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ABSTRACT OF THE DISSERTATION
Investigation of genomic mechanisms regulating adipose tissue function and influencing body
mass index and waist-hip-ratio
by
David Zhi-Chao Pan
Doctor of Philosophy in Bioinformatics
University of California, Los Angeles, 2020

Professor Paivi Pajukanta, Chair

Obesity is a well-established risk factor for multiple common disorders, such as type 2 diabetes
(T2D), hypertriglyceridemia, non-alcoholic fatty liver disease (NAFLD), coronary artery disease
(CAD), and certain cancers. The rates of obesity-related deaths have risen sharply globally over
the last 20 years, with over 70% of adults in the United States now classified as overweight or
obese according to the Centers for Disease Control (CDC). Currently, as the world faces one of
the worst infectious-disease outbreaks in a century, new data are also emerging showing that
obesity is a key risk factor for severe forms of COVID-19. However, the complex underlying
mechanisms of obesity, especially the susceptibility genes and their regulatory mechanisms,
remain elusive. To address this scientific knowledge gap, we have employed integrative multi-
omics approaches on human subcutaneous adipose RNA-sequencing (RNA-seq) data from
multiple cohorts; epigenomic data from chromosomal interactions and open chromatin in
relevant adipose cell-types; large scale obesity genome-wide association studies (GWAS) for
body mass index (BMI) and waist-hip-ratio adjusted for BMI (WHRadjBMI); and one of the

largest population cohort to date, the UK Biobank (UKB).



In Chapter 2, we fine-mapped BMI GWAS loci using cis-expression quantitative trait
loci (eQTLs) from the METabolic Syndrome In Men (METSIM) cohort and chromosomal
interactions from adipocyte promoter Capture Hi-C (pCHi-C). We discovered that the pCHi-C
interactions are enriched for central adipogenesis transcription factors (TFs), Peroxisome
Proliferator Activated Receptor Gamma (PPARG) and CCAAT Enhancer Binding Protein Beta
(CEBPB), and identified four key GWAS gene examples as well as 38 additional candidate
genes with cis-eQTLs in chromosomal interactions whose gene expression are strongly
associated with obesity-related traits, such as BMI, blood metabolites, and lipids.

In Chapter 3, I discuss my contribution to a study about context-specific changes in open
chromatin and pCHi-C interactions in human primary adipocytes and the variants in those open
chromatin regions that respond to lipid intake. Using these context-specific molecular data, we
provide candidate gene-environment interaction (GxE) variants that significantly alter TF motifs
in open chromatin regions, which are evolutionarily conserved and have a key role in
adipogenesis and the responses to lipid intake. These candidate GXE variants with molecular
priors were then tested for interactions with saturated fat intake on obesity in the UKB, resulting
in the discovery of novel GXE variants for obesity.

In Chapter 4, we move beyond cis-eQTLs, to trans-eQTLs and master trans regulatory
TFs that control adipose co-expression networks important for obesity. To advance the discovery
of unknown genetic and molecular mechanisms regulating abdominal adiposity and the sex-
specific distribution of body fat, we searched for genetic master trans regulators of WHRadjBMI
by employing integrative genomics approaches on human adipose RNA-seq data and

WHRadjBMI GWAS. We provide novel genomic evidence, verified by our functional



knockdown studies in human primary preadipocytes, for the causal role of the TF, T-Box
Transcription Factor 15 (TBX15), in controlling accumulation of abdominal fat and adiposity.
All in all, we have combined these omics and phenotype data using computational and
functional techniques to identify genes and their regulatory mechanisms affecting obesity. Our
studies suggest that by integrating the multi-omics data and elucidating the mechanisms
underlying obesity, we can further the understanding of the risks associated with obesity and its

comorbidities to move personalized medicine forward.
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Chapter 1

Introduction



1.1 Adipose biology and obesity

As the world faces one of the worst infectious-disease outbreaks in a century, new data are
emerging showing that obesity is a key risk factor for severe forms of COVID-19 infection in
individuals less than 60 years of age. Obesity is clinically diagnosed by a body mass index
(BMI) greater than 30 kg/m?, while severe obesity is defined as BMI greater than 40 kg/m?. One
of the key tissues involved in obesity is adipose tissue. Although originally thought of as simply
a storage organ, adipose is now recognized as an important endocrine regulator of energy
homeostasis in the human body through secretion of hormones, cytokines, and metabolites
(known as adipokines)®. Over the years, adipokines, such as leptin* and adiponectin®®, as well as
many others’1°, have been shown to be secreted by adipose tissue and have effects on obesity.

Many other organisms and human infants have both white adipose tissue (WAT), for the
storage of lipids, and brown adipose tissue (BAT), for thermoregulation; however, adult humans
have lost most BAT deposits in the body, except for small deposits near the neck®. Further
subdividing the types of adipose tissue, WAT has two main types of deposits, subcutaneous
WAT (SAT) and visceral WAT (VAT). While VAT is thought to be more metabolically
important than SAT, with links to type 2 diabetes (T2D) and insulin resistance!''?, SAT displays
larger changes in weight® and is easier to acquire through less invasive biopsies from living
individuals.

To further complicate studies of WAT and obesity, as individuals become obese, WAT
undergoes two types of expansion: hypertrophy or hyperplasia, both of which have been shown
to be regulated by genetic as well as environmental factors'*. Hyperplasia represents the healthy
increase in the number of adipocytes to store lipids, which drives metabolic health and

temporally even metabolically healthy obesity. This process, which includes differentiation of



preadipocytes to mature adipocytes, is controlled by adipogenesis master regulators, such as
peroxisome proliferator-activated receptor gamma (PPARG) and CCAAT enhancer binding
protein (CEBPB)®. Hypertrophy, on the other hand, is characterized by an increase in adipocyte
size instead of number, which leads to large adipocytes storing fat and expanding in size until
they burst. When adipocytes burst, this triggers an immune response, initiated by macrophages
and then furthered by other immune cells, such as neutrophils and T cells, to clean up the cell
debris. This infiltration of immune cells leads to an increase in the release of inflammatory
cytokines, resulting in obese individuals® WAT residing in a continuously inflamed state, altering
the adipose tissue function and leading to comorbidities of obesity, such as impaired insulin
sensitivity®*°. The molecular mechanisms underlying the differences between individuals who
undergo hypertrophy versus hyperplasia and the gene regulatory mechanisms altered by obesity

during adipogenesis are still incompletely understood.

1.2 Genomic regulatory landscape and chromosomal interactions

As the rapid development of next-generation sequencing techniques has decreased the price and
increased the efficiency of acquiring gene expression information?’, it provides the opportunity
to increase our understanding of the regulatory mechanisms that control gene expression?t. When
focusing on the genes that have the largest amount of prior information, i.e. the protein coding
genes, one of the most common regulatory mechanisms consists of DNA binding proteins, such
as transcription factors (TFs), binding to DNA motifs (TF binding sites (TFBSs)), thus activating
or repressing gene promoters, which in turn, raises or lowers the gene expression levels,
respectively??. There are TFs that are known to be master regulators, which control specific key
pathways within cells, such as those related to immune response?®, as well as those that drive cell
differentiation, such as PPARG and CEBPB in adipocytes®. Experimental methods of assessing

3



TF binding and TFBSs, including chromatin immunoprecipitation sequencing (ChlP-seq),
involve crosslinking TFs with their bound sequences, cutting the DNA with exonucleases,
pulling down the protein of interest with a specific antibody, and finally sequencing the DNA to
which the protein is bound to find the particular TFBS sequence?®. Computational methods have
complimented this technology by analyzing the sequences produced by many ChlP-seq
experiments, and finding canonical TFBSs?*. These computationally defined TFBSs consist of
matrices (position weight matrix (PWM)), indicating how likely a specific DNA nucleotide is to
appear at a certain position in the TFBS, with extensive databases curated of these PWMs
(TRANSFEC?; JASPAR?). However, when scanning the entire human genome using these
PWMs, many more statistically significant locations appear across the human genome than are
confirmed by ChlP-seq experiments, indicating that TF binding to DNA is pervasive and
depends on a multitude of complex factors beyond the recognition of a particular DNA
sequence?’.

TFs usually bind in complexes made up of multiple proteins binding to DNA together,
partially explaining the differences between computationally defined TFBSs and experimental
findings?®. This fact also indicates that large regions of the human genome consisting of many
TFBSs may also have a role in gene regulation. These large regions are collectively known as
regulatory elements, usually classified into two main categories: enhancers and repressors, which
increase or decrease gene expression, respectively?8. Regulatory elements are usually defined by
the modifications on the histones, the proteins that affect the organization of DNA into its most
basic unit, the nucleosome?®%, ChiP-seq experiments, along with identifying TFBSs, can
identify regions of DNA that are wrapped around nucleosomes with certain marks, such as

H3K4mel and H3K27ac at active enhancers?®. Computationally, aggregating these ChIP-seq



experiment data across many cell-types and cell lines can provide a genome-wide picture of
regulatory elements, such as those from ChromHMM?®L. These computationally identified
regulatory elements can be combined with information about the three dimensional organization
of the genome and TFBSs to help identify regions of the genome with enhancing and repressing
effects®,

The organization of these regulatory elements and the three-dimensional confirmation of
DNA is of great importance for gene regulation, and changes to the three-dimensional
confirmation of DNA may have direct effects on gene expression®. The first modern interaction
assay, called chromosome confirmation capture (3C), was invented in 200234, and it assesses the
contact frequency between two genomic regions, making up one chromosomal interaction, at a
time. The general experimental procedure consists of cross-linking DNA, using a restriction
enzyme to cut the DNA, then re-ligating the cut ends, and finally using targeted quantitative PCR
(9-PCR) of the re-ligated fragment of DNA of interest. The subsequent technologies, named
AC3*-38 capturing all other interacting genomic loci interacting with a specific genomic loci of
interest; chromosome confirmation capture carbon copy (5C)**, capturing all pairwise
interacting loci across a few mega bases (Mb) of the genome; and finally High throughput
chromosome confirmation capture (Hi-C)*, capturing all pairwise interacting loci genome-wide,
continued the trend of assessing an increasing number of interactions across the genome in
conjunction with the use of next-generation sequencing technologies. However, the low
resolution of high throughput techniques, such as Hi-C (generally genomic regions of 5kb-25kb
in length interacting with each other), and the extremely high number of sequencing reads
(>1x10° reads) required to identify high resolution interactions*?, has limited the use of Hi-C and

driven more targeted technologies to identify interactions between specific genomic regions. One



such technique, known as promoter Capture-HiC (pCHiC)*3, adds an additional step to the
experimental protocol for Hi-C, using targeted biotinylated RNA probes to target genomic loci
containing promoters. This targeted approach, allows for the capture of all interacting loci with
known gene promoters, and reduces the number of sequencing reads required by having a lower
number of total interactions than Hi-C. Since genes and their promoters are arguably the better
understood part of the human genome, identifying chromosomal interactions involving gene
promoters, is useful for studies investigating mechanisms of gene regulation in relation to
important biological pathways relevant to specific tissue types, such as adipose and adipocytes.
Currently, pCHi-C is mostly used to study local, cis chromosomal interactions (distance <1Mb),
while identification of biologically relevant longer range, trans chromosomal interactions
(distance>1Mb or inter-chromosomal), has remained challenging. These challenges stem from
the fact that in most pCHi-C experiments sequencing depth is restricted by the cost of
sequencing. Therefore, trans chromosomal interactions have fewer sequencing reads than cis
chromosomal interactions as they in general occur less frequently*. Therefore, they do not pass
computationally set thresholds for identifying chromosomal interactions despite lower thresholds
for trans chromosomal interactions when compared to cis chromosomal interactions. In addition,
except in model organisms, trans interactions have not been proven to exist yet using genome-
wide assays*>*6. Therefore, current computational methods to analyze pCHi-C data treat trans
chromosomal interactions as a measure of the background noise in pCHi-C experiments, thus

warranting further methods developments to identify robust trans chromosomal interactions.

1.3 Genome-wide association studies and genetic architecture of obesity



Common DNA variants and their associations with disease, such as obesity, have been captured
in genome-wide association studies (GWAS), albeit with a stringent threshold on association
(p<5x10®), to account for the common independent loci in the human genome*’. This widely
used genome-wide significance threshold is based on extrapolations of the number of
independent variants in 10 highly genotyped regions of the human genome using European
population cohort samples in 2005%. While a significant proportion of the phenotypic variation
in BMI is attributed to genetic variation (heritability of BMI ~0.4-0.7)*, understanding the
mechanisms underlying this heritable component has been challenging. The 97 loci identified in
a GWAS for BMI in ~340,000 subjects explain only 2.7% of the variance in BMI, and all
HapMap phase 3 genetic variants (minor allele frequency (MAF)>1%) (~1.5M single nucleotide
polymorphisms (SNPs)) were estimated to account for ~21% of the variance in BMI in 16,275
unrelated individuals*. Thus, it is likely that gene-environment interactions (GXE) and rare
variants also explain some of the BMI heritability®°.

Recently it has been recognized that BMI cannot reliably differentiate fat from lean mass
and that the metabolically detrimental abdominal obesity can be more accurately estimated using
the waist-hip-ratio (WHR), which even after adjusting for BMI (WHRadjBMI) is still highly
heritable (heritability~0.22-0.61)°1"%4. Previous GWAS have also shown that WHRadjBMI
GWAS genes are enriched for adipose-expressed genes with known adipose tissue functions,
whereas BMI GWAS genes are enriched for genes expressed primarily in brain®. Regardless of
the trait, due to linkage disequilibrium (LD) between variants and the presence of multiple genes
and variants at each GWAS loci, the causal variant(s) and gene(s) are not immediately apparent

from GWAS, hindering our ability to understand the finer details of biological mechanisms by



which GWAS loci contribute to obesity, and thus warranting a detailed fine mapping of each

GWAS locus.

1.4 Expression quantitative trait locus analyses in obesogenic tissue cohorts

Common DNA variants, in addition to being associated with diseases and traits through GWAS,
can also be directly linked to gene expression as expression quantitative trait loci (eQTL)%.
eQTLs are measured by the strength of association between the number of copies of a certain
allele of a DNA variant and differences in gene expression®®-¢, The discovery of eQTLs requires
collection of population cohorts to capture genetic and gene expression variation, with
genotyping arrays to assess DNA variants and RNA-sequencing (RNA-seq) to measure gene
expression. As with chromosomal interactions, eQTLs are divided into two types, cis (<1Mb
from gene) and trans (>1Mb from the gene or on a different chromosome)®?; however, these
thresholds for cis and trans for eQTLs are simply conventions that do not represent any true
biological structure. Human gene expression cohorts are gradually increasing in size as sample
collection becomes easier and RNA-seq cheaper, and thus, cis-eQTL discovery has become
feasible; however, widespread identification of trans-eQTLs remains challenging, except in
model organisms®®%!, Even with costs decreasing, the size of the current human cohorts makes
the discovery of trans-eQTLs limited by the extensive number of statistical tests required to be
corrected for in the trans-eQTL analysis. Further complicating the discovery of relevant cis- and
trans-eQTLs, is the type of tissue available from human cohorts for RNA-seq, since eQTLs and
gene expression can also be tissue-specific, as is shown in cohorts with RNA-seq data from

multiple tissues, such as GTEX®®.



While human cohorts with samples from blood are among the largest (meta-analyses
Ntotal~30,000) and are just beginning to reach large enough sizes to reliably identify trans-eQTLs
at the genome-wide level®?, cohorts with RNA-seq data from obesogenic tissues, such as adipose,
liver, and muscle with genotyping data, remain still small, each cohort usually having samples
from less than 1,000 individuals®®®*. This limited size is partly due to the invasiveness of
procedures to collect human tissue samples. Therefore, innovative targeted approaches
alleviating the sample size requirement are the focus of intense ongoing research to identify trans

effects relevant for obesity and related cardiometabolic traits and endpoints.

1.5 Trans-regulators in obesogenic tissue cohorts

Trans-eQTLs regulated by TFs are the most common type of long-range, trans gene
regulation®®%! . For obesity-related tissue cohorts, there are only a few published examples of
trans-eQTLs, including Kriippel Like Factor 14 (KLF14)% and Zinc finger protein 800
(ZNF800)°%. One recent idea is that cis-eQTLs may also be trans-eQTLs, with the trans effect
mediated by a gene whose expression is controlled by the cis-eQTL. One mechanism explaining
these cis-mediated trans-eQTLSs is that the gene is a TF, which would directly explain how the
gene could affect many downstream genes across multiple chromosomes®’. This idea has been
suggested and explored in the GTEx cohort®®, but it still remains unexplored in cohorts with

obesogenic tissue samples from non-post mortem samples.

1.6 Transcriptome wide association studies of obesity
Transcriptome wide association study (TWAS) is a method to test for association between gene

expression and a trait by weighting the effects of all cis variants on gene expression and testing



their weighted association with a GWAS trait®®°. Since the gene expression and weights on cis
variants are unique per gene, TWAS provides evidence for causality as it is the measure between
fixed genotypes and traits. Thus, TWAS leverages both power from reference gene expression
cohorts with RNA-seq data, such as GTEx (n~600)°8, to calculate the weights on cis variants,
and power from GWAS (n~100,000-800,000) for the association between the weighted variants
and traits. Previous studies have illuminated the limitations of TWAS®, namely that it could
identify multiple potential causal genes in a locus. This is due to the fact that nearby genes can
have related variants in their cis regions due to underlying LD structure. However, this does not
detract from the ability of TWAS to identify causal gene sets. Furthermore, follow-up methods,
such as fine-mapping of causal gene sets (FOCUS)™°, circumvent this issue by fine-mapping
TWAS results through identification of a gene set containing the causal gene(s) in a locus at a
predefined level of credibility, based on their posterior inclusion probability of being the causal
gene, while accounting for shared cis variation among the genes at a locus. Combined, utilizing
summary statistics from GWAS and transcriptomics reference panels, TWAS and FOCUS are an
important pipeline for providing statistical evidence of the causality of genes for GWAS traits.
One final caveat of TWAS and FOCUS is that they require the transcriptomic reference panels
and GWAS to be from cohorts of the same ethnicity. As most cohorts currently contain a
majority of European individuals, the use of TWAS and FOCUS in non-European populations

has so far been limited by the availability and collection of more diverse cohorts.

1.6 Weighted Gene Co-expression Network Analysis for identifying key networks and genes

for obesity
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Weighted Gene Co-expression Network Analysis (WGCNA), created in 2005 and placed into an
R package in 2008, was designed to find co-expressed genes associated with phenotypic traits.
WGCNA forms networks out of genes that are highly co-expressed. It avoids the extensive
multiple testing correction that would be necessary for testing each individual gene with traits.
Instead, WGCNA summarizes collective gene expression of each network by identifying a
network eigengene (i.e. the first principal component (PC) of the expression of all the genes in a
network)’.. As WGCNA needs only modest sizes of cohorts with gene expression data, WGCNA
has also been utilized in human cardiometabolic transcriptomics cohorts for the past 10 years’>"4
to discover co-expression networks and genes important for obesity. In addition, it has been
suggested the since TFs can control many genes across different chromosomes, they might also
be master regulators of co-expression networks’. However, these studies rarely have any
functional follow-up, proving that the network and master TFs are indeed acting as

computationally calculated.

1.7 Polygenic risk score development for cardiometabolic disorders

Polygenic risk scores (PRSs) represent the sum of common variants (MAF>1%) associated with
a specific disease or phenotype, weighted by their effect sizes’®. PRSs are used to assess an
individual’s risk for a certain disease or phenotype based on their genetics’®. As the collection of
genotype data increases, with large cohorts such as the UK Biobank (UKB)’’ (n~500,000) that
have extensive phenotype and genotype data available for study, PRSs are becoming more
feasible. PRS studies for cardiometabolic traits were started almost 10 years ago, and by now
PRSs have been built for obesity in Europeans using BM1787°, and many other related

cardiometabolic traits, such as T2D®®L coronary artery disease (CAD)®?, and WHRadjBMI®,
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Although PRSs are commonly built using independent variants across the genome, it is
known that variants in certain regions of the genome, such as regulatory elements or promoters,
are more disease relevant that others®4. Therefore, using a targeted set of variants with prior
evidence for connection to a phenotype or disease may yield a more localized and accurate PRS
estimation.

One limitation of PRSs is that PRSs predict the disease risk independently of family
history and other electronic health record (EHR) information®. Therefore, both EHR and PRS
information are needed to get a more complete risk prediction for an individual. This difference
can be explained by the fact that as PRSs capture all common variants, there are still
contributions from rare variants to the disease risk. The rare variants often have large effect sizes
even though they are present in a very small portion of the population. However, to acquire rare
variant information, different and costlier technologies, such as whole exome sequencing (WES)
and whole genome sequencing (WGS), are required because rare variants are not part of standard
genotyping arrays that capture common variants®. Overall, this limitation does not discount the
usefulness of PRSs as they can provide a useful biomarker at the individual level with just the
collection of genotype information. This information could ultimately be included with an
individual’s EHR records in a clinical setting. Additionally, recent longitudinal studies have also
indicated that in general individuals with a higher polygenic risk have an earlier age of onset of
common cardiometabolic diseases, such as T2D, and various types of cancer®®, further showing

the utility of PRSs.

1.8 Integrating the current state of knowledge to this thesis

12



This chapter has summarized first the current state of knowledge about adipose and adipocyte
biology and its relationship to obesity. Building on this, the chapter described our present
understanding of gene regulatory mechanisms from large DNA elements, such as enhancers and
repressors, to smaller elements, such as TFBSs. In addition, the chapter covered the difference
between cis-regulatory elements, cis gene regulation, and cis-eQTLs, when compared to the
elusive trans gene regulation in human cohorts of obesogenic tissues. Finally, I discussed the
current state of relevant genomic approaches, GWAS, TWAS, WGCNA, and PRS, and their
applications and limitations.

Moving forward, in Chapter 2, | discuss the fine-mapping of BMI GWAS loci using cis-
eQTLs from the METabolic Syndrome in Men (METSIM) cohort and human primary adipocyte
pCHi-C data. As genes make up only a few percent of the human genome, there are many
intergenic GWAS variants where the closest gene to the variant is bookmarked for the GWAS
locus. However, cis-eQTLs show that GWAS variants do not always affect the nearest gene,
leading us to use functional evidence, such as chromosomal interactions from pCHi-C in human
primary adipocytes, to fine map and directly discover the mechanism of action of cis-eQTLs. We
also characterized the pCHi-C interactions to be enriched for adipogenesis TFs, PPARG and
CEBPB. This study identified four key examples of obesity GWAS genes associated with BMI,
serum metabolites, and lipids, as well as 38 additional candidate genes with cis-eQTLSs in
chromosomal interactions whose expression levels are strongly associated with BMI. These
findings are important as they identify novel obesity loci; further show that GWAS variants are
not necessarily connected to their nearest gene; and discover that one important regulatory
mechanism for the connection between variants and genes is through promoter-enhancer

interactions. This work was published in Nature Communications in 2018%’.
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Next, in Chapter 3, I discuss a study | contributed to, identifying changes in open
chromatin regions within pCHi-C chromosomal interactions. In the study, we used assay for
transposase-accessible chromatin using sequencing (ATAC-seq) and pCHi-C in human primary
adipocytes treated with saturated fatty acids or monounsaturated fatty acids to examine changes
in chromosomal interactions and open chromatin regions responding to lipid intake. Then we
searched for variants residing at these context-specific sites responsive to the lipid intake using
the UKB. Our goal was to identify variants interacting with saturated fat intake to influence
obesity, i.e. BMI. Specifically, | contributed to the examining the conservation of lipid-
responsive open chromatin regions in enhancers and promoters involved in chromosomal
interactions. | showed that genes with lipid-responsive open chromatin regions in their
promoters were significantly loss of function (LoF) intolerant and had higher conservation
scores, meaning that they are evolutionarily constrained, when compared to the remaining
protein-coding genes across the genome. Similarly, for enhancers with lipid-responsive open
chromatin regions, | showed that they exhibited a higher conservation score than protein-coding
genes across the genome, and furthermore that the target genes of the lipid-responsive enhancers
via chromosomal interactions were LoF intolerant. In addition, | examined the same open
chromatin regions in enhancers and promoters containing gene-environment interaction (GxE)
variants for those predicted to significantly affect TF binding using the deep learning tool
DeepSEA8E, and found that 55% of them showed significant alterations of TF motifs, including
retinoid X receptor alpha (RXRA), an important TF for adipogenesis and lypolysis®. This work
was published in Nature Metabolism in 2019%.

Moving beyond cis-eQTLs, in Chapter 4, | discuss the identification of master TFs that

control adipose co-expression networks important for obesity and provide functional evidence
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for the mechanism of action of the identified master regulator. As it has been shown previously
that WHRadjBMI is a better proxy for abdominal, metabolically harmful obesity than BMI, and
that BMI cannot distinguish between lean mass from fat mass®3, we used WHRadjBMI as our
phenotype of interest and proxy for the metabolically harmful abdominal obesity. Previous
studies have also shown that WHRadjBMI is a sex-dependent trait, reflecting the physiological
differences in body fat distribution and muscle mass between males and females, with males in
general exhibiting more muscle mass and females more fat mass when matched for BMI and
age®>%2, To advance the discovery of unknown genetic and molecular mechanisms regulating
abdominal adiposity and the sex-specific distribution of body fat, we searched for genetic master
regulators of WHRadjBMI by employing integrative genomics approaches on human adipose
RNA-sequencing (RNA-seq) data (n~1,400), WHRadjBMI GWAS, TWAS, and PRS data from
the WHRadjBMI GWAS cohorts and the UKB (n~700,000). We provide novel genomic
evidence, verified by our functional studies in human primary preadipocytes, for the causal role
of the TF, TBX15, in controlling accumulation of abdominal fat and adiposity. This work has

been submitted in 2020 (Pan et al. submitted).

15



References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Simonnet, A. et al. High prevalence of obesity in severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (2020).
Lighter, J. et al. Obesity in patients younger than 60 years is a risk factor for Covid-19
hospital admission. Clin. Infect. Dis. 1-29 (2020).

Choe, S. S., Huh, J. Y., Hwang, I. J., Kim, J. I. & Kim, J. B. Adipose tissue remodeling:
Its role in energy metabolism and metabolic disorders. Front. Endocrinol. (Lausanne). 7,
1-16 (2016).

Zhang Y et al. Positional cloning of the mouse obese gene and its human homologue.
Nature 372, 425-432 (1994).

Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene
dysregulated in obesity. J. Biol. Chem. 271, 10697-10703 (1996).

Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum
protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746—
26749 (1995).

Yang, Q. et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity
and type 2 diabetes. Nature 436, 356—-362 (2005).

Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307-312
(2001).

De Souza Batista, C. M. et al. Omentin plasma levels and gene expression are decreased
in obesity. Diabetes 56, 1655-1661 (2007).

Yang, R. Z. et al. Identification of omentin as a novel depot-specific adipokine in human
adipose tissue: Possible role in modulating insulin action. Am. J. Physiol. - Endocrinol.
Metab. 290, 1253-1261 (2006).

Meisinger, C., Doring, A., Thorand, B., Heier, M. & Lowel, H. Body fat distribution and
risk of type 2 diabetes in the general population: Are there differences between men and
women? The MONICA/KORA Augsburg Cohort Study. Am. J. Clin. Nutr. 84, 483-489
(2006).

Gesta, S., Tseng, Y. H. & Kahn, C. R. Developmental Origin of Fat: Tracking Obesity to
Its Source. Cell 131, 242-256 (2007).

Merlotti, C., Ceriani, V., Morabito, A. & Pontiroli, A. E. Subcutaneous fat loss is greater
than visceral fat loss with diet and exercise, weight-loss promoting drugs and bariatric
surgery: A critical review and meta-analysis. Int. J. Obes. 41, 672-682 (2017).
Spiegelman, B. M. & Flier, J. S. Obesity and the Regulation Review of Energy Balance
total fast of approximately 150 days! This impressive energy reserve is due both to the
high energy content of triglycerides versus polysaccharides, and the fact. Cell 104, 531-
543 (2001).

Lefterova, M. I. et al. PPARy and C/EBP factors orchestrate adipocyte biology via
adjacent binding on a genome-wide scale. Genes Dev. 22, 2941-2952 (2008).

Kim, J. I. et al. Lipid-Overloaded Enlarged Adipocytes Provoke Insulin Resistance
Independent of Inflammation. Mol. Cell. Biol. 35, 1686-1699 (2015).

Kl6ting, N. et al. MicroRNA expression in human omental and subcutaneous adipose
tissue. PLoS One 4, 2-7 (2009).

Cotillard, A. et al. Adipocyte size threshold matters: Link with risk of type 2 diabetes and
improved insulin resistance after gastric bypass. J. Clin. Endocrinol. Metab. 99, 1466—
1470 (2014).

16



19.

20.

21.

22,
23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Stern, J. S., Hollander, N., Batchelor, B. R., Cohn, C. K. & Hirsch, J. Adipose-Cell Size
and Immunoreactive Insulin Levels in Obese and Normal-Weight Adults. Lancet 300,
948-951 (1972).

Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. Nat. Rev.
Genet. 20, 631-656 (2019).

Stadhouders, R., Filion, G. J. & Graf, T. Transcription factors and 3D genome
conformation in cell-fate decisions. Nature 569, 345-354 (2019).

Lambert, S. A. et al. The Human Transcription Factors. Cell 172, 650-665 (2018).
Singh, H., Khan, A. A. & Dinner, A. R. Gene regulatory networks in the immune system.
Trends Immunol. 35, 211-218 (2014).

Smith, A. D., Sumazin, P. & Zhang, M. Q. Identifying tissue-selective transcription factor
binding sites in vertebrate promoters. Proc. Natl. Acad. Sci. U. S. A. 102, 1560-1565
(2005).

Matys, V. et al. TRANSFAC®: Transcriptional regulation, from patterns to profiles.
Nucleic Acids Res. 31, 374-378 (2003).

Mathelier, A. et al. JASPAR 2016: A major expansion and update of the open-access
database of transcription factor binding profiles. Nucleic Acids Res. 44, D110-D115
(2016).

Wasserman, W. W. & Sandelin, A. Applied bioinformatics for the identification of
regulatory elements. Nat. Rev. Genet. 5, 276-287 (2004).

Schoenfelder, S. & Fraser, P. Long-range enhancer—promoter contacts in gene expression
control. Nat. Rev. Genet. (2019).

Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and
predicts developmental state. Proc. Natl. Acad. Sci. U. S. A. 107, 21931-21936 (2010).
Andersson, R. et al. An atlas of active enhancers across human cell types and tissues.
Nature 507, 455-461 (2014).

Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with
ChromHMM. Nat. Protoc. 12, 2478-2492 (2017).

Jaroszewicz, A. & Ernst, J. An integrative approach for fine-mapping chromatin
interactions. Bioinformatics 36, 1704-1711 (2020).

Sati, S. & Cavalli, G. Chromosome conformation capture technologies and their impact in
understanding genome function. Chromosoma 126, 33-44 (2017).

Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation.
Science (80-. ). 295, 1306-1311 (2002).

Waiirtele, H. & Chartrand, P. Genome-wide scanning of HoxB1-associated loci in mouse
ES cells using an open-ended Chromosome Conformation Capture methodology.
Chromosom. Res. 14, 477-495 (2006).

Simonis, M. et al. Nuclear organization of active and inactive chromatin domains
uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348—
1354 (2006).

Lomvardas, S. et al. Interchromosomal Interactions and Olfactory Receptor Choice. Cell
126, 403-413 (2006).

Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive
networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet.
38, 1341-1347 (2006).

Dostie, J. et al. Chromosome Conformation Capture Carbon Copy (5C): A massively

17



40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

parallel solution for mapping interactions between genomic elements. Genome Res. 1299-
1309 (2006).

Ferraiuolo, M. A., Sanyal, A., Naumova, N., Dekker, J. & Dostie, J. From cells to
chromatin: Capturing snapshots of genome organization with 5C technology. Methods 58,
255-267 (2012).

Lieberman-aiden, E. et al. Comprehensive Mapping of Long-Range Interactions Reveals
Folding Principles of the Human Genome. Science (80-. ). 326, 289-294 (2009).

Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in
human cells. Nature 503, 290-294 (2013).

Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-
resolution capture Hi-C. Nat. Genet. 47, 598-606 (2015).

Dekker, J. & Misteli, T. Long-range chromatin interactions. Cold Spring Harb. Perspect.
Biol. 7, (2015).

Erceg, J. et al. The genome-wide multi-layered architecture of chromosome pairing in
early Drosophila embryos. Nat. Commun. 10, (2019).

Chowdhary, S., Kainth, A. S. & Gross, D. S. Chromosome conformation capture that
detects novel cis- and trans-interactions in budding yeast. Methods 170, 4-16 (2020).
Tam, V. et al. Benefits and limitations of genome-wide association studies. Nat. Rev.
Genet. 20, 467-484 (2019).

Fadista, J., Manning, A. K., Florez, J. C. & Groop, L. The (in)famous GWAS P-value
threshold revisited and updated for low-frequency variants. Eur. J. Hum. Genet. 24, 1202-
1205 (2016).

Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity
biology. Nature 518, 197-206 (2015).

Abadi, A. et al. Penetrance of Polygenic Obesity Susceptibility Loci across the Body Mass
Index Distribution. Am. J. Hum. Genet. 101, 925-938 (2017).

Rose, K. M., Newman, B., Mayer-Davis, E. J. & Selby, J. V. Genetic and behavioral
determinants of waist-hip ratio and waist circumference in women twins. Obes. Res. 6,
383-392 (1998).

Mills, G. W. et al. Heritability estimates for beta cell function and features of the insulin
resistance syndrome in UK families with an increased susceptibility to Type 2 diabetes.
Diabetologia 47, 732-738 (2004).

Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat
distribution. Nature 518, 187-196 (2015).

Souren, N. Y. et al. Anthropometry, carbohydrate and lipid metabolism in the East
Flanders Prospective Twin Survey: Heritabilities. Diabetologia 50, 2107-2116 (2007).
Heid, I. M. et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and
reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949-960
(2010).

Schadt, E. E. et al. An integrative genomics approach to infer causal associations between
gene expression and disease. Nat. Genet. 37, 710-717 (2005).

Lonsdale, J. et al. The Genotype-Tissue Expression (GTEX) project. Nat. Genet. 45, 580—
585 (2013).

The Genotype Tissue Expression Consortium. The GTEx Consortium atlas of genetic
regulatory effects across human tissues. bioRxiv. (2019).

Yao, C. et al. Dynamic Role of trans Regulation of Gene Expression in Relation to

18



60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72,

73.

74,

75.

76.

77.

78.

79.

80.

Complex Traits. Am. J. Hum. Genet. 100, 571-580 (2017).

Yvert, G. et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role
of transcription factors. Nat. Genet. 35, 57-64 (2003).

Albert, F. W., Bloom, J. S., Siegel, J., Day, L. & Kruglyak, L. Genetics of trans-regulatory
variation in gene expression. Elife 7, 1-39 (2018).

Vosa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL
meta- analysis. 1-57

Laakso, M. et al. The Metabolic Syndrome in Men study: A resource for studies of
metabolic & cardiovascular diseases. J. Lipid Res. 58, 481-493 (2017).

Moayyeri, A., Hammond, C. J., Hart, D. J. & Spector, T. D. The UK Adult Twin Registry
(TwinsUK Resource). Twin Res. Hum. Genet. 16, 144-149 (2013).

Small, K. S. et al. Regulatory variants at KLF14 influence type 2 diabetes risk via a
female-specific effect on adipocyte size and body composition. Nat. Genet. 50, 572-580
(2018).

Civelek, M. et al. Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic
Traits. Am. J. Hum. Genet. 100, 428-443 (2017).

Yang, F., Wang, J., Pierce, B. L. & Chen, L. S. Identifying cis-mediators for trans-eQTLs
across many human tissues using genomic mediation analysis. Genome Res. 27, 1859—
1871 (2017).

Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association
studies. Nat. Genet. 51, 592-599 (2019).

Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association
studies. Nat. Genet. 48, 245-252 (2016).

Mancuso, N. et al. Probabilistic fine-mapping of transcriptome-wide association studies.
Nat. Genet. 51, 675-682 (2019).

Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network
analysis. BMC Bioinformatics 9, 559 (2008).

Kogelman, L. J. A. et al. Identification of co-expression gene networks, regulatory genes
and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model.
BMC Med. Genomics 7, 1-16 (2014).

Hao, R. H. et al. Gene expression profiles indicate tissue-specific obesity regulation
changes and strong obesity relevant tissues. Int. J. Obes. 42, 363-369 (2018).

Haas, B. E. et al. Adipose Co-expression networks across Finns and Mexicans identify
novel triglyceride-associated genes. BMC Med. Genomics 5, (2012).

Skinkyte-Juskiene, R., Kogelman, L. J. A. & Kadarmideen, H. N. Transcription Factor
Co-expression Networks of Adipose RNA-Seq Data Reveal Regulatory Mechanisms of
Obesity. Curr. Genomics 19, 289-299 (2018).

Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and
bipolar disorder. Nature 460, 748-752 (2009).

Sudlow, C. et al. UK Biobank: An Open Access Resource for Identifying the Causes of a
Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 12, 1-10 (2015).
Khera, A. V. et al. Polygenic Prediction of Weight and Obesity Trajectories from Birth to
Adulthood. Cell 177, 587-596.e9 (2019).

Peterson, R. E. et al. Genetic risk sum score comprised of common polygenic variation is
associated with body mass index. Hum. Genet. 129, 221-230 (2011).

Vassy, J. L. et al. Polygenic type 2 diabetes prediction at the limit of common variant

19



81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

detection. Diabetes 63, 2172-2182 (2014).

Udler, M. S., McCarthy, M. I., Florez, J. C. & Mahajan, A. Genetic Risk Scores for
Diabetes Diagnosis and Precision Medicine. Endocr. Rev. 40, 1500-1520 (2019).

Elliott, J. et al. Predictive Accuracy of a Polygenic Risk Score-Enhanced Prediction
Model vs a Clinical Risk Score for Coronary Artery Disease. JAMA - J. Am. Med. Assoc.
323, 636-645 (2020).

Emdin, C. A. et al. Genetic association of waist-to-hip ratio with cardiometabolic traits,
type 2 diabetes, and coronary heart disease. JAMA - J. Am. Med. Assoc. 317, 626634
(2017).

Li, M. J., Sham, P. C. & Wang, J. Genetic variant representation, annotation and
prioritization in the post-GWAS era. Cell Res. 22, 1505-1508 (2012).

Povysil, G. et al. Rare-variant collapsing analyses for complex traits: guidelines and
applications. Nat. Rev. Genet. 20, 747759 (2019).

Mars, N. J. et al. Polygenic and clinical risk scores and their impact on age at onset of
cardiometabolic diseases and common cancers. bioRxiv. (2019).

Pan, D. Z. et al. Integration of human adipocyte chromosomal interactions with adipose
gene expression prioritizes obesity-related genes from GWAS. Nat. Commun. 9, (2018).
Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep
learning-based sequence model. Nat. Methods 12, 931-934 (2015).

Imai, T., Jiang, M., Chambon, P. & Metzger, D. Impaired adipogenesis and lipolysis in the
mouse upon selective ablation of the retinoid X receptor o mediated by a tamoxifen-
inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes. Proc. Natl. Acad. Sci. U.
S. A. 98, 224-228 (2001).

Garske, K. M. et al. Reverse gene—environment interaction approach to identify variants
influencing body-mass index in humans. Nat. Metab. 1, 630-642 (2019).
Rask-Andersen, M., Karlsson, T., Ek, W. E. & Johansson, A. Genome-wide association
study of body fat distribution identifies adiposity loci and sex-specific genetic effects. Nat.
Commun. 10, (2019).

Schorr, M. et al. Sex differences in body composition and association with
cardiometabolic risk. Biol. Sex Differ. 9, 1-10 (2018).

20



Chapter 2

Integration of human adipocyte chromosomal interactions with adipose gene expression

prioritizes obesity-related genes from GWAS

21



natre
COMMUNICATIONS

Correcled: Author correction

ARTICLE

OPEN
Integration of human adipocyte chromosomal
interactions with adipose gene expression
prioritizes obesity-related genes from GWAS

David Z. Pan'2, Kristina M. Garske!, Marcus Alvarez!, Yash V. Bhagat!, James Boocock!, Elina Nikkola,
Zong Miao2, Chelsea K. Raulerson?, Rita M. Cantor!, Mete Civelek® 4, Craig A. Glastonbury®,

Kerrin S. Small® ©, Michael Boehnke’, Aldons J. Lusis', Janet S. Sinsheimer'®, Karen L. Mohlke?,
Markku Laakso®, Paivi Pajukanta"2'® & Arthur Ko 11°
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these phenctypes. We find that promoter-interacting elements in human adipocytes are
enriched for adipose-related transcription factor motifs, such as PPARG and CEBPB, and
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with published genome-wide association studies for BM| and BM|-related metabolic traits to
identify the genes that are under genetic cis regulation in human adipocytes via chremosomal
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study of 195 countries estimated that 2.2 billion people

were overweight or obese in 20151, Clinically, obesity is
diagnosed by a body mass index (BMI) greater than 30. While a
significant proportion of the phenotypic variation in BMI is
attributed to genetic variation (heritability of BMI ~0.4-0.7%),
understanding the mechanisms underlying this heritable com-
ponent has been challenging. The 97 loci identified in a genome-
wide association study (GWAS) for BMI in ~340,000 subjects
explain only 2.7% of the variance in BMI, and all HapMap phase
3 genetic variants (~1.5M single nucleotide polymorphisms
(SINPs)) were estimated to account for ~21% of the variance in
BMI in 16,275 unrelated individuals®. The causal variants and
genes are not immediately apparent from GWAS, hindering our
ability to understand the biological mechanisms by which
genetics contribute to obesity. To address this knowledge gap, we
integrate chromosomal interaction data from primary human
white adipocytes (HWA) with adipose gene expression and
clinical phenotype data (BMI, waist-hip ratio, fasting insulin, and
Matsuda index) to elucidate molecular pathways involved in
genetic regulation in cis.

Combining genotype and RNA-sequencing (RNA-seq) data
enables the detection of expression quantitative trait loci (eQTLs)
that regulate transcription of near-by genes (i.e., in ¢is). These cis-
eQTLs often reside in regulatory elements, including promoters,
enhancers, and super-enhancers. However, the mechanism by
which eis-eQTLs regulate their respective eGene(s) is seldom
established because identification of the true regulatory variants
among SNPs in tight linkage disequilibrium (LD) has proven
challenging®. Enhancers modulate target gene expression levels
via their interaction with promoters, and disruption or improper
looping of enhancer sites can contribute to disease risk*>. Pro-
moter Capture Hi=C (pCHi-C) enables detection of promoter
interactions at a higher resolution and at lower sequencing depth
than that required for Hi-C’ Incorporating a chromosomal
interaction map constructed from pCHi-C and cis-eQQTL data can
help elucidate the functional mechanisms by which the genetic
variants affect gene expression. By overlapping these looping eis-
eQTLs with trait-associated variants identified in independent,
large-scale GWAS, we can assess which GWAS variants could
affect expression of regional genes via chromosomal interactions.

To search for genes that are functionally important for adipose
tissue biology, we performed a cis-eQTL analysis using genome-
wide SNP data and adipose RN A-seq data from individuals of the
Finnish METabolic Syndrome In Men (METSIM) cohort. We
identified 42 genes, regulated by cis-eQQTLs that reside in regions
that physically interact with the promoters of genes. Adipose
expression of these 42 genes was robustly correlated with BMI,
and among them four genes, MAPZK5, LACTB, ORMDL3, and
ACADS, were regulated by SNPs (or their tight LD proxies)
previously identified in GWAS for BMI or a related metabolic
trait, located at the regulatory element-promoter interaction sites.
These data provide converging evidence for effects of looping
cis-eQQTL variants on gene expression associated with obesity and
related metabolic traits. Our results show that these integrative
genomics methods involving pCHi-C data in primary HWA can
identify regulatory circuits comprising both regulatory elements
and their target gene(s) that operate in a complex obesity-related
metabolic trait.

O besity is a serious health epidemic world-wide. A recent

Results

Characterization of the adipocyte chromosomal interactions.
Adipose tissue is highly heterogeneous, containing adipocytes,
preadipocytes, stem cells, and various immune cells. We per-
formed pCHi-C in primary HWA with the goal of identifying

2 NATURE COMMUNICA -'.-'.‘-|(20‘|8)9:‘|5'|2

physical interactions between adipose ¢is-eQTLs and target gene
promoters. We employed the pCHi-C protocol as described
previously”. Briefly, we fixed primary HWA to crosslink proteins
to DNA, and after digestion with the HindIll restriction endo-
nuclease, we performed in-nucleus ligation and biotinylated RNA
bait hybridization to pull down only those HindIlI fragments with
annotated gene promoters’, To detect the regions that interact
with the promater-containing HindIII fragments, we mapped the
reads to the genome, and assigned reads to HindlIl fragments to
allow for fragment-level resolution of those regions interacting
with the baited fragments containing gene promoters. The key
pCHi-C sequencing metrics are shown in Supplementary Table 1.

We first confirmed that the non-promoter regions in adipocyte
chromosomal interactions are enriched for enhancer (H3K4mel,
H3K4me3, and H3K27ac), repressor (H3K27me3, H3K9me3)
histone marks, and DNase 1 hypersensitive sites (DHSs)
(Supplementary Table 2). As there are no publicly available
DHS data for adipocytes or adipose tissue, we used the union of
DHSs in all cell types from ENCODE and Roadmap rather than
DHSs in a single, non-adipocyte cell type®. Intersecting the
adipocyte and previously published primary CD34 7 cell pCHi-C
data®, we found that 68.0% of adipocyte pCHi-C chromosomal
interactions were observed in adipocytes but not in CD34 cells.
In the following, we used the same public DHS data to focus on
open chromatin regions as they are more likely to bind
transcription factors (TFs) and, thus, be relevant for chromoso-
mal looping interactions within the interacting Hindlll
fragments.

We examined whether the DHSs are enriched for adipose-
related TF maotifs, using the Hypergeometric Optimization of
Motif EnRichment (HOMER) software” that calculates the
number of times a TF motif is seen in target and background
sequences. The proportion of times the TF motif is seen in the
target when compared to the background is then tested for
enrichment in the target sequences. We found that when
compared to DHSs within CD34% chromatin interactions, the
DHSs within the adipocyte chromatin interactions are enriched
for 26 of 332 TF motifs (FDR <5%) (Supplementary Table 3),
including CCAAT/enhancer binding protein beta (CEBPB,
p-value = 1.00 x 1071% and peroxisome proliferator-activated
receptor gamma (PPARG, p-value=0.01), both of which are
well-known key players in adipose biology'®. To address the
potential bias of using a different pCHi-C dataset as background,
we also performed HOMER analysis comparing the DHSs in
adipocyte interactions to DHSs in non-interacting, non-promoter
regions in the remainder of the genome. The results were similar,
and both CEBPE and PPARG were also enriched in the latter
analysis (CEBPB, p-value=1.00x10 %% PPARG, p-value=
1.00 x 107% complete enrichment results not shown). These
results suggest that the cell-type based pCHi-C interaction data
enable the detection of interactions important for that cell type
within a heterogeneous human tissue.

Chromosomal interactions explain expression heritability. To
investigate whether the variants residing within open chromatin
of chromosomal looping regions in adipocytes are enriched for
SNPs that contribute to the heritability of eis expression
regulation, we partitioned the heritability of cis regulation of
human adipose gene expression into 52 functional categories
using a modified partitioned LD Score regression method!!
(see Methods). The 52 functional categories are derived from 26
main annotations that include coding regions, untranslated
regions (UTRs), promoters, intronic regions, histone marks,
DNase | hypersensitivity sites (DHSs), predicted enhancers,
conserved regions, and other annotations'! (Supplementary
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Fig.1 Open chromatin sites (DH5s) within adipocyte promoter CHi-C chromosomal interactions show significant enrichment in cis expression. Enrichments
in cis expression with errar bars for different categories using LD score regression analysis (see Methods). For the horizontal axis labels, the value in
parentheses shows the percentage of SNPs cantained within the respective annotation category that contributed to the enrichment caleulation. Fer the

significance threshold after Bonferrani correclion above each bar,

indicates a p-value <0.05; **, a p-value < 0.001; and ***

a pvalue < 0.00010,

respeclively, The p-values were estimaled based on £ scores caleulated from the normal distribution. Error bars represent jackknife slandard errors around

the estimates of enrichment

Figure 1, Supplementary Tables 4-5). The partitioned LD Score
regression methed!! utilizes summary association statistics of all
variants on gene expression to estimate the degree to which
variants in different annotation categories explain the heritability
of ¢is and frans expression regulation while accounting for the LD
among functional annotations. To assess the enrichment of her-
itability mediated by the variants in the chromosomal interactions
detected by pCHi-C on a per-gene basis, we further modified the
LD score method, as described in detail in the Methods.
Importantly, these modifications did not change the 52 baseline
enrichments significantly when compared with the data obtained
using the unmodified version!! (Supplementary Figure 1,
Supplementary Tables 4-5). These analyses revealed that open
chromatin regions (i.e., DHSs) within the adipocyte chromosomal
interactions are enriched for sequences that contribute to herit-
ability of gene expression regulation in ¢is (Fig. 1, p-value < 0,002,
enrichment = 20.3 (SD+52), average proportion of SNPs=
0.23%). The variants residing within the open chromatin regions
within adipocyte chromosomal interactions explain 4.6% of the
heritability of adipose tissue gene expression in eis, despite only
accounting for 0.23% of the SNPs per cis gene region on average,
indicating the functionality of these SNPs at the DHSs of distal
interactions in regulating cis expression.

Identification of genes regulated by looping cis-eQTL SNPs. To
identify adipose-expressed genes regulated by SNPs (eGenes), we
performed a eis-eQTL analysis using 335 individuals from the
METSIM cohort with both genome-wide SNP data and adipose
RNA-seq data available (Fig. 2; Methods). Using the published
adipose cis-eQTL data and criteria for significance from GTEx'*
(see Methods), we found 487,679 cis-eQTLs for 4,650 eGenes in
the METSIM dataset and confirmed these same SNPs as
cis-eQQTLs by look-up in GTEx. 386,068 of the 487,679 (79.0%)
cis-eQQTL SNPs had the same target gene and direction of effect
in both cohorts (Supplementary Figure 2). Only the 386,068

NS (201881512
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cis-eQQTL SNPs that were replicated for effect direction and
target gene (Supplementary Table 1) in the GTEx adipose RNA-
seq data were used in our subsequent downstream analyses
(Supplementary Figure 2). Overall, 4,332 of 4,650 of cis-eQTL-
eGGene relationships (93.0%) were replicated using the published
adipose cis-eQTL data and criteria for significance from GTEx!'?
(see Methods). To restrict these adipose cis-eQTL SNPs to those
that likely function through transcription factor (TF) binding at
distal regulatory elements, we determined which of these eGene
promoters were invelved in looping interactions with the
cis-eQQTLs, assayed through pCHi-C in primary HWA (Fig. 2;
Methods). Of the 4,332 eGenes identified in our ¢is-eQTL ana-
lysis, 576 (13.4%), were involved in these looping interactions
(permutation p-value < 0.00001) (Fig. 2, Methods, Supplementary
Figure 2, and Supplementary Table 1).

We next determined the set of 576 looping eGenes with
expression levels that are correlated with BMI in METSIM
(Pearson correlation, adjusted p <1.15x 107 to correct for the
4,332 replicated eGenes identified in our cis-eQTL analysis). We
found 54 of 576 (9.40%) BMI-correlated eGenes with promoters
involved in looping interactions with their cis-eQTL SNP
(Supplementary Table 6). In our subsequent second replication
analysis, the expression levels of 42 out of 54 genes (replication
rate of 77.8%) were correlated with BMI in adipose RINA-seq data
from the TwinsUK cohort (n=720) with the same direction of
effect on BMI as in METSIM (Bonferroni adjusted p <0.001)
(Table 1, Supplementary Table 6). Another four of the 54 genes
were not available in the TwinsUK dataset. The effects sizes and
p-values obtained for BMI associations in TwinsUK and
METSIM, using a linear regression model in both, show
comparable results to those obtained using the Pearson correla-
tions (Table 1, Supplementary Table 6). These 42 BMI-correlated
genes are functionally enriched for four pathways with fatty acid
metabolism as a top ranking pathway (Supplementary Table 7)
based on KEGG pathway enrichment using WebGestalt'?
(Benjamini-Hochberg adjusted p <@.05); however, the small
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Fig. 2 Overview of the study design targeted to identify new genes for obesity and related metabaolic traits. A schematic illustrating the integration of

multi-omics data utilized in this study to elucidate genetics of obesity-related traits.

number of genes in these pathway analyses warrant verification in
future studies. Only these 42 replicated genes were further
investigated in our downstream analyses.

Adipocyte chromosomal interactions prioritize GWAS genes.
To investigate which of the 42 BMI-correlated eGenes are regu-
lated by GWAS variants previously identified for BMI and related
metabolic traits, we determined which interacting cis-eQTL var-
iants are GWAS variants (or their LD proxies, s 0.80), using p
< 5.00 % 1078 as a criterion to select variants. As the goal of the
current study was to dissect the molecular contribution of adipose
and adipocyte biology to traits that can influence the pathophy-
siology of obesity, we examined GWAS for BMI and the meta-
bolic traits that have previously been shown to exhibit co-
morbidities with obesity (e.g., serum lipids and type 2 diabetes) or
that are influenced by obesity or correlated with BMI (e.g.,
metabolites and WHR). We used all GWAS variants (p-value <
500 x 107%) identified in a previous metabolite GWAS of ~7000
individuals'?, lipid GWAS of ~180,000 individuals'”, an extensive
BMI GWAS study of ~340,000 individuals®, a sequencing-based
GWAS for type 2 diabetes!®, and a waist-hip-ratio (WHR)
adjusted for BMI GWAS of ~220,000 individuals!”. We found a
GWAS variant for BMI, regulating mitogen-activated protein
kinase kinase 5 (MAP2K5); a GWAS variant for high-density
lipoprotein cholesterol (HDL-C), regulating orosomucoid like
sphingolipid biosynthesis regulator 3 (ORMDL3); and two GWAS
variants for serum metabolites (succinylcarnitine and butyr-
ylearnitine), regulating lactamase beta (LACTB) and acyl-CoA
dehydrogenase, C-2 To C-3 short chain (ACADS), among the 42
genes (Fig. 3a, b; Supplementary Figure 3a-f), with the looping
interactions spanning 287 kb, 16 kb, 151 kb, and 183 kb, respec-
tively. We found that the interacting cis-eQTL-containing HindlIl
fragments for LACTB and MAP2K5 are located within the pro-
moter and intron of other genes. Furthermore, using the inte-
grated pCHi-C and cis-eQTL data, we found that the SNPs in
these regulatory Hindlll fragments regulate genes that are not
their nearest gene for 3 of the 4 BMI-correlated eGenes (Fig. 3a, b,
Supplementary Figure 3a-f).

The looping BMI GWAS SNPs regulate MAP2K5. For
MAPZKS, the reported BMI GWAS SNP itsell is not located
within the regulatory, eis-eQTL-containing HindIIl fragment
involved in the looping interaction; however, SNPs in tight LD
with the GWAS SNP (using a criterion of r* > 0.80) are in the
regulatory Hindlll fragment that is interacting with the target
gene promoter (Fig. 3b). The regulatory Hindlll fragment con-
tains 16 cis-eQQTL SNPs that are LD proxies for the BMI GWAS
SNP? (1516951275), which has a total of 62 LD proxies in the
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METSIM cohort. To prioritize a candidate functional variant
within these 16 SNPs within the HindlIll fragment, we first
examined the predicted TF motifs that may be affected by each
SNP using the data curated from ChIP-seq by Kheradpour and
Kellis'®. We found that only rs4776984, which is in almost perfect
LD with the original BMI GWAS variant rs16951275 (r* = 0.98),
showed a predicted increase in binding of CTCF, which is a TF
known to mediate chromosomal interactions (Fig. 4a).

We also used the deep learning-based sequence analyzer
(L'r'ee|:lS].".J‘\J1gl to examine the allelic effect on protein binding of
rs4776984 and the 15 other looping cis-eQTLs of MAP2KS, Of
these 16 looping ¢is-eQTLs, six were potentially functional and
of these, two variants passed the functional significance score of
<0.05 using DeepSEA. Of the two, our candidate functional
eQTL SNP, rs4776984, resulted in the most significant
functional score (2.36 x 107%) (Supplementary Table 8) and
was the only variant passing a functional significance score of
<0.01 among the 16 variants. Thus, the DeepSEA result further
supports the differential TF binding at the variant site
rsd776984 among all possible looping cis-eQTLs at the
MAP2K5 locus (Supplementary Table 8). The looping cis-
eQTL site also shows a ChlIP-seq peak for the histone mark
H3K4mel in ENCODE adipose nuclei ChIP-seq data; however,
notably it also shows the presence of the histone marks
H3K27me3 and H3K9me3 (Fig. 3b), two marks known to be
associated with transcriptional repression. Furthermore, the
gene expression of MAP2K5 is negatively correlated with BMI
(p-value = 7.83x107°%). These data implicate MAP2KS as a
gene regulated by the BMI GWAS signal via a repressive
chromosomal interaction.

To functionally assess whether there is differential allele-
specific binding of proteins at the candidate functional
MAP2KS eQTL, rsd776984, we performed electrophoretic
mobility shift assays (EMSAs) using nuclear protein from
primary HW A. The results show reduced protein binding of the
reference allele when compared to the alternate allele of
1s4776984, consistently in three independent experiments
(Fig. 4b, Supplementary Figure 4), in line with the predicted
disruption in protein binding for CTCF'® (Fig. 4a). We
performed the supershift experiment using the CTCF antibody
and adipocyte nuclear extract, but did not observe a supershift
in any of the three replicated experiments (Supplementary
Figure 5). We repeated the supershift experiment using a
different CTCF antibody (EMD Millipore 07-729), which
resulted in the same negative finding (Supplementary Figure 6).
To further verify the negative supershift result, we also directly
tested the CTCF protein for allele-specific binding at rs4776984
using EMSA in 3 replicate experiments, and did not find
evidence of sole CTCF protein binding (Supplementary
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Table 1 Thirteen representative eGenes (9 most significant genes and 4 GWAS loci) that correlate with BMI in METSIM and
TwinsUK (for the full data on all 54 genes, see Supplementary Table 6)

Pearson Linear regression
Rank®  Gene Chr'  METSIMS METSIMI TwinsUK®

Effect size (r) p-value Effect size (f) SE p-value Effect size (f) SE p-value
1 ADHI8 4 -0.45 7.40%1071" 021 002 168x10720  _058 0.03 4.47x10"7
2 ORMDIZ® 17 —0.45 857x10""% 016 0.02 206x10720 058 003 26610779
3 AKRIC3 0 033 478x10719 013 0.02 2e5x107" p4e 0.03 518 %1054
4 CMTM3 16 041 432x107"% 0.087 oo 384x10°"7 050 0.03 6,64 %1072
5 LPINT 2 -038 149x%10712  —014 0.02 227%10°1%  —0.47 0.03 238x107%4
6 RINFIS7 7 —029 516%107%  —0096 0.02 587x10"° 047 003 886 %1072
7 MYOF 0 032 107%1077 0086 o0 737%10"" 046 0.03 258 <1040
S NAA4D n 028 1811077 0052 0008 267x107% D4 003 400x=10~40
] TMEMI65 4 033 245x%10°°% 0045 0.007 184x10710 045 0.03 352x10~37
10 REFL n 027 102x107% 0035 0006 184x1077 043 003 567 x10°37
28 ACADS® 12 —037 2911077 —0.085 0.01 72x107% _024 003 ee5x107"7
3 LACTED 15 030 167%1078 0069 oo 140%107% 032 004  494x107'8
34 MAR2KSE 15 025 783%10°% 0039 oo 180 % 10-° o 003 38x10710

b GWAS pene

These

® Effe:

omitted. These models were compared using an F-test (see Methods)
Che is an ablreviation for chromosome

wodels were compared using an F-test (see Methads)

 Thirteen representative eGenes, including 4 GWAS loci, ranked by their p-value in the TwinsUK cohort dataset

© Effect size (r, Pearson rha) and p-value caculated from Pearson correlation between gene expression and BMI (see Methads)
9 Effect size, standard ervor {SE), and p-value calculated using a linear regression medel with BAI and age, age® and the 14 tachnical factors as covariates when compared to a null model without BML

b, standard erroe (SE), and pvalue calculated from linear mixed effects model, A full modal induding BMI was compared to 2 null model in which the same modal was fitted, but with 831

Figure 7). However, a supershift experiment may remain
negative even in the presence of true TF binding if a
complex instead of a single TF alone is required for the TF
binding?®.

Interacting GWAS SNPs implicate three other genes. For
ORMDIL3, there is a single lipid GWAS SNP, 158076131, in the
Hindlll fragment, which is also the only looping ¢is-¢QTL SNP
interacting with the ORMDL3 promoter. Variant rs8076131 lies
in a region with enhancer histone marks H3K4mel and H3K27ac
in adipose nuclei (Supplementary Figure 3a,b). The expression of
ORMDIL3 is negatively correlated with BMI (p =857 % 10 1%), in
line with its known role as a negative regulator of sphingolipids
that are positively correlated with obesity*!*%,

The regulatory HindlIl fragment that loops with the LACTB
promoter contains two reported metabolite GWAS SNPs in tight
LD with each other (rs1017546 and rs3784671, 2 = 0.97), both
sharing 35 LD proxies (r* > 0.80) in the METSIM cohort. One of
the two index GWAS SNPs within the Hindlll fragment,
rs3784671, resides in a region enriched for the enhancer histone
marks H3K4mel and H3K27ac in adipose nuclei (Supplementary
Figure 3c, d). This metabolite GWAS SNP, rs3784671, is
associated with succinylcarnitine levels, which have previously
been shown to be positively correlated with BMI in KORA (p =
10 % 107'%) and TwinsUK (p=5.3x107)** Accordingly, the
expression of LACTB is positively correlated with BMI (p=
1.19 % 107%), Notably, LACTE has been implicated as a causal
gene for obesity in mice*®, further supporting our integrated
human data that implicates LACTE involvement in an obesity-
related metabolic trait.

The most significant metabolite GWAS SNP for ACADS,
rsl0774569, is not located within the regulatory, cis-eQTL-
containing Hindlll fragment. Instead, a single cis-eQTL SNP
rs12310161, in perfect LD (*=10) with the GWAS SNP
rs10774569, is the only cis-eQTL SNP located within the
regulatory Hindlll fragment, looping with the fragment
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containing the promoter of ACADS. This looping cis-eQTL
SNP also resides in a region enriched for enhancer histone marks
H3K4mel and H3K27ac in adipose nuclei (Supplementary
Figure 3¢, [). The expression of ACADS has a negative correlation
with BMI (p=2.91x 10712), and the alternate allele is associated
with an increase in expression of ACADS, suggesting that this
allele has a protective effect against obesity.

Finally, we repeated the pCHi-C experiments in the same
HWA cell line in a separate experiment with two replicates and
found the same GWAS SNP interactions as in the first
experiment (Supplementary Table 9). This validation data thus
provides further support for our conclusions and the robustness
of interactions we report.

Discussion

BMI is a highly complex trait caused by the poorly characterized
interplay between genetic and environmental factors with upper
heritability estimates reaching 70%*. Understanding how
genome-wide signals with small effect sizes contribute to BMI on
a molecular level has proven to be difficult. Delineating the
underlying biological mechanisms of these signals is crucial to
better understand the development of obesity and its
concomitant cardiometabolic disorders. In this study, we
performed promoter Capture Hi-C (pCHi-C) in primary human
white adipocytes (HWA) to identify BMlI-correlated adipose-
expressed genes that are under genetic regulation in cis by
variants that physically interact with gene promoters. Through
our method of integrating GWAS, cis-eQTL analyses, chromo-
somal interactions, and robust replication of the data from GTEx
and TwinsUK, we were able to identify 42 candidate genes for
future obesity research.

In the absence of adipocyte DHS information, we used DHS
data from all tissues in the ENCODE and Roadmap Epigenomics
project to label open chromatin regions within the adipocyte
chromosomal interactions®. Despite this methodological com-
promise, our results demonstrate that variants in these regions
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Fig. 3 Promoter Capture Hi-C enables refinement of the BMI GWAS locus that colocalizes with ¢is-eQTLs interacting with the target gene promoter of
MAPZKS. Genomic landscape of the BMI locus, MAPZKS (panels a, b}, modified from the WashlU Genome Browser to show the histone mark calls from
ChlP-seq data; gene transcripts; promoter and eQTL Hindlll fragments that interact in primary human white adipocytes (HWAJ; and GWAS SNPs (A, the rs
number indicated in the magnified box) or their LD proxies (B, r2 > 0.8) located in the interacting Hindlll fragment. The vertical yellow band highlights the
cis-eQTL variant (the rs number is indicated in the magnified box). a Genemic landscape containing MAFP2KS and the interacting cis-eQTL variant and

corresponding BMI GWAS SNP. b Magnification of the boxed region in (a)

explain a significant portion (4.6%) of the heritability of
cis-regulated expression in human subcutaneous adipose tissue.
Even though the total percentage of variants within the inter-
section of open chromatin regions and adipocyte chromosomal
looping sites is small (0.23%), the enrichment implies that these
SNPs are functionally relevant for adipocyte biology and gene
regulation in cis.

The enrichment of TF binding motifs for CEBPE and PPARG
in chromosomal interactions found in adipocyte but not in CD34
t cells confirms that the regulatory circuits identified here are
relevant to adipose biology. These two TFs have previously been
shown to occupy shared regulatory sites. Apart from being an
enhancer binding protein, which is in concordance with its pre-
sence at chromosomal interaction sites, CEBPB has been
demonstrated to precede the binding of PPARG at many reg-
ulatory sites”, suggesting that CEBPB primes the regulatory
regions for the binding of the adipose master regulator PPARG.

One of our looping cis-¢QTL variants is a tight LD proxy (r* =
0.98) for a regional BMI lead GWAS SNP (rs16951275)%. Typical
fine mapping techniques such as overlaying histone marks,
transcription factor motif scans, or eQTL searches do not
necessarily reveal the mechanism through which a SNF might
function, We refined the GWAS signal from 64 to 16 LD SNPs
within a HindlIl fragment that interacts with the MAP2KS pro-
moter by overlaying cis-eQTLs, the promoter-enhancer interac-
tion map, and the expression-BMI correlation. The top candidate,
rs4776984, increased HWA nuclear protein binding in an allele-
specific way in our EMSA experiment and lies within the
repressor histone marks H3K27me3 and H3K9me3 in ENCODE
adipose nuclei data. Recent studies have suggested that repressor
elements function through looping interactions in a similar
manner to enhancer elements®*%, which would align well with the
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negative correlation between expression of MAP2K5 and BMI
level.

The region at the MAP2K5 locus, exhibiting increased binding
for the alternate allele for rs4776984, contains predicted motifs
for the looping interaction protein, CTCF, and other TFs (Sup-
plementary Table 8). We did not find evidence of CTCF binding
at rs4776984 in our supershift and protein binding EMSA
experiments. However, a supershift experiment may remain
negative even in the presence of true TF binding if a complex
instead of a single TF alone is required for the TF binding®”.
Furthermore, using DeepSEA analysis, we confirmed the poten-
tial for differential TF binding at the variant site rs4776984
among all possible looping cis-eQTLs at the MAP2K5 locus.
Noteworthy, since DeepSEA identified multiple TFs as potential
binders of rs4776984 site in an allele-specific way, future studies
testing a larger set of TFs are warranted to identify the actual TF
that binds this site. We postulate that TF binding at this inter-
action site would lead to a repressive looping mechanism, in this
case altering MAP2KS5 expression in adipocytes.

MAP2KS is a member of the ERK5 MAP kinase signaling
cascade, and the importance of ERK5 signaling in adipose was
previously demonstrated in Erk5 knock-out mice, which exhibit
increased  adiposity”’. This suggests that changes in
ERK5 signaling in adipocytes could be relevant for human
obesity. MAP2KS5 is a strong and specific activator of ERKS5 in the
ERKS5 MAP kinase signaling cascade®®, supporting further study
of MAP2K5 in connection with increased adiposity.

The intronic ORMDL3 GW AS variant 158076131 is associated
with high-density lipoprotein cholesterol (HDL-C)'* and is the
only ¢is-eQQTL SNP in the Hindlll fragment that interacts with the
ORMDL3 promoter in our adipocyte pCHi-C data. ORMDL3 is a
negative regulator of the synthesis of sphingolipids that are

| DO 10.1038/541467-018-03554-9 | wawwnature.com/naturecommunications

27



ARTICLE

a
CTCF : : i
L8 e G&c g
300 L o . .
e GaeCaCCo
hg19
reference  3'— A CCTC ] ACGA-F%
alternate
b rsd 776984 (MAPZKS)
d LR
HWA nuclear extract + + = & ok =
Labeled proba  + + + + o+ %
Unlabeled probe  + - - FORN g

Fig. 4 Predicted TF motifs and electrophoretic mability shift assay (EM3A)
at the rsd 776584 site indicate allele-specific binding. a Predicted TF motifs
for CTCF and p300, as well as the hgl9 reference genome sequence b
Biotinylated (labeled probe) 31-bp cligonuclectide complexes with #15 bp
flanking the reference or alternate allele for variant rs4776%84 were
incubated with nuclear protein extracted from primary HWA and resolved
on a 6% polyacrylamide gel. Competitor assays were performed by
incubaling the reaction with ®100 excess of unlabeled (ne biolin)
oligonucleclide complexes with identical sequence. Arrow dencles specific
binding of HWA nuclear protein to reference (left) and alternate (right)
allele

produced in response to obesity and related metabolic traits, such
as inflammation and insulin resistance’'*?, and that interfere
with important signaling pathways associated with these traits®%.
Corroborating this, we show that ORMDL3 expression is nega-
tively correlated with BMI, and the ¢is-eQTL and risk variant
158076131 decreases ORMDL3 expression, potentially through a
change in the chromosomal interaction between the enhancer
and promoter of ORMIDL3, as has been shown for this enhancer
site previously*”.

We found that the metabolite GWAS SNP, rs3784671, is a
looping cis-eQTL variant associated with the expression levels of
the LACTB gene. Although this variant is a ¢is-eQTL for LACTB
both in our study and the GTEx adipose cohort, it lies within the
promoter for the APHIB gene, for which it is not a ¢is-eQTL in
our study. Through overlap of adipose cis-eQTL data and adi-
pocyte pCHi-C data, we established that 153784671 does not act
through the adjacent APHIB gene and filtered the 35 cis-eQTL
variants for LACTB down to a single variant, 1s3784671. This
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variant is negatively associated with the levels of succinylearni-
ting, a metabolite positively correlated with BMI in two inde-
pendent cohorts, KORA and TwinsUK, previously?®.
Succinylcarnitine is a molecule in the butanoate metabolism
pathway; butanoate has been implicated in anti-inflammation,
protection against obesity, and an increase in leptin levels®.
Furthermore, as the succinylearnitine GWAS variant rs3784671 is
an eQTL for LACTE, associated with an increase in LACTE
expression, we postulate that LACTE expression increases succi-
nylcarnitine. This is in agreement with a mouse study that shows
that butanoate metabolism is reduced in Lactb transgenic mice’.
Notably, support for LACTE as a causal gene for obesity derives
from functional studies using transgenic overexpression of Lacth
in mice, resulting in an increase in the fat-mass-to-lean-mass
ratio®*1, Although the function of LACTR in adipose has not
been fully elucidated, these studies suggest that a reduction in
LACTE function and, in turn, an increase in butanoate metabo-
lism and decrease of succinylearnitine levels are beneficial for
obesity treatment. Further molecular studies at the protein level
are, however, required to determine the function of ORMDL3 and
LACTB in connection with obesity.

We identified a perfect LD proxy for a metabolite GWAS
SNP that lies within a HindlIl fragment that regulates the
ACADS gene and interacts with its promoter. ACADS is a
mitochondrial protein that catalyzes the first step of the fatty
acid beta-oxidation pathway. Proper mitochondrial function is
imperative for adipose function and energy homeostasis. In
addition to the METSIM and TwinsUK adipose RNA-seq data
sets used in our study, a previous study identified ACADS when
systematically searching for genes over and under-expressed in
obese versus lean adipose tissue?, Furthermore, all 3 datasets
show a consistent negative correlation between ACADS
expression and BMI, in support of its well-established
mitochondrial function. The interacting cis-eQTL and GWAS
SNP, 1512310161, is located within enhancer histone marks in
adipose nuclei and in the HepG2 liver cell line, with the
alternate allele exhibiting a positive effect on gene expression,
in line with it being a protective allele. Interestingly, this variant
falls within a TEA Domain Transcription Factor 4 (TEAD4)
ChlIP-seq peak in the HepG2 cells. TEAD4 expression is
regulated by Peroxisome Proliferator Activated Receptor alpha
(PPARa)*, the major regulator of beta-oxidation of fatty acid
pathways in liver and brown adipose tissue. Taken together,
these results suggest that the interacting eis-eQTL and
metabolite GWAS SNP, rs12310161, functions within an
enhancer to increase ACADS expression and mitochondrial
fatty acid beta-oxidation in adipose.

As the pCHi-C experiments were performed in primary HWA,
we are able to focus on physical chromosomal interactions
directly in human adipocytes among all cell types present in
adipose tissue. Adipocytes perform central adipese functions,
including lipogenesis and lipolysis. Further investigation of the
adipose genes, which are under cis genetic regulation via chro-
mosomal looping to the promoters and are correlated with BMI,
is likely to provide much needed insight into cellular processes
contributing to obesity. Our data provide 38 new candidate genes,
including some known functionally relevant genes for adiposity
such as LPINIP* and AKRIC3™, that have so far not been
highlighted by GWAS for BMI or obesity-related metabolic traits.
We postulate that identification of some of these 38 candidates as
obesity GWAS genes may require much larger GWA studies,
while others may represent genes responding to obesity in human
adipose tissue. Our analysis of the looping cis-eQTLs for other
GWAS traits correlated with BMI, such as serum metabolites and
lipids, led to the identification three additional obesity-related
metabolic GWAS genes. We recognize that brain and other
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tissues likely account for some of the BMI GWAS signals and that
GWAS variants may act via other mechanisms, such as trans
regulation and alternative splicing, that warrant future investi-
gation. Although the four looping cis-eQTL variants identified at
GWAS loci in our study represent either the GWAS tag SNPs (as
is the case at the ORMDL3 and LACTB loci) or I.bey are in perfect
or almost perfect LD with the GWAS SNP (r*=1.0 at the
ACADS locus and #* = 098 at the MAP2K5 locus), we recognize
that the looping variants may not always be the strongest eis-
eQTL SNPs at these loci and, thus, additional fine mapping is
needed to fully elucidate all functional regulatory cis-eQTL
variants.

The current study uses the integration of multi-level genomic
and functional data to enhance the understanding of genome-
wide molecular signals underlying obesity. GWAS signals often
fall within non-coding regulatory regions of the genome, and
the affected gene(s) often remain unclear. Similarly, the local
LD structure frequently hinders the identification and func-
tional characterization of the actual eQTL SNP even though the
eQTL target gene is known. Through the integration of multi-
layer genomics data in a functionally relevant human cell type
and tissue and replication in the GTEx and TwinsUK cohorts,
we show that the DHSs within the interacting chromesomal
regions are enriched for tissue-specific TF motifs and explain a
significant proportion of the heritability of gene expression in
cis. Furthermore, we identified LACTRE, ACADS, ORMDL3, and
MAP2KS as obesity-related genes in humans and provide a set
of 38 non-GWAS candidate genes for future studies in obesity.

Methods

Cell lines and culture reagents. We obtained and cultured the primary human
white preadipocyte (ITWP) cells as recommended by PromoeCell (PromoCell C
12731, lot 395Z024} for preadipocyte growth and differentiation into adipocytes.
Cell media (PromaCell) was supplemented with 1% penicillin-streptomycin. We
maintained the cells at 37 °C in a humidified atmosphere at 5% CO,. We serum
starved the primary human white adipocytes (HWA) for 16 b using 0.5% fetal call
serum (FCS) in supplemented adipocyte basal medium (PromoCell), prior to
treatment with 0.23% fatty acid free bovine serum albumin (BSA, Sigma Aldrich
ABB06) in media containing 0.5% FCS for 24 h prior to fxation.

Adipocyte fixation and nuclei collection. We rinsed 10 M adherent HWA with
serum-free media prior to fixation. We fixed the HWA directly in culture plates
with 2% formaldehyde (EMD Millipore 344198) in serum-free adipocyte nutrition
media (PromoCell). We incubated cells in fixation medinm with rocking at room
temperature for 1 min, and then quenched with 1 M ice-cold glycine for a final
concentration of 125 mM. After 5 min of rocking incubation al room temperature,
we rinsed fixed cells twice with ice-cold PBS. Then we incubated the cells with
recking on ice with ice-cold permeabilization buffer {10 mM Tris-HCl pH &, 10
mM NaCl, 0.2% Igepal CA-630, Complete EDTA-free protease inhibitor cocktail
[Roche]* for 30 min. We scraped cells from the culture plate and centrifuged at
2500 x g for 5 min at 4 °C to pellet nuclei. The supernatant was discarded and
nuclei were flash frozen in liquid nitrogen and put at —80°C.

Hi-C library preparation. We prepared the Hi-C library as described in Rao et al”
with modifications. We processed 10 M HWA nuclei in 5 M cell aliquots, dosely
following Rao et al” protacol L1 except we digested chromatin with 400U of
Hindlll (New England Biolabs R3104) at 37 °C overnight with shaking (950 rpm).
After digestion, we pelleted nuclei with centrifugation at 2500 x g for 5 min at 4 °C.
We then resuspended nuclei in 265 pl 1 NEBuffer 2 and removed 10% of the cells
and kept on ice for a 3 C control®. We followed Rao et al.” protocol La.1 to end-£ll
and mark with biotin, perform in-nuclevs ligation, degrade protein, and perform
ethanol precipitation and purification, except we used biotin-14-dCTP {Invitrogen
19518-018) to incorporate biotin during the end-flling step. After quality control
to examine Hi-C marking and ligation efficiency, we sheared 5 pg of DNA to
250-550 bp using the Covaris M220 instrument. We performed double size-
selection using Agencourt AMPure XP beads (Beckman Coulter AG3881) as
described in Rao et al.” protocel Lal.

We immobilized the fragments containing biotin using DYNAL™ MyOne™
Dynabeads™ Streptavidin T1 {Invitrogen 65601) beads following Rao et al.”
protocol La.l. After end-repair and attachment of dATP, we ligated [llumina
paired-end adaptors to the bead-bound library following the Tect™ T user
manual for [llwmina Paired-End Multiplexed Sequencing {Agilent Technologies).
After washing, we resuspended the Ii-C library in 20 pl of 1x Tris buffer and
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subsequently removed the Streptavidin beads from the DNA by heating at 98 °C for
10 min. We then amplified the adaptor-ligated library using 8 PCR cycles and
purified using Agencourt AMPure XP beads, following the SureSelect™ user

manual.

Capiure Hi-C. The RMA baits were designed in Mifsud et al? for capturing Hindlll

I & gene {Dr. Cameron Osborne kindly shared the
exact design). As dt‘srnh(‘d in Mifsud et al.f, 120-mer RNA baits were designed to
tnrget both ends of Hindlll fragments that contam annotated gene promoters

of protein-coding, noncoding, antisense, snRNA, miRNA and

snn'RNA Immrnpts) The bait sequence was deemed valid if GC content ranged
from 25 to 65%, contained <3 consecutive Ns, and was within 330 bp of Hand11I
fragment ends. A total of 550 ng of the Hi-C library was hybridized to the bioti-
nylated RNA baits, captured with DYNAL™ MyOne™ Dynabeads™ Streptavidin T1
beads, and amplified in a post-capture PCR to add indexes, using 12 PCR cycles.
The library was sequenced on the lumina HiSeq 4000 platform.

Capture Hi-C data processing and interaction calling. To ensure all downstream
analysis was comparable, we first reduced the number of sequencing reads to match
the number used in Mifsud et 2l ® analysis of their CHi-C data. We next processed
the sequencing reads with the Hi-C User Pipeline { HiCUP) software™, aligning
reads to the human reference genome {GRCh37/hg19) and using all HICUP default
parameters. We called significant chromosomal interactions with the Capture Hi-C
Analysis of Genome Organization (CHICAGO) software®, using default para
meters, including the threshold of 5 for calling significant interactions. Briefly, the
background is estimated by borrowing information across interactions on two
separate components of the data: the interactions with baited fragments in the
surrounding genomic region are used to model Brownian collisions, which are
distance-dependent interactions, and interchromosomal interactions are used to
model technical noise. CHICAGO then employs a weighted p-value based on the

expected number of interactions at a range of distances™,

Adipocyte nuclear protein extraction. Nuclear protein was extracted from adi-
pocytes after centrifugation of cells at 200 x g for 5 min using a nuclear protein
extraction kit as recommended {Active Motif 40010}, The quantity of protein
extracted was measured with BCA protein assay kit (Pierce 23227).

Electrophoretic mobility shift assay. Oligonucleotide probes {15 bp flanking SNP
site for reference or alternate allele) (Supplementary Table 10) with a biotin tag at
the 5’ end of the sequence {Integrated DNA Technologies) were incubated with
HWA nuclear protein and the working reagent from the Gelshift Chemilumines-
cent EMSA kit {Active Motif 37341). For competitor assays, an unlabeled probe of
the same sequence was added to the reaction mixture at 100 x excess. The reaction
was incubated for 30 min at room temperature, and then loaded on a 6% retar-
dation gel (ThermoFisher Scientific EC6365B0X) that was run in 0.5 x TBE buffer.
The contents of the gel were transferred to a nylon membrane, and visvalized with
the chemi-luminescent reagent as recommended. Similarly, we performed the
EMSAs with 1 pg purified CTCF protein (Origene TP720882). Supershift assays
were performed with 1 pg anti-CTCF antibodies {(Santa Cruz sc-15914 and EMD
Millipore 07-729) that were incubated on ice with nudear protein from HWA for
30 min prior to addition of oligonucleotide probes and rmun on gel.

Study cohort. The study sample consisted of a subset of the participants of the
Finnish Metabolic andIUL[lt in Men {METSIM; n = 10,197) cobiort, described in
detail previously*®#!, The study was approved by the local ethics committee
{Research Ethics Committee, Hespital Restrict of MNorthern Save) and all par
ticipants gave 2 written informed consent. The METSIM participants are Finnish
muales recroited at the University of Eastern Finland and Kuopio University
Hospital, Kuopio, Finland. The median age of the METSIM participants is 57
years (range: 45-74 years). The biochemical lipid, glucose, and other clinical and
metabolic phenotypes were measured, as described previously*®#!, A random
subset of the METSIM men underwent a subcutaneous abdominal adipose
needle biopsy, with 335 unrelated individuals (IBD sharing estimated as <0.2
using a genetic relationship matrix calculated in PLIN’K"ZJ analyzed here using
RNA-seq.

Identification of as-eQTL SNPs. We processed the METSIM RNA-seq dataset
similarly as described in Rodriguez et al.*®, Briefly, for the METSIM RNA-seq
dataset, we isolated total RNA from abdominal subcutaneous adipose needle biopsy
using the Qiagen miRNeasy kit Polyadenylated mRNA was prepared using the
Mlumina TruSeq RNA Sample Preparation Kit v2 and sequenced using [lumina
HiSeq 2000 platiorm generating paired-end, 50-bp reads. We used STAR™ to align
the reads to the hgl? reference genome, and assembled transcripts using Cufflinks
v2.21%. We filtered genes for those with expression of FPKM > 0 in more than
20% of the samples. Additional details of this dataset have been previously
described in Rodrignez et al** We inverse-normal transformed the FPKMs and
adjusted for hidden confounding factors using PEER* by removing 22 PEER
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factors based on a cis-eQTL analysis on chromosome 20 and choosing an optimal
number of PEER factors without a loss of statistical power.

To decrease computation time, we prephased the METSIM genotype data,
produced vsing the Dlumina HumanOmniExpress BeadChip, by employing
SHAPEIT2 with the phase 1 version 3 reference panel of the 1000 Genomes
Project. We performed imputations with the same reference panel and IMPUTE2%®
with 2 cosmopolitan imputation approach, which included all populations from the
1000 Genomes Project, to ensure a high accuracy and maximize the number of
imputed SNPs. Imputed data were filtered using the quality control inclusion
criteria of info =0.8, MAF =5%, and Hardy-Weinberg equilibrium (HWE) g
0.00001. The cis-eQTL analysis was performed using Matrix-eQTL*. We classified
the variants as in s if they were within 1 Mb of either end of a gene. The first three
genetic principal components were included as covariates in the cis-eQTL analysis
to account for population stratification.

of cis-eQTL analysis in GTEx. To ensure robustness of the results, we
filtered the cis-eQTL SNPs and their target genes detected in the METSIM cohort
50 that both the cis-e(}TL SNP and its predicted target gene were replicated in the
cis-el)TL data by the GTEx Consortium {n = 277) for subcutaneous adipose tissue,
filtered using their permutation test for significance, which vsed the adaptive
permutation scheme in FastQTL* and a penmutation test p-value threshold equal
to the empirical p-value of the gene closest to the FDR 5% threshold, as reported by
GTEx'?, Only replicated adipose cis-e(Q)TLs and their target genes were used in our
downstream analyses.

Heritability of cis expression in chromosomal interactions. To investigate the
functional importance of open chromatin regions (i.e., DHSs) within chromosomal
interactions in adipocyles to heritability of cis expression, we used LD-score
regression' !, More specifically, we generated an annotation for each region within
1 Mb of the TS5 of every gene with at least 1 significant promoter interaction. Per
gene, this annotation consists of marking the variants within a distal fragment
within 1 MB of the TSS that interact with the fragment containing the | ter of
the gene. We further refined these annotations to the open chromatin regions
available for TF binding. Accordingly, we only marked those variants located in
regions identified in the union of DNase [ hypersensitivity sites {DHSs) from all
tissues in the ENCODE and Roadmap Epigenomics project™. Since these chro-
mosomal interaction annotations change on a per-gene basis, we could not use the
genome-wide overlapping matrix in the original software, which treats the anno-
tations as fixed genome-wide. [n our analyses, we generated an average overlapping
matrix aggregated across all the regions. Importantly, we tested that this weighted
overlap matrix does not qualitatively change the overall enrichment of heritability
of gene expression for fixed annotations, such as coding regions {Supplementary
PFigure 1). These changes amount to altering equations 7 and & from Liu et al.!! as
follows (Equation 1 and 2).

Equation 1: Modified equation & from Liu et al.!! vsing a weighted overlap
matrix instead of the genome-wide average.

(C T e
Prope) = _niu = @
& hltotal) 30 TEMe

Where M = Zm
e

In the equation above, C is a given annotation category; pm]‘))i:{(".) is the
propertion of heritability for a given category; 7. is the regression coefficient for the
category; M is the average overlap matrix for each local region:M, is the overlap
matrix for each gene in the local region; and NSNP, is the number of SNPs in each
local region.

Equation 2: Modified equation 9 from Liu et al."" using the average proportion
of SNPs instead of the genome-wide average.

o )
enrichment(C) = P_Pf,&
ProPe. ()

Where M = o _M;
were Zm
geee i

In the equation above, the variables are as in Equation 1, and prop-SNPs(M) is

the proportion of SNPs in the overlap matrix for a given category.

Transcription factor motif enrichment in adipocytes. We used Hypergeometric
Optimization of Motif EnRichment {HOMER, v4.9) to investigate the enrichment
of known TFs in the open chromatin regions {i.e, DISs} within chromosomal

interactions in adipocytes®. As input data, we used chromosomal interactions in

adipocytes that interacted with a promoter fragment intersected with the union of
all DHSs from ENCODE and Epigenomics Roadmap. We chose to use the DHSs in
all cell types since there are no publicly available DHS data in adipocytes or
adipose. Furthermore, since we were interested in the TF enrichments in adipo-
cytes, we used CD34™ chromosomal interactions intersected with the union of all
DHSs as the background input file®. Any regions that were shared between the
C034% and adipocyte datasets were not considered in this analysis, We censidered
significant any TFs that were enriched in the DHSs within chromosomal interac-
tions in adipocytes at an FOR of 5%. To ensure our background input file was not
biasing the results, we also performed the same analysis with all DHSs not found in
adipocyte chromosomal interactions as the background input.

We also assessed predicted differential TF binding using the tool deep
learning-based sequence analyzer {DeepSEAYY, which assesses differential histone
modification, TF binding, and DHS profiles using a deep learning-based
algerithmic appreach and gives a functional significance score at the single

nuclentide resolution.

Overlap of cis-eQTL SNPs and chromosomal interactions. To investigate
functional eis-eQTL SNPs, we overlapped the imputed ¢is-eQTL SNPs and their
target genes with Capture Hi-C chromosomal interactions by first overlapping the
position other end of the looping interaction with the location of the cis-eQTL
SNP. These were subsequently designated as regulatory element eis-eQTL SNPs.
Simultaneously, we examined the identity of the predicted target gene for the cis-
eQJTL SNP and the gene invelved in the looping interaction for a match. Only
when both these criteria were fulfilled, was the cis-eQTL SNP defined as a looping
cis-eQTL SNP and considered for further analyses.

Identification of LD proxies of GWAS SNPs. GWAS variants associated with
BMI were obtained from Locke et al.?, and with lipids and metabolites from Willer
et al'® and Shin et al'%. We identified the cis-eQTL SNPs in tight LD (> 0.80)
with GW AS variants in the METSIM adipose RNA-seq dataset using PLINK? and
used them as the LD proxies for BMI, lipid. and metabolite GWAS SNPs. These
sets of cis-eQ)TL SNPs were considered as BMI GWAS SNPs, lipid GWAS SNPs,
and metabolite GWAS SNPs, respectively. These set of BML lipid, and metabolite
GWAS SNPs were then overlapped with the looping cis-eQTL SNPs to identify all
BMI, lipid, and metabolite GWAS SNPs involved in chromoesomal interactions
acling through distant regulatory elements.

Correlation of BMI with adip Eene exp . The BMI s in
the METSIM cohort were first adjusted for age, age® and then the resulting resi
duals were inverse normal transformed to reduce the possible outlier effects. Next,
we log transformed the FPKM values and then corrected them for 14 technical
facters, including the RIN values, batch, percentage of coding reads, 5 to 3 bias,
and percentage of uniquely mapped reads wsing Picard tools. The expression levels
were correlated with the BMI measurements using Pearson comrelation. The p-
values were corrected for multiple testing for th iber of eGenes using the
Bonferroni correction {adjusted p-value <0.05). To directly compare the effects
sizes and p-values obtained for BMI associations in TwinsUK with those in
METSIM, we also tested the 42 replicated genes using a linear regression model
with BMI and age, age® and the 14 technical factors as covariates when compared
to a null model without BMI in METSIM (Table 1 and Supplementary Table 6).
These models were compared using an F-test.

of BMI-adi gene expression cor Association analysis
between BMI and adipose expression in the TwinsUK cohort was performed on
720 fermale twins. RNA-seq was generated as previously described™ and gene level
quantifications were generated to Gencede v19. Association between gene
expression level and inversed normalized BMI was tested with a linear mixed
effects model {LMEx) implemented using the lmed package™. A full model
including BMI was compared to a null model in which the same model was fitted,
but with BMI omitted. These models were compared using an F-test. All known
technical variables {batch, GC content, insert size mode, and primer index), age,
age’, and family structure were included as covariates in the models. All variables
were centered and scaled to vnit variance. Four genes were not present in the
TwinsUK cohort dataset and we were thus unable to test them for replication,
resulting in 54 genes tested for replication. Each replicated gene was examined to
determine if effect size direction in TwinsUK and METSIM has the same direction.
A Bonferroni corrected pvalue {adjusted p <0.001) with the same direction of
effect as in METSIM was considered as statistical evidence for replication in the
TwinsUK.

Data availability. The human primary adipocyte Capture Hi-C data are available
at GEO {Accession ID: GSE110619)
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Supplementary Figure 1. Modification to LD Score regression software does not show

significant changes when compared with the data obtained using the published version.

Enrichments in local gene expression with error bars for different categories using the LD score
regression analysis. For the horizontal axis labels, the value in parentheses shows the percentage
of SNPs contained within the respective annotation category that contributed to the enrichment
calculation (for the full data on all 52 baseline annotation categories, see Supplementary Table 3-
4). Error bars represent jackknife standard errors around the estimates of enrichment. (a)
Enrichment in local gene expression for the modified LD Score regression software. (b)

Enrichment in local gene expression for the original, unmodified LD Score regression software.
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Promoter CHi-C sequencing reads from METSIM subcutaneous adipose RNA-seq
primary human white adipocytes expression data
Mapping and filtering of reads using Mapping of adipose cis-eQTL SNPs
HiCUP 487,679 cis-eQTLs and 4,650 eGenes
Identification of significant interactions Identification of cis-eQTL target genes and
using CHICAGO replication in GTEx
80,587 interactions 386,068 of 487,679 cis-eQTLs
4,332 of 4,650 eGenes

Identification of looping cis-eQTL SNPs that have
the same target gene
5,231 of 386,068 ciseQTLs
576 of 4,332 eGenes

> 4

Correlation of gene expression with BMI and
replication in TwinsUK
42 of 54 BMI-correlated eGenes

4

Identification 42 robust BMI-correlated eGenes
under regulation by chromosomal interactions

Supplementary Figure 2. Overview of the study design targeted to identify causal and

reactive BMI-correlated genes.

Flow chart showing the data processing and analysis pipeline of the promoter Capture Hi-C in
primary human white adipocytes (HWA) (the left side); adipose RNA-sequencing followed by
cis-eQTL mapping (the right side). and the integration of these genomics data (in the middle) to

identify eGenes correlated with BMI.
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Supplementary Figure 3. Promoter Capture Hi-C enables refinement of the GWAS loci
that colocalizes with cis-eQTLs interacting with the target gene promoter of ORMDL3,
LACTB, and ACADS.

Genomic landscape of the lipid GWAS locus, ORMDL3 (panels a, b), metabolite GWAS locus,
LACTE (panels ¢, d), and metabolite GWAS locus, ACADS (panels e, I), modified from the
WashU Genome Browser to show the histone mark calls from ChIP-seq data; gene transcripts;
promoter and eQTL HindIII fragments that interact in primary human white adipocytes (HWA);
and GWAS SNP (A, the rs number indicated in the magnified box) or their LD proxies if
applicable (B, 1>0.80) located in the interacting HindIII fragment. The vertical yellow band
highlights the significantly influential variant (the rs number is indicated in the magnified box).
(a) Genomic landscape containing (JRAMDL3 and the interacting lipid GWAS SNP. (b)
Magnification of the boxed region in (a). (¢) Genomic landscape containing LACTE and the
interacting metabolite GWAS SNPs. (d) Magnification of the boxed region in (¢). (¢) Genomic
landscape containing ACADS and the interacting cis-eQTLs and corresponding metabolite

GWAS SNP. (f) Magnification of the boxed region in ().

37



a b

rs4776984 (MAP2KS) rs4776984 (MAP2KS)
: -
-> - -»>

Mg

Ref Alt Ref Alt
HWA nuclear extract  + + - + + = + + = + + =
Labeled probe  + + + + * + + + + + + +
Unlabeled probe * - - + - + - + -

Supplementary Figure 4. Two independent replicates for the Electrophoretic mobility shift
assay (EMSA) data show increased binding of nuclear protein extracted from primary
human white adipocytes (HWA) to the alternate allele when compared to the reference

allele of the MAP2KS5 cis-eQTL SNP rs4776984.

Biotinylated (labeled probe) 31-bp oligonucleotide complexes with +/-15 bp flanking the
reference or alternate allele for variant rs4776984 were incubated with nuclear protein extracted
from primary HWA and resolved on a 6% polvacrylamide gel. Competitor assays were
performed by incubating the reaction with 100X excess of unlabeled (no biotin) oligonucleotide
complexes with identical sequence. Arrow denotes specific binding of HWA nuclear protein to
reference (left) and alternate (right) allele. (a) First replicate of the EMSA for rs4776984. (b)

Second replicate of the EMSA for rs4776984.
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Supplementary Figure 5. Three independent replicates for the Electrophoretic mobility
shift assay (EMSA) do not show a supershift when using antibody against CTCF and
nuclear protein extracted from primary human white adipocytes (HW A) at the MAP2KS5

cis-eQTL SNP rs4776984.

Biotinylated (labeled probe) 31-bp oligonucleotide complexes with +/-15 bp flanking the
reference or alternate allele for variant 154776984 were incubated with nuclear protein extracted
from primary HW A and resolved on a 6% polyacrylamide gel. Competitor assays were
performed by incubating the reaction with 100X excess of unlabeled (no biotin) oligonucleotide
complexes with identical sequence. Arrow denotes specific binding of HW A nuclear protein to
reference (left) and alternate (right) allele. Supershift assays were performed with 1 pg anti-
CTCF antibodies (Santa Cruz sc-15914). (a) First replicate of the supershift EMSA for
154776984. (b) Second replicate of the supershift EMSA for 1s4776984. (¢) Third replicate of the

supershift EMSA for rs4776984.
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Supplementary Figure 6. The Electrophor etic mohility shift assay (EMSA) does not show a
supershift when using a different antibody against CT CF and nuclear protein extracted

from primary human white adip ocytes (HWA) at the M AP2KS cis-eQQTL SNP rs4776984.

Biotinylated (labeled probe) 31-bp sligonuclestide complexes with +-15 bp flanking the
reference or alternate allele for vanant rsd 7765934 were incubated with nuclear protein extracted
from primary HWA and resolved on a 6% polvacrylamide gel. Competitor assays wete
performed by incubating the reaction with 100X excess of unlabeled (no biotin) oligonuclectide
complexes with identical sequence. Arrow denotes specific binding of HWA nuclear protein to
reference (left) and alternate (nght) allele. Supershift assavs were petformed with 1g anti-

CTCF antibodies (EWD WMillipore 07-729)
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a rs4776984 (MAP2KS) rs4776984 (MAP2KS) ¢ rs4776984 (MAP2KS5)

oo-;oQ
)

Ref Alt Ref Alt Ref Alt
HWA nuclear extract + + - + o+ - + 4 - + + - + o+ - + 4+
Labeled probe + + + + o+ o+ + o+ o+ + 4+ o+ + + o+ + o+ +
Unlabeled probe + - - + - - + - - + . + - - + -

Supplementary Figure 7. Three independent replicates for the Electrophoretic mobility
shift assay (EMSA) do not show specific binding using purified CTCF protein at the
MAP2KS cis-eQTL SNP rs4776984.

Biotinylated (labeled probe) 31-bp oligonucleotide complexes with +/-135 bp flanking the
reference or alternate allele for variant rs4776984 were incubated with purified CTCF protein
(Origene TP720882) and resolved on a 6% polyacrylamide gel in our EMSA experiment.
Competitor assays were performed by incubating the reaction with 100X excess of unlabeled (no
biotin} oligonucleotide complexes with identical sequence. The reference allele is on the left and
alternate allele on the right. (a) First replicate of the EMSA for 134776984, (b) Second replicate

of the EMSA for 1s4776984. {¢) Third replicate of the EMSA for 1s4776984.
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pp itary Table 1. F s used for identification of novel ¢/5-eQTL and looping interactions

ciz-eQTL discovery

METSIM (n=335)

Type of genetic data

# cis-eQTLSNPs with the same target gene and beta direction replicated

in subcutaneous adipose GTEx data

# PEER factors corrected

# Genetic principal components corrected
Minor allele frequency (MAF)

Type of expression data

Mormalization technique

FDR significance threshold for cis-eQTL SNPs

# of cis-eQTL target genes with looping interactions

llumina Omni Express
366,068

22

3

> 5%

RNA-seq

Inverse normal transformation of FRKMs
= 5%

4,332

Promoter capture Hi-C

Primary human white adipocytes

# reads from sequencing

# uniquely aligned paired reads

# valid pairs of reads after capture Hi-C specific filtering by HICUP
# zignificant looping interaction pairs identified from CHICAGO

#METSIM genes in looping interaction pairs

138,217,258
101,187,918
88,583,088
80,567
10,083
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Supplementary Table 2. Histone mark enrich it in |

g Hindlll f

in primary HWA

B toramiai Bace pairs of feature enrichment in

Base pairs of feature enrichment in

Standard deviation

p—\.'all.ltar

looping Hindlll fragments random Hindll fragments®
H3Kdme1 42181 3927845 56.94 <2.2¢10™
H3K4me3 42347 39502.39 55.86 «2.2x10™
H3K2Tac 42085 3858719 49.24 =2 210"
H3K2Tme3 42813 40520 33 4378 <2210
H3KOmed 41222 3040819 £4.07 <2.2x10°™"
DHS 35578 30547.74 89.82 <2210

*Random Hindlll fragments were controlled for distance away from the target promoter when selected.

r;:wtalue computed from Pearson's chi-squared test.

43



¥ Table 3.

di are enriched for 30

oM+

P0.05) whe

Number m-gn Forcant of targst  Number of background

with mctif  Percent of bnchyolmd
with matif

Motif loge Mctif nama pvalus Adusted pyalus muﬁl[of1EB 3) motif [of 173261}
;EEAQCHA i e 1.00x10 "™ o 5745 304% 39157 226%
Qgﬁ%&g“ 6 bl 1.00x10% [3 6335 3:36% 47801 276%
QM@CC}:-CC# 25:2{5%;?;%555”"'“ 1.00x10% [ 18926 10.01% 166478 D.56%
&i CCECACA pS Flag-ChiR-S: 1.00x107 [ 18995 FE= 148508 B84
- EM(ETS)Hele-ERd-ChIP-SeqGSEI 1477 ) Home: 1.00x10° 0.00010 10481 5.56% 1803 531%
YY1 (ZWPromoterHomer 1.00x10° 0.00030 w7 043% 887 0.3T%
RETCTOMACG [rionmpicoivicm ot amso  we o ma e
Qﬂh—éﬁﬁﬁégﬁﬂ Tt Chlf: 100010 0.00050 12985 5.55% 14404 661%
9 CCCC E2FHE2FYMER-E2F3-ChIP-SeqiGSET1aTMemer 10010 0.00070 7993 429% 69965 £.04%
|3 hc& s E hIR- Ty Homes 10000 00023 40662 21 50% 385806 21.14%
ATCCH TM'CCI oA PULA-CHIP: 100010 00028 17788 a41% 158487 8 16%
TCTC ER1(ETS)Helo-ERI-ChIP-Seq(GSES 477 Momer  1,00x10° 0.0025 10671 5.84% 4224 5.45%
T cyckiiy Teade ChIP- 100010 00025 20484 10.82% 18265.1 10.58%
© GFY(7)PromoteriHomer 1.00610° 00031 159 081% 802 055%
E2FA(E2FYKEB2: E2F4-ChIP-Seq(GSEII4TIMomer  1.00x10° 00083 5131 271% 44755 259%
Spl{ZfPromotes/Homer 1,00x107 0.0084 3622 1.92% 31335 181%
AIQL,M TCLT neviccasnmrometomer 1.00¢10° 0.0084 1427 7.53% 12676.1 733%
AATCTGGACTTC g::;_!;‘;;gf,fﬁw;"""“" 100610 0.z T 0.23% M64 0.20%
AT g2 EHLHWN euron-Olig2-ChiP- 3
TGAIGCGATC Zsttiimieusmol 100610 00t 45873 24.26% 414203 2394%
~
ATGTAI aTI'CC EZFG(EZF)Hels-E2FG-ChIP-SeqiGSEM4TTHomer  1.00x10° 0.022 047 373% 62213 360%
CTCCTTCTTATC 2 ISETA@ICUTLLZNF a3 ChP: o . . 250k
DU X4 HomeobaxMysblasts: DUX4 V5-Chif- N
CMC&CCGTA Sex(GSETSTE Homer Tone 0.0z 6 D4 i 4%
NRFINRF)PromoterHomer 1.00x10° 0.036 622 0.85% 13824 0.80%
& gﬂ ;:;gg‘g“gg:‘ﬁm"’"’“‘a"?‘ 1008107 0038 17385 2.19% 155868 201%
Em&TM&&l oy P 1.00610° 0.040 513 0.27% 415 0.24%
gm:;ﬁ::n;u::&um:m-cnm— 100107 0.045 20039 10.60% 180025 10.40%
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Supplementary Table 4. LD score enrichments, heritability estimates, and p-values using the published LD Score software”

Category Prop. of SNPs Prop. ofh” Enrichment SE pvalue
Coding UCSC 0.02 018 826 0s 6.66x10°
Coding_UCSC extend 500 0.07 028 421 03 12710
Conserved_LindbladToh 0.03 015 532 08 1.26x10"
Conserved_LindbladToh extend. 500 0.34 056 164 01 445010
CTCF_Hoffman 0.0z 0.06 252 05 4.92¢10°
CTCF_Hoffman extend 500 0.07 0.11 158 03 25910
DGF_ENCODE 014 034 246 0z 6.87x10"
DGF_EMNCODE extend 500 054 077 142 01 2.60x10°
DHS_peaks_Trynka 011 0.27 237 0.3 3.92x10%
DHS_Trynka 017 0.35 205 0z 8.32¢10"
DHS_Trynka.extend.500 0.50 072 144 0.1 3.868x10 5
Enhancer_Andersson 0.00 0.01 2.60 20 430010
Enhancer_Andersson extend 500 0.02 0.03 1.70 07 287107
Enhancer_Hoffman 0.06 018 227 03 6.34x107
Enhancer_Haoffman.extend. 500 016 0.30 193 0.2 251x10°
FetalDHS_Trynka 0.09 0.28 325 0.3 3.78x10"¢
FetalDHS_Trynka.extend 500 028 048 168 0z 2.28x10"
H3K27ac_Hnisz 0.39 065 1.64 0.1 2.77x10"
H3K27ae_Hnisz extend 500 043 0.68 158 01 9.46x10"
H3K27ac_PGC2 0.27 0.53 185 04 25710
H3KZ7ac_PGCZ.extend 500 0.34 061 180 01 Badx10’
H3Kame1_peaks_Trynka 018 035 1.98 0.2 2.26x10"
H3Kdmel_Trynka 043 071 164 01 5B1x10"
H3Kdmel_Trynka extend.500 0.61 0.86 1.41 01 6.55x10"
H3K4me3_peaks_Trynka 0.04 0.11 255 0.6 1.36%107
H3K4me3_Trynka 014 0.35 259 0z S48 U':‘f
H3K4me3_Trynka. extend. 500 0.26 049 188 04 452010
H3K9ac_peaks_Trynka 0.04 0.12 3.03 0.5 1.08x10"
H3K8ac_Trynka 013 0.36 278 0z 1.07x10 :"
H3KSac_Trynka. extend 500 023 050 215 0z 1.18x10™"
Intron_UCSC 039 040 1.00 04 9.63x10"
Intran_UCSC extend 500 040 051 127 01 3.63x10°
PromoterFlanking_Hoffman o001 0.04 443 14 1.82¢10 ‘
PromoterFlanking_Hoffman extend 500 0.03 013 370 04 3380
Promoter_UCSC 0.03 0.14 445 05 6.18x10 -
Prometer_UCEC extend 500 0.04 018 451 04 1,010
Repressed_Hoffman 045 0.30 065 04 5.99x10
Repressed_Hoffman.extend. 500 0.7 047 0.65 01 843x10"
SuperEnhancer_Hnisz 017 035 2.03 0.2 1.79x10"
SuperEnhancer_Hnisz. extend 500 017 034 187 0z 1.57x10"
TFBS_ENCODE 013 034 250 0z 261107
TFEE_ENCODE extend.500 035 048 142 04 B89810 "
Transcribed_Hoffman 0.35 0.38 1.07 01 5.34x107
Transcribed_Hoffman extend 500 o077 0.74 087 o041 B.53x10
TSE_Hoffman 0.02 013 7.10 0.8 S48x10
TS5_Hoffman extend 500 0.04 0.18 523 05 6.73x10 _b
UTR_3_UCSC 0.01 0.08 688 0s 4.11x10™
UTR_3_UCEC extend 500 0.03 013 448 06 4.99x10™
UTR_5_UCSC 0.01 0.08 946 18 1.36x10"
UTR_5_UCSC extend 500 0.03 0.15 510 05 1.18x10 :4
WeakEnhancer_Hoffman 0.02 0.04 182 06 1.02x10°
WeakEnhancer_Hoffman.extend 500 0.09 0.17 1.92 0.2 1.58x10°
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Supplementary Table 5. LD score enrichments, heritability estimates, and p-values after modification of the LD score software

Category Prop. of SNPs Prop. of h Enrichment SE pvalue
Coding UCSC 0.03 0.20 654 06 34410
Coding_UCSC extend 500 o1z 038 319 0z 5.65x10
Conserved_LindbladToh 0.03 0.16 482 05 3250107
Conserved_LindbladToh extend. 500 040 063 159 01 308010
CTCF_Hoffman 0.03 0.07 218 04 1.54x107
CTCF_Hoffman extend 500 010 0.14 147 0z 7.92¢10°
DGF_ENCODE oia 040 218 0z 373107
DGF_EMNCODE extend 500 064 083 129 01 1.23x10"
DHS_peaks_Trynka 014 031 232 0.2 2.94x10%
DHS_Trynka 0.20 0.40 199 0z 7.84x10"
DHS_Trynka.extend.500 0.58 076 1.534 0.1 2.98x10 5
Enhancer_Andersson o.01 0.01 221 14 380010
Enhancer_Andersson extend 500 0.03 0.04 148 05 28910
Enhancer_Hoffman 010 018 195 0z 2.96x107
Enhancer_Haoffman.extend. 500 0.23 0.38 1.66 01 512¢10°
FetalDHS_Trynka 011 031 292 0.2 430107
FetalDHS_Trynka.extend 500 0.34 053 158 01 1.68x10"
H3K27ac_Hnisz 0.54 075 1.39 0.1 7.asx10"
H3K27ae_Hnisz extend 500 057 077 1.35 01 2.26¢10°
H3K27ac_PGC2 037 0.62 167 04 7.02x10™
H3KZ7ac_PGCZ.extend 500 046 0.71 154 01 6.89x10”
H3Kame1_peaks_Trynka 024 0.41 174 0.2 4.82x10”
H3Kdmel_Trynka 055 0.80 144 01 S8210°
H3Kdmel_Trynka extend.500 0.74 082 1.25 01 318107
H3K4me3_peaks_Trynka 0.06 0.15 236 0.3 6.40x10°
H3K4me3_Trynka 0.z20 046 228 0z 4.7 U’
H3K4me3_Trynka. extend. 500 0.35 0.60 1.7 04 24410
H3K9ac_peaks_Trynka 0.07 047 250 0.3 2.10x10"
H3K8ac_Trynka 021 048 230 0z 5.70:10 :b
H3KSac_Trynka. extend 500 0.36 084 1.77 01 4.00x107
Intron_UCSC 047 043 081 04 2.60x10"
Intran_UCSC extend 500 049 0.60 1.21 01 4.05x10"
PromoterFlanking_Hoffman o001 0.04 3.30 08 21110 ‘
PromoterFlanking_Hoffman extend 500 0.05 0.15 29 03 3410
Promoter_UCSC 0.08 0.20 34 04 2.98x10
Prometer_UCEC extend 500 0.07 028 343 03 20810
Repressed_Hoffman 034 018 0.55 o1 2201 U'
Repressed_Hoffman. extend 500 056 032 057 01 140010
SuperEnhancer_Hnisz 027 043 183 0.2 1.92x10%
SuperEnhancer_Hnisz. extend 500 027 043 159 01 2.07x10*
TFBS_ENCODE oia 041 226 0z 224x10™
TFEE_ENCODE extend.500 043 0.60 138 04 74310 5
Transcribed_Hoffman 043 043 1.02 01 7.98x10°
Transcribed_Hoffman extend 500 078 072 0.94 01 31510
TSS_Hoffman 0.03 0.19 5.34 08 2.87x10
TS5_Hoffman extend 500 0.06 0.26 387 04 1.84x10 _b
UTR_3_UCSC 0.02 010 5.06 06 2.30x10™"
UTR_3_UCEC extend 500 0.05 016 iy 04 2.80x10™
UTR_5_UCSC 001 0.07 715 12 2720
UTR_5_UCSC extend 500 0.05 0.20 398 04 43710
WeakEnhancer_Hoffman 0.03 0.05 167 04 7.85%107
WeakEnhancer_Hoffman.extend 500 013 0.22 162 0.2 3a0x10*
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Supplementary Table 6. Fifty-four eGenes in METSIM, including the 42 genes replicated for correlation with BMI and effect direction in
TwinsUK

Pearson Linear regression
METSIM METSIM TwinsUK®

Gene Chr* Effect size (r} p-value Effect size (B} SE p-value Effect size () SE p-value
ADH1E 4 -0.45 740107 0.21 002 188x107 -058 0.03 447107
ORMDLS 17 -0.45 857x10" .01 002 206107 .058 0.03 265107
AKR1C3 10 0.33 478x10™ 043 0.02 285¢10" 049 0.03 5.19xi0™
CMTM3 16 041 432010 0087 001 384x10" 050 003 664x10™
LPING 2 -0.38 148010 014 002 227x10" 047 0.03 238x10*
RNF157 17 -0.28 s518x10°  -0.088 002 587107 -047 0.03 @sexi0™
MYOF 10 0.32 107x10” 0088 001 73Tx10" 046 0.03 2510
NAALD 1 0.28 181x107 0052 0008 287x107 D48 0.03  4.00x109
TMEM165 4 0.33 245x10° 0045 0.007 184x10" 045 0.03 35210
RFFL 1 027 1.02x10% 0035 0.008 184x10°% D43 0.03 567x107
TMCOS 5 -0.28 92310°  -0.080 0.01  148x10% 044 0.03 5.04x10"
SCRNZ 17 -0.38 22310 .00 001 37e10" .038 003 53210%
CSGALNACTY 8 0.24 1.00x10°  0.047 0.01  204x10° 042 0.03  14x10™"
TAFBP 6 025 671x10° 0047 002 160x10° 032 0.03 1520
CLNE 8 0.32 450:10° 0044 0.007 3E7Tx10" 036 003  441x10”
DRAM? 12 0.30 187x10" 0080 0.008 180x107 D40 0.03 594x107
WNT28 1 0.25 244x10° 0026 0.005 480x10° 038 0.03  141x10%
S10041 1 027 252¢10°  -0.20 0.04 358107 038 0.03  3.69x10%
RPSGKLT 14 0.28 254x10°  0.060 0.01 525x10° 034 0.03 327x10°
SLC16AT 12 -0.26 347010°  .0.068 001 7EO10T 030 0.03 208x10°
ZNF592 15 -0.27 8.26x10°  -0.087 0.007 140x10° 033 0.03 24010
MFSD1 3 031 831x10° 0069 001 &7x10"Y 035 0.04 282104
HYI 1 -0.31 6.45x10° 0.1 0.02 SEx0" 029 0.03 58510
ANXAL 2 0.24 1.04x10°  0.045 0.008 252¢10° 035 0.04 1.20x107
RAB30 11 0.24 818x10°  0.040 0008 188x10° 031 0.03  1.46x10%
PLD1 3 -0.28 226x10°  -0.050 0.008 324x10° 032 0.03 7.95x10%
MYOS5A 15 0.30 320010°  0.049 0.008 341x10% 032 0.04 48ixi0™
ACADS 12 -0.37 29110 -0.088 001 Tazioc" 024 0.03 66510
SCAI 9 -0.28 181x107  -0.034 0.006 250x10¢ 027 003 142¢0™
HLA-DRE 1 8 0.25 353x10% 044 003 7EMIODT 031 0.03 208xi0™
1ACTE 15 0.30 167x10° 0089 001 140x10” 032 0.04  484x10"
GPHN 14 -0.43 7E110Y 01 0.01  320m10™ 0.03 428x10"
MPHOSPHE 13 024 8.265x10°  -0.033 0.007 2.02x10° 0.04 39710
MAP2KS 15 0,25 78310°  -0.088 0.008 1.80x10° 0.03 381xi0"
RRNAD1 1 -0.24 1.08x10°  -0.032 0.007 230x10° 003  3.14x10”
ccoeso 3 -0.33 148x107  .0.059 0.008 7.24xi0" 003 99310
RADS4L2 3 0,25 232010°  -0.080 0.006 4.70x107 0.04 278x10°
SCMH1T 1 -0.32 111107 .0.047 0.007 7.55x10" 0.03 3.85x10"
ATP7E 13 -0.26 6300107 -0.040 0.007 1.11x10" 0.04 722010"
CYPTE1 8 024 680x10°  0.047 0.01  184x10° 0.03 107107
RERE 1 -0.24 1.02x10°%  -0.031 0.006 261x10° 0.04 53%10-6
RPAP1 15 -0.35 186x10"  .0.042 0.006 BB2x10™ 0.03 958x10°
ARHGEFT 13 -0.35 412a10" 0,050 0.007 18010 0.04 NS
NCKIPSD 3 0.3 328x10""  -0.067 0.01 150" 003 NS
NDUFS2 1 -0.24 3ex10®  -0.028 0.006 247x10° 0.03 NS
REEFPT 2 -0.24 638x10°  -0.033 0.007 145x10° 0.04 NS
RGCC 13 0,25 281010°  -0.078 0.01  481x10° 0.03 NS’
SETD6 16 -0.27 388107 -0.044 0.007 &30x10° 0.04 NS
SLC35A3 12 -0.26 11310 -0.024 0.004 215x107 0.03 NS
SPAGT 17 -0.26 124210 .0.035 0.007 227107 0.03 NS
NUDCD3 7 -0.34 7.00x10"  -0.082 0.005 417x10" Hal Al
RP11-38TH1T.4 17 -0.40 440010 028 003  474x10" MAT  mal
RSBNIL-AST 7 -0.36 165010 -0.056 0.007 573x10" HAT Al
TUBB2E B 0.34 1.01x10" 014 0.02 45110 NAY NAY  mal

GWAS gene.

LEITecl size (r, Pearson rho) and p-value calculated from Pearson correlation between gene expression and BMI (see Methods).

Effact size, standard error (SE), and p-value calculated using a linear regression model with BM| and age, age” and the 14 technical factors as co-
variates when compared to a null model without BMI. These models were compared using an F-test (see Methods).
SEffect size, standard error (SE). and p-value calculated from linear mixed effects model. A full model including BMI was compared to a null model in
which the same model was fitted, but with the phenotype (BMI) omitted. These models were compared using an F-test (see Methads).
ladjusted p-value > 8.26x10°.
alue not applicable due to inability to test for replication in TwinsUK cohort.
“Chr incicates chromosome.
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Supplementary Table 7. The 42 replicated BMI-correlated eGenes show significant enrich t for metabolic and itory path
using KEGG p y analysis as imp inw -
Ratio of Mumber of Genes in Adjusted p-
KESG Pathwery Name Enrichment Genes Pathway g, value®
E 7 ACADS
Fatty acid metabolism 18.78 2 ADH1B 0.0081 0.010
Metabolism of xencbicties by cytochrome P450 2178 2 ig’:‘;g“ 0.0038 0.010
p ¥ 2 AKRIC3
Steroid harmone biosynthesis 30.69 2 CYPTET 0.0019 0.010
1 z . HLA-DRET
Antigen processing and presentation 11.85 2 TAFBF 0.012 0.019

*pvalue adjusted using Benjamini-Hochberg correction for multiple testing.
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Supplementary Table & DeepSEA analysis of the variants in the MAP2KS locus supports the functionality of the looping cis-eQTL SNP
rsd7760984.

SMPID Chr Fosition Ref  Alt DeepSEA score
rs47 76984 chris 68118194 A & 236x107
rs4776982 chrig 68114874 A G 3.80x10°
rsd4 82886 chris 68113240 A G T A0
rsd776880 chris 68137364 [+] T 1.08x10"
rs28742003 chris 68127769 c T 1.30x10"
rs28427879 chris 68124256 G T 1.98x10"
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Supplementary Table 9. Significant CHICAGO interaction and replication scores from a separate HWA Capture Hi-C experiment verify the

looping cis-eQTLs for the four identified obesity-related loci.

Other End Baited Fragment Target Gene Looping cis-eQTL CHICAGOD score Replication score
chri5,67834655 67840760 chr15,68111739, 68138337 MAPZKS rsd44 76984 5.05 615
chri7, 38082534, 38106858 chri7, 38074576, 38081858 ORMDL3 rs8076131 6.35 673
chri5,63413071,63418370 chr15,63561331,63570763 LACTE rs3784671 B.65 13.02
chr12,121158545,121162946  chr12 121343847, 121345146  ACADS rs 10774569 5.29 6.62
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Supplementary Table 10. DNA oligonucleotides used for electrophoretic
mebility shift assay.

DNA
oligonucleatides
Reference allele -
A (positive) GUGCGCCCAACTOGGAGCGLCCTGCTGGGELG
biotinylated probe”
Reference allele —
A (negative) CGCCCAGCAGGGCGUTCCGAGTTGGGCGLGC
biotinylated probe
Alternate allele - C
(positive) GCGCGCCCAACTCGGCGLGLCCTGLTGGGOG
biotinylated probe”
Alternate allele - C
(negative) CGCCCAGCAGGGCGCGCCGAGTTGGGCGOGE
biotinylated probe
anIinyIaled probes were created by adding bictin to the 5' end of positive strand probes.

Sequence (5 -> 3') for positive and negative strand
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Chapter 3

Reverse gene—environment interaction approach to identify variants influencing body-mass

index in humans
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Reverse gene-environment interaction approach
to identify variants influencing body-mass index

in humans

Kristina M. Garske', David Z. Pan'?, Zong Miao'?, Yash V. Bhagat®’, Caroline Comenho’,
Christopher R. Robles®?, Jihane N. Benhammou*, Marcus Alvarez’, Arthur Ko @5,
Chun Jimmie Ye®¢, Joseph R. Pisegna'*, Karen L. Mohlke®7, Janet S. Sinsheimer'®, Markku Laakso©*®

and Paivi Pajukanta©"2**

Identifying gene-environment (GxE) interactions contributing to human cardiometabolic disorders is challenging. Here we
apply a reverse GxE candidate search by deriving candidate variants from promoter-enhancer interactions that respond to
dietary fatty acid challenge through altered chromatin accessibility in primary human adipocytes. We then test all variants
residing in lipid-responsive open chromatin sites in adipocyte promoter-enhancer contacts for interaction effects between
genotype and dietary saturated fatintake on body-mass index (BMI) in the UK Biobank. We discover 14 new GxE variantsin 12
lipid-responsive promoters, including in well-known lipid-related genes (LIPE, CARMT and PLIN2) and newly associated genes,
such as LDB3, for which we provide further functional and integrative genomic evidence. We further identify 24 GxE variants in
enhancers, for a total of 38 new GXE variants for BMI in the UK Biobank, demonstrating that molecular genomics data produced
in physiologically relevant contexts can be applied to discover new functional GXE mechanisms in humans,

disposition, environmental factors and their interactions'.

Genome-wide association studies (GWAS) have detected
additive genetic effects for these traits, but the biological mecha-
nisms explaining how genetic variation is involved in the increas-
ing prevalence of obesogenic cardiometabolic disorders have yet
to be identified. Some examples of GxE interactions are emerg-
ing, including, for instance, the highly replicated BMI risk variant
159939609 in an intron of FI'O that exhibits a significant interac-
tion with physical activity for effect on BMI'. However, overall,
there are few replicated GxE signals for cardiometabolic disorders
in humans', It has remained challenging to identify these signals,
owing to small cohort sizes and poorly standardized definitions for
human environmental phenotypes. Even with large cohorts such as
the UK Biobank’, the statistical power to detect GXE interactions
by using a genome-wide agnostic search is limited owing to the
small effect sizes of GXE interactions and heavy multiple-testing
penalties. Furthermore, once GxE signals have been detected, the
mechanisms underlying the associations remain unclear, warrant-
ing further fine-mapping studies.

To systematically identify genes involved in GXE interactions,
we set out to quantify molecular genomic responses to saturated
and monounsaturated fatty acid challenge in primary human adi
pocytes, as a cellular model of dietary fat intake in this key adipose
tissue cell type. We measured differences in chromatin accessibil

C ardiometabolic disorders develop as a result of genetic pre

ity and searched the whole genome for chromosomal interactions
between lipid-responsive gene promoters and enhancers to shed
new light on the genomic molecular mechanisms relevant for
lipid responses in human adipocytes. We hypothesized that these
genomic responses would provide targeted regions harbouring
candidate genetic variants for analysis of GxE interactions in the
large UK Biobank cohort’. Using these targeted regions should
restrict the multiple-testing burden hampering the typical agnostic
genome-wide GxE analysis and expand knowledge of the true envi-
ronmental exposures responsible for GxE signals, thereby revealing
the underlying functional mechanisms. Thus, integrating context-
specific molecular genomics with environmental phenotypes and
clinical outcome data in the UK Biobank should help elucidate
molecular mechanisms occurring in response to obesogenic cellular
context that contribute to cardiometabolic traits in humans,

Results

Adipocyte accessible chromatin identifies regulatory regions. To
obtain primary human adipocytes for study of the effects of lipids on
chromatin dynamics, we first differentiated primary human white
preadipocytes into adipocytes in vitro (Fig. 1a). We performed assay
fortransposase-accessible chromatin using sequencing (ATAC-seq)*
on three biological replicates of the preadipocytes and adipocytes to
identify open chromatin regions that were differentially accessible
in the two cell types (Fig. 1b and Supplementary Tables 1 and 2).
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Fig. 1| ATAC-seq analysis comparing primary human preadipocytes and adipocytes indicates successful adipocyte diffi tiation and wid d

changes in chromatin accessibility. a, Bright-ficld images of preadipocytes (top; PAL) and invitro-differentiated adipocytes (bottorm; Ad) for UI'IStaII'IL.d
cells (left) and cells stained with Oil Red O (right). Images are representative examples from two independent experiments. b, Heat maps showing log,-
transtormed fold change (log; (FC)) in bins per million mapped reads (BPM) for preadipocytes as compared to adipocytes in the three indicated peak
sets, FDR was calculated (adjusting for n=154,647 ATAC-seq peaks) from the P values of the quasi-likelihood (QL) £ test (see Methods) for differential
accessibility betwean preadipocytes and adipocytes using ATAC-seq libraries from n=3 replicates per cell type. The most enriched TF metif for the
indicated peak set is listed to the right. Enrichrment P values were derived from the hypergeometric enrichment test of the proportion of the given top
de novo-identified® TF motifs in the three indicated peak sets as compared with the background set (see Methods). ¢,d, Read coverage (BPM) in one
representative (n=23 replicates per cell type) preadipocyte (blue) and adipocyte (red) ATAC-seq library at the adipocyte accessible ATAC peaks in the
promoters of the adipocyte hormone gene adiponectin CADIPOQ) (e) and the adipocyte-spacific marker peraxisome proliferator-activated receptor
gamma coactivator 1-alpha (PPARGCIA) (d).

The 50,336 ATAC-seq peaks that were more accessible in primary  differentiation of adipocytes leads toan increase in chromatin acces-
human adipocytes (‘adipocyte accessible’) included the promoters  sibility in regions important for genomic regulation in adipocytes.
of the ADIPOQ and PPARGCIA genes with known adipocyte-spe-

cific expression (Fig. 1 c.d), providing evidence that we successfully ~Genomic responses to dietary lipids in human adipocytes. We
differentiated adipocytes in vitro. To explore whether the adipocyte  next searched for genomic regions harbouring regulatory ele-
accessible peaks harboured transcription factor (TF) motifs relevant  ments that mediate adipocyte responses to the intake of different
for adipocyte biology, we performed TF motif enrichment analy-  dietary lipids, by treating the adipocytes with the saturated fatty
ses with HOMER®. We found that the most enriched motif cor-  acid (SFA) palmitic acid (C16:0) or the monounsaturated fatty acid
responded to the motif for the CCAAT-enhancer-binding protein  (MUFA) oleic acid (C18:1 ¢is-9) and then performing ATAC-seq
alpha (C/EBPw) TF (Fig. 1b), an important regulator of the later on three biological replicates per condition (Fig. 2a). We found
stages of adipogenesis’. We then classified the adipocyte accessible  that treatment with either of these fatty acids resulted in increased
peaks into functional genomic annotations’ and observed that the  staining with Oil Red O, which incorporates into neutral lipids,
adipocyte accessible peaks fell more often in adipocyte enhanc-  indicating that the lipid challenge resulted in increased storage
ers and less frequently in quiescent regions when compared with  of fatty acids in the lipid droplets of the cells (Supplementary Fig.
the full peak set or preadipocyte accessible peaks (Supplementary  2). We identified 1,653 ATAC-seq peaks that were differentially
Fig. 1). Taken together, these results provide evidence that in vitro  accessible in the lipid-challenged primary human adipocytes in
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Fig. 2 | Lipid-responsive regions fall within adipocyte accessible regions of the genome, as well as within context-dependent regions that are not
present in untreated adipocytes. a, Schematic overview of the lipid challenge experiment in hurnan primary adipocytes. Treatments were performed in
three replicates per condition. b, Schematic overview indicating the two categories of lipid-responsive peaks used for all downstream analyses. Peaks
were considered differentially accessible at a cutoff of FDR < 0.05. FDR was calculated (adjusting for n=122,252 ATAC-seq peaks) from the P values of
the QL Ftest (see Methods) in one-way analysis of variance (ANOVA), Significant lipid-responsive peaks categorized as adipocyte accessible (n=570)
or context dependent (not idertified in untreated preadipocytes or adipocytes; n=453) were used in all downstream analyses. ¢d, Violin plots showing
the log,-transformed fold change in differentially accessible peaks in the indicated comparisons, stratified by whether the peak was adipocyte accessible
() or context dependent (d). In ¢, the violin plot characteristics are as follows: MUFA versus control (ctrl) (n=412): range, —=1.07 to 1.25; median, 0.26;
25th percentile, —0.34; 75th percentile, 0.42; SFA versus control (n=87): range, =117 to 0.77, median, 015; 25th percentile, —0.34; 75th percentile,
0.27; SFA versus MUFA (n=321): range, —1.22 to 1.21; median, —0.26; 25th percentile, —0.48; 75th parcentile, 0.43. Ind, the viclin plot characteristics
are as follows: MUFA versus contral (n=284): range, —1.05 to 1.40; median, —0.33; 25th percentile, —0.53; 75th percentile, 0.37; SFA versus control
(n=99): range, =119 to 1.02; median, 0.34; 25th percentile, 0.20; 75th percentile, 0.47; SFA versus MUFA (n=301): range, =1.30 to 1.21; median, 0.49;
25th percentile, —019; 75th percentile, 0.65. The box ind indicates a shift towards increased accessibility in SFA-treated cells, observed especially in the
context-dependent peaks. e, Human genome browser snapshot (WashlU) of the GRAM locus, which harbours 15 lipid-responsive peaks in a -50-kb region
Chighlighted in blue vertical rectangles). Fourteen of these peaks are SFA responsive. Read coverage (BPM) is shown from one representative ATAC-seq
library (n=13 raplicates par condition) for contral (rad), MUFA (green) and SFA (blue) treatment. GWAS SNPs for serurm lipid traits are categorized as
being in a lipid-responsive peak (red) or outside of a lipid-responsive peak (grey).
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comparisontocontroladipocytes, referredtoaslipid - responsivepeaks
(Fig. 2b, Supplementary Fig. 3 and Supplementary Tables 3 and 4).
We cross-referenced these lipid-responsive peaks against the adi

pocyte accessible peaks (Fig. 1) and found that the 570 adipocyte
accessible, lipid-responsive peaks fell mostly into enhancer and pro

moter annotations in adipocytes®, in line with their likely impor-
tance in environmental responses and regulation of gene expression
in adipocytes (Fig. 2b and Supplementary Fig, 4).

Notably, we found that 453 of the 1,653 lipid-responsive peaks
were not detected as open chromatin in the initial ATAC-seq
data created in untreated adipocytes and preadipocytes (Fig. 2b).
When compared to the adipocyte accessible open chromatin, these
context-dependent open chromatin regions fell into a higher per-
centage of quiescent annotations imputed from data created in
unchallenged adipocytes” (Supplementary Fig. 4). This indicates
that genomic regions that are not open and accessible for TF bind-
ing in untreated, steady-state adipocytes or preadipocytes become
activated in adipocytes under lipid challenge conditions.

When we stratified the SFA and MUFA treatment responses by
adipocyte accessible or context-dependent open chromatin regions,
we found that the effects of SFA treatment in context-dependent
open chromatin regions were shifted towards increased accessibil-
ity (Fig, 2¢,d). This was in contrast to the MUTA responses, which
were generally evenly distributed between peaks with decreased
and increased accessibility (Fig. 2c.d). This suggests that differ
ent fatty acids can result in distinct signalling effects on genome
level responses to lipid intake in adipocytes, and, in particular, SFA
intake seems to activate regions of the genome that are normally
inactive in untreated adipocytes.

O closer examination, we found 14 context-dependent peaks,
exhibiting increased accessibility in SFA-treated adipocytes,
which fell into a ~50-kb region on chromosome 10 (Fig. Ze).
The locus contained a total of 15 lipid-responsive peaks, which
spanned the entirety of the gene encoding glycerol-3-phosphate
acyltransferase, mitochondrial (GPAM) (Fig. Ze). The GPAM
engyme prefers saturated fatty acid substrates, and the GPAM
locus has been associated with serum lipid traits™ "' (triglycerides
(TGs), high-density lipoprotein cholesterol (HDL), low-density
lipoprotein cholesterol (LDL) and total cholesterol (TC)) and
serum alanine aminotransferase (ALT), which is a biomarker for
liver health", in previous GWAS", The earlier GWAS associations
at this locus, in combination with the strong genomic response
to SFA treatment in adipocytes observed here, suggest that dys-
regulation of the important lipogenic pathway mediated by GPAM
in adipocytes could contribute to obesogenic cardiometabolic
disorders such as dyslipidaemias and non-alcoholic fatty liver dis-
ease (NAFLD).

Lipid-responsive gene promoters in chromosomal interactions.
To identify genes under transcriptional regulation via chromo
somal interactions, we performed promoter capture Hi-C (pCHi-
C)"* on the lipid-challenged human adipocytes with two biological
replicates per condition (Supplementary Table 5). We identified
264 lipid-responsive ATAC-seq peaks that fell within adipocyte
chromosomal interactions. To test whether these interacting, lipid
responsive regions of the genome harbour motifs for TFs that are
important for lipid metabolism, we performed TF motif enrich
ment analysis® comparing the lipid-responsive peaks to non-lipid
responsive peaks within the chromosomal interactions. We found
that motifs for peroxisome proliferator-activated receptor gamma
(PPARy), an important TF in adipogenesis and lipid uptake, and
its cofactor retinoid X receptor (RXR) were among the ten most
enriched motifs (Fig. 3a and Supplementary Table 6). This indicates
that the lipid-responsive sites in adipocyte promoter-enhancer con-
tacts represent genomic regions that are important for mediating
cellular responses to lipid uptake.
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To identify the target genes of the adipocyte responses to lipid
challenge, we first focused on the interacting promoters from adi
pocyte pCHi-C (Fig. 3b), as promoters are more highly enriched for
single-nucleotide polymorphisms (SNPs) that contribute to the her
itability of local gene expression than enhancers'™ *. The 86 interact
ing pCHi-C baits represented 154 gene promoters, given that the
resolution of pCHi-C interaction data depends on the frequency
of restriction sites in the genome (Fig. 30 and Supplementary
Table 7). We performed a Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis” on the set of
154 interacting, lipid-responsive target genes, which identified two
significantly enriched pathways for amino acid metabolism (false-
discovery rate (FDR) < 0.05) (Supplementary Table 8).

As energy homeostasis is important for survival, we hypothe-
sized that the 154 gene regions responsible for mediating the effects
of lipid uptake in adipocytes might exhibit differences in the level
of conservation when compared to other genes in the genome.
We therefore obtained an average conservation score for the 114
protein-coding genes among the 154 genes (gene body+500kb)
by using PhastCons'"" and found that the lipid-responsive protein
coding genes had higher conservation scores across placental mam-
mals than all other protein-coding genes in the human genome
(P=0.020) (Fig. 3¢).

We further investigated whether these lipid-responsive genes
exhibited constraints on genetic mutation, by using the probabil
ity of each gene being intolerant to loss-of-function mutation (pLI}),
defined in Lek et al."” as a high unlikelihood of protein-truncating
mutations in humans. We found that, of the genes for which pLI
scores were available (n=104)"", 27 genes (26.0%) were consid
ered LoF intolerant. Given that 17.7% of all genes are considered
LoF intolerant, the pLI for lipid-responsive genes is higher than
expected by chance alone (P=0.022) (Fig. 3d). Taking these find-
ings together, we identified 154 genes with lipid-responsive pro
moters in chromosomal interactions that are less tolerant of LoF
variants and reside within genomic regions that are more conserved
than expected by chance alone.

Genes that interact with lipid-responsive enhancers. We next
tested whether the genes that interacted with lipid-responsive
enhancers exhibited similar characteristics to those of the genes
that had lipid-responsive promoters. We first found that 169 lipid-
responsive enhancers interacted with 223 promoter-containing
HindIII baits in the adipocyte pCHi-C analysis (Supplementary
Fig. 5). Given that multiple gene promoters can be captured within
a single Hindlll fragment, these 223 baits represented 323 gene
promoters (Supplementary Fig. 5 and Supplementary Table 9).
When we tested whether these 323 genes were enriched in any
KEGG pathways, we did not find any functional pathways passing
multiple-testing correction. This may be due to the fact that, on
average, each lipid-responsive enhancer interacted with approxi
mately two promoters (Supplementary Fig. 5), thus leading to
ambiguities regarding which gene might be the true target of the
lipid signalling response.

We further determined whether the genes that interacted with
lipid-responsive enhancers exhibited mutational constraints by
determining whether the cis regions (gene body+500kb) of the
protein-coding genes in this set (n=217) had higher average con
servation scores than all other protein-coding genes in the genome.
In contrast to what we observed for genes with lipid -responsive pro
moters (Fig. 3c), we did not observe a significant difference in the
conservation scores for genes that interacted with lipid-responsive
enhancers (Supplementary Fig. 5). Interestingly, of the enhancer
interacting genes that had a pLI score (n=207)", 50 (24.2%) were
LoF intolerant, which is significantly higher than would be expected
by chance alone (P=0.014) (Supplementary Fig, 5). Taken together,
these results are consistent with more moderate functional signifi-
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Table 1| Five lipid-responsive ATAC-seq peaks in interacting promoters overlap with GWAS SNPs for serum lipid traits

Peak Peak start Peak end Gene? SNP(s}in MAF  Assodated trait® P value® (from ref. ) Index SNP LD with
chr. peak (fromref. ™) (from ref. ") index
SNP?
9
il 61,594,652 61,596,828 FADS2-  rs99780 0.37 TG/HDL/LDL/TC 2.32x107%/5.52 %107 rs174546 0893
FADS? S239X00°7/8.62:10°%
rs368567 016 3.4x10°%NS/891 %101 0.35
F227 0%
rs191508698 0 1x107%/2.37x10°% 5
1.2410°2%/31x107
7 73,036,880 73038991 MIXIPL  rs55747707 0.2 TG 3.55x10-4 rs17145738 0.47
rs34060476 013 973100 077
2 27432323 2743287 SLC5A6-  rs25B0759 0.22 TG 218107 rs1260326 =
ATRAID 11275530 072 1.88%10" =
18 68115,758 B88116,375  MFATC3  rs2107269 0015 HDL 5.07x10% rs16942887 0.66
19 10,981,139 10,283,631 CARMT rs12460421 0.44 LDL 4.32x10M rs6511720 =
Lipid-responsive ATAC-seq peaks that fell within promaters in adipocyte chromosomal interactions (n =91} were assessed for whether they contained GWAS SNPs for serum lipid traits from the meta-
GWAS performed in Willer et al " Chr,, chromosorme, NS, not significant ¥The gene listed corresponds to the promoter in the baited Hindll fragment with a lipid-responsive ATAC-seq peak MAFis
the Eurcpean frequency from the 1000 Genomes Project The most significant association is in bold when a SNF is associated with mare than one serurn lipid trat 20 was calculated on the basis of

Eurepeans in the 1000 Genomes Project; LD caleulations = 0 2 are reported

cance of the genes that interact with lipid-responsive enhancers
when compared to genes with lipid-responsive ATAC-seq peaks in
their promoters.

Lipid responses contribute to heritability of serum lipid traits.
We hypothesized that the genes we were able to identify through
lipid-responsive promoter-enhancer interactions might high
light important genomic regions that contribute to the heritabil
ity of cardiometabolic traits. We found that five lipid-responsive
gene promoters and three lipid-responsive enhancers within adi-
pocyte chromosomal interactions contained SNPs with genome-
wide-significant (P <5x10°%) associations with serum lipid traits,
identified in a meta-GWAS of ~ 180,000 individuals' (Table | and
Supplementary Table 10). One ofthe lipid -responsive GWAS loci was
the well-known nutritional response locus containing the fatty acid
desaturase (FADSI-FADS2-FADS3) gene cluster on chromosome
11 (Fig. 4a), which harbours SNPs that have been associated with
multiple cardiometabolic traits” and intermediate phenotypes’ ",
In line with the observed pleiotropy among the serum-lipid-asso-
ciated SWNPs, the lipid-responsive peak in the FADS2 promoter con-
tained GWAS SNPs for all tested serum lipid traits”’ (LDL, HDL, TC
and TG), with the strongest signal coming from rs99780 for LDL
(P=2.39x10-"; Table 1). Notably, the observed open chromatin
peak in FADS2 was more accessible with palmitic acid treatment
than with oleic acid treatment (Fig. 4b; FDR =0.0021), correspond-
ing to the fact that one of the substrates of FADS2 is palmitic acid ™.

This response at a GWAS locus for serum lipids was reminis
cent of the strong SFA response at the GPAM locus (Fig. Ze); in
fact, all five GWAS SNPs for serum lipids in lipid-responsive gene
promoters within chromosomal interactions exhibited increased
chromatin accessibility specifically in response to SFA intake in adi
pocytes (Supplementary Table 11). The lipid-responsive enhancers
that interacted with gene promoters in adipocyte pCHi-C exhibited
a similar trend (Supplementary Table 12). These results suggest
that environmental responses, particularly to saturated fat intake,
explain functional mechanisms at these lipid GWAS loci.

Because signals that do not reach genome-wide significance
probably also contribute to the heritability of cardiometabolic
disorders, particularly with the added effect of relevant envi-
ronmental stimuli, we wanted to test the combined effect of all
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variants in our lipid-responsive regions while still accounting for
the linkage disequilibrium (LD} between them. We therefore tested
whether genetic variants in the cis region (gene body +500kb) of
all 154 lipid-responsive, interacting promoters contributed signifi
cantly to the heritability of serum lipid levels. For these analyses,
we used the LD score-partitioned heritability method™ and GWAS
summary statistics from the high-powered meta-GWAS for serum
lipid traits''. We found that 2.9% of all variants resided within the
cis regions of the 154 genes, and these variants contributed signifi-
cantly to the heritability of the four lipid traits (0.0088 < P<0.045,
with an average enrichment of 2.915; Supplementary Table 13). In
contrast, 5.5% of all variants resided within the cis regions of genes
with promoters interacting with lipid-responsive enhancers. These
SNPs contributed significantly to the heritability of HDL, but not
to that of the other lipid traits (Supplementary Table 14). This is
consistent with the more diffuse overall functional characterization
of the genes that interacted with lipid-responsive enhancers when
compared to the genes with lipid-responsive open chromatin in
their promoters. Overall, these results indicate that adipocyte lipid-
responsive, interacting loci are important in modulating serum lipid
levels in humans and provide evidence that variants in these regions
might have a role in GxE interactions in humans.

Lipid responses identify new GXE interactions for BMI in UK
Biobank. The large, deeply phenotyped UK Biobank® cohort can
provide a valuable resource for GXE studies, particularly because the
participants’ environmental phenotypes have been characterized in
a systematic manner. Saturated fat intake has known adverse effects
in the context of cardiometabolic disorders®~"", and we present evi
dence here in human adipocytes of an enhanced effect of human adi
pocyte genomic responses to SFA intake on cardiometabolic traits
in comparison to genomic responses from MUFA intake (Fig. 2c e
and Supplementary Tables 11 and 12). To maximize the number of
individuals for whom phenotypes were available, as well as to aim
for the most relevant environment and cardiometabolic outcome, we
used dietary intake of saturated fat (24-h recall) as the environmen
tal variable and BMTI as the outcome for our GxE analysis.

We first tested whether there were any genome-wide-significant
signals for GXE interactions by using 167,908 individuals in the
UK Biobank. We corrected the BMI measurements for array type,
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sex (inferred), age (when the participant attended an assessment
centre), age’, the assessment centre ID) and genetic principal com

ponents 1-20, as done previously””. We then inverse normal trans

formed the residuals to account for mean-variance relationships in
the phenotype, which have been shown previously to impact GxE
signals”. In the quantile-quantile plot from the genome-wide scan
for GxE interactions, there was no evidence of genomic inflation in
the GxE linear model (Supplementary Fig. 6). Furthermore, the fact
that we were not able to detect any genome-wide-significant signals
in this genome-wide GxE analysis (see equation (1} in the Methods;
Supplementary Fig. 6) supports the feasibility of our reverse GxE
candidate search approach, which identifies functional candidates
for GxE analyses from molecular genomics data produced under
biologically relevant conditions.

We have provided evidence that lipid challenge in adipocytes
highlights important regions of the genome that respond to envi-
ronmental cues and contribute to the heritability of cardiometa-
bolic traits. Thus, these regions represent strong candidates for
GxE interactions in humans. The 154 promoters in chromosomal
interactions contained 91 lipid-responsive open chromatin sites
(Fig, 3b), and we determined that 75 of these 91 candidate regions
contained variants with minor allele frequency (MAF) > 0.05 in the
set of 167,908 individuals for whom we had both dietary saturated
fat intake and BMI phenotypes available (Supplementary Table 15).

‘We performed GXE analysis by incorporating all SNPs resid
ing in the open chromatin, lipid-responsive promoter regions
(n=290; Supplementary Table 15) into a multivariable linear model
(see equation (2} in the Methods). This resulted in the identifica
tion of 14 significant nonredundant GxE SNPs (LD #<0.2) in 12
interacting promoters, incuding new GxE SNPs in the promot
ers of the well-known lipid-associated genes encoding hormone-
sensitive lipase (LIPE), coactivator-associated arginine meth-
yltransferase 1 (CARMI) and perilipin 2 (PLIN2) (Table 2 and
Supplementary Table 16).

‘We next performed a similar GE analysis on all SNPs at the
lipid-responsive enhancers that interacted with gene promoters in
human adipocytes. Of the 173 lipid-responsive regions within the
interacting enhancers (Supplementary Fig, 5), 142 contained SNPs
with MAF>0.05 in the 167,908 individuals in the UK Biobank
(Supplementary Table 17). We used the same multivariable linear
model approach to test these SNPs (n=410) for an interaction with
the effect of saturated fat intake on BMI and found 24 nonredun-
dant (LD r* < 0.2) significant GXE SINPs (Supplementary Table 18).
Given that enhancer fragments can interact with more than one
promoter-containing pCHi-C bait, these 24 nonredundant SNPs
interacted with a total of 27 promoter baits in human adipocytes
(Supplementary Table 18).

Identifying altered chromatin states at GxE SNP sites. The dif
ferential chromatin accessibility in response to lipid challenge in
adipocytes probably stems from altered chromatin states, such as
TF binding or histone modifications. This idea is supported by
our finding that the lipid-responsive regions within chromosomal
interactions are enriched for the motifs of TFs important in lipid
metabolism (Fig. 3a and Supplementary Table 6). To determine the
predicted allelic effect of the GxE SNPs on chromatin features, we
used the DeepSEA tool™, which applies a deep learning algorithm
to publicly available molecular genomics data to predict chromatin
features on the basis of genomic sequence in silico. Notably, 11 of the
20 (55%) GxE SNPs in lipid-responsive promoters had a functional
significance score of less than 0.05, and the predicted impacts of the
GxE SNPs included differential binding of RXRA (Supplementary
Table 19). Conversely, only 5 of the 26 (19%) GxE SNPs in lipid-
responsive enhancers had functional significance scores of less than
0.05 (Supplementary Table 20). It is worth noting that the publicly
available data used to train the DeepSEA neural network do not
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Fig. 4 | A lipid-responsive open chromatin region in human primary
adipocytes at the 11q12.2 FADS1-FADS2-FADS? locus harbours GWAS
SNPs for serum lipid traits. a, Genorme browser snapshot showing the
FADSTI-FADS2-FADS? locus with data from adipocyte baseline ATAC-seq
(one representative example frorm n=3 vehicle control (BSA) ATAC-seq
libraries) and pCHI-C (interactions identified in at least one condition
from the adipocyte lipid challenge pCHI-C analysis were included;

see Methods). Chromosomal interactions of the FADSZ promoter are
highlighted in magenta. b, Read coverage (BPM) in one representative
ATAC-seq library (n= 3 replicates per condition) from vehicle control
(red), MUFA (green) and SFA (blue) treatment. The lipid-responsive peak
in one of the FADS2 promoters is more accessible in SFA-treated than in
MUFA-treated adipocytes and contains three independent GWAS SNPs
for serum lipid traits (1, rs191508698; 2, rs968567; 3, rs®9780). FDR was
calculated (adjusting for n=122,252 ATAC-seq peaks) from the P values
of the QL Ftest (see Methads) in one-way ANOWVA. For the post hoc test
to determine which comparison was significant after one-way ANOVA
(MUFA vs_control, SFA vs. control or SFA ve. MIUFA), we determined the
least significant difference; **FDR=0.0021; NS, not significant.

include molecular genomics data for adipocytes or adipose tissue.
Therefore, it is possible that the GxE SNPs fall into cell -type-spe-
cific regulatory elements and disrupt chromatin features that cannot
be predicted with this tool.

To obtain further evidence for the function of the GxE SNPs
in adipose tissue, we examined whether the GXE SNPs affected
local gene expression in human adipose tissue as cis expression
quantitative trait loci (cis-eQTLs) and whether the cis-eQTL target
gene was the same gene that harboured the lipid-responsive pro
moter and GXE signal. We found that 3 of the 12 genes with lipid
responsive promoters harbouring GxE signals were also regulated
in ¢is by their GXE SNP at the genome-wide significance level in
subcutaneous adipose RNA-seq data (n=335) from the Finnish
METSIM cohort'™ (Table 2 and Supplementary Table 16). These
genes were GLTSCR2 (encoding glioma tumour-suppressor candi-
date region gene 2 protein), PLIN2 and LDB3 (LIM domain binding
3). Additionally, 2 of the 27 genes interacting with lipid-responsive
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Table 2 | Significant GxE interactions affecting BMI from a multivariable linear model for 290 promoter SNPs in lipid-responsive

ATAC-seq peaks

SNP P. Pee B e Genesinbait Cis-eQTL FDR* Target gene log, (FC)
(from ref. ™) (from ref. ™) (from ref. %)

519748170 0.008% 0.0010 i) —0.082 GLTSCR2: 2410 SEPWI 073
SNORDZ3

rs58631862 0.032 0.0031 0.085 =0.0035 RGMB - - -

rs74249860 0.0013 0.0043 0.081 —0.0021 SH3GL3 0.021 GOLGAGLS 050

rs1124388920 0.007 0.0050 -050 0.0m2 CARMI 27x10% SMARCA4 -0.28

0.015 1CAM4 038

rs17625418 0.5 0.0054 -2.2 0.0732 GLTSCR2- 1.23x10"% SEPWI —(0.76
SNORDZ3 0.0038 GITSCR2 -03

rs3848589 0.045 0,014 0.073 00027 HOQK2-JUNE  0.0058 CACNATA =06

rs882881 0.034 0018 =0.051 Q.07 PLIN2 - - -

rs35213231 056 0.020 0.66 —0.038 RNU2-10P 0.01% PTPRG 0.2¢9

rs41322049 0.29 0.0 0.032 -0.0021 BLVRE- = = o
SPTEN4

rs35678T6 4" 0.028 0.025 -57 018 RDH8-COLSAZ - -

rs10788522% 0.02 0027 39 ~(014 LOgz 61x10 LOB3 0.42

510422283 0.045 0.029 —0.072 0.0023 LIPE-LIPE-AST

rsBe7 773k 03 0033 =20 on PLINZ 0.048 PLINZ -39

112245360_CCTTTTT_C 0.047 0034 064 -0.022 TNFRSFIB- - - -
MIR4632

The reported P values are from the 8 values in the multivariable linear model (see equation (7) in the Methods), where g is the number of miner alleles of the genolype and e s saturated fat intake. Here

Ps indicates the Pualue for the genotype effect and Pagindicates the P value for the GXE effect; fualues follow the same notation. For the multivariable inear model, thers were a total of 290 SNPs and
38,394 individuals with no missing data available for s udy, *Crs-eQTLs were identified in acipose hissue from the METSIM cohort™? "When more than one non-independent SNP (LD 25 0.2) has a
significant GE P value for the lipid-responsive region, only the Lop S is repocted; the SHPs in LD wath the top SMP are histed in Supplementary Table 16

enhancers were regulated in cis by their interacting GxE SNP at the
genome-wide significance level in human subcutaneous adipose
tissue (Supplementary Table 18): THES2 (thrombospondin 2) and
CITED4 (Cbp/p300-interacting transactivator with Glu/Asp-rich
C-terminal domain 4).

We further examined whether the imputed cis expression val-
ues for these five cis-eQTL target genes (eGenes) were correlated
with BMI or other obesogenic cardiometabolic phenotypes, as
determined through transcriptome-wide association analysis
(TWAS)Y*", The LDB3 adipose expression model was strongly
associated with BMI, arm fat percentage (genome-wide-significant
TWAS score> 5.0) and other related body fat distribution pheno-
types (TWAS score>4.0)". Furthermore, the tibial artery expres-
sion model for LDB3 was also significantly associated with high
blood pressure and cardiovascular disease (genome-wide-signif
icant TWAS score <=5.0)"", None of the other eGene expression
models was associated with cardiometabolic phenotypes at the
genome-wide significance level.

Because the adipose expression models of LDB3 were signifi-
cantly associated with BMI in TWAS", we followed up on the most
significant GXE SNP in the LDE3 lipid-responsive peak (Fig. 5a),
1510788522, which was also an adipose cis-eQTL for LDB3 in the
METSIM cohort (Table 2). As evidenced by the ATAC-seq reads
intersecting with SNP rs10788522 (Fig. 5b), we found, by electro
phoretic mobility shift assay (EMSA), that adipocyte nuclear pro
tein bound this GXE SNP (Fig. 5c and Supplementary Table 21).
Whereas LDB3 was expressed in subcutaneous adipose tissue
from the METSIM cohort, as well as the Gene-Tissue Expression
(GTEx) Project”, we could not reliably detect LDB3 expression
by quantitative PCR (qPCR) in the lipid-challenged adipocytes
(data not shown). We therefore determined whether any publicly
available datasets analysed the transcriptome of sorted cells from
human adipose tissue. In previously published microarray datasets
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{GSE80651 and GSE100795) from human adipose biopsies in
which adipocytes were collected and the remaining cell types were
separated by fluorescence-activated cell sorting (FACS), LDB3 was
expressed in human adipocytes at a level comparable to that in the
other adipose cell types™ ™. Taken together with our finding that
the LDB3 promoter responds to lipid uptake in adipocytes, these
data support the conclusion that the GxE SNP rs10788522 regu-
lates LD)B3 expression in adipocytes in response to dietary saturated
fat and that the interaction has a protective (BMI-lowering) effect
(Table 2). Altogether, we provide a mechanistic interpretation and
fine-mapping of a causal GXE SNP, rs10788522, narrowing it to
the promoter of LDB3 that exhibits differential open chromatin in
response to lipid challenge in human adipocytes (Figs. 5 and 6).

Discussion
It is well established that environment has a major role in the devel
opment of cardiometabolic disorders. However, GxE interactions
have been challenging to detect owing to both the lack of extensive
study cohorts with sufficient statistical power to detect the small
G E effects and the complexity of environmental exposures that are
difficult to measure in a standardized way in humans'. Systematic
identification of the effects of defined environmental contributions
to cardiometabolic disorders is thus necessary to effectively move
towards the promise of precision medicine. Through our integra
tion of context-specific molecular genomics data with human epi
demiological and clinical outcome data in the UK Biobank, we
provide much-needed information on how the chromatin land-
scape of human adipocytes responds to external environmental sig-
nals and identify the molecular basis of new GxE interactions in
humans (Fig. 6).

‘We reversed the typical approach of selecting candidate GxE
interactions among GWAS SNPs, by first scanning the genome for
molecular responses to controlled environmental stimuli, apply-
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Fig. 5 | Fine-mapping of the gene-diet interaction for BMl in the LDB3 promoter region. a, Genome browser snapshot of the [DE3 locus with adipocyte
baseline ATAC-seq (one representative example from n=23 vehicle control (BSA) ATAC-seq libraries) and pCHI-C data (interactions identified in at least
oné condition from the adipocyte lipid challenge pCHI-C analysis are included; see Methods), LOB3 promoter interactions are highlighted in magenta.

b, Read coverage (BPM) in one representative ATAC-seq library (n=23 replicates per condition) for control (red), MUFA (green) and SFA (blue) treatment.
The lipid-responsive ATAC-seq peak harbouring the significant GxE SMP rs10788522 resides in the LDB3 gene. FDR was calculated (adjusting for
n=122,252 ATAC-seq peaks) from the Pualues of the QL Ftest (see Mathods) in one-way ANOVA. For the post hoc test to determine which comparison
was significant after one-way ANOVA (MUFA vs. control, SFA vs. control or SFA v, MUFA), we determined the least significant difference; *FDR=0.024,

The Pvalus for g, at rs10788522 was derived from the multivariable linear model testing for GxE interactions in the UK Biobank; P=0.027, ¢, EMSA
showing binding of adipocyte nuclear protein to the GxE SNP rs10788522. The specific band is competed away for both alleles {lanes 2 and &). Ref,

reference allele; alt, alternate allele.

ing a cellular model of the effects of saturated or monounsaturated
fat intake on chromatin dynamics in primary hmman adipocytes.
Through our integration of chromatin accessibility and chro-
mosomal interactions in lipid-challenged adipocytes, we identi-
fied lipid-responsive open chromatin within promoter-enhancer
contacts, effectively identifying candidate GxE interaction genes
with strong evidence of genomic regulation in response to fatty
acid uptake and processing in human adipocytes, This systematic
approach culminated in testing a total of 700 SNPs in the accessible,
lipid-responsive chromatin regions for interactions with dietary sat-
urated fat intake affecting BMI in the UK Biobank®. This led to the
identification of 14 significant, nonredundant GxE SNPs in 12 gene
promoter regions and 24 nonredundant GE SNPs in 20 enhancers,
representing new gene-diet interactions affecting BMI (Fig. 6).

‘We observed that the LDBE3 gene is regulated in cis by its pro-
moter GE SNP in human adipose tissue, and previous TWAS anal-
yses have shown that the imputed local adipose expression of LDB3
is significantly associated with BMI and related cardiometabolic
phenatypes™. Notably, individuals with nonsynonymous muta-
tions in exon 6 of LDB3 have been shown to exhibit autosomal dom-
inant myofibrillar myopathy characterized by fatty degeneration
(steatosis) of the muscle that progresses with age”", This is sugges-
tive of the role of lipid metabolism in the pathophysiology of these
variants. Here we show that accessibility of the promoter region is
increased in response to lipid challenge in human adipocytes, and
adipocyte nuclear protein binds to the GxE SNP site. Although
we did not detect LDB3 expression in our cultured adipocytes, we
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found that the gene was expressed in mature adipocytes isolated
from human adipose biopsies, in vivo, suggesting that future studies
to understand the role of LDB3 in adipocytes may require in vivo
mouse models. In line with this, LDB3 is known to bind «-actinin
isoforms that are not muscle specific, and actin cytoskeleton orga

nization is critically important in maintaining proper tissue func-
tions. Taken together with the adipose cis-eQTL and TWAS results,
our lipid challenge findings provide a functional mechanism for the
GxE effect in human adipocytes, adding to the knowledge of envi

ronmental response to diet and the consequent effects on genetic
predisposition to cardiometabolic traits in humans.

The 154 lipid-responsive promoters within adipocyte chromo-
somal interactions provide a set of biologically important genes for
studies in adipose tissue. These gene regions have a higher conser
vation score and the 154 genes are more likely to be intolerant to
LoF mutation than expected by chance, suggesting that there are
evolutionary constraints to maintain their proper function. The
LoF-intolerant genes are widely and highly expressed”, and they
may exhibit pleiotropy. Nonetheless, the lipid-responsive mecha
nism of genomic regulation identified for the LoF-intolerant genes
in this study provides evidence that these genes may be important
in maintaining energy homeostasis, which is critical for survival.

It is known that dietary saturated fat intake is correlated with
various adverse cardiometabolic outcomes™", and a genetic risk
score (GRS) for obesity-related traits was previously shown to
interact with saturated fat intake to affect BMI™. However, as the
authors of this study note, the underlying mechanisms for the GxE
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Fig. 6| Analytical approach. Flowchart of our approach to integrate
molecular genornics data created in hurnan adipecytes in physiclogically
relevant contexts that, when combined with human cohort malecular and
phenotype data, enable the datection of GE signals.

interactions remain elusive, particularly when the effect is esti-
mated across tens of SNPs”. Here we bridge this knowledge gap
and show through a genome-wide scan of regulatory open chro-
matin responses to saturated versus monounsaturated fat uptake
that a subset of these responses are probably specific to saturated fat
intake and, when dysregulated at the genetic level, could underlie
GWAS and GxE signals for cardiometabolic traits. We note that we
assessed the effects of exogenous fatty acids and did not quantify
the consequent cellular fatty acid processing, which could include
desaturation of palmitic acid (C16:0) to the MUFA palmitoleic acid
(Clé:1), by stearoyl-CoA desaturase (SCD). Thus, we do not know
whether the effects we observed at the DNA level were directly due
to SFA signalling or resulted from downstream signalling mecha
nisms of the SCD pathway, affecting MUFA concentrations inside
the cell.

Our finding that SNPs within the cis regions of the 154 lipid-
responsive gene promoters (gene body+500kb) contributed
significantly to the heritability of serum lipid levels suggests that
responses to lipid uptake in adipocytes are associated with cellular
programs that can modulate serum lipid levels. Correspondingly,
we identified five adipocyte lipid-responsive, interacting gene
promaters and three lipid-responsive enhancers that harboured
genome-wide-significant signals for serum lipid traits, including
in the well-known FADSI-FADS2- FADS3 gene cluster involved in
nutrient sensing, Specific lipid-associated SNPs within this locus
have undergone positive selection in Inuits, which is thought to
NATURE METABOLISM | VOL 1] JUNE 2019 | 630-842 |
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have been in response to the polyunsaturated fatty acids (PUFAs) in
diets with high amounts of marine mammalian fat*. Furthermore,
a gene-diet interaction for PUFA intake has been identified in
Furopeans at the FADS1-FADS2-FADS3 locus', and, while many
studies of the effects of FADSI-FADS2 polymorphisms on PUFA
metabolism have shown a clear role for this locus in modulating
serum fatty acid levels, an understanding of the mechanistic effects
of these SNPs, associated with cardiometabolic disorders, has been
less conclusive' ", Our results suggest that the underlying mech

anisms may derive from the effects of saturated fats at this locus.
This additional role for a well-established, yet-inconclusive locus
supports the applicability of our approach to identify GxE interac-
tions through characterization of molecular genomic responses to
relevant environmental stimuli.

Although there has been a strong international effort by the sci-
entific community to characterize genomic regulatory elements in
various cell types and tissues, many of the publicly available datas-
ets and corresponding genomic annotations have been created in
cells at steady state or under unstimulated baseline conditions™ ",
Context-specific molecular genomics studies have mainly been per
formed in immune cell types’’~’, while similar studies in other cell
types are scarce. In line with the importance of studying molecular
genomic phenotypes under physiclogically relevant conditions, we
found here that, whereas most lipid-responsive regions in human
adipocytes reside in known adipocyte enhancers, a subset emerge
from regions that were not identified as open chromatin and were
annotated as quiescent’ in unchallenged adipocytes, indicating that
quiescent regions of the human genome are activated under specific
environmental contexts. Thus, this genome-wide scan for response
to fatty acid uptake in adipocytes adds to the currently incomplete
understanding of genomic regulation in contexts that are expected
to confer complex cardiometabolic disease states.

In condusion, this study highlights the value of performing
genome-wide functional genomics experiments in a context-spe
cific manner to advance understanding of environmental epig-
enomic responses underlying complex traits. We performed a global
assessment of the genomic responses of primary human adipocytes
to dietary fatty acid uptake, through incorporating open chromatin
and chromosomal interaction data that we followed for GXE inter-
actions in UK Biobank. Overall, our study helped discover candi-
date functional mechanisms at 38 new gene-diet interactions on
BML, identified over 100 genes important for lipid uptake that may
contribute to variance in cardiometabolic traits and uncovered a
new set of interacting open chromatin elements responding to lipid
challenge in a primary human cell type relevant for lipid synthesis
and storage.

Methods

Cell lines and culture reagents. We obtained and cultured primary human

while preadipocyte cells as recommended by PromoCell (PromoCell, C-12731,
lot 3937024} for preadipocyte growth and differentiation Into adipocytes. Cell
medium (PromoCell) was suppl ted with 1% penicillin-stref in. We
maintained the cells at 37°Cin a humidified atmosphere at 5% CO,. For the lipid
challenge experiments in adipocytes, we serum starved cells for 16 h with 0.5%
FCS in supplemented adipocyte basal medium { PromoCell), before treatment
with 200 .M palmitic acid: BSA complex, 200 uM oleic acid:BSA complex (Sigma-
Aldrich, O3008) or 0.23% fatty-acid-free BSA (Sigma- Aldrich, AB806) as a vehicle
control, in medium containing 0.5% FCS for 24 h before performing experiments.

Palmitic acid conjugation to BSA. We dissolved 25.6 mg of palmitic acid (Sigma-
Aldrich, P5385) Into 1 ml of 0.15M NaCl at 70°C In a shaking heat block to make

100 mM palmitic acid solution. We added the palmitic acid solution dropwise into
10% (w/vol) BSA in 0.15M NaCl at 37°C to generate palmitic acid:BSA conjugate
at mM stock for palmitic solution.

il Red O staining and quantification. We prepared Oll Red O stock by making
0.3% Ol Red O solution in >99% isopropanol and filtering through a 0.45-pm filter
This solution was diluted 3:2 in water, incubated at room temperature for 10 min
and then filtered through a 0.22-pm filter. We fixed cells for 30-60 min In 10%
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formalin, rinsed with distilled water and incubated for 2-5min at room temperature
with 60% isopropanol. We stained with Oil Red O for 15 min, rinsed well with waler
and collected images for q fication. Cells were ph phed with a Keyence
bright-field light microscope under <10 magnification for publication images and
20 magnification for lipid droplet quantification. Lipid droplet numbers were
determined for ~20 cells per condition (untreated, BSA, palmitic acid and oleic
acid). The total area of Oil Red O staining was quantified with Imagel™.

ATAC-seq. We performed the ATAC seq protocol in untreated primary human
preadipocytes and adipocytes for 300,000 nuclel in three biological replicates per
cell type, simllarly to the protocol developed In Buenrostro et al.”. Specifically, we
lysed cells in ice-cold Iysis buffer (10 mM Tris-HCI pH 7.4, 10mM NaCl. 3mM
MgClL) plus $.03-0.1% Tween. 20 for 10 min on ice. We centrifuged al 500y for

10 min at 4°C and then resuspended the nuclear pellet in 50 ul of rans position
master mix (25 of 2 TDEL buffer, 2.5 pl of transposase, 22,51 of nuclease-free
waler; Ilumina, FC-121-1030), We incubated samples at 37 °C for 30 min and then
purified the DNA with the Qiagen MinElute kit {Qiagen, 28204). Libraries were
amplified for six cycles and sequenced on an Hlumina HiSeq 4000 to produce an
average of 23,376,290 (+3,337,206) reads.

For the ATAC-seq analysks In primary human adipocytes that underwent lipid
challenge, we performed omni-ATAC as developed in Corces etal™ for 300,000
nuclel in three biologlcal replicates per condition. Specifically, we treated the cells
with DNase T (Worthington; 200 U mi*) at 37°C for 30 min, rinsed the cells with
ice-cold PES, scraped the cells gently to the side of the plate, resuspended them in
50l ofice-cold lysis buffer {10 mM Tris- HCI pH 7.4, 10 mM NaCl, 3mM MgCl,
0.1% Igepal CA-630, 0.1% Tween-20, 0.01% digito and incubated them on ice
for 3 min, We washed with 1ml of ice-cold lysis quench (10 mM Tris-HCI pH 7.4,
10 md NaCl, 3mM MgCl,, 0.1% Tween-20) and centrifuged at 500g for 10 min at
4°C. The nuclear pellet was r led in 50 pl of ition master mix {25p1
of 2 TDEI buffer and 2.5 pl of transposase, 16.5pl of PBS, 0.5 pl of 1% digitonin,
0.5 pl of 10% Tween-20, 5 pl of nuclease-free water). We Incubated samples at 37°C
for 30 min with mixing at 1,000 £p.m. and then purified the DNA with the Qlagen
MinElute kit. Libraries were amplified for 6-7 cvcles and sequenced on an Hlumina
HiSeq 4000 to produce an average of 40,315,572 (+14,577,770) reads.

ATAC-seq dala processing and peak calling. We processed the sequencing reads

and performed quality control by using the ENCODE ATAC-seq Data Standards

and Prototype Processing Pipeline. Briefly, we aligned reads to the human reference

genome (GRCh37/hgl9) with Bowtie2 (ref *) v2.2.9 (with parameters -k 4 -X

2000 --local) and filtered out unpaired mapped reads and reads with MAPQ <30

(SAMtools™) as well as duplicates (marked with Picard Tools). Only reads from the
! and X ch ome were retained for downstream analyses.

Tdentification of differentially accessible ATAC-seq peaks. Read alignments
from all untreated human preadipocyte and adipocyte lbraries (three biological
replicates per cell type) were merged before peak calling. Peaks were called with
MACS2 (ref. *) v21.1 (by using the BEDPE function), and peaks with FDR < 0.05
were retained. We filtered out peaks in blacklisted regions and peaks that did

not replicate in two of the three biological replicates in at least one condition.

For differential accessibility analyses, we retained peaks with counts per million
(c.p.m.) = 1in at least three libraries, We then input aligned read counts for

each peak into cqn™ v1.20.0 and normalized the counts for G+C content, peak
length and library size, before inputting the counts into edgeR™ v3.16.5 to detect
differentially accessible peaks between preadipocytes and adipocytes with the
generalized linear model (GLM) functionality and QL F test, applying an FDR
threshold of 0.05. Libraries for adipocyte lpid challenge ATAC-seq were processed
identically until the differential accessibility analysis. To detect open chromatin
reglons that exhibited diff fal ac bility in lipid-challenged adipocytes,

we performed one-way ANOVA with the GLM lunctionality and QL F test
functionality in edgeR™, applying an FDR threshold of 0.05. For the post hoc test
to determine which comparisons were significant after one-way ANOVA (oleic
acid versus BSA, palmitic acid versus BSA or oleic acid versus palmitic acid), we
determined the least significant difference.

Transcription factor motif enrichment in ATAC peaks. We used HOMER (v4.9)°
to Investigate the enrichment of motif sequences in open chromatin reglons. For
enrichment in differentially accessible peaks bety untreated |
and adipocytes, we used the consensus peak set (all peaks that were called in

both the preadipocyte and adipocyte data) as the background. We utilized the

de novo motif enrichment functionality. To ensure that our background input file
was not biasing the results, we performed the same analysis with the genome as
the background input. which produced largely the same results, with smaller P
values {data not shown). For enrichment in lipid- responsive peaks in adipocyte
promoter-enhancer contacts, we used non-differentially accessible peaks within
the promoter-enhancer contacts as the background. Owing to the small number of
peaks (1= 264), we used the known TF motif enrichment functionality.

Fl
pocytes

Hi-C library preparation. We prepared the Hi-C libraries for the primary human
adipocyte lipid challenge experiment as described in Pan et al™ in two biological
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replicates per condition (BSA, oleic acid and palmitic acid). These methods

were adapled by closely following the in-nucleus Hi-C methods in Rao et al.”
and Nagano et al.”. Specifically, we fixed 7-10 million adherent cells directly

in the culture plate in 2% formaldehyde and quenched with glycine to a final
concentration of 125 mM, Cells were lysed in ice-cold lysis buffer (10 nM Tris
HCl pH 8.0, 10 mM NaCl, 0.2% Igepal CA-630, 1 protease inhibitors: cOmplete,
EDTA-free Protease Inhibitor cocktail) on ice for 30 min with occasional agitation.
We split lysates into aliquots with 5 million nuclel and centrifuged at 2,500g for
Smin at 4°C. The nuclear pellets were resuspended in 50 pl of 0.5% SDS in 1
NEEBuffer 2 {New England Biolabs} and incubated at 62°C for 10 min. We then
added 145 pl of water and 25 pl of 10% Triton X-100 and Incubated at 37°C

for 15min. We digested chromatin by adding 25 il of 10 NEBuffer 2 and

ARG of Hind I {New England Biolabs), incubating at 37 °C overnight with
shaking (950 r.p.m. ).

The next day, we marked the DNA ends with biotin { 1.5l of 10 mM dATF,
1.5l of 10mM dGTE 1.5 1 of 10 mM dTTE, 37.5 1l of .4 mM biotin-14-dCTP
(Invitrogen), & pl of 5U ul* Klenow (New England Biolabs)), incubating for 60 min
at 37 °C; we then added 895 pl of ligation mix (663 pl of water, 120l of 10 NEB
T4 DNA ligase buffer, 100 pl of 10% Triton X-100, 12 pl of 10 mgml~ BSA, 5ul of
4001 pl* T4 DNA ligase (New England Biolabs)). Ligation was performed at room
temperature for 4h with slow rotation, and 50 p1 of 20 mgml proteinase K and
120l of 10% SDS were added with incubation at 55 °C for 20 min, We added 13001
of 5M NaCl and incubated at 68 °C overnight. We then performed an ethanol
precipitation and sheared the purified DNA to 250-550bp in size with a Covaris
M220 instrument. Double size selection was performed with SPRI select agent
(Eeckman Coulter) by adding 0.55 volumes and then .15 volumes according to the
manufacturer’s ins s, eluting the final DNA in 300 jd of 10 mM Tris pH 8.0

Biotin pulldown was performed with 150 pl of 10mgm]” DYNAL MyOne
Dynabeads Streptavidin T1 (Invitrogen, 65601) per sample. First, the beads were
washed twice with 400 pl of 13 Tween wash buffer (12 TWB: 5 mM Tris-HCl pH
7.5, 0.5mM EDTA, 1 M NaCl, 0.05% Tween-20) and resuspended in 300 pl of 2
binding buffer (2« BB: 10mM Tris-HCl pH 7.5, 1mM EDTA, 2M NacCl). Beads
were then added to 300l of sheared and size-selected DNA. We incubated at room
temperature for 15 min with rotation to bind biotinylated DNA to the streptavidin
beads. We washed twice with mixing at 55°C by adding 600 1l of 1< TWE and
then washed beads in 1000 of 1 NEB T4 DNA ligase buffer. We repaired the
ends of the DNA by resuspending beads in 100 ul of master mix (88 pl of 1 NEP
T4 DNA ligase buffer with 10 mM ATE, 2pl of 25 mM dNTP mix, 5pl of 101 pl-!
NEB T4 PNE, 4l of 3U pl* NEB T4 DNA polymerase L 1l of 5 Upl” NEB
DNA polymerase I, large (Klenow) fragment) and incubated samples at room
temperature for 30 min. We washed twice with 1< TWE, washed once with 1<
NEEBuffer 2 and then resuspended samples in 100 pl of dATP attachment master
mix (90 of 1:x NEBuffer 2,50 of 10 mM dATE 5 of 5 U pl-* NEB Klenow
exo minus) and incubated samples for 30min at 37°C. We washed twice with 1:<
TWB and resuspended beads In 100 ul of 1 T4 DNA ligase buffer. We followed
the manufacturer’s instructions for the Agilent SureSelect to ligate the paired-end
adaptors. The beads were then washed twice with 1 TWE and resuspended in
32l of 1 Tris buffer. DNA was removed from the streptavidin beads by heating
at 98°C for 10min. We followed the manufacturers instructions for the Agilent
SureSelect for precapture PCR, carried out for eight cycles.

Promoter capture Hi-C library preparation. RNA baits were designed in
Mifsud et al."* for capturing HindI1I fragments containing gene promoters

(C. Osborne {Department of Medical & Molecular Genetics, King's College
London, London, UK} kindly shared the exact design). As described in Mifsud
etal’, 120-mer RNA baits were designed to target both ends of HindIII fragments
that contained £ENE | ters (E bl promoters of protein-coding,
nencoding, antisense, snRNA, miRNA and snoRNA transcripts). A bait sequence
was deemed valid if the sequence had a G+C content of 25-65%, contained
fewer than three consecutive Ns and was within 330 bp of the ends of the HindIIT
fragment Hi-C library hybridization to the capture library was performed
according to the manufacturers instructions for the Agilent SureSelect. A total of
550ng of the Hi-C library was hybridized to the biotinylated RNA baits, captured
with DY NAL MyOne Dynabeads Streptavidin T1 and amplified in post-capture
PCR to add index sequences, for 12 PCR cvcles. The library was sequenced on
the lllumina HiSeq 4000 platform. All six libraries were sequenced together
across two lanes of the Tllumina HiSeq 4000 to produce an average of 127,069,374
{+16,853,586) sequencing reads per library.

P

Capture Hi-C data processing and interaction calling. We processed the
sequencing reads as described in Pan et al.”, by using the Hi-C User Pipeline
(HICUP) v0.5.9 (ref. ) with defanlt settings except that the insert size restrictions
for the filtering step were set to 200-600 bp. We called significant interactions

for each library separately with CHICAGO software v1.1.1 (ref. ). We used the
defam ]t threshold of 5 for calling significant interactions. To create a stringent set
of interactions, we merged all pCHI-C final alignments and called interactions
with CHICAGO, again by using a threshold of 5; we then filtered these Interactions
to include only those that were called in bath biological replicates in at least one
condition (BSA, oleic acid or palmitic acid).
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Cross-species conservation analysis. For the cross-spedes conservation analysis,
we used the PhastCons score'” available on the UCSC ENCODE database. Briefly,
the PhastCons score uses a phylo-HMM to predict per-base conservation across
species. We used the PhastCons scores for placental mammal alignment and
calculated the mean score for each of the lipid-responsive regions for the protein-
coding lipid resp £enes o1 (gene body + 500kb). To create a
background set for this comparison, we calculated the mean score for all other
protein-coding genes annotated by Ensembl in GRCh37 and thelr surrounding
regions of 500 kb, We performed a non- parametric two-sided Wilcoxon signed
rank test to compare the lipid-responsive regions to the background set

LD} score analysis. We used LD score regression™ to estimate the heritability
explained by the lipid-responsive regions. More specifically, we generated an
annotation for each lipid- responsive region consisting of the lipid-responsive
gene (gene body + 500kb) and used the summary statistics from a lipid GWAS"
to estimate the proportion of heritability explained by the 154 lipid- responsive
prometers or 323 promoters that interacted with lipid-responsive enhancers in
adipocytes, for the four lipid GWAS traits: serum TG, HDL, LDL and TC.

Genotype and phenotype data from the UK Biobank cohort. We downloaded
imputed genotype data from the UK Biobank cohort'. We identified all SNPs in
the lipld-responsive gene p ters Involved In ch | Interactions. For
the G interaction test, we filtered out SNPs that had a genotype missing rate

of greater than 5% or a MAF of less than 5%. We used the BMI value collected
from the initial UK Biobank assessment visit al which partidpants were recruited.
The data for 24-h recall of saturated fat consumption in diet was collected at five
different time points, including during the initial assessment and four online cyce
collections, Il an individual had 24-h recall of saturated fat consumnption collected
at multiple time points, we used the value closest to the initial assessment. We
then selected unrelated individuals of European ancestry from the UK Biobank
participants who had data on both BMI and saturated fat diet collected for the G<E
analysis. We corrected BMI for the following covariates and performed inverse
normal transformation to ensure that BMI was normally distributed: array type,
sex {Inferred), age (when the participant attended the assessment centre), age®, the
assessment centre ID and genetic prindpal components 1-20.

Genome-wide GxE scan. To verify that our significant G<E interactions were
not caused by overall inflation, we fitted the linear GE interaction model on all
SNPs across the human genome in the UK Biobank data. We first selected SNFs
that were not in the same LD block (r* < 0.2) and then used the following linear
madel to detect the G<E interaction between each LD-pruned SNP and saturated
fat intake on BMI

Y=a+fg+fe+fge+e (1)

where ¥ Is a vector of Inverse normal transformed BMI values and g represents
the vector of the number of minor alleles in the genotypes of the target SNP for
the individuals in the study sample. We used e for the vector of saturated fat intake
levels as the environmental covariate, and ¢ represents a vector of random errors,
inwhich each entry is independently and normally distributed. & and £ are the
estimated parameters. The test for an interaction is based on the coefficient 5.,

A non-zero §; value indicates that there is an inleraction between the genotype
and environmental factor for the outcome phenotype. We constructed a quantile
quantile plot to compare the Pvalues of ., and the expected Pvalues based on
multiple testing,

Testing for GXE interaction by multivariable linear model. We used the
following multivariable linear model to detect the G<E interactions between SNPs
and saturated fat intake for BMI

Yot e+ E{ﬁmxgl) + E (BopRge) e (2)

where T is a vector of inverse normal transformed BMI values and g, represents a
vector of the number of minor alleles in the genotypes of the target SNP i, where
i=1, .., NSNPs for the individuals in the study sample. We use ¢ for the vector of
saturated fat intake levels as the environmental covariate, and ¢ represents a vector
of random errors, in which each entry is independently and normally distributed.
e and ¢ are the estimated parameters. The significance of the interaction is

given for the coefficlent i, A non-zero fi_,, value indicates that there is an
interaction between the genotype i and the environmental factor (24-h satorated
fat recall) for the cutcome phenotype { BMI). Individual £, values are estimated
with conditioning on the effects of the other genotypes and 5, values from the
multivariable linear madel. The Pvalues given for the individual gy, values are
calculated by ¢ test.

Electrophoretic mobility shift assays. Nuclear protein was extracted from
adipacytes with a nuclear protein extraction kit (Active Motif, 40010) following
the manufacturer’s instructions. Oligonudeotide probes (corresponding to the
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15bp flanking a SNF site for the reference or alternate allele Supplementary
Table 21} with a biotin lag al the 5' end of the forward sequence {Integrated

DNA Technologies) were incubated with human adipocyte nuclear protein and
the working reagent from the Gelshift Chemiluminescent EMSA kit (Active
Motil, 37341). For competitor assays, an unlabelled probe of the same sequence
was added to the reaction mixture at 1003 excess. The reaction was incubated

for 30 min at room temperature and then loaded on a6% retardation gel

{Thermo Fisher Sclentific, EC6365B0X) that was run In 0.5 TBE buffer. We
transferred the contents of the gel to a nylon membrane and visualized signal with
chemiluminescent reagent as recommended.

Cis-eQTLs in the METSIM cohort. We obtained subeutaneous adipose efs-¢QTL
variants identified in RNA-seq data (n = 335) from the Finnish METSIM cohort'™".

Reporting Summary. Further information on research design is available in the
Malure Research Reporting Summary linked to this article,

Data availability

The ATAC-seq data for primary human preadipocytes and adipocytes (untreated
and lipid-challenged cells) and the pCHI-C data for primary human adipocytes
under lipid-challenge conditions have been deposited in the Gene Expression
Omnibus under accession GSE129574 and are available upon request from the
corresponding author.
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Nature Research wishes to improve the repraducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

2
o

g The exact sample size {n) for each experimental group/condition, given as a discrete number and unit of measurement
g A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

g The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
g A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

X' A full description of the statistical parameters including central tendency (e.g. means} or other basic estimates {e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

EN SIS EESlE

g For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XX

|Z| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy infarmation about availability of computer code
Data collection N/A

Data analysis As described in the methods, ATAC-seq reads were aligned using Bowtie2 v2.2.9. Peaks were then called using the MACS2 v2.1.1
pipeline. Transcription factor motif enrichment in the ATAC-seq peaks was performed using HOMER v4.9. Promoter capture Hi-C
chromosomal interactions were called using publically available software HICUP v0.5.9 and CHICAGO v1.2.0. Differential interaction
analysis was performed using edgeR. To estimate heritability for lipid traits, partitioned LD score regression (LDSC v1.0.0) was used. All
other statistical analyses were performed using R.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers
We strongly encourage code deposition in a community repository {e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The human primary preadipocyte and adipocyte {untreated and lipid-challenged) ATAC-seq data; and the human primary adipocyte promoter Capture Hi-C data in
the lipid-challenged conditions are available at GEO (Accession |D GSE129574) and upon request from the corresponding author.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sclences [ ] Behavioural & social sclences [ | Ecological, evolutionary & environmental sclences
For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat. pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Fer ATAC-seq, three biological replicates were performed for the human primary preadipocytes and human primary adipocytes, and for the
human primary adipocytes in lipid-challenge conditions. For promoter Capture Hi-C, two biological replicates were performed for each lipid-
challenge condition. The gene- it analysis was d d using the UK Blobank Resource. The UK Biobank consists of
~500,000 individuals with g and phenotypes. The i ber of individual ilable was included to increase the power of
discover of GxE interactions.

Data exclusions  For the ATAC-seq, unpaired mapped reads, reads with MAPQ < 30, and duplicated reads were filtered out. Only reads from the autosomes
and the X chromoseme were retained for downstream analyses. Peaks called using MACS2 were filtered for FDR < 0.05 and those in
blacklisted regions. Peaks with less than 1 count per million in at least 3 libraries were also discarded. To reduce genetic heterogeneity in the
UK Biobank analysis, related, non-Caucasian individuals were excluded.

Replication N/A

Randomization  MN/A. This is an observational study, so no randomization was performed.

Blinding NfA

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methads used In many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

nfa | Involved in the study n/a | Involved in the study
BI|[] Antibodies BAI[] chip-seq

[1/B4] Eukaryotic cell lines BI|[] Flow cytometry

E D Palaeontology E D MRI-based neuroimaging
BX|[C] Animals and other organi

[]/BX] Human research participants

XI[] clinical data

Eukaryotic cell lines

Policy information about cell lines
Cell line source(s) PromoCell C-12731, lot 3952024

Authentication The human primary preadipocytes were obtained from the established and reputable commercial vendor, PromaCell, and
passed standard viability and differentiation capacity requirements prior to being made available.

Mycoplasma contamination The human primary preadipocytes were tested by PromoCell for common microbiological contaminants and infectious
viruses, including Mycoplasma, and found to produce negative results prior to the cells being made available. As these are
primary cells, they have not been passaged extensively, and are unlikely to survive Mycoplasma contamination. Furthermore,
we observed no evidence of contamination during the culture period.

Commonly misidentified lines A
(See ICLAC register)
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Human research participants

Policy information about studies involving human research participants

Population characteristics  This research was conducted using the UK Biobank Resource. The UK Biobank consists of ~500,000 individuals with genotypes
and phenotypes and includes males and females from a broad range of ages. The maxi ber of individuals was included
to increase the power of discover of GXE Interactions.

Recruitment N/A

Ethics oversight UK Biobank

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Untreated adipocyte annotation
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Supplementary Figure 1. Adipocyte-accessible peaks fall more into adipocyte enhancers and
promoters than the preadipocyte-accessible peaks or the full peak set. ATAC-seq peaks from the
indicated peak sets on the y-axis are distributed among four subsets of functional annotations from the 25-
state imputed chromHMM' annotations from mesenchymal stem cell derived cultured adipocytes. Note
that not all peaks were categorized into one of these 4 categories due to minimum peak proportion overlap
(=50%) requirement not being met. ***depicts the p-value (p < 1x107) for the chi-square test for
independence between the distributions of peaks in the indicated annotations. Related to Figure 1.
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Supplementary Figure 2. Fatty acid lipid challenge in human adipocytes leads to increased storage
of lipids in lipid droplets. (a,b) The proportion of cells in each of the indicated quartiles are reported for
(a) lipid droplet (LD) number per cell, and (b) total LD area per cell, quantified from oil red o staining.
Treatment with monounsaturated fatty acid (MUFA) leads to increased total area of LD but fewer total
LDs (e.g. large LDs). Treatment with saturated fatty acid (SFA) leads to increased LD number and size.
Data presented are from one representative experiment out of two independent experiments with similar
results. Related to Figure 2.
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Supplementary Figure 3. Violin plots show the distribution of log2 fold-change (log2FC) for all
differentially accessible peaks from the lipid challenge in adipocytes. Peaks were considered
differentially accessible at a cutoff of FDR < 0.05. FDR was calculated (adjusting for n=122.252 ATAC-
seq peaks) from the p-values of the QL F-test (see Methods) in the one-way ANOVA. For the post hoc
test to determine which comparison was significant after the one-way ANOVA (OA vs. BSA. PA vs.
BSA., or OA vs. PA), we determined the least significant difference. The violin plot characteristics are as
follows: MUFA vs. ctrl (n=1,232) range: -1.11 — 1.40; median: 0.32; 25t percentile: -0.32; and 75"
percentile: 0.47. SFA vs. ctrl (n=277) range: -1.19 — 1.02; median: 0.22; 25" percentile: -0.30; and 75"
percentile: 0.37. SFA vs. MUFA (n=989) range: -1.31 — 1.21; median: -0.27; 25" percentile: -0.51; and
75" percentile: 0.47. MUFA indicates monounsaturated fatty acid; SFA, saturated fatty acid. Related to
Figure 2.
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Untreated adipocyte annotation
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Supplementary Figure 4. Lipid-responsive peaks in adipocyte-accessible regions fall more into
adipocyte enhancers and promoters than lipid-responsive peaks in context-dependent regions.
Lipid-responsive ATAC-seq peaks from the indicated peak sets on the y-axis are distributed among four
subsets of functional annotations from the 25-state imputed chromHMM' annotations from mesenchymal
stem cell derived culture adipocytes. Note that not all peaks were categorized into one of these 4
categories due to minimum peak proportion overlap (>50%) requirement not being met. ***depicts the p-
value (p < 1x10) for the chi-square test for independence between the distributions of peaks in the
indicated annotations. Related to Figure 2.
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Supplementary Figure 5. The 323 genes with promoters that interact with lipid-responsive
enhancers exhibit constraints on loss-of function mutations. (a) Schematic overview of the lipid-
responsive sites in non-baited HindIlI fragments from the adipocyte pCHi-C interactions. These data were
integrated to identify the 323 gene promoters that interact with lipid-responsive enhancers in adipocytes.
(b) Density plot shows the distribution of per-gene average conservation scores across placental
mammals? for all protein-coding genes in the genome compared to all protein-coding genes in the set of
323 genes whose promoters interact with lipid-responsive enhancers. The two-sided Wilcoxon signed-
rank test returned a non-significant p-value > 0.05. (¢) Bar graph shows the proportion of protein-coding
genes that are loss-of-function intolerant (i.e. are unlikely to have protein-truncating variants in humans)’®
in the whole genome (n=3,204/18,122; 17.7%) compared to the protein-coding genes among the 323
genes (n=30/207; 24.2%). LoF indicates loss-of-function; *depicts the p-value for the hypergeometric
enrichment test. Compare with Figure 3 results for 154 genes with lipid-responsive promoters.
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expected

Supplementary Figure 6. Testing all SNPs genome-wide for gene-by-saturated fat intake effect on
BMI does not show inflation or result in significant GxEs at the genome-wide significance
threshold. We tested the SNPs that are not in the same LD block (1 < 0.2) genome-wide for a GxE
between each SNP and saturated fat intake effect on BMIL There were a total of 211,187 SNPs and
167.908 individuals with no missing data available for study (see Equation 1 in the Methods). The Q-Q
plot shows the observed p-values of ;. the expected p-values (red line) based on the multiple testing.
and the 95% confidence interval (shaded arca).
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Supplementary Table 1. Sequencing, read processing, and QC metrics for untreated preadipocyte and adipoeyte ATAC-seq.

Reads Uniquely Fraction Paired and De- Fraction Final Fraction 1:::;““"

) ligned iquely aligned filtered duplicated  duplicates Reads mtDNA o

peaks
PAdrepl 23240008  16.960.464 0.73 20,403,898 16,707,418 0.18 15.810.810 0.019 0.48
PAdrep2 25705628 18,552,651 0.72 22.516.812 17,829,509 021 16.938.123 (L.016 (.46
PAdrep3 27548038  19,008.502 0.69 23.813.866 19,142,102 0.20 17.984.628 0.025 0.47
Adrepl 24407273 16.893.473 0.69 21,049,924 16,045,835 (.24 15.038. 708 0.033 (.58
Ad rep2 18,190,931  12,109.272 0.67 15,537,582 11.344.211 0.27 10,459,715 0.049 0.53
Ad rep3 21,165,864  13.976.310 0.66 17,956,825 12,512,132 0.30 11,528,741 0.050 0.70

PAd indicates preadipocyte: Ad, adipeeyte; mtDNA, mitochondrial DNA.
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Supplementary Table 2. Differentially accessible ATAC-seq peaks between human preadipocytes
and adipocytes. Peaks were considered differentially accessible at a cutoff of FDR <0.05. FDR was
calculated (adjusting for n=154,647 ATAC-seq peaks) from the P values of the QL F test for differential
accessibility between preadipocytes and adipocytes by using ATAC-seq libraries from three replicates per
cell type. Related to Fig. 1. See supplementary materials.
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Supplementary Table 3. Sequencing, read processing, and QC metrics for adipocyte lipid-challenge ATAC-seq.

Rats Uy T e i, B Reds TS i

peaks

BSA repl 64.706.941 48,768,235 0.76 56.012,019 45,623,026 0.185 44,927,691 0.012 0.66
BSA rep2 24,133,180 18.644,383 0.77 21,149,557 17.972.133 (L1350 17,655,287 0.015 0.66
BSA rep3 23,981,457 17.668.336 0.74 20,677,446 17,553,162 0.151 17.214.846 0.016 0.59
OArepl 46,775,100 35874412 0.77 40,975,870 29,562,701 0.279 29,007,522 0.016 0.70
OArep2 57.372,688 44,971,629 0.79 51,073,123 39,246,428 0.232 38,742,718 0.010 0.71
OArep3 33,118,575 25,516,115 0.77 29,143,404 23,401,224 (.197 22,995,249 0.014 0.67
PA repl 27.688.462 21,034,204 0. 76 24,089,236 18,199,958 (1.244 17,822,393 0018 0.64
PA rep2 45.904.086 35,705,224 078 40,386,681 31318153 0225 30,874,420 0.011 0.68
PA rep3 39,159,661 29,810,602 0.76 34,234,012 26,610,078 0.223 26,074,118 0.017 0.68

BSA indicates bovine serum albumin: OA, oleic acid: PA. palmilic acid: mIDNA, mitochondrial DNA,
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Supplementary Table 4. Differentially accessible ATAC-seq peaks in lipid-challenged human
adipocytes. The table lists the significant differential ATAC-seq peaks in human primary adipocytes that
were treated with saturated (palmitic) or monounsaturated (oleic) fatty acids or vehicle (BSA) control.
Peaks were considered differentially accessible at a cutoff of FDR < 0.05. FDR was calculated (adjusting
for n=122,252 ATAC-seq peaks) from the P values of the QL F test in one-way ANOVA. For the post
hoc test to determine which comparison was significant after one-way ANOVA (OA vs. BSA, PA vs.
BSA or OA vs. PA), we determined the least significant difference. Related to Fig. 2. See supplementary
materials.
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Supplementary Table 5. Sequencing and read processing metrics for adipocyte lipid-challenge pCHi-C.

Reads Uniquely mapped

sl pieed Unique ditags  Cis-close Cis-far Trans
BSArepl 136,781,294 115.665.713 69,664,503 10,560,429 49,905,501 9,198,573
BSArep2 126,772,704 94,717,631 51,631,011 8,335,003 36,631,083 6,064,925
OArepl 120,985,559 90,005,610 54,155,183 7.477,013  38909.160 7,769,010
OArep2 118,632,574 89,101.812 49,035,437 8.495,017 34,445,736 6,094,684
PArepl 132,242,479 98,448,728 54,891,280 8392648 39.146,001 7.352.631
PArep2 107001633 80,596,383 44,405,325 0,636,844 31.576,330 6,192,151

BSA indicates bovine serum albumin; OA, oleic acid; PA, palmitic acid.
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Supplementary Table 6. The top 10 TF motifs enriched in adipocyte lipid-responsive open chr tin regions in chromosomal interactions.
- - - ) - Number of
Numberof  Percentof  background  Percent of
target target sequences with background
Adjusted p-  sequences withsequences  motif (of sequences
Motif logo Motif name pvalue  value motif (of 264) with motif 30,704 with motif
viohil loge
G TI ! RUNX-AML(Runt)/CDd4+-Folll 5 " p
< APAAA  STATA(SE@Y/CDA-Stard-ChiP- M ) o - < a0
SITTCCRGOAAL . (oSt 104 Homer L0x10 0 166.0 62.88% 130526 45.44%
C PPARE(MR).DR1/3T3L1-Pparg- 5 ;
TGACCTITSSCCEA ChIP-Seq(GSE1351 1) Homer 1.0x10 0 162.0 61.36% 14012.1 45.64%
AGGGCAACET EXRNR)DR1/3T3L]-RXR-ChlP ] Ta0g %
ZAGGECAAAGGTICA Seq(GSE13511)Homer 1.0x10 0 173.0 65.53% 15537.1 50.60%
ZBTB18(Z6/MEK293-
A T Fé ZBTB18.GFP-ChlP- 1.0x10°¢ 1.0x10° 108.0 40.91% 83175 27.09%
cl =<
- - T Seq(GSES8341)Homer

CETCAZSTS o THRa(NR)/C17.2-THRa-ChIP- -5 =] % 5.35%
GCTCAZSTIZACGICA Seq(GSE38347) Homer 1.0x10 1.0x10 105.0 39.77% 8090.0 26.35%
GAANTOT KLF1O(ZfyHEK293-KLF10.GFP- s 1l - 3 -
GEGORIGTCICE ChIP-Seq(GSES8341) Homer 1.0x10 1.0x10 108.0 4091% 8567.6 27.90%
A . Srebpla(hHLHYHepG2-Srebpla- 5 -4 0 e
ETC Acgcc AE ChIP-Seq(GSE31477)Homer 1.0x10 1.0x10 59.0 22.35% 37927 12.35%
(5 NF1-halfsite(CTF)/LNCaP-NF1- 4 N 4 . . o
;ETGQCA& ChIP-Seq(Unpublished)/Homer 1,010 3010 2150 81.44% 21406.9 69.72%
;%QCAQGTGé‘F NPASGHLHYLiver-NPAS2-ChIP- | 1 144 3.0x10° 1520 57.58% 136326 44.40%

Seq(GSE39860)Homer

Enrichment p-values were derived from the hypergeometric enrichment test of proportion of the given TF motif in the peak set [lipid-responsive open

chromatin regions in adipocyte chromosomal interactions (n=264)] compared with the background set of peaks [all non-lipid-responsive peaks in

adipocyte chromosomal interactions (n=30,704)], adjusted (Benjamini-Hochberg) for the number of known motifs tested (n=364). The top 10 enriched TF

motifs in include key TFs in lipid metabolism, such as the co-factors PPARG and RXR. Related to Figure 3.
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Supplementary Table 7. 154 genes with lipid-responsive promoters in chromosomal interactions in
adipocytes. The table lists the Ensembl ID and gene symbol for genes with promoters in interactions in
adipocyte promoter-capture Hi-C that also had lipid-responsive ATAC-seq peaks. Related to Fig. 3. See
supplementary materials.
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Supplementary Table 8. KEGG pathway enrichment analysis of 154 genes with lipid-responsive promoters.

KEGG pathway Ratio of enrichment Number of genes Genes in FDR
pathway
AGXT2
Glycine, serine and AQC2
threonine 13.96 5 AOC3 0.0072
metabolism GLYCTK
MACA
Phenylalanine =208
AR A e 23.46 3 AOC3 0.036
MAOA

The 154 genes with lipid-responsive promoters in adipocyte chromosomal interactions were tested for KEGG
pathway enrichment using WebGetstalt’, using all genes that were involved in adipocyte chromosomal
interactions (n=17,052) as the background set. The FDR is calculated from the p-values of the hypergeometric

test, adjusted for the number of pathways tested through WebGestalt. Related to Figure 3.
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Supplementary Table 9. 323 gene promoters physically interact with lipid-responsive enhancers in
adipocytes. The table lists the Ensembl ID and gene symbol for genes with promoters that interact with
enhancers that contained lipid-responsive ATAC-seq peaks. Related to Supplementary Fig. 5. See
supplementary materials.
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Supplementary Table 10. Three lipid-responsive ATAC-peaks in interacting enhancers overlap with GWAS SNPs® for serum lipid traits.

Sk e LD with
peakChr  peakStart  peakEnd intBaitGene' SNP in peak MAF* SASOCE p-value® il index
trait SNP* onT
SNPHrY)
7 T3015109  F3016308 rs34346326 0.2 TG 1.31e-44 rs17143738 0.3
Bait1:
ADAMIO
15 58391111 38592050 Bait2: s 12899879 0.14 HDL 3.55e-09 rs1532085 -
RPII-Z0KO.7/
03,10
10 113902081 113908608 ADRA24 152792744 028 < 2.73e-09 2255141 077

"The genes listed are the promoters in the baited HindIIl fragment with which the lipid-responsive enhances interact. More than one bait is listed when the
lipid-responsive enhancer is interacting with more than one bait in the adipocyte pCHi-C; "Minor allele frequency (MAF) is the Furopean frequency from

the 1000 Genomes Project. Linkage disequilibrium (1.1D) is caleulated based on Europeans in the 1000 G Project; LI caleulations = 0.2 are

reported. Lipid-responsive ATAC-seq peaks that land in enhancers within adipocyte chromosomal interactions (n=173) were assessed for

whether they contain GWAS SNPs for serum lipid traits from the meta-GWAS performed in Willer et al.®
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Supplementary Table 11. Lipid-responsive gene promoters with GWAS SNPs respond to SFA treatment.

gene-pCHi-C log,kFC log,I'C log,FFC
kCh kStart KEnd
peaktAwr — peakotart — peakin bait (MUF A/etrl) (SFA/etrl)  (SFA/MUFA)

FADS2/

11 61594652 61596828 P . ;
FADS] ns n.s 0.37

7 73036880 73038991  MLXIPL n.s n.s 0.29
SLC5A6/

32323 3 P p .

2 2743232 medn oo n.s n.s 033

16 68115758 68116375  NFAIC3 n.s ns 0.48

19 10981139 10983631 CARMI n.s 0.24 n.s

MUFA indicates monounsaturated fatty acid; SFA, saturated fatty acid; ctrl, control; n.s., non-significant (based

on the post hoc test of the one-way ANOV A, see below). Lipid-responsive ATAC-seq peaks that land in

promoters within adipocyte chromosomal interactions (n=91) were assessed for whether they contain GWAS

SNPs for serum lipid traits from the meta-GWAS performed in Willer et al.® The direction of the ATAC-seq

differential accessibility effect was then assessed based on the quality (e.g. SFA or MUFA) of the fatty acid.

Differential accessibility was evaluated at an FDR cutoff of 0.05. FDR was calculated (adjusting for n=122.252

ATAC-seq peaks) from the p-values of the QL F-test (see Methods) in the one-way ANOVA. For the post hoc

test to determine which comparison was significant afier the one-way ANOVA (MUFA vs. etrl, SFA vs. ctrl, or

SFA vs. MUFA), we determined the least significant difference. The lipid-responsive gene promoters in

chromosomal interactions that contain GWAS SNPs exhibit increased accessibility in palmitic acid (saturated

fatty acid) lipid challenge. Related to Table 1.
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Supplementary Table 12. Lipid-responsive enhancers with GWAS SNPs stratified by quality of fatty acid.

log,FC log,I'C log,FFC

kCh KStart kEnd intBaitGene'
peakiAwr  peakstart - peakiind  INTBALENe N MUFA/etrl) (SFA/etrl)  (SFA/MUFA)

Baitl:
WBSCRZ22
7 73015109 73016308 : ns 0.45 0.64
Bait2:

STX1A

ADAMI0
15 58591111 58592050 Bait2: 0.45 n.s -0.28
RP11-30K9.7/
3,101

10 113902081 113908608 ADRA2A ns 0.50 n.s.

"The genes listed are the promoters in the baited HindIII fragment with which the lipid-responsive enhancers
interact. More than one bait s listed when the lipid-responsive enhancer is interacting with more than one bait in
the adipocyte pCHi-C; MUFA indicates monounsaturated fatty acid; SFA, saturated fatty acid; ctrl, control; n.s.,
non-significant (based on the past hoc test of the one-way ANOV A, see below). Lipid-responsive ATAC-seq
peaks that land in enhancers within adipocyte chromosomal interactions (n=173) were assessed for
whether they contain GWAS SNPs for serum lipid traits from the meta-GW AS performed in Willer et
al.® The direction of the effect was then assessed based on the quality (e.g. SFA or MUFA) of the fatty acid.
Differential accessibility was evaluated at an FDR cutoff of 0.05. FDR was calculated (adjusting for n=122,252
ATAC-seq peaks) from the p-values of the QL F-test (see Methods) in the one-way ANOVA. For the post hoc
test to determine which comparison was significant after the one-way ANOVA (MUFA vs. ctrl, SFA vs. ctrl, or
SFA vs. MUFA), we determined the least significant difference. The lipid-responsive enhancers in chromosomal
interactions that contain GWAS SNPs are more often differentially accessible in palmitic acid (saturated fatty

acid) lipid challenge. Related to Supplementary Table 10.
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Supplementary Table 13. LDSC analysis’ of SNPs in cis regions of the 154 lipid-responsive promoters.

Proportion  Proportion of  Proportion Enrichment  Enrichment

Category Enrichment

of SNPs I of i SE SE p-value
TC 0.029 0.086 0.021 2.95 0.74 0.0088
LDL-C 0.029 0.084 0.026 291 0.91 0.038
HDL-C 0.029 0.083 0.027 2.87 0.92 0.042
Serum TG 0.029 0.085 0.026 293 0.90 0.045

SE indicates standard error; /%, heritability; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol;
HDL-C, high-density lipoprotein cholesterol; TG, triglycerides. LD score regression (LDSC)’ was performed
using the SNPs in the cis regions (gene body +/- 500 kb) of the 154 genes with lipid-responsive promoters in
adipocyte chromosomal interactions; and the serum lipid trait summary statistics from the meta-GWAS
performed in Willer et al.® The enrichment p-value and the SE for the proportion of /i and enrichment were
calculated from block jackknife resampling used in the LDSC method. The p-value reported is not adjusted for
multiple tests as these serum lipid traits are highly correlated. The cis regions of the 154 genes with lipid-
responsive promoters in adipocyte chromosomal interactions contribute significantly to the heritability of serum

lipid traits in humans.
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Supplementary Table 14. LDSC analysis’ of SNPs in cis regions of genes with lipid-responsive enhancers.

Proportion of Proportion of  Proportion of Enrichment  Enrichment

Category Enrichment

SNPs I8 I’ SE SE p-value
TC 0.055 0.078 0.015 1.41 0.28 0.12
LDL-C 0.055 0.057 0.0089 1.03 0.16 0.86
HDL-C 0.055 0.11 0.020 1.94 0.36 0.011
Serum TG 0.055 0.12 0.041 2.10 0.74 0.15

SE indicates standard error; /%, heritability; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol;
HDL-C, high-density lipoprotein cholesterol; TG, triglycerides. LD score regression (LDSC)’ was performed
using the SNPs in the cis regions (gene body +/- 500 kb) of the 323 genes with promoters that interact with lipid-
responsive enhancers in adipocyte chromosomal interactions; and serum lipid trait summary statistics from the
meta-GWAS performed in Willer et al.’® The enrichment p-value and the SE for the proportion of /° and
enrichment were calculated from block jackknife resampling used in the LDSC method. The p-value reported is
not adjusted for multiple tests as these serum lipid traits are highly correlated. The cis regions of the 323 genes
that interact with lipid-responsive enhancers in adipocytes contribute significantly to the heritability of HDL, but

not the other serum lipid traits, in humans.
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Supplementary Table 15. 75 lipid-responsive peaks in gene promoters contain SNPs with

MAF > 0.05 in the UK Biobank. The table lists the lipid-responsive ATAC-seq peaks within gene
promoters involved in adipocyte chromosomal interactions that contain SNPs with MAF > (.05 in the UK
Biobank (n=75/91 peaks). The SNPs in these regions were tested for gene—environment interactions in
the UK Biobank. Related to Fig. 3 and Table 2. See supplementary materials.
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Supplementary Table 16. Significant GxE promaoter SNPs with L) proxies.

: * . . . . cis-eQTT. Tar -
SNP re p-gte B-z pP-ge Grenes in Bait I"I)gsl; (leng:‘t log,FC*
51974817 0.0089 0.0010 23 -0.089 GLTSCR2 2.4E-31 SEPIWT 0.73
132334290 0.22 0.0011 -1.65 0.088 SNORD23 1.2ZE-08 SEPWI 0.46
27605/ SMARCA4/ L0.28/
15112438892" 0.0017 0.0050 0.50 0.012 CARMT 0.015 ICAM4 0.38
151175698517 0.0037 0.016 0.461 -0.011 . 0.0014/ SMARCA4/ -0.21/
0.046 KRIT 0.18
135678764 0.028 0.025 5.7 0.19

566516040 0.034 0.026 019 -0.0057 ROHECOLIAS gglg O;}L\':fz 3;1

159797822 0.044 0.039 5.2 -0.17 i ’ i
rs10788522 0.013 0.027 39 -0.14 LDB3 6.1E-04 LDB3 0.42
152354358 0.033 0.042 =35 0.14 6. 1E-04 LDE3 0.42
rs867773 0.31 0.033 =2.0 0.11 PLIN? 0.048 PLIN2 -0.39
12379376 0.19 0.034 21 -0.11 - 0.048 PLIN2 -0.39

"The cis-e()TLs were identified in the adipose tissue from the METSIM cohort™. “This SNP is the only genome-wide significant cis-(JTL from the set of
Gxli SNPs with LD r* > 0.2 in the lipid-responsive peak. "Ihese Gxli SNPs are cis-e(JLs for more than one gene. For 5 of the significant promoter Gxl2
SNPs listed in Table 2, SNPs with 1D # = 0.2 in the lipid-responsive region that also exhibited a significant GxI effect of saturated fat intake on BMI are
listed. Redundant SNPs are listed together in order of more to less significant. The reported p-values are from the fis in the multi-variable linear model (see
Equation 2 in the Methods), where g is the number of minor alleles of the genotype and ¢ is saturated fat intake. Here p-g indicates the p-value for the
genotype effect, p-g®e, the p-value for the GxE effect; beta values follow the same notation. For the multi-variable linear model, there were a total of 290

SNPs and 38,394 individuals with no missing data available for study. Related to Table 2.
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Supplementary Table 17. 142 lipid-responsive peaks in enhancers contain SNPs with MAF > 0.05 in
the UK Biobank. The table lists the lipid-responsive ATAC-seq peaks within enhancers involved in
adipocyte chromosomal interactions that contain SNPs with MAF > 0.05 in the UK Biobank (n=142/169
peaks). The SNPs in these regions were tested for gene—environment interactions in the UK Biobank.
Related to Supplementary Fig. 5 and Supplementary Table 18. See supplementary materials.
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Supplementary Table 18. Significant GXE interactions with BMI from a multivariable linear model
for 410 enhancer SNPs. 'The cis-eQTLs were identified in adipose tissue from the METSIM

cohort; SWhen more than one non-independent SNP (LD r2>0.2) has a significant GXE P value for the
lipid-responsive region, both SNPs are listed together in order of more to less significant. *Genes in
separate promoter-containing baits are marked when a lipid-responsive enhancer with a GXE SNP is
interacting with more than one bait in adipocyte pCHi-C. The reported P values are from the
multivariable linear model (see equation (2) in the Methods), where g is the number of minor alleles of
the genotype and e is saturated fat intake. Here p-g indicates the P value for the genotype effect and p-g*e
indicates the P value for the GxE effect; beta values follow the same notation. For the multivariable linear
model, there were a total of 410 SNPs and 18,318 individuals with no missing data available for study.
See supplementary materials.
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Supplementary Table 19. DeepSEA analysis of the 20 GXE SNPs in interacting lipid-responsive
gene promoters. The table lists the predicted functional impact of promoter GXE SNPs on chromatin
features such as transcription factor binding and histone marks. Related to Table 2. See supplementary
materials.
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Supplementary Table 20. DeepSEA analysis of the 26 GXE SNPs in interacting lipid-responsive
enhancers. The table lists the predicted functional impact of enhancer GXE SNPs on chromatin features
such as transcription factor binding and histone marks. Related to Supplementary Table 18. See
supplementary materials.
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Supplementary Table 21. EMSA oligo probes used for analysis of GXE SNP rs10788522.

Probe Name Probe Sequence

rs10788522 FWD  biotin - 5- TCTGGGGAGAGGAAGG/AGGGACAGGCTGAGAC - 3
labeled

rs10788522 F'WD

5 TCTGGGGAGAGGAAGG/AGGGACAGGCTGAGAC - 3
unlabeled

1510788522 REV  5' - GTCTCAGCCTGTCCCC/TCTTCCTCTCCCCAGA - 3'
unlabeled

Oligonucleotides were designed to target the GxE SNP 1510788522 in the LDE3 promoter HindlIlI fragment (+/

15 bp).
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Abstract

Waist-Hip-Ratio adjusted for Body Mass Index (WHRadjBMI) is a well-established sex-specific
marker for abdominal fat and adiposity, and a predictor of adverse metabolic outcomes, such as
type 2 diabetes (T2D). Here, we identified an adipose gene network that contains 35 obesity
GWAS genes, and explains a significant amount of polygenic risk for abdominal obesity and
T2D in the UK Biobank (n=502,617) in a sex-dependent way. The network is controlled by a
novel adipose master transcription factor (TF), TBX15, and its weight-loss responsive cis-eQTL,
rs1779445, a WHRadjBMI GWAS variant that regulates the network in trans. When we knocked
down TBX15 in human primary preadipocytes, expression of 130 network genes, including the
key adipogenesis TFs, PPARG and KLF15, were significantly impacted (FDR<0.05), thus
functionally verifying the trans regulatory effect of TBX15 on the WHRadjBMI-associated
network. Taken together, we discovered a new human adipose master trans regulator, TBX15,
which controls an obesity GWAS gene-enriched network that sex-dependently regulates the

accumulation of abdominal fat.
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Introduction

Obesity predisposes individuals to multiple cardiometabolic disorders, including type 2 diabetes
(T2D)*2. Furthermore, as the world faces one of the worst infectious-disease outbreaks in a
century, new data are emerging showing that obesity and male sex are key risk factors for severe
forms of COVID-19 infection in individuals less than 60 years of age®*. However, the
underlying genes and regulatory mechanisms orchestrating the sex differences in obesity and
body fat distribution are not well understood.

Obesity is clinically diagnosed by a body mass index (BMI) greater than 30 kg/m?, while
severe obesity is defined as BMI greater than 40 kg/m?. However, as BMI cannot reliably
differentiate fat from lean mass, the metabolically detrimental abdominal obesity has been more
accurately estimated using waist-hip-ratio (WHR), which even after adjusting for BMI
(WHRadjBMI) is still highly heritable (heritability~0.22-0.61)%8. WHRadjBMI is a well-
established surrogate for abdominal adiposity and body fat distribution, and it has also been
correlated with direct imaging assessments of abdominal fat in observational studies®™**. It is also
recognized as a strong predictor of T2D*2,

Previous studies have demonstrated that WHRadjBMI is a sexually dimorphic trait,
reflecting the physiological differences in body fat and muscle mass, with males in general
exhibiting more muscle mass and females more fat mass when matched for BMI and age'®**.
Furthermore, WHRadjBMI shows large differences in the narrow sense heritability between
males (~20%) and females (~50%)81°; yet the biological mechanisms underlying abdominal
adiposity and its sex-specific characteristics have remained largely elusive. Previous genome-
wide association studies (GWAS) have shown that WHRadjBMI GWAS genes are enriched for
adipose-expressed genes with known adipose tissue functions, whereas BMI GWAS genes are
enriched for genes expressed primarily in the brain'®. To advance the discovery of unknown
genetic and molecular mechanisms regulating abdominal adiposity and the sex-specific
distribution of body fat, we searched for genetic master regulators of WHRadjBMI by employing
integrative genomics approaches on human subcutaneous adipose RNA-sequencing (RNA-seq)
data (n~1,400) and WHRadjBMI GWAS, transcriptome-wide association studies (TWAS), and
polygenic risk score (PRS) data from the WHRadjBMI GWAS cohorts and the UK Biobank
(UKB) (n~700,000). Finally, we verified our genomic results using functional studies in a human

primary cell type central to adipogenesis.
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While local cis regulation of genes has been characterized in multiple cohorts and
tissues'”8, the identification of distal trans regulation of adipose gene expression contributing to
human obesity has been challenging. There are currently only a few examples of trans-eQTL
genes, such as Kruppel Like Factor 14 (KLF14)*°, mostly due to the lack of power achievable in
the current, relatively small RNA-seq cohorts of relevant obesogenic tissues. One possible trans
regulatory mechanism of gene expression is transcription factor (TF) binding to the promoters of
multiple genes across many chromosomes, which causes them to be co-regulated and co-
expressed?®-22, As with other genes, these TFs themselves are genetically controlled by cis-
eQTLs, thus indirectly linking the eQTLs to genes regulated by the TFs in trans. We
hypothesized that adipose co-expression networks can be used to identify novel TFs that trans
regulate multiple co-expressed target genes important for WHRadjBMI.

Integrating a subcutaneous adipose co-expression network and multi-omics data with
extensive human GWAS cohort and the UK Biobank (UKB) data (total n~700,000), we provide
novel genomic evidence, verified by our functional studies in human primary preadipocytes, for
the causal role of TBX15 in controlling accumulation of abdominal fat and adiposity. Our study
discovers a new key function for the TBX15 TF in trans regulating an adipose network of 347
adipogenesis, mitochondrial, and metabolically important genes, including PPARG, KLF15,
PPARA, ADIPOQ, and 35 obesity GWAS genes.
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Results

Discovery of WHRadjBMI-associated co-expression networks in human adipose tissue

In our network analysis, we used waist-hip-ratio adjusted for body mass index (WHRadjBMI) as
a surrogate for abdominal adiposity and fat®!, supported by previous GWASs that have
demonstrated WHRadjBMI as a more relevant adipose tissue-related obesity trait than BM116:23,
To identify co-expression networks correlated with abdominal fat and adiposity, we performed
Weighted Gene Co-expression Network Analysis (WGCNA) in the subcutaneous adipose RNA-
seq data (n=335) from the Finnish METabolic Syndrome In Men (METSIM) cohort, which has
additional measures of adiposity aside from BMI, including WHR. We identified 14 co-
expression networks, two of which, red and black (colors assigned to networks by WGCNA
arbitrarily), were significantly inversely correlated with WHRadjBMI, WHR, and BMI after
adjusting for multiple testing (peont<8.93x10#) (Fig. 1, Supplementary Fig. 1). To also examine
if the WGCNA co-expression networks are associated with the obesity comorbidity, type 2
diabetes (T2D), we correlated them with fasting serum insulin levels and observed significant
inverse correlation of the red and black co-expression networks (peont<8.93x104) (Fig. 1,
Supplementary Fig. 1). The red co-expression network, with 347 genes (Supplementary Table 1),
contained 35 (10.09%) obesity GWAS genes for BMI, waist circumference (WC), WHR,
WHRadjBMI, and WCadjBMI (Fisher’s exact test for the red co-expression network GWAS
enrichment, odds ratio=5.05, p=2.20x10*), whereas no such obesity GWAS gene enrichment
was observed with the black co-expression network (Fig. 1, Supplementary Table 2).

Since WGCNA co-expression networks may be influenced by different cell types present
in heterogeneous tissues such as adipose, we used adipose single-nuclei RNA-seq (SnRNA-seq)
from Finnish individuals (n=16) to identify marker genes for the key adipose cell types, such as
adipocytes, preadipocytes, and macrophages. The red co-expression network was exclusively
enriched for adipocyte marker genes (Phypergeometric=2.20x107°) (Supplementary Table 3),
including the adipocyte secreted adipokine, Adiponectin (ADIPOQ), indicating the importance of
this co-expression network for adipocyte biology. The red co-expression network was also
significantly enriched for key adipose-related metabolic KEGG pathways using WebGestalt?*,
such as PPAR signaling pathway, fatty acid metabolism and degradation, and valine, leucine,
and isoleucine degradation (FDR<0.05; Supplementary Table 4), and for GO cellular component
mitochondrion-related genes (FDR<0.05; Supplementary Table 5). Furthermore, the red co-
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expression network was significantly enriched for genes upregulated in subcutaneous adipose
tissue (p~1.0x1078) when compared to the 54 other tissues in Genotype-Tissue Expression
(GTEX) v8 cohort® in a differential expression (DE) analysis by FUMA?® (Fig. 1). Due to the
significant enrichment of obesity GWAS genes, adipose-related functional pathways, adipocyte
cell type marker genes, and adipose tissue-expressed genes, we focused on the red WHRadjBMI

co-expression network for subsequent analyses.

The WHRadjBMI gene co-expression network is genetically associated with WHRadjBMI
and T2D

To find genetic evidence for the observed link between the co-expression network and
WHRadjBMI, we examined whether the 347 network genes contribute significantly to
WHRadjBMI trait heritability. We used the stratified LD Score (LDSC) regression method (see
Methods) to calculate the WHRadjBMI heritability explained using the WHRadjBMI GWAS
summary statistics for all variants in the cis regions of the 347 genes (+/-500kb from the ends of
the gene). These variants will be referred to henceforth as the WHRadjBMI cis-variant set. We
found that these cis regions are significantly enriched for variants explaining the heritability of
WHRadjBMI (enrichment=1.61, p=4.90x10°) and T2D (enrichment=1.49, p=9.56x10"%) but not
significantly enriched for variants explaining the heritability of BMI (p>0.05) (Supplementary
Table 6). These summary-level findings indicate that the 347 network genes and their cis
variants are specifically important in controlling abdominal fat and adiposity and contributing to
the clinical metabolic outcome, T2D.

To investigate how the WHRadjBMI co-expression network genes predict individual risk
for elevated WHRadjBMI compared to the entire genome, we constructed two separate
Polygenic Risk Scores (PRSs) for WHRadjBMI: a genome-wide PRS and a network PRS with
just the variants in the WHRadjBM I cis-variant set. For these PRS analyses, we used the UK
Biobank (UKB) cohort and divided the unrelated Caucasian participants into a test (n=130,851)
and validation (n=261,700) set (see Methods for building the PRS).

To investigate the effectiveness of our genome-wide PRS in predicting WHRadjBMI
with the validation set (n=261,700) (PRS correlation coefficient with WHRadjBMI1=0.206), we
divided the individuals into 20 quantiles based on their PRS scores and then by sex. Next, we
calculated the odds ratio of being in the top 10" percentile of WHRadjBMI, for individuals in
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each of the 20 quantiles compared to the lowest quantile. As expected, the PRS predicts
WHRadjBMI better in females than males (Females: 6.31-fold increase in risk for elevated
WHRadjBMI between the lowest quantile and the 20" quantile of the PRS versus Males: 2.96-
fold increase in risk for elevated WHRadjBMI) (Fig. 2).

Notably, despite the fact that the network PRS only comprises the variants in the cis
regions of the 347 network genes, having thus many fewer variants included, the PRS correlation
coefficient with WHRadjBMI was 0.110 (compared with the genome-wide PRS correlation
coefficient of 0.206, which is less than twice that of the network PRS). Although the PRSs are
more predictive of WHRadjBMI in females (Cochran-Mantel-Haenszel test on the 20" quantile,
genome-wide PRS versus network PRS and males versus females, y&y;=1146.94,
PcmH=2.07x10"%Y), the power decrease from using the genome-wide PRS to using the network
PRS is much greater for females (20" quantile odds ratio: 2.51-fold decrease) when compared to
males (20" quantile odds ratio: 1.71-fold decrease) (Fig. 2). This suggests that, relative to the
genome-wide PRS, the 347 network genes and their cis variants constitute a larger percentage of
the predicted effect of variants for regulating WHRadjBMI in males when compared to the same
PRS predictions in females.

To provide additional evidence that the network PRS is more informative and
biologically important in males than females, we tested whether males with the highest
genetically predicted WHRadjBMI (based on the network PRS) are more likely to have the
clinically relevant metabolic outcome of T2D. Accordingly, we selected individuals with the
WHRadjBMI PRS in the highest and lowest deciles (top 10% and lowest 10% network PRS
scores), as done previously for BMI in Khera et al.?”, and divided them by sex. We used a
logistic regression (see Methods) and when accounting for WHRadjBMI in our model, observed
that the network PRS significantly predicted T2D in males (p=1.12, p=9.59x107°) but not in
females (p>0.05). These results indicate that the 347 network genes and their cis variants
significantly contribute to the clinical metabolic outcome, T2D, in males while no such effect
was observed in females. In sum, by leveraging subcutaneous adipose RNA-seq data from a
cohort with the abdominal adiposity measure, WHR, we identified a WHRadjBMI co-expression
network that genetically controls WHRadjBMI and T2D in a sex-dependent manner.
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The WHRadjBMI network connectivity is sex- and context-dependent

We hypothesized that the sex-dependent effects we observed with the network PRS for
WHRadjBMI and T2D would be reflected in the co-regulation of these genes as well. We
therefore tested whether the WHRadjBMI co-expression network connectivity is different
between males and females in the independent GTEx v8 subcutaneous adipose RNA-seq data.
We performed a network preservation analysis separately in males (n=387) and females (n=194)
(see Methods), and found that the network preservation Zsummary Score was 30 in males versus 22
in females. The Zsummary ScOre value is not sensitive to the sample size, and so the relative
difference in the number of males and females was not a concern. This lower network
preservation in females is in line with the lesser trait prediction observed for WHRadjBMI and
T2D with the network PRS in females.

We further tested whether the WHRadjBMI network connectivity is altered context-
dependently based on the obesity state. Because the GTEX cohort phenotypes do not include
WHRadjBMI, we divided the cohort first by sex and then into the more extreme categories of
lean (BMI<25; nmale=102, Nremale=78) and obese (BMI>30; Nmale=119, Nremale=41) to increase
the chance that there are differences in abdominal adiposity between the sets of individuals. We
found that the network preservation Zsummary Score drastically decreased between lean and obese
males (Z summary - Lean male=30 Versus Z summary - obese male=19) but remained similar between lean
and obese females (Z summary - Lean female=20 VEIsSUS Z summary - Obese female =18. Taken together, the
network preservation results suggest that the coordinated expression of the genes in the
WHRadjBMI co-expression network is regulated more tightly in males than females, and in a

context-specific manner that depends on the obesity state.

Identifying candidate master regulators of the WHRadjBMI-associated co-expression
network
To discover transcription factors (TFs) that drive the adipose WHRadjBMI co-expression
network in trans, we first identified all TFs (n=14) in the network using the PANTHER
database?® (Supplementary Table 7). Next, to test which of these 14 TFs are potentially causal
for WHRadjBMI, we performed a targeted Transcriptome-Wide Association Study (TWAS),
which is a method to test for association between gene expression and a trait by weighting the

effects of cis variants on gene expression and testing their weighted association with a GWAS
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trait (see Methods). We computed eQTL weights for the variants in the cis region (+/-500kb
from the ends of the gene) around each TF using GTEXx v8 cohort data. To accurately estimate
the gene expression heritability in TWAS, we used the entire GTEX subcutaneous adipose RNA-
seq dataset (n=581). We found that five TFs in the WHRadjBMI co-expression network pass the
TWAS heritability thresholds (p<0.01) required for testing the association of the cis SNP
heritability with phenotypes: T-Box Transcription Factor 15 (TBX15), General Transcription
Factor I1E Subunit 2 (GTF2E2), X-Prolyl Aminopeptidase 3 (XPNPEP3), Iroquois Homeobox 1
(IRX1), and Zinc Finger Protein 3 (ZNF3) (Supplementary Table 8).

We next tested whether these five cis-heritable TFs are associated with WHRadjBMI
using the computed TWAS weights to impute the TF gene expression and the WHRadjBMI
summary statistics from the large UK Biobank (UKB) and GIANT meta-analysis GWAS data
(n~700,000). TBX15, XPNPEP3, and IRX1 passed the Bonferroni correction for being associated
with WHRadjBMI in the TWAS (p<0.017) (Supplementary Table 9), implying that the variants
contributing to the cis-regulation of these TFs are also important for WHRadjBMI.

The interpretation of TWAS results as evidence of causality can be complicated by other
regional genes that may share cis variants, LD structure, or co-expression with the putatively
causal gene. To better determine if there is statistical support for the TWAS evidence of
association between WHRadjBMI and TBX15, XPNPEP3, and IRX1, we used the Fine mapping
Of CaUsal Sets (FOCUS) tool, employing the same GTEx v8 cohort and WHRadjBMI GWAS
data, and including all genes +/- 3Mb from the ends of our TFs of interest. FOCUS is a fine-
mapping approach for TWAS that identifies a gene set containing the causal gene(s) in a locus at
a predefined level of credibility, based on their posterior inclusion probability (PIP) of being the
causal gene while accounting for shared cis variation among genes at a locus (see Methods). The
FOCUS analyses showed that TBX15 and nearby gene Hydroxy-Delta-5-Steroid Dehydrogenase,
3 Beta- And Steroid Delta-1somerase 2 (HSD3B2) were included in the 90% credible set;
however, only TBX15 predicted well in cross-validation (TBX15: TWAS cross-validation
p=1.54x10"; HSD3B2: TWAS cross-validation p>0.05) and had a higher PIP (TBX15: FOCUS
PIP>0.99; HSD3B2: FOCUS PIP=0.908), thus effectively fine-mapping the locus to TBX15 (Fig.
3). When testing XPNPEP3 and IRX1, FOCUS provided little support for a causal role at current
sample sizes (XPNPEP3: FOCUS PIP=9.90x10°; IRX1: FOCUS PIP=0.0735). Taken together,
the results from TWAS and FOCUS show statistical support for a causal role of the TF, TBX15,
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in its inverse relationship with WHRadjBMI, and highlight it as a candidate TF driving the

WHRadjBMI co-expression network.

Identification of a WHRadjBMI co-expression network trans-eQTL

Support for the evidence that TBX15 is a causal gene in regulating adiposity has been published
in mouse knockout studies, where adipose-specific loss of Thx15 leads to increased weight gain
when mice are put on a high fat diet?®. This suggests that, in conditions of increased energy
intake, a pathological decrease in TBX15 can drive adiposity. To test for evidence of a similar
mechanism in humans, we used subcutaneous adipose RNA-seq data from the Finnish Kuopio
OBesity Study (KOBS) bariatric surgery cohort, in which the individuals’ average BMI
decreased from 43.0 to 34.3 (22.7% decrease) from the time of surgery to the one-year follow-up
(n=168 at both time points). A change in WHR could not be assessed in the KOBS cohort as in
general it is not possible to reliably measure waist circumference in morbidly obese individuals
undergoing bariatric surgery. In these weight loss analyses, we found that TBX15 showed a
significant increase in gene expression in the one-year follow-up (log2 fold change (FC)=0.37,
p=1.48x10®), in line with context-specific regulation of TBX15 and its inverse correlation with
adiposity.

To identify genetic drivers of the observed context-specific expression of TBX15 in the
extreme obesity state, we searched for TBX15 cis-eQTLs separately in the KOBS bariatric
surgery cohort baseline and follow-up adipose RNA-seq data (n=168 at both time points). We
discovered that TBX15 has a cis-eQTL, rs1779445 (effect allele: C) (Bc anele=0.56,
PBaseline=6.7x10®), exclusive to the extreme obesity state before the bariatric surgery (protiow-
up>0.05). The context-specificity of the cis-eQTL effect was also supported by the non-
significant cis effects in two non-extreme obese cohorts, GTEx and METSIM (n=581, n=335,
respectively; FDR>0.05). This context-specific TBX15 cis-eQTL variant, rs1779445, is also a
WHRadjBMI GWAS SNP (GIANT, n=224,459) (Bc aiele=0.032, p=1.60x1072)8, We recognize
that the direct identification of trans-eQTLs requires large cohorts; nevertheless, to partially
circumvent this, we tested whether rs1779445 regulates the eigengene of the WHRadjBMI
network. We found that rs1779445 is a trans-eQTL of the network eigengene in the METSIM
cohort (n=335) (Bcallele=—0.018, p=0.044). In Finnish individuals, as confirmed in the 1000
Genomes genotype data, the minor allele frequency (MAF) of rs1779445 (T allele) is lower than
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in other European populations (MAFrinns~6% versus MAF europeans~20%) and it exhibits only one
LD proxy, rs1623409 (r>=0.82). Since, this LD proxy rs1623409 was not a significant trans-
eQTL of the eigengene of the WHRadjBMI co-expression network (p>0.05), this trans-
population LD comparison helped identify rs1779445 as the likely sole underlying trans variant

driving the co-expression network.

Electrophoretic mobility shift assay (EMSA) shows increased protein binding at the
alternate allele of rs1779445 in males

To investigate which proteins may bind and regulate gene expression at the context-specific
eQTL of TBX15 (rs1779445), we determined which known TF motifs are altered by the alleles of
rs1779454 (T>C) using the PrEdicting Regulatory Functional Effect by Approximate P-value
Estimation (PERFECTOS-APE)* tool. We found the TF motifs of Ras Responsive Binding
Element 1 (RREB1), BRCA1 DNA Repair Associated (BRCA1), Regulatory Factor X1 (RFX1),
and Regulatory Factor X2 (RFX2) to be significantly altered, with increased protein binding
predicted at the alternate allele. Furthermore, RREB1 has WHRadjBMI GWAS variants
(rs11755724, rs675209) in its promoter, specifically found in European males, further connecting
RREB1 and TBX15 to WHRadjBMI in males. We performed an electrophoretic mobility shift
assay (EMSA) and observed that there was more protein binding at the alternate allele of
rs1779445 in males (Fig. 4), in line with the predicted effect of the alternate allele (C) RREB1
binding and known repressive role of RREBL1 in transcription®!. Further studies are warranted to
examine and validate the actual TF that is binding at the WHRadjBMI network trans-eQTL.

Knockdown of TBX15 in primary human preadipocytes confirms the role of TBX15 as a
master regulator of the WHRadjBMI associated network

To functionally confirm the role of TBX15 as a WHRadjBMI co-expression network regulator,
we performed knockdown (KD) of TBX15 via small-interfering RNA (siRNA) in primary human
preadipocytes (n=5 isogenic replicates). We successfully performed TBX15 KD, decreasing its
expression by ~70%, confirmed by RT-gPCR (Fig. 4). Next, we performed RNA-seq to see if the
genes in the WHRadjBMI co-expression network are affected by KD of TBX15. When
comparing to preadipocytes transfected with the negative control sSiRNA (see Methods), we
found that 130 of the 347 network genes (37.46%) are significantly DE (FDR<0.05) between the
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TBX15 KD and control, including the well-established key adipogenesis master regulators,
PPARG and KLF15 (Supplementary Table 10).

When searching for other TFs affected by TBX15 KD that may contribute to the wide-
spread trans effects of TBX15, a total of 8 TFs of the 13 TFs (61.5%) in the WHRadjBMI co-
expression network were observed to be significantly DE (FDR<0.05) (PPARG, PPARA, KLF15,
TWIST1, XPNPEP3, GTF2E2, CCNH, PER3) by the TBX15 KD. This result suggests that TBX15
affects many additional genes indirectly downstream by regulating other key adipose TFs (Fig.
4).

In summary, these genetic and functional data discover a context-specific cis-eQTL,
controlling a new human adipose master trans regulator, TBX15, which in turn controls an

obesity GWAS gene-enriched network that sex-dependently modifies the distribution of fat.
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Discussion

WHRadjBMI is a well-established measure of abdominal adiposity, whereas BMI cannot reliably
separate fat from lean mass'®, in line with previous GWAS studies of WHRadjBMI and BMI
demonstrating that the WHRadjBMI GWAS loci are more adipose tissue related than the BMI
loci in terms of their expression profiles and function®*. Furthermore, while overall obesity
measures like BMI do not exhibit sexual dimorphism®8, WHRadjBMI and fat distribution have
clear sex-specific differences that are reflected in differences in heritability®!°, GWAS loci*®?3,
and ultimately in risk for disease outcomes such as T2D and cardiovascular disease*?’.
However, the underlying biological mechanisms that contribute to the sexual dimorphism of
body fat distribution are still poorly understood. Furthermore, the genes behind complex diseases
such as obesity are often regulated and dysregulated together, influencing the progression and
severity of obesity®.

In this work, we used subcutaneous adipose RNA-seq data collected in the METSIM
male population cohort, for which we have measures of WHR, to identify a gene co-expression
network that is important for regulating WHRadjBMI and exhibits the known sexual dimorphism
of this trait at both a genetic and transcriptomic level. We used the UKB to show that the genetic
variants in the cis-regions of the 347 WHRadjBMI co-expression network genes are significantly
enriched for variants that contribute to the heritability of WHRadjBMI and T2D, but not BMI.
These variants also have a sex-dependent effect on the ability to predict elevated WHRadjBMI in
males when compared to females relative to the entire genome, as shown by the genome-wide
and network-specific WHRadjBMI PRSs we constructed. Furthermore, we show that the
network PRS significantly predicts the disease outcome, T2D, in males but not in females, even
when accounting for the effects from the original trait, WHRadjBMI. These PRS results
demonstrate the sex-dependent effects of the 347 WHRadjBMI co-expression network genes and
their cis variants on both WHRadjBMI and T2D. Finally, we provide evidence for a novel role of
the TF, T-Box Transcription Factor 15 (TBX15), as a master regulator of this WHRadjBMI
network, advancing our understanding of how trans regulation of gene expression contributes to
normal and obesity-deteriorated adipose tissue function, and the sexually dimorphic
accumulation of harmful abdominal fat.

We employed TWAS® to discover and FOCUS®** to fine-map all TFs (n=14) present in
the WHRadjBMI network, which resulted in the discovery of the TBX15 as a master trans
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regulator for this WHRadjBMI network. Thx15 has been directly shown to affect the
differentiation of preadipocytes to adipocytes, with reduced expression of key adipogenesis TFs
Cebpa and Pparg in mouse preadipocytes that stably overexpress (OE) Thx15%. This study also
suggests that even after rescuing the induction of adipogenesis using a PPARG agonist, Tbx15
OE cells exhibit decreased lipogenesis and increased lipolysis. These results are in line with the
inverse relationship of TBX15 with WHRadjBMI, and also highlight the likelihood of
development- and context-specific roles for TBX15%. Additionally, previous functional studies
have shown that TBX15 affects mitochondria related gene expression and mitochondrial mass in
mice®® and humans®-3’ in line with the GO cellular-component enrichment of the WHRadjBMI
co-expression network genes for mitochondrion-related genes. In addition to mouse knockout
studies, where adipose-specific loss of Tbx15 leads to increased weight gain when mice are put
on a high fat diet?, these previous studies provide support for our discovery of TBX15 as a key
TF master regulator in human subcutaneous adipose tissue, with adiposity-driven changes in
TBX15 expression affecting its role in maintaining homeostasis of the WHRadjBMI network.
We used the independent subcutaneous adipose RNA-seq data from the GTEX v8
cohort? to show that the WHRadjBMI co-expression network is highly preserved in a sex-
dependent manner, with males exhibiting a higher network preservation than females.
Furthermore, the network preservation is higher in the lean (BMI < 25) state when compared to
the obese (BMI > 30) state in males, but is similar between lean and obese females. This
apparent breakdown of network connectivity in the obese males supports the idea that aberrant
regulation of the network as a whole develops as WHRadjBMI increases. Although the GTEX
cohort? lacks measurements for WHRadjBMI due to the fact that it consists largely of post-
mortem samples, we were able to show the sex- and obesity-dependent effects on this
WHRadjBMI network using more extreme BMI cutoffs of lean (BMI < 25) and obese (BMI >
30). However, presently there are no sex-specific guidelines for the BMI cutoffs for the transition
between lean, overweight and obese states, let alone WHRadjBMI. To partially circumvent this
issue and study the effects of weight differences on TBX15 expression, we leveraged longitudinal
adipose RNA-seq data from the KOBS bariatric surgery cohort, which demonstrated that adipose
expression of TBX15 recovers after dramatic weight loss within an individual. These weight loss

results from the KOBS cohort suggest that decreased adipose expression of TBX15 in obese
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individuals contributes to the observed dysregulation of the WHRadjBMI co-expression
network.

Although visceral adipose tissue is known to be more strongly linked to metabolic
disorders and WHRadjBM 382 than subcutaneous adipose tissue, subcutaneous adipose tissue
exhibits larger changes in volume during weight loss or weight gain®®. Furthermore,
subcutaneous adipose biopsies are available through less invasive procedures than visceral
adipose tissue biopsies, which require a surgical procedure. Our results from the heritability and
PRS analyses; and the context-specificity of the network regulation show that the subcutaneous
adipose WHRadjBMI network is both an important driver and responder, respectively, to
changes in WHRadjBMI.

To functionally verify that the WHRadjBMI network is driven by TBX15, we knocked
down TBX15 via siRNA in primary human preadipocytes, and performed RNA-seq to assess the
effects of TBX15 KD on the expression of all 347 network genes. This experiment showed that
knocking down TBX15 significantly affects the downstream expression of 8 additional TFs,
including the key adipogenesis TFs, PPARG and KLF15, along with 121 other network genes.
To the best of our knowledge, our functional study is one of the first examples of experimental
validation of a TF trans regulating a co-expression network in humans. Furthermore, these DE
genes are enriched for the Valine, leucine, and isoleucine degradation KEGG pathway using
WebGestalt?*. This pathway functions in the breakdown of essential branched chain amino acids
that humans only obtain in their diet. Previous studies have shown that obese individuals exhibit
higher levels of these amino acids in their plasma even when matched for dietary intake or after
overnight fasting, most likely due to their impaired degradation®!. Taken together, these data,
along with the recovery of TBX15 expression after weight loss, indicate that TBX15 plays an
important role in maintaining the homeostasis of this subcutaneous adipose WHRadjBMI co-
expression network in the non-obese state.

Lastly, our work helps disentangle the genetics at the TBX15 locus, where the previous
obesity GWAS variants and regional cis-eQTLs have been associated with both TBX15 and
nearby gene, WARS2'642, WHRadjBMI GWAS variants at the TBX15-WARS2 locus have been
shown to exhibit differential effects in males and females, including a male-specific signal within
the TBX15 promoter®. Only through the investigation of extreme obesity in the KOBS cohort
were we able to establish a cis-eQTL function for the WHRadjBMI GWAS SNP? rs1779445,
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which is a strong cis-eQTL of TBX15 but not of WARS2 in the extreme obesity state.
Furthermore, this TBX15 cis-eQTL is a trans driver of the overall WHRadjBMI co-expression
network expression, defined by the network eigengene, supporting our conclusion that TBX15 is
a master regulator of the WHRadjBMI network. Our functional assay to detect the binding of
primary human preadipocyte nuclear protein to this SNP using EMSAs show increased binding
at the alternate allele of rs1779445 (C allele), with more binding observed using nuclear extract
from male primary preadipocytes than female primary preadipocytes. Based on predictions using
position weight matrices (PWMs)*3%, we hypothesize that RREBL1 is binding at the alternate
allele of rs1779445. RREBL1 itself is a TF with intronic WHRadjBMI GWAS variants in
European males®®, which indicates that upstream regulators of TBX15 may also act differently
between males and females. The confirmation of RREBL1 as an upstream regulator of TBX15 in
key human adipose tissue cell types warrants further investigation.

In summary, we discovered a novel master adipose trans regulator, TBX15, and its causal
effect on WHRadjBMI, with a stronger effect observed in males. We also provide insight into a
WHRadjBMI co-expression network containing critical adipose TFs and GWAS genes that
TBX15 regulates, and demonstrate the large contribution of the cis variants of these network
genes to both WHRadjBMI PRS and T2D PRS in a sex-dependent manner in the UK Biobank.
Through our knockdown of TBX15 in human primary preadipocytes, we provide concrete
functional evidence showing that decreasing expression of TBX15 directly affects expression of
130 genes in the WHRadjBMI co-expression network, including 8 key TFs, thus compounding

the downstream effects on metabolically harmful abdominal obesity.
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Methods

Study Cohorts

METabolic Syndrome In Men (METSIM)

The participants in the METabolic Syndrome In Men (METSIM) cohort (n=10,197) are Finnish
males recruited at the University of Eastern Finland and Kuopio University Hospital, Kuopio,
Finland, as described previously*#-¢. The study was approved by the local ethics committee and
all participants gave written informed consent. The median age of the METSIM participants is
57 years (range: 45-74 years). The METSIM participants were genotyped using the
OmniExpress (Illumina) genotyping array and phased and imputed using SHAPEIT2 v2.174" and
IMPUTE2 v2.3.2%, respectively. A random subset of the METSIM men underwent an
abdominal subcutaneous adipose needle biopsy, with 335 unrelated individuals (IBD<0.2 using a
genetic relationship matrix calculated in PLINK v1.9%) analyzed here using RNA-seq*.
UKBiobank (UKB)

The UKB is a large cohort (n=502,617) consisting of data from individuals collected across the
United Kingdom starting in 2006%"°. To avoid hidden confounders from ancestry and
relatedness, we used the subset of these individuals who are unrelated and of European ancestry
(n=392,551). The genotyping was performed using one of two arrays for over 800,000 different
variants?”51, The genotypes were then imputed using the Haplotype Reference Consortium
(HRC) as well as UK 10K panel and the 1000 Genomes panel?’>*, The genotypes were filtered
for variants with MAF<1% and violation of Hardy-Weinberg Equilibrium (p<1x107°) before
using them for construction of the polygenic risk scores (PRSs) for WHRadjBMI.

Kuopio OBesity Study (KOBS)

The participants in the longitudinal Kuopio OBesity Study (KOBS) cohort (n=168) consist of
Finnish obese individuals undergoing bariatric surgery and participating in a one year follow-up,
recruited at the University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland,
as described previously®?-**, The study was approved by the local ethics committee and all
participants gave written informed consent. All participants underwent a pre-screening for a
detailed medical history, and the inclusion criterion was a pre-surgery BMI of > 40 kg/m2 or 35
kg/m2 with a significant comorbidity, such as type 2 diabetes (T2D). The biopsy samples were
taken from subcutaneous adipose tissue at the time of bariatric surgery and one year after the
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surgery. Refined phenotypic measurements and clinical characteristics were also measured at
both time points®2°3,

Alignment of RNA-seq data

We performed alignment of subcutaneous adipose RNA-seq data (n=335) from the METSIM
cohort using STAR v2.5.2% with GENCODE v19 annotation of the genome and hg19 version of
the human genome, as we described earlier with minor changes*®. Briefly, a 2-pass alignment
was performed on 75 base-pair (bp) reads with only uniquely mapped reads counted for gene
expression. We discovered that the expression of many genes and technical factors are correlated
with the percentage of mitochondrial reads. To avoid the influence of the mitochondrial read
number on the data, we excluded the mitochondrial reads from the RNA-seq data when
calculating the FPKMs and technical factors. We used FastQC to verify the RNA-seq quality,
based on metrics, such as GC content, duplication levels, and sequence quality scores, as well as
Picard Tools v2.9.0 to obtain the technical factors from the standard RNA-seq metrics (option
CollectRNAseqMetrics), including the median 5’ to 3’ bias, percentage of intronic reads, and

median coverage from the aligned reads.

Weighted Gene Co-expression Analysis

To find co-expression networks in the METSIM adipose RNA-seq cohort, we performed
Weighted Gene Co-expression Analysis (WGCNA) v1.68°" on FPKMs from the subcutaneous
adipose RNA-seq data (n=335) from the METSIM cohort. To prevent the influence of technical
factors from sequencing and RNA-seq alignment, we included 14 technical factors that were
determined by STAR v2.5.2% and Picard Tools v2.9.0. The FPKMs were filtered for genes
expressed (FPKM>0) in at least 90% of individuals and inverse normal transformed after
correcting for technical factors to avoid spurious associations and outlier effects (see above).
Phenotypes used for associations with co-expression networks in WGCNA v 1.68° were inverse
normal transformed after correcting for age, age?. The fasting serum insulin levels were
corrected for T2D status as well as age and age? and then inverse normal transformed. To ensure
scale-free network topography, we used a power of 10 for the power function to determine co-
expression network membership. All other parameters in WGCNA v 1.68°" were kept at their
default values.
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Co-expression network preservation

Using WGCNA v1.68°"°8, we confirmed the preservation of the co-expression networks from
the METSIM subcutaneous adipose RNA-seq (n=335) in the subcutaneous adipose RNA-seq
(n=581) from the independent GTEXx v8 cohort?®. We further subdivided the GTEx v82 cohort to
males (n=387) and females (n=194) and then lean (BMI<25) and obese (BMI1>30) individuals of
each sex. As the sample sizes for males and females were above the recommended minimum
threshold (n=20), the Zsummary Score value should not be sensitive to the sample size, and so the
relative difference in the number of males and females was not a concern. We calculated FPKMs
from the RNA-seq data and technical factors from STAR v2.5.2% and Picard Tools v2.9.0, as
described above. We corrected the expression data for technical factors as well as age, age?, sex,
race, RIN, sequencing platform, sequencing protocol (PCR-based or PCR-free), and time from
death to RNA collection and then inverse normal transformed the data. Default parameters in
WGCNA v1.68%" were used for the co-expression network preservation analysis. Accordingly, a
preservation 10>Zsummary>2 Was considered as weakly to moderately preserved and a

Zsummary>10 as strongly preserved®’®,

Single-nucleus RNA-seq (snRNA-seq) of human subcutaneous adipose tissue

We performed snRNA-seq of frozen adipose from sixteen individuals in order to identify cell
types and their gene expression profile. Nuclei were isolated from frozen subcutaneous adipose
tissue to input them into the 10X Chromium platform®. To isolate nuclei from frozen tissue, the
tissue was minced over dry ice and transferred into ice-cold lysis buffer consisting of 0.1%
IGEPAL, 10mM Tris-Hcl, 10 mM NaCl, and 3 mM MgCI2. After a 10-minute incubation
period, the lysate was gently homogenized using a dounce homogenizer and filtered through a 70
um MACS smart strainer (Miltenyi Biotec #130-098-462) to remove debris. Nuclei were
centrifuged at 500 g for 5 minutes at 4°C and washed in 1 ml of resuspension buffer (RSB)
consisting of 1X PBS, 1.0% BSA, and 0.2 U/ul RNase inhibitor. We further filtered nuclei using
a 40 pm Flowmi cell strainer (Sigma Aldrich # BAH136800040) and centrifuged at 500 g for 5
minutes at 4°C. Pelleted nuclei were re-suspended in wash buffer and immediately processed
with the 10X Chromium platform following the Single Cell 3' v2 protocol. After library
generation with the 10X Genomics platform, libraries were sequenced on an Illumina NovaSeq
S2 at a sequencing depth of 50,000 reads per cell. Reads were aligned to the GRCh38 human
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genome reference with Gencode v26 gene annotations® using the 10X CellRanger 2.1.1
pipeline. A custom pre-mRNA reference was generated to account for unspliced mRNA by

merging all introns and exons of a gene into a single meta-exon.

SnRNA-seq data processing and identification of cell type marker genes

We then clustered the droplets using Seurat v3.1.2%%, In order to remove droplets contaminated
with background RNA, we ran DIEM®2, After applying filtering, we only considered droplets
with at least 200 genes detected® to ensure that each droplet had enough information for
clustering. The count data were log-normalized using the NormalizeData function in Seurat,
using a scaling factor equal to the median of total counts across droplets. The counts for the
sixteen adipose tissue samples were merged at this step. The top 2,000 variable genes were then
calculated using the FindVariableFeatures function.

Normalized read counts for each gene were scaled to mean 0 and variance 1. We
calculated the first 30 PCs to use them as input for clustering. We then ran the Seurat functions
FindNeighbors and FindClusters with 30 PCs. In the FindClusters function, we used the default
parameters with standard Louvain clustering and a default clustering resolution of 0.8. To
identify marker genes for each cluster, we ran a Wilcoxon rank-sum test using the function
FindAllMarkers with default parameters and only.pos=TRUE. We corrected for multiple testing
using FDR<0.05.

T2D GWAS in the UKB

To identify individuals with T2D in UKB, we selected the individuals who were diagnosed with
diabetes (UKB data field 2443) or took medication for diabetes (data field 6153) as T2D cases,
while removing the individuals with age of onset of diabetes (data field 25288) <40 years to
avoid inclusion of type 1 diabetics in the GWAS analysis. We excluded the individuals with
missing information for diagnosis of diabetes (data field 2443) from the GWAS analysis, and
then used the individuals who were not diagnosed using these relevant data fields (data fields
2443, 6153, and 25288) as the controls. To account for population stratification, we selected the
unrelated, Caucasians (total n after the exclusions=389,738) and used BOLT-LMM?® to perform
the GWAS associations between the genotypes and T2D status. We included age, age?, sex, array

type, center ID, and 20 genotype PCs as covariates in the GWAS analysis.
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Stratified LD score regression

We performed Stratified LD score regression using the LD Score software v1.0.0%, This
analysis was conducted using the GWAS summary statistics from the UKB and GIANT meta-
analyses for WHRadjBMI (males, females, and both sexes combined) (n=315,284; n=379,501;
n=694,549, respectively) and BMI (n=806,834 both sexes combined)®® as well as GWAS
summary statistics from the UKBiobank for T2D (males, females, and both sexes combined)
(n=178,809; n=210,929; n=389,738, respectively). We partitioned the heritability into a category
with the cis-regions (+/-500kb from the ends of the gene) around the 347 WHRadjBMI co-
expression network genes and the 53 standard, overlapping categories used in the LD Score
software v1.0.0%°, Briefly, the 53 functional categories are derived from 26 main annotations
that include coding regions, untranslated regions (UTRS), promoters, intronic regions, histone
marks, DNase | hypersensitivity sites (DHSs), predicted enhancers, conserved regions, and other
annotations. The partitioned LD Score regression method utilizes GWAS summary statistics of
all variants to estimate how much variants in different annotation categories explain of the
heritability of cis expression while accounting for the linkage disequilibrium (LD) among

variants.

Construction of polygenic risk score

We constructed the polygenic risk scores (PRSs) for WHRadjBMI using the same method for
construction of PRSs as outlined for BMI in Khera et al.?”. Briefly, we used the summary
statistics from the GIANT GWAS for WHRadjBMI (n=224,459)8 and a reference panel of the
503 European individuals from the 1000 Genomes phase 3 version 5%7. We constructed nine
candidate scores using the software, LDPred v1.0.6%8, which adjusts the effect sizes for each
variant in the GWAS based on LD structure. Due to the large number of participants, unified
recruitment design and phenotypic characterization, the UKB is an ideal cohort for construction
and testing of PRSs. Therefore, we tested and validated these candidate scores by dividing the
UKB (Unrelated, Caucasian individuals, n=392,551)%**! into 2 groups: a testing set consisting of
1/3 of the individuals (n=130,851), and a validation set containing the remaining individuals
unused in the testing set (n=261,700). Since the fraction of causal variants is not known a priori,
we tested a different value of a tuning parameter (p=1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003,
0.0001), as suggested by LDPred v1.0.6%, in each of our nine candidate scores. We selected the
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best score by correlating the PRS with WHRadjBMI using Pearson correlation, which
corresponded to p=0.01. We also compared this to five PRS scores constructed using the
standard method of PRS construction of LD clumping (LD r?<0.2) and p-value thresholding
(p<0.5, 0.1, 0.05, 1x10°, 5x10®), as suggested by LDPred v1.0.6%, to confirm that using the
tuning parameter constructed a superior PRS. To avoid the influence of technical factors, we
corrected WHRadjBMI in the UKB for age, age?, sex, array type, center ID, and 20 genotype
PCs. To perform statistical tests, we divided the PRS into 20 quantiles and calculated odds ratio
of number of individuals in the top 10" percentile of WHRadjBMI for males and females

separately.

Prediction of type 2 diabetes using the WHRadjBMI PRS

We constructed a linear model to perform logistic regression using the binary T2D status as the
outcome in the UKB validation set (n=261,700) that we originally employed to validate the PRSs
for WHRadjBMI. We selected the individuals who were diagnosed with diabetes (UKB data
field 2443) or took medication for diabetes (data field 6153) as T2D cases, while removing the
individuals with age of onset of diabetes (data field 25288) <40 years to avoid inclusion of type 1
diabetics, with remaining individuals identified as controls. To examine individuals in the
extremes of the WHRadjBM I spectrum, we selected the UKB participants in the highest (top
10% of network PRS scores) and lowest decile (lowest 10% of network PRS scores) of
WHRadjBMI, as determined by the network PRS and divided them by sex. To avoid influence
from the original phenotype, WHRadjBMI, as well as any technical factors, our linear model

also included WHRadjBMI in addition to the network PRS score, with WHRadjBMI corrected
for age, age?, sex, array type, center ID, and 20 genotype PCs. We performed a Wald test for the

significance of each predictor in the linear model.

Transcriptome-Wide Association Studies (TWAS)

To identify TFs causal for WHRadjBMI, we performed a targeted Transcriptome-wide
Association Study (TWAS)*? using GTEx v8 cohort’s subcutaneous (n=581) RNA-seq data?® to
compute the TWAS weights for variants within the cis-region (+/-500kb from the ends of the gene)
around the 14 TFs in the identified WHRadjBMI co-expression network. As there are not
currently TWAS functional weights for genes using GTEx v8 cohort? and it has significantly
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more samples than the GTEXx v7 cohort®® for adipose tissues, we computed our own weights
using the recommended parameters by TWAS?3, Briefly, to only include variants that will be
used in the final association between TWAS and the GWAS trait, variants in the cis-region
around our 14 TFs were pruned base on the LD reference panel from the TWAS website that was
converted by matching variants from GRCh37 to GRCh38 in European individuals from the
1000 Genomes phase 3 version 5%”. TWAS?®? checks the heritability (p<0.01) and then looks for
the best model out of the five standard models to estimate weights for the variants to predict gene
expression. To show that the genes computed by TWAS® are causal for a WHRadjBMI, we then
associated the TWAS model with the weighted variants with WHRadjBMI using the GWAS
summary statistics from the UKBiobank and GIANT meta-analysis®®. The use of these extensive

GWAS:s (total n~700,000 Europeans) should maximize power for association.

Fine-mapping TWAS results using FOCUS

Recent work3*%° has shown that TWAS signal at genomic risk regions will be correlated across
genes as a result of linkage disequilibrium and prediction weights, which makes distinguishing
non-relevant genes from their causal counterparts challenging. To adjust for the correlation in our
TWAS test statistics and identify likely causal genes, we applied FOCUS®*, a recently developed
method that models the complete correlation structure within a region to fine-map TWAS signal.
FOCUS models the state of genes as “causal” and “non-causal” and performs Bayesian inference
over this state variable given the data. Specifically, given m TWAS z-scores z at a genomic risk
region, let £ = X(W, V) be the correlation structure of predicted expression as a function of the
m X p prediction weight matrix W and the p x p LD matrix V and let ¢ be a binary vector

indicating causal status. FOCUS models the likelihood of the calculated z-scores z as,

Pr(z |W,V,c,62) = N(0,XD X + X)
where D, = diag(o? - ¢) is a diagonal matrix indicating which genes are causal weighted by the
variance of their effect sizes. To infer the causal configuration ¢, FOCUS computes the posterior
probability as

P WV 2 P
Pr(c | 2,W,V, 2) = L ZIW. V. €, 70) Pr(cl6)
2cPr(z [W,V, ¢, 03)Pr(c'|6)

To collapse the probability over configurations ¢ to individual genes FOCUS computes the

marginal posterior inclusion probability (i.e. PIP) at the ith gene as Pr(¢c; = 1|z, W,V,c2) =
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Yec;=1Pr(c|z,W,V,of). Lastly, to reflect the inherent uncertainty of inference, FOCUS

computes credible gene sets for a specified credible level. For example, a calibrated 90%-credible

gene set contains the causal gene with probability 90%.

Differential gene expression analysis in the KOBS cohort

Using read counts from featureCounts v2.0.07°, we performed differential expression (DE)
analysis using the edgeR v3.24.3 package’®. We first performed TMM normalization using the
calcNormFactors and variance stabilization using voom??, and then built a linear module using
LIMMA v3.38.3" with the blocking factor for the baseline and follow-up measurement time
points in KOBS. As with the METSIM data, to avoid the influence of the mitochondrial read
number on the data, we excluded the mitochondrial reads from the when obtaining technical
factors. Technical factors were determined by STAR v2.5.2%° and Picard Tools v2.9.0 (option
CollectRNAseqMetrics) and included in the linear model in LIMMA v3.38.3"3, with DE genes

passing FDR<0.05 considered as significant.

Cis-eQTL analysis in the KOBS cohort

We performed cis-eQTL analyses in the KOBS cohort at two time-points using the subcutaneous
adipose RNA-seq data from the surgery and one-year follow-up (n=168 individuals with adipose
RNA-seq data at both time points). Given the sample size, we used both sexes combined in the
KOBS cohort to maximize power for discovery of context-specific cis-eQTLs. We filtered the
subcutaneous adipose RNA-seq expression data (FPKMSs) to genes expressed (FPKM>0) in
greater than 90% of individuals and employed PEER factor’* analysis to remove hidden
confounders. We conducted PEER factor’* optimization on chromosome 20 to maximize power
for discovery for eQTLs, while ensuring hidden confounders were removed, and thus ended up
correcting the KOBS expression data for 21 PEER factors. The KOBS cohort was genotyped
using the OmniExpress (Illumina) genotyping array. We imputed genotypes using the Michigan
Imputation Server™ and filtered genotypes for variants MAF<5% and those failing Hardy-
Weinberg Equilibrium test (p>1x10°) using PLI NK v1.9%°. We performed cis-eQTL analysis
using Matrix-eQTL’®, classifying variants as cis if they were within 1Mb of either end of the

gene.
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Human primary preadipocyte culture

Human subcutaneous primary white preadipocytes were obtained from Zen-Bio (lot L120116E,
female, age 52, BMI 26.5) or PromoCell (lot 4032001.1, male, age 30, BMI 30). Cells were
maintained in a monolayer culture at 37°C and 5% CO2 using preadipocyte growth medium
(PromoCell C-27410) with 1% Gibco Penicillin-Streptomycin (ThermoFisher 15140122) and
following PromoCell preadipocyte culturing protocols.

Electrophoretic mobility shift assay

Nuclear protein was extracted from the human primary preadipocytes using the Nuclear Protein
Extract Kit (Active Motif 40010), following manufacturer’s protocols. We incubated 250fmol of
oligonucleotide probes (15bp flanking SNP site for reference or alternate allele) with a biotin tag
at the 5’ end of the sequence (Integrated DNA Technologies) with 4 ug of the preadipocyte
nuclear protein from the male or female donor, and the working reagent from the Gelshift
Chemiluminescent EMSA kit (Active Motif 37341). For competitor assays, we added an
unlabeled probe of the same sequence to the reaction mixture at 204x excess. The reaction was
incubated for an hour at room temperature, and then loaded on a pre-run 6% retardation gel
(ThermoFisher Scientific EC6365BOX) together with the EMSA kit 5X loading buffer. We ran
20ul in the gel with 0.5X TBE buffer at 120V. We then transferred the contents of the gel to a
nylon membrane (Invitrogen LC2003) using 20V for 90 minutes and visualized with the chemi-

luminescent reagent as recommended.

EMSA oligonucleotide probe design for SNP rs1779445.

Oligonucleotide probe  DNA Strand  Sequence (5” -> 3°)

Reference (T) allele Positi\_/e TGACAGTCTCCAACATAACAGCTCAAAACTA
Negative TAGTTTTGAGCTGTTATGTTGGAGACTGTCA

Alternate (C) allele Positi\_/e TGACAGTCTCCAACACAACAGCTCAAAACTA
Negative TAGTTTTGAGCTGTTGTGTTGGAGACTGTCA

* Biotinylated probes were created by adding biotin to the 5' end of the positive strand probes.

Small interfering RNA (si-RNA)-mediated knockdown of TBX15

We knocked down TBX15 in human subcutaneous primary preadipocytes obtained from
Zen-Bio (lot L120116E, female, age 52, BMI 26.5). For the siRNA transfection, we used the
Dharmacon SMARTpool ON-TARGETplus Human TBX15 siRNA (L-022116-02) and the
Dharmacon siGENOME Non-Targeting siRNA Pool #1 (D-001206-13) as the negative control
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(NC). We optimized the siRNA concentration and transfection volumes and then performed two
independent siRNA transfection experiments in the human primary white preadipocytes. We
used Invitrogen Lipofectamine RNAIMAX (ThermoFisher 13778150) to transfect 50 nM of the
TBX15 or NC siRNAs using reverse transfection. Specifically, we followed the manufacturer’s
instructions for diluting the siRNA and Lipofectamine RNAIMAX in Gibco Opti-MEM |
Reduced Serum Medium (ThermoFisher 31985062) and forming the siRNA-Lipofectamine
RNAIMAX complexes. We incubated cell suspensions in the complexes plus serum- and
antibiotic-free media (PromoCell C-27417 basal media with supplement kit components minus
the fetal calf serum) to a final siRNA concentration of 50 nM. We incubated the transfection
reaction at room temperature for 10 minutes before plating 250 pl per replicate into 12-well
plates, for a total of 5 replicates per sSiRNA (TBX15 and NC). After 24 hours of transfection, we
added 1 ml of complete preadipocyte growth medium (PromoCell C-27410). 24 hours later, the
media was removed and the cells were washed with PBS once prior to being treated with
Invitrogen TRIzol reagent (ThermoFisher 15596026). We performed RNA extraction per
manufacturer’s protocol using the Direct-zol RNA Mini-Prep (Zymo Research R2061).

For the two independent knock-down experiments, we confirmed by RT-qPCR that
TBX15 expression was reduced by an average of >60% for the first experiment and 70% for the
second experiment. We synthesized cDNA from 500 ng of RNA using the Applied Biosystems
High-Capacity cDNA Reverse Transcription Kit (ThermoFisher Scientific 4368814). We
measured relative gene expression by RT-qPCR using an Applied Biosystems QuantStudio 5
detector. To determine the relative percent of TBX15 expression knockdown in the preadipocytes
transfected with the TBX15 siRNA compared to the NC siRNA, we normalized expression levels
to 36B4. Primers for TBX15 were obtained from Arribas et al.””. and validated in-house. Primer

sequences are listed below.

Gene  Primer Primer Sequence
TBX15 Forward 5’- AAAGCAGGCAGGAGGATGTT-3’
Reverse 5’- GCACAGGGGAATCAGCATTG-3’
36B4 Forward 5’-CCACGCTGCTGAACATGCT-3’
Reverse 5’-TCGAACACCTGCTGGATGAC-3’
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RNA-sequencing and differential expression analysis of si-RNA mediated knockdown of
TBX15

We submitted the RNA samples from the experiment with an average of 70% knockdown for
RNA-sequencing (RNA-seq). Libraries were prepared using the Illumina TruSeq Stranded
MRNA kit and sequenced on an Illumina HiSeq 4000 instrument across 2 lanes for an average
sequencing depth of 67M reads (+/- 2.5M reads) per sample. Reads were aligned to hg19 with
STAR v2.7.0e, using the 2-pass method and the following parameters: --
outFilterMultimapNmax 1, --outFilterMismatchNmax 6, --alignintronMin 20, --alignintronMax
500000, --chimSegmentMin 15.

We used the R package sva v3.26.07® to estimate surrogate variables for unknown sources
of variation in the data. We confirmed that the first surrogate variable (sv1) estimated using the
svaseq’® method is correlated with technical factors known to contribute to variance in RNA-seq
data, such as library size, uniquely mapped read percent, and 3’ bias, as well as the gene
expression first principal component. The various technical factors were obtained from STAR
v2.7.0e° after sequence alignment (uniquely mapped reads) or from the Picard Tools v2.9.0
(option CollectRnaSeqgMetrics). We used the sv1 as a covariate in the differential expression
(DE) analysis.

We performed the DE analysis using the R package limma v3.34.938 and the voom'?
method, including sv1 as a covariate, to identify genes in the WHRadjBMI co-expression
network (n=347) that are significantly DE in the TBX15 knockdown compared to the NC, with

FDR<0.05 considered as significant.
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Fig. 1 | Schematic overview of the study design (a), discovery of the red WHRadjBMI-
associated co-expression network that is enriched for TFs and GWAS genes (b), and
enriched for upregulated adipose tissue -specific DE genes when compared to other tissues
(c) in GTEX®. a, lllustrative schematic overview of the current study design, showing an eQTL
controlling a TF, i.e. TBX15, in cis, and co-expression networks in trans via the TF, TBX15, that
ultimately affects WHRadjBMI and clinical metabolic outcome, T2D, in a sex-dependent
manner. b, Bar plot showing enrichment of TFs and GWAS genes in the red WHRadjBMI-
associated co-expression network (light grey) when compared to the black WHRadjBMI-
associated co-expression network (dark grey) using the Fisher’s exact test. Significance of
enrichment using the Fisher’s exact test is indicated above each set of bars, prisher. C, Bar plot
showing significant enrichment (red) of upregulated adipose tissue-specific DE genes in
WHRadjBMI co-expression network using FUMAZ2 when compared to the 54 other tissues in
the GTEXx v8 cohort?. GTEX v8 tissues are ranked by enrichment from most enriched to least
enriched with the first 25 most enriched tissues shown. The tissue enrichments passing a
Bonferroni correction are shown in red, while the non-significant enrichments are shown in blue.
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Fig. 2 | PRS scores confirm sexual dimorphism of WHRadjBMI and demonstrate the
importance of WHRadjBMI co-expression network genes for WHRadjBMI in males. Plot
of the PRS for WHRadjBMI in the testing set of the UKBiobank (n=261,700) separated for
males (dark grey) and females (light grey) as well as for genome-wide PRS (dashed lines) and
WHRadjBMI co-expression network PRS (solid lines; i.e. variants within the cis regions of the
347 network genes (+/-500kb from the ends of the gene)). Odds ratio is calculated based on the
proportion of individuals in the top 10" percentile of WHRadjBMI for males and females in each
of the 20 quantiles of the PRS separately. Vertical error bars indicate the 95% CI for the odds
ratio. Brackets show a fold change (FC) in the odds ratio for the 20" quantile.
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Fig. 3| TWAS and FOCUS results in GTEx v8 subcutaneous adipose RNA-seq data
implicates TBX15 as the only TF in the WHRadjBMI co-expression network causal for
WHRadjBMI. a, Pairwise Pearson correlation coefficients between all genes in the TBX15 locus
(chr1:115476504-121965583) using the normalized gene expression from the GTEXx v8 cohort
subcutaneous adipose RNA-seq data (n=581). b, Plot of —log1o p-value for TWAS association
with WHRadjBMI for each gene in the TBX15 locus (chr1:115476504-121965583) with a
significant heritability estimate (p<0.01) in the GTEx v8 cohort genotype and subcutaneous
adipose RNA-seq data (n=581). Size of the point indicates the magnitude of the FOCUS
marginal posterior inclusion probability (PIP). Genes included in the final 90% credible set are
marked in red. Stars above points indicate a significant TWAS cross-validation p-value (p<0.01).

134



A D

<—l| o 40
Refsed ™ Ty 15m 1 i 51775445 7 100
gene e 30
) 55 0.75 =
NegatlveI M G‘)E E
RNA;Z: control 1 ) ) J ) j g,; 0.50 520
density | 1gyys R -
iRNA £ 025 Z10
&8 0.00 0
—— Negative TBX15 Negative TBX15
/ E control SiRNA control SiRNA
Reference  GACAGTCTCCAACATAACAGCTCAAAACTAAA
Alternate GACAGTCTCCAACACAACACCTCAAAACTAAA T~TBX15 °
RREB1 Motif : A C .t .
‘ °
QCQC&Q%CA‘ECQQA&%@_ .
AT R WA N N 104 @ aé‘,
C Ctrl Male Female @ B — T A0
3
I - I g ° TF (FDR<0.05)
a FDR<0.05
] ® oo NS
o L) PPARA E
° '. ° KLF15 ~
5 () TWISTL ¢ © e
o XPNPEP3g @
° ’r’ GTF2E200
o ¢ »—CCNH [ °
* PPAR \. L
)
FDR<0.05.__ & _TE_R_"&A___. _____________ ‘.
Ctrl  Ref Alt Ref Alt
Nuclear extract - - + + + + + + + + o7
Labeled probe + + + + + + + + + + -0.4 0.0 0.4 0.8
Unlabeled probe - - - 4+ - 4+ - + - + log, fold change expression in preadipocytes

Fig. 4 | The EMSA results demonstrate increased protein binding at the alternate allele of
the variant rs1779445, a context-specific cis regulator of TBX15 and trans regulator of the
WHRadjBMI co-expression network (a, b, ¢) and knockdown of TBX15 in human primary
preadipocytes significantly affects 130 genes (FDR<0.05) in the WHRadjBMI co-expression
network (d, e). a, lllustration of TBX15 gene with introns and exons; and the relative RNA-seq
read density in the human primary preadipocyte cells transfected with the negative control si-
RNA when compared to the cells transfected with the TBX15 si-RNA. Scales for the read density
are equal. b, DNA sequence surrounding the SNP rs1779445 and canonical motif for RREB1
used for predicting binding at rs1779445. c, Representative EMSA (from n=3 independent
experiments) shows protein binding at the reference and alternate allele of rs1779445 using
nuclear extract from male and female preadipocytes. Control (ctrl); reference allele (ref), and
alternate allele (alt); presence (+) and absence (-) of nuclear extract; as well as labeled probe and
unlabeled probe (competitor) are indicated below each lane of the EMSA. d, Bar plot showing
the gPCR relative expression (2°%9Y when compared to the housekeeping gene 36B4 and RNA-
seq TPMs for TBX15 in the cells transfected with negative control si-RNA when compared to the
cells transfected with TBX15 si-RNA (n=5). e, Volcano plot of differentially expressed (DE)
genes in TBX15 knockdown experiment, excluding TBX15. Significant genes (FDR<0.05) (dark
grey), non-significant genes (light grey), and TFs (orange; FDR<0.05) are plotted based on their
logio p-value and logz fold change in expression. Significantly differentially expressed TFs are
labeled. Inlay shows the volcano plot of the TBX15 DE results with TBX15 included.
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Supplementary Fig. 1 | WGCNA?®’ identifies 2 co-expression networks in the METSIM
adipose RNA-seq cohort (n=335), significantly correlated with WHRadjBMI and fasting

serum insulin. The numbers in the cells represent Pearson correlation results of network

eigengenes with BMI, WHR, and WHRadjBMI, and fasting serum insulin (adjusted for T2D
status) with correlation coefficients and p-values (shown in parenthesis). Associations that pass

Bonferroni correction for the number of networks and traits tested (pgonf<8.93x10™%) were

considered significant.
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Supplementary Table 1. Characteristics of the genes (n=347) in the WHRadjBMI co-expression
network, as reported by WGCNA®’ and ranked by network membership.

. Fasting

Gene Name Chr”:start-end (hg19) mzmvggghipT XXrHrSZgJoiw insulin -
correlation

HADH chr4:108910870-108956331 0.929 -0.253 -0.439
ETFA chr15:76507696-76603813 0.898 -0.244 -0.454
ALDH6A1 chr14:74523553-74551196 0.895 -0.192 -0.399
HIBADH chr7:27565061-27702614 0.874 -0.208 -0.367
UQCRC2 chr16:21963981-21994981 0.872 -0.246 -0.357
ACVRI1C chr2:158383279-158485517 0.871 -0.185 -0.402
GPD1L chr3:32147181-32210205 0.866 -0.237 -0.481
BNIP3 chr10:133781578-133795435  0.855 -0.228 -0.361
MARC2 chrl:220921567-220958150 0.851 -0.192 -0.357
MUT chr6:49398073-49430904 0.850 -0.166 -0.345
PCCA chr13:100741269-101182686  0.846 -0.201 -0.356
CCDC50 chr3:191046866-191116459 0.845 -0.194 -0.373
ACSS3 chr12:81331594-81650533 0.840 -0.171 -0.405
DLST chrl14:75348594-75370448 0.839 -0.189 -0.353
PHF13 chrl:6673745-6684093 0.837 -0.218 -0.363
NIPSNAP3B chr9:107526438-107539738 0.834 -0.217 -0.470
ANO6 chrl12:45609770-45834187 0.833 -0.215 -0.366
Clorf43 chr1:154179182-154193104 0.833 -0.210 -0.347
VDAC2 chr10:76969912-76991206 0.830 -0.231 -0.375
NDUFB5 chr3:179322478-179345435 0.829 -0.225 -0.358
AUH chr9:93976097-94124195 0.825 -0.176 -0.307
ACAT1 chr11:107992243-108018503  0.824 -0.149 -0.351
NAALAD?2 chr11:89864683-89926062 0.824 -0.240 -0.408
PEX19 chr1:160246602-160256138 0.824 -0.167 -0.319
PRDX6 chrl:173446405-173457946 0.823 -0.261 -0.395
GBAS chr7:56019486-56067874 0.820 -0.170 -0.283
HRSP12 chr8:99114572-99129469 0.815 -0.226 -0.376
ADH1B chr4:100226121-100242558 0.814 -0.160 -0.441
CTH chr1:70876901-70905534 0.811 -0.174 -0.374
MOCS1 chr6:39867354-39902290 0.809 -0.184 -0.451
SUCLG2 chr3:67410884-67705038 0.809 -0.203 -0.348
CSNK2A2 chr16:58191811-58231824 0.804 -0.256 -0.347
MRPLA45 chr17:36452989-36479101 0.804 -0.208 -0.304
PHYH chr10:13319796-13344412 0.804 -0.188 -0.323
DNAJC19 chr3:180701497-180707562 0.803 -0.131 -0.357
VEGFA chr6:43737921-43754224 0.801 -0.155 -0.386
MRPL32 chr7:42971799-42988557 0.800 -0.149 -0.348
HSDL?2 chr9:115142217-115234690 0.799 -0.167 -0.309
CYB5A chr18:71920530-71959251 0.798 -0.211 -0.381
TCEB3 chr1:24069645-24088549 0.797 -0.226 -0.332
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PDP2
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SLC25A21-AS1
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MARC1
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chr12:27863706-27909228
chr7:99661656-99680171
chr10:103585731-103603677
chr9:130374544-130457460
chr8:86285665-86361269
chr8:37887859-37917883
chr21:16333556-16437321
chrl7:11501748-11873065
chrl:12678906-12679250
chr6:168456425-168482237
chrY:22737611-22755040
chr14:55965996-56046828
chr2:206979541-207024327
chr22:25960816-26125261
chr18:33877677-34360018
chr2:105654441-105716418
chr20:33890369-33999944
chr6:166778407-166796486
chr1:53662101-53679869
chr2:37311594-37326387
chrX:154425284-154468098
chr3:66429221-66551687
chr7:154795158-154797413
chr10:120927215-120938345
chr11:118401756-118417995
chr4:100197524-100212185
chr1:65613232-65697828
chr1:120202421-120286838
chr3:100082275-100120242
chr7:123177051-123198309
chr4:74437267-74486348
chr11:118415243-118443685
chr12:59989848-60176395
chr1:3696784-3713068
chrX:17818169-17879457
chr1:65437908-65468159
chr18:55711599-56068772
chr17:10583654-10601692
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0.638
0.638
0.636
0.635
0.634
0.634
0.633
0.633
0.633
0.631
0.631
0.630
0.630
0.628
0.626
0.626
0.625
0.622
0.620
0.620
0.619
0.619
0.619
0.619
0.618
0.617
0.617
0.617
0.615
0.613
0.612
0.612
0.609
0.609
0.609
0.608
0.606
0.603
0.602
0.602
0.601
0.601
0.600
0.597
0.596

-0.145
-0.172
-0.116
-0.146
-0.188
-0.202
-0.130
-0.151
-0.127
-0.096
-0.089
-0.233
-0.191
-0.111
-0.093
-0.171
-0.198
-0.202
-0.149
-0.117
-0.168
-0.231
-0.253
-0.139
-0.102
-0.118
-0.119
-0.184
-0.117
-0.097
-0.151
-0.157
-0.172
-0.193
-0.225
-0.124
-0.104
-0.231
-0.128
-0.185
-0.141
-0.060
-0.050
-0.170
-0.116

-0.303
-0.357
-0.269
-0.180
-0.325
-0.307
-0.219
-0.288
-0.296
-0.271
-0.338
-0.236
-0.340
-0.287
-0.285
-0.334
-0.341
-0.312
-0.274
-0.209
-0.249
-0.301
-0.285
-0.241
-0.323
-0.168
-0.197
-0.294
-0.262
-0.221
-0.206
-0.417
-0.344
-0.283
-0.250
-0.200
-0.293
-0.377
-0.236
-0.267
-0.319
-0.333
-0.184
-0.318
-0.247



C170rf53
TP73-AS1
GLIS1

EMC3
MANZ2A2
RP1-266L20.2
ANKRD46
MRS2
NDRG4
MRPL35
NKIRAS1
CENPV
TUSC1
Clorf50
PDHB

GFPT1
SYAP1
RP11-689P11.2
VPS72

ACO2

IRX1
ADAMTS9-AS2
GLYCTK
LONP2

SNX3
HDDC3

MET

RGS3
SLC43A1
CHKA
GHITM
GBE1

RTN3
TMEM230
ARSEP1
SIRT3
ADIPOQ
GABARAPL1
PRKAG2-AS1
ERCCS8
TMEMA42
ST6GALNACS6
SDHC
FBXO9
CDKN1C

chrl7:42219274-42239844
chr1:3652548-3663900
chr1:53971910-54199877
chr3:10004221-10052800
chr15:91445448-91465814
chr6:170125187-170125950
chr8:101521980-101572012
chr6:24403153-24425810
chr16:58496750-58547532
chr2:86426478-86440917
chr3:23933151-23988082
chrl7:16245848-16256970
chr9:25676396-25678856
chr1:43232940-43263968
chr3:58413357-58419584
chr2:69546905-69614382
chrX:16737755-16783459
chr4:8483997-8514337
chrl:151142463-151167797
chr22:41865129-41924993
chr5:3596168-3601517
chr3:64670585-64997143
chr3:52321105-52329272
chrl6:48278207-48397033
chr6:108532426-108582464
chr15:91474148-91475799
chr7:116312444-116438440
chr9:116207011-116360018
chr11:57252007-57283259
chr11:67820326-67888911
chr10:85899196-85913001
chr3:81538850-81811312
chr11:63448918-63527363
chr20:5080486-5093749
chrY:14460540-14468226
chrl1:215458-236931
chr3:186560463-186576252
chr12:10365057-10375727
chr7:151574127-151576299
chr5:60169658-60240900
chr3:44903361-44907162
chr9:130647600-130667687
chrl:161284047-161332984
chr6:52916789-52965671
chr11:2904443-2907111
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0.595
0.595
0.593
0.592
0.591
0.591
0.590
0.589
0.589
0.586
0.584
0.582
0.582
0.581
0.581
0.579
0.579
0.576
0.576
0.575
0.574
0.572
0.570
0.567
0.567
0.564
0.562
0.561
0.561
0.555
0.555
0.550
0.544
0.540
0.539
0.539
0.538
0.532
0.532
0.531
0.523
0.517
0.514
0.513
0.503

-0.184
-0.061
-0.208
-0.034
-0.182
-0.145
-0.072
-0.114
-0.174
-0.124
-0.119
-0.198
-0.123
-0.199
-0.129
-0.096
-0.093
-0.120
-0.178
-0.113
-0.173
-0.107
-0.202
-0.156
-0.091
-0.194
-0.089
-0.236
-0.144
-0.214
-0.095
-0.052
-0.136
-0.075
-0.100
-0.084
-0.071
-0.039
-0.169
-0.084
-0.111
-0.107
-0.059
-0.119
-0.156

-0.248
-0.262
-0.289
-0.304
-0.278
-0.336
-0.247
-0.179
-0.368
-0.236
-0.188
-0.300
-0.316
-0.289
-0.256
-0.281
-0.224
-0.225
-0.294
-0.203
-0.263
-0.284
-0.283
-0.193
-0.204
-0.290
-0.310
-0.346
-0.170
-0.321
-0.214
-0.220
-0.225
-0.218
-0.222
-0.286
-0.243
-0.272
-0.261
-0.228
-0.198
-0.372
-0.163
-0.154
-0.268



FZD9 chr7:72848109-72850450 0.499 -0.112 -0.235
TSPAN3 chr15:77336359-77376326 0.498 -0.129 -0.136
FBXL5 chr4:15606162-15683302 0.495 -0.132 -0.163
SCOC chr4:141178440-141306880 0.476 -0.021 -0.213
ATP5F1 chr1:111991486-112005395 0.474 -0.103 -0.159
HSPA9 chr5:137890571-137911133 0.426 -0.078 -0.150
IMMT chr2:86371055-86422893 0.386 -0.057 -0.126
DSEL chr18:65173819-65184217 -0.428 0.244 0.253
APBBL1IP chrl0:26727132-26856732 -0.483 0.176 0.280
NEKG6 chr9:127019885-127115586 -0.505 0.097 0.377
TSSC1 chr2:3192696-3381653 -0.506 0.108 0.259
GNG2 chr14:52292913-52446060 -0.531 0.201 0.334
CORO1C chr12:109038885-109125372  -0.538 0.256 0.327
SPARC chr5:151040657-151066726 -0.541 0.290 0.371
LBP chr20:36974759-37005665 -0.552 0.132 0.384
CAPN1 chr11:64948037-64979477 -0.553 0.140 0.235
FAT2 chr5:150883654-150948505 -0.555 0.166 0.369
APS5S1 chr20:3801178-3805949 -0.576 0.274 0.291
KRT5 chr12:52908359-52914471 -0.576 0.233 0.389
TUBB2A chr6:3153903-3157760 -0.587 0.208 0.303
NUDT1 chr7:2281857-2290781 -0.592 0.119 0.233
CAll chr19:49141199-49149569 -0.600 0.169 0.249
TMEM189 chr20:48697663-48770335 -0.602 0.212 0.374
DPP3 chrl1:66247484-66277130 -0.621 0.172 0.299
HPD chrl2:122277433-122301502  -0.626 0.220 0.480
PRAF2 chrX:48928813-48931730 -0.626 0.141 0.198
ACTN1 chr14:69340860-69446157 -0.632 0.211 0.379
TMSB10 chr2:85132749-85133795 -0.639 0.149 0.235
GNAI2 chr3:50263724-50296787 -0.640 0.155 0.223
CD248 chr11:66081958-66084515 -0.646 0.226 0.335
HOMERS3 chr19:19040010-19052070 -0.647 0.193 0.265
TRPM2 chr21:45770046-45862964 -0.652 0.199 0.354
FLNA chrX:153576892-153603006  -0.671 0.161 0.310
TMEM104 chrl7:72772622-72835918 -0.673 0.165 0.360
ANKDD1A chr15:65204101-65251042 -0.696 0.212 0.429
MSC chr8:72753784-72756703 -0.725 0.287 0.361
C9orf16 chr9:130922539-130926207 -0.750 0.171 0.382

“ Abbreviation for chromosome.
T Pearson correlation coefficient with network eigengene as reported by WGCNAY'.
* Pearson correlation coefficient with phenotype as reported by WGCNAS’.
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Supplementary Table 2. Characteristics of the obesity GWAS genes in WHRadjBMI co-
expression network, as reported by WGCNA®" and ranked by network membership.

. Fasting
Gene Name GWAS trait”  Chr':start-end (hg19) Network 4 WHRaO!JB';’” insulin
membership® correlation "
correlation

PHF13 BMI chrl:6673745-6684093 0.837 -0.218 -0.363

ADHI1B BMI chr4:100226121-100242558 0.814 -0.160 -0.441
BMI

VEGFA WHR ohr6:43737921-43754224  0.801 -0.155 -0.386
WHRadjBMI ) ' ' '
WCadjBMI

MRPL10 BMI chrl7:45900638-45908900 0.775 -0.190 -0.325

TTLLY BMI chr1:84330711-84464833 0.760 -0.194 -0.360
BMI

EPB41L4B WHR chr9:111934255-112083244 0.740 -0.176 -0.353
WHRadjBMI

DLD WHRadjBMI chr7:107531415-107572175 0.734 -0.172 -0.281
BMI

TBX15 WHR chrl:119425669-119532179 0.733 -0.155 -0.311
WHRadjBMI ’ ' ' '
WCadjBMI
WHR

BCKDHB WHRadjBMI chr6:80816364-81055987 0.727 -0.145 -0.256
WCadjBMI

FAM120A0S BMI chr9:96208776-96215874 0.727 -0.120 -0.292
WHR ]

FAMI13A WHRaijMI chr4:89647106-90032549 0.724 -0.140 -0.272

MRPS22 BMI chr3:138724648-139076065 0.707 -0.114 -0.331

LRRC41 BMI chrl:46726868-46769280 0.696 -0.151 -0.285

CECR2 WHRadjBMI chr22:17840837-18037850  0.695 -0.204 -0.442

chr14:104182067-

ZFYVE?21 BMI 104200005 0.679 -0.120 -0.267

RGS17 BMI WHR chr6:153325594-153452384 0.678 -0.167 -0.374

SETD9 WHRaijI\/II chr5:56205087-56221359 0.670 -0.026 -0.315
BMI

PPARG WHR chr3:12328867-12475855  0.666 -0.257 -0.308
WHRadjBMI ) ' ' '
wC
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EYS BMI chr6:64429876-66417118  0.656 -0.140 -0.224
BMI _

ZDHHC4 WHRagjgM1  CI7:6817065-6629005 0.651 -0.139 -0.250
BMI

CALCRL WHR chr2:188207856-188313187 0.648 -0.083 -0.286
WHRadjBMI|

TMEMS52 BMI chr1:1849029-1850712 0.644 -0.230 -0.356

MRPS18A WHRadjBMI  chr6:43639040-43655528 0,636 0117 -0.269

NDUFS1 BMI chr2:206979541-207024327  0.620 -0.117 -0.209

MRPS9 BMI chr2:105654441-105716418 0.619 -0.253 -0.285
WHR _

uQccl WhRagjpy  CTr20:33890369-33099944 0,619 -0.139 -0.241

LRIG1 BMI chr3:66429221-66551687  0.615 -0.117 -0.262

ANKRD46 BMI chr8:101521980-101572012  0.590 -0.072 -0.247
BMI

ADAMTS9-AS2  WHR ohr3:64670585-64997143  0.572 -0.107 -0.284
WHRadjgMmI " : : :
WCadjBMI

MET WHRadjBMI  chr7:116312444-116438440 0562 -0.089 -0.310

GBE1 \E/’V'\(’:” chr3:81538850-81811312  0.550 -0.052 -0.220

ST6GALNAC6  BMI chr9:130647600-130667687 0.517 -0.107 -0.372

GNAI2 BMI chr3:50263724-50296787  -0.640 0.155 0.223
WHR

MSC WHRadjBMI  chr8:72753784-72756703  -0.725 0.287 0.361
WCadjBMI

C90rf16 BMI chr9:130922539-130926207 -0.750 0.171 0.382

“ Abbreviations for GWAS traits: Body Mass Index (BMI), Waist-hip-ratio (WHR), Waist-
Circumference (WC), Waist-hip-ratio adjusted for BMI (WHRadjBMI), Waist-Circumference
adjusted for BMI (WCadjBMI).

" Abbreviation for chromosome.

* Pearson correlation coefficient with network eigengene as reported by WGCNAS’.

8 Pearson correlation coefficient with phenotype as reported by WGCNAY’,
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Supplementary Table 3. Characteristics of the adipocyte marker genes in WHRadjBMI co-
expression network, as reported by WGCNA®" and ranked by network membership.

. Fastin

Gene name  Chr’:start-end (hg19) IC%%Zn g;id mee%vgg:(shipi l’gﬁg:ﬂt‘i’;’” insulirgJ .
correlation

ANO6 chr12:45609770-45834187 0.210 0.833 -0.215 -0.366
ADH1B chr4:100226121-100242558  0.285 0.814 -0.160 -0.441
PFKFB3 chr10:6186881-6277495 0.239 0.783 -0.184 -0.390
TMEM132C chr12:128751948-129192460 0.435 0.783 -0.118 -0.377
GHR chr5:42423879-42721979 0.846 0.761 -0.100 -0.364
PRKAR2B  chr7:106685094-106802256  0.239 0.739 -0.142 -0.372
DAPK2 chr15:64199235-64364232 0.270 0.728 -0.227 -0.375
FAM13A chr4:89647106-90032549 0.217 0.724 -0.140 -0.272
MARC1 chr1:220960101-220987735  0.208 0.711 -0.224 -0.297
SLC19A3 chr2:228549926-228582728  0.391 0.698 -0.096 -0.413
AQP7 chr9:33384765-33402643 0.792 0.683 -0.153 -0.258
PPARG chr3:12328867-12475855 0.398 0.666 -0.257 -0.308
SIK2 chrl1:111473115-111601577 0.583 0.653 -0.038 -0.252
KCNIP2 chr10:103585731-103603677 0.228 0.631 -0.096 -0.271
NEDD4L chr18:55711599-56068772 0.227 0.597 -0.170 -0.318
GBE1 chr3:81538850-81811312 0.354 0.550 -0.052 -0.220
RTN3 chr11:63448918-63527363 0.225 0.544 -0.136 -0.225
ADIPOQ chr3:186560463-186576252  0.362 0.538 -0.071 -0.243
SPARC chr5:151040657-151066726  0.254 -0.541 0.290 0.371

“ Abbreviation for chromosome.
" Average log2 fold change in adipocytes which compared to other cell types (see Methods).
* Pearson correlation coefficient with network eigengene as reported by WGCNAY'.
§ Pearson correlation coefficient with phenotype as reported by WGCNA®'.
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Supplementary Table 4. KEGG pathway enrichment results (passing FDR<0.05) from

WebGestalt?* for the WHRadjBM I co-expression network genes.

Gene set Description of the pathway  Enrichment Ratio p-value FDR
hsa00280 I\gg:;em:]ee“gégieggﬂon 14.91 <22x10%  <2.2x10"
hsa00640 Propanoate metabolism 15.43 3.19x10%2  5.17x011°
hsa01200 Carbon metabolism 6.15 1.28x10° 1.38x107
hsa00020 Citrate cycle (TCA cycle) 11.98 2.55x108 2.07x10°
hsa01100 Metabolic pathways 1.94 5.58x10® 3.62x10°
hsa00630 g'&‘;ﬁﬁi&f tabolis 11.05 3.23x107  1.74x10°
hsa00071 Fatty acid degredation 7.80 1.48x10® 6.83x10°
hsa01212 Fatty acid metabolism 5.55 2.23x10* 9.03x1073
hsa00650 Butanoate metabolism 7.77 3.66x10™ 0.0132
hsa03320 PPAR signaling pathway 4.28 0.00113 0.0366
hsa04932  Non-alcoholic fatty liver 287 0.00149 0.0439

disease (NAFLD)
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Supplementary Table 5. Gene Ontology cellular component enrichment results (passing
FDR<0.05) from WebGestalt** for the WHRadjBMI co-expression network genes.

Description of the cellular

Gene set Enrichment Ratio  p-value FDR
component

GO0:005739  Mitochondrion 4.40 <2.2x1016  <2.2x10716

G0:0031967 Organelle envelope 3.26 <2.2x1016  <2.2x10°1¢

G0:0031975 Envelope 3.26 <2.2x1016  <2.2x10°6

GO0:0044429 Mitochondrial part 5.64 <2.2x1016  <2.2x10°1¢

GO0:0005740 Mitochondrial envelope 4.57 <2.2x1016  <2.2x10°16

G0:0031966 Mitochondrial membrane 4.77 <2.2x1016  <2.2x1016

G0:0019866 Organelle inner membrane 5.26 <2.2x1016  <2.2x10°16

G0:0005759 Mitochondrial matrix 8.11 <2.2x1016  <2.2x1016

G0:0005743 Mitochondrial inner membrane 5.59 <2.2x1016  <2.2x1016

G0:0098798 Mitochondrial protein complex 7.32 <2.2x1016  <2.2x10°1¢

G0:1990204 Oxidoreductase complex 0.88 2.22x10  2.31x10!

G0:0044455 Mitochondrial membrane part 6.03 1.64x101%  1.56x101°

GO:0045239 | 'icarboxylic acid cycle enzyme 30.16 8.34x100  7.34x10°8
complex

GO:0045240 Dihydrolipoyl dehydrogenase 33.61 6.04x10°  4.94x107
complex

GO:0098800 'Nner mitochondrial membrane 6.09 2.43x107  1.86x10°
protein complex

G0:0000313 Organellar ribosome 7.33 2.78x107  1.87x10°

G0:0005761 Mitochondrial ribosome 7.33 2.78x107  1.87x10°

GO0:0043209 Myelin sheath 5.16 5.69x107  3.62x10°

GO:0045252 OX0dlutarate dehydrogenase 37.34 1.45x10°  8.72x10°
complex

GO0032592  Ntegral component of 7.52 2.77x10°  1.59x10**
mitochondrial membrane

GO:0098573 !ntrinsic component of 7.41 3.15x10°  1.66x10™
mitochondrial membrane

GO:0030062 Mitochondrial tricarboxylic acid 3201 333x10°  1.66x10
cycle enzyme complex

GO:0045254 ©Yruvate dehydrogenase 32.01 3.33x10°  1.66x10%
complex

G0:0031304 ntrinsic component of 10.32 419x10°  1.92x10%

mitochondrial inner membrane
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G0:0031305

G0:0000314

G0:0005763

G0:0009295
G0:0042645
G0:0031968
G0:0019867

G0:0005947

G0:0005749

G0:0045257
G0:0045273
G0:0045281

G0:0045283
G0:0005741
G0:1902494
GO:0005777
G0:0042579
G0:0098803
G0:0005840
G0:0098796

Integral component of
mitochondrial inner membrane
Organellar small ribosomal
subunit

Mitochondrial small ribosomal
subunit

Nucleoid
Mitochondrial nucleoid
Organelle outer membrane

Outer membrane

Mitochondrial alpha-
ketoglutarate dehydrogenase
complex

Mitochondrial respiratory chain
complex |1, succinate
dehydrogenase complex
(ubiquinone)

Succinate dehydrogenase
complex (ubiquinone)

Respiratory chain complex Il

Succinate dehydrogenase
complex

Fumarate reductase complex
Mitochondrial outer mmbrane
Catalytic complex
Peroxisome

Microbody

Respiratory chain complex
Ribosome

Membrane protein complex

10.32

12.45

12.45

9.56
9.56
3.77
3.73

33.61

33.61

33.61
33.61
33.61

33.61
3.89
1.83
4.34
4.34
5.33
3.03
1.76

4.19x10°®
6.60x10°

6.60x10°

7.13x10°
7.13x10°
4.37x10°
4.86x10°

5.48 x10°

5.48 x10°

5.48 x10°
5.48 x10°
5.48 x10°

5.48 x10°

6.48x10°

8.09x10°
0.00011
0.00011
0.00013
0.00065
0.0015

1.92x10*
2.80x10*

2.80x10*

2.81x10"*
2.81x10*
1.67x10°
1.69x10°®

1.69 x10°

1.69 x107

1.69 x10°
1.69 x1073
1.69 x10°

1.69 x107
1.95 x10°3
2.37 x10°®
2.94 x10°®
2.94 x10°®
3.41x10°3
0.0153
0.0323
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Supplementary Table 6. Stratified LD Score Regression®®® results for WHRadjBMI, T2D, and
BMI using the cis variants (+/-500kb from the ends of the gene) of the WHRadjBMI co-

expression network genes.

. Prop Prop  Prop h? : Enrichment Enrichment
Trait N SNPs®  p2t SE? Enrichment SE o-value
WHRadBMI 60 649 0105 0169 00153 161 0.146 4.90x10°
— Combined
WORAABML 315284 0105 0154 00148 146 0.140 1.52x10°
WHRadBMI - 379501 0105 0178 00163  1.69 0.155 211105
— Female
T2D R

. 389,738 0.105 0.157 0.0203 149 0.193 9.56x10
— Combined
T2D
e 178,809 0.105 0161 00240 153 0.228 0.0177
T2D

210929 0105 0.160 00304 152 0.289 NS

— Female
BMI

. 806,834 0.105 0.102 0.00560 0.97 0.0532 NS
— Combined

“Proportion of SNPs in the cis-regions (+/-500kb from the ends of the gene) of the WHRadjBMI
co-expression network genes.
" Proportion of heritability explained by the variants in the cis-regions (+/-500kb from the ends
of the gene) of the WHRadjBMI co-expression network genes.
* Standard error of the proportion of heritability.
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Supplementary Table 7. Characteristics of the TFs in WHRadjBMI co-expression network, as
reported by WGCNA®" and ranked by network membership.

merame o ligis) Neverk, WHBlBI Fasing i
HLF chr17:53342373-53402426 0.794 -0.195 -0.381
TWIST1 chr7:19060614-19157295 0.784 -0.160 -0.392
KLF15 chr3:126061478-126076285 0.775 -0.215 -0.300
PPARA chr22:46546424-46639653 0.762 -0.160 -0.362
PER3 chrl:7844380-7905237 0.759 -0.186 -0.332
CCNH chr5:86687311-86708836 0.716 -0.152 -0.304
SIX4 chrl14:61176246-61191066 0.712 -0.204 -0.270
TBX15 chrl:119425669-119532179 0.712 -0.204 -0.311
HOMEZ chr14:23741666-23768656 0.708 -0.272 -0.316
PPARG chr3:12328867-12475855 0.666 -0.257 -0.308
GTF2E2 chr8:30435835-30515768 0.655 -0.165 -0.292
XPNPEP3 chr22:41253081-41363838 0.655 -0.118 -0.277
ZNF3 chr7:99661656-99680171 0.633 -0.127 -0.296
IRX1 chr5:3596168-3601517 0.574 -0.173 -0.263

“ Abbreviation for chromosome.
T Pearson correlation coefficient with network eigengene as reported by WGCNAY’.
* Pearson correlation coefficient with phenotype as reported by WGCNA®'.
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Supplementary Table 8. Significant TWAS? heritability estimates (p<0.01) for the TFs in the

WHRadjBMI co-expression network.

Gene Name Heritability Heritability standard error  p-value

TBX15 0.101 0.0313 4.07x10°®
GTF2E2 0.0703 0.0253 1.43x107
XPNPEP3 0.302 0.0602 1.18x10°%
IRX1 0.0813 0.0237 1.04x10%
ZNF3 0.0821 0.0326 1.85x10°
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Supplementary Table 9. TWAS®? p-values and Z-scores for associations of TFs (with significant

TWAS® heritability (p<0.01)) with WHRadjBMI.

Gene Name  TWAS Model' Z-score  p-value
TBX15 Bayesian sparse linear mixed models (bslmm) 15.2 2.11x102
GTF2E2 Least absolute shrinkage and selection operator (lasso) -0.103 NS
XPNPEP3 Least absolute shrinkage and selection operator (lasso)  -3.05 2.26x10°°
IRX1 Best linear unbiased predictor 4.61 4.03x10°
ZNF3 Least absolute shrinkage and selection operator (lasso) 2.18 NS

“ NS indicates a non-significant Bonferroni corrected p-value>0.017.
T Best model for expression imputation chosen by TWAS®,
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Supplementary Table 10. Significantly differentially expressed genes (FDR<0.05) in the
WHRadjBMI co-expression network in the TBX15 knockdown experiment ranked by p-value.

Gene name Chr”:start-end (hg19) log? fold change® p-value  FDR

TBX15 chr1:119425669-119532179  -1.527 1.13x10%8 3.35x107%6
STRADB chr2:202252581-202345569  0.698 1.81x10%% 2.69x10%
EIFAEBP2 chr10:72164135-72188374 -0.454 1.02x10** 1.01x107°
MET chr7:116312444-116438440  0.478 3.69x101 2.74x10°°
DSEL chr18:65173819-65184217 -0.539 7.78x10 4.62x10°
VEGFA chr6:43737921-43754224 -0.299 3.09x10* 1.53x10°®
STXBP1 chr9:130374544-130457460  -0.315 1.98x107 8.42x10°®
PHGDH chr1:120202421-120286838  0.266 5.61x107 1.92 x10®
ISCAL chr9:88879461-88897676 0.302 5.82x107 1.92 x10°®
SNRNP27 chr2:70120692-70132707 -0.438 1.01x10° 2.95 x10°
IMMP2L chr7:110303110-111202573  -0.418 1.09x10° 2.95 x10°
TMEM189 chr20:48697663-48770335 0.312 1.25x10° 3.09x10°°
THYN1 chr11:134118173-134123264  -0.280 2.01x10% 4.59x10°
CFL2 chr14:35179593-35184029 0.271 2.48x10% 5.26x10°
UQCRC2 chr16:21963981-21994981 -0.184 3.94x10% 7.79x10°
PPARA chr22:46546424-46639653 0.297 5.24x10% 9.72x10°
PCBD1 chr10:72642037-72648541 -0.239 7.22x10° 1.26 x10*
FLNA chrX:153576892-153603006  0.249 8.17x10% 1.35x10*
CYB5A chr18:71920530-71959251 -0.207 1.32x10° 2.07x10*
LONRF1 chr8:12579403-12613582 -0.281 1.41x10° 2.09x10*
GNG2 chr14:52292913-52446060 -0.207 1.55x10° 2.19x10*
APMAP chr20:24943561-24973615 0.182 1.75x10° 2.30x10*
RAI2 chrX:17818169-17879457 0.426 1.78x10° 2.30x10*
KLF15 chr3:126061478-126076285  0.459 2.18x10° 2.69x10*
ABHD15 chr17:27887565-27894155 0.285 2.68x10° 3.19x10*
TXLNG chrX:16804550-16862642 -0.191 3.54x10° 4.04x10*
BCKDHB chr6:80816364-81055987 -0.264 4.63x10° 4.78x10*
HMGN3 chr6:79910962-79944406 -0.216 4.67x10° 4.78x10*
ACADSB chr10:124768495-124817827  -0.210 4.66x10° 4.78x10*
TMEMA42 chr3:44903361-44907162 0.266 5.81x10° 5.56x10*
MAN2A2 chr15:91445448-91465814 0.233 5.70x10° 5.56x10*
OSBPL1A chr18:21742008-21977844 -0.155 6.51x10° 6.04x10*
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SUCLG2
APBBL1IP
MKNK2
AUH
SRP68
GRPEL1
IFT46
GPD1L
TWIST1
DHTKD1
PMPCB
TMEM104
CTH
BTG3
PFKFB3
XPNPEP3
GTF2E2
LRRC41
DPP3
TARSL2
ATPAF1
CCNH
FAMB89A
TMEM230
VPS72
PPP2R5A
MRS2
PER3
PPARG
PRAF2
SRSF4
SLC41A1
DAPK?2
ISOC1

chr3:67410884-67705038
chrl0:26727132-26856732
chr19:2037470-2051243
chr9:93976097-94124195
chrl7:74035184-74068734
chr4:7060633-7069924
chr11:118415243-118443685
chr3:32147181-32210205
chr7:19060614-19157295
chrl10:12110971-12165224
chr7:102937869-102969958
chrl7:72772622-72835918
chr1:70876901-70905534
chr21:18965971-18985265
chr10:6186881-6277495
chr22:41253081-41363838
chr8:30435835-30515768
chrl:46726868-46769280
chrl1:66247484-66277130
chr15:102193801-102264807
chr1:47098409-47139539
chr5:86687311-86708836
chrl:231154704-231175992
chr20:5080486-5093749
chrl:151142463-151167797
chrl:212458879-212535200
chr6:24403153-24425810
chr1:7844380-7905237
chr3:12328867-12475855
chrX:48928813-48931730
chrl:29474255-29508499
chrl:205758221-205782876
chrl5:64199235-64364232
chr5:128430444-128449721
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0.168
-0.197
-0.158
-0.255
0.148
-0.173
-0.193
0.173
-0.171
0.207
-0.152
0.163
0.219
-0.195
0.184
-0.151
-0.142
0.127
-0.163
-0.195
-0.188
-0.179
0.305
-0.120
-0.161
0.167
-0.156
-0.208
-0.140
-0.231
-0.159
-0.155
0.445
-0.171

7.22x10°°
1.10x10*
1.13x10*
1.47x10*
1.43x10*
1.83x10*
1.87x10*
2.38x10*
3.00x10*
2.98x10*
3.21x10*
3.20x10*
3.30x10*
3.50x10*
3.72x10*
3.61x10*
3.74x10*
3.82x10*
4.19x10*
4.50x10
4.90x10*
5.28x10*
5.53x10*
5.80x10
7.24x10*
8.03x10*
8.03x10*
8.65x10*
8.86x10*
9.20x10*
9.98x10*
1.01x10°®
1.09x10°°
1.26x10°°

6.50x10*
9.59x10*
9.62x10™
1.18x1073
1.18x10°°
1.43x10°°
1.43x10°°
1.77x10°°
2.12x10°3
2.12x10°3
2.16x10°°
2.16x10°°
2.17x10°
2.26x10°
2.27x10°
2.27x10°
2.27x10°3
2.27x10°3
2.44x10°
2.57x10°°
2.74x10°
2.90x10°3
2.99x10°
3.07x10°
3.77x10°®
4.04x1073
4.04x107°
4.28x107°
4.31x10°°
4.41x10°°
4.67x10°°
4.67x10°°
4.96x10°3
5.65x10°3



GPATCH11
NDUFB5
HIBADH
MRPL32
PHLPP1
ANKRD53
MTHFD1
SDHC
HSPD1
L2HGDH
CHCHD3
IARS2
HOMER3
MLX
TMEM100
EIFAEBP1
ABHD5
Clorf43
ZNF16
DLD
ORMDL3
CAPN1
VWAS
GLUL
GBAS
RP11-61A14.3
ACTN1
ARPC1A
MRPS9
RASL10B
MRPL39
MAP3K5
LRPPRC
PDHX

chr2:37311594-37326387
chr3:179322478-179345435
chr7:27565061-27702614
chr7:42971799-42988557
chr18:60382672-60647666
chr2:71205510-71212626
chrl4:64854749-64926722
chrl:161284047-161332984
chr2:198351305-198381461
chr14:50704281-50779266
chr7:132469629-132766848
chrl:220267444-220321380
chr19:19040010-19052070
chrl7:40719086-40725257
chrl7:53796988-53809482
chr8:37887859-37917883
chr3:43731605-43775863
chrl:154179182-154193104
chr8:146155744-146176274
chr7:107531415-107572175
chrl7:38077294-38083854
chr11:64948037-64979477
chrl3:42140973-42535256
chr1:182350839-182361341
chr7:56019486-56067874
chrl6:66923072-66924996
chr14:69340860-69446157
chr7:98923521-98985787
chr2:105654441-105716418
chrl7:34058668-34070540
chr21:26957968-26979829
chr6:136878185-137113656
chr2:44113647-44223144
chrl1:34937376-35042138
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-0.163 1.28 x10°®
-0.123 1.39 x10°®
-0.117 1.46 x107°
-0.165 1.44 x10°®
0.177 1.52 x10°®
0.426 1.60 x10°
0.112 1.69 x10°°
0.195 1.65 x10°°
-0.111 1.67 x10°°
-0.211 1.80 x10°°
-0.147 1.78 x10°®
0.123 1.94 x10°®
-0.139 2.12 x10°°
-0.116 2.16 x10°°
0.243 2.64 x10°°
0.134 2.94 x10°°
-0.139 3.06 x10°®
-0.103 3.09 x10°®
0.248 3.12 x10°®
-0.109 3.19 x10°
0.134 3.54 x10°®
0.117 3.63 x10°°
-0.124 4.12 x10°°
0.0897 4.11 x10°°
-0.131 4.06 x1073
-0.181 4.25 x10°°
-0.102 4.52 x10°
0.0967 4.99 x10°
-0.135 5.28 x10°°
0.743 5.25 x10°°
-0.119 5.84 x10°°
0.157 5.82 x10°°
-0.0919 6.09 x10°
-0.121 6.41 x10°°

5.67x1073
6.06x10°3
6.20x10°3
6.20x1073
6.35x10°
6.62x10°
6.68x107
6.68x107
6.68x1073
6.93x10°3
6.93x1073
7.39x10°3
7.97x10°3
8.03x10°3
9.67x10°3
0.0106
0.0109
0.0109
0.0109
0.0110
0.0121
0.0123
0.0135
0.0135
0.0135
0.0137
0.0144
0.0158
0.0163
0.0163
0.0177
0.0177
0.0183
0.0190



HADH chr4:108910870-108956331 0.105 6.71 x10° 0.0197
NUDT1 chr7:2281857-2290781 0.156 7.03 x10° 0.0205
MOCS1 chr6:39867354-39902290 0.172 7.26 x10 0.0209
PHF13 chrl:6673745-6684093 0.149 7.36 x10° 0.0210
BFAR chrl6:14726672-14763093 0.105 7.67 x10° 0.0217
NKIRAS1 chr3:23933151-23988082 -0.134 7.76 x10° 0.0217
HADHB chr2:26466038-26513336 0.0999 7.96 x10° 0.0221
EMC3 chr3:10004221-10052800 -0.110 8.25 x10° 0.0227
PDHB chr3:58413357-58419584 -0.0998 8.90 x10° 0.0242
PRDX6 chrl:173446405-173457946 0.0861 9.07 x10° 0.0245
CHKA chr11:67820326-67888911 0.139 0.0100 0.0268
CORO1C chr12:109038885-109125372  0.0825 0.0108 0.0287
CENPV chrl7:16245848-16256970 0.126 0.0112 0.0294
LONP2 chrl6:48278207-48397033 -0.0848 0.0120 0.0303
GRSF1 chr4:71681499-71705662 0.0857 0.0118 0.0303
SLC25A27 chr6:46620678-46645930 -0.194 0.0119 0.0303
NRIP1 chr21:16333556-16437321 0.126 0.0119 0.0303
GMCL1 chr2:70056774-70108528 0.150 0.0122 0.0307
SCO1 chr17:10583654-10601692 0.0878 0.0129 0.0323
SULF1 chr8:70378859-70573150 -0.149 0.0130 0.0323
CD248 chr11:66081958-66084515 -0.129 0.0141 0.0345
C9orf16 chr9:130922539-130926207 -0.181 0.0143 0.0348
ANKRD46 chr8:101521980-101572012 0.225 0.0152 0.0368
LSM6 chr4:147096837-147121152 -0.135 0.0161 0.0386
CCDC50 chr3:191046866-191116459 0.0816 0.0175 0.0415
GGCT chr7:30536237-30591095 -0.107 0.0180 0.0424
MRPS27 chr5:71515236-71616473 -0.0739 0.0191 0.0446
Cllorfl chrl1:111749659-111756699 -0.138 0.0208 0.0483
PRDX3 chr10:120927215-120938345  0.109 0.0218 0.0499
ADH1B chr4:100226121-100242558 0.351 0.0218 0.0499

“ Abbreviation for chromosome.

" Average log2 fold change in expression in human primary preadipocytes transfected with the
TBX15 siRNA when compared to the cells transfected with the negative control siRNA (see
Methods).
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Chapter 5

Discussion and Future Directions

159



Since the rise of genotyping arrays and next-generation sequencing and the decrease in price of
these technologies in recent years®?, the collection of genotype and gene expression information
have increased drastically. However, despite many successes>>, some limitations still remain.
For example, even though the GenoType Expression (GTEX) project has collected samples from
a total of 54 tissues across the human body and recently reached its final version with 17,382
RNA-sequencing (RNA-seq) samples from a total of 979 individuals®, the GTEx samples are
mostly (n=948) from post-mortem samples with heterogeneous causes of death and variable
times between death and sample collection, which affects the RNA quality and gene expression
levels®. Human cohorts with genotype, RNA-seq, and deep phenotype data using obesity-related
tissue samples from living individuals, such as the METabolic Syndrome In Men (METSIM)’,
have been extremely useful to push forward the study of obesity and its comorbidities. However,
METSIM consists of males and is still relatively limited by its sample size with gene expression
data (n=335). The UKBIiobank (UKB) cohort (n~500,000) is one of the largest single population
cohorts with genotype and extensive phenotype information that is being updated on a tri-annual
basis®. On the other hand, the UKB currently lacks gene expression information. Finally, the
largest genome-wide association study (GWAS) for body mass index (BMI) has reached over
800,000 individuals®, giving us power to find more GWAS variants with small effect sizes and
relatively small minor allele frequencies (MAF). However, as the effect sizes of novel GWAS
variants decrease, the contribution of these loci to disease and phenotypes also decreases,
limiting the overall usefulness of continually increasing the size of GWAS even though there
undoubtedly is still value in discovering new biology. Furthermore, GWAS only contain
genotype and phenotype associations and are confounded by multiple variants in linkage

disequilibrium (LD) at many of the GWAS loci, making it difficult to pinpoint the underlying
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causal variants and genes in a locus. Despite the limitations, these human cohorts have allowed
us to conduct powerful genomic analyses and gain insights into the underlying mechanisms of
obesity through integrative and combined approaches to circumvent the limitations of any
individual cohort. However, much is still unknown about the key genes and gene-environment
interactions (GXES) contributing to obesity and the context-specific genomic regulatory
mechanisms conferring the susceptibility to obesity.

Moving forward, cohorts will most likely not only increase in size but also collect
different types of omics data. Recently, tissues, including adipose, have been identified to consist
of many more cell types than previously thought**. Therefore, single cell omics, including single
cell RNA-seg*?, single cell assay for transposase-accessible chromatin using sequencing (ATAC-
seq)*?, and single cell chromosome capture!*, are all gaining in popularity. These give insights
into the cell populations in a tissue and the differences in gene expression, open chromatin, and
chromosomal interactions between different cell types. However, single cell data are still limited
by their high cost, which in turn limits the number of samples that can be processed in any single
study. Additionally, large scale cohorts in the past, including the vast majority of GWASS,
predominantly consist of samples from European individuals®. However, the current trend
shows an increasing number of studies in non-European cohorts!®?, which will allow us to
understand the cross-population differences in disease prevalence and risk*,

In this thesis, we have employed integrative multi-omics approaches to study human
subcutaneous adipose tissue for obesity-related genes and mechanisms. We have characterized
two main types of regulatory mechanisms. In chapters 2 and 3, we characterized chromosomal
interactions in which DNA form loops bringing distant regulatory elements in physical contact

with gene promoters regulating gene expression levels. In Chapter 4 we identified transcription
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factors (TFs) binding to gene promoters, resulting in widespread downstream effects on multiple
genes across many chromosomes. Furthermore, after characterizing chromosomal interactions
and cis-eQTLs related to obesity GWAS loci in chapter 2, we examined the effect of gene-
environment interacting (GXE) variants at context-specific open chromatin regions on obesity in
the UKB in chapter 3. Finally, we identified causal, TF-driven mechanisms for metabolically
harmful abdominal obesity and its clinical outcome, type 2 diabetes (T2D) in chapter 4.

More specifically, in Chapter 2, we focused on understanding gene regulatory
mechanisms via chromosomal interactions in human adipocytes and elucidating how cis-eQTL
variants can affect the physical interactions of regulatory elements. We associated these genes by
correlating their expression with BMI measurements in the METSIM cohort and identified the
gene at 38 novel putative obesity loci whose mechanism of action can be explained through cis-
eQTLs acting through chromosomal interactions, with deeper investigations into an additional
four example loci that are also known GWAS loci for BMI and serum lipids and metabolites.

At the time of the study in Chapter 2, we were limited by the data and technology
available in a number of ways. First, we did not have ATAC-seq data available in adipocytes to
assess regions of open chromatin and therefore used open chromatin information aggregated
across cell types from publicly available sources. ATAC-seq data in adipocytes could have
enhanced the resolution of the chromosomal interactions and allowed us to pinpoint important
adipocyte-specific regions of open chromatin in the chromosomal interactions. As we have this
ATAC-seq data now from the study in chapter 3, further investigation using the ATAC-seq data
in adipocytes would be a natural refinement to these previous findings. Second, promoter
Capture Hi-C (pCHi-C) was a new and expensive technique at the time this study started. While

we were fortunate to collaborate with the original creators for probe and experimental design?®,
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we only had a few replicates of the pCHi-C, which may have impacted both the robustness of the
chromosomal interactions we could find and our power to computationally detect significant
chromosomal interactions. We now have many more replicates of the pCHi-C data in adipocytes
as a result of the study in Chapter 3 and there are also more publicly available pCHi-C data sets
in related cell types®. Reassessing the robustness of the chromosomal interactions as well as
employing the replicates to identify additional chromosomal interactions in adipocytes can now
be further investigated in future studies. Third, we used the publicly available Capture Hi-C
Analysis of Genomic Organisation (CHiCAGO) R package?! to detect significant chromosomal
interactions; however, since CHICAGO is the only widely available software for detecting pCHi-
C interactions to date, it is difficult to assess whether it is actually the best software for detecting
interactions. Future investigations into the robustness of CHICAGO using our current number of
replicates of pCHi-C as well as other data sets would definitely improve our ability to assess the
performance of CHICAGO and make any necessary modifications. The limitations of CHICAGO
and the replicates we had available also made it impossible to investigate longer range, trans
chromosomal interactions. Trans chromosomal interactions remain an area of active research that
has only few examples in the existing literature, all of which are in model organisms?%,

In general, based on the conclusions from the findings in Chapter 2, we could further
investigate the identified loci in a few ways. First, we showed at the Mitogen-Activated Protein
Kinase Kinase 5 (MAP2KS5) locus that the BMI GWAS variant in the chromosomal interaction,
rs4776984, has differential binding of proteins at its alleles via electrophoretic mobility shift
assay (EMSA) and computationally predicted them to be CCCTC-Binding Factor (CTCF) and
E1A Binding Protein P300 (EP300), key proteins for chromosomal interactions. However,

EMSASs simply show binding of protein using nuclear extract to oligonucleotides, without
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indicating which protein is binding. Although we tried some techniques, including EMSA
supershift, to assess which proteins were binding to rs4776984, we were unsuccessful, which is
not surprising given the well-known challenges of these techniques?. Further investigation into
the exact proteins or the complex of proteins binding to rs4776984 is warranted using for
example mass spec. Finally, we hypothesized that the 38 identified loci regulated by
chromosomal interactions contained some genes causal for obesity and some reactive to obesity.
Using Transcriptome wide association studies (TWAS)?® with an independent cohort, such as
GTEX® and the larger GIANT and UKBiobank BMI GWAS®, we could next search for the causal
BMI loci among these 38 novel regions.

In Chapter 3, we extended our investigation of chromosomal interactions to those which
were responsive to lipid intake, while also focusing on changes in the open chromatin regions,
specifically in adipocytes and during adipogenesis. We treated human primary adipocytes with
saturated and unsaturated fatty acids and searched for changes in open chromatin regions using
ATAC-seq and variants within those responsive open chromatin regions. | focused on
transcription factor (TF) binding that changes due to gene-environment interacting (GXE)
variants at these evolutionarily constrained open chromatin regions. Since GXE variants are
difficult to detect due to their small effect sizes and multiple-testing penalties, using this targeted
molecular approach and the large UKB cohort®, we identified 14 new GxE variants in lipid-
responsive promoters and 24 GXE variants in enhancers that interact with the saturated fat intake
on BMI. The underlying detailed molecular mechanisms at each variant site require further
investigations.

While we had ATAC-seq data from preadipocytes and adipocytes and assessed the

differences between those two stages of adipogenesis, the differentiation of adipocytes takes 14
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days and the investigation of changes in open chromatin throughout adipogenesis using other
time points, such as 24 and 48 hours after initiation of differentiation, is worth of further
investigation. Furthermore, although it was an improvement from the study in chapter 2 to have
two biological replicates of the pCHi-C, having even more replicates of pCHi-C, perhaps even
up to 5, could further increase the robustness of the chromosomal interactions as well as enable
us to identify additional chromosomal interactions with open chromatin regions and GxE
variants in enhancers and promoters. As we saw from our data, chromosomal interactions are
more dynamic than open chromatin, and therefore additional replicates can improve the
identification of these chromosomal interactions. ldentification of more chromosomal
interactions could lead us to search for genes where both the enhancer and promoter had lipid
responsive open chromatin instead of searching for open chromatin in enhancers and promoters
separately. Genes with a coordinated opening or closing of chromatin in response to lipid intake
could be key genes for response to lipid intake or adipogenesis and the subject of future
investigations into the underlying mechanisms. Finally, when we searched for the effect of lipid
responsive GXE variants on cis genes through a cis-eQTL analysis in the METSIM cohort’, we
only identified five genes with a cis-eQTL in either their enhancer or promoter. Replication of
these five signals in an independent cohort could further improve the robustness of this finding
and a larger cohort, such as GTEX, could improve the power to detect signals. As GTEX® is
publicly available via the National Institutes of Health database of Genotypes and Phenotypes
(NIH dbGAP) and has released its final version with 581 adipose samples, the use of GTEX cis-
eQTLs will be a natural extension to the findings in Chapter 3.

In Chapter 4, we investigated trans-eQTLs and master TFs in adipose tissue employing

integrative genomics approaches using human adipose RNA-seq data (n~1,400) and waist-hip-
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ratio adjusted for BMI (WHRadjBMI) GWAS®. We employed TWAS to provide statistical
support for the causal role of the TF, T-box Transcription Factor 15 (TBX15), in regulating the
accumulation of abdominal fat, measured via the proxy phenotype, WHRadjBMI. We
functionally verified in human primary preadipocytes the role of TBX15 in controlling an adipose
network of 347 adipogenesis, mitochondrial, and metabolically important genes, including
Peroxisome Proliferator Activated Receptor Gamma (PPARG), Kruppel Like Factor 15 (KLF15),
Peroxisome Proliferator Activated Receptor Alpha (PPARA), Adiponectin (ADIPOQ), as well as
35 obesity GWAS genes. We built on the current knowledge that TBX15 is an established
GWAS locus?5-28 with previous knockdown studies in mice?® showing the importance of TBX15
on adipogenesis and lipolysis.

While we already show that TBX15 affects this adipose network of genes through small
interfering RNA (siRNA) knockdown in human primary preadipocytes, TBX15 does not have
any publicly available ChlP-seq data, let alone in adipocytes, to functionally show where it binds
in the human genome. The current binding motif for TBX15 in the JASPAR database® is also
very general, with many locations across the genome predicted to harbor this motif, including
300 of the 347 network gene promoters (2kb upstream and 1kb downstream of the TSS) in our
study, which is not a significant enrichment when compared to all other promoters across the
genome. Producing ChIP-seq data for TBX15 in relevant cell-types, perhaps also in conjunction
with siRNA knockdown, could help dissect the direct targets of TBX15 among the adipose
network genes. As TBX15 has already be shown to be a GWAS gene in a Mexican-American
GWAS for visceral-to-subcutaneous adipose ratio?, investigations into TBX15 and the adipose

network genes in other population cohorts is definitely an important next step to extend our
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findings beyond Europeans and further show the importance and influence of TBX15 on
abdominal obesity.

In summary we integrated omics data from multiple human cohorts along with genetic
and phenotype information as well as functional follow-up data to understand the underlying
genes and their regulatory mechanisms contributing to obesity. First, we used pCHi-C, cis-
eQTLs, and GWAS to identify important obesity genes regulated by chromosomal interactions.
We show that chromosomal interactions can effectively fine-map variants in a GWAS locus and
identify the genes they directly regulate. We also provided 38 new candidate genes that are
causal or reactive for obesity. Second, we identified lipid-intake responsive open chromatin
regions via ATAC-seq in human primary adipocytes and obesity GXE variants in these open
chromatin regions of enhancers and promoters. We showed that these open chromatin regions are
evolutionarily constrained and the GxE variants significantly affect TF binding, including
adipogenesis and lipolysis TF, Retinoid X Receptor Alpha (RXRA). Finally, we move beyond cis
regulation of gene expression to TFs and trans effects, and identify a master regulator of
abdominal obesity, TBX15. We also identify the downstream adipose network, which TBX15
controls, and provide insights into the mechanisms contributing to the sex-dependent
accumulation of fat around the abdomen. Our studies suggest that by integrating these multi-
omics data and elucidating the mechanisms underlying obesity, we can understand the individual
risks associated with obesity and its comorbidities, which will help advance personalized

medicine.
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