body mass index (BMI) and waist-hip-ratio adjusted for BMI (WHRadjBMI); and one of the 

largest population cohort to date, the UK Biobank (UKB).  
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In Chapter 2, we fine-mapped BMI GWAS loci using cis-expression quantitative trait 

loci (eQTLs) from the METabolic Syndrome In Men (METSIM) cohort and chromosomal 

interactions from adipocyte promoter Capture Hi-C (pCHi-C). We discovered that the pCHi-C 

interactions are enriched for central adipogenesis transcription factors (TFs), Peroxisome 

Proliferator Activated Receptor Gamma (PPARG) and CCAAT Enhancer Binding Protein Beta 

(CEBPB), and identified four key GWAS gene examples as well as 38 additional candidate 

genes with cis-eQTLs in chromosomal interactions whose gene expression are strongly 

associated with obesity-related traits, such as BMI, blood metabolites, and lipids.  

In Chapter 3, I discuss my contribution to a study about context-specific changes in open 

chromatin and pCHi-C interactions in human primary adipocytes and the variants in those open 

chromatin regions that respond to lipid intake. Using these context-specific molecular data, we 

provide candidate gene-environment interaction (GxE) variants that significantly alter TF motifs 

in open chromatin regions, which are evolutionarily conserved and have a key role in 

adipogenesis and the responses to lipid intake. These candidate GxE variants with molecular 

priors were then tested for interactions with saturated fat intake on obesity in the UKB, resulting 

in the discovery of novel GxE variants for obesity. 

In Chapter 4, we move beyond cis-eQTLs, to trans-eQTLs and master trans regulatory 

TFs that control adipose co-expression networks important for obesity. To advance the discovery 

of unknown genetic and molecular mechanisms regulating abdominal adiposity and the sex-

specific distribution of body fat, we searched for genetic master trans regulators of WHRadjBMI 

by employing integrative genomics approaches on human adipose RNA-seq data and 

WHRadjBMI GWAS. We provide novel genomic evidence, verified by our functional 
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knockdown studies in human primary preadipocytes, for the causal role of the TF, T-Box 

Transcription Factor 15 (TBX15), in controlling accumulation of abdominal fat and adiposity. 

 All in all, we have combined these omics and phenotype data using computational and 

functional techniques to identify genes and their regulatory mechanisms affecting obesity. Our 

studies suggest that by integrating the multi-omics data and elucidating the mechanisms 

underlying obesity, we can further the understanding of the risks associated with obesity and its 

comorbidities to move personalized medicine forward. 
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Chapter 1 

Introduction 
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1.1 Adipose biology and obesity 

As the world faces one of the worst infectious-disease outbreaks in a century, new data are 

emerging showing that obesity is a key risk factor for severe forms of COVID-19 infection in 

individuals less than 60 years of age1,2. Obesity is clinically diagnosed by a body mass index 

(BMI) greater than 30 kg/m2, while severe obesity is defined as BMI greater than 40 kg/m2. One 

of the key tissues involved in obesity is adipose tissue. Although originally thought of as simply 

a storage organ, adipose is now recognized as an important endocrine regulator of energy 

homeostasis in the human body through secretion of hormones, cytokines, and metabolites 

(known as adipokines)3. Over the years, adipokines, such as leptin4 and adiponectin5,6,  as well as 

many others7–10, have been shown to be secreted by adipose tissue and have effects on obesity.  

Many other organisms and human infants have both white adipose tissue (WAT), for the 

storage of lipids, and brown adipose tissue (BAT), for thermoregulation; however, adult humans 

have lost most BAT deposits in the body, except for small deposits near the neck3. Further 

subdividing the types of adipose tissue, WAT has two main types of deposits, subcutaneous 

WAT (SAT) and visceral WAT (VAT). While VAT is thought to be more metabolically 

important than SAT, with links to type 2 diabetes (T2D) and insulin resistance11,12, SAT displays 

larger changes in weight13 and is easier to acquire through less invasive biopsies from living 

individuals.  

 To further complicate studies of WAT and obesity, as individuals become obese, WAT 

undergoes two types of expansion: hypertrophy or hyperplasia, both of which have been shown 

to be regulated by genetic as well as environmental factors14. Hyperplasia represents the healthy 

increase in the number of adipocytes to store lipids, which drives metabolic health and 

temporally even metabolically healthy obesity. This process, which includes differentiation of 
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preadipocytes to mature adipocytes, is controlled by adipogenesis master regulators, such as 

peroxisome proliferator-activated receptor gamma (PPARG) and CCAAT enhancer binding 

protein (CEBPB)15. Hypertrophy, on the other hand, is characterized by an increase in adipocyte 

size instead of number, which leads to large adipocytes storing fat and expanding in size until 

they burst. When adipocytes burst, this triggers an immune response, initiated by macrophages 

and then furthered by other immune cells, such as neutrophils and T cells, to clean up the cell 

debris. This infiltration of immune cells leads to an increase in the release of inflammatory 

cytokines, resulting in obese individuals’ WAT residing in a continuously inflamed state, altering 

the adipose tissue function and leading to comorbidities of obesity, such as impaired insulin 

sensitivity16–19. The molecular mechanisms underlying the differences between individuals who 

undergo hypertrophy versus hyperplasia and the gene regulatory mechanisms altered by obesity 

during adipogenesis are still incompletely understood. 

  

1.2 Genomic regulatory landscape and chromosomal interactions 

As the rapid development of next-generation sequencing techniques has decreased the price and 

increased the efficiency of acquiring gene expression information20, it provides the opportunity 

to increase our understanding of the regulatory mechanisms that control gene expression21. When 

focusing on the genes that have the largest amount of prior information, i.e. the protein coding 

genes, one of the most common regulatory mechanisms consists of DNA binding proteins, such 

as transcription factors (TFs), binding to DNA motifs (TF binding sites (TFBSs)), thus activating 

or repressing gene promoters, which in turn, raises or lowers the gene expression levels, 

respectively22. There are TFs that are known to be master regulators, which control specific key 

pathways within cells, such as those related to immune response23, as well as those that drive cell 

differentiation, such as PPARG and CEBPB in adipocytes15. Experimental methods of assessing 
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TF binding and TFBSs, including chromatin immunoprecipitation sequencing (ChIP-seq), 

involve crosslinking TFs with their bound sequences, cutting the DNA with exonucleases, 

pulling down the protein of interest with a specific antibody, and finally sequencing the DNA to 

which the protein is bound to find the particular TFBS sequence23. Computational methods have 

complimented this technology by analyzing the sequences produced by many ChIP-seq 

experiments, and finding canonical TFBSs24. These computationally defined TFBSs consist of 

matrices (position weight matrix (PWM)), indicating how likely a specific DNA nucleotide is to 

appear at a certain position in the TFBS, with extensive databases curated of these PWMs 

(TRANSFEC25; JASPAR26). However, when scanning the entire human genome using these 

PWMs, many more statistically significant locations appear across the human genome than are 

confirmed by ChIP-seq experiments, indicating that TF binding to DNA is pervasive and 

depends on a multitude of complex factors beyond the recognition of a particular DNA 

sequence27. 

 TFs usually bind in complexes made up of multiple proteins binding to DNA together, 

partially explaining the differences between computationally defined TFBSs and experimental 

findings21. This fact also indicates that large regions of the human genome consisting of many 

TFBSs may also have a role in gene regulation. These large regions are collectively known as 

regulatory elements, usually classified into two main categories: enhancers and repressors, which 

increase or decrease gene expression, respectively28. Regulatory elements are usually defined by 

the modifications on the histones, the proteins that affect the organization of DNA into its most 

basic unit, the nucleosome29,30. ChIP-seq experiments, along with identifying TFBSs, can 

identify regions of DNA that are wrapped around nucleosomes with certain marks, such as 

H3K4me1 and H3K27ac at active enhancers29. Computationally, aggregating these ChIP-seq 
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experiment data across many cell-types and cell lines can provide a genome-wide picture of 

regulatory elements, such as those from ChromHMM31. These computationally identified 

regulatory elements can be combined with information about the three dimensional organization 

of the genome and TFBSs to help identify regions of the genome with enhancing and repressing 

effects32. 

The organization of these regulatory elements and the three-dimensional confirmation of 

DNA is of great importance for gene regulation, and changes to the three-dimensional 

confirmation of DNA may have direct effects on gene expression33. The first modern interaction 

assay, called chromosome confirmation capture (3C), was invented in 200234, and it assesses the 

contact frequency between two genomic regions, making up one chromosomal interaction, at a 

time. The general experimental procedure consists of cross-linking DNA, using a restriction 

enzyme to cut the DNA, then re-ligating the cut ends, and finally using targeted quantitative PCR 

(q-PCR) of the re-ligated fragment of DNA of interest. The subsequent technologies, named 

4C35–38, capturing all other interacting genomic loci interacting with a specific genomic loci of 

interest; chromosome confirmation capture carbon copy (5C)39,40, capturing all pairwise 

interacting loci across a few mega bases (Mb) of the genome; and finally High throughput 

chromosome confirmation capture (Hi-C)41, capturing all pairwise interacting loci genome-wide, 

continued the trend of assessing an increasing number of interactions across the genome in 

conjunction with the use of next-generation sequencing technologies. However, the low 

resolution of high throughput techniques, such as Hi-C (generally genomic regions of 5kb-25kb 

in length interacting with each other), and the extremely high number of sequencing reads 

(>1x109 reads) required to identify high resolution interactions42, has limited the use of Hi-C and 

driven more targeted technologies to identify interactions between specific genomic regions. One 
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such technique, known as promoter Capture-HiC (pCHiC)43, adds an additional step to the 

experimental protocol for Hi-C, using targeted biotinylated RNA probes to target genomic loci 

containing promoters. This targeted approach, allows for the capture of all interacting loci with 

known gene promoters, and reduces the number of sequencing reads required by having a lower 

number of total interactions than Hi-C. Since genes and their promoters are arguably the better 

understood part of the human genome, identifying chromosomal interactions involving gene 

promoters, is useful for studies investigating mechanisms of gene regulation in relation to 

important biological pathways relevant to specific tissue types, such as adipose and adipocytes. 

Currently, pCHi-C is mostly used to study local, cis chromosomal interactions (distance <1Mb), 

while identification of biologically relevant longer range, trans chromosomal interactions 

(distance>1Mb or inter-chromosomal), has remained challenging. These challenges stem from 

the fact that in most pCHi-C experiments sequencing depth is restricted by the cost of 

sequencing. Therefore, trans chromosomal interactions have fewer sequencing reads than cis 

chromosomal interactions as they in general occur less frequently44. Therefore, they do not pass 

computationally set thresholds for identifying chromosomal interactions despite lower thresholds 

for trans chromosomal interactions when compared to cis chromosomal interactions. In addition, 

except in model organisms, trans interactions have not been proven to exist yet using genome-

wide assays45,46. Therefore, current computational methods to analyze pCHi-C data treat trans 

chromosomal interactions as a measure of the background noise in pCHi-C experiments, thus 

warranting further methods developments to identify robust trans chromosomal interactions. 

 

1.3 Genome-wide association studies and genetic architecture of obesity 
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Common DNA variants and their associations with disease, such as obesity, have been captured 

in genome-wide association studies (GWAS), albeit with a stringent threshold on association 

(p<5x10-8), to account for the common independent loci in the human genome47. This widely 

used genome-wide significance threshold is based on extrapolations of the number of 

independent variants in 10 highly genotyped regions of the human genome using European 

population cohort samples in 200548. While a significant proportion of the phenotypic variation 

in BMI is attributed to genetic variation (heritability of BMI ~0.4-0.7)49, understanding the 

mechanisms underlying this heritable component has been challenging. The 97 loci identified in 

a GWAS for BMI in ~340,000 subjects explain only 2.7% of the variance in BMI, and all 

HapMap phase 3 genetic variants (minor allele frequency (MAF)>1%) (~1.5M single nucleotide 

polymorphisms (SNPs)) were estimated to account for ~21% of the variance in BMI in 16,275 

unrelated individuals49. Thus, it is likely that gene-environment interactions (GxE) and rare 

variants also explain some of the BMI heritability50.  

Recently it has been recognized that BMI cannot reliably differentiate fat from lean mass 

and that the metabolically detrimental abdominal obesity can be more accurately estimated using 

the waist-hip-ratio (WHR), which even after adjusting for BMI (WHRadjBMI) is still highly 

heritable (heritability~0.22-0.61)51–54. Previous GWAS have also shown that WHRadjBMI 

GWAS genes are enriched for adipose-expressed genes with known adipose tissue functions, 

whereas BMI GWAS genes are enriched for genes expressed primarily in brain55. Regardless of 

the trait, due to linkage disequilibrium (LD) between variants and the presence of multiple genes 

and variants at each GWAS loci, the causal variant(s) and gene(s) are not immediately apparent 

from GWAS, hindering our ability to understand the finer details of biological mechanisms by 
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which GWAS loci contribute to obesity, and thus warranting a detailed fine mapping of each 

GWAS locus. 

 

1.4 Expression quantitative trait locus analyses in obesogenic tissue cohorts 

Common DNA variants, in addition to being associated with diseases and traits through GWAS, 

can also be directly linked to gene expression as expression quantitative trait loci (eQTL)56. 

eQTLs are measured by the strength of association between the number of copies of a certain 

allele of a DNA variant and differences in gene expression56–58. The discovery of eQTLs requires 

collection of population cohorts to capture genetic and gene expression variation, with 

genotyping arrays to assess DNA variants and RNA-sequencing (RNA-seq) to measure gene 

expression. As with chromosomal interactions, eQTLs are divided into two types, cis (<1Mb 

from gene) and trans (>1Mb from the gene or on a different chromosome)59; however, these 

thresholds for cis and trans for eQTLs are simply conventions that do not represent any true 

biological structure. Human gene expression cohorts are gradually increasing in size as sample 

collection becomes easier and RNA-seq cheaper, and thus, cis-eQTL discovery has become 

feasible; however, widespread identification of trans-eQTLs remains challenging, except in 

model organisms60,61. Even with costs decreasing, the size of the current human cohorts makes 

the discovery of trans-eQTLs limited by the extensive number of statistical tests required to be 

corrected for in the trans-eQTL analysis. Further complicating the discovery of relevant cis- and 

trans-eQTLs, is the type of tissue available from human cohorts for RNA-seq, since eQTLs and 

gene expression can also be tissue-specific, as is shown in cohorts with RNA-seq data from 

multiple tissues, such as GTEx58. 
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 While human cohorts with samples from blood are among the largest (meta-analyses 

ntotal~30,000) and are just beginning to reach large enough sizes to reliably identify trans-eQTLs 

at the genome-wide level62, cohorts with RNA-seq data from obesogenic tissues, such as adipose, 

liver, and muscle with genotyping data, remain still small, each cohort usually having samples 

from less than 1,000 individuals63,64. This limited size is partly due to the invasiveness of 

procedures to collect human tissue samples. Therefore, innovative targeted approaches 

alleviating the sample size requirement are the focus of intense ongoing research to identify trans 

effects relevant for obesity and related cardiometabolic traits and endpoints. 

 

1.5 Trans-regulators in obesogenic tissue cohorts 

Trans-eQTLs regulated by TFs are the most common type of long-range, trans gene 

regulation59,61 . For obesity-related tissue cohorts, there are only a few published examples of 

trans-eQTLs, including Krüppel Like Factor 14 (KLF14)65 and Zinc finger protein 800 

(ZNF800)66. One recent idea is that cis-eQTLs may also be trans-eQTLs, with the trans effect 

mediated by a gene whose expression is controlled by the cis-eQTL. One mechanism explaining 

these cis-mediated trans-eQTLs is that the gene is a TF, which would directly explain how the 

gene could affect many downstream genes across multiple chromosomes67. This idea has been 

suggested and explored in the GTEx cohort58, but it still remains unexplored in cohorts with 

obesogenic tissue samples from non-post mortem samples. 

 

1.6 Transcriptome wide association studies of obesity 

Transcriptome wide association study (TWAS) is a method to test for association between gene 

expression and a trait by weighting the effects of all cis variants on gene expression and testing 
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their weighted association with a GWAS trait68,69. Since the gene expression and weights on cis 

variants are unique per gene, TWAS provides evidence for causality as it is the measure between 

fixed genotypes and traits. Thus, TWAS leverages both power from reference gene expression 

cohorts with RNA-seq data, such as GTEx (n~600)58, to calculate the weights on cis variants, 

and power from GWAS (n~100,000-800,000) for the association between the weighted variants 

and traits. Previous studies have illuminated the limitations of TWAS68, namely that it could 

identify multiple potential causal genes in a locus. This is due to the fact that nearby genes can 

have related variants in their cis regions due to underlying LD structure. However, this does not 

detract from the ability of TWAS to identify causal gene sets. Furthermore, follow-up methods, 

such as fine-mapping of causal gene sets (FOCUS)70, circumvent this issue by fine-mapping 

TWAS results through identification of a gene set containing the causal gene(s) in a locus at a 

predefined level of credibility, based on their posterior inclusion probability of being the causal 

gene, while accounting for shared cis variation among the genes at a locus. Combined, utilizing 

summary statistics from GWAS and transcriptomics reference panels, TWAS and FOCUS are an 

important pipeline for providing statistical evidence of the causality of genes for GWAS traits. 

One final caveat of TWAS and FOCUS is that they require the transcriptomic reference panels 

and GWAS to be from cohorts of the same ethnicity. As most cohorts currently contain a 

majority of European individuals, the use of TWAS and FOCUS in non-European populations 

has so far been limited by the availability and collection of more diverse cohorts.  

 

1.6 Weighted Gene Co-expression Network Analysis for identifying key networks and genes 

for obesity 
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Weighted Gene Co-expression Network Analysis (WGCNA), created in 2005 and placed into an 

R package in 200871, was designed to find co-expressed genes associated with phenotypic traits. 

WGCNA forms networks out of genes that are highly co-expressed. It avoids the extensive 

multiple testing correction that would be necessary for testing each individual gene with traits. 

Instead, WGCNA summarizes collective gene expression of each network by identifying a 

network eigengene (i.e. the first principal component (PC) of the expression of all the genes in a 

network)71. As WGCNA needs only modest sizes of cohorts with gene expression data, WGCNA 

has also been utilized in human cardiometabolic transcriptomics cohorts for the past 10 years72–74 

to discover co-expression networks and genes important for obesity. In addition, it has been 

suggested the since TFs can control many genes across different chromosomes, they might also 

be master regulators of co-expression networks75. However, these studies rarely have any 

functional follow-up, proving that the network and master TFs are indeed acting as 

computationally calculated. 

 

1.7 Polygenic risk score development for cardiometabolic disorders 

Polygenic risk scores (PRSs) represent the sum of common variants (MAF>1%) associated with 

a specific disease or phenotype, weighted by their effect sizes76. PRSs are used to assess an 

individual’s risk for a certain disease or phenotype based on their genetics76. As the collection of 

genotype data increases, with large cohorts such as the UK Biobank (UKB)77 (n~500,000) that 

have extensive phenotype and genotype data available for study, PRSs are becoming more 

feasible. PRS studies for cardiometabolic traits were started almost 10 years ago, and by now 

PRSs have been built for obesity in Europeans using BMI78,79, and many other related 

cardiometabolic traits, such as T2D80,81, coronary artery disease (CAD)82, and WHRadjBMI83. 
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Although PRSs are commonly built using independent variants across the genome, it is 

known that variants in certain regions of the genome, such as regulatory elements or promoters, 

are more disease relevant that others84. Therefore, using a targeted set of variants with prior 

evidence for connection to a phenotype or disease may yield a more localized and accurate PRS 

estimation. 

One limitation of PRSs is that PRSs predict the disease risk independently of family 

history and other electronic health record (EHR) information82. Therefore, both EHR and PRS 

information are needed to get a more complete risk prediction for an individual. This difference 

can be explained by the fact that as PRSs capture all common variants, there are still 

contributions from rare variants to the disease risk. The rare variants often have large effect sizes 

even though they are present in a very small portion of the population. However, to acquire rare 

variant information, different and costlier technologies, such as whole exome sequencing (WES) 

and whole genome sequencing (WGS), are required because rare variants are not part of standard 

genotyping arrays that capture common variants85. Overall, this limitation does not discount the 

usefulness of PRSs as they can provide a useful biomarker at the individual level with just the 

collection of genotype information. This information could ultimately be included with an 

individual’s EHR records in a clinical setting. Additionally, recent longitudinal studies have also 

indicated that in general individuals with a higher polygenic risk have an earlier age of onset of 

common cardiometabolic diseases, such as T2D, and various types of cancer86, further showing 

the utility of PRSs.  

 

1.8 Integrating the current state of knowledge to this thesis 
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This chapter has summarized first the current state of knowledge about adipose and adipocyte 

biology and its relationship to obesity. Building on this, the chapter described our present 

understanding of gene regulatory mechanisms from large DNA elements, such as enhancers and 

repressors, to smaller elements, such as TFBSs. In addition, the chapter covered the difference 

between cis-regulatory elements, cis gene regulation, and cis-eQTLs, when compared to the 

elusive trans gene regulation in human cohorts of obesogenic tissues. Finally, I discussed the 

current state of relevant genomic approaches, GWAS, TWAS, WGCNA, and PRS, and their 

applications and limitations.  

 Moving forward, in Chapter 2, I discuss the fine-mapping of BMI GWAS loci using cis-

eQTLs from the METabolic Syndrome in Men (METSIM) cohort and human primary adipocyte 

pCHi-C data. As genes make up only a few percent of the human genome, there are many 

intergenic GWAS variants where the closest gene to the variant is bookmarked for the GWAS 

locus. However, cis-eQTLs show that GWAS variants do not always affect the nearest gene, 

leading us to use functional evidence, such as chromosomal interactions from pCHi-C in human 

primary adipocytes, to fine map and directly discover the mechanism of action of cis-eQTLs. We 

also characterized the pCHi-C interactions to be enriched for adipogenesis TFs, PPARG and 

CEBPB. This study identified four key examples of obesity GWAS genes associated with BMI, 

serum metabolites, and lipids, as well as 38 additional candidate genes with cis-eQTLs in 

chromosomal interactions whose expression levels are strongly associated with BMI. These 

findings are important as they identify novel obesity loci; further show that GWAS variants are 

not necessarily connected to their nearest gene; and discover that one important regulatory 

mechanism for the connection between variants and genes is through promoter-enhancer 

interactions. This work was published in Nature Communications in 201887. 
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 Next, in Chapter 3, I discuss a study I contributed to, identifying changes in open 

chromatin regions within pCHi-C chromosomal interactions. In the study, we used assay for 

transposase-accessible chromatin using sequencing (ATAC-seq) and pCHi-C in human primary 

adipocytes treated with saturated fatty acids or monounsaturated fatty acids to examine changes 

in chromosomal interactions and open chromatin regions responding to lipid intake. Then we 

searched for variants residing at these context-specific sites responsive to the lipid intake using 

the UKB. Our goal was to identify variants interacting with saturated fat intake to influence 

obesity, i.e. BMI. Specifically, I contributed to the examining the conservation of lipid-

responsive open chromatin regions in enhancers and promoters involved in chromosomal 

interactions.  I showed that genes with lipid-responsive open chromatin regions in their 

promoters were significantly loss of function (LoF) intolerant and had higher conservation 

scores, meaning that they are evolutionarily constrained, when compared to the remaining 

protein-coding genes across the genome. Similarly, for enhancers with lipid-responsive open 

chromatin regions, I showed that they exhibited a higher conservation score than protein-coding 

genes across the genome, and furthermore that the target genes of the lipid-responsive enhancers 

via chromosomal interactions were LoF intolerant. In addition, I examined the same open 

chromatin regions in enhancers and promoters containing gene-environment interaction (GxE) 

variants for those predicted to significantly affect TF binding using the deep learning tool 

DeepSEA88, and found that 55% of them showed significant alterations of TF motifs, including 

retinoid X receptor alpha (RXRA), an important TF for adipogenesis and lypolysis89. This work 

was published in Nature Metabolism in 201990. 

Moving beyond cis-eQTLs, in Chapter 4, I discuss the identification of master TFs that 

control adipose co-expression networks important for obesity and provide functional evidence 
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for the mechanism of action of the identified master regulator. As it has been shown previously 

that WHRadjBMI is a better proxy for abdominal, metabolically harmful obesity than BMI, and 

that BMI cannot distinguish between lean mass from fat mass53, we used WHRadjBMI as our 

phenotype of interest and proxy for the metabolically harmful abdominal obesity. Previous 

studies have also shown that WHRadjBMI is a sex-dependent trait, reflecting the physiological 

differences in body fat distribution and muscle mass between males and females, with males in 

general exhibiting more muscle mass and females more fat mass when matched for BMI and 

age91,92. To advance the discovery of unknown genetic and molecular mechanisms regulating 

abdominal adiposity and the sex-specific distribution of body fat, we searched for genetic master 

regulators of WHRadjBMI by employing integrative genomics approaches on human adipose 

RNA-sequencing (RNA-seq) data (n~1,400), WHRadjBMI GWAS, TWAS, and PRS data from 

the WHRadjBMI GWAS cohorts and the UKB (n~700,000). We provide novel genomic 

evidence, verified by our functional studies in human primary preadipocytes, for the causal role 

of the TF, TBX15, in controlling accumulation of abdominal fat and adiposity. This work has 

been submitted in 2020 (Pan et al. submitted). 
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Integration of human adipocyte chromosomal interactions with adipose gene expression 

prioritizes obesity-related genes from GWAS 
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Chapter 3 

Reverse gene–environment interaction approach to identify variants influencing body-mass 

index in humans 
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Supplementary Table 2. Differentially accessible ATAC-seq peaks between human preadipocytes 
and adipocytes. Peaks were considered differentially accessible at a cutoff of FDR < 0.05. FDR was 
calculated (adjusting for n = 154,647 ATAC-seq peaks) from the P values of the QL F test for differential 
accessibility between preadipocytes and adipocytes by using ATAC-seq libraries from three replicates per 
cell type. Related to Fig. 1. See supplementary materials. 
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Supplementary Table 4. Differentially accessible ATAC-seq peaks in lipid-challenged human 
adipocytes. The table lists the significant differential ATAC-seq peaks in human primary adipocytes that 
were treated with saturated (palmitic) or monounsaturated (oleic) fatty acids or vehicle (BSA) control. 
Peaks were considered differentially accessible at a cutoff of FDR < 0.05. FDR was calculated (adjusting 
for n = 122,252 ATAC-seq peaks) from the P values of the QL F test in one-way ANOVA. For the post 
hoc test to determine which comparison was significant after one-way ANOVA (OA vs. BSA, PA vs. 
BSA or OA vs. PA), we determined the least significant difference. Related to Fig. 2. See supplementary 
materials. 
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Supplementary Table 7. 154 genes with lipid-responsive promoters in chromosomal interactions in 
adipocytes. The table lists the Ensembl ID and gene symbol for genes with promoters in interactions in 
adipocyte promoter-capture Hi-C that also had lipid-responsive ATAC-seq peaks. Related to Fig. 3. See 
supplementary materials. 
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Supplementary Table 9. 323 gene promoters physically interact with lipid-responsive enhancers in 
adipocytes. The table lists the Ensembl ID and gene symbol for genes with promoters that interact with 
enhancers that contained lipid-responsive ATAC-seq peaks. Related to Supplementary Fig. 5. See 
supplementary materials. 
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Supplementary Table 15. 75 lipid-responsive peaks in gene promoters contain SNPs with 
MAF > 0.05 in the UK Biobank. The table lists the lipid-responsive ATAC-seq peaks within gene 
promoters involved in adipocyte chromosomal interactions that contain SNPs with MAF > 0.05 in the UK 
Biobank (n = 75/91 peaks). The SNPs in these regions were tested for gene–environment interactions in 
the UK Biobank. Related to Fig. 3 and Table 2. See supplementary materials. 
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Supplementary Table 17. 142 lipid-responsive peaks in enhancers contain SNPs with MAF > 0.05 in 
the UK Biobank. The table lists the lipid-responsive ATAC-seq peaks within enhancers involved in 
adipocyte chromosomal interactions that contain SNPs with MAF > 0.05 in the UK Biobank (n = 142/169 
peaks). The SNPs in these regions were tested for gene–environment interactions in the UK Biobank. 
Related to Supplementary Fig. 5 and Supplementary Table 18. See supplementary materials. 
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Supplementary Table 18. Significant G×E interactions with BMI from a multivariable linear model 
for 410 enhancer SNPs. †The cis-eQTLs were identified in adipose tissue from the METSIM 
cohort; §When more than one non-independent SNP (LD r2 > 0.2) has a significant G×E P value for the 
lipid-responsive region, both SNPs are listed together in order of more to less significant. ‡Genes in 
separate promoter-containing baits are marked when a lipid-responsive enhancer with a G×E SNP is 
interacting with more than one bait in adipocyte pCHi-C. The reported P values are from the 
multivariable linear model (see equation (2) in the Methods), where g is the number of minor alleles of 
the genotype and e is saturated fat intake. Here p-g indicates the P value for the genotype effect and p-g*e 
indicates the P value for the G×E effect; beta values follow the same notation. For the multivariable linear 
model, there were a total of 410 SNPs and 18,318 individuals with no missing data available for study. 
See supplementary materials. 
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Supplementary Table 19. DeepSEA analysis of the 20 G×E SNPs in interacting lipid-responsive 
gene promoters. The table lists the predicted functional impact of promoter G×E SNPs on chromatin 
features such as transcription factor binding and histone marks. Related to Table 2. See supplementary 
materials. 
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Supplementary Table 20. DeepSEA analysis of the 26 G×E SNPs in interacting lipid-responsive 
enhancers. The table lists the predicted functional impact of enhancer G×E SNPs on chromatin features 
such as transcription factor binding and histone marks. Related to Supplementary Table 18. See 
supplementary materials. 
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Abstract 

Waist-Hip-Ratio adjusted for Body Mass Index (WHRadjBMI) is a well-established sex-specific 

marker for abdominal fat and adiposity, and a predictor of adverse metabolic outcomes, such as 

type 2 diabetes (T2D). Here, we identified an adipose gene network that contains 35 obesity 

GWAS genes, and explains a significant amount of polygenic risk for abdominal obesity and 

T2D in the UK Biobank (n=502,617) in a sex-dependent way. The network is controlled by a 

novel adipose master transcription factor (TF), TBX15, and its weight-loss responsive cis-eQTL, 

rs1779445, a WHRadjBMI GWAS variant that regulates the network in trans. When we knocked 

down TBX15 in human primary preadipocytes, expression of 130 network genes, including the 

key adipogenesis TFs, PPARG and KLF15, were significantly impacted (FDR<0.05), thus 

functionally verifying the trans regulatory effect of TBX15 on the WHRadjBMI-associated 

network. Taken together, we discovered a new human adipose master trans regulator, TBX15, 

which controls an obesity GWAS gene-enriched network that sex-dependently regulates the 

accumulation of abdominal fat.  
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Introduction 

Obesity predisposes individuals to multiple cardiometabolic disorders, including type 2 diabetes 

(T2D)1,2. Furthermore, as the world faces one of the worst infectious-disease outbreaks in a 

century, new data are emerging showing that obesity and male sex are key risk factors for severe 

forms of COVID-19 infection in individuals less than 60 years of age3,4. However, the 

underlying genes and regulatory mechanisms orchestrating the sex differences in obesity and 

body fat distribution are not well understood. 

Obesity is clinically diagnosed by a body mass index (BMI) greater than 30 kg/m2, while 

severe obesity is defined as BMI greater than 40 kg/m2. However, as BMI cannot reliably 

differentiate fat from lean mass, the metabolically detrimental abdominal obesity has been more 

accurately estimated using waist-hip-ratio (WHR), which even after adjusting for BMI 

(WHRadjBMI) is still highly heritable (heritability~0.22-0.61)5–8. WHRadjBMI is a well-

established surrogate for abdominal adiposity and body fat distribution, and it has also been 

correlated with direct imaging assessments of abdominal fat in observational studies9–11. It is also 

recognized as a strong predictor of T2D12.  

Previous studies have demonstrated that WHRadjBMI is a sexually dimorphic trait, 

reflecting the physiological differences in body fat and muscle mass, with males in general 

exhibiting more muscle mass and females more fat mass when matched for BMI and age13,14. 

Furthermore, WHRadjBMI shows large differences in the narrow sense heritability between 

males (~20%) and females (~50%)8,15; yet the biological mechanisms underlying abdominal 

adiposity and its sex-specific characteristics have remained largely elusive. Previous genome-

wide association studies (GWAS) have shown that WHRadjBMI GWAS genes are enriched for 

adipose-expressed genes with known adipose tissue functions, whereas BMI GWAS genes are 

enriched for genes expressed primarily in the brain16. To advance the discovery of unknown 

genetic and molecular mechanisms regulating abdominal adiposity and the sex-specific 

distribution of body fat, we searched for genetic master regulators of WHRadjBMI by employing 

integrative genomics approaches on human subcutaneous adipose RNA-sequencing (RNA-seq) 

data (n~1,400) and WHRadjBMI GWAS, transcriptome-wide association studies (TWAS), and 

polygenic risk score (PRS) data from the WHRadjBMI GWAS cohorts and the UK Biobank 

(UKB) (n~700,000). Finally, we verified our genomic results using functional studies in a human 

primary cell type central to adipogenesis.  
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While local cis regulation of genes has been characterized in multiple cohorts and 

tissues17,18, the identification of distal trans regulation of adipose gene expression contributing to 

human obesity has been challenging. There are currently only a few examples of trans-eQTL 

genes, such as Kruppel Like Factor 14 (KLF14)19, mostly due to the lack of power achievable in 

the current, relatively small RNA-seq cohorts of relevant obesogenic tissues. One possible trans 

regulatory mechanism of gene expression is transcription factor (TF) binding to the promoters of 

multiple genes across many chromosomes, which causes them to be co-regulated and co-

expressed20–22. As with other genes, these TFs themselves are genetically controlled by cis-

eQTLs, thus indirectly linking the eQTLs to genes regulated by the TFs in trans. We 

hypothesized that adipose co-expression networks can be used to identify novel TFs that trans 

regulate multiple co-expressed target genes important for WHRadjBMI. 

Integrating a subcutaneous adipose co-expression network and multi-omics data with 

extensive human GWAS cohort and the UK Biobank (UKB) data (total n~700,000), we provide 

novel genomic evidence, verified by our functional studies in human primary preadipocytes, for 

the causal role of TBX15 in controlling accumulation of abdominal fat and adiposity. Our study 

discovers a new key function for the TBX15 TF in trans regulating an adipose network of 347 

adipogenesis, mitochondrial, and metabolically important genes, including PPARG, KLF15, 

PPARA, ADIPOQ, and 35 obesity GWAS genes. 
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Results 

Discovery of WHRadjBMI-associated co-expression networks in human adipose tissue 

In our network analysis, we used waist-hip-ratio adjusted for body mass index (WHRadjBMI) as 

a surrogate for abdominal adiposity and fat9–11, supported by previous GWASs that have 

demonstrated WHRadjBMI as a more relevant adipose tissue-related obesity trait than BMI16,23. 

To identify co-expression networks correlated with abdominal fat and adiposity, we performed 

Weighted Gene Co-expression Network Analysis (WGCNA) in the subcutaneous adipose RNA-

seq data (n=335) from the Finnish METabolic Syndrome In Men (METSIM) cohort, which has 

additional measures of adiposity aside from BMI, including WHR. We identified 14 co-

expression networks, two of which, red and black (colors assigned to networks by WGCNA 

arbitrarily), were significantly inversely correlated with WHRadjBMI, WHR, and BMI after 

adjusting for multiple testing (pBonf<8.93x10-4) (Fig. 1, Supplementary Fig. 1). To also examine 

if the WGCNA co-expression networks are associated with the obesity comorbidity, type 2 

diabetes (T2D), we correlated them with fasting serum insulin levels and observed significant 

inverse correlation of the red and black co-expression networks (pBonf<8.93x10-4) (Fig. 1, 

Supplementary Fig. 1). The red co-expression network, with 347 genes (Supplementary Table 1), 

contained 35 (10.09%) obesity GWAS genes for BMI, waist circumference (WC), WHR, 

WHRadjBMI, and WCadjBMI (Fisher’s exact test for the red co-expression network GWAS 

enrichment, odds ratio=5.05, p=2.20x10-4), whereas no such obesity GWAS gene enrichment 

was observed with the black co-expression network (Fig. 1, Supplementary Table 2).  

Since WGCNA co-expression networks may be influenced by different cell types present 

in heterogeneous tissues such as adipose, we used adipose single-nuclei RNA-seq (snRNA-seq) 

from Finnish individuals (n=16) to identify marker genes for the key adipose cell types, such as 

adipocytes, preadipocytes, and macrophages. The red co-expression network was exclusively 

enriched for adipocyte marker genes (phypergeometric=2.20x10-10) (Supplementary Table 3), 

including the adipocyte secreted adipokine, Adiponectin (ADIPOQ), indicating the importance of 

this co-expression network for adipocyte biology. The red co-expression network was also 

significantly enriched for key adipose-related metabolic KEGG pathways using WebGestalt24, 

such as PPAR signaling pathway, fatty acid metabolism and degradation, and valine, leucine, 

and isoleucine degradation (FDR<0.05; Supplementary Table 4), and for GO cellular component 

mitochondrion-related genes (FDR<0.05; Supplementary Table 5). Furthermore, the red co-
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expression network was significantly enriched for genes upregulated in subcutaneous adipose 

tissue (p~1.0x10-18) when compared to the 54 other tissues in Genotype-Tissue Expression 

(GTEx) v8 cohort25 in a differential expression (DE) analysis by FUMA26 (Fig. 1). Due to the 

significant enrichment of obesity GWAS genes, adipose-related functional pathways, adipocyte 

cell type marker genes, and adipose tissue-expressed genes, we focused on the red WHRadjBMI 

co-expression network for subsequent analyses.  

 

The WHRadjBMI gene co-expression network is genetically associated with WHRadjBMI 

and T2D 

To find genetic evidence for the observed link between the co-expression network and 

WHRadjBMI, we examined whether the 347 network genes contribute significantly to 

WHRadjBMI trait heritability. We used the stratified LD Score (LDSC) regression method (see 

Methods) to calculate the WHRadjBMI heritability explained using the WHRadjBMI GWAS 

summary statistics for all variants in the cis regions of the 347 genes (+/-500kb from the ends of 

the gene). These variants will be referred to henceforth as the WHRadjBMI cis-variant set. We 

found that these cis regions are significantly enriched for variants explaining the heritability of 

WHRadjBMI (enrichment=1.61, p=4.90x10-5) and T2D (enrichment=1.49, p=9.56x10-3) but not 

significantly enriched for variants explaining the heritability of BMI (p>0.05) (Supplementary 

Table 6). These summary-level findings indicate that the 347 network genes and their cis 

variants are specifically important in controlling abdominal fat and adiposity and contributing to 

the clinical metabolic outcome, T2D. 

To investigate how the WHRadjBMI co-expression network genes predict individual risk 

for elevated WHRadjBMI compared to the entire genome, we constructed two separate 

Polygenic Risk Scores (PRSs) for WHRadjBMI: a genome-wide PRS and a network PRS with 

just the variants in the WHRadjBMI cis-variant set. For these PRS analyses, we used the UK 

Biobank (UKB) cohort and divided the unrelated Caucasian participants into a test (n=130,851) 

and validation (n=261,700) set (see Methods for building the PRS).  

 To investigate the effectiveness of our genome-wide PRS in predicting WHRadjBMI 

with the validation set (n=261,700) (PRS correlation coefficient with WHRadjBMI=0.206), we 

divided the individuals into 20 quantiles based on their PRS scores and then by sex. Next, we 

calculated the odds ratio of being in the top 10th percentile of WHRadjBMI, for individuals in 
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each of the 20 quantiles compared to the lowest quantile. As expected, the PRS predicts 

WHRadjBMI better in females than males (Females: 6.31-fold increase in risk for elevated 

WHRadjBMI between the lowest quantile and the 20th quantile of the PRS versus Males: 2.96-

fold increase in risk for elevated WHRadjBMI) (Fig. 2).   

 Notably, despite the fact that the network PRS only comprises the variants in the cis 

regions of the 347 network genes, having thus many fewer variants included, the PRS correlation 

coefficient with WHRadjBMI was 0.110 (compared with the genome-wide PRS correlation 

coefficient of 0.206, which is less than twice that of the network PRS). Although the PRSs are 

more predictive of WHRadjBMI in females (Cochran-Mantel-Haenszel test on the 20th quantile, 

genome-wide PRS versus network PRS and males versus females, 𝜒𝜒CMH2 =1146.94, 

pCMH=2.07x10-251), the power decrease from using the genome-wide PRS to using the network 

PRS is much greater for females (20th quantile odds ratio: 2.51-fold decrease) when compared to 

males (20th quantile odds ratio: 1.71-fold decrease) (Fig. 2). This suggests that, relative to the 

genome-wide PRS, the 347 network genes and their cis variants constitute a larger percentage of 

the predicted effect of variants for regulating WHRadjBMI in males when compared to the same 

PRS predictions in females. 

 To provide additional evidence that the network PRS is more informative and 

biologically important in males than females, we tested whether males with the highest 

genetically predicted WHRadjBMI (based on the network PRS) are more likely to have the 

clinically relevant metabolic outcome of T2D. Accordingly, we selected individuals with the 

WHRadjBMI PRS in the highest and lowest deciles (top 10% and lowest 10% network PRS 

scores), as done previously for BMI in Khera et al.27, and divided them by sex. We used a 

logistic regression (see Methods) and when accounting for WHRadjBMI in our model, observed 

that the network PRS significantly predicted T2D in males (β=1.12, p=9.59x10-5) but not in 

females (p>0.05). These results indicate that the 347 network genes and their cis variants 

significantly contribute to the clinical metabolic outcome, T2D, in males while no such effect 

was observed in females. In sum, by leveraging subcutaneous adipose RNA-seq data from a 

cohort with the abdominal adiposity measure, WHR, we identified a WHRadjBMI co-expression 

network that genetically controls WHRadjBMI and T2D in a sex-dependent manner. 
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The WHRadjBMI network connectivity is sex- and context-dependent  

We hypothesized that the sex-dependent effects we observed with the network PRS for 

WHRadjBMI and T2D would be reflected in the co-regulation of these genes as well. We 

therefore tested whether the WHRadjBMI co-expression network connectivity is different 

between males and females in the independent GTEx v8 subcutaneous adipose RNA-seq data. 

We performed a network preservation analysis separately in males (n=387) and females (n=194) 

(see Methods), and found that the network preservation ZSummary score was 30 in males versus 22 

in females. The ZSummary score value is not sensitive to the sample size, and so the relative 

difference in the number of males and females was not a concern. This lower network 

preservation in females is in line with the lesser trait prediction observed for WHRadjBMI and 

T2D with the network PRS in females.  

We further tested whether the WHRadjBMI network connectivity is altered context-

dependently based on the obesity state. Because the GTEx cohort phenotypes do not include 

WHRadjBMI, we divided the cohort first by sex and then into the more extreme categories of 

lean (BMI<25; nMale=102, nFemale=78) and obese (BMI>30; nMale=119, nFemale=41) to increase 

the chance that there are differences in abdominal adiposity between the sets of individuals. We 

found that the network preservation ZSummary score drastically decreased between lean and obese 

males (ZSummary – Lean male=30 versus Z Summary – Obese male=19) but remained similar between lean 

and obese females (Z Summary – Lean female=20 versus Z Summary – Obese female=18. Taken together, the 

network preservation results suggest that the coordinated expression of the genes in the 

WHRadjBMI co-expression network is regulated more tightly in males than females, and in a 

context-specific manner that depends on the obesity state. 

 

 Identifying candidate master regulators of the WHRadjBMI-associated co-expression 

network 

To discover transcription factors (TFs) that drive the adipose WHRadjBMI co-expression 

network in trans, we first identified all TFs (n=14) in the network using the PANTHER 

database28 (Supplementary Table 7). Next, to test which of these 14 TFs are potentially causal 

for WHRadjBMI, we performed a targeted Transcriptome-Wide Association Study (TWAS), 

which is a method to test for association between gene expression and a trait by weighting the 

effects of cis variants on gene expression and testing their weighted association with a GWAS 
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trait (see Methods). We computed eQTL weights for the variants in the cis region (+/-500kb 

from the ends of the gene) around each TF using GTEx v8 cohort data. To accurately estimate 

the gene expression heritability in TWAS, we used the entire GTEx subcutaneous adipose RNA-

seq dataset (n=581). We found that five TFs in the WHRadjBMI co-expression network pass the 

TWAS heritability thresholds (p<0.01) required for testing the association of the cis SNP 

heritability with phenotypes: T-Box Transcription Factor 15 (TBX15), General Transcription 

Factor IIE Subunit 2 (GTF2E2), X-Prolyl Aminopeptidase 3 (XPNPEP3), Iroquois Homeobox 1 

(IRX1), and Zinc Finger Protein 3 (ZNF3) (Supplementary Table 8).  

We next tested whether these five cis-heritable TFs are associated with WHRadjBMI 

using the computed TWAS weights to impute the TF gene expression and the WHRadjBMI 

summary statistics from the large UK Biobank (UKB) and GIANT meta-analysis GWAS data 

(n~700,000). TBX15, XPNPEP3, and IRX1 passed the Bonferroni correction for being associated 

with WHRadjBMI in the TWAS (p<0.017) (Supplementary Table 9), implying that the variants 

contributing to the cis-regulation of these TFs are also important for WHRadjBMI. 

The interpretation of TWAS results as evidence of causality can be complicated by other 

regional genes that may share cis variants, LD structure, or co-expression with the putatively 

causal gene. To better determine if there is statistical support for the TWAS evidence of 

association between WHRadjBMI and TBX15, XPNPEP3, and IRX1, we used the Fine mapping 

Of CaUsal Sets (FOCUS) tool, employing the same GTEx v8 cohort and WHRadjBMI GWAS 

data, and including all genes +/- 3Mb from the ends of our TFs of interest. FOCUS is a fine-

mapping approach for TWAS that identifies a gene set containing the causal gene(s) in a locus at 

a predefined level of credibility, based on their posterior inclusion probability (PIP) of being the 

causal gene while accounting for shared cis variation among genes at a locus (see Methods). The 

FOCUS analyses showed that TBX15 and nearby gene Hydroxy-Delta-5-Steroid Dehydrogenase, 

3 Beta- And Steroid Delta-Isomerase 2 (HSD3B2) were included in the 90% credible set; 

however, only TBX15 predicted well in cross-validation (TBX15: TWAS cross-validation 

p=1.54x10-7; HSD3B2: TWAS cross-validation p>0.05) and had a higher PIP (TBX15: FOCUS 

PIP>0.99; HSD3B2: FOCUS PIP=0.908), thus effectively fine-mapping the locus to TBX15 (Fig. 

3). When testing XPNPEP3 and IRX1, FOCUS provided little support for a causal role at current 

sample sizes (XPNPEP3: FOCUS PIP=9.90x10-5; IRX1: FOCUS PIP=0.0735). Taken together, 

the results from TWAS and FOCUS show statistical support for a causal role of the TF, TBX15, 
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in its inverse relationship with WHRadjBMI, and highlight it as a candidate TF driving the 

WHRadjBMI co-expression network. 

 

Identification of a WHRadjBMI co-expression network trans-eQTL 

Support for the evidence that TBX15 is a causal gene in regulating adiposity has been published 

in mouse knockout studies, where adipose-specific loss of Tbx15 leads to increased weight gain 

when mice are put on a high fat diet29. This suggests that, in conditions of increased energy 

intake, a pathological decrease in TBX15 can drive adiposity. To test for evidence of a similar 

mechanism in humans, we used subcutaneous adipose RNA-seq data from the Finnish Kuopio 

OBesity Study (KOBS) bariatric surgery cohort, in which the individuals’ average BMI 

decreased from 43.0 to 34.3 (22.7% decrease) from the time of surgery to the one-year follow-up 

(n=168 at both time points).  A change in WHR could not be assessed in the KOBS cohort as in 

general it is not possible to reliably measure waist circumference in morbidly obese individuals 

undergoing bariatric surgery. In these weight loss analyses, we found that TBX15 showed a 

significant increase in gene expression in the one-year follow-up (log2 fold change (FC)=0.37, 

p=1.48x10-6), in line with context-specific regulation of TBX15 and its inverse correlation with 

adiposity.  

To identify genetic drivers of the observed context-specific expression of TBX15 in the 

extreme obesity state, we searched for TBX15 cis-eQTLs separately in the KOBS bariatric 

surgery cohort baseline and follow-up adipose RNA-seq data (n=168 at both time points). We 

discovered that TBX15 has a cis-eQTL, rs1779445 (effect allele: C) (βC allele=0.56, 

pBaseline=6.7x10-6), exclusive to the extreme obesity state before the bariatric surgery (pFollow-

up>0.05). The context-specificity of the cis-eQTL effect was also supported by the non-

significant cis effects in two non-extreme obese cohorts, GTEx and METSIM (n=581, n=335, 

respectively; FDR>0.05). This context-specific TBX15 cis-eQTL variant, rs1779445, is also a 

WHRadjBMI GWAS SNP (GIANT, n=224,459) (βC allele=0.032, p=1.60x10-12)8. We recognize 

that the direct identification of trans-eQTLs requires large cohorts; nevertheless, to partially 

circumvent this, we tested whether rs1779445 regulates the eigengene of the WHRadjBMI 

network. We found that rs1779445 is a trans-eQTL of the network eigengene in the METSIM 

cohort (n=335) (βC allele= −0.018, p=0.044). In Finnish individuals, as confirmed in the 1000 

Genomes genotype data, the minor allele frequency (MAF) of rs1779445 (T allele) is lower than 
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in other European populations (MAFFinns~6% versus MAFEuropeans~20%) and it exhibits only one 

LD proxy, rs1623409 (r2=0.82). Since, this LD proxy rs1623409 was not a significant trans-

eQTL of the eigengene of the WHRadjBMI co-expression network (p>0.05), this trans-

population LD comparison helped identify rs1779445 as the likely sole underlying trans variant 

driving the co-expression network. 

 

Electrophoretic mobility shift assay (EMSA) shows increased protein binding at the 

alternate allele of rs1779445 in males 

To investigate which proteins may bind and regulate gene expression at the context-specific 

eQTL of TBX15 (rs1779445), we determined which known TF motifs are altered by the alleles of 

rs1779454 (T>C) using the PrEdicting Regulatory Functional Effect by Approximate P-value 

Estimation (PERFECTOS-APE)30 tool. We found the TF motifs of Ras Responsive Binding 

Element 1 (RREB1), BRCA1 DNA Repair Associated (BRCA1), Regulatory Factor X1 (RFX1), 

and Regulatory Factor X2 (RFX2) to be significantly altered, with increased protein binding 

predicted at the alternate allele. Furthermore, RREB1 has WHRadjBMI GWAS variants 

(rs11755724, rs675209) in its promoter, specifically found in European males, further connecting 

RREB1 and TBX15 to WHRadjBMI in males. We performed an electrophoretic mobility shift 

assay (EMSA) and observed that there was more protein binding at the alternate allele of 

rs1779445 in males (Fig. 4), in line with the predicted effect of the alternate allele (C) RREB1 

binding and known repressive role of RREB1 in transcription31. Further studies are warranted to 

examine and validate the actual TF that is binding at the WHRadjBMI network trans-eQTL. 

 

Knockdown of TBX15 in primary human preadipocytes confirms the role of TBX15 as a 

master regulator of the WHRadjBMI associated network 

To functionally confirm the role of TBX15 as a WHRadjBMI co-expression network regulator, 

we performed knockdown (KD) of TBX15 via small-interfering RNA (siRNA) in primary human 

preadipocytes (n=5 isogenic replicates). We successfully performed TBX15 KD, decreasing its 

expression by ~70%, confirmed by RT-qPCR (Fig. 4). Next, we performed RNA-seq to see if the 

genes in the WHRadjBMI co-expression network are affected by KD of TBX15. When 

comparing to preadipocytes transfected with the negative control siRNA (see Methods), we 

found that 130 of the 347 network genes (37.46%) are significantly DE (FDR<0.05) between the 
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TBX15 KD and control, including the well-established key adipogenesis master regulators, 

PPARG and KLF15 (Supplementary Table 10).  

When searching for other TFs affected by TBX15 KD that may contribute to the wide-

spread trans effects of TBX15, a total of 8 TFs of the 13 TFs (61.5%) in the WHRadjBMI co-

expression network were observed to be significantly DE (FDR<0.05) (PPARG, PPARA, KLF15, 

TWIST1, XPNPEP3, GTF2E2, CCNH, PER3) by the TBX15 KD. This result suggests that TBX15 

affects many additional genes indirectly downstream by regulating other key adipose TFs (Fig. 

4).   

In summary, these genetic and functional data discover a context-specific cis-eQTL, 

controlling a new human adipose master trans regulator, TBX15, which in turn controls an 

obesity GWAS gene-enriched network that sex-dependently modifies the distribution of fat. 
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Discussion 

WHRadjBMI is a well-established measure of abdominal adiposity, whereas BMI cannot reliably 

separate fat from lean mass16, in line with previous GWAS studies of WHRadjBMI and BMI 

demonstrating that the WHRadjBMI GWAS loci are more adipose tissue related than the BMI 

loci in terms of their expression profiles and function9–11. Furthermore, while overall obesity 

measures like BMI do not exhibit sexual dimorphism8, WHRadjBMI and fat distribution have 

clear sex-specific differences that are reflected in differences in heritability8,15, GWAS loci13,23, 

and ultimately in risk for disease outcomes such as T2D and cardiovascular disease14,27. 

However, the underlying biological mechanisms that contribute to the sexual dimorphism of 

body fat distribution are still poorly understood. Furthermore, the genes behind complex diseases 

such as obesity are often regulated and dysregulated together, influencing the progression and 

severity of obesity32. 

In this work, we used subcutaneous adipose RNA-seq data collected in the METSIM 

male population cohort, for which we have measures of WHR, to identify a gene co-expression 

network that is important for regulating WHRadjBMI and exhibits the known sexual dimorphism 

of this trait at both a genetic and transcriptomic level. We used the UKB to show that the genetic 

variants in the cis-regions of the 347 WHRadjBMI co-expression network genes are significantly 

enriched for variants that contribute to the heritability of WHRadjBMI and T2D, but not BMI. 

These variants also have a sex-dependent effect on the ability to predict elevated WHRadjBMI in 

males when compared to females relative to the entire genome, as shown by the genome-wide 

and network-specific WHRadjBMI PRSs we constructed. Furthermore, we show that the 

network PRS significantly predicts the disease outcome, T2D, in males but not in females, even 

when accounting for the effects from the original trait, WHRadjBMI. These PRS results 

demonstrate the sex-dependent effects of the 347 WHRadjBMI co-expression network genes and 

their cis variants on both WHRadjBMI and T2D. Finally, we provide evidence for a novel role of 

the TF, T-Box Transcription Factor 15 (TBX15), as a master regulator of this WHRadjBMI 

network, advancing our understanding of how trans regulation of gene expression contributes to 

normal and obesity-deteriorated adipose tissue function, and the sexually dimorphic 

accumulation of harmful abdominal fat. 

We employed TWAS33 to discover and FOCUS34 to fine-map all TFs (n=14) present in 

the WHRadjBMI network, which resulted in the discovery of the TBX15 as a master trans 
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regulator for this WHRadjBMI network. Tbx15 has been directly shown to affect the 

differentiation of preadipocytes to adipocytes, with reduced expression of key adipogenesis TFs 

Cebpa and Pparg in mouse preadipocytes that stably overexpress (OE) Tbx1535. This study also 

suggests that even after rescuing the induction of adipogenesis using a PPARG agonist, Tbx15 

OE cells exhibit decreased lipogenesis and increased lipolysis. These results are in line with the 

inverse relationship of TBX15 with WHRadjBMI, and also highlight the likelihood of 

development- and context-specific roles for TBX1535. Additionally, previous functional studies 

have shown that TBX15 affects mitochondria related gene expression and mitochondrial mass in 

mice35 and humans36,37, in line with the GO cellular-component enrichment of the WHRadjBMI 

co-expression network genes for mitochondrion-related genes. In addition to mouse knockout 

studies, where adipose-specific loss of Tbx15 leads to increased weight gain when mice are put 

on a high fat diet29, these previous studies provide support for our discovery of TBX15 as a key 

TF master regulator in human subcutaneous adipose tissue, with adiposity-driven changes in 

TBX15 expression affecting its role in maintaining homeostasis of the WHRadjBMI network.  

We used the independent subcutaneous adipose RNA-seq data from the GTEx v8 

cohort25 to show that the WHRadjBMI co-expression network is highly preserved in a sex-

dependent manner, with males exhibiting a higher network preservation than females. 

Furthermore, the network preservation is higher in the lean (BMI < 25) state when compared to 

the obese (BMI > 30) state in males, but is similar between lean and obese females. This 

apparent breakdown of network connectivity in the obese males supports the idea that aberrant 

regulation of the network as a whole develops as WHRadjBMI increases. Although the GTEx 

cohort25 lacks measurements for WHRadjBMI due to the fact that it consists largely of post-

mortem samples, we were able to show the sex- and obesity-dependent effects on this 

WHRadjBMI network using more extreme BMI cutoffs of lean (BMI < 25) and obese (BMI > 

30). However, presently there are no sex-specific guidelines for the BMI cutoffs for the transition 

between lean, overweight and obese states, let alone WHRadjBMI. To partially circumvent this 

issue and study the effects of weight differences on TBX15 expression, we leveraged longitudinal 

adipose RNA-seq data from the KOBS bariatric surgery cohort, which demonstrated that adipose 

expression of TBX15 recovers after dramatic weight loss within an individual. These weight loss 

results from the KOBS cohort suggest that decreased adipose expression of TBX15 in obese 
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individuals contributes to the observed dysregulation of the WHRadjBMI co-expression 

network.  

Although visceral adipose tissue is known to be more strongly linked to metabolic 

disorders and WHRadjBMI38,39 than subcutaneous adipose tissue, subcutaneous adipose tissue 

exhibits larger changes in volume during weight loss or weight gain40. Furthermore, 

subcutaneous adipose biopsies are available through less invasive procedures than visceral 

adipose tissue biopsies, which require a surgical procedure. Our results from the heritability and 

PRS analyses; and the context-specificity of the network regulation show that the subcutaneous 

adipose WHRadjBMI network is both an important driver and responder, respectively, to 

changes in WHRadjBMI.  

To functionally verify that the WHRadjBMI network is driven by TBX15, we knocked 

down TBX15 via siRNA in primary human preadipocytes, and performed RNA-seq to assess the 

effects of TBX15 KD on the expression of all 347 network genes. This experiment showed that 

knocking down TBX15 significantly affects the downstream expression of 8 additional TFs, 

including the key adipogenesis TFs, PPARG and KLF15, along with 121 other network genes. 

To the best of our knowledge, our functional study is one of the first examples of experimental 

validation of a TF trans regulating a co-expression network in humans. Furthermore, these DE 

genes are enriched for the Valine, leucine, and isoleucine degradation KEGG pathway using 

WebGestalt24. This pathway functions in the breakdown of essential branched chain amino acids 

that humans only obtain in their diet. Previous studies have shown that obese individuals exhibit 

higher levels of these amino acids in their plasma even when matched for dietary intake or after 

overnight fasting, most likely due to their impaired degradation41. Taken together, these data, 

along with the recovery of TBX15 expression after weight loss, indicate that TBX15 plays an 

important role in maintaining the homeostasis of this subcutaneous adipose WHRadjBMI co-

expression network in the non-obese state.  

Lastly, our work helps disentangle the genetics at the TBX15 locus, where the previous 

obesity GWAS variants and regional cis-eQTLs have been associated with both TBX15 and 

nearby gene, WARS216,42. WHRadjBMI GWAS variants at the TBX15-WARS2 locus have been 

shown to exhibit differential effects in males and females, including a male-specific signal within 

the TBX15 promoter8. Only through the investigation of extreme obesity in the KOBS cohort 

were we able to establish a cis-eQTL function for the WHRadjBMI GWAS SNP8 rs1779445, 
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which is a strong cis-eQTL of TBX15 but not of WARS2 in the extreme obesity state. 

Furthermore, this TBX15 cis-eQTL is a trans driver of the overall WHRadjBMI co-expression 

network expression, defined by the network eigengene, supporting our conclusion that TBX15 is 

a master regulator of the WHRadjBMI network. Our functional assay to detect the binding of 

primary human preadipocyte nuclear protein to this SNP using EMSAs show increased binding 

at the alternate allele of rs1779445 (C allele), with more binding observed using nuclear extract 

from male primary preadipocytes than female primary preadipocytes. Based on predictions using 

position weight matrices (PWMs)43,30, we hypothesize that RREB1 is binding at the alternate 

allele of rs1779445. RREB1 itself is a TF with intronic WHRadjBMI GWAS variants in 

European males15, which indicates that upstream regulators of TBX15 may also act differently 

between males and females. The confirmation of RREB1 as an upstream regulator of TBX15 in 

key human adipose tissue cell types warrants further investigation. 

 In summary, we discovered a novel master adipose trans regulator, TBX15, and its causal 

effect on WHRadjBMI, with a stronger effect observed in males. We also provide insight into a 

WHRadjBMI co-expression network containing critical adipose TFs and GWAS genes that 

TBX15 regulates, and demonstrate the large contribution of the cis variants of these network 

genes to both WHRadjBMI PRS and T2D PRS in a sex-dependent manner in the UK Biobank. 

Through our knockdown of TBX15 in human primary preadipocytes, we provide concrete 

functional evidence showing that decreasing expression of TBX15 directly affects expression of 

130 genes in the WHRadjBMI co-expression network, including 8 key TFs, thus compounding 

the downstream effects on metabolically harmful abdominal obesity. 
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Methods 

Study Cohorts 

METabolic Syndrome In Men (METSIM) 

The participants in the METabolic Syndrome In Men (METSIM) cohort (n=10,197) are Finnish 

males recruited at the University of Eastern Finland and Kuopio University Hospital, Kuopio, 

Finland, as described previously44–46. The study was approved by the local ethics committee and 

all participants gave written informed consent. The median age of the METSIM participants is 

57 years (range: 45-74 years). The METSIM participants were genotyped using the 

OmniExpress (Illumina) genotyping array and phased and imputed using SHAPEIT2 v2.1747 and 

IMPUTE2 v2.3.248, respectively. A random subset of the METSIM men underwent an 

abdominal subcutaneous adipose needle biopsy, with 335 unrelated individuals (IBD<0.2 using a 

genetic relationship matrix calculated in PLINK v1.949) analyzed here using RNA-seq46.  

UKBiobank (UKB) 

The UKB is a large cohort (n=502,617) consisting of data from individuals collected across the 

United Kingdom starting in 200627,50. To avoid hidden confounders from ancestry and 

relatedness, we used the subset of these individuals who are unrelated and of European ancestry 

(n=392,551). The genotyping was performed using one of two arrays for over 800,000 different 

variants27,51. The genotypes were then imputed using the Haplotype Reference Consortium 

(HRC) as well as UK 10K panel and the 1000 Genomes panel27,51. The genotypes were filtered 

for variants with MAF<1% and violation of Hardy-Weinberg Equilibrium (p<1x10-6) before 

using them for construction of the polygenic risk scores (PRSs) for WHRadjBMI.  

Kuopio OBesity Study (KOBS) 

The participants in the longitudinal Kuopio OBesity Study (KOBS) cohort (n=168) consist of 

Finnish obese individuals undergoing bariatric surgery and participating in a one year follow-up, 

recruited at the University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland, 

as described previously52–54. The study was approved by the local ethics committee and all 

participants gave written informed consent. All participants underwent a pre-screening for a 

detailed medical history, and the inclusion criterion was a pre-surgery BMI of ≥ 40 kg/m2 or 35 

kg/m2 with a significant comorbidity, such as type 2 diabetes (T2D). The biopsy samples were 

taken from subcutaneous adipose tissue at the time of bariatric surgery and one year after the 
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surgery. Refined phenotypic measurements and clinical characteristics were also measured at 

both time points52,53. 

 

Alignment of RNA-seq data 

We performed alignment of subcutaneous adipose RNA-seq data (n=335) from the METSIM 

cohort using STAR v2.5.255 with GENCODE v19 annotation of the genome and hg19 version of 

the human genome, as we described earlier with minor changes46,56. Briefly, a 2-pass alignment 

was performed on 75 base-pair (bp) reads with only uniquely mapped reads counted for gene 

expression. We discovered that the expression of many genes and technical factors are correlated 

with the percentage of mitochondrial reads. To avoid the influence of the mitochondrial read 

number on the data, we excluded the mitochondrial reads from the RNA-seq data when 

calculating the FPKMs and technical factors. We used FastQC to verify the RNA-seq quality, 

based on metrics, such as GC content, duplication levels, and sequence quality scores, as well as 

Picard Tools v2.9.0 to obtain the technical factors from the standard RNA-seq metrics (option 

CollectRNAseqMetrics), including the median 5’ to 3’ bias, percentage of intronic reads, and 

median coverage from the aligned reads. 

 

Weighted Gene Co-expression Analysis 

To find co-expression networks in the METSIM adipose RNA-seq cohort, we performed 

Weighted Gene Co-expression Analysis (WGCNA) v1.6857 on FPKMs from the subcutaneous 

adipose RNA-seq data (n=335) from the METSIM cohort. To prevent the influence of technical 

factors from sequencing and RNA-seq alignment, we included 14 technical factors that were 

determined by STAR v2.5.255 and Picard Tools v2.9.0. The FPKMs were filtered for genes 

expressed (FPKM>0) in at least 90% of individuals and inverse normal transformed after 

correcting for technical factors to avoid spurious associations and outlier effects (see above). 

Phenotypes used for associations with co-expression networks in WGCNA v 1.6857 were inverse 

normal transformed after correcting for age, age2. The fasting serum insulin levels were 

corrected for T2D status as well as age and age2 and then inverse normal transformed. To ensure 

scale-free network topography, we used a power of 10 for the power function to determine co-

expression network membership. All other parameters in WGCNA v 1.6857 were kept at their 

default values. 
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Co-expression network preservation 

Using WGCNA v1.6857,58, we confirmed the preservation of the co-expression networks from 

the METSIM subcutaneous adipose RNA-seq (n=335) in the subcutaneous adipose RNA-seq 

(n=581) from the independent GTEx v8 cohort25. We further subdivided the GTEx v825 cohort to 

males (n=387) and females (n=194) and then lean (BMI<25) and obese (BMI>30) individuals of 

each sex. As the sample sizes for males and females were above the recommended minimum 

threshold (n=20), the ZSummary score value should not be sensitive to the sample size, and so the 

relative difference in the number of males and females was not a concern. We calculated FPKMs 

from the RNA-seq data and technical factors from STAR v2.5.255 and Picard Tools v2.9.0, as 

described above. We corrected the expression data for technical factors as well as age, age2, sex, 

race, RIN, sequencing platform, sequencing protocol (PCR-based or PCR-free), and time from 

death to RNA collection and then inverse normal transformed the data. Default parameters in 

WGCNA v1.6857 were used for the co-expression network preservation analysis. Accordingly, a 

preservation 10>ZSummary>2 was considered as weakly to moderately preserved and a 

ZSummary>10 as strongly preserved57,58. 

 

Single-nucleus RNA-seq (snRNA-seq) of human subcutaneous adipose tissue 

We performed snRNA-seq of frozen adipose from sixteen individuals in order to identify cell 

types and their gene expression profile. Nuclei were isolated from frozen subcutaneous adipose 

tissue to input them into the 10X Chromium platform59. To isolate nuclei from frozen tissue, the 

tissue was minced over dry ice and transferred into ice-cold lysis buffer consisting of 0.1% 

IGEPAL, 10mM Tris-Hcl, 10 mM NaCl, and 3 mM MgCl2. After a 10-minute incubation 

period, the lysate was gently homogenized using a dounce homogenizer and filtered through a 70 

μm MACS smart strainer (Miltenyi Biotec #130-098-462) to remove debris. Nuclei were 

centrifuged at 500 g for 5 minutes at 4°C and washed in 1 ml of resuspension buffer (RSB) 

consisting of 1X PBS, 1.0% BSA, and 0.2 U/μl RNase inhibitor. We further filtered nuclei using 

a 40 μm Flowmi cell strainer (Sigma Aldrich # BAH136800040) and centrifuged at 500 g for 5 

minutes at 4°C. Pelleted nuclei were re-suspended in wash buffer and immediately processed 

with the 10X Chromium platform following the Single Cell 3' v2 protocol. After library 

generation with the 10X Genomics platform, libraries were sequenced on an Illumina NovaSeq 

S2 at a sequencing depth of 50,000 reads per cell. Reads were aligned to the GRCh38 human 
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genome reference with Gencode v26 gene annotations60 using the 10X CellRanger 2.1.1 

pipeline. A custom pre-mRNA reference was generated to account for unspliced mRNA by 

merging all introns and exons of a gene into a single meta-exon. 

 

SnRNA-seq data processing and identification of cell type marker genes 

We then clustered the droplets using Seurat v3.1.261.  In order to remove droplets contaminated 

with background RNA, we ran DIEM62. After applying filtering, we only considered droplets 

with at least 200 genes detected63 to ensure that each droplet had enough information for 

clustering. The count data were log-normalized using the NormalizeData function in Seurat, 

using a scaling factor equal to the median of total counts across droplets. The counts for the 

sixteen adipose tissue samples were merged at this step. The top 2,000 variable genes were then 

calculated using the FindVariableFeatures function. 

Normalized read counts for each gene were scaled to mean 0 and variance 1. We 

calculated the first 30 PCs to use them as input for clustering. We then ran the Seurat functions 

FindNeighbors and FindClusters with 30 PCs. In the FindClusters function, we used the default 

parameters with standard Louvain clustering and a default clustering resolution of 0.8. To 

identify marker genes for each cluster, we ran a Wilcoxon rank-sum test using the function 

FindAllMarkers with default parameters and only.pos=TRUE. We corrected for multiple testing 

using FDR<0.05. 

 

T2D GWAS in the UKB 

To identify individuals with T2D in UKB, we selected the individuals who were diagnosed with 

diabetes (UKB data field 2443) or took medication for diabetes (data field 6153) as T2D cases, 

while removing the individuals with age of onset of diabetes (data field 25288) <40 years to 

avoid inclusion of type 1 diabetics in the GWAS analysis. We excluded the individuals with 

missing information for diagnosis of diabetes (data field 2443) from the GWAS analysis, and 

then used the individuals who were not diagnosed using these relevant data fields (data fields 

2443, 6153, and 25288) as the controls. To account for population stratification, we selected the 

unrelated, Caucasians (total n after the exclusions=389,738) and used BOLT-LMM64 to perform 

the GWAS associations between the genotypes and T2D status. We included age, age2, sex, array 

type, center ID, and 20 genotype PCs as covariates in the GWAS analysis. 
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Stratified LD score regression 

We performed Stratified LD score regression using the LD Score software v1.0.065,66. This 

analysis was conducted using the GWAS summary statistics from the UKB and GIANT meta-

analyses for WHRadjBMI (males, females, and both sexes combined) (n=315,284; n=379,501; 

n=694,549, respectively) and BMI (n=806,834 both sexes combined)15 as well as GWAS 

summary statistics from the UKBiobank for T2D (males, females, and both sexes combined) 

(n=178,809; n=210,929; n=389,738, respectively). We partitioned the heritability into a category 

with the cis-regions (+/-500kb from the ends of the gene) around the 347 WHRadjBMI co-

expression network genes and the 53 standard, overlapping categories used in the LD Score 

software v1.0.065,66. Briefly, the 53 functional categories are derived from 26 main annotations 

that include coding regions, untranslated regions (UTRs), promoters, intronic regions, histone 

marks, DNase I hypersensitivity sites (DHSs), predicted enhancers, conserved regions, and other 

annotations. The partitioned LD Score regression method utilizes GWAS summary statistics of 

all variants to estimate how much variants in different annotation categories explain of the 

heritability of cis expression while accounting for the linkage disequilibrium (LD) among 

variants. 

 

Construction of polygenic risk score 

We constructed the polygenic risk scores (PRSs) for WHRadjBMI using the same method for 

construction of PRSs as outlined for BMI in Khera et al.27. Briefly, we used the summary 

statistics from the GIANT GWAS for WHRadjBMI (n=224,459)8 and a reference panel of the 

503 European individuals from the 1000 Genomes phase 3 version 567. We constructed nine 

candidate scores using the software, LDPred v1.0.668, which adjusts the effect sizes for each 

variant in the GWAS based on LD structure. Due to the large number of participants, unified 

recruitment design and phenotypic characterization, the UKB is an ideal cohort for construction 

and testing of PRSs. Therefore, we tested and validated these candidate scores by dividing the 

UKB (Unrelated, Caucasian individuals, n=392,551)50,51 into 2 groups: a testing set consisting of 

1/3 of the individuals (n=130,851), and a validation set containing the remaining individuals 

unused in the testing set (n=261,700). Since the fraction of causal variants is not known a priori, 

we tested a different value of a tuning parameter (ρ=1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 

0.0001), as suggested by LDPred v1.0.668, in each of our nine candidate scores. We selected the 
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best score by correlating the PRS with WHRadjBMI using Pearson correlation, which 

corresponded to ρ=0.01. We also compared this to five PRS scores constructed using the 

standard method of PRS construction of LD clumping (LD r2<0.2) and p-value thresholding 

(p<0.5, 0.1, 0.05, 1x10-5, 5x10-8), as suggested by LDPred v1.0.668, to confirm that using the 

tuning parameter constructed a superior PRS. To avoid the influence of technical factors, we 

corrected WHRadjBMI in the UKB for age, age2, sex, array type, center ID, and 20 genotype 

PCs. To perform statistical tests, we divided the PRS into 20 quantiles and calculated odds ratio 

of number of individuals in the top 10th percentile of WHRadjBMI for males and females 

separately.   

 

Prediction of type 2 diabetes using the WHRadjBMI PRS 

We constructed a linear model to perform logistic regression using the binary T2D status as the 

outcome in the UKB validation set (n=261,700) that we originally employed to validate the PRSs 

for WHRadjBMI. We selected the individuals who were diagnosed with diabetes (UKB data 

field 2443) or took medication for diabetes (data field 6153) as T2D cases, while removing the 

individuals with age of onset of diabetes (data field 25288) <40 years to avoid inclusion of type 1 

diabetics, with remaining individuals identified as controls. To examine individuals in the 

extremes of the WHRadjBMI spectrum, we selected the UKB participants in the highest (top 

10% of network PRS scores) and lowest decile (lowest 10% of network PRS scores) of 

WHRadjBMI, as determined by the network PRS and divided them by sex. To avoid influence 

from the original phenotype, WHRadjBMI, as well as any technical factors, our linear model 

also included WHRadjBMI in addition to the network PRS score, with WHRadjBMI corrected 

for age, age2, sex, array type, center ID, and 20 genotype PCs. We performed a Wald test for the 

significance of each predictor in the linear model. 

 

Transcriptome-Wide Association Studies (TWAS) 

To identify TFs causal for WHRadjBMI, we performed a targeted Transcriptome-wide 

Association Study (TWAS)33 using GTEx v8 cohort’s subcutaneous (n=581) RNA-seq data25 to 

compute the TWAS weights for variants within the cis-region (+/-500kb from the ends of the gene) 

around the 14 TFs in the identified WHRadjBMI co-expression network. As there are not 

currently TWAS functional weights for genes using GTEx v8 cohort25 and it has significantly 
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more samples than the GTEx v7 cohort18 for adipose tissues, we computed our own weights 

using the recommended parameters by TWAS33. Briefly, to only include variants that will be 

used in the final association between TWAS and the GWAS trait, variants in the cis-region 

around our 14 TFs were pruned base on the LD reference panel from the TWAS website that was 

converted by matching variants from GRCh37 to GRCh38 in European individuals from the 

1000 Genomes phase 3 version 567. TWAS33 checks the heritability (p<0.01) and then looks for 

the best model out of the five standard models to estimate weights for the variants to predict gene 

expression. To show that the genes computed by TWAS33 are causal for a WHRadjBMI, we then 

associated the TWAS model with the weighted variants with WHRadjBMI using the GWAS 

summary statistics from the UKBiobank and GIANT meta-analysis15. The use of these extensive 

GWASs (total n~700,000 Europeans) should maximize power for association.  

 

Fine-mapping TWAS results using FOCUS 

Recent work34,69 has shown that TWAS signal at genomic risk regions will be correlated across 

genes as a result of linkage disequilibrium and prediction weights, which makes distinguishing 

non-relevant genes from their causal counterparts challenging. To adjust for the correlation in our 

TWAS test statistics and identify likely causal genes, we applied FOCUS34, a recently developed 

method that models the complete correlation structure within a region to fine-map TWAS signal. 

FOCUS models the state of genes as “causal” and “non-causal” and performs Bayesian inference 

over this state variable given the data. Specifically, given 𝑚𝑚 TWAS z-scores 𝒛𝒛 at a genomic risk 

region, let 𝚺𝚺 = 𝚺𝚺(𝐖𝐖,𝐕𝐕) be the correlation structure of predicted expression as a function of the 

𝑚𝑚 × 𝑝𝑝  prediction weight matrix 𝐖𝐖  and the 𝑝𝑝 × 𝑝𝑝  LD matrix 𝐕𝐕  and let 𝒄𝒄  be a binary vector 

indicating causal status. FOCUS models the likelihood of the calculated z-scores 𝒛𝒛 as, 

Pr(𝒛𝒛 |𝐖𝐖,𝐕𝐕, 𝒄𝒄,𝜎𝜎𝛼𝛼2) =  𝑵𝑵(𝟎𝟎,𝚺𝚺𝑫𝑫𝒄𝒄𝚺𝚺 + 𝚺𝚺) 

where 𝐃𝐃𝐜𝐜 = diag(𝜎𝜎𝛼𝛼2 ⋅ 𝒄𝒄) is a diagonal matrix indicating which genes are causal weighted by the 

variance of their effect sizes. To infer the causal configuration 𝒄𝒄, FOCUS computes the posterior 

probability as 

Pr(𝒄𝒄 | 𝑧𝑧,𝑊𝑊,𝑉𝑉,𝜎𝜎𝛼𝛼2) =
Pr(𝒛𝒛 |𝐖𝐖,𝐕𝐕, 𝒄𝒄,𝜎𝜎𝛼𝛼2) Pr(𝒄𝒄|𝜃𝜃)

∑ Pr(𝒛𝒛 |𝐖𝐖,𝐕𝐕, 𝒄𝒄′,𝜎𝜎𝛼𝛼2)Pr (𝒄𝒄′|𝜃𝜃)′
c

  

To collapse the probability over configurations 𝒄𝒄  to individual genes FOCUS computes the 

marginal posterior inclusion probability (i.e. PIP) at the ith gene as Pr(𝒄𝒄𝒊𝒊 = 1 | 𝒛𝒛,𝐖𝐖,𝐕𝐕,𝜎𝜎𝛼𝛼2) =
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∑ Pr(𝒄𝒄 | 𝒛𝒛,𝐖𝐖,𝐕𝐕,𝜎𝜎𝛼𝛼2)𝑐𝑐:𝑐𝑐𝑖𝑖=1 .  Lastly, to reflect the inherent uncertainty of inference, FOCUS 

computes credible gene sets for a specified credible level. For example, a calibrated 90%-credible 

gene set contains the causal gene with probability 90%.  

 

Differential gene expression analysis in the KOBS cohort 

Using read counts from featureCounts v2.0.070, we performed differential expression (DE) 

analysis using the edgeR v3.24.3 package71. We first performed TMM normalization using the 

calcNormFactors and variance stabilization using voom72, and then built a linear module using 

LIMMA v3.38.373 with the blocking factor for the baseline and follow-up measurement time 

points in KOBS. As with the METSIM data, to avoid the influence of the mitochondrial read 

number on the data, we excluded the mitochondrial reads from the when obtaining technical 

factors. Technical factors were determined by STAR v2.5.255 and Picard Tools v2.9.0 (option 

CollectRNAseqMetrics) and included in the linear model in LIMMA v3.38.373, with DE genes 

passing FDR<0.05 considered as significant. 

 

Cis-eQTL analysis in the KOBS cohort 

We performed cis-eQTL analyses in the KOBS cohort at two time-points using the subcutaneous 

adipose RNA-seq data from the surgery and one-year follow-up (n=168 individuals with adipose 

RNA-seq data at both time points). Given the sample size, we used both sexes combined in the 

KOBS cohort to maximize power for discovery of context-specific cis-eQTLs. We filtered the 

subcutaneous adipose RNA-seq expression data (FPKMs) to genes expressed (FPKM>0) in 

greater than 90% of individuals and employed PEER factor74 analysis to remove hidden 

confounders. We conducted PEER factor74 optimization on chromosome 20 to maximize power 

for discovery for eQTLs, while ensuring hidden confounders were removed, and thus ended up 

correcting the KOBS expression data for 21 PEER factors. The KOBS cohort was genotyped 

using the OmniExpress (Illumina) genotyping array. We imputed  genotypes using the Michigan 

Imputation Server75 and filtered genotypes for variants MAF<5% and those failing Hardy-

Weinberg Equilibrium test (p>1x10-6) using PLI NK v1.949. We performed cis-eQTL analysis 

using Matrix-eQTL76, classifying variants as cis if they were within 1Mb of either end of the 

gene. 
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Human primary preadipocyte culture 

Human subcutaneous primary white preadipocytes were obtained from Zen-Bio (lot L120116E, 

female, age 52, BMI 26.5) or PromoCell (lot 403Z001.1, male, age 30, BMI 30). Cells were 

maintained in a monolayer culture at 37°C and 5% CO2 using preadipocyte growth medium 

(PromoCell C-27410) with 1% Gibco Penicillin-Streptomycin (ThermoFisher 15140122) and 

following PromoCell preadipocyte culturing protocols.  

 

Electrophoretic mobility shift assay 

Nuclear protein was extracted from the human primary preadipocytes using the Nuclear Protein 

Extract Kit (Active Motif 40010), following manufacturer’s protocols. We incubated 250fmol of 

oligonucleotide probes (15bp flanking SNP site for reference or alternate allele) with a biotin tag 

at the 5’ end of the sequence (Integrated DNA Technologies) with 4 ug of the preadipocyte 

nuclear protein from the male or female donor, and the working reagent from the Gelshift 

Chemiluminescent EMSA kit (Active Motif 37341). For competitor assays, we added an 

unlabeled probe of the same sequence to the reaction mixture at 204x excess. The reaction was 

incubated for an hour at room temperature, and then loaded on a pre-run 6% retardation gel 

(ThermoFisher Scientific EC6365BOX) together with the EMSA kit 5X loading buffer. We ran 

20μl in the gel with 0.5X TBE buffer at 120V. We then transferred the contents of the gel to a 

nylon membrane (Invitrogen LC2003) using 20V for 90 minutes and visualized with the chemi-

luminescent reagent as recommended. 

 
EMSA oligonucleotide probe design for SNP rs1779445. 
Oligonucleotide probe DNA Strand Sequence (5’ -> 3’) 

Reference (T) allele Positive TGACAGTCTCCAACATAACAGCTCAAAACTA 
Negative TAGTTTTGAGCTGTTATGTTGGAGACTGTCA 

Alternate (C) allele Positive TGACAGTCTCCAACACAACAGCTCAAAACTA 
Negative TAGTTTTGAGCTGTTGTGTTGGAGACTGTCA 

* Biotinylated probes were created by adding biotin to the 5' end of the positive strand probes. 
 

Small interfering RNA (si-RNA)-mediated knockdown of TBX15 

We knocked down TBX15 in human subcutaneous primary preadipocytes obtained from 

Zen-Bio (lot L120116E, female, age 52, BMI 26.5). For the siRNA transfection, we used the 

Dharmacon SMARTpool ON-TARGETplus Human TBX15 siRNA (L-022116-02) and the 

Dharmacon siGENOME Non-Targeting siRNA Pool #1 (D-001206-13) as the negative control 
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(NC). We optimized the siRNA concentration and transfection volumes and then performed two 

independent siRNA transfection experiments in the human primary white preadipocytes. We 

used Invitrogen Lipofectamine RNAiMAX (ThermoFisher 13778150) to transfect 50 nM of the 

TBX15 or NC siRNAs using reverse transfection. Specifically, we followed the manufacturer’s 

instructions for diluting the siRNA and Lipofectamine RNAiMAX in Gibco Opti-MEM I 

Reduced Serum Medium (ThermoFisher 31985062) and forming the siRNA-Lipofectamine 

RNAiMAX complexes. We incubated cell suspensions in the complexes plus serum- and 

antibiotic-free media (PromoCell C-27417 basal media with supplement kit components minus 

the fetal calf serum) to a final siRNA concentration of 50 nM. We incubated the transfection 

reaction at room temperature for 10 minutes before plating 250 μl per replicate into 12-well 

plates, for a total of 5 replicates per siRNA (TBX15 and NC). After 24 hours of transfection, we 

added 1 ml of complete preadipocyte growth medium (PromoCell C-27410). 24 hours later, the 

media was removed and the cells were washed with PBS once prior to being treated with 

Invitrogen TRIzol reagent (ThermoFisher 15596026). We performed RNA extraction per 

manufacturer’s protocol using the Direct-zol RNA Mini-Prep (Zymo Research R2061).  

For the two independent knock-down experiments, we confirmed by RT-qPCR that 

TBX15 expression was reduced by an average of >60% for the first experiment and 70% for the 

second experiment. We synthesized cDNA from 500 ng of RNA using the Applied Biosystems 

High-Capacity cDNA Reverse Transcription Kit (ThermoFisher Scientific 4368814). We 

measured relative gene expression by RT-qPCR using an Applied Biosystems QuantStudio 5 

detector. To determine the relative percent of TBX15 expression knockdown in the preadipocytes 

transfected with the TBX15 siRNA compared to the NC siRNA, we normalized expression levels 

to 36B4. Primers for TBX15 were obtained from Arribas et al.77. and validated in-house. Primer 

sequences are listed below.  

 

Gene Primer Primer Sequence 
TBX15 Forward 5’- AAAGCAGGCAGGAGGATGTT-3’ 

 Reverse 5’- GCACAGGGGAATCAGCATTG-3’ 
36B4 Forward 5’-CCACGCTGCTGAACATGCT-3’ 

 Reverse 5’-TCGAACACCTGCTGGATGAC-3’ 
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RNA-sequencing and differential expression analysis of si-RNA mediated knockdown of 

TBX15 

We submitted the RNA samples from the experiment with an average of 70% knockdown for 

RNA-sequencing (RNA-seq). Libraries were prepared using the Illumina TruSeq Stranded 

mRNA kit and sequenced on an Illumina HiSeq 4000 instrument across 2 lanes for an average 

sequencing depth of 67M reads (+/- 2.5M reads) per sample. Reads were aligned to hg19 with 

STAR v2.7.0e55, using the 2-pass method and the following parameters: --

outFilterMultimapNmax 1, --outFilterMismatchNmax 6, --alignIntronMin 20, --alignIntronMax 

500000, --chimSegmentMin 15. 

We used the R package sva v3.26.078 to estimate surrogate variables for unknown sources 

of variation in the data. We confirmed that the first surrogate variable (sv1) estimated using the 

svaseq79 method is correlated with technical factors known to contribute to variance in RNA-seq 

data, such as library size, uniquely mapped read percent, and 3’ bias, as well as the gene 

expression first principal component. The various technical factors were obtained from STAR 

v2.7.0e55 after sequence alignment (uniquely mapped reads) or from the Picard Tools v2.9.0 

(option CollectRnaSeqMetrics). We used the sv1 as a covariate in the differential expression 

(DE) analysis. 

We performed the DE analysis using the R package limma v3.34.973,80 and the voom72 

method, including sv1 as a covariate, to identify genes in the WHRadjBMI co-expression 

network (n=347) that are significantly DE in the TBX15 knockdown compared to the NC, with 

FDR<0.05 considered as significant. 
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Fig. 1 | Schematic overview of the study design (a), discovery of the red WHRadjBMI-
associated co-expression network that is enriched for TFs and GWAS genes (b), and 
enriched for upregulated adipose tissue -specific DE genes when compared to other tissues 
(c) in GTEx25. a, Illustrative schematic overview of the current study design, showing an eQTL 
controlling a TF, i.e. TBX15, in cis, and co-expression networks in trans via the TF, TBX15, that 
ultimately affects WHRadjBMI and clinical metabolic outcome, T2D, in a sex-dependent 
manner. b, Bar plot showing enrichment of TFs and GWAS genes in the red WHRadjBMI-
associated co-expression network (light grey) when compared to the black WHRadjBMI-
associated co-expression network (dark grey) using the Fisher’s exact test. Significance of 
enrichment using the Fisher’s exact test is indicated above each set of bars, pFisher. c, Bar plot 
showing significant enrichment (red) of upregulated adipose tissue-specific DE genes in 
WHRadjBMI co-expression network using FUMA26 when compared to the 54 other tissues in 
the GTEx v8 cohort25. GTEx v8 tissues are ranked by enrichment from most enriched to least 
enriched with the first 25 most enriched tissues shown. The tissue enrichments passing a 
Bonferroni correction are shown in red, while the non-significant enrichments are shown in blue.   
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Fig. 2 | PRS scores confirm sexual dimorphism of WHRadjBMI and demonstrate the 
importance of WHRadjBMI co-expression network genes for WHRadjBMI in males. Plot 
of the PRS for WHRadjBMI in the testing set of the UKBiobank (n=261,700) separated for 
males (dark grey) and females (light grey) as well as for genome-wide PRS (dashed lines) and 
WHRadjBMI co-expression network PRS (solid lines; i.e. variants within the cis regions of the 
347 network genes (+/-500kb from the ends of the gene)). Odds ratio is calculated based on the 
proportion of individuals in the top 10th percentile of WHRadjBMI for males and females in each 
of the 20 quantiles of the PRS separately. Vertical error bars indicate the 95% CI for the odds 
ratio. Brackets show a fold change (FC) in the odds ratio for the 20th quantile. 
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Fig. 3 | TWAS and FOCUS results in GTEx v8 subcutaneous adipose RNA-seq data 
implicates TBX15 as the only TF in the WHRadjBMI co-expression network causal for 
WHRadjBMI. a, Pairwise Pearson correlation coefficients between all genes in the TBX15 locus 
(chr1:115476504-121965583) using the normalized gene expression from the GTEx v8 cohort 
subcutaneous adipose RNA-seq data (n=581). b, Plot of –log10 p-value for TWAS association 
with WHRadjBMI for each gene in the TBX15 locus (chr1:115476504-121965583) with a 
significant heritability estimate (p<0.01) in the GTEx v8 cohort genotype and subcutaneous 
adipose RNA-seq data (n=581). Size of the point indicates the magnitude of the FOCUS 
marginal posterior inclusion probability (PIP). Genes included in the final 90% credible set are 
marked in red. Stars above points indicate a significant TWAS cross-validation p-value (p<0.01).  
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Fig. 4 | The EMSA results demonstrate increased protein binding at the alternate allele of 
the variant rs1779445, a context-specific cis regulator of TBX15 and trans regulator of the 
WHRadjBMI co-expression network (a, b, c) and knockdown of TBX15 in human primary 
preadipocytes significantly affects 130 genes (FDR<0.05) in the WHRadjBMI co-expression 
network (d, e). a, Illustration of TBX15 gene with introns and exons; and the relative RNA-seq 
read density in the human primary preadipocyte cells transfected with the negative control si-
RNA when compared to the cells transfected with the TBX15 si-RNA. Scales for the read density 
are equal. b, DNA sequence surrounding the SNP rs1779445 and canonical motif for RREB1 
used for predicting binding at rs1779445. c, Representative EMSA (from n=3 independent 
experiments) shows protein binding at the reference and alternate allele of rs1779445 using 
nuclear extract from male and female preadipocytes. Control (ctrl); reference allele (ref), and 
alternate allele (alt); presence (+) and absence (-) of nuclear extract; as well as labeled probe and 
unlabeled probe (competitor) are indicated below each lane of the EMSA. d, Bar plot showing 
the qPCR relative expression (2-ddCt) when compared to the housekeeping gene 36B4 and RNA-
seq TPMs for TBX15 in the cells transfected with negative control si-RNA when compared to the 
cells transfected with TBX15 si-RNA (n=5). e, Volcano plot of differentially expressed (DE) 
genes in TBX15 knockdown experiment, excluding TBX15. Significant genes (FDR<0.05) (dark 
grey), non-significant genes (light grey), and TFs (orange; FDR<0.05) are plotted based on their 
log10 p-value and log2 fold change in expression. Significantly differentially expressed TFs are 
labeled. Inlay shows the volcano plot of the TBX15 DE results with TBX15 included. 
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Supplementary Fig. 1 | WGCNA57 identifies 2 co-expression networks in the METSIM 
adipose RNA-seq cohort (n=335), significantly correlated with WHRadjBMI and fasting 
serum insulin. The numbers in the cells represent Pearson correlation results of network 
eigengenes with BMI, WHR, and WHRadjBMI, and fasting serum insulin (adjusted for T2D 
status) with correlation coefficients and p-values (shown in parenthesis). Associations that pass 
Bonferroni correction for the number of networks and traits tested (pBonf<8.93x10-4) were 
considered significant. 
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Supplementary Table 1. Characteristics of the genes (n=347) in the WHRadjBMI co-expression 
network, as reported by WGCNA57 and ranked by network membership. 

Gene Name Chr*:start-end (hg19) Network 
membership† 

WHRadjBMI 
correlation‡ 

Fasting 
insulin 
correlation‡ 

HADH chr4:108910870-108956331 0.929 -0.253 -0.439 
ETFA chr15:76507696-76603813 0.898 -0.244 -0.454 
ALDH6A1 chr14:74523553-74551196 0.895 -0.192 -0.399 
HIBADH chr7:27565061-27702614 0.874 -0.208 -0.367 
UQCRC2 chr16:21963981-21994981 0.872 -0.246 -0.357 
ACVR1C chr2:158383279-158485517 0.871 -0.185 -0.402 
GPD1L chr3:32147181-32210205 0.866 -0.237 -0.481 
BNIP3 chr10:133781578-133795435 0.855 -0.228 -0.361 
MARC2 chr1:220921567-220958150 0.851 -0.192 -0.357 
MUT chr6:49398073-49430904 0.850 -0.166 -0.345 
PCCA chr13:100741269-101182686 0.846 -0.201 -0.356 
CCDC50 chr3:191046866-191116459 0.845 -0.194 -0.373 
ACSS3 chr12:81331594-81650533 0.840 -0.171 -0.405 
DLST chr14:75348594-75370448 0.839 -0.189 -0.353 
PHF13 chr1:6673745-6684093 0.837 -0.218 -0.363 
NIPSNAP3B chr9:107526438-107539738 0.834 -0.217 -0.470 
ANO6 chr12:45609770-45834187 0.833 -0.215 -0.366 
C1orf43 chr1:154179182-154193104 0.833 -0.210 -0.347 
VDAC2 chr10:76969912-76991206 0.830 -0.231 -0.375 
NDUFB5 chr3:179322478-179345435 0.829 -0.225 -0.358 
AUH chr9:93976097-94124195 0.825 -0.176 -0.307 
ACAT1 chr11:107992243-108018503 0.824 -0.149 -0.351 
NAALAD2 chr11:89864683-89926062 0.824 -0.240 -0.408 
PEX19 chr1:160246602-160256138 0.824 -0.167 -0.319 
PRDX6 chr1:173446405-173457946 0.823 -0.261 -0.395 
GBAS chr7:56019486-56067874 0.820 -0.170 -0.283 
HRSP12 chr8:99114572-99129469 0.815 -0.226 -0.376 
ADH1B chr4:100226121-100242558 0.814 -0.160 -0.441 
CTH chr1:70876901-70905534 0.811 -0.174 -0.374 
MOCS1 chr6:39867354-39902290 0.809 -0.184 -0.451 
SUCLG2 chr3:67410884-67705038 0.809 -0.203 -0.348 
CSNK2A2 chr16:58191811-58231824 0.804 -0.256 -0.347 
MRPL45 chr17:36452989-36479101 0.804 -0.208 -0.304 
PHYH chr10:13319796-13344412 0.804 -0.188 -0.323 
DNAJC19 chr3:180701497-180707562 0.803 -0.131 -0.357 
VEGFA chr6:43737921-43754224 0.801 -0.155 -0.386 
MRPL32 chr7:42971799-42988557 0.800 -0.149 -0.348 
HSDL2 chr9:115142217-115234690 0.799 -0.167 -0.309 
CYB5A chr18:71920530-71959251 0.798 -0.211 -0.381 
TCEB3 chr1:24069645-24088549 0.797 -0.226 -0.332 
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EIF4EBP2 chr10:72164135-72188374 0.795 -0.160 -0.371 
HLF chr17:53342373-53402426 0.794 -0.195 -0.381 
SLC19A2 chr1:169433147-169455241 0.791 -0.184 -0.338 
BFAR chr16:14726672-14763093 0.789 -0.218 -0.336 
PDK2 chr17:48172101-48189516 0.787 -0.165 -0.359 
RP11-61A14.3 chr16:66923072-66924996 0.787 -0.132 -0.330 
MRPS36 chr5:68513587-68525956 0.786 -0.210 -0.331 
TWIST1 chr7:19060614-19157295 0.784 -0.160 -0.392 
GKAP1 chr9:86354336-86444431 0.783 -0.182 -0.333 
PFKFB3 chr10:6186881-6277495 0.783 -0.184 -0.390 
TMEM132C chr12:128751948-129192460 0.783 -0.118 -0.377 
ACADM chr1:76190036-76253260 0.780 -0.195 -0.360 
LETMD1 chr12:51441745-51454207 0.779 -0.147 -0.350 
MED9 chr17:17380300-17396540 0.779 -0.233 -0.347 
GINS3 chr16:58328984-58440048 0.778 -0.231 -0.426 
KLF15 chr3:126061478-126076285 0.775 -0.215 -0.300 
MRPL10 chr17:45900638-45908900 0.775 -0.190 -0.325 
RBPMS-AS1 chr8:30239635-30242917 0.775 -0.210 -0.379 
UNG chr12:109535379-109548797 0.775 -0.243 -0.310 
CRLS1 chr20:5986736-6020699 0.774 -0.104 -0.314 
TMLHE chrX:154719776-154899605 0.774 -0.156 -0.288 
LRPPRC chr2:44113647-44223144 0.771 -0.177 -0.280 
SLC27A2 chr15:50474393-50528592 0.771 -0.248 -0.407 
TMEM100 chr17:53796988-53809482 0.770 -0.229 -0.336 
PAIP2B chr2:71409869-71454213 0.769 -0.237 -0.379 
ORMDL3 chr17:38077294-38083854 0.768 -0.202 -0.401 
OSBPL1A chr18:21742008-21977844 0.768 -0.209 -0.343 
AASS chr7:121715701-121784334 0.767 -0.138 -0.393 
ATPAF1 chr1:47098409-47139539 0.767 -0.109 -0.283 
ASH2L chr8:37962760-38001594 0.764 -0.104 -0.297 
PPARA chr22:46546424-46639653 0.762 -0.160 -0.362 
TXLNG chrX:16804550-16862642 0.762 -0.160 -0.304 
GHR chr5:42423879-42721979 0.761 -0.100 -0.364 
TTLL7 chr1:84330711-84464833 0.760 -0.194 -0.360 
GMCL1 chr2:70056774-70108528 0.759 -0.208 -0.307 
PER3 chr1:7844380-7905237 0.759 -0.186 -0.332 
RMND1 chr6:151725989-151773259 0.759 -0.226 -0.289 
PJA1 chrX:68380694-68385636 0.755 -0.137 -0.234 
ANKRD53 chr2:71205510-71212626 0.754 -0.190 -0.411 
NMNAT3 chr3:139279022-139396859 0.753 -0.113 -0.261 
GPR146 chr7:1084212-1098897 0.751 -0.182 -0.343 
AC003986.6 chr7:19152097-19153894 0.750 -0.193 -0.327 
GLUL chr1:182350839-182361341 0.750 -0.206 -0.371 
FAM89A chr1:231154704-231175992 0.749 -0.153 -0.391 
APMAP chr20:24943561-24973615 0.748 -0.245 -0.310 



139 
 

DHTKD1 chr10:12110971-12165224 0.747 -0.215 -0.250 
IMMP2L chr7:110303110-111202573 0.747 -0.216 -0.302 
FDFT1 chr8:11653082-11696818 0.746 -0.160 -0.374 
DBT chr1:100652475-100715390 0.745 -0.127 -0.293 
USP30 chr12:109460894-109525831 0.743 -0.159 -0.229 
ABHD5 chr3:43731605-43775863 0.741 -0.161 -0.351 
SLC35G2 chr3:136537489-136574734 0.741 -0.191 -0.353 
TGDS chr13:95226308-95248511 0.741 -0.174 -0.304 
EPB41L4B chr9:111934255-112083244 0.740 -0.176 -0.353 
SDHD chr11:111957497-111990353 0.740 -0.185 -0.307 
GPHN chr14:66974125-67648520 0.739 -0.204 -0.359 
PRKAR2B chr7:106685094-106802256 0.739 -0.142 -0.372 
LACTB2 chr8:71547553-71581409 0.737 -0.229 -0.295 
YPEL5 chr2:30369807-30383399 0.737 -0.224 -0.323 
MCCC2 chr5:70883115-70954531 0.736 -0.170 -0.216 
GRPEL1 chr4:7060633-7069924 0.735 -0.256 -0.356 
DLD chr7:107531415-107572175 0.734 -0.172 -0.281 
FBXO27 chr19:39481354-39523425 0.734 -0.129 -0.335 
TBX15 chr1:119425669-119532179 0.733 -0.155 -0.311 
HSPD1 chr2:198351305-198381461 0.732 -0.203 -0.322 
PCBD1 chr10:72642037-72648541 0.732 -0.234 -0.293 
PMM1 chr22:41972898-41985894 0.730 -0.208 -0.348 
MPDZ chr9:13105703-13279589 0.729 -0.133 -0.296 
SLC41A1 chr1:205758221-205782876 0.729 -0.206 -0.312 
STOX1 chr10:70587298-70655188 0.729 -0.216 -0.365 
DAPK2 chr15:64199235-64364232 0.728 -0.227 -0.375 
MLYCD chr16:83932731-83949787 0.728 -0.210 -0.293 
TARSL2 chr15:102193801-102264807 0.728 -0.205 -0.335 
BCKDHB chr6:80816364-81055987 0.727 -0.145 -0.256 
FAM120AOS chr9:96208776-96215874 0.727 -0.120 -0.292 
MLX chr17:40719086-40725257 0.726 -0.266 -0.302 
PMPCB chr7:102937869-102969958 0.726 -0.140 -0.254 
RP11-363E7.4 chr9:19453207-19455171 0.726 -0.109 -0.399 
MTHFD1 chr14:64854749-64926722 0.725 -0.215 -0.297 
TBC1D20 chr20:416124-443197 0.725 -0.201 -0.357 
FAM13A chr4:89647106-90032549 0.724 -0.140 -0.272 
PHLPP1 chr18:60382672-60647666 0.724 -0.116 -0.386 
ELP2 chr18:33709407-33757909 0.723 -0.210 -0.350 
MCCC1 chr3:182733006-182833863 0.723 -0.135 -0.265 
AC108142.1 chr4:182795591-183066402 0.722 -0.181 -0.361 
HDDC2 chr6:125541108-125623282 0.721 -0.155 -0.284 
MRPL44 chr2:224822121-224832431 0.721 -0.208 -0.280 
SRSF4 chr1:29474255-29508499 0.719 -0.175 -0.260 
SRP68 chr17:74035184-74068734 0.718 -0.201 -0.323 
CCNH chr5:86687311-86708836 0.716 -0.152 -0.304 
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PDP2 chr16:66912492-66929657 0.716 -0.098 -0.268 
RCL1 chr9:4792869-4885917 0.716 -0.163 -0.299 
SLC25A21-AS1 chr14:37641093-37643016 0.716 -0.145 -0.317 
THYN1 chr11:134118173-134123264 0.716 -0.179 -0.301 
RASL10B chr17:34058668-34070540 0.715 -0.197 -0.419 
MRPL39 chr21:26957968-26979829 0.714 -0.165 -0.282 
SIX4 chr14:61176246-61191066 0.712 -0.204 -0.270 
MARC1 chr1:220960101-220987735 0.711 -0.224 -0.297 
ETFDH chr4:159593277-159630775 0.710 -0.069 -0.286 
GPN3 chr12:110890289-110907073 0.709 -0.166 -0.296 
HOMEZ chr14:23741666-23768656 0.708 -0.272 -0.316 
MRPS22 chr3:138724648-139076065 0.707 -0.114 -0.331 
BTG3 chr21:18965971-18985265 0.705 -0.136 -0.340 
C11orf1 chr11:111749659-111756699 0.705 -0.188 -0.253 
IARS2 chr1:220267444-220321380 0.705 -0.159 -0.241 
HADHB chr2:26466038-26513336 0.702 -0.124 -0.252 
MRPS27 chr5:71515236-71616473 0.701 -0.110 -0.226 
TRHDE-AS1 chr12:72647288-72668687 0.701 -0.135 -0.291 
BMP3 chr4:81952119-81978685 0.700 -0.170 -0.425 
SLC4A4 chr4:72053003-72437804 0.700 -0.187 -0.324 
TTC36 chr11:118398187-118401912 0.700 -0.202 -0.403 
ANAPC16 chr10:73975787-73995618 0.699 -0.221 -0.324 
SLC19A3 chr2:228549926-228582728 0.698 -0.096 -0.413 
RHOT1 chr17:30469473-30580393 0.697 -0.239 -0.287 
RP11-61A14.2 chr16:66921918-66922834 0.697 -0.131 -0.283 
SDHB chr1:17345217-17380665 0.697 -0.163 -0.285 
LRRC41 chr1:46726868-46769280 0.696 -0.151 -0.285 
CECR2 chr22:17840837-18037850 0.695 -0.204 -0.442 
LSM6 chr4:147096837-147121152 0.695 -0.201 -0.334 
UTS2B chr3:190984957-191048325 0.694 -0.246 -0.353 
GYG2P1 chrY:14475147-14532255 0.691 -0.199 -0.347 
NFU1 chr2:69622882-69664760 0.691 -0.173 -0.309 
ZNF16 chr8:146155744-146176274 0.691 -0.177 -0.279 
C12orf39 chr12:21679241-21690311 0.690 -0.252 -0.449 
CFL2 chr14:35179593-35184029 0.690 -0.060 -0.283 
PPP3R1 chr2:68405989-68483369 0.690 -0.207 -0.323 
ABCB7 chrX:74273115-74376567 0.689 -0.154 -0.251 
AKAP1 chr17:55162453-55198710 0.688 -0.138 -0.324 
SNRNP27 chr2:70120692-70132707 0.688 -0.141 -0.248 
TM7SF2 chr11:64879317-64883856 0.688 -0.149 -0.329 
MAP3K5 chr6:136878185-137113656 0.686 -0.228 -0.359 
ABHD15 chr17:27887565-27894155 0.684 -0.162 -0.283 
AQP7 chr9:33384765-33402643 0.683 -0.153 -0.258 
ISCA1 chr9:88879461-88897676 0.681 -0.136 -0.289 
ADCK3 chr1:227085237-227175246 0.679 -0.165 -0.350 
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DNAJA3 chr16:4475806-4506776 0.679 -0.167 -0.267 
L2HGDH chr14:50704281-50779266 0.679 -0.182 -0.292 
RP11-789C1.1 chr4:171195070-171204230 0.679 -0.169 -0.386 
STRADB chr2:202252581-202345569 0.679 -0.238 -0.290 
ZFYVE21 chr14:104182067-104200005 0.679 -0.120 -0.267 
GRSF1 chr4:71681499-71705662 0.678 -0.247 -0.239 
RGS17 chr6:153325594-153452384 0.678 -0.167 -0.374 
ACADSB chr10:124768495-124817827 0.677 -0.085 -0.206 
PTPN3 chr9:112137746-112260590 0.676 -0.163 -0.369 
RDH10 chr8:74206847-74237516 0.676 -0.064 -0.260 
ANG chr14:21152336-21167130 0.674 -0.177 -0.386 
C2orf47 chr2:200820040-200873263 0.673 -0.114 -0.247 
WDR20 chr14:102605840-102691184 0.672 -0.094 -0.223 
CIDEA chr18:12254318-12277594 0.671 -0.161 -0.392 
SETD9 chr5:56205087-56221359 0.670 -0.026 -0.315 
HADHA chr2:26413504-26467594 0.669 -0.177 -0.353 
PPARG chr3:12328867-12475855 0.666 -0.257 -0.308 
RP11-387H17.4 chr17:38083995-38095854 0.666 -0.209 -0.405 
AFG3L2 chr18:12328943-12377313 0.665 -0.144 -0.218 
PDHX chr11:34937376-35042138 0.665 -0.062 -0.260 
GGCT chr7:30536237-30591095 0.661 -0.189 -0.319 
GSDMB chr17:38060848-38076107 0.660 -0.258 -0.396 
ISOC1 chr5:128430444-128449721 0.659 -0.161 -0.256 
EIF1 chr17:39845137-39848920 0.658 -0.219 -0.351 
SULF1 chr8:70378859-70573150 0.657 -0.185 -0.300 
EYS chr6:64429876-66417118 0.656 -0.140 -0.224 
GTF2E2 chr8:30435835-30515768 0.656 -0.165 -0.292 
SLC25A27 chr6:46620678-46645930 0.656 -0.123 -0.228 
OXCT1 chr5:41730167-41870621 0.655 -0.122 -0.240 
XPNPEP3 chr22:41253081-41363838 0.655 -0.118 -0.277 
MKNK2 chr19:2037470-2051243 0.654 -0.220 -0.324 
SIK2 chr11:111473115-111601577 0.653 -0.038 -0.252 
CHCHD3 chr7:132469629-132766848 0.652 -0.194 -0.265 
LONRF1 chr8:12579403-12613582 0.652 -0.208 -0.301 
ZDHHC4 chr7:6617065-6629005 0.651 -0.139 -0.250 
RPAIN chr17:5322961-5336196 0.650 -0.197 -0.243 
ARPC1A chr7:98923521-98985787 0.648 -0.111 -0.292 
CALCRL chr2:188207856-188313187 0.648 -0.083 -0.286 
HMGN3 chr6:79910962-79944406 0.648 -0.146 -0.263 
TMEM220 chr17:10602332-10633633 0.647 -0.135 -0.291 
BAG4 chr8:38034051-38070819 0.645 -0.116 -0.302 
NDFIP2 chr13:80055287-80130210 0.645 -0.089 -0.320 
TMEM52 chr1:1849029-1850712 0.644 -0.230 -0.356 
GPR180 chr13:95254157-95286899 0.642 -0.186 -0.267 
ACO1 chr9:32384618-32454767 0.638 -0.175 -0.250 
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PPP2R5A chr1:212458879-212535200 0.638 -0.145 -0.303 
RP11-61I13.3 chr6:39849580-39867847 0.638 -0.172 -0.357 
MRPS18A chr6:43639040-43655528 0.636 -0.116 -0.269 
VWA8 chr13:42140973-42535256 0.635 -0.146 -0.180 
URAHP chr16:90106169-90114181 0.634 -0.188 -0.325 
USP13 chr3:179370543-179507189 0.634 -0.202 -0.307 
ACAD8 chr11:134123389-134135749 0.633 -0.130 -0.219 
MRPS35 chr12:27863706-27909228 0.633 -0.151 -0.288 
ZNF3 chr7:99661656-99680171 0.633 -0.127 -0.296 
KCNIP2 chr10:103585731-103603677 0.631 -0.096 -0.271 
STXBP1 chr9:130374544-130457460 0.631 -0.089 -0.338 
CA3 chr8:86285665-86361269 0.630 -0.233 -0.236 
EIF4EBP1 chr8:37887859-37917883 0.630 -0.191 -0.340 
NRIP1 chr21:16333556-16437321 0.628 -0.111 -0.287 
DNAH9 chr17:11501748-11873065 0.626 -0.093 -0.285 
RP11-474O21.5 chr1:12678906-12679250 0.626 -0.171 -0.334 
FRMD1 chr6:168456425-168482237 0.625 -0.198 -0.341 
EIF1AY chrY:22737611-22755040 0.622 -0.202 -0.312 
KTN1-AS1 chr14:55965996-56046828 0.620 -0.149 -0.274 
NDUFS1 chr2:206979541-207024327 0.620 -0.117 -0.209 
ADRBK2 chr22:25960816-26125261 0.619 -0.168 -0.249 
FHOD3 chr18:33877677-34360018 0.619 -0.231 -0.301 
MRPS9 chr2:105654441-105716418 0.619 -0.253 -0.285 
UQCC1 chr20:33890369-33999944 0.619 -0.139 -0.241 
MPC1 chr6:166778407-166796486 0.618 -0.102 -0.323 
CPT2 chr1:53662101-53679869 0.617 -0.118 -0.168 
GPATCH11 chr2:37311594-37326387 0.617 -0.119 -0.197 
VBP1 chrX:154425284-154468098 0.617 -0.184 -0.294 
LRIG1 chr3:66429221-66551687 0.615 -0.117 -0.262 
PAXIP1-AS1 chr7:154795158-154797413 0.613 -0.097 -0.221 
PRDX3 chr10:120927215-120938345 0.612 -0.151 -0.206 
TMEM25 chr11:118401756-118417995 0.612 -0.157 -0.417 
ADH1A chr4:100197524-100212185 0.609 -0.172 -0.344 
AK4 chr1:65613232-65697828 0.609 -0.193 -0.283 
PHGDH chr1:120202421-120286838 0.609 -0.225 -0.250 
TOMM70A chr3:100082275-100120242 0.608 -0.124 -0.200 
NDUFA5 chr7:123177051-123198309 0.606 -0.104 -0.293 
RASSF6 chr4:74437267-74486348 0.603 -0.231 -0.377 
IFT46 chr11:118415243-118443685 0.602 -0.128 -0.236 
SLC16A7 chr12:59989848-60176395 0.602 -0.185 -0.267 
LRRC47 chr1:3696784-3713068 0.601 -0.141 -0.319 
RAI2 chrX:17818169-17879457 0.601 -0.060 -0.333 
RP11-182I10.3 chr1:65437908-65468159 0.600 -0.050 -0.184 
NEDD4L chr18:55711599-56068772 0.597 -0.170 -0.318 
SCO1 chr17:10583654-10601692 0.596 -0.116 -0.247 
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C17orf53 chr17:42219274-42239844 0.595 -0.184 -0.248 
TP73-AS1 chr1:3652548-3663900 0.595 -0.061 -0.262 
GLIS1 chr1:53971910-54199877 0.593 -0.208 -0.289 
EMC3 chr3:10004221-10052800 0.592 -0.034 -0.304 
MAN2A2 chr15:91445448-91465814 0.591 -0.182 -0.278 
RP1-266L20.2 chr6:170125187-170125950 0.591 -0.145 -0.336 
ANKRD46 chr8:101521980-101572012 0.590 -0.072 -0.247 
MRS2 chr6:24403153-24425810 0.589 -0.114 -0.179 
NDRG4 chr16:58496750-58547532 0.589 -0.174 -0.368 
MRPL35 chr2:86426478-86440917 0.586 -0.124 -0.236 
NKIRAS1 chr3:23933151-23988082 0.584 -0.119 -0.188 
CENPV chr17:16245848-16256970 0.582 -0.198 -0.300 
TUSC1 chr9:25676396-25678856 0.582 -0.123 -0.316 
C1orf50 chr1:43232940-43263968 0.581 -0.199 -0.289 
PDHB chr3:58413357-58419584 0.581 -0.129 -0.256 
GFPT1 chr2:69546905-69614382 0.579 -0.096 -0.281 
SYAP1 chrX:16737755-16783459 0.579 -0.093 -0.224 
RP11-689P11.2 chr4:8483997-8514337 0.576 -0.120 -0.225 
VPS72 chr1:151142463-151167797 0.576 -0.178 -0.294 
ACO2 chr22:41865129-41924993 0.575 -0.113 -0.203 
IRX1 chr5:3596168-3601517 0.574 -0.173 -0.263 
ADAMTS9-AS2 chr3:64670585-64997143 0.572 -0.107 -0.284 
GLYCTK chr3:52321105-52329272 0.570 -0.202 -0.283 
LONP2 chr16:48278207-48397033 0.567 -0.156 -0.193 
SNX3 chr6:108532426-108582464 0.567 -0.091 -0.204 
HDDC3 chr15:91474148-91475799 0.564 -0.194 -0.290 
MET chr7:116312444-116438440 0.562 -0.089 -0.310 
RGS3 chr9:116207011-116360018 0.561 -0.236 -0.346 
SLC43A1 chr11:57252007-57283259 0.561 -0.144 -0.170 
CHKA chr11:67820326-67888911 0.555 -0.214 -0.321 
GHITM chr10:85899196-85913001 0.555 -0.095 -0.214 
GBE1 chr3:81538850-81811312 0.550 -0.052 -0.220 
RTN3 chr11:63448918-63527363 0.544 -0.136 -0.225 
TMEM230 chr20:5080486-5093749 0.540 -0.075 -0.218 
ARSEP1 chrY:14460540-14468226 0.539 -0.100 -0.222 
SIRT3 chr11:215458-236931 0.539 -0.084 -0.286 
ADIPOQ chr3:186560463-186576252 0.538 -0.071 -0.243 
GABARAPL1 chr12:10365057-10375727 0.532 -0.039 -0.272 
PRKAG2-AS1 chr7:151574127-151576299 0.532 -0.169 -0.261 
ERCC8 chr5:60169658-60240900 0.531 -0.084 -0.228 
TMEM42 chr3:44903361-44907162 0.523 -0.111 -0.198 
ST6GALNAC6 chr9:130647600-130667687 0.517 -0.107 -0.372 
SDHC chr1:161284047-161332984 0.514 -0.059 -0.163 
FBXO9 chr6:52916789-52965671 0.513 -0.119 -0.154 
CDKN1C chr11:2904443-2907111 0.503 -0.156 -0.268 



144 
 

FZD9 chr7:72848109-72850450 0.499 -0.112 -0.235 
TSPAN3 chr15:77336359-77376326 0.498 -0.129 -0.136 
FBXL5 chr4:15606162-15683302 0.495 -0.132 -0.163 
SCOC chr4:141178440-141306880 0.476 -0.021 -0.213 
ATP5F1 chr1:111991486-112005395 0.474 -0.103 -0.159 
HSPA9 chr5:137890571-137911133 0.426 -0.078 -0.150 
IMMT chr2:86371055-86422893 0.386 -0.057 -0.126 
DSEL chr18:65173819-65184217 -0.428 0.244 0.253 
APBB1IP chr10:26727132-26856732 -0.483 0.176 0.280 
NEK6 chr9:127019885-127115586 -0.505 0.097 0.377 
TSSC1 chr2:3192696-3381653 -0.506 0.108 0.259 
GNG2 chr14:52292913-52446060 -0.531 0.201 0.334 
CORO1C chr12:109038885-109125372 -0.538 0.256 0.327 
SPARC chr5:151040657-151066726 -0.541 0.290 0.371 
LBP chr20:36974759-37005665 -0.552 0.132 0.384 
CAPN1 chr11:64948037-64979477 -0.553 0.140 0.235 
FAT2 chr5:150883654-150948505 -0.555 0.166 0.369 
AP5S1 chr20:3801178-3805949 -0.576 0.274 0.291 
KRT5 chr12:52908359-52914471 -0.576 0.233 0.389 
TUBB2A chr6:3153903-3157760 -0.587 0.208 0.303 
NUDT1 chr7:2281857-2290781 -0.592 0.119 0.233 
CA11 chr19:49141199-49149569 -0.600 0.169 0.249 
TMEM189 chr20:48697663-48770335 -0.602 0.212 0.374 
DPP3 chr11:66247484-66277130 -0.621 0.172 0.299 
HPD chr12:122277433-122301502 -0.626 0.220 0.480 
PRAF2 chrX:48928813-48931730 -0.626 0.141 0.198 
ACTN1 chr14:69340860-69446157 -0.632 0.211 0.379 
TMSB10 chr2:85132749-85133795 -0.639 0.149 0.235 
GNAI2 chr3:50263724-50296787 -0.640 0.155 0.223 
CD248 chr11:66081958-66084515 -0.646 0.226 0.335 
HOMER3 chr19:19040010-19052070 -0.647 0.193 0.265 
TRPM2 chr21:45770046-45862964 -0.652 0.199 0.354 
FLNA chrX:153576892-153603006 -0.671 0.161 0.310 
TMEM104 chr17:72772622-72835918 -0.673 0.165 0.360 
ANKDD1A chr15:65204101-65251042 -0.696 0.212 0.429 
MSC chr8:72753784-72756703 -0.725 0.287 0.361 
C9orf16 chr9:130922539-130926207 -0.750 0.171 0.382 

* Abbreviation for chromosome. 
† Pearson correlation coefficient with network eigengene as reported by WGCNA57. 
‡ Pearson correlation coefficient with phenotype as reported by WGCNA57. 
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Supplementary Table 2. Characteristics of the obesity GWAS genes in WHRadjBMI co-
expression network, as reported by WGCNA57 and ranked by network membership. 

Gene Name GWAS trait* Chr†:start-end (hg19) Network 
membership‡ 

WHRadjBMI 
correlation§ 

Fasting 
insulin 
correlation§ 

PHF13 BMI chr1:6673745-6684093 0.837 -0.218 -0.363 

ADH1B BMI chr4:100226121-100242558 0.814 -0.160 -0.441 

VEGFA 

BMI  
WHR 
WHRadjBMI 
WCadjBMI 

chr6:43737921-43754224 0.801 -0.155 -0.386 

MRPL10 BMI chr17:45900638-45908900 0.775 -0.190 -0.325 

TTLL7 BMI chr1:84330711-84464833 0.760 -0.194 -0.360 

EPB41L4B 
BMI  
WHR 
WHRadjBMI 

chr9:111934255-112083244 0.740 -0.176 -0.353 

DLD WHRadjBMI chr7:107531415-107572175 0.734 -0.172 -0.281 

TBX15 

BMI 
WHR 
WHRadjBMI 
WCadjBMI 

chr1:119425669-119532179 0.733 -0.155 -0.311 

BCKDHB 
WHR 
WHRadjBMI 
WCadjBMI 

chr6:80816364-81055987 0.727 -0.145 -0.256 

FAM120AOS BMI chr9:96208776-96215874 0.727 -0.120 -0.292 

FAM13A WHR 
WHRadjBMI chr4:89647106-90032549 0.724 -0.140 -0.272 

MRPS22 BMI chr3:138724648-139076065 0.707 -0.114 -0.331 

LRRC41 BMI chr1:46726868-46769280 0.696 -0.151 -0.285 

CECR2 WHRadjBMI chr22:17840837-18037850 0.695 -0.204 -0.442 

ZFYVE21 BMI chr14:104182067-
104200005 0.679 -0.120 -0.267 

RGS17 BMI WHR chr6:153325594-153452384 0.678 -0.167 -0.374 

SETD9 WHRadjBMI chr5:56205087-56221359 0.670 -0.026 -0.315 

PPARG 

BMI 
WHR 
WHRadjBMI 
WC 

chr3:12328867-12475855 0.666 -0.257 -0.308 
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EYS BMI chr6:64429876-66417118 0.656 -0.140 -0.224 

ZDHHC4 BMI 
WHRadjBMI chr7:6617065-6629005 0.651 -0.139 -0.250 

CALCRL 
BMI 
WHR 
WHRadjBMI 

chr2:188207856-188313187 0.648 -0.083 -0.286 

TMEM52 BMI chr1:1849029-1850712 0.644 -0.230 -0.356 

MRPS18A WHRadjBMI chr6:43639040-43655528 0.636 -0.117 -0.269 

NDUFS1 BMI chr2:206979541-207024327 0.620 -0.117 -0.209 

MRPS9 BMI chr2:105654441-105716418 0.619 -0.253 -0.285 

UQCC1 WHR 
WHRadjBMI chr20:33890369-33999944 0.619 -0.139 -0.241 

LRIG1 BMI chr3:66429221-66551687 0.615 -0.117 -0.262 

ANKRD46 BMI chr8:101521980-101572012 0.590 -0.072 -0.247 

ADAMTS9-AS2 

BMI 
WHR 
WHRadjBMI 
WCadjBMI 

chr3:64670585-64997143 0.572 -0.107 -0.284 

MET WHRadjBMI chr7:116312444-116438440 0.562 -0.089 -0.310 

GBE1 BMI  
WC chr3:81538850-81811312 0.550 -0.052 -0.220 

ST6GALNAC6 BMI chr9:130647600-130667687 0.517 -0.107 -0.372 

GNAI2 BMI chr3:50263724-50296787 -0.640 0.155 0.223 

MSC 
WHR 
WHRadjBMI 
WCadjBMI 

chr8:72753784-72756703 -0.725 0.287 0.361 

C9orf16 BMI chr9:130922539-130926207 -0.750 0.171 0.382 
* Abbreviations for GWAS traits: Body Mass Index (BMI), Waist-hip-ratio (WHR), Waist-
Circumference (WC), Waist-hip-ratio adjusted for BMI (WHRadjBMI), Waist-Circumference 
adjusted for BMI (WCadjBMI). 
† Abbreviation for chromosome. 
‡ Pearson correlation coefficient with network eigengene as reported by WGCNA57. 
§ Pearson correlation coefficient with phenotype as reported by WGCNA57. 
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Supplementary Table 3. Characteristics of the adipocyte marker genes in WHRadjBMI co-
expression network, as reported by WGCNA57 and ranked by network membership. 

Gene name Chr*:start-end (hg19) log2 fold 
change† 

Network 
membership‡ 

WHRadjBMI 
correlation§ 

Fasting 
insulin 
correlation§ 

ANO6 chr12:45609770-45834187 0.210 0.833 -0.215 -0.366 
ADH1B chr4:100226121-100242558 0.285 0.814 -0.160 -0.441 
PFKFB3 chr10:6186881-6277495 0.239 0.783 -0.184 -0.390 
TMEM132C chr12:128751948-129192460 0.435 0.783 -0.118 -0.377 
GHR chr5:42423879-42721979 0.846 0.761 -0.100 -0.364 
PRKAR2B chr7:106685094-106802256 0.239 0.739 -0.142 -0.372 
DAPK2 chr15:64199235-64364232 0.270 0.728 -0.227 -0.375 
FAM13A chr4:89647106-90032549 0.217 0.724 -0.140 -0.272 
MARC1 chr1:220960101-220987735 0.208 0.711 -0.224 -0.297 
SLC19A3 chr2:228549926-228582728 0.391 0.698 -0.096 -0.413 
AQP7 chr9:33384765-33402643 0.792 0.683 -0.153 -0.258 
PPARG chr3:12328867-12475855 0.398 0.666 -0.257 -0.308 
SIK2 chr11:111473115-111601577 0.583 0.653 -0.038 -0.252 
KCNIP2 chr10:103585731-103603677 0.228 0.631 -0.096 -0.271 
NEDD4L chr18:55711599-56068772 0.227 0.597 -0.170 -0.318 
GBE1 chr3:81538850-81811312 0.354 0.550 -0.052 -0.220 
RTN3 chr11:63448918-63527363 0.225 0.544 -0.136 -0.225 
ADIPOQ chr3:186560463-186576252 0.362 0.538 -0.071 -0.243 
SPARC chr5:151040657-151066726 0.254 -0.541 0.290 0.371 

* Abbreviation for chromosome. 
† Average log2 fold change in adipocytes which compared to other cell types (see Methods). 
‡ Pearson correlation coefficient with network eigengene as reported by WGCNA57. 
§ Pearson correlation coefficient with phenotype as reported by WGCNA57. 
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Supplementary Table 4. KEGG pathway enrichment results (passing FDR<0.05) from 
WebGestalt24 for the WHRadjBMI co-expression network genes. 
Gene set Description of the pathway Enrichment Ratio p-value FDR 

hsa00280 Valine, leucine, and 
isoleucine degredation 14.91 <2.2x10-16 <2.2x10-16 

hsa00640 Propanoate metabolism 15.43 3.19x10-12 5.17x01-10 

hsa01200 Carbon metabolism 6.15 1.28x10-9 1.38x10-7 

hsa00020 Citrate cycle (TCA cycle) 11.98 2.55x10-8 2.07x10-6 

hsa01100 Metabolic pathways 1.94 5.58x10-8 3.62x10-6 

hsa00630 Glyoxylate and 
dicoarboxylate metabolism 11.05 3.23x10-7 1.74x10-5 

hsa00071 Fatty acid degredation 7.80 1.48x10-6 6.83x10-5 

hsa01212 Fatty acid metabolism 5.55 2.23x10-4 9.03x10-3 

hsa00650 Butanoate metabolism 7.77 3.66x10-4 0.0132 

hsa03320 PPAR signaling pathway 4.28 0.00113 0.0366 

hsa04932 Non-alcoholic fatty liver 
disease (NAFLD) 2.87 0.00149 0.0439 
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Supplementary Table 5. Gene Ontology cellular component enrichment results (passing 
FDR<0.05) from WebGestalt24 for the WHRadjBMI co-expression network genes. 

Gene set Description of the cellular 
component Enrichment Ratio p-value FDR 

GO:005739 Mitochondrion 4.40 <2.2x10-16 <2.2x10-16 

GO:0031967 Organelle envelope 3.26 <2.2x10-16 <2.2x10-16 

GO:0031975 Envelope 3.26 <2.2x10-16 <2.2x10-16 

GO:0044429 Mitochondrial part 5.64 <2.2x10-16 <2.2x10-16 

GO:0005740 Mitochondrial envelope 4.57 <2.2x10-16 <2.2x10-16 

GO:0031966 Mitochondrial membrane 4.77 <2.2x10-16 <2.2x10-16 

GO:0019866 Organelle inner membrane 5.26 <2.2x10-16 <2.2x10-16 

GO:0005759 Mitochondrial matrix 8.11 <2.2x10-16 <2.2x10-16 

GO:0005743 Mitochondrial inner membrane 5.59 <2.2x10-16 <2.2x10-16 

GO:0098798 Mitochondrial protein complex 7.32 <2.2x10-16 <2.2x10-16 

GO:1990204 Oxidoreductase complex 9.88 2.22x10-13 2.31x10-11 

GO:0044455 Mitochondrial membrane part 6.03 1.64x10-12 1.56x10-10 

GO:0045239 Tricarboxylic acid cycle enzyme 
complex 30.16 8.34x10-10 7.34x10-8 

GO:0045240 Dihydrolipoyl dehydrogenase 
complex 33.61 6.04x10-9 4.94x10-7 

GO:0098800 Inner mitochondrial membrane 
protein complex 6.09 2.43x10-7 1.86x10-6 

GO:0000313 Organellar ribosome 7.33 2.78x10-7 1.87x10-5 

GO:0005761 Mitochondrial ribosome 7.33 2.78x10-7 1.87x10-5 

GO:0043209 Myelin sheath 5.16 5.69x10-7 3.62x10-5 

GO:0045252 Oxoglutarate dehydrogenase 
complex 37.34 1.45x10-6 8.72x10-5 

GO0032592 Integral component of 
mitochondrial membrane 7.52 2.77x10-6 1.59x10-4 

GO:0098573 Intrinsic component of 
mitochondrial membrane 7.41 3.15x10-6 1.66x10-4 

GO:0030062 Mitochondrial tricarboxylic acid 
cycle enzyme complex 32.01 3.33x10-6 1.66x10-4 

GO:0045254 Pyruvate dehydrogenase 
complex 32.01 3.33x10-6 1.66x10-4 

GO:0031304 Intrinsic component of 
mitochondrial inner membrane 10.32 4.19x10-6 1.92x10-4 
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GO:0031305 Integral component of 
mitochondrial inner membrane 10.32 4.19x10-6 1.92x10-4 

GO:0000314 Organellar small ribosomal 
subunit 12.45 6.60x10-6 2.80x10-4 

GO:0005763 Mitochondrial small ribosomal 
subunit 12.45 6.60x10-6 2.80x10-4 

GO:0009295 Nucleoid 9.56 7.13x10-6 2.81x10-4 

GO:0042645 Mitochondrial nucleoid 9.56 7.13x10-6 2.81x10-4 

GO:0031968 Organelle outer membrane 3.77 4.37x10-5 1.67x10-3 

GO:0019867 Outer membrane 3.73 4.86x10-5 1.69x10-3 

GO:0005947 
Mitochondrial alpha-
ketoglutarate dehydrogenase 
complex 

33.61 5.48 x10-5 1.69 x10-3 

GO:0005749 

Mitochondrial respiratory chain 
complex II, succinate 
dehydrogenase complex 
(ubiquinone) 

33.61 5.48 x10-5 1.69 x10-3 

GO:0045257 Succinate dehydrogenase 
complex (ubiquinone) 33.61 5.48 x10-5 1.69 x10-3 

GO:0045273 Respiratory chain complex II 33.61 5.48 x10-5 1.69 x10-3 

GO:0045281 Succinate dehydrogenase 
complex 33.61 5.48 x10-5 1.69 x10-3 

GO:0045283 Fumarate reductase complex 33.61 5.48 x10-5 1.69 x10-3 

GO:0005741 Mitochondrial outer mmbrane 3.89 6.48x10-5 1.95 x10-3 

GO:1902494 Catalytic complex 1.83 8.09x10-5 2.37 x10-3 

GO:0005777 Peroxisome 4.34 0.00011 2.94 x10-3 

GO:0042579 Microbody 4.34 0.00011 2.94 x10-3 

GO:0098803 Respiratory chain complex 5.33 0.00013 3.41x10-3 

GO:0005840 Ribosome 3.03 0.00065 0.0153 

GO:0098796 Membrane protein complex 1.76 0.0015 0.0323 
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Supplementary Table 6. Stratified LD Score Regression65,66 results for WHRadjBMI, T2D, and 
BMI using the cis variants (+/-500kb from the ends of the gene) of the WHRadjBMI co-
expression network genes. 

Trait N Prop 
SNPs* 

Prop 
h2† 

Prop h2 
SE‡ Enrichment Enrichment 

SE 
Enrichment 
p-value 

WHRadjBMI 
– Combined 694,649 0.105 0.169 0.0153 1.61 0.146 4.90x10-5 

WHRadjBMI 
– Male 315,284 0.105 0.154 0.0148 1.46 0.140 1.52x10-3 

WHRadjBMI  
– Female 379,501 0.105 0.178 0.0163 1.69 0.155 2.11x10-5 

T2D 
– Combined 389,738 0.105 0.157 0.0203 1.49 0.193 9.56x10-3 

T2D 
– Male 178,809 0.105 0.161 0.0240 1.53 0.228 0.0177 

T2D 
– Female 210,929 0.105 0.160 0.0304 1.52 0.289 NS 

BMI  
– Combined 806,834 0.105 0.102 0.00560 0.97 0.0532 NS 

* Proportion of SNPs in the cis-regions (+/-500kb from the ends of the gene) of the WHRadjBMI 
co-expression network genes. 
† Proportion of heritability explained by the variants in the cis-regions (+/-500kb from the ends 
of the gene) of the WHRadjBMI co-expression network genes. 
‡ Standard error of the proportion of heritability. 
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Supplementary Table 7. Characteristics of the TFs in WHRadjBMI co-expression network, as 
reported by WGCNA57 and ranked by network membership. 

Gene name Chr*:start-end (hg19) Network 
membership† 

WHRadjBMI 
correlation‡ 

Fasting insulin 
correlation‡ 

HLF chr17:53342373-53402426 0.794 -0.195 -0.381 

TWIST1 chr7:19060614-19157295 0.784 -0.160 -0.392 

KLF15 chr3:126061478-126076285 0.775 -0.215 -0.300 

PPARA chr22:46546424-46639653 0.762 -0.160 -0.362 

PER3 chr1:7844380-7905237 0.759 -0.186 -0.332 

CCNH chr5:86687311-86708836 0.716 -0.152 -0.304 

SIX4 chr14:61176246-61191066 0.712 -0.204 -0.270 

TBX15 chr1:119425669-119532179 0.712 -0.204 -0.311 

HOMEZ chr14:23741666-23768656 0.708 -0.272 -0.316 

PPARG chr3:12328867-12475855 0.666 -0.257 -0.308 

GTF2E2 chr8:30435835-30515768 0.655 -0.165 -0.292 

XPNPEP3 chr22:41253081-41363838 0.655 -0.118 -0.277 

ZNF3 chr7:99661656-99680171 0.633 -0.127 -0.296 

IRX1 chr5:3596168-3601517 0.574 -0.173 -0.263 
* Abbreviation for chromosome. 
† Pearson correlation coefficient with network eigengene as reported by WGCNA57. 
‡ Pearson correlation coefficient with phenotype as reported by WGCNA57. 
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Supplementary Table 8. Significant TWAS33 heritability estimates (p<0.01) for the TFs in the 
WHRadjBMI co-expression network. 
Gene Name Heritability  Heritability standard error p-value 

TBX15 0.101 0.0313 4.07x10-6 

GTF2E2 0.0703 0.0253 1.43x10-3 

XPNPEP3 0.302 0.0602 1.18x10-38 

IRX1 0.0813 0.0237 1.04x10-4 

ZNF3 0.0821 0.0326 1.85x10-5 
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Supplementary Table 9. TWAS33 p-values and Z-scores for associations of TFs (with significant 
TWAS33 heritability (p<0.01)) with WHRadjBMI. 
Gene Name TWAS Model† Z-score p-value 

TBX15 Bayesian sparse linear mixed models (bslmm) 15.2 2.11x10-52 

GTF2E2 Least absolute shrinkage and selection operator (lasso) -0.103 NS* 

XPNPEP3 Least absolute shrinkage and selection operator (lasso) -3.05 2.26x10-3 

IRX1 Best linear unbiased predictor 4.61 4.03x10-6 

ZNF3 Least absolute shrinkage and selection operator (lasso) 2.18 NS* 
* NS indicates a non-significant Bonferroni corrected p-value>0.017. 
† Best model for expression imputation chosen by TWAS33. 
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Supplementary Table 10. Significantly differentially expressed genes (FDR<0.05) in the 
WHRadjBMI co-expression network in the TBX15 knockdown experiment ranked by p-value. 
Gene name Chr*:start-end (hg19) log2 fold change† p-value FDR 
TBX15 chr1:119425669-119532179 -1.527 1.13x10-18 3.35x10-16 
STRADB chr2:202252581-202345569 0.698 1.81x10-13 2.69x10-11 
EIF4EBP2 chr10:72164135-72188374 -0.454 1.02x10-11 1.01x10-9 
MET chr7:116312444-116438440 0.478 3.69x10-11 2.74x10-9 
DSEL chr18:65173819-65184217 -0.539 7.78x10-11 4.62x10-9 
VEGFA chr6:43737921-43754224 -0.299 3.09x10-11 1.53x10-6 
STXBP1 chr9:130374544-130457460 -0.315 1.98x10-7 8.42x10-6 
PHGDH chr1:120202421-120286838 0.266 5.61x10-7 1.92 x10-5 
ISCA1 chr9:88879461-88897676 0.302 5.82x10-7 1.92 x10-5 
SNRNP27 chr2:70120692-70132707 -0.438 1.01x10-6 2.95 x10-5 
IMMP2L chr7:110303110-111202573 -0.418 1.09x10-6 2.95 x10-5 
TMEM189 chr20:48697663-48770335 0.312 1.25x10-6 3.09x10-5 
THYN1 chr11:134118173-134123264 -0.280 2.01x10-6 4.59x10-5 
CFL2 chr14:35179593-35184029 0.271 2.48x10-6 5.26x10-5 
UQCRC2 chr16:21963981-21994981 -0.184 3.94x10-6 7.79x10-5 
PPARA chr22:46546424-46639653 0.297 5.24x10-6 9.72x10-5 
PCBD1 chr10:72642037-72648541 -0.239 7.22x10-6 1.26 x10-4 
FLNA chrX:153576892-153603006 0.249 8.17x10-6 1.35x10-4 
CYB5A chr18:71920530-71959251 -0.207 1.32x10-5 2.07x10-4 
LONRF1 chr8:12579403-12613582 -0.281 1.41x10-5 2.09x10-4 
GNG2 chr14:52292913-52446060 -0.207 1.55x10-5 2.19x10-4 
APMAP chr20:24943561-24973615 0.182 1.75x10-5 2.30x10-4 
RAI2 chrX:17818169-17879457 0.426 1.78x10-5 2.30x10-4 
KLF15 chr3:126061478-126076285 0.459 2.18x10-5 2.69x10-4 
ABHD15 chr17:27887565-27894155 0.285 2.68x10-5 3.19x10-4 
TXLNG chrX:16804550-16862642 -0.191 3.54x10-5 4.04x10-4 
BCKDHB chr6:80816364-81055987 -0.264 4.63x10-5 4.78x10-4 
HMGN3 chr6:79910962-79944406 -0.216 4.67x10-5 4.78x10-4 
ACADSB chr10:124768495-124817827 -0.210 4.66x10-5 4.78x10-4 
TMEM42 chr3:44903361-44907162 0.266 5.81x10-5 5.56x10-4 
MAN2A2 chr15:91445448-91465814 0.233 5.70x10-5 5.56x10-4 
OSBPL1A chr18:21742008-21977844 -0.155 6.51x10-5 6.04x10-4 
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SUCLG2 chr3:67410884-67705038 0.168 7.22x10-5 6.50x10-4 
APBB1IP chr10:26727132-26856732 -0.197 1.10x10-4 9.59x10-4 
MKNK2 chr19:2037470-2051243 -0.158 1.13x10-4 9.62x10-4 
AUH chr9:93976097-94124195 -0.255 1.47x10-4 1.18x10-3 
SRP68 chr17:74035184-74068734 0.148 1.43x10-4 1.18x10-3 
GRPEL1 chr4:7060633-7069924 -0.173 1.83x10-4 1.43x10-3 
IFT46 chr11:118415243-118443685 -0.193 1.87x10-4 1.43x10-3 
GPD1L chr3:32147181-32210205 0.173 2.38x10-4 1.77x10-3 
TWIST1 chr7:19060614-19157295 -0.171 3.00x10-4 2.12x10-3 
DHTKD1 chr10:12110971-12165224 0.207 2.98x10-4 2.12x10-3 
PMPCB chr7:102937869-102969958 -0.152 3.21x10-4 2.16x10-3 
TMEM104 chr17:72772622-72835918 0.163 3.20x10-4 2.16x10-3 
CTH chr1:70876901-70905534 0.219 3.30x10-4 2.17x10-3 
BTG3 chr21:18965971-18985265 -0.195 3.50x10-4 2.26x10-3 
PFKFB3 chr10:6186881-6277495 0.184 3.72x10-4 2.27x10-3 
XPNPEP3 chr22:41253081-41363838 -0.151 3.61x10-4 2.27x10-3 
GTF2E2 chr8:30435835-30515768 -0.142 3.74x10-4 2.27x10-3 
LRRC41 chr1:46726868-46769280 0.127 3.82x10-4 2.27x10-3 
DPP3 chr11:66247484-66277130 -0.163 4.19x10-4 2.44x10-3 
TARSL2 chr15:102193801-102264807 -0.195 4.50x10-4 2.57x10-3 
ATPAF1 chr1:47098409-47139539 -0.188 4.90x10-4 2.74x10-3 
CCNH chr5:86687311-86708836 -0.179 5.28x10-4 2.90x10-3 
FAM89A chr1:231154704-231175992 0.305 5.53x10-4 2.99x10-3 
TMEM230 chr20:5080486-5093749 -0.120 5.80x10-4 3.07x10-3 
VPS72 chr1:151142463-151167797 -0.161 7.24x10-4 3.77x10-3 
PPP2R5A chr1:212458879-212535200 0.167 8.03x10-4 4.04x10-3 
MRS2 chr6:24403153-24425810 -0.156 8.03x10-4 4.04x10-3 
PER3 chr1:7844380-7905237 -0.208 8.65x10-4 4.28x10-3 
PPARG chr3:12328867-12475855 -0.140 8.86x10-4 4.31x10-3 
PRAF2 chrX:48928813-48931730 -0.231 9.20x10-4 4.41x10-3 
SRSF4 chr1:29474255-29508499 -0.159 9.98x10-4 4.67x10-3 
SLC41A1 chr1:205758221-205782876 -0.155 1.01x10-3 4.67x10-3 
DAPK2 chr15:64199235-64364232 0.445 1.09x10-3 4.96x10-3 
ISOC1 chr5:128430444-128449721 -0.171 1.26x10-3 5.65x10-3 
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GPATCH11 chr2:37311594-37326387 -0.163 1.28 x10-3 5.67x10-3 
NDUFB5 chr3:179322478-179345435 -0.123 1.39 x10-3 6.06x10-3 
HIBADH chr7:27565061-27702614 -0.117 1.46 x10-3 6.20x10-3 
MRPL32 chr7:42971799-42988557 -0.165 1.44 x10-3 6.20x10-3 
PHLPP1 chr18:60382672-60647666 0.177 1.52 x10-3 6.35x10-3 
ANKRD53 chr2:71205510-71212626 0.426 1.60 x10-3 6.62x10-3 
MTHFD1 chr14:64854749-64926722 0.112 1.69 x10-3 6.68x10-3 
SDHC chr1:161284047-161332984 0.195 1.65 x10-3 6.68x10-3 
HSPD1 chr2:198351305-198381461 -0.111 1.67 x10-3 6.68x10-3 
L2HGDH chr14:50704281-50779266 -0.211 1.80 x10-3 6.93x10-3 
CHCHD3 chr7:132469629-132766848 -0.147 1.78 x10-3 6.93x10-3 
IARS2 chr1:220267444-220321380 0.123 1.94 x10-3 7.39x10-3 
HOMER3 chr19:19040010-19052070 -0.139 2.12 x10-3 7.97x10-3 
MLX chr17:40719086-40725257 -0.116 2.16 x10-3 8.03x10-3 
TMEM100 chr17:53796988-53809482 0.243 2.64 x10-3 9.67x10-3 
EIF4EBP1 chr8:37887859-37917883 0.134 2.94 x10-3 0.0106 
ABHD5 chr3:43731605-43775863 -0.139 3.06 x10-3 0.0109 
C1orf43 chr1:154179182-154193104 -0.103 3.09 x10-3 0.0109 
ZNF16 chr8:146155744-146176274 0.248 3.12 x10-3 0.0109 
DLD chr7:107531415-107572175 -0.109 3.19 x10-3 0.0110 
ORMDL3 chr17:38077294-38083854 0.134 3.54 x10-3 0.0121 
CAPN1 chr11:64948037-64979477 0.117 3.63 x10-3 0.0123 
VWA8 chr13:42140973-42535256 -0.124 4.12 x10-3 0.0135 
GLUL chr1:182350839-182361341 0.0897 4.11 x10-3 0.0135 
GBAS chr7:56019486-56067874 -0.131 4.06 x10-3 0.0135 
RP11-61A14.3 chr16:66923072-66924996 -0.181 4.25 x10-3 0.0137 
ACTN1 chr14:69340860-69446157 -0.102 4.52 x10-3 0.0144 
ARPC1A chr7:98923521-98985787 0.0967 4.99 x10-3 0.0158 
MRPS9 chr2:105654441-105716418 -0.135 5.28 x10-3 0.0163 
RASL10B chr17:34058668-34070540 0.743 5.25 x10-3 0.0163 
MRPL39 chr21:26957968-26979829 -0.119 5.84 x10-3 0.0177 
MAP3K5 chr6:136878185-137113656 0.157 5.82 x10-3 0.0177 
LRPPRC chr2:44113647-44223144 -0.0919 6.09 x10-3 0.0183 
PDHX chr11:34937376-35042138 -0.121 6.41 x10-3 0.0190 
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HADH chr4:108910870-108956331 0.105 6.71 x10-3 0.0197 
NUDT1 chr7:2281857-2290781 0.156 7.03 x10-3 0.0205 
MOCS1 chr6:39867354-39902290 0.172 7.26 x10-3 0.0209 
PHF13 chr1:6673745-6684093 0.149 7.36 x10-3 0.0210 
BFAR chr16:14726672-14763093 0.105 7.67 x10-3 0.0217 
NKIRAS1 chr3:23933151-23988082 -0.134 7.76 x10-3 0.0217 
HADHB chr2:26466038-26513336 0.0999 7.96 x10-3 0.0221 
EMC3 chr3:10004221-10052800 -0.110 8.25 x10-3 0.0227 
PDHB chr3:58413357-58419584 -0.0998 8.90 x10-3 0.0242 
PRDX6 chr1:173446405-173457946 0.0861 9.07 x10-3 0.0245 
CHKA chr11:67820326-67888911 0.139 0.0100 0.0268 
CORO1C chr12:109038885-109125372 0.0825 0.0108 0.0287 
CENPV chr17:16245848-16256970 0.126 0.0112 0.0294 
LONP2 chr16:48278207-48397033 -0.0848 0.0120 0.0303 
GRSF1 chr4:71681499-71705662 0.0857 0.0118 0.0303 
SLC25A27 chr6:46620678-46645930 -0.194 0.0119 0.0303 
NRIP1 chr21:16333556-16437321 0.126 0.0119 0.0303 
GMCL1 chr2:70056774-70108528 0.150 0.0122 0.0307 
SCO1 chr17:10583654-10601692 0.0878 0.0129 0.0323 
SULF1 chr8:70378859-70573150 -0.149 0.0130 0.0323 
CD248 chr11:66081958-66084515 -0.129 0.0141 0.0345 
C9orf16 chr9:130922539-130926207 -0.181 0.0143 0.0348 
ANKRD46 chr8:101521980-101572012 0.225 0.0152 0.0368 
LSM6 chr4:147096837-147121152 -0.135 0.0161 0.0386 
CCDC50 chr3:191046866-191116459 0.0816 0.0175 0.0415 
GGCT chr7:30536237-30591095 -0.107 0.0180 0.0424 
MRPS27 chr5:71515236-71616473 -0.0739 0.0191 0.0446 
C11orf1 chr11:111749659-111756699 -0.138 0.0208 0.0483 
PRDX3 chr10:120927215-120938345 0.109 0.0218 0.0499 
ADH1B chr4:100226121-100242558 0.351 0.0218 0.0499 
* Abbreviation for chromosome. 
† Average log2 fold change in expression in human primary preadipocytes transfected with the 
TBX15 siRNA when compared to the cells transfected with the negative control siRNA (see 
Methods). 
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Chapter 5 

Discussion and Future Directions 
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Since the rise of genotyping arrays and next-generation sequencing and the decrease in price of 

these technologies in recent years1,2, the collection of genotype and gene expression information 

have increased drastically. However, despite many successes3–5, some limitations still remain. 

For example, even though the GenoType Expression (GTEx) project has collected samples from 

a total of 54 tissues across the human body and recently reached its final version with 17,382 

RNA-sequencing (RNA-seq) samples from a total of 979 individuals5, the GTEx samples are 

mostly (n=948)  from post-mortem samples with heterogeneous causes of death and variable 

times between death and sample collection, which affects the RNA quality and gene expression 

levels6. Human cohorts with genotype, RNA-seq, and deep phenotype data using obesity-related 

tissue samples from living individuals, such as the METabolic Syndrome In Men (METSIM)7, 

have been extremely useful to push forward the study of obesity and its comorbidities. However, 

METSIM consists of males and is still relatively limited by its sample size with gene expression 

data (n=335). The UKBiobank (UKB) cohort (n~500,000) is one of the largest single population 

cohorts with genotype and extensive phenotype information that is being updated on a tri-annual 

basis8. On the other hand, the UKB currently lacks gene expression information. Finally, the 

largest genome-wide association study (GWAS) for body mass index (BMI) has reached over 

800,000 individuals9, giving us power to find more GWAS variants with small effect sizes and 

relatively small minor allele frequencies (MAF). However,  as the effect sizes of novel GWAS 

variants decrease, the contribution of these loci to disease and phenotypes also decreases, 

limiting the overall usefulness of continually increasing the size of GWAS10 even though there 

undoubtedly is still value in discovering new biology. Furthermore, GWAS only contain 

genotype and phenotype associations and are confounded by multiple variants in linkage 

disequilibrium (LD) at many of the GWAS loci, making it difficult to pinpoint the underlying 
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causal variants and genes in a locus. Despite the limitations, these human cohorts have allowed 

us to conduct powerful genomic analyses and gain insights into the underlying mechanisms of 

obesity through integrative and combined approaches to circumvent the limitations of any 

individual cohort. However, much is still unknown about the key genes and gene-environment 

interactions (GxEs) contributing to obesity and the context-specific genomic regulatory 

mechanisms conferring the susceptibility to obesity. 

 Moving forward, cohorts will most likely not only increase in size but also collect 

different types of omics data. Recently, tissues, including adipose, have been identified to consist 

of many more cell types than previously thought11. Therefore, single cell omics, including single 

cell RNA-seq12, single cell assay for transposase-accessible chromatin using sequencing (ATAC-

seq)13, and single cell chromosome capture14, are all gaining in popularity. These give insights 

into the cell populations in a tissue and the differences in gene expression, open chromatin, and 

chromosomal interactions between different cell types. However, single cell data are still limited 

by their high cost, which in turn limits the number of samples that can be processed in any single 

study. Additionally, large scale cohorts in the past, including the vast majority of GWASs, 

predominantly consist of samples from European individuals15. However, the current trend 

shows an increasing number of studies in non-European cohorts16,17, which will allow us to 

understand the cross-population differences in disease prevalence and risk18. 

In this thesis, we have employed integrative multi-omics approaches to study human 

subcutaneous adipose tissue for obesity-related genes and mechanisms. We have characterized 

two main types of regulatory mechanisms. In chapters 2 and 3, we characterized chromosomal 

interactions in which DNA form loops bringing distant regulatory elements in physical contact 

with gene promoters regulating gene expression levels. In Chapter 4 we identified transcription 
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factors (TFs) binding to gene promoters, resulting in widespread downstream effects on multiple 

genes across many chromosomes. Furthermore, after characterizing chromosomal interactions 

and cis-eQTLs related to obesity GWAS loci in chapter 2, we examined the effect of gene-

environment interacting (GxE) variants at context-specific open chromatin regions on obesity in 

the UKB in chapter 3. Finally, we identified causal, TF-driven mechanisms for metabolically 

harmful abdominal obesity and its clinical outcome, type 2 diabetes (T2D) in chapter 4.  

More specifically, in Chapter 2, we focused on understanding gene regulatory 

mechanisms via chromosomal interactions in human adipocytes and elucidating how cis-eQTL 

variants can affect the physical interactions of regulatory elements. We associated these genes by 

correlating their expression with BMI measurements in the METSIM cohort and identified the 

gene at 38 novel putative obesity loci whose mechanism of action can be explained through cis-

eQTLs acting through chromosomal interactions, with deeper investigations into an additional 

four example loci that are also known GWAS loci for BMI and serum lipids and metabolites. 

At the time of the study in Chapter 2, we were limited by the data and technology 

available in a number of ways. First, we did not have ATAC-seq data available in adipocytes to 

assess regions of open chromatin and therefore used open chromatin information aggregated 

across cell types from publicly available sources. ATAC-seq data in adipocytes could have 

enhanced the resolution of the chromosomal interactions and allowed us to pinpoint important 

adipocyte-specific regions of open chromatin in the chromosomal interactions. As we have this 

ATAC-seq data now from the study in chapter 3, further investigation using the ATAC-seq data 

in adipocytes would be a natural refinement to these previous findings. Second, promoter 

Capture Hi-C (pCHi-C) was a new and expensive technique at the time this study started. While 

we were fortunate to collaborate with the original creators for probe and experimental design19, 
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we only had a few replicates of the pCHi-C, which may have impacted both the robustness of the 

chromosomal interactions we could find and our power to computationally detect significant 

chromosomal interactions. We now have many more replicates of the pCHi-C data in adipocytes 

as a result of the study in Chapter 3 and there are also more publicly available pCHi-C data sets 

in related cell types20. Reassessing the robustness of the chromosomal interactions as well as 

employing the replicates to identify additional chromosomal interactions in adipocytes can now 

be further investigated in future studies. Third, we used the publicly available Capture Hi-C 

Analysis of Genomic Organisation (CHiCAGO) R package21 to detect significant chromosomal 

interactions; however, since CHiCAGO is the only widely available software for detecting pCHi-

C interactions to date, it is difficult to assess whether it is actually the best software for detecting 

interactions. Future investigations into the robustness of CHiCAGO using our current number of 

replicates of pCHi-C as well as other data sets would definitely improve our ability to assess the 

performance of CHiCAGO and make any necessary modifications. The limitations of CHiCAGO 

and the replicates we had available also made it impossible to investigate longer range, trans 

chromosomal interactions. Trans chromosomal interactions remain an area of active research that 

has only few examples in the existing literature, all of which are in model organisms22,23. 

In general, based on the conclusions from the findings in Chapter 2, we could further 

investigate the identified loci in a few ways. First, we showed at the Mitogen-Activated Protein 

Kinase Kinase 5 (MAP2K5) locus that the BMI GWAS variant in the chromosomal interaction, 

rs4776984, has differential binding of proteins at its alleles via electrophoretic mobility shift 

assay (EMSA) and computationally predicted them to be CCCTC-Binding Factor (CTCF) and 

E1A Binding Protein P300 (EP300), key proteins for chromosomal interactions. However, 

EMSAs simply show binding of protein using nuclear extract to oligonucleotides, without 
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indicating which protein is binding. Although we tried some techniques, including EMSA 

supershift, to assess which proteins were binding to rs4776984, we were unsuccessful, which is 

not surprising given the well-known challenges of these techniques24. Further investigation into 

the exact proteins or the complex of proteins binding to rs4776984 is warranted using for 

example mass spec. Finally, we hypothesized that the 38 identified loci regulated by 

chromosomal interactions contained some genes causal for obesity and some reactive to obesity. 

Using Transcriptome wide association studies (TWAS)25 with an independent cohort, such as 

GTEx5 and the larger GIANT and UKBiobank BMI GWAS9, we could next search for the causal 

BMI loci among these 38 novel regions. 

In Chapter 3, we extended our investigation of chromosomal interactions to those which 

were responsive to lipid intake, while also focusing on changes in the open chromatin regions, 

specifically in adipocytes and during adipogenesis. We treated human primary adipocytes with 

saturated and unsaturated fatty acids and searched for changes in open chromatin regions using 

ATAC-seq and variants within those responsive open chromatin regions. I focused on 

transcription factor (TF) binding that changes due to gene-environment interacting (GxE) 

variants at these evolutionarily constrained open chromatin regions. Since GxE variants are 

difficult to detect due to their small effect sizes and multiple-testing penalties, using this targeted 

molecular approach and the large UKB cohort8, we identified 14 new GxE variants in lipid-

responsive promoters and 24 GxE variants in enhancers that interact with the saturated fat intake 

on BMI. The underlying detailed molecular mechanisms at each variant site require further 

investigations. 

While we had ATAC-seq data from preadipocytes and adipocytes and assessed the 

differences between those two stages of adipogenesis, the differentiation of adipocytes takes 14 
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days and the investigation of changes in open chromatin throughout adipogenesis using other 

time points, such as 24 and 48 hours after initiation of differentiation, is worth of further 

investigation. Furthermore, although it was an improvement from the study in chapter 2 to have 

two biological replicates of the pCHi-C, having even more replicates of pCHi-C, perhaps even 

up to 5, could further increase the robustness of the chromosomal interactions as well as enable 

us to identify additional chromosomal interactions with open chromatin regions and GxE 

variants in enhancers and promoters. As we saw from our data, chromosomal interactions are 

more dynamic than open chromatin, and therefore additional replicates can improve the 

identification of these chromosomal interactions. Identification of more chromosomal 

interactions could lead us to search for genes where both the enhancer and promoter had lipid 

responsive open chromatin instead of searching for open chromatin in enhancers and promoters 

separately. Genes with a coordinated opening or closing of chromatin in response to lipid intake 

could be key genes for response to lipid intake or adipogenesis and the subject of future 

investigations into the underlying mechanisms. Finally, when we searched for the effect of lipid 

responsive GxE variants on cis genes through a cis-eQTL analysis in the METSIM cohort7, we 

only identified five genes with a cis-eQTL in either their enhancer or promoter. Replication of 

these five signals in an independent cohort could further improve the robustness of this finding 

and a larger cohort, such as GTEx, could improve the power to detect signals. As GTEx5 is 

publicly available via the National Institutes of Health database of Genotypes and Phenotypes 

(NIH dbGAP) and has released its final version with 581 adipose samples, the use of GTEx cis-

eQTLs will be a natural extension to the findings in Chapter 3. 

In Chapter 4, we investigated trans-eQTLs and master TFs in adipose tissue employing 

integrative genomics approaches using human adipose RNA-seq data (n~1,400) and waist-hip-
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ratio adjusted for BMI (WHRadjBMI) GWAS9. We employed TWAS to provide statistical 

support for the causal role of the TF, T-box Transcription Factor 15 (TBX15), in regulating the 

accumulation of abdominal fat, measured via the proxy phenotype, WHRadjBMI. We 

functionally verified in human primary preadipocytes the role of TBX15 in controlling an adipose 

network of 347 adipogenesis, mitochondrial, and metabolically important genes, including 

Peroxisome Proliferator Activated Receptor Gamma (PPARG), Krüppel Like Factor 15 (KLF15), 

Peroxisome Proliferator Activated Receptor Alpha (PPARA), Adiponectin (ADIPOQ), as well as 

35 obesity GWAS genes. We built on the current knowledge that TBX15 is an established 

GWAS locus26–28 with previous knockdown studies in mice29 showing the importance of TBX15 

on adipogenesis and lipolysis. 

While we already show that TBX15 affects this adipose network of genes through small 

interfering RNA (siRNA) knockdown in human primary preadipocytes, TBX15 does not have 

any publicly available ChIP-seq data, let alone in adipocytes, to functionally show where it binds 

in the human genome. The current binding motif for TBX15 in the JASPAR database30 is also 

very general, with many locations across the genome predicted to harbor this motif, including 

300 of the 347 network gene promoters (2kb upstream and 1kb downstream of the TSS) in our 

study, which is not a significant enrichment when compared to all other promoters across the 

genome. Producing ChIP-seq data for TBX15 in relevant cell-types, perhaps also in conjunction 

with siRNA knockdown, could help dissect the direct targets of TBX15 among the adipose 

network genes. As TBX15 has already be shown to be a GWAS gene in a Mexican-American 

GWAS for visceral-to-subcutaneous adipose ratio26, investigations into TBX15  and the adipose 

network genes in other population cohorts is definitely an important next step to extend our 



167 
 

findings beyond Europeans and further show the importance and influence of TBX15 on 

abdominal obesity. 

In summary we integrated omics data from multiple human cohorts along with genetic 

and phenotype information as well as functional follow-up data to understand the underlying 

genes and their regulatory mechanisms contributing to obesity. First, we used pCHi-C, cis-

eQTLs, and GWAS to identify important obesity genes regulated by chromosomal interactions. 

We show that chromosomal interactions can effectively fine-map variants in a GWAS locus and 

identify the genes they directly regulate. We also provided 38 new candidate genes that are 

causal or reactive for obesity. Second, we identified lipid-intake responsive open chromatin 

regions via ATAC-seq in human primary adipocytes and obesity GxE variants in these open 

chromatin regions of enhancers and promoters. We showed that these open chromatin regions are 

evolutionarily constrained and the GxE variants significantly affect TF binding, including 

adipogenesis and lipolysis TF, Retinoid X Receptor Alpha (RXRA). Finally, we move beyond cis 

regulation of gene expression to TFs and trans effects, and identify a master regulator of 

abdominal obesity, TBX15. We also identify the downstream adipose network, which TBX15 

controls, and provide insights into the mechanisms contributing to the sex-dependent 

accumulation of fat around the abdomen. Our studies suggest that by integrating these multi-

omics data and elucidating the mechanisms underlying obesity, we can understand the individual 

risks associated with obesity and its comorbidities, which will help advance personalized 

medicine.  
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