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Abstract

Application of Statistical Methods to Integrative Analysis of Genomic Data

by

Kyung Pil Kim

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Haiyan Huang, Chair

The genomic revolution has resulted in both the development of techniques for obtain-
ing large quantities of genomic data rapidly and a striking increase in our knowledge on
genomics. At the same time, the genomic revolution also created numerous open questions
and challenges in analyzing the enormous amount of data required to gain insights on the
underlying biological mechanisms. This dissertation addresses these challenges by answer-
ing fundamental questions arising from two closely related fields, functional genomics and
pharmacogenomics, utilizing the nature and biology of microarray datasets.

In the functional genomic study, we try to identify pathway genes which are a group of
genes that work cooperatively in the same pathway constituting a fundamental functional
grouping in a biological process. Identifying pathway genes has been one of the major tasks in
understanding biological processes. However, due to the difficulty in characterizing/inferring
different types of biological gene relationships, as well as several computational issues arising
from dealing with high-dimensional biological data, deducing genes in pathways remains
challenging. In this study, we elucidate higher level gene-gene interactions by evaluating the
conditional dependencies between genes, i.e. the relationships between genes after removing
the influences of a set of previously known pathway genes. These previously known pathway
genes serve as seed genes in our model and guide the detection of other genes involved in
the same pathway. The detailed statistical techniques involve the estimation of a precision
matrix whose elements are known to be proportional to partial correlations (i.e. conditional
dependencies) between genes under appropriate normality assumptions. Likelihood ratio
tests on two forms of precision matrices are further performed to see if a candidate pathway
gene is conditionally independent of all the previously known pathway genes. When used
effectively, this is shown to be a promising technique to recover gene relationships that
would have otherwise gone undetected by conventional methods. The advantage of the
proposed method is demonstrated using both simulation studies and real datasets. We
also demonstrate the importance of taking into account experimental dependencies in the
simulation and real data studies.
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In the pharmacogenomic study, genetic variants causing inter-individual variation in drug
response are investigated. Specifically, signature genes which contribute to the high and low
responder variation in statin efficacy are discovered. Using Nonnegative Matrix Factorization
(NMF) method, we first identify two distinct molecular patterns between the high and low
responder groups. Based on this separation, the modified Significance Analysis Microarrays
(SAM) method further searches for signature genes which had gone undetected by the original
SAM method. In the biological validation studies, our gene signatures are shown to be
significantly enriched with HMGCR-correlated genes. Furthermore, a notable difference is
observed in the amount of HMGCR enzymatic activity change between the high and low
responder groups - the high responder group shows a bigger activity decrease, implying
that statin inhibits the HMGCR enzymatic activity more efficiently in the high responder
groups. This helps us understand why the high responder group shows a greater decrease
in low density lipoprotein cholesterol (LDLC) level and higher statin efficacy than the low
responder group. Overall, the discovered gene signatures are shown to have high biological
relevance to the cholesterol biosynthesis pathway, which HMGCR mainly acts on.
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Chapter 1

Introduction

1.1 High throughput genomic data

The advent of high-throughput technologies in genomics and proteomics promotes the
generation of enormous amounts of data that are being produced on a daily bases in laborato-
ries around the world. The size, type and structure of these data have also been growing at an
unprecedented rate. Gene expression, single nucleotide polymorphism (SNP), copy number
variation (CNV) and protein-protein/gene-gene interactions are some examples of genomic
and proteomic data produced using high throughput technologies such as microarrays [76],
array comparative hybridization, aCGH [63] and mass spectrometry [1]. The amount and
type of biological data keeps increasing even further in various fields such as methylation,
alternative splicing, transcriptomic and metabolomic.

Each of these distinct data types provides a different, partly independent and partly com-
plementary, view of the whole genome. However, understanding the underlying biological
functions of genes, proteins and other aspects of the genome requires more information than
provided by each of the datasets. Thus, integrating data from different sources becomes an
indispensable part of current research to gain broad interdisciplinary views of proliferating
genomic and proteomic field [35, 68, 88]. In functional genomics, for example, defining func-
tions and interactions of all the genes in the genome of an organism is a daunting task and
achieving this goal requires integrating information from different experiments [45]. Also,
there are efforts to combine similar types of data across different studies, which can be done
through meta-analytic approaches. For instance, with the accumulated number of publicly
available independent microarray datasets, several applications have proven the utility of
data integration by combining studies which address similar hypothesis [3, 14, 69].

The overarching goals of data integration are to obtain more precision, better accuracy
and greater statistical power than any individual dataset would provide. Moreover, integra-
tion can be useful in comparing, validating and assessing results from different studies and
datasets. It is likely that whenever information from multiple independent sources agree, it
is more likely for the findings to be valid and reliable than information from a single source
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[45].
Nevertheless, many challenges exist in the integrative analysis of these vast amount of

diverse types of genomic data. The challenges may be of conceptual, methodological or
practical nature and may relate to issues that arise due to computational or statistical
complexities. For example, genomic data are often subject to varying degrees of noise,
the curse of high dimensionality and small sample size. Furthermore, they are generated
from various sources and provided in different format such as vectors, graphs or sequences.
Hence, they need to be converted into a common format and dimension before they can be
combined to extract the most information out of each dataset. However, data from different
sources might have different quality and informativity. Even for similar data types, data
from different sources might have different quality depending on the experimental conditions
and design.

To fully utilize the benefit of data integration and to best answer to the sophisticated,
higher level biological questions arising from the various genomic data, there has been an
ever-increasing need for developing novel statistical methodologies and models to handle the
enormous amounts of complex and noisy data frequently confronted in genomics.

1.2 Statistical applications in functional genomics

The Human Genome Project was completed in 2003 and it is regarded as the first step in
understanding human beings at the molecular level. Though the project is complete, many
questions still remain unanswered, including the function of most of the estimated 30,000
human genes.

This naturally brings our attention to functional genomics which aims at understand-
ing the functions of genes and their interplay with proteins and the environment to create
complex and dynamic living systems. High throughput functional genomic technology is not
restricted to only fundamental transcriptome studies, however, and is expanding its potential
into biomedical applications such as pharmacogenomics, prognostic biomarker determination
and disease subtype discovery. In pharmacogenomics, for instance, gene expression profiles
are used to characterize the influence of genomic variation on drug response in patients and
classify therapeutic targets to ensure maximum drug efficacy with minimal adverse effects.
Such approaches promise the advent of personalized medicine, in which drugs and drug
combinations are optimized for each individual’s unique genetic makeup [82, 40].

Assessing the function of genes can be tackled by different approaches. One avenue of
research focuses on gene expression level acquired from repeated measurements of its RNA
transcripts. For this purpose, microarray technologies are popularly adopted as the standard
tool to obtain a panoramic view of the activity of the genome of entire organisms. Microarray
technologies enable us to simultaneously observe thousands of genes in action and to dissect
the functions, regulatory mechanisms and interaction pathways of the entire genome [22, 53,
54].
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A fundamental component in integrating and understanding the data generated by the
microarray technologies is the development of statistical methods. Due to the complicated
and high-dimensional nature of the microarray data, statistical modeling of gene expression
data often becomes challenging. Despite the intrinsic obstacles of microarrays, statistical
methods have shown great promises in microarray analysis. Existing statistical methods
could be classified into four categories - class comparison, class discovery, class prediction
and pathway analysis.

• Class comparison The issue in the class comparison is selecting differentially ex-
pressed genes, i.e. genes whose expression is significantly different between conditions.
Statisticians have been involved in differential expression analysis since the introduc-
tion of microarray technologies. As a result, many methods have been developed. Some
are based on parametric models (e.g. MAANOVA [95], limma [79])1 while others rely
on non-parametric approaches to tackle the difficulties associated with distributional
assumptions (e.g. SAM [89]). A comparative review of all methods are given in [65,
15]

• Class discovery Clustering or unsupervised classification is used in gene expression
analysis to identify similarly expressed groups of genes/samples. The results are then
verified based on biological rationale. The underlying idea is that the functionally
related genes are believed to be either co-expressed or inversely expressed, thus they
are likely to be grouped together [23]. Clustering can be applied gene-wise or sample-
wise; the former helps identify groups of co-regulated genes while the latter helps
identify new biological classes such as new tumor subtypes. Alternatively, clustering
can also be done over genes and samples simultaneously. Some of the well known
algorithms include hierarchical clustering [23], k-means [46], partition around medoids
(PAM ) and self organizing maps (SOM ) [19].

• Class prediction The goal of class prediction is to develop a multivariate function
for predicting the status of patients (phenotype) using gene expression profiles. Given
expression profiles and phenotypes for patients, a classification rule is built by learning
this training dataset. Then the objective is to predict the status of new undiagonized
patients according to their expression profiles. As such, class prediction methods play
critical role in the biomedical area by assigning tumors to one of predefined subtypes
[33] or building a prognostic model for various tumors [24, 90]. There are a huge
number of available classification methods, ranging from relatively simple methods
logistic regression, discriminant analysis [20, 33, 21], k-nearest neighbour to complex
multi-categorical methods support vector machines (SVM ) borrowed from the machine
learning field [81, 2].

1MAANOVA uses analysis of the variance (ANOVA) to capture the main sources of variability in the
experiment. limma adopts a parametric approach using linear models and empirical bayes.
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• Pathway analysis Class comparison generates long lists of genes which have been
selected based on statistical significance. With these gene lists (query), researchers
try to find biological interpretation by relating the query with functional annotation
databases such as the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG). To test the significant enrichment of specific functional categories
in a given query, Gene Enrichment Analysis (GE ) and Gene Set Enrichment Analysis
(GSEA) [83] are most popularly adopted.2 These methods enable us to discover the
common biological functions or properties represented within the query which finally
provide great biological insight, such as pathway discovery or association studies with
disease.

Although massive amount of data has been generated with microarrays, there is no con-
sensus on what is the best quantitative methods to analyze them. Many methods lack
appropriate measures of uncertainty, and make dubious distributional assumptions. Fur-
thermore, little is known on how to design informative experiments, how to assess whether
the experiment protocols were properly observed, or how to evaluate the reliability of the
results obtained. To further exacerbate the situation, the unique character of gene expression
data keeps generating many challenging statistical questions. Statisticians and scientists in
many disciplines are thus diving in to tackle the urgent need to develop suitable statistical
methods in recent days.

1.3 Scope and contributions

The major challenge in using gene expression data is to develop or choose the appro-
priate statistical methods which can provide immediate but profound biological insights on
the variety of questions we have. This dissertation addresses this challenge by answering
fundamental questions arising from two closely related fields, functional genomics and phar-
macogenomics, utilizing the nature and biology of microarray data.

Project I (chapter 2) is categorized as a functional genomic study. The main purpose
of this project is to identify pathway genes which are a group of genes that work coopera-
tively in the same pathway constituting a fundamental functional grouping in a biological
process. Identifying pathway genes has been one of the major tasks in understanding bio-
logical processes. However, due to the difficulty in characterizing/inferring different types
of biological gene relationships, as well as several computational issues arising from dealing
with high-dimensional biological data, deducing genes in pathways remains challenging.

This project contributes to the field of pathway gene discovery in the following manner:

• We elucidate higher level gene-gene interactions by evaluating the conditional depen-
dencies between genes, i.e. the relationships between genes after removing the influ-

2More methods are available in [47, 72]
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ences of a set of previously known pathway genes. These previously known pathway
genes serve as seed genes in our model and will guide the detection of other genes
involved in the same pathway.

• Based on our distance measure, we formulate a novel statistical model by estimating a
precision matrix whose elements are known to be proportional to partial correlations
(i.e. conditional dependencies) between genes under appropriate normality assump-
tions.

• We also take into account the presence of experiment dependencies in the gene expres-
sion data when estimating the precision matrix.

• To test the conditional independence of a candidate pathway gene with the seed genes,
likelihood ratio tests are performed on two forms of precision matrices.

Both simulation studies and real data analysis confirm that our method outperforms
other existing methods. By taking into account the experiment dependencies in the gene
expression data, we could better infer pathway gene relationship than the methods which
ignore the experiment dependencies. In the flavonoid biosynthesis (FB) pathway studies,
our method also identifies genes from neighbouring pathways by considering the indirect
relationships between genes. This finding will find its utility in future studies which are
targeted to discovering the cooperative nature of genes in the pathways. Overall, we have
shown that our method is a promising approach to recover gene relationships that would
have otherwise been missed by conventional methods.

Project II (chapter 3) is categorized as a pharmacogenomic study. This project aims to
study the genetic variants affecting patients’ different drug response. Specifically, we try to
identify gene signatures which contribute to the high and low responder variation in statin
efficacy. When a gene variant is associated with a particular drug response in a patient,
one could potentially make clinical decisions based on genetics by adjusting the dosage or
choosing a different drug.

This project contributes to the discovery of genetic features in pharmacogenomic study
in the following manner:

• To demonstrate the existence of distinct molecular patterns between the high and
the low responder groups in gene expression data, Nonnegative Matrix Factorization
(NMF) method is adopted which is popularly used in molecular pattern recognition.
The result assures the existence of clear-cut separation between the two responder
groups.

• To identify signature genes based on the separation defined by the NMF analysis,
a new algorithm from Significance Analysis Microarrays (SAM) method is proposed.
By stabilizing the variance of the test statistic and estimating the gene-specific null
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distribution of the test statistic, a set of signature genes is identified which had gone
undetected by the original SAM method.

• In biological validation studies, (i) our signature genes are shown to be significantly
enriched with HMGCR-correlated genes, and (ii) a notable difference is observed in the
amount of HMGCR enzymatic activity change between the high and low responders.
Specifically, the high responder group shows a bigger activity decrease, implying that
statin inhibits the HMGCR enzymatic activity more efficiently in the high responder
group. This helps us understand why the high responder group exhibits a greater
LDLC decrease and higher statin efficacy than the low responder groups. Overall,
these results imply that our gene signature is biologically relevant to the cholesterol
biosynthesis pathway, which HMGCR mainly acts on.

With the aid of novel statistical methods such as NMF and SAM, we successfully identi-
fied signature genes of our interest. Together with the biological validations we performed,
our results will shed a light on understanding the inter-individual variation in statin efficacy.
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Chapter 2

Project I: Using Biologically
Interrelated Experiments to Identify
Pathway Genes in Arabidopsis

2.1 Introduction

2.1.1 Biological pathway and pathway genes

A biological pathway is a series of chemical reactions that form an integral and critical
part of every biological process. Pathway genes, or genes involved in the same biological
pathway, constitute a fundamental functional grouping in a biological process. A major
task in understanding biological processes is to identify a set of genes in the same biological
pathways and elucidating the relationships between them.

2.1.2 Overview of existing methods

Using gene expression data, there have been two popular computational approaches for
finding pathway genes: clustering analysis and network models. Clustering analysis uses a
co-expression measure to quantify similarities in gene expressions and then assigns similar
genes into clusters [23]. Genes in each cluster are considered to be functionally related,
and thus likely to be in the same pathway. This approach works when the pathway genes
exhibit strong co-expressions with one another. Network models generally model a pathway
as a network, with the genes represented as nodes and the gene relationships represented as
edges linking the nodes, e.g. the work in [27]. Starting with a full network, a typical pathway
can be identified as a connected (sub)network after all the weak or insignificant edges are
removed by a backward edge exclusion technique. Or alternatively, starting with an empty
network, strong or significant edges can be added gradually to form a (sub)network using the
method of forward inclusion of edges. Both have been widely used in literature to construct
biological networks [6, 9, 29, 17, 42, 34, 57, 64, 75, 74, 93].
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The property of a network mainly relies on how to evaluate the edges between genes.
There are two ways to assign edge weights. One is based on gene covariance matrix, which
measures marginal similarity/correlation between any two genes. The other is based on
inverse covariance matrix of genes, leading to a graph concerning conditional independence
relationships. The latter is equivalent to using partial correlations as similarities.

Despite their appealing features, the approaches described above have limitations. One
limitation comes from the high dimensionality of microarray data. The well-known large p,
small n problem can result in an unreliable co-expression measure and hence a very high rate
of false discoveries in clustering analysis. In the network models, this raises concern about
the stability and accuracy of the model inference; it is almost impossible to employ the
network models on a genomic scale as the estimation of covariance or its inverse matrices
becomes problematic. Although there has been recent work such as regularized network
models to overcome this problem [75, 74], the accuracy of the results remains unclear. As
such, in practice, these approaches are usually applied to a rather small number of genes or
among a small number of clusters of genes preselected based on some prior knowledge, which
as a consequence, makes it difficult for us to explore the whole genomic scale of information.

Another concern is related to the limited biological inference of these approaches. Cluster
methods are based on a marginal co-expression measure between two genes independent of
other genes. Similarly in a network model using covariance matrix, an edge only connects
genes with strong marginal correlations. Such approaches potentially expose us to the risk
of missing higher level interactions such as group interactions, i.e. gene A interacts with a
group of genes but it does not possess any strong relationship with the individual ones. This
group interaction is frequently observed in real biological pathways when a group of genes
cooperatively regulate one gene. Using the inverse covariance matrix of genes in a network
model has a better hope for detecting such kinds of higher level interactions. The inverse co-
variance matrix is also known as the precision matrix, whose elements have an interpretation
in terms of partial correlations (i.e. the correlation between any two genes conditioned on
one or several other genes). However, in the current literature, partial correlation is mostly
calculated conditioned on either all the available genes or a more-or-less arbitrary subset
of them that likely contain noisy (i.e. non-pathway or biologically unrelated) genes. It is
reported that conditioning on all genes simultaneously can introduce spurious dependencies
which are not from a direct causal effect or common ancestors [29]. This problem may be
circumvented to some extent by considering lower order partial correlations, e.g. calculating
a partial correlation of two genes conditioned on every other individual variables (first-order
partial correlation), and on every other two variables (second-order partial correlation) [29,
55, 93, 92]. However, one concern on lower order partial correlation is its insensitivity for
inferring higher level gene associations such as group interactions. More importantly, if the
conditioned genes are biologically unrelated, the corresponding conditional dependence prop-
erties would be difficult to interpret and verifying the biological relevance of the recovered
networks becomes challenging. Further discussions on the adverse effects of conditioning on
noisy genes are given in Sections 2.2 and 2.3.
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2.1.3 A new pathway gene search algorithm based on partial
correlations

We introduce a new pathway gene search algorithm, designed based on evaluating partial
correlations between genes, for a particular biological pathway of interest. The motivation
of using partial correlation is based on its ability to detect complex gene relationships under
appropriate normality assumptions of the data: (i) a strong partial correlation between
two genes suggests a direct interaction despite a weak marginal correlation; (ii) a negligible
partial correlation suggests no direct relationship after removing influences from other genes
and the two genes are conditionally independent.

To overcome the concerns and limitations of current methods for using partial correla-
tions, we require a few (e.g. 3 - 5) preselected biologically related pathway genes, upon
which the partial correlation is conditioned on, to guide the search. Specifically, we perform
the likelihood ratio tests to see if a candidate gene is conditionally independent of all the
preselected known pathway genes.

The requirement of pre-known pathway genes seems a limitation of our approach. How-
ever, by incorporating this small amount of biological knowledge, huge advantages on bio-
logical inference can be gained and false positive discoveries have been reduced dramatically
(Section 2.3). Furthermore, by conditioning on preselected pathway genes, the resulting
partial correlation coefficients can be directly interpreted as a similarity measure to the con-
sidered pathway. In addition to suggesting satisfying mathematical and biological properties,
the proposed approach is also advantageous computationally since we only need to estimate
a moderate dimensional precision matrix once for each candidate gene.

Moreover, we also take into account the presence of experiment dependencies in the gene
expression data when estimating a precision matrix elements in a precision matrix are pro-
portional to partial correlations between genes [75]. In current studies of gene relationships,
the presence of expression dependencies attributable to the biologically interrelated experi-
ments has been widely ignored. When unaccounted for these (experiment) dependencies can
result in inaccurate inferences of functional gene relationships, and hence incorrect biological
conclusions [86]. Our simulation and real data study supports this conclusion and confirms
that considering those dependencies indeed plays a critical role in correctly inferring pathway
gene relationships.

2.2 Methods

As we discussed earlier, in contrast to marginal calculation (e.g. the Pearson correlation),
partial correlation can work as a more effective tool for inferring complex gene interactions
in pathways when it is properly computed.

Below, we first provide a brief review on the concept of partial correlation, followed by
a detailed description of a new search strategy, designed based on a likelihood ratio test on
partial correlations, for finding pathway genes.
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2.2.1 Partial correlation

When an expression matrix (with genes in rows and experimental conditions in columns)
is multivariate normally distributed, standard graphical model theory [42] shows that the
partial correlation between genes can be equivalently represented by the corresponding ele-
ments in the precision matrix (ΣG)−1 , where ΣG is the covariance matrix. That is, for a set
of genes W , the partial correlation between gene i and gene j can be expressed as

ρij = cor (i, j |W\{i, j}) =

{
− ωij√

ωiiωjj
, i 6= j

1, i = j
(2.1)

where ωij are elements in the inverse gene covariance (or inverse gene correlation) matrix
[42, 75]. With the normality assumption on expression measurements, when ρij vanishes, two
genes i and j are conditionally independent given the remaining genes.

2.2.2 Method motivation

A negligible element in the precision matrix suggests conditional independence between
two genes. This motivates us to use precision matrix as a key component in our method for
detecting higher level gene interactions, e.g. group gene interactions in a pathway.

However, the successful use of partial correlation highly relies on two issues. One issue is
about the selection of a proper set of genes upon which the correlation is conditioned on, i.e.
W \ {i, j} in Equation 2.1. When this set of genes contains noisy (i.e. non-pathway) genes,
the derived partial correlation would be unreliable for detecting gene relationships. We can
see this explicitly through a linear regression interpretation of partial correlation. In terms
of linear regression, the partial correlation ρij between gene i and j conditioned on a set of
genes Z is simply the correlation cor(ε1, ε2) of the residuals ε1 and ε2 resulting from linearly
regressing gene i and gene j against the genes in Z, respectively. Assume we have known
pre-pathway genes x and y, and a non-pathway gene h that is independent of genes x and y
in Z. Now we consider two candidate genes u = x+ y and v = δ(x+ y) + h (note that these
two equations only represent the expression relationship between the genes), where δ is small
and close to 0. Clearly, u is more likely to be a pathway gene due to its direct and strong
relationship with two pre-known pathway genes x and y, while v is more likely to be a non-
pathway gene since it is almost a replicate of the non-pathway gene h. However, the partial
correlations cor(u, x|Z\{x}) = cor(v, x|Z\{x}) = cor(u, y|Z\{y}) = cor(v, y|Z\{y}) = 1,
showing no advantages of gene u over gene v for their partial correlations with the pathways
genes x and y. This undesired performance is due to the inclusion of noisy genes in the gene
set Z upon which the partial correlation was computed. Recognizing this, we decide to build
up our approach by conditioning only on a small set of preknown pathway genes to reduce
noise in partial correlation estimation. We call this set of pre-known pathway genes as seed
genes. Though the requirement of seed genes seems a limitation, only 3 - 5 seed genes are
really needed for our method to run and generate reliable results. In brief, by incorporating
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a small amount of prior biological information, we can gain huge advantages in detecting
genes involved in a particular pathway (Section 2.3). Furthermore, in Section 2.3, by using
both simulation and real data, we additionally demonstrate the adverse effects of having
noisy genes in the set of seed genes in detecting pathways genes.

The other issue critical to the proper use of partial correlation is on the estimation
of gene precision matrix (see Equation 2.1). Given a gene expression matrix with genes
in rows and experiments in columns, an effective estimation of gene precision matrix is
challenging especially when there are experiment dependencies (or when the row-wise and
column-wise dependencies co-exist) in the original gene expression. Experiment dependencies
can be defined as the dependencies in gene expression between experiments due to the
similar or related cellular states induced by the experiments [86]. Such dependencies cause
dependent elements in a gene expression vector. When unaccounted for, they can result in
inaccurate inferences of gene relationships, and hence incorrect biological conclusions. To
take into account the experiment dependencies in partial correlation estimation, we adapt
a model and an estimation procedure, named Knorm from Teng and Huang (2009), for
inferring gene correlation matrix when there are both the gene-wise and experiment-wise
dependencies in the gene expression matrix. The main aspect of the framework is the use of a
Kronecker product covariance matrix to model the gene-experiment interactions. The Knorm
estimation is mainly achieved by an iterative estimation of the two covariance matrices:
one covariance matrix is estimated through a weighted correlation formula assuming the
other covariance matrix is known. In addition, a row subsampling technique (to enable a
comparable number of rows and columns in estimation) and a covariance shrinkage technique
(to stabilize the estimated covariance matrices) are employed to ensure a robust estimation.
Compared with the Pearson coefficient, the Knorm correlation has a smaller estimation
variance when experiment dependencies exist. More details of incorporating Knorm in our
estimation procedure are presented in next section.

2.2.3 Likelihood ratio tests for pathway gene search

Let S = {g1, ..., gk} denote the set of seed genes for a pathway of interest and G denote
the set of all genes whose expression measurements in T experiments (each experiment may
have > 1 replicates) are available. Usually |G| � |S| = k and T > |S|. Motivated by
the arguments in the above section, we formulate a searching strategy, based on performing
likelihood ratio tests, for pathway genes as follows.

(i) We first estimate the experiment correlation matrix ΣE using the Knorm R package
provided by Teng and Huang (2009). The input data are the expression measurements
of the |G| genes in T experiments, and there are > 1 replicated samples for each exper-
iment. To generate expression matrices, we randomly choose one replicate from each
experiment to compose a sample matrix Xb of dimension |G| × T and by repeating
this process, we generate B sample matrices X1, ...,XB with B large enough. By the
model in Teng and Huang (2009), Xb is considered to be generated from a multivariate
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normal distribution with mean M (a matrix of dimension |G| × T ) and a covariance
matrix ΣG ⊗ ΣE, where ΣG represents the gene covariance matrix and ΣE is the ex-
periment correlation matrix. The output of the Knorm R package is the estimated M
and ΣE, denoted as M̂ and Σ̂E, by an iterative estimation procedure. More details on
the Knorm estimation procedure can be found in [86].

(ii) For a candidate gene gc ∈ G\S (S is the set of k seed genes), we estimate the gene
covariance matrix for genes in S ∪ gc by

Σ̂c =
1

B

B∑
b=1

Σ̂c,b (2.2)

where

Σ̂c,b =

(
Xc,b − M̂

) (
Σ̂E
)−1 (

Xc,b − M̂
)′

T
. (2.3)

Xc,b represents one of the sample matrices [of dimension (k + 1) × T ] constructed by
bootstrapping the replicates of each experiment for the expression measurements of
the genes in S ∪ gc (the first k rows correspond to the k seed genes and the row k + 1
corresponds to the candidate gene gc).

(iii) Obtain the precision matrix, Σ̂∗c,1 = (Σ̂c)
−1. Note that as we usually require T > 1.5k so

that Σ̂c is usually invertible. When Σ̂c is not invertible, we use its pseudo inverse. Σ̂∗c,1
will be used as an approximate Maximum Likelihood Estimate (MLE) of the precision
matrix under the alternative model in Equation 2.7. We further write

Σ̂∗c,1 =


a1,1 · · · a1,k a1,k+1

...
. . .

...
...

ak,1 · · · ak,k ak,k+1

ak+1,1 · · · ak+1,k ak+1,k+1

 (2.4)

where ai,j = aj,i for i = 1, ..., k + 1 and j = 1, ..., k + 1.

(iv) Obtain matrix Σ̂∗c,0 from Σ̂∗c,1 by replacing the offdiagonal elements in the bottom row

and rightmost column of Σ̂∗c,1 by zeros. That is,

Σ̂∗c,0 =


a1,1 · · · a1,k 0

...
. . .

...
...

ak,1 · · · ak,k 0
0 · · · 0 ak+1,k+1

 . (2.5)

Σ̂∗c,0 will be used as an approximate MLE of the precision matrix under the null hy-
pothesis in Equation 2.7.
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(v) Perform the following hypothesis test

H0 : Σ∗ ∈ Ω0 vs H1 : Σ∗ ∈ Ω\Ω0, (2.6)

where Ω0 is the collection of precision matrices (for the genes in S ∪ gc) with zero
offdiagonal elements in the bottom row and rightmost column, and Ω is the collection of
all possible precision matrices. The null hypothesis assumes conditional independence
between the candidate gene and each of the seed genes given all other seed genes. Then
the test statistic is

−2 logLR∗

= −2 log
supΣ∗∈Ω0

L (Σ∗;X1 · · · , XB)

supΣ∗∈Ω L (Σ∗;X1, · · · , XB)

≈ −2
(
l
(
Σ̂∗c,0;X1, · · · , XB, M̂

)
− l

(
Σ̂∗c,1;X1, · · · , XB, M̂

))
, (2.7)

where L(·) and l(·) denote the likelihood and the log-likelihood function, respectively.
When a candidate gene has no relationship with the pathway seed genes, the corre-
sponding elements in a precision matrix will be close to zeros (i.e. null is true and the
test statistic will be small). In contrast, if a candidate gene has a significant associa-
tion with the pathway genes, those values will be far from zero and naturally the test
statistic will be large and declared as significant under the test.

(vi) Repeat steps (ii)-(v) for all candidate genes inG\S. Given the test statistic values for all
the candidate genes, we rank them in decreasing order. It is a natural interpretation
that the higher a candidate gene is ranked in the list, the more likely that gene is
associated with the seed genes. Based on the list, we can decide how many of them
should be declared as pathway genes using statistical thresholds (see Section 2.3.2.4 for
p-value calculations) and/or biological cutoff. We call this method as pwsrc.knorm.

If there are questions on which known pathway genes to include as seed genes or on which
expression datasets to use, an optional method is to repeatedly run pwsrc.knorm to derive
a set of frequently identified pathway genes under different datasets with different possible
sets of seed genes tried. The candidate pathway genes identified this way would be robust
against the change of data and the choice of seed genes.

2.2.4 Other methods for comparison

For performance comparison, four additional methods, pwsrc.null, pearson.mean, pear-
son.max and GLM are considered. The first pwsrc.null, is designed by replacing Σ̂E in
Equation 2.3 with the identity matrix to represent the case ignoring experiment depen-
dencies. pearson.mean and pearson.max adopt Pearson correlation as a distance measure.
Specifically, they calculate pair-wise correlation coefficients between each candidate gene and
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the seed genes and take either mean (pearson.mean) or maximum (pearson.max ) of them.
GLM adopts the regression model of the candidate gene gc on the seed genes in S as follows:

gc = α0 +
|S|∑
j=1

αjgkj + ε, (2.8)

where ε is assumed to be normally distributed with zero mean. Since a negligible residue
implies a possible interaction between the candidate gene and the seed genes, naturally
we can use the residuals as our test statistics (all the genes are scaled to have unit norm
before doing regression analysis). For a fair comparison with our method, the experiment
dependencies in the gene expression are removed by projecting the data matrix onto the
eigenspace of Σ̂E by X∗ = (X− M̂) · (Σ̂E)−1/2.

2.3 Results

We evaluate the performance of the proposed method in identifying pathway genes using
simulation data and genomic scale Arabidopsis thaliana datasets obtained from four different
types of environmental stresses (oxidation, wounding, UV-B light and drought). We examine
the effects of these stresses by focusing on the genes associated with the glucosinolate (GSL)
and flavonoid biosynthesis (FB) pathways.

In both studies, we calculated precision = TP/(TP +FP ) and recall = TP/(TP +FN)
to assess the results from our approach and several other methods mentioned in Section 2.2.
Here TP is the number of true positive findings of pathway genes, FP is the number of
false positives and FN is the number of false negatives. Note that precision and recall are
popular measures for evaluation of classification performance. In the context of this study,
they can be regarded as a measure of exactness and completeness of our pathway gene
searching results, respectively.

In our study, the pathway genes are defined as composed of structural genes that encode
an enzyme, whereas regulator genes are defined as genes controlling the expression of the
structural genes.

2.3.1 Simulation study

We simulate a microarray dataset consisting of 500 genes and 30 experiments, with 5
replicates for each experiment. To make the approach more realistic we introduce experiment
dependencies, multiple distinct pathways and some random noise into the simulated data.
The simulation parameters are as follows:

(i) Experiment correlation matrix, ΣE. This matrix characterizes the experiment depen-
dencies. For illustrative purposes, we set the experiment correlation matrix to have
various dependencies such as 10, 33, 50 and 67 %. In the case of a 33 % dependency,
for example, ∼ 33 % of the experiments have high dependencies while the remaining
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experiments are uncorrelated with one another, i.e. the first 10× 10 elements in ΣE lie
between 0.5 and 0.6, with the rest being zeros. Diagonals on ΣE are set to 1. Figure 2.1
shows the heatmaps for three of the four experiment correlation matrices mentioned
above.

(ii) Gene covariance matrix, ΣG. This matrix characterizes the gene dependencies among
one another. As an illustrative example, we introduce two distinct pathways with 15
genes in each pathway; genes in the same pathway have high correlation while genes
not in the same pathway are uncorrelated. Specifically, in each pathway the first four
genes designated to be seed genes show high correlation (correlation coefficient changes
between 0.5 and 0.6) between each other. The remaining 11 genes are separated into
three subgroups and are designed to have high correlation with 1, 2 or 4 of the seed
genes, respectively, and low correlation with the others (correlation coefficient changes
between 0.1 and 0.2).

The simulated data is generated as follows. First, we generate a 500×30 gene expression
matrix X, with vec(XT ), from a multivariate normal distribution with mean X (zero matrix)
and a covariance matrix ΣG ⊗ ΣE. To make the pathway genes more realistic, for each
pathway two randomly chosen genes in each subgroup are linearly combined to make a new
pathway gene. The same procedure generated all the final 11 pathway genes for each pathway
(replacing the original 11 pathway genes generated above). Using the final 500 × 30 gene
expression matrix, we add random noise with a small SD (e.g. 0.01) to each column (i.e.
experiment) to generate the 5 replicates for each experiment. Repeating this process, we
generate 1000 simulation datasets.

In this analysis, we compare our approach to that of others and evaluate the performance
using precision and recall measures. All the approaches are implemented as follows: given
seed genes, run the pathway search algorithms as described in Section 2.2 and rank the genes
by their measured relationships to the seed genes. Calculate precision and recall for the top
n (i.e, n = 1, ..., 15) genes.

As this is a simulation study and we know the true experiment correlation matrix, we add
one more method pwsrc.true into the comparison. The only difference between pwsrc.true
and pwsrc.knorm is that pwsrc.true uses the true experiment correlation matrix (ΣE

true)
instead of the estimated one in Equation 2.3. We denote the estimated correlation matrix
used by our method as Σ̂E

knorm for clarity.
The results are summarized in Figure 2.2. When the dependencies among experiments are

low, pwsrc.knorm performs worse than pwsrc.null. However, this performance discrepancy
becomes smaller as the experiment dependency increases and finally pwsrc.knorm outper-
forms pwsrc.null when the experiment dependency exceeds 33 %. This situation can be
easily understood in Figure 2.1. When the dependencies among experiments are low, the
noisy signals in the off diagonal elements in Σ̂E

knorm become non-negligible and so ΣE
null be-

comes a better estimate for ΣE
true even though it totally misses capturing the experiment
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dependencies. However, when the experiment dependency increases up to 33 %, Σ̂E
knorm

estimates ΣE
true better than ΣE

null as it is critical to capture the dependent structure now.
These results emphasize the importance of considering experiment dependencies when

they exist at a non-negligible level in data, which is actually the case in real applications. Our
approach overall achieves higher precision and recall than pearson.mean and pearson.max
[Figure 2.2], whereas the GLM method provides about the same result as our method due
to the way we simulated the data (results are not shown here).

To determine the importance of the seed gene quality, we added two randomly chosen,
non-pathway genes into the seed-gene-set which is originally composed of four pathway genes.
The results are summarized in Figure 2.3. Regardless of the experiment dependencies, the
performance of pwsrc.knorm becomes worse when the seed-gene-set contains noisy genes.

2.3.2 Application to real datasets

We next test the validity of our approach by applying it to biological pathways composed
of genes that are known to operate in tandem. For this test set, we selected two secondary
metabolic pathways from the model plant A.thaliana: the pathway leading to GSLs, sulfur-
rich amino acid-containing compounds which become active in response to tissue damage,
and believed to offer a protective function [36, 80, 91, 97], and the pathway leading to
flavonoids, compounds of diverse biological activities such as anti-oxidants, functioning in
UV protection, in defense, in auxin transport inhibition, and in flower colouring [30, 62, 85,
94].

In Arabidopsis, the regulators and structural genes in glucosinolate (GSL) and flavonoid
biosynthesis (FB) pathways have been extensively characterized. A considerable number
of genes in both pathways are induced by broad environmental stresses, and regulated at
the transcriptional level. Furthermore, several research groups have applied transcriptome
co-expression to analyze the two pathways [30, 37, 98], thus providing us with a rich source
of data for validating our results.

Known genes in each pathway were selected and their conditional dependencies examined
using the approach outlined in Section 2.2. For this effort, we used public ATH1 microarray
datasets from the AtGenExpress consortium.1 Among stress serial microarray experiments,
we selected four datasets for analysis. A summary of the experimental sets used is listed
in Table 3.1, whereas a detailed description of their experimental parameters is provided in
Table 3.2.

We then asked, under these varied conditions whether we could recover these known
pathway genes by our approach. Finally, having investigated the validity of this approach,
and demonstrating that our approach is much more effective than any previous approaches
for detecting the known pathway genes, we asked whether we could identify other possible
candidate pathway (new) genes.

1www.arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp
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Oxidation Wounding UV-B light Drought
Data counts (biosam-
ples/replicate sets)

52 (26/26) 60 (30/30) 60 (30/30) 60 (30/30)

Number of genes 22810 22810 22810 22810
Experimental variables Methyl viologen wounding UV-B lighta drought

time time time time
shoot, root shoot, root shoot, root shoot, root

Submission number ME00340 ME00330 ME00329 ME00338
aUV-B light: Ultraviolet radiation with a range of 280-320 nanometers

Table 2.1: Description of the A. thaliana microarray datasets with four different types of
stress.

Initially, we investigated the two pathways gene sets in shoot tissue only, but then later
expanded the study to include root tissue.

2.3.2.1 Data preprocessing using the RMA normalization

We pre-processed the array data from different experiments using the RMA (Robust Mul-
tiarray Average) normalization method [43, 7, 44] which is available from the Bioconductor
website. This normalization consists of three steps: a background adjustment, quantile
normalization, and summarization of the probe sets. Using RMA normalization, most of
the gene replicates are summarized into unique measures. For example, the microarray data
with oxidative stress, 99.2 % (20832 out of 21009 genes) of genes represent no replicates after
RMA normalization. None of our seed genes (seed-gene-set I, II, III and IV ) is represented
more than once.

2.3.2.2 Studies on the GSL pathway

Based on an extensive literature search, we determined 64 genes that can be associ-
ated with the GSL pathway [Table 3.3]. These 64 genes include, in addition to core genes
involved in GSL biosynthesis, regulators of this biosynthesis, early steps of side chain elon-
gation/modification and late steps of catabolism [Figure 2.4 in detail].

For our study, two seed-gene-sets are proposed: (i) seed-gene-set I : AT5G60890 (ATR1 ),
AT4G39950 (CYP79B2 ), AT2G20610 (SUR1 ), AT4G31500 (CYP83B1 ) and (ii) seed-gene-
set II : AT5G60890 (ATR1 ), AT5G07690 (MYB29 ), AT5G61420 (MYB28 ), AT4G39940
(AKN2 ). In seed-gene-set I, only ATR1 encodes a transcription factor (TF), whereas three
other genes encode enzymes. In contrast to seed-gene-set I (comprised of the core pathway
genes), seed-gene-set II is composed of four regulatory genes [Figure 2.4].

Using two seed-gene-sets, we first analyzed only the shoot tissue dataset from tissues
subjected to oxidative stress. This dataset is composed of 22810 genes and 13 experiments
with two biological replicates for each experiment. The number of identified GSL pathway
genes is summarized in Table 3.4(a)-(b) for the top 10, 20, 30 and 50 genes from the list
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(a)
Experiment number (shoot) Treatment Time points Experiment number (root)

1 Control 0 h 14
2 Control 0.5 h 15
3 Control 1h 16
4 Control 3 h 17
5 Control 6 h 18
6 Control 12 h 19
7 Control 24 h 20
8 MV, 10µM 0.5 h 21
9 MV, 10µM 1 h 22
10 MV, 10µM 3 h 23
11 MV, 10µM 6 h 24
12 MV, 10µM 12 h 25
13 MV, 10µM 24 h 26

(b)
Experiment number (shoot) Treatment Time points Experiment number (root)

1 Control 0 h 16
2 Control 0.25 h 17
3 Control 0.5 h 18
4 Control 1h 19
5 Control 3 h 20
6 Control 6 h 21
7 Control 12 h 22
8 Control 24 h 23
9 Stress 0.25 h 24
10 Stress 0.5 h 25
11 Stress 1 h 26
12 Stress 3 h 27
13 Stress 6 h 28
14 Stress 12 h 29
15 Stress 24 h 30

Table 2.2: Description of the experiment conditions used to generate the A. thaliana microar-
ray dataset with (a) oxidative stress and (b) wounding, UV-B light and drought stresses.
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obtained by pwsrc.knorm, pwsrc.null, pearson.mean, pearson.max and GLM. With seed-
gene-set I in Table 3.4(a), pwsrc.knorm works best, finding 4, 6, 7 and 8 pathway genes
out of the top 10, 20, 30 and 50 genes, respectively. With seed-gene-set II in Table 3.4(b),
a significant increase is observed in the number of identified pathway genes, especially for
pwsrc.knorm. For example, among the top 30 genes in the list, pwsrc.knorm finds 7 more
pathway genes, while pwsrc.null, pearson.mean, pearson.max and GLM find 2, 2, 1 and 4
more genes compared to Table 3.4(a), respectively. This increase demonstrates that seed-
gene-set II indeed carries more influential information than seed-gene-set I, which enables
us to examine the GSL pathway more thoroughly. Furthermore, our method pushes the
pathway genes to rank higher positions in the list so that the final precision becomes 60, 55
and 47 %, respectively, for the top 10, 20 and 30 genes.

Next, the dataset is expanded to include the root tissue as well, so now the dataset consists
of 26 experiments with two replicates each. Again, the combined dataset is analyzed with the
two seed sets as above and the results are summarized in Table 3.4(c)-(d). For pwsrc.knorm,
a dramatic increase is observed with the seed-gene-set I [compare Table 3.4(a) and (c)], in
contrast to the seed-gene-set II [compare Table 3.4(b) and (d)]. This finding emphasizes
the importance of designing the seed-gene-set. When the seed set is appropriately designed
for the pathway of our interest, i.e. seed-gene-set II, pathway searches could proceed more
efficiently with a smaller set of data, but if not, more information (a larger dataset) would
be needed to achieve the same performance. pwsrc.null finds no pathway genes in this
data, which demonstrates the importance of considering experiment dependency, especially
as the dataset dimension expands. Different to pwsrc.null and the Pearson correlation-based
measures, GLM shows a prominent increase, and we believe that the extra information added
by the root tissue helps GLM perform better. The graphical summary of Table 3.4 is given
in Figure 2.5. For each method, precision and recall are calculated for the top 10, 20, 30, 50
and 100 gene lists and plotted accordingly.

In contrast to and different from the oxidative stress, wounding stress is known to induce
the expression of MYB28 and MYB29 [32], which are the two of four seed genes in seed-
gene-set II and which regulate Met-derived GSL biosynthesis. Based on our success in
finding additional GSL pathway genes using seed-gene-set II and oxidative stress as the
environmental input, we predicted that we would have similar success using wounding as
the environmental input. We expected under wounding stress conditions, that structural
genes in the GSL pathway would have stronger association with seed-gene-set II than under
oxidative stress condition.

Data from the shoot only subjected to wounding are first analyzed by considering 22810
genes, and 15 experiments, each with two biological replicates. The results are summarized
in Table 2.5(a)-(b). Again, a significant increase in the number of identified pathway genes
is observed from seed-gene-set I [Table 2.5(a)] to seed-gene-set II [Table 2.5(b)]. Next, the
dataset from the root portion is also included, now comprising 30 experiments in total,
with two biological replicates for each experiment. No matter what seed-gene-set we use,
pwsrc.knorm works best [Table 2.5(c)-(d)]. The precisions for the top 10, 20 and 30 ranked
genes are 100, 70, 50 % with the seed-gene-set I, and 90, 65, 60 % with the seed-gene-set II.
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It is also noteworthy that with seed-gene-set I and II, pwsrc.knorm finds 10 and 9 genes to
be in the same biological pathway from the top 10 genes, respectively. A graphical summary
of Table 2.5 is given in Figure 2.6.

The performances in the analysis of the last two datasets subjected to UV-B light and
drought stresses are similar to the previous results and the results are summarized in Tables
2.6 and 2.7, and Figure 2.7 and 2.8.

2.3.2.3 Studies on the FB pathway

The flavonoid pathway is derived from the upstream phenylpropanoid pathway, beginning
at coumaroyl-CoA [Figure 2.9]. Based on an extensive literature search, we found that at
least 26 genes can be associated with the FB pathway [Table 2.8]. Genes encoding enzymes
in this pathway are regulated by at least 12 TFs belonging to different families, including
bZIP WD40, WRKY, MADSbox, R2R3-MYB, and the basic helixloophelix (bHLH) family
[98].

It is also worth noting that the genes we considered for the two pathways (GSL and FB)
are exclusive to each other, and thus there is no overlap in the genes of the pathways we
consider.

It is reported that structural genes (encoding enzymes) in the FB pathway are regu-
lated at the transcriptional level, suggesting that the regulation genes would be good can-
didates as seed genes, as indicated by the result of GSL pathway study in Section 2.3.2.2.
Then we selected two different seed-gene-sets from four different types of TFs [AT4G09820
(TT8 ), AT5G23260 (TT16 ), AT5G24520 (TTG1 ), AT2G37260 (TTG2 )] and one structural
gene [AT5G08640 (FLS )]: (i) seed-gene-set III : AT4G09820 (TT8 ), AT5G23260 (TT16 ),
AT5G24520 (TTG1 ), AT5G08640 (FLS ) and (ii) seed-gene-set IV : AT4G09820 (TT8 ),
AT5G23260 (TT16 ), AT2G37260 (TTG2 ), AT5G08640 (FLS ).

In this FB pathway study, we present the results using both shoot and root tissues.
The number of genes identified by seed-gene-set III and IV using four different datasets is
summarized in Table 2.9. Overall, pwsrc.knorm outperforms other methods regardless of
seed-gene-sets and stress types. It is worth noting that both seed-gene-sets detected several
genes from the upstream phenylpropanoid pathway by pwsrc.knorm and GLM. To elucidate
the cooperative nature of these pathways, we designate the number of identified genes from
the upstream pathways (phenylpropanoid pathway) in the parenthesis adjacent to the total
number of identified genes [Table 2.9]. For example, the dataset with drought stress 33 %
(by pwsrc.knorm), and 20 % (by GLM ) of the identified genes from top 20 are derived from
the upstream pathways. Table 2.10 lists all the identified drought stress pathway genes from
the top 20 list, and designates the original pathway to which each gene belongs.

In Figure 2.9, all the identified top 20 genes in Table 2.9(d) by pwsrc.knorm are visual-
ized. It is noteworthy that pwsrc.knorm not only detects six core genes - AT3G51240 (F3H ),
AT3G55120 (CHI ), AT5G13930 (CHS), AT5G07990 (F3′H ), AT5G17050 (UGT78D2 ), AT1G78570
(RHM1 ) - in the FB pathway, but additionally finds three more genes, AT1G65050 (4CL3 ),
AT2G23910 (CCR6 ) and AT2G37040 (PAL1 ), located at the branch points of phenyl-



21

Group AGI code Gene name
Regulator genes AT1G18570 MYB51

AT1G66340 ETR1
AT3G54640 TRP3/TSA1
AT4G12030 BAT5
AT5G03280 EIN2
AT5G07690 MYB29
AT5G07700 MYB76
AT5G46330 FLS2
AT5G60890 ATR1/Myb34
AT5G61420 MYB28
AT1G07640 OBP2
AT3G09710 IQD1

GSL biosynthesis pathway (verified by experiment) AT1G12140 GS-OX5
AT1G16400 CYP79F2
AT1G16410 CYP79F1
AT1G18590 SOT17
AT1G24100 UGT74B1
AT1G62540 GS-OX2
AT1G62560 GS-OX3
AT1G62570 GS-OX4
AT1G65860 GS-OX1
AT1G74090 SOT18
AT1G74100 SOT16
AT2G20610 SUR1
AT2G22330 CYP79B3
AT2G25450 GS-OH
AT2G43100 IPMI2
AT3G19710 BCAT4
AT3G49680 BCAT3
AT3G58990 IPMI1/AtLeuD2
AT4G03050 AOP3
AT4G03060 AOP2
AT4G13430 AtLeuC1
AT4G13770 CYP83A1
AT4G31500 CYP83B1/SUR2/ATR4
AT4G39950 CYP79B2
AT5G05260 CYP79A2
AT5G14200 AtIMD1
AT5G23010 MAM1
AT5G23020 MAM3
AT5G57220 CYP81F2
AT1G31180 IPMDH1
AT4G30530 GGP1

GSL biosynthesis pathway (predicted) AT1G78370 GSTF20
AT5G07460 PMSR2
AT5G36160
AT2G30860 GSTF9
AT2G30870 GSTF10
AT2G31790 UGT74C1
AT3G03190 GSTF11

GSL biosynthesis pathway (co-substrate pathway) AT2G14750 AKN1
AT4G39940 AKN2
AT4G23100 PAD2
AT1G65880 BZO1
AT5G65940 CHY1
AT1G04580 AAO4
AT5G63980 FIERY1/SAL1

GSL-catabolic pathway AT5G44070 PCS1
AT1G47600 TGG4
AT1G54030 MVP1
AT1G59870 PEN3
AT2G44490 PEN2
AT1G54040 ESP
AT3G14210 ESM1

Table 2.3: List of 64 GSL metabolism pathway genes.
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Top pwsrc.knorm pwsrc.null pearson.mean pearson.max GLM
(a) 10 4 0 2 1 0

20 6 1 3 4 0
30 7 1 3 5 0
50 8 1 4 7 0

(b) 10 6 0 4 2 2
20 11 3 4 4 3
30 14 3 5 6 4
50 14 5 8 8 5

(c) 10 9 0 3 0 3
20 11 0 3 0 5
30 12 0 3 1 7
50 12 0 3 2 10

(d) 10 6 0 5 1 4
20 10 0 7 1 5
30 13 0 9 1 9
50 19 0 9 1 12

Table 2.4: The number of identified GSL pathway genes in the A. thaliana microarray
dataset from tissues subjected to oxidative stress using (a) shoot tissue only, seed-gene-set I ;
(b) shoot tissue only, seed-gene-set II ; (c) shoot and root tissues, seed-gene-set I ; (d) shoot
and root tissues, seed-gene-set II.

Top pwsrc.knorm pwsrc.null pearson.mean pearson.max GLM
(a) 10 3 1 2 3 0

20 4 1 2 3 0
30 4 1 3 3 0
50 4 1 3 6 0

(b) 10 4 0 6 4 0
20 8 0 9 5 1
30 11 2 13 5 1
50 12 5 15 8 1

(c) 10 10 3 3 0 6
20 14 4 3 1 10
30 15 5 3 1 12
50 16 5 3 2 14

(d) 10 9 0 6 0 7
20 13 0 7 0 8
30 18 0 8 0 10
50 22 2 10 1 16

Table 2.5: The number of identified GSL pathway genes in the A. thaliana microarray dataset
from tissues subjected to wounding stress using (a) shoot tissue only, seed-gene-set I ; (b)
shoot tissue only, seed-gene-set II ; (c) shoot and root tissues, seed-gene-set I ; (d) shoot and
root tissues, seed-gene-set II.
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Top pwsrc.knorm pwsrc.null pearson.mean pearson.max GLM
(a) 10 3 2 1 0 1

20 5 2 1 1 2
30 5 2 2 1 3
50 5 2 3 1 3

(b) 10 6 1 3 2 3
20 9 2 3 4 4
30 9 2 3 5 5
50 10 2 4 6 6

(c) 10 7 1 1 0 6
20 10 1 2 0 7
30 10 1 3 0 7
50 10 1 3 0 7

(d) 10 8 0 1 1 6
20 11 0 1 2 9
30 12 0 1 2 10
50 16 0 1 2 11

Table 2.6: The number of identified GSL pathway genes in the A. thaliana microarray dataset
from tissues subjected to UV-B light stress using (a) shoot tissue only, seed-gene-set I, (b)
shoot tissue only, seed-gene-set II, (c) shoot and root tissues, seed-gene-set I, (d) shoot and
root tissues, seed-gene-set II.

Top pwsrc.knorm pwsrc.null pearson.mean pearson.max GLM
(a) 10 3 2 1 3 0

20 4 2 2 3 1
30 5 2 3 6 1
50 6 3 6 6 2

(b) 10 5 2 4 5 3
20 8 3 4 8 3
30 8 3 6 9 4
50 8 4 8 12 6

(c) 10 9 0 3 2 5
20 10 0 3 3 5
30 12 0 3 3 9
50 15 0 3 3 12

(d) 10 5 0 4 1 5
20 8 1 4 1 5
30 9 1 4 1 6
50 10 2 6 1 7

Table 2.7: The number of identified GSL pathway genes in the A. thaliana microarray
dataset from tissues subjected to drought stress using (a) shoot tissue only, seed-gene-set I,
(b) shoot tissue only, seed-gene-set II, (c) shoot and root tissues, seed-gene-set I, (d) shoot
and root tissues, seed-gene-set II.
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Pathways FB Phenylpropanoid biosynthesis
AGI code (gene name) AT4G09820 (TT8 ) a,b AT2G37040 (PAL1 )

AT5G23260 (TT16 )a,b AT3G53260 (PAL2 )
AT5G24520 (TTG1 )a AT5G04230 (PAL3 )
AT2G37260 (TTG2 )b AT3G10340 (PAL4 )
AT5G08640 (FLS )a,b AT2G30490 (C4H )
AT5G13930 (CHS ) AT1G51680 (4CL1 )
AT3G55120 (CHI ) AT3G21240 (4CL2 )
AT3G51240 (F3H ) AT1G65060 (4CL3 )
AT5G07990 (F3′H ) AT3G21230 (4CL5 )
AT5G42800 (DFR) AT1G15950 (CCR1 )
AT1G61720 (BAN ) AT2G23910 (CCR6 )
AT5G17220 (GST )
AT3G59030 (TT12 )
AT5G35550 (TT2 )
AT1G06000 (UGT89C1 )
AT5G17050 (UGT78D2 )
AT1G78570 (RHM1 )
AT4G14090 (UGT75C1 )
AT1G30530 (UGT78D1 )
AT3G29590 (A5G6999MaT )
AT5G54160 (OMT1 )
AT3G62610 (MYB11 )
AT2G47460 (MYB12 )
AT5G49330 (MYB111 )
AT1G56650 (PAP1 )
AT1G66390 (PAP2 )

aseed-gene-set III
bseed-gene-set IV

Table 2.8: List of FB and phenylpropanoid biosynthesis pathway genes related to our study.

propanoid pathway to the FB pathway or to the lignin biosynthesis pathway at coumaroyl-
CoA [Figure 2.9]. Among those additionally found genes, CCR6 and PAL1 are uniquely
detected by our method.

Thus, in contrast to, and differing from the other methods, pwsrc.knorm enables us to
find additional genes from closely related pathways by considering the indirect relationships
between genes. This finding can be useful for future studies targeted to discovering the
cooperative nature of genes in the FB pathways.

We also compared our results with the seed-gene-sets containing some noisy genes. For
example, we applied our method to the dataset with drought stress with the seed-gene-set
composed of seed-genes-set III and two of GSL pathway genes. As summarized in Table
2.11, the number of pathway genes identified decreased which implies that the pathway gene
search becomes less efficient when the seed-gene-set contains noisy genes not biologically
related to the pathway of our interest.
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seed-gene-set Top rank pwsrc.knorm pwsrc.null pearson.mean pearson.max GLM
(a) III 10 7 (2) 1 0 4 5 (1)

20 8 (3) 2 0 4 6 (1)
30 10 (4) 2 0 4 7 (2)
50 11 (4) 2 0 5 (1) 8 (3)

IV 10 7 (2) 2 3 5 (1) 4 (1)
20 9 (3) 3 3 6 (1) 5 (1)
30 10 (4) 3 3 6 (1) 6 (1)
50 11 (4) 4 4 6 (1) 7 (2)

(b) III 10 6 (1) 3 0 4 5 (1)
20 9 (3) 3 0 4 5 (1)
30 9 (3) 4 0 4 5 (1)
50 11 (4) 4 0 4 7 (2)

IV 10 6 (1) 4 0 4 4 (1)
20 9 (2) 4 1 (1) 4 5 (1)
30 10 (3) 4 2 (2) 4 6 (1)
50 11 (4) 4 2 (2) 5 (1) 7 (2)

(c) III 10 6 (1) 1 0 2 4 (1)
20 8 (3) 1 0 3 4 (1)
30 11 (4) 1 0 3 4 (1)
50 11 (4) 1 0 4 (1) 5 (2)

IV 10 7 (2) 1 0 5 (1) 4 (1)
20 8 (3) 1 0 6 (1) 4 (1)
30 10 (3) 1 0 6 (1) 4 (1)
50 11 (4) 1 1 (1) 6 (1) 4 (1)

(d) III 10 6 (2) 0 0 2 4 (1)
20 9 (3) 1 0 3 5 (1)
30 10 (3) 1 0 4 6 (2)
50 11 (3) 1 0 4 6 (2)

IV 10 6 (2) 2 1 4 5 (1)
20 9 (3) 2 2 4 5 (1)
30 10 (3) 2 2 4 6 (2)
50 13 (4) 2 2 4 6 (2)

Table 2.9: The number of pathway genes identified from FB and phenylpropanoid biosyn-
thesis pathways in the A. thaliana microarray dataset from shoot and root tissues subjected
to (a) oxidation, (b) wounding, (c) UV-B light and (d) drought stresses. The number of
identified genes from phenylpropanoid pathways is designated in the parenthesis adjacent to
the total number of identified genes.
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Method seed-gene-set III seed-gene-set IV
pwsrc.knorm AT1G65060 (4CL3 )b AT1G65060 (4CL3 )b

AT1G78570 (RHM1 )a AT3G51240 (F3H )a

AT3G51240 (F3H )a AT1G78570 (RHM1 )a

AT3G55120 (CHI )a AT3G55120 (CHI )a

AT5G13930 (CHS )a AT5G13930 (CHS )a

AT2G23910 (CCR6 )b AT2G23910 (CCR6 )b

AT5G17050 (UGT78D2 )a AT5G07990 (F3′H )a

AT5G07990 (F3′H )a AT5G17050 (UGT78D2 )a

AT2G37040 (PAL1 )b AT2G37040 (PAL1 )b

pwsrc.null AT1G78570 (RHM1 )a AT1G78570 (RHM1 )a

AT5G13930 (CHS )a

pearson.mean AT4G14090 (UGT75C1 )a

AT5G42800 (DFR)a

pearson.max AT1G78570 (RHM1 )a AT1G78570 (RHM1 )a

AT5G13930 (CHS )a AT5G13930 (CHS )a

AT3G55120 (CHI )a AT3G55120 (CHI )a

AT3G51240 (F3H )a

GLM AT1G65060 (4CL3 )b AT1G65060 (4CL3 )b

AT1G78570 (RHM1 )a AT3G51240 (F3H )a

AT3G51240 (F3H )a AT3G55120 (CHI )a

AT3G55120 (CHI )a AT1G78570 (RHM1 )a

AT5G13930 (CHS )a AT5G13930 (CHS )a
a FB pathway genes

b Phenylpropanoid biosynthesis pathway genes

Table 2.10: List of identified genes from top 20 list in Table 2.9(d). Each gene is designated
by the original pathway to which it belongs.

Top (a) (b) (c) (d)
10 6 3 3 3
20 9 5 5 4
30 10 6 7 5

Table 2.11: The number of pathway genes identified from FB and phenylpropanoid biosyn-
thesis pathways in the A. thaliana microarray dataset from shoot and root tissues subjected
to drought stresses. For comparison, different seed genes sets are used: (a) seed-gene-set III,
(b) seed-gene-set III, ATR1, AKN2, (c) seed-gene-set III, MYB28, AKN2, (d) seed-gene-set
III, ATR1, MYB28, AKN2.
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GSL pathway (shoot) GSL pathway (shoot & root) FB pathway (shoot & root)
seed-gene-set I seed-gene-set II seed-gene-set I seed-gene-set II seed-gene-set III seed-gene-set IV

Oxidation 98 152 88 123 30 28
Wounding 50 104 45 82 25 20
UV-B light 63 262 43 62 32 29

Drought 203 336 73 75 40 25

Table 2.12: The number of top candidate genes whose p-values are less than or equal to the
threshold α = 0.05 for the GSL and FB pathways.

2.3.2.4 Calculating p-values for the test statistics using chi-square
approximation

To calculate p-values for our test statistics, we assumed that Equation 2.7 has an ap-
proximate asymptotic chi-square distribution with k degrees of freedom, where k represents
the number of seed genes.

−2 logLR∗ ≈ χ2
|k| (2.9)

Calculated p-values are adjusted by the Bonferroni correction by multiplying the number
of outcomes being tested, i.e. the number of candidate genes which is 22806. Setting α = 0.05
as our threshold, we counted the number of candidate genes whose p-values are less than
or equal to the threshold and the results are summarized in Table 2.12. For example, the
dataset from shoot tissues subjected to oxidative stress with GSL pathway, we found top 98
and 152 genes are significant with seed-gene-set I and II, respectively. Even though it is still
questionable regarding the chi-square approximation, we do not see any better alternative
for the moment.

2.3.2.5 Robustness of our method

To check the sensitivity of our method with respect to the number of known pathway
genes, we studied the dataset subjected to oxidative stress from Section 2.3.2.2 with seed-
gene-set II. For simplicity, we used only the shoot tissue data. Given seed-gene-set II which
is composed of 4 regulatory genes (ATR1, MYB29, MYB28, AKN2 : these are denoted by a,
b, c and d in Table 2.13 respectively), we worked with all the possible subsets of size 2 and
3 and summarized the results in Table 2.13.

We first want to point out the importance of the AKN2 gene. It is obvious that the rela-
tionship between the pathway genes is not equivalent, which is why the seed-gene selection
would play a critical role in our method. To illustrate this point here, we examined correla-
tions between the seed genes and the pathway genes [Table 2.14] from the public databases,
and found that AKN2 is the gene most strongly correlated with many other pathway genes,
including the genes in indole GSL branch and aliphatic GSL branch [Figure 2.4 and Table
2.14]. As an additional filter for selecting seed genes we considered the biological evidence
linking the candidate seed genes with the pathways of interest. As such, in the presence
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Top a,b a,c a,d b,c b,d c,d a,b,c a,b,d a,c,d b,c,d a,b,c,d
10 3 0 6 3 7 8 1 7 5 7 6
20 4 0 11 3 13 14 2 10 10 12 11
30 4 0 14 3 15 14 3 13 12 13 14
50 6 0 15 5 17 17 4 15 14 15 14

Table 2.13: The number of pathway genes identified using the subsets of seed-gene-set II.

of the AKN2 gene, the performance of our method looks pretty robust no matter which
subsets we used. For example, from top 30 in Table 2.14, six subsets which include AKN2
gene found 14, 15, 14, 13, 12, 13 genes respectively, which is close to what we found with
seed-gene-set II. However in the absence of AKN2 gene, the performance got worse and
fluctuated dramatically. This again emphasizes the importance of seed-gene-set designing.
Unless the seed-gene-set misses significant genes playing a critical role, our method performs
in a robust way with respect to the size of seed gene set.

2.3.2.6 Comparison with other studies

Finally, we compared our results with other literatures on the discovery of GSL and FB
pathway genes [30, 37, 71, 98].

Using pearson correlation coefficients, Hirai et al. [37] constructed co-expression relation-
ships (correlation coefficient > 0.65) of Myb28 and Myb29 with other genes. In our work
these two genes were used in the seed-gene-set II to study the GSL pathway. Compared to
Hirai’s results, we found 11 overlapped pathway genes. Furthermore, we discovered more
pathway genes (e.g. PMSR2, GSTF11 and GS-OX1-5, Figure 2.4) which are not listed in
their results.

In another study, Saito et al. [71] constructed the co-expression networks of a general
phenylpropanoid pathway using 54 pre-selected ‘guide genes’ (13 transcription factors and
41 enzymes involved in flavonoid and phenylpropanoid pathways). These are composed of
4 modules such as flavonoid, anthocyanidin, proanthocyanidin and lignin. Especially, the
flavonoid module consists of 16 genes. Comparing our finding from top 20 genes in Table 2.9
with theirs in flavonoid module, 7 pathway genes (including FLS, which is one of the seed
genes in seed-gene-set IV ) are commonly detected. The 3 seed genes encoding TFs (TT8,
TT16 and TTG2 ) in our study are not present in their flavonoid module. Instead, they
are located in their proanthocyanidin module, which is downstream of flavonoid pathway.
However, in the existence of external stress, their results suggested that these 3 TFs could
network with the flavonoid network module, which validates our findings.
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Seed-gene Correlated gene Pearson’s correlation coefficient
AKN2 AKN1 0.923

UGT74B1 0.913
SOT17 0.912

CYP79B3 0.808
SUR1 0.804
GGP1 0.771

CYP83B1/SUR2/ATR4 0.766
CYP79B2 0.757

FIERY1/SAL1 0.733
ATR1/Myb34 0.724

SOT16 0.718
PMSR2 0.707

MYB28 CYP83A1 0.821
UGT74C1 0.808

IPMI1/AtLeuD2 0.792
SOT18 0.775
BAT5 0.771

CYP79F1 0.769
MAM1 0.750
GSTF11 0.735
IPMI2 0.724

ATR1 UGT74B1 0.755
AKN2 0.724
SOT17 0.712

MYB29 GS-OX1 0.707

Table 2.14: The relationships between seed-gene-set II and other pathway genes. The seed
gene was queried on http://prime.psc.riken.jp/?action=coexpression index with following
criteria: Matrix - stress treatments v.1 (298 data); Method - union of sets; Threshold value -
0.5; Display limit - 1000. The correlated genes were filtered by applying pearson’s correlation
coefficient cutoff ≥ 0.7.

2.4 Discussion

We have proposed a novel approach to identify genes associated with a pathway specified
by a set of seed genes. This approach considers the space of pathway genes as a span gen-
erated by its pathway genes and uses partial correlation as a distance measure to determine
genes interacting with the previously identified pathway genes. This approach differs from
many existing approaches in the following aspects: (i) it uses the partial correlation condi-
tioned upon identified pathway genes, not on all genes; (ii) it enables us to identify genes
having higher level interaction (i.e. group interaction) although their pair-wise marginal
correlations are weak; (iii) it considers experiment dependencies when inferring gene rela-
tionships; (iv) its computational workload is less demanding.

The first aspect above implies our method is pathway specific. It focuses its search only on
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a particular pathway among all existing multiple (unknown) pathways in a dataset. This is a
limitation of our approach. But we note that this specific search has shown huge advantages
in reducing false positive discoveries in both our simulation and real data studies, and has
also led to a deeper and insightful biological interpretation of the results. This approach
can potentially be extended to the situation that the seed genes or target pathways are not
available, if the seed genes for different pathways can be originated from analysis of other
sources of biological data.

Although our approach has yielded encouraging biological results in a real dataset ap-
plication, there is still room for further improvement, including exploration of properties of
this approach to answer questions like, ‘What are the biological properties of the identified
genes?’ and, ‘How reliable is the set of identified genes?’. Further biological understanding of
the identified pathway genes would give us deeper insights into the biological process under
consideration.
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Figure 2.1: Heatmaps of (top) true and (bottom) estimated experiment correlation matrices
of the simulation datasets having different experiment dependencies (10, 33 and 67 %).
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Figure 2.2: Graphical summary of the simulation study. Simulation datasets are generated
with different experiment dependencies (a) 10 %, (b) 33 %, (c) 50 % and (d) 67 %. For
each plot, precision and recall are calculated from the top n(n = 1, ..., 15) genes in the list
obtained by five different methods.
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Figure 2.3: Graphical summary of the simulation study. Simulation datasets are generated
with different experiment dependencies (a) 10 %, (b) 33 %, (c) 50 % and (d) 67 %. For
each plot, precision and recall are calculated from the top n (n = 1, , 15) genes in the list
obtained by pwsrc.knorm with seed gene set composed of four pathway genes (red dots) or
four pathway genes and 2 non-pathway genes (blue dots).
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Figure 2.4: Simplified schematic representation of GSL metabolic pathway. Enzymes and
regulators are indicated by bold, capital letters. The GSL pathway genes from the top 30
lists identified by different methods are designated by different markers. A. thaliana dataset
from shoot tissues subjected to oxidative stress and seed-gene-set II are used. Compared
to other methods, our method uniquely finds six genes, BAT5, BCAT4, MAM1, CYP79F1,
CYP79F2, UGT74C1 and misses three genes, OBP2, SOT18, AOP2.
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Figure 2.5: Graphical summary of the A. Thaliana microarray dataset subjected to oxidative
stress; (a) shoot tissue, seed-gene-set I, (b) shoot tissue, seed-gene-set II, (c) shoot and root
tissues, seed-gene-set I, (d) shoot and root tissues, seed-gene-set II. Precision and recall are
calculated from the top 10, 20, 30, 50 and 100 genes in the list obtained by different methods.
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Figure 2.6: Graphical summary of the A. Thaliana microarray dataset subjected wounding
stress; (a) shoot tissue, it seed-gene-set I, (b) shoot tissue, seed-gene-set II, (c) shoot and
root tissues, seed-gene-set I, (d) shoot and root tissues, seed-gene-set II. Precision and recall
are calculated from the top 10, 20, 30, 50 and 100 genes in the list obtained by different
methods.
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Figure 2.7: Graphical summary of the A. Thaliana microarray dataset subjected to UV-B
light stress; (a) shoot tissue, it seed-gene-set I, (b) shoot tissue, seed-gene-set II, (c) shoot
and root tissues, seed-gene-set I, (d) shoot and root tissues, seed-gene-set II. Precision and
recall are calculated from the top 10, 20, 30, 50 and 100 genes in the list obtained by different
methods.
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Figure 2.8: Graphical summary of the A. Thaliana microarray dataset subjected to drought
stress; (a) shoot tissue, it seed-gene-set I, (b) shoot tissue, seed-gene-set II, (c) shoot and
root tissues, seed-gene-set I, (d) shoot and root tissues, seed-gene-set II. Precision and recall
are calculated from the top 10, 20, 30, 50 and 100 genes in the list obtained by different
methods.
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Figure 2.9: Simplified schematic representation of FB and phenylpropanoid biosynthesis
pathways. Enzymes and regulator are indicated by bold, capital letters. Pathway genes
identified by pwsrc.knorm from top 20 list in Table 2.9(d) are marked by dotted circles.
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Chapter 3

Project II: Identifying Gene
Signatures Contributing to
Inter-Individual Variation in Statin
Efficacy

3.1 Introduction

Statins are widely prescribed drugs that lower the risk of cardiovascular disease (CVD)
by reducing low density lipoprotein cholesterol (LDLC) levels. They act by inhibiting 3-
hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the enzyme which catalyzes the
rate limiting step of cholesterol biosynthesis in liver [Figure 3.1 and 3.2]. Although numerous
trials have demonstrated statin efficacy in the reduction of CVD risk, there is substantial
variation between individuals in the magnitude of plasma LDLC reduction [78, 70, 58]. For
example, in the Cholesterol and Pharmacogenetics (CAP) study, the LDLC changes for the
372 participants after simvastatin therapy were collected [Figure 3.9].1 While the result
appears normally distributed, it is clear that there are some extreme responders who are
either sensitively responding (red colored), or poorly or not responding (blue colored) to the
treatment.

Variation in the LDLC response to statin treatment has been attributed to both ge-
netic and nongenetic factors. These include single nucleotide polymorphisms (SNPs), haplo-
types in genes encoding key regulators of cholesterol metabolism including HMGCR, APOE,
PCSK9, ACE, LDLR and ABC B1 [12, 18, 50, 87], as well as phenotypic predictors such
as race, age and smoking status [78]. However, the extent of variation in statin efficacy
explained by these polymorphisms is limited [87, 59]. Recently, whole genome approaches
have identified one SNP (rs8014194 ) that might be associated with variation in the magni-

1CAP is one of two pharmacogenetics studies conducted by the Pharmacogenetics and Risk of Cardio-
vascular disease (PARC) study group.
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Figure 3.1: Statins reduce cardiovascular disease by lowering LDLC.

tude of statin-mediated reduction in total cholesterol and LDLC [5]. However, this result is
somewhat preliminary and only explains a small portion of variation in statin efficacy.

This project aims to perform more comprehensive studies to identify gene signatures
which cause inter-individual variation in drug treatment. Specifically, we try to discover
gene signatures responsible for the the high and low responder variation in statin efficacy.
For this, NMF analysis is used to demonstrate the existence of distinct patterns between the
high and low responder groups from gene expression data. Based on the separated molecular
patterns, pattern specific genetic markers are identified using a modified Significance Analysis
of Microarrays (SAM) method. Biological validation processes demonstrate the relevance of
the identified gene signatures with the biological mechanisms contributing to inter-individual
variation in statin efficacy.

3.2 Method

In this section, brief overview of the NMF and its algorithm, as well as the model selection
rule is described. Then, a novel strategy on searching for signature genes is explained.

3.2.1 NMF and its algorithm

Nonnegative Matrix Factorization (NMF) is an unsupervised, parts-based learning al-
gorithm in which a nonnegative matrix A is decomposed into two nonnegative matrices
A ≈WH through a series of multiplicative updates. Introduced by Lee and Seung in 1999
in the context of text mining and facial pattern recognition [52], NMF has been widely ap-
plied in areas such as image processing, natural language processing [77, 11], sparse coding
[38, 39], speech recognition, video summarization and internet research [56, 13].
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Figure 3.2: Cholesterol biosynthesis pathway in homo sapiens.
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Three features distinguishing NMF as a unique and popular choice over traditional de-
composition techniques such as principal component analysis (PCA), independent compo-
nent analysis (ICA) or singular value decomposition (SVD) are as follows. First, the matrix
factors are constrained to have nonnegative entries which allows direct interpretation as
real underlying components within the context defined by the original data. For example,
Brunet et al.[8] interpreted the resulting basis factors as metagenes capturing gene expression
patterns specific to different groups of samples. Second, NMF often generates sparse basis
vectors with few non-zero entries which allows us to discover parts-based basis vectors [52].
This feature is especially useful in identifying clusters of samples and their characterization.
Due to the sparseness of the results, each set of metagene-specific genes is small which eases
the interpretation of the results. Finally, NMF does not require the basis components to be
orthogonal or independent, but allows them to overlap. This feature is useful in searching
for multiple pathways or processes in the context of gene expression microarrays, since over-
lapping metagenes could suggest collaborative pathways implicated in a complex network
structure [8, 31].

In light of this, NMF recently has been popularly adopted for analyzing large scale gene
expression data to obtain new insights into cancer type discovery [8, 31, 48, 14, 4, 28, 84],
functional characterization of genes [10, 67, 48, 49, 25], predicting cis-regulating elements
from positional word count matrices [41] and phenotype prediction using cross-platform
microarray data [96].2 In one notable example, Collisson et al. [14] used NMF with com-
bined transcriptional profiles of primary pancreatic ductal adenocarcinoma (PDA) samples
to successfully define three PDA subtypes and presented evidence for clinical outcome and
therapeutic response differences among them. They further defined subtype specific gene sig-
natures that may have utility in stratifying patients for treatment, namely subtype specific
therapies. As such, NMF is a promising tool for the purpose of clustering gene expression
data to identify distinct functional molecular patterns.

There are several modified versions of the NMF algorithm [51, 31, 48, 66, 4] but the
original version suggested by Brunet et al. [8] is used in our study. NMF aims to extract
a small number of features (ranks), each defined as a positive linear combination of the n
genes, and express the gene expression level of the samples as a positive linear combination
of these pre-defined features.

Given a nonnegative gene expression data matrix A, which has n genes and m samples,
NMF factorizes A into two matrices with positive entries W and H with rank k.3

An×m ≈Wn×kHk×m s.t. min
W,H≥0

[D(A,WH) +R(W,H)], k � min(n,m) (3.1)

Hau ← Hau

∑
i WiaAiu/(WH)iu∑

k Wka

(3.2)

Wia ←Wia

∑
u HauAiu/(WH)iu∑

v Hav

(3.3)

2See [16] for a comprehensive review of applications of NMF in bioinformatics.
3k is the number of factors or features which is much smaller than n and m.
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After randomly initializing the matrices, W and H are iteratively updated using the coupled
divergence equations [52] in Equation (3.2) and (3.3) to minimize the objective function
D(A,WH) + R(W,H) in Equation (3.1). Notice that D in Equation (3.1) is defined as
Kullback-Leibler loss function,

DKullback−Leibler : A,B 7→ KL(A ||B) =
∑
ij

aijlog
aij
bij
− aij + bij, (3.4)

and R is an optional regularization function defined to enforce smoothness or sparsity on
the matrices W and H which is ignored in our study. To illustrate, Figure 3.3 provides a
graphical summary of NMF analysis with rank k = 2. Matrix W has size n×k, with each of
the k columns defining a rank; entry wij is the coefficient of gene i in rank j. If gene i has a
higher coefficient for the first rank than the second rank, this gene is regarded as contributing
more to the first class than the second one. Matrix H has size k ×m, with each of the m
columns representing the rank expression pattern of the corresponding sample; entry hij
represents the expression level of rank i in sample j. As such, the profile of H enables us to
assign m samples to k classes. For example, in the continuous profile in Figure 3.3, the first
few samples have higher coefficient for the first rank while the last few samples have higher
coefficient for the second rank. Thus we can easily assign the first group of samples into the
first class and the second group into the second class.

3.2.2 Model selection, choice of k

For any rank k, NMF groups the samples into k clusters. But the key issue is to assess
whether a given rank k provides a biologically meaningful decomposition of the data.

Brunet et al. [8] developed a model selection rule based on consensus clustering [61] for
evaluating the quality of the resulting clusters. The procedures is as follows.

(i) For each run, calculate a connectivity matrix C of size m ×m with cij = 1 if sample
i and j are assigned to the same class and cij = 0 otherwise. Due to the random
initialization of W and H, NMF will not necessarily converge to the same solution on
each run. However, if clustering into k classes is strong, the sample assignment rarely
changes from run to run.

(ii) Average the connectivity matrices from many runs to obtain a consensus matrix C̄.
The entries of C̄ range from 0 and 1 and reflect the frequency with which the two
samples cluster together. If the clustering is stable, the connectivity matrices from
different runs will vary little, resulting in a consensus matrix with entries close to 0 or
1.

(iii) Using the off diagonal entries as a measure of similarity among samples, the consensus
matrix is reordered using average linkage hierarchical clustering to obtain C̄HC .
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Figure 3.3: Graphical explanation of NMF analysis. A rank 2 reduction of a microarray
dataset of n genes and m samples is obtained by NMF to give W and H of size n × 2 and
2 ×m, respectively. All matrix expression levels are color coded by using a heatmap from
blue (minimum) to red (maximum).
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(iv) To evaluate the stability of the clustering associated with a given rank k, the cophenetic
correlation coefficients ρk(C̄) is calculated as ρk(C̄) = cor(I−C̄, C̄HC). If the clustering
does not vary at all, ρk(C̄) = 1; otherwise, the value of ρk(C̄) falls between 0 and 1.

By tracking how the cophenetic correlation coefficient changes as k changes, we can select
the rank k where the cophenetic correlation coefficient begins to decrease.

3.2.3 Signature gene selection

Once NMF analysis identifies the molecular patterns that distinguish the high and low
responder groups, we select signature genes that are differentially expressed between the two
groups.

For this purpose, we referred to Significance Analysis of Microarrays (SAM) method,
which has been popularly used to identify differentially expressed genes among groups based
on statistical significance [89].

This method starts with assigning a score relative difference, d(i), to each gene on the
basis of change in the gene expression relative to the gene specific scatter, s(i), which is the
standard deviation of repeated measurements. In particular, the relative difference is defined
as

d(i) =
x̄H(i)− x̄L(i)

s(i) + s0

(3.5)

s(i) =

√√√√a(∑
m

[xm(i)− x̄H(i)]2 +
∑
n

[xn(i)− x̄L(i)]2
)

(3.6)

where x̄H(i) and x̄L(i) are defined as the average level of expression for gene (i) in the
high and low responder groups, respectively; a is a multiplicative factor of a = (1/nH +
1/nL)/(nH + nL − 2), where nH and nL are the sample sizes of the high and low responder
groups, respectively. Since the variance of d(i) is sensitive to the general expression level of
each gene, a small positive constant s0 is introduced in the denominator in Equation (3.5)
to stabilize the variance of d(i).4

For genes with scores greater than an adjustable threshold, SAM uses permutations of the
repeated measurements to estimate the percentage of genes identified by chance. Specifically,
genes are first ranked by their d(i) values and the expected relative difference dE(i) under the
null distribution is computed via random permutation of samples, i.e. for each permutation
p, relative differences dp(i) were calculated and ranked by magnitude and the expected
relative difference is defined as the average over all the permutations dE(i) = dp(i). Then,
gene i is deemed differentially expressed if |d(i)− dE(i)| > ∆. A more detailed discussion
can be found in [89].

4The coefficient of variation d(i) was computed as a function of s(i) in moving windows across the data
and the value for s0 was chosen to minimize the coefficient of variation.
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In the original paper [89], Tusher et al. found 34 differentially expressed genes from
ionizing radiation response data using the SAM method. Those genes are represented by
points displaced from the d(i) = dE(i) line by a distance greater than a threshold ∆ in Figure
3.4(a).

However, the SAM method was not able to discover any significantly differentially ex-
pressed genes in our data [see Figure 3.4(b)]. This can be attributed to the following reasons.
First, the variance in gene expression levels in our dataset is smaller than that of the ionizing
data, a result of the gene-wise quantile normalization performed in our data pre-processing
step. Second, the variance in d(i) has not been completely stabilized, a more pronounced
problem when s(i) is small. Finally, the null distribution calculated for the test statistic in
the original SAM method is not gene specific. Thus, it does not reflect the genes’ true null
distributions in an appropriate way.

To address these issues, we propose a new algorithm for extracting signature genes as
follows.

(i) Calculate the relative difference d(i) as in Equation (3.5) with varying positive s0

values instead of a fixed one. Specifically, begin with a small constant value, decreasing
it toward 0 as s(i) increases. This enables us to stabilize d(i) more efficiently especially
when s(i) is small.

(ii) To estimate the significance of the observed gene expression level, we calculate the null
distribution of the test statistic, d(i), based on random permutations of the samples
within each gene. In contrast to SAM’s general null distribution, using samples within
each gene permits estimation of a gene-specific null distribution.

(iii) Obtain the corresponding p-value of the observed relative difference d(i) based on the
null distribution calculated in (ii).

(iv) Select the signature genes with p-values lower than a pre-selected cutoff, set to 0.01 in
our study.

3.3 Datasets

3.3.1 Data descriptions

We used data generated by the Cholesterol and Pharmacogenetics (CAP) study, which
enrolled 944 participants in a 6-week simvastatin trial (40mg/day) with the objective of ex-
amining the genetic factors affecting simvastatin-mediated changes in lipids and lipoproteins
[78].

Participants were healthy adult volunteers who self-reported either recent African (N =
335) or recent Caucasian (N = 609) ancestry. Baseline health and demographic information
were obtained at the time of enrollment. Fasting plasma was collected at two pre-treatment
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time points (screen visit and enrollment visit) and at two post-treatment time points (four
and six weeks of treatment). Lipids and lipoproteins were measured at all four time points.
Total cholesterol (TC), triglyceride, apolipoprotein B (apoB), and high density lipoprotein
cholesterol (HDLC) levels were measured using an Express 550 Plus analyzer (Ciba Corning,
Oberlin, Ohio) in a laboratory that was monitored for consistency by the Centers for Disease
Control - National Heart, Lung, and Blood Institute standardization program as described
in [78]. LDLC was calculated by the Friedewald equation [26]. Because TC, HDLC and
triglycerides were not significantly different between screen and enrollment, the average of
these two measurements was used as the pretreatment value to minimize technical variation.
For the same reason, the average of four- and six-week measurements was used as the post-
treatment value.

RNA quality and quantity was assessed using a Nanodrop ND-1000 spectrophotometer
and Agilent bioanalyzer. Paired RNA samples from 568 lymphoblastoid cell lines (LCLs),5

selected based on RNA quality and quantity, were amplified and biotin labeled using the Illu-
mina TotalPrep-96 RNA amplification kit, hybridized to Illumina HumanRef-8v3 beadarrays
(Illumina), and scanned using an Illumina BeadXpress reader. Data were read into GenomeS-
tudio and samples were selected for inclusion based on quality control criteria: (i) signal to
noise ratio (95th : 5th percentiles), (ii) matched gender between sample and data, and (iii)
average correlation of expression profiles within three standard deviations of the within-group
mean (r = 0.99 ± 0.0093 for control-treated and r = 0.98 ± 0.0071 for simvastatin-treated
beadarrays). In total, viable expression data was obtained from 1040 beadarrays including
480 sets of paired samples for 10195 genes. Genes were annotated through biomaRt from
ensMBL Build 5438.

Our study is limited to the 480 paired samples, all of Caucasian ancestry. Of those 480
samples, we excluded 64 smoker samples to eliminate a potential confounding factor. We
also checked the sample identity using Eric Shadt’s Bayesian method [73]. This is based on
a Baysian approach to predict SNP genotypes using RNA expression data. The genotype
predicted from our RNA expression data accurately and uniquely identified individuals in
our population, excluding 44 mismatched samples which were finally removed from the data.

Figure 3.5 provides a graphical summary of the final 372 samples. Our final sample is
composed of 171 female and 201 male participants, with ages ranging from 30 to 90. Their
BMI distribution suggests that the participants in this study are somewhat overweight since
the median BMI is above the normal BMI range (18.5 - 25) which is delineated using red
dotted lines in Figure 3.5.

HMGCR enzymatic activity was measured for the 204 CAP participants (72 African and
132 Caucasian ancestry)6 in the presence or absence of simvastatin (25, 50 nmol/L) [60].
This experiment was performed in 18 consecutive batches so that each batch had a balanced
number of samples of Caucasian and African ancestry. Activity was expressed as picomole

5LCLs, immortalized by Epstein-Barr virus transformation of lymphocytes isolated from whole blood,
were derived from European-American participants in the CAP trial.

6Among 132 Caucasian participants, 90 are overlapped with our 372 participants.
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of mevalonate formed per minute per 500000 homogenized live cells.7,8

3.3.2 Data preprocessing

3.3.2.1 LDLC phenotype

The mean LDLC levels before and after simvastatin treatment are denoted as α and
β, respectively, for ease of notation. To measure LDLC change, a multiplicative measure
log(β/α), which we will refer to deltaLnLDLC, is preferred over the arithmetic difference
β − α because it is comparatively less correlated with baseline values [Figure 3.6]. Since we
are interested in statin response, not in the baseline, it is necessary to remove as much of
the baseline component as possible. The logarithmic transformation removes outlier effects
to some extent as well.

Next, clinical covariate effects on deltaLnLDLC are adjusted with linear regression.
Among the three candidate covariates (sex, age and BMI) we considered, only age effects
were significant [Figure 3.7]. So we adjusted for the age covariate to get adj.deltaLnLDLC
which is used as a measure of LDLC change in our study. Figure 3.8 graphically summarizes
the effect of covariate adjustment. Before adjustment [Figure 3.8(a)], the younger age group
showed less LDLC change than the older groups, but this discrepancy is eliminated after
adjustment [Figure 3.8(b)].

The distribution of LDLC change, adj.deltaLnLDLC, is shown in Figure 3.9 where the
extremely high and low responders to the simvastatin treatment are color coded as red and
blue, respectively.

3.3.2.2 Gene expression dataset

The treated and untreated gene expression data sets were quantile transformed to the
overall average empirical distribution across all arrays, and pooled together for further pro-
cessing. This gives a matrix with 10195 genes and 744 samples. To avoid problems caused
by outliers or other deviations from normality in later association tests for eQTL analysis,
the expression values for each gene were also quantile normalized.9

To find the clinical covariate effects, boxplots for seven known covariates (date, cell
growth rate, RNA labeling batch, beadarray hybridization batch, gender, age and BMI)
were generated as in Figure 3.10(a). Each boxplot summarizes the correlation coefficients
of the expression levels before and after adjusting for each covariate. It turns out that
four covariates - date, RNA labeling batch, beadarray hybridization batch and gender -

7The traditional units of per 1 mg protein may be inappropriate because protein may be quantified from
both living and dead cells, whereas only living homogenized cells contribute to activity.

8Cell count was determined on the Guava Personal Cell Analysis fluorescent-activated cell sorting (Guava
Technologies Inc, Hayward, Calif).

9This gene expression data was originally prepared for eQTL analysis purpose and we followed the
protocol they used to preprocess the array data.
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Figure 3.4: Scatter plots of the observed relative difference d(i) versus the expected relative
difference dE(i) demonstrating the performance of SAM method with (a) ionizing radiation
response data in [89] and (b) our statin dataset.
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Figure 3.5: Graphical summary of 372 Caucasian participants by sex, age and BMI.
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Figure 3.6: Comparison of (a) β − α versus (b) log(β − α).

Figure 3.7: Summary of the linear regression result of the clinical covariates on deltaLnLDLC.
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Figure 3.8: Comparison of deltaLnLDLC versus adj.deltaLnLDLC levels across different age
groups. Age is arbitrarily split into three groups: (I) younger than or equal to 45, (II) older
than 45 and younger than 60, (III) older than or equal to 60.
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Figure 3.9: Distribution of LDLC change (adj.deltaLnLDLC ), for 372 samples. 13 each of
the highest and lowest responders for the simvastatin treatment are color coded with red
and blue, respectively.
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significantly affected the expression. So the data was adjusted to control these four covariates
by quantile normalizing the residuals from a linear model with each gene.

Then the data was split into the treated (T372) and untreated (U372) groups to obtain
the delta data, which is D372 = T372 − U372. We again quantile normalized each gene in
D372.

Finally, to meet the nonnegative requirement of NMF, each entry in D372 was replaced
with the value of its p-value subtracted from one, where the p-values were calculated under
the assumption of normality.

3.3.2.3 HMGCR enzymatic activity data

The treated (T ) and untreated (U) activity data were both adjusted for the total protein
values. Then, samples with increased enzymatic activity were excluded, leaving 193 samples.

Due to the original experiment design, the data exhibits huge batch effects as well as
dose effects [see Figure 3.11]. Consequently, we used linear regression to adjust for these
covariates in the treated (T ′) and untreated (U ′) data separately.

Finally, the HMGCR enzymatic activity change was computed as (T ′ − U ′)/U ′.

3.4 Results

In NMF analysis, we first investigate how many samples to use for the best separation
between the high and low responders.

To evaluate the cluster quality for each number of samples, purity and entropy [100,
99] measures were used. Purity and entropy are two widely used measures to evaluate the
performance of unsupervised learning algorithms. Purity evaluates the coherence of a cluster,
i.e. the extent to which a cluster contains samples from a single class. Given a particular
cluster of Ci of size ni, the purity of Ci is defined as

P (Ci) =
1

ni

max
h

(nh
i ) (3.7)

where maxh(nh
i ) is the number of samples from the dominant class in cluster Ci and nh

i is
the number of samples from cluster Ci assigned to class h. The purity of clustering result is
the weighted sum of the purity of k individual clusters given by

purity =
k∑

h=1

nh

n
P (Ch). (3.8)

Entropy measures how the various classes of samples are distributed in a given cluster, which
is defined as

E(Ci) = − 1

log k

k∑
h=1

nh
i

ni

log
nh
i

ni

(3.9)
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where k is the total number of classes in the dataset. The entire entropy is defined to be the
sum of the individual entropies weighted according to the cluster size:

Entropy =
k∑

h=1

nh

n
E(Ch). (3.10)

The entropy measure is more comprehensive than purity because it considers the overall
distribution of all the categories in a given cluster rather than just the number of objects
in the dominant category. When the clustering is perfect, the purity and the entropy are 1
and 0, respectively. As such, higher purity and lower entropy correspond to better clustering
results.

Given the best clustering results, we identified the signature genes and performed further
biological validation studies.

3.4.1 Implementation of NMF analysis

3.4.1.1 Selecting the best number of samples

Given the LDLC change profile from our samples [Figure 3.9], one question which nat-
urally arises is ‘How many samples to choose from both groups for best separation? ’. With
too few samples, key features of the two groups may be omitted. However, with too many
samples, the NMF algorithm might have difficulty distinguishing the two groups.

To obtain a suitable set of samples that reflect the biological distinctions between the
two groups, we adopted the following random sampling strategy.

(i) Choose N each of the highest and lowest responding samples from both tails, 2N in
total. N is increased from 10 to 20.10

(ii) Select the G genes with the greatest variation between the two groups as follows. Rank
genes within each sample. For each gene, find the mean rank both in the high (R̄H) and
low (R̄L) responder groups and calculate the absolute rank difference d = |R̄H − R̄L|.
Select G genes with the highest d values. In our study, G was selected to be 2000.

(iii) Perform NMF analysis and evaluate the cluster quality using the purity and entropy
measures.

(iv) Repeat (i) through (iii) for another randomly selected set of 2N samples.

By comparing the NMF clustering quality between two sampling processes, we can choose
a reasonable number of samples.

The resulting purity and entropy plots are given in Figure 3.12. Overall, the samples from
two extreme responder groups achieved higher purity and lower entropy than the randomly

10N is originally tested from 5 to 30, but the results for 10 to 20 are shown for simplicity.
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selected samples. NMF analysis resulted in a correct categorization when up to 26 (13 high,
13 low responders) samples were used. As more samples were included, the purity and
entropy worsened. For the analysis described in Section 3.4.2 and 3.4.3, 26 samples were
used. For comparison, we also used 32 samples which was the largest number of samples
that still yielded a reasonable purity value (0.9).

The NMF results with 26 samples are summarized in Figure 3.13. A plot of the cophenetic
correlation coefficients in Figure 3.13(b) shows that the best rank is two. Further, the
reordered consensus matrix plots in Figure 3.13(a) show that the clustering result is most
stable and robust at rank two. This confirms the existence of a clear-cut separation between
two responder groups.

The analysis with 32 samples had similar results, but the overall cophenetic correlation
coefficients were smaller [Figure 3.14]. This underscores the trade-off relationship between
clustering quality and sample numbers. In other words, the addition of more samples to the
NMF analysis lowers the clustering quality and vice versa.

3.4.1.2 The effects of the number of genes in NMF analysis

In our NMF analysis, the number of genes was fixed at 2000, a number widely used in
other applications as well. To see how the number of genes affect the NMF analysis, we
evaluate the NMF clustering quality using different numbers of genes.

Figure 3.15 shows the purity and entropy computed using the NMF clustering based
on the 1000, 2000, 3000, 4000 and 5000 most variable genes. For each setting, we again
increased the number of samples from 20 to 40. For smaller number of genes like 1000 or
2000, the overall clustering quality stayed perfect up to 28 and 26 samples, respectively.
However, with more genes, the overall clustering quality worsens; the purity is reduced even
in the 20 sample case.

More information could be extracted if more genes are used. However, this observation
shows that not all genes carry useful information for separating the high and low responders,
only adding noise to the analysis. This again confirms that 2000 is a reasonable number of
genes to use for clustering.

3.4.1.3 NMF analysis with the high, low and mild responder groups

Other questions arise when analyzing data from the high and low responder groups,
such as ‘What if we add the mild responders in NMF analysis? Would that be clustered
separately or together with others?’. An answer to this question would provide a more
comprehensive understanding of the inter-individual variation; subsequently, we performed
the NMF analysis with three groups - high, low, and mild responder groups. The mild
responder samples were taken from the middle area of the distribution in Figure 3.9 and the
NMF analysis was performed together with the pre-selected high and low responders.

Figure 3.16 shows the cophenetic correlation coefficients and reordered consensus matrices
for a total of 30, 39 and 48 samples, with a third of the samples taken from each of the three
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Number of Predicted High Mild Low
high, mild, low responders responders responders responders

30
class 1 10 9 2
class 2 0 1 8

39
class 1 13 8 0
class 2 0 5 13

48
class 1 13 10 2
class 2 3 6 14

Table 3.1: Summary of the NMF clustering results with the high, mild and low responder
groups.

responder groups. For example, 10 samples were taken from each of the high, mild and low
responders for a total of 30 samples. In all of the cases, two remains the most desired rank
value.

Table 3.1 summarizes the detailed clustering results from Figure 3.16. When we used 39
or 48 samples, roughly 62 % of the mild responders were clustered with the high responders
and the rest were assigned to the low responders. However, if we take 30 most extreme
samples, most of the mild responders (9 out of 10) were clustered with the high responders.
This implies that the expression level from the mild group was not distinct enough to be
clustered separately from the high and low responders. Instead, they behave more like the
high responder group as the high and low responder groups move toward the extreme tails.

This is also supported by Figure 3.13(c) and 3.14(c). These heatmaps compare the ex-
pression levels among the high, mild and low responder groups using the signature genes
identified in Section 3.4.2. While the expression levels from the high and low responders are
distinct from each other, the ones from the mild group are somewhat random and intermedi-
ate. However, we can still see the rough similarity of the expression levels between the high
and mild groups.

3.4.2 Signature gene selection

The original SAM method found no minimum of the coefficient of variation of d(i) within
the range of s(i) in our dataset [Figure 3.17(b) right]. In the scatter plot of the gene specific
scatter s(i) versus the relative difference d(i) [Figure 3.17(b) left], the variance of d(i) is
shown to be unstable especially when s(i) is small. For comparison, the scatter plot with
s0 = 0 is given in Figure 3.17(a).

When the varying s0 values described in Section 3.2.3 were used instead, a prominent
minimum of the coefficient of variation of d(i) was found, which is 0.13 [Figure 3.17(c)].
The corresponding scatter plot in Figure 3.17(c) looks less correlated than the one in Figure
3.17(b). This indicates that the dependency of d(i) on s(i) has been successfully removed.

The identified signature genes are denoted by red dots in the scatter plots of d(i) versus
s(i) [Figure 3.18(d)]. For comparison, three more signature gene sets were obtained as



57

follows. Figure 3.18(a)(c) and Figure 3.18(b)(d) were generated by holding s0 = 0 fixed at 0
and allowing s0 to vary, respectively. The null distribution of d(i) is empirically estimated
through random permutations, within either the 26 high and low responder group [Figure
3.18(a)(b)] or all 372 population samples [Figure 3.18(c)(d)].

Again, when s0 is allowed to vary, the variance of d(i) becomes more stable [compare
Figure 3.18(a)(c) and Figure 3.18(b)(d)]. Further, using all of the population samples in
random permutation yields a more uniform signature gene distribution, irrespective of s(i)
values [compare Figure 3.18(b) and (d)]. For ease of notation, the signature genes identified
in Figure 3.18(a)-(d) are named as SG1, SG2, SG3 and SG4.

3.4.3 Biological validation

SG4 achieves greater statistical significance than SG1 -SG3. Toward biological valida-
tion, two studies were performed: first, a correlation study with the cholesterol biosynthesis
pathway genes; second, a comparison study with HMGCR enzymatic activity data. The
genes in SG4 are listed in Table 3.2.

3.4.3.1 A correlation study with the cholesterol biosynthesis pathway genes

Since statin directly works on the cholesterol biosynthesis pathway by inhibiting HMGCR
enzymatic activity [Figure 3.2], genes in this pathway are highly affected by statin treatment,
though the high and low responder groups may be affected differently. To demonstrate the
relevance of our signature genes with the cholesterol biosynthesis pathway, we examined the
extent to which the signature gene sets were enriched with cholesterol biosynthesis pathway
genes.

For this purpose, thirteen representative genes were selected from the cholesterol biosyn-
thesis pathway [Figure 3.2].11 For each pathway gene, (i) compute the pairwise correlations
with the remaining 10194 genes, (ii) select the significantly correlated genes at a 0.05 FDR
adjusted p-value cutoff, and (iii) count how many of the correlated genes are overlapped
with each of SG1 -SG4. Both the untreated and treated gene expression datasets were used
in this study. The results are summarized in Table 3.3 and 3.4, respectively.

Table 3.3(a) and 3.4(a) show the proportions of overlapped genes in SG1 -SG4, while
Table 3.3(b) and 3.4(b) give their corresponding p-values, calculated from the hypergeometric
distribution. With the untreated data, for example, 47 % of SG4 genes are overlapped with
HMGCR-correlated genes (p-value = 1.26 × 10−4). It is worth noting that only SG4 has a
statistically significant overlap with the HMGCR-correlated genes in both datasets, which
implies that SG4 is highly enriched with HMGCR-correlated genes. The same correlation
study was also performed with the delta data (D372), but no genes achieved statistical
significance.

11For comparison, we added LDLR gene from the cholesterol uptake pathway.
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Gene symbol Ensemble ID sign(d(i)) Gene symbol Ensemble ID sign(d(i))
C1orf218 ENSG00000213047 -1 ACVR1B ENSG00000135503 1
FBXO16 ENSG00000214050 -1 ALPPL2 ENSG00000163286 1
MYLK2 ENSG00000101306 -1 FSD1CL ENSG00000106701 1
SETBP1 ENSG00000152217 -1 HIST1H2BK ENSG00000197903 1

B4GALT4 ENSG00000121578 -1 HIST1H4H ENSG00000182217 1
GOPC ENSG00000047932 -1 NTRK2 ENSG00000148053 1
EPOR ENSG00000187266 -1 SDC4 ENSG00000124145 1

KIAA1333 ENSG00000092140 -1 SYPL1 ENSG00000008282 1
PDPR ENSG00000090857 -1 B3GALNT1 ENSG00000169255 1

DNAJC7 ENSG00000168259 -1 CNKSR3 ENSG00000153721 1
SLC44A1 ENSG00000070214 -1 EOMES ENSG00000163508 1

ARHGDIB ENSG00000111348 -1 KLF11 ENSG00000172059 1
CEACAM21 ENSG00000007129 -1 LRRC26 ENSG00000184709 1

LARGE ENSG00000133424 -1 PEX7 ENSG00000112357 1
TMEM1 ENSG00000160218 -1 SDPR ENSG00000168497 1

UBE2CBP ENSG00000118420 -1 BRWD2 ENSG00000120008 1
ADAT1 ENSG00000065457 -1 CRIM1 ENSG00000150938 1

CYP51A1 ENSG00000001630 -1 D4S234E ENSG00000168824 1
NUDT4P1 ENSG00000177144 -1 LTB ENSG00000204487 1
PITPNC1 ENSG00000154217 -1 LYPLAL1 ENSG00000143353 1
CYorf15A ENSG00000099749 -1 NCF4 ENSG00000100365 1
KIAA1407 ENSG00000163617 -1 TBX15 ENSG00000092607 1
SEC16A ENSG00000148396 -1 UCHL1 ENSG00000154277 1
TTC3 ENSG00000182670 -1 CYB5A ENSG00000166347 1

GRPEL2 ENSG00000164284 -1 EIF1AY ENSG00000198692 1
LMTK2 ENSG00000164715 -1 HIGD2A ENSG00000146066 1
NPAT ENSG00000149308 -1 LOC389816 ENSG00000184709 1

ADAM19 ENSG00000135074 -1 MYO6 ENSG00000196586 1
ARMC6 ENSG00000105676 -1 TSPAN1 ENSG00000117472 1
CDRT4 ENSG00000175106 -1 ADORA2B ENSG00000170425 1
GALM ENSG00000143891 -1 EIF4E2 ENSG00000135930 1
ABCA9 ENSG00000154258 -1 EPDR1 ENSG00000086289 1
LRBA ENSG00000198589 -1 HIST1H2BG ENSG00000168242 1
SUZ12 ENSG00000178691 -1 LCK ENSG00000182866 1

ZNF398 ENSG00000197024 -1 MBP ENSG00000197971 1
PON2 ENSG00000105854 1

ACACB ENSG00000076555 1
HIST1H1C ENSG00000187837 1
KREMEN1 ENSG00000183762 1

RNF125 ENSG00000101695 1
TSPAN4 ENSG00000214063 1
TTC9C ENSG00000162222 1

LOC391356 ENSG00000184924 1
MRLC2 ENSG00000118680 1

NMNAT3 ENSG00000163864 1
ANKRD29 ENSG00000154065 1

HIBCH ENSG00000198130 1
LY86 ENSG00000112799 1

MGC42105 ENSG00000177453 1
RGS1 ENSG00000090104 1

RNASEH2A ENSG00000104889 1
SYNGR1 ENSG00000100321 1
TGFB1I1 ENSG00000140682 1
TMEM60 ENSG00000135211 1
C9orf21 ENSG00000158122 1
LIN7A ENSG00000111052 1
ADCK2 ENSG00000133597 1

C14orf100 ENSG00000050130 1
C5orf13 ENSG00000134986 1

CYP2W1 ENSG00000073067 1
GABRE ENSG00000102287 1
MS4A7 ENSG00000166927 1

SH2D2A ENSG00000027869 1
TRAPPC2 ENSG00000196459 1

Table 3.2: List of 99 signature genes in SG4.
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(a)
Gene symbol SG1 SG2 SG3 SG4

DHCR7 0.3 0.27 0.3 0.27
SC5DL 0.45 0.41 0.46 0.53
NSDHL 0.31 0.32 0.35 0.29

SC4MOL 0.34 0.34 0.32 0.39
CYP51A1 0.17 0.13 0.17 0.16

LSS 0.27 0.24 0.26 0.24
SQLE 0.21 0.21 0.26 0.23

FDFT1 0.17 0.17 0.16 0.17
MVD 0.27 0.29 0.27 0.3

PMVK 0.23 0.22 0.21 0.25
MVK 0.2 0.21 0.21 0.2

HMGCR 0.39 0.37 0.37 0.47
HMGCS1 0.19 0.2 0.21 0.26

LDLR 0.45 0.46 0.45 0.48

(b)
Gene symbol SG1 SG2 SG3 SG4

DHCR7 0.942 0.985 0.935 0.966
SC5DL 0.922 0.976 0.864 0.324
NSDHL 1 0.999 0.997 1

SC4MOL 1 0.999 1 0.948
CYP51A1 1 1 1 0.999

LSS 0.998 1 0.999 0.999
SQLE 1 1 0.998 0.998

FDFT1 0.968 0.958 0.99 0.932
MVD 1 0.998 1 0.991

PMVK 0.978 0.985 0.997 0.877
MVK 0.99 0.962 0.983 0.963

HMGCR 0.013 0.041 0.038 1.26E-04
HMGCS1 1 0.999 0.997 0.868

LDLR 0.728 0.632 0.736 0.379

Table 3.3: (a) The proportions of the overlapped genes in SG1 -SG4 with the list of genes
correlated with each of cholesterol biosynthesis pathway genes. Correlation is calculated
using the untreated gene expression data. 3713, 5173, 4728, 4895, 3022, 3963, 3830, 2440,
4324, 3171, 2914, 3111, 3258, 4838 genes are identified to be significantly correlated with
each of the pathway genes, respectively. SG1 -SG4 are composed of 150, 123, 146 and 99
genes, respectively. The corresponding p-values are shown in (b).
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(a)
Gene symbol SG1 SG2 SG3 SG4

DHCR7 0.31 0.3 0.31 0.33
SC5DL 0.4 0.36 0.37 0.39
NSDHL 0.35 0.37 0.38 0.35

SC4MOL 0.25 0.26 0.25 0.24
CYP51A1 0.17 0.17 0.18 0.18

LSS 0.36 0.33 0.37 0.23
SQLE 0.19 0.21 0.23 0.19

FDFT1 0.07 0.06 0.07 0.11
MVD 0.39 0.4 0.38 0.26

PMVK 0.21 0.21 0.22 0.26
MVK 0.18 0.2 0.23 0.15

HMGCR 0.16 0.19 0.18 0.28
HMGCS1 0.07 0.09 0.09 0.13

LDLR 0.29 0.33 0.32 0.27

(b)
Gene symbol SG1 SG2 SG3 SG4

DHCR7 0.744 0.808 0.781 0.526
SC5DL 0.939 0.99 0.988 0.91
NSDHL 1 0.999 0.999 0.999

SC4MOL 1 1 1 1
CYP51A1 0.998 0.997 0.995 0.983

LSS 0.693 0.855 0.598 0.999
SQLE 1 0.995 0.993 0.997

FDFT1 0.993 0.995 0.991 0.689
MVD 0.976 0.952 0.986 1

PMVK 1 0.999 0.999 0.953
MVK 1 0.997 0.991 1

HMGCR 0.864 0.575 0.616 0.016
HMGCS1 0.985 0.908 0.932 0.447

LDLR 1 0.995 0.999 1

Table 3.4: (a) The proportions of the overlapped genes in SG1 -SG4 with the list of genes
correlated with each of cholesterol biosynthesis pathway genes. Correlation is calculated
using the treated gene expression data. 3487, 4747, 5246, 4372, 2848, 3909, 3269, 1365,
4859, 3530, 3241, 2025, 1356, 4591 genes are identified to be significantly correlated with
each of the pathway genes, respectively. SG1 -SG4 are composed of 150, 123, 146 and 99
genes, respectively. The corresponding p-values are shown in (b).
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3.4.3.2 Comparison of HMGCR enzymatic activity change

Observing that SG4 is significantly enriched with HMGCR-correlated genes naturally
lead us to hypothesize that there might be a notable difference in the amount of HMGCR
enzymatic activity change between the high and low responders.

To verify this hypothesis, the amount of HMGCR enzymatic activity change between
the two groups was compared. Since HMGCR activity data is not available for all the 372
samples, we only compared the available activity data which were ranked within the top 13,
20 and 50 high or low responders.

Boxplots comparing the activity change as well as the baseline activity are shown in Figure
3.19. The number of high and low responders used to generate each boxplot is noted in the
parentheses. A t-test for comparing two groups in each boxplot is performed and the resulting
p-values are given at the top of each plot. Comparing the top 13 high and low responders
(seven and four samples of activity data are available, respectively), the low responder group
showed less activity change than the high responder group, though the difference was not
significant (p-value = 0.194). However, the difference became significant (p-value = 0.049)
when we compared the top 50 high and low responders (26 and 24 samples, respectively).
This demonstrates that there is a significant difference in the amount of HMGCR enzymatic
activity change between the high and low responder groups.

Due to the limited data, our hypothesis has not been fully verified. As more HMGCR
enzymatic activity data becomes available in the future, a more precise comparison between
the two groups could be made to better verify our hypothesis.

3.5 Discussion

Using the NMF analysis, we identified two distinct molecular patterns between the high
and low responder groups. The number of samples that produced the best separation between
these groups was found to be 13 each of the highest and lowest responders. Using this optimal
number of samples, our modification of the SAM method identified 99 signature genes that
had gone undetected by the original SAM method.

Two independent studies were performed to validate our findings biologically. The cor-
relation study showed that our signature genes were significantly enriched with HMGCR-
correlated genes; 47 % (p-value = 1.26 × 10−4) and 28 % (p-value = 1.60 × 10−2) of our
signature genes are overlapped with the HMGCR-correlated genes in the untreated and
treated gene expression datasets, respectively. In the comparison study, we observed that
there is a notable difference in the amount of HMGCR enzymatic activity change between
the high and low responder groups. The high responder group exhibits a bigger activity de-
crease than the low responder group, implying that statin inhibits the HMGCR enzymatic
activity more efficiently in the high responder groups. These results will help us understand
why the high responder group shows a greater LDLC decrease and higher statin efficacy
than the low responder group.
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Our studies suggest the plausible relevance of our signature genes to the cholesterol
biosynthesis pathway, which HMGCR mainly acts on. However, the results shown here are
preliminary and there is still room for further validation. Further research is being done to
ascertain if there is more concrete biological evidence of our findings.

• In the correlation study in Section 3.4.3.1, we noticed that only 47 % or 28 % of our
signature genes are enriched with the HMGCR-correlated genes from the untreated and
treated data, respectively. One naturally arising question is ‘What about other genes?
What biological pathways or processes are they involved in?’ To answer this question,
we need to take into account other biologically related pathways such as cholesterol
uptake and export pathways.

• We can look for more references on each signature gene to better understand its bio-
logical relevance to our study. For example, our data showed that the ‘CYP51A1’ gene
was highly activated for the low responder group. As it turns out, this gene is known
to be involved in lipid and lipoprotein metabolism, as well as cholesterol biosynthesis.

• We are also planning to perform genotypic association studies between the two groups
using expression quantitative trait loci (eQTL) data. Using comprehensive genetic
association studies with our signature genes, we expect to identify single nucleotide
polymorphisms (SNPs) that are associated with the variation in statin response.

In this study, we only considered the LDLC phenotype which is known to have high
physiological relevance to CVD risk. There are also other phenotypes that are relevant to our
study, such as total cholesterol, high density lipoprotein (HDL) cholesterol, apolipoprotein B
(apoB) as well as the rate of LDL cholesterol uptake. Since phenotypes each provide different
intrinsic information, using these phenotypes within our analytical framework might shed
more light on the inter-individual variation in statin efficacy.
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Figure 3.10: Boxplots showing the covariates effect on the expression data (a) before and (b)
after adjustment. Each boxplot is generated by the correlation coefficients of the expression
levels before and after adjusting each covariate.
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Figure 3.11: Plots showing (a)(b) the batch and (c)(d) dose effects on HMGCR enzymatic
activity data. Panels (a) and (c) corresponds to pre-treatment, (b) and (d) to post-treatment
of simvastatin.
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Figure 3.13: NMF analysis results with 13 each of the highest and lowest responder samples.
(a) Reordered consensus matrices, C̄HC , averaging 1000 connectivity matrices computed at
k = 2 − 5. (b) Cophenetic correlation coefficients computed at k = 2 − 5. (c) A heatmap
showing the gene expression levels of the 99 signature genes between the high (H) and low
(L) responders to the statin treatment. Samples from the mild (M) responders are added on
top for comparison.



67

k = 2 k = 3 k = 4 k = 5 (a) 

(b) 

(c) 

0.
80

0.
90

1.
00

Rank, k

C
op

he
ne

tic
 c

or
re

la
tio

n

2 3 4 5

26 31 16 15 14 13 12 10 8 7 5 4 3 1 2 32 30 29 28 27 25 24 23 22 21 20 19 18 17 11 6 9

26
31
16
15
14
13
12
10
8
7
5
4
3
1
2
32
30
29
28
27
25
24
23
22
21
20
19
18
17
11
6
9

0 0.4 1
Value

0
40
0

Color Key
and Histogram

C
ou
nt

5 3 4 1 14 8 12 13 23 25 10 2 15 16 31 7 26 30 19 6 22 24 28 11 20 29 18 27 32 21 9 17

5
3
4
1
14
8
12
13
23
25
10
2
15
16
31
7
26
30
19
6
22
24
28
11
20
29
18
27
32
21
9
17

0 0.4 1
Value

0
30
0

Color Key
and Histogram

C
ou
nt

19 6 11 9 22 30 32 21 17 29 27 18 24 28 20 14 4 1 8 12 5 13 3 2 10 15 26 25 23 16 31 7

19
6
11
9
22
30
32
21
17
29
27
18
24
28
20
14
4
1
8
12
5
13
3
2
10
15
26
25
23
16
31
7

0 0.4 1
Value

0
40
0

Color Key
and Histogram

C
ou
nt

11 6 9 21 17 22 30 32 29 27 24 18 28 20 25 26 23 2 16 7 31 14 19 1 13 3 4 15 10 5 12 8

11
6
9
21
17
22
30
32
29
27
24
18
28
20
25
26
23
2
16
7
31
14
19
1
13
3
4
15
10
5
12
8

0 0.4 1
Value

0
40
0

Color Key
and Histogram

C
ou
nt

Genes

Sa
m
pl
es

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

C1
or
f2
18

LR
BA

NU
DT

4P
1

SL
C2

4A
1

CL
K4

FB
XO

16
SE

TB
P1

ZN
F1
97

CY
or
f1
5A

CY
or
f1
5B

BR
SK

1
G
PB

P1
KI
AA

14
07

NP
AT

B4
G
AL
T4

EX
PH

5
M
AS

TL
ZN

F3
98

AG
PA
T4

AN
G
EL
2

CD
RT

4
NE

TO
2

PP
M
1B

W
AS

L
AD

AT
1

CX
CL

9
FR

M
D6

NE
K7

SU
Z1
2

UB
E2
CB

P
US

P3
ZN

F1
67

G
RP

EL
2

NA
B1

PH
IP

RR
AG

D
ZN

F4
17

AS
CC

3
CC

DC
41

DN
AJ
C1

4
G
ST

T2
LO

C6
39
20

M
AS

T2
RA

P1
B

SE
C1

6A
TT
C1

3
TU

FT
1

AB
CA

9
KI
AA

13
33

LL
G
L1

M
CL

1
PI
TP

NC
1

UH
RF

2
AL
PP

L2
D4

S2
34
E

EI
F1
AY

HI
ST

1H
2B
G

HI
ST

1H
4H

RN
AS

EH
2A

SD
PR

NC
F4

ND
UF

B7
C9

or
f2
1

HI
G
D2

A
HI
ST

1H
2B
K

LO
C3

91
35
6

SY
NG

R1
TS

PA
N1

TT
C9

C
EI
F4
E2

EX
O
SC

7
G
PX

4
LT
B

SE
DL

P
SY

TL
2

CY
P2
W
1

PO
LD

4
FS

D1
CL

KL
F1
1

LO
C3

89
81
6

LR
RC

26
AI
F1 F1
2

FB
XL
16

G
ST

P1
HI
ST

1H
1C

HI
ST

1H
2A
E

IS
YN

A1
LY
PL
AL
1

M
BP

CE
TP

CY
B5
A

ZN
F6
95

B3
G
AL
NT

1
FA
M
13
4B LC
K

PR
AM

EF
5

TM
EM

18
6

TS
PA
N4

C1
2o
rf5
7

HI
ST

3H
2A

M
RP

S2
4

PT
RF

RN
F1
25

SE
C6

1G

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.14: NMF analysis results with 16 each of the highest and lowest responder samples.
(a) Reordered consensus matrices, C̄HC , averaging 1000 connectivity matrices computed at
k = 2 − 5. (b) Cophenetic correlation coefficients computed at k = 2 − 5. (c) A heatmap
showing the gene expression levels of the 105 signature genes between the high (H) and low
(L) responders to the statin treatment. Samples from the mild (M) responders are added on
top for comparison.
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Figure 3.16: NMF analysis with the three (high, mild, low) responder groups. Cophenetic
correlation coefficients and reordered consensus matrices are shown for (a) 30, (b) 39 and
(c) 48 total number of samples, with a third of the samples taken from each of the three
responder groups. Detailed clustering results are summarized in Table 3.1
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Figure 3.17: Scatter plots of the gene specific scatter s(i) versus the relative difference d(i)
with (a) s0 = 0, (b) s0 from SAM, and (c) the varying s0 values. The corresponding plots of
the coefficients of variation of d(i) are shown next to (b) and (c).
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Figure 3.18: Identification of signature genes differentially expressed between 13 each of the
highest and lowest responders. The signature genes are denoted with red dots. Scatter plots
of the gene specific scatter s(i) versus the relative difference d(i) are generated with (a)(c)
s0 = 0 and (b)(d) the varying s0 values. The null distribution of d(i) is empirically estimated
through random permutations, within either (a)(b) the 26 high and low responders or (c)(d)
all 372 population samples.
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Figure 3.19: Boxplots comparing the amount of HMGCR enzymatic activity change between
the (a) top 13, (b) top 20 and (c) top 50 high and low responder groups. The number of the
high (H) and low (L) samples used to generate each boxplot is designated in the parentheses
right next to H and L letters. For a better comparison, a t-test is performed and the resulting
p-value is displayed at the top of each plot. HMGCR baseline enzymatic activity is also given
at the top.
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Chapter 4

Summary and Concluding Remarks

The genomic revolution has resulted in both the development of techniques for obtain-
ing large quantities of genomic data rapidly and a striking increase in our knowledge on
genomics. At the same time, the genomic revolution also created numerous open questions
and challenges in analyzing the enormous amount of data required to gain insights on the
underlying biological mechanisms.

This dissertation addresses these challenges by answering fundamental questions arising
from two closely related fields, functional genomics and pharmacogenomics, utilizing the
nature and biology of microarray datasets.

In the study on functional genomics (chapter 2), we tried to understand the underlying
biology within pathways, which form the backbone of any biological process, by identifying
functionally related pathway genes. To infer the complicated and higher level pathway gene
interactions, partial correlation method was adopted. Based on this distance measure, a novel
statistical model was built by estimating a precision matrix under appropriate normality
assumptions. In the process of estimation, we also considered the existence of experiment
dependencies in the gene expression data. Finally, likelihood ratio tests were performed to
test the conditional dependencies of a candidate pathway gene. This gives us a list genes
which is believed to be in the same pathway with the given seed genes. We demonstrated that
our approach outperforms other existing methods in uncovering true gene relationships using
both simulation and real gene expression data from the glucosinolate (GSL) and flavonoid
biosynthesis (FB) pathways. In the FB pathway studies especially, we found that our method
can identify genes from neighbouring pathways by considering the indirect relationships
between genes. This finding will find its utility in future studies targeted on discovering
cooperative nature of genes in the pathways.

In the study on pharmacogenomics (chapter 3), genetic variants causing inter-individual
variation in drug response was investigated. Specifically, signature genes which contribute to
the high and low responder variation in statin efficacy were discovered. Using Nonnegative
Matrix Factorization (NMF) analysis, we (i) identified two distinct molecular patterns be-
tween the high and low responder groups and (ii) found the number of samples that produce
the best separation between these groups was 13 each of the highest and lowest responder
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samples. The modified Significance Analysis Microarrays (SAM) method identified 99 signa-
ture genes that had gone undetected by the original SAM method. In the correlation study,
we showed that our signature genes were significantly enriched with HMGCR-correlated
genes; 47 % (p-value = 1.26 × 10−4) and 28 % (p-value = 1.60 × 10−2) of our signature
genes are overlapped with the HMGCR-correlated genes in the untreated and treated gene
expression datasets, respectively. Furthermore, we observed that there is a notable difference
in the amount of HMGCR enzymatic activity change between the high and low responder
groups. The high responder group exhibited a bigger activity decrease than the low respon-
der group, implying that statin inhibits the HMGCR enzymatic activity more efficiently in
the high responder groups. This helps us understand why the high responder group shows
a greater LDLC decrease and higher statin efficacy than the low responder groups. Overall,
the discovered gene signatures are shown to have high biological relevance to the cholesterol
biosynthesis pathway, which HMGCR mainly acts on.

This dissertation contributes to the understanding of biological processes with the aid
of statistical frameworks for handling and analyzing high throughput genomic data. The
proposed statistical methods were shown to perform well under practical applications. We
believe that the proposed methods should be applicable to various other fields with suitable
modifications.
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[92] Anja Wille and Peter Bühlmann. “Low-order conditional independence graphs for
Inferring genetic networks”. In: Statistical Applications in Genetics and Molecular
Biology 5.1 (2006), p. 1.

[93] Anja Wille et al. “Sparse graphical Gaussian modeling of the isoprenoid gene network
in Arabidopsis thaliana”. In: Genome Biology 5 (2004), R92.

[94] Ho-Hyung Woo, Byeong Ryong Jeong, and Martha C. Hawes. “Flavonoids: From cell
cycle regulation to biotechnology”. In: Biotechnology Letters 27.6 (2005), pp. 365–374.

[95] Hao Wu et al. “MAANOVA: A software package for the analysis of spotted cDNA
microarray experiments”. In: The Analysis of Gene Expression Data: Methods and
Software (2003), pp. 313–341.

[96] Min Xu et al. “Automated multidimensional phenotypic profiling using large public
microarray repositories”. In: Proceedings of the National Academy of Sciences 106.30
(2009), pp. 12323–12328.

[97] Xiufeng Yan and Sixue Chen. “Regulation of plant glucosinolate metabolism”. In:
Planta 226.6 (2007), pp. 1343–1352.

[98] Keiko Yonekura-Sakakibaraa et al. “Comprehensive flavonol profiling and transcrip-
tome coexpression analysis leading to decoding gene-metabolite correlations in Ara-
bidopsis”. In: The Plant Cell 20 (2008), pp. 2160–2176.

[99] Ying Zhao and George Karypis. “Empirical and theoretical comparisons of selected
criterion functions for document clustering”. In: Machine Learning 55 (2004), pp. 311–
331.



82

[100] Ying Zhao and George Karypis. “Evaluation of hierarchical clustering algorithms
for document datasets”. In: Proceedings of the Eleventh International Conference on
Information and Knowledge Management (2002), pp. 515–524.




