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Entanglement entropy of Wilson loops:

Holography and matrix models

Simon A. Gentle and Michael Gutperle

Department of Physics and Astronomy

University of California, Los Angeles, CA 90095, USA

sgentle@physics.ucla.edu, gutperle@physics.ucla.edu

Abstract

A half-BPS circular Wilson loop in N = 4 SU(N) supersymmetric Yang-Mills
theory in an arbitrary representation is described by a Gaussian matrix model with a
particular insertion. The additional entanglement entropy of a spherical region in the
presence of such a loop was recently computed by Lewkowycz and Maldacena using
exact matrix model results. In this note we utilize the supergravity solutions that are
dual to such Wilson loops in a representation with order N2 boxes to calculate this
entropy holographically. Employing the matrix model results of Gomis, Matsuura,
Okuda and Trancanelli we express this holographic entanglement entropy in a form
that can be compared with the calculation of Lewkowycz and Maldacena. We find
complete agreement between the matrix model and holographic calculations.
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1 Introduction

In this note we investigate the additional entanglement entropy of a spherical region in

N = 4 supersymmetric Yang-Mills theory in the presence of an insertion of a half-BPS

circular Wilson loop in a general representation of SU(N) from two distinct points of view:

from a matrix model and from gauge/gravity duality.

The expectation value of such a loop in the fundamental representation of SU(N) was

first computed in [1, 2]. A special conformal transformation maps the circle to a straight

line, whilst sending one point to infinity. It is known that the expectation value for the line

is exactly unity and so the non-trivial value for the circular loop must come from the point

at infinity. This was confirmed in [3], wherein it was shown using localization techniques

that the circular loop is described by a Gaussian matrix model for arbitrary representations

of SU(N).

In [4], Lewkowycz and Maldacena related this entanglement entropy to the expectation

value of a circular loop and of the stress tensor in the presence of this loop by mapping

the problem into the calculation of thermal entropy for a finite temperature field theory

on a hyperbolic space [5]. Since both quantities can be calculated through localization by

a matrix model, it is possible to obtain an expression for the entanglement entropy in the

large N , large λ limit in an arbitrary representation.

The holographic description of Wilson loops in Type IIB string theory goes back to [6, 7]

wherein it was shown that the Wilson loop in the fundamental representation is described

by a fundamental string in AdS5 × S5. For larger representations the fundamental string

gets replaced by a probe D-brane. It was shown in [8, 9, 10] that a Wilson loop in the k-th

symmetric (or antisymmetric) representation is described by a D3 (or D5) brane with k units

of electric flux on its world volume.

A general representation is characterized by a Young tableau. If the number of boxes

becomes of order N2 then the probe-brane description breaks down and is replaced by a fully

back-reacted “bubbling” solution. Such solutions were first constructed in [11], building on

the earlier work of [12, 13, 14, 15]. Our first goal in this note is to calculate the entanglement

entropy in the presence of a half-BPS circular Wilson loop by applying the Ryu-Takayanagi

prescription [16, 17] to these static Type IIB supergravity solutions.

This holographic entanglement entropy can then be expressed in a form that makes

comparison with the matrix model calculation possible. We show that in the saddle-point

approximation of the matrix model, and at large λ, the two calculations agree. In our opinion

this agreement is non-trivial since the two ways to calculate the entanglement entropy look

very different from the outset. One can interpret this agreement as a non-trivial check of
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the calculation of [4], or alternatively as further confirmation of the map proposed in [18]

between the supergravity solutions and the matrix model description of the circular Wilson

loop.

Before moving forward, let us clarify the geometry of our setup. We are always interested

in the circular Wilson loop. The entanglement entropy of the half-space that is intersected

once by a circular loop is conformally equivalent to a straight line threading a spherical

region with the point at infinity included. We will find it more convenient to work with the

latter setup when we compute the entanglement entropy holographically.

This note is organized as follows. In section 2 we review the matrix model description of

our Wilson loop and state the formula given by Lewkowycz and Maldacena for the entan-

glement entropy. In section 3 we review the supergravity solutions dual to half-BPS Wilson

loops constructed in [11] and their relation to the matrix model data. In section 4 we calcu-

late the entanglement entropy holographically and express it in a form that can be compared

with the matrix model results. Careful attention is paid to the regularization of the resulting

integrals. In section 5 the matrix model and holographic calculations are compared and it

is shown that if the matrix model saddle-point equations are satisfied then the two expres-

sions agree. We close with a brief discussion of our results in 6. Some calculational details

regarding the regularization and holographic map of cut-offs are given in appendix A. The

proof of the equivalence between the matrix model and holographic entanglement entropy is

provided in appendix B.

2 Half-BPS Wilson loops and matrix models

The expectation value of a half-BPS circular Wilson loop in N = 4 SU(N) supersymmetric

Yang-Mills theory is described by a Gaussian matrix model. This exact result was demon-

strated in [3] using localization techniques. In particular,

〈WR〉 =
1

Z

∫
[dM ] trR e

M ′
exp

(
−2N

λ
trM2

)
(2.1)

where M is an N ×N Hermitian matrix, M ′ ≡M − 1
N

(trM)1N×N is its trace-removed form

and R is the representation of SU(N). In this note we focus on large representations for

which the number of boxes in each row or column of the corresponding Young tableau is of

order N .

One can evaluate 〈WR〉 using saddle-point methods. To leading order in the saddle-point

approximation, i.e. at large N with λ held fixed, the normalized expectation value of the

Wilson loop satisfies

log 〈WR〉 = − (Smat − S0) (2.2)
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where Smat and S0 denote the on-shell effective action of the Gaussian matrix model with

and without the insertion of the Wilson loop, respectively. At large λ it was shown in [18]

that the effective action can be written as follows:

− Smat = N

g+1∑
I=1

∫
CI
dx ρ(x)

(
−2N

λ
x2 + K̂I x

)
+N2

∫
C×C

dx dy ρ(x) ρ(y) log |x− y| (2.3)

Let us define the terms in this equation. The matrix M is decomposed into g + 1 blocks

of size nI × nI . For large N , the eigenvalues of M form a continuous distribution ρ(x) over

g + 1 intervals CI . The Ith interval contains a fraction nI/N of the eigenvalues and C is the

union of these intervals. The interactions between the eigenvalues on the intervals simplify

at large λ to the logarithmic repulsion term shown. The Young tableau of interest consists

of g blocks and the Ith block has nI rows of length KI . We define K̂I ≡ KI − |R|/N , where

|R| is the total number of boxes.1 We also note that Kg+1 = 0 and the following relations:

nI
N

=

∫
CI
dx ρ(x) and

∑
I

∫
CI
dx ρ(x) =

∫
C
dx ρ(x) = 1 (2.4)

The eigenvalue distribution ρ(x) satisfies the continuum version of the saddle-point equa-

tion:

− 4x+
λ

N
K̂I + 2P

∫
C
dy

ρ(y)

x− y = 0 for x ∈ CI (2.5)

This is a set of singular integral equations that can be solved by introducing the resolvent

ω(z), which takes the following form in the large N limit:

ω(z) = λ

∫
C
dx

ρ(x)

z − x (2.6)

As a function of the spectral parameter z, this is analytic on the whole complex plane except

on the intervals CI , where it has a discontinuity as one crosses each interval. We can re-write

(2.5) in terms of these discontinuities as

− 4x+
λ

N
K̂I + ω+(x) + ω−(x) = 0 for x ∈ CI (2.7)

where ω±(x) ≡ ω(x± iε).
The action in the absence of the loop is given by (2.3) for a single interval (i.e. g = 0),

in which case the eigenvalues are distributed according to the Wigner semicircle rule:

S0 = N2
(
− log

√
λ+ log 2 + 3/4

)
(2.8)

ρ(0)(x) =
2

πλ

√
λ− x2 for x ∈

[
−
√
λ,
√
λ
]

(2.9)

1The parameters KI and K̂I are associated with U(N) and SU(N) gauge groups, respectively [18].
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A useful result for a single interval that we shall need later on is∫
C×C

dx dy ρ(x) ρ(y) log |x− y| = log
√
λ− log 2− 1

4
(2.10)

Next we review the calculation of Lewkowycz and Maldacena [4]. The quantity of interest

is the entanglement entropy relative to the vacuum of a spherical region of radius R threaded

by a half-BPS circular Wilson loop. They showed that this can be expressed as a sum of the

expectation value of this loop and the one-point function of the stress tensor in the presence

of this loop. The latter is fixed by conformal symmetry up to an overall coefficient hW known

as the scaling weight of the Wilson loop. Their formula is

∆SA = log 〈WR〉+ 8π2hW (2.11)

using the sign convention of [19]. It was shown in [19] that the scaling weight is related to

the difference between the second moment of the matrix model eigenvalue distribution with

the Wilson loop and without, ∆ρ2 ≡ ρ2 − ρ(0)
2 , via

hW = − N2

3π2λ
∆ρ2 (2.12)

where

ρ2 ≡
∫
C
dx ρ(x)x2 and ρ

(0)
2 =

λ

4
(2.13)

In section 5 we will show that our holographic computation of the entanglement entropy

agrees precisely with (2.11).

3 Supergravity description of half-BPS Wilson loops

In this section we review the features of the supergravity solutions that are important for

the present work. Their derivation and more details can be found in [11]. These static

solutions have isometry group SO(2, 1) × SO(3) × SO(5) and preserve 16 out of the total

32 supersymmetries, which are the same symmetries as a half-BPS circular Wilson loop.

The ten-dimensional metric takes the form of a Janus-like ansatz [20] using a fibration of

AdS2 × S2 × S4 over a two-dimensional Riemann surface Σ with boundary ∂Σ. The metric

can be written in the form2

ds2 = f 2
1 ds

2
AdS2

+ f 2
2 ds

2
S2 + f 2

4 ds
2
S4 + 4σ2dΣ2, dΣ2 = |dw|2 (3.1)

2We deviate slightly from the notation in [11] and call a metric function σ instead of ρ to prevent confusion
between the metric functions and the matrix model eigenvalue distribution.

5



where ds2
S2 and ds2

S4 are the metrics on the unit radius two and four sphere, respectively.

The metric on the unit radius Euclidean AdS2 in Poincaré half-plane coordinates is given by

ds2
AdS2

=
dv2 + dτ 2

v2
(3.2)

These half-BPS solutions are characterized by two harmonic functions h1, h2 defined on Σ.

The metric functions are most easily expressed in terms of the following auxiliary quantities:

W = ∂wh1∂w̄h2 + ∂wh2∂w̄h1, V = ∂wh1∂w̄h2 − ∂wh2∂w̄h1

N1 = 2h1h2 ∂wh1∂w̄h1 − h2
1W, N2 = 2h1h2 ∂wh2∂w̄h2 − h2

2W (3.3)

The expressions for the dilaton Φ and the metric functions are then given by

e2Φ = −N2

N1

, σ8 = −W
2N1N2

h4
1h

4
2

f 4
1 = −4eΦh4

1

W

N1

, f 4
2 = 4e−Φh4

2

W

N2

, f 4
4 = 4e−ΦN2

W
(3.4)

For the regular solutions constructed in [11] the Riemann surface Σ is taken to be the lower

half-plane w ∈ C, Imw < 0. The AdS5 × S5 vacuum (i.e. no Wilson loop is present) is

realized as follows:

h1 ∼
√

1− w2 +
√

1− w̄2, h2 ∼ i(w − w̄) (3.5)

Note that in this case the harmonic function h1 satisfies the following boundary conditions on

the real line, which is the boundary of Σ: Neumann boundary conditions inside the interval

Rew ∈ [−1, 1] and vanishing Dirichlet boundary conditions outside this interval.

The general regular solutions are constructed by modifying the boundary conditions for

the harmonic function h1. A genus g solution is characterized by 2g + 2 real numbers

ei ∈ R, i = 1, 2, . . . , 2g; e0 = +∞, e2g+1 = −∞ (3.6)

with the ordering ei > ei+1. The boundary conditions for h1 alternate as follows:

h1|Imw=0 :

{
Neumann, Rew ∈ [e2i, e2i−1]
Dirichlet, Rew ∈ [e2i−1, e2i−2]

(3.7)

For example, the explicit g = 1 solution can be expressed in terms of elliptic integrals. Full

details of this solution, including formulae for the antisymmetric tensor fields, can be found

in [11, 18, 21] but will not be needed in this paper. It was shown in [18] that there is an

exact identification between the data for the supergravity solution encoded in the boundary

conditions (3.7) and the representation R of the circular Wilson loop — see figure 1.
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e1e2e3e4e2g e2g�1 e2g�2 e2g�3

h1 Dirichlet b.c.

h1 Neumann b.c.

n1

n2

ng

ng+1

K1

K2

Kg

Kg+1 = 0

R

Re w

Figure 1: The map between the supergravity data specified in (3.7) and the data of the
representation R of the circular Wilson loop specified by {nI , KI}. The figure is adapted
from [18].

A map between the supergravity solutions and the matrix model quantities was also

found in [18]. The harmonic functions are given in terms of the spectral parameter z and

matrix model resolvent ω(z) via

h1 =
iα′

8gs
[2(z − z̄)− (ω − ω̄)] and h2 =

iα′

4
(z − z̄) (3.8)

Here we identify the spectral parameter z with the coordinate we use on Σ: z ≡ w. It takes

values in the lower half-plane. In the following sections we will exploit this map to show that

the holographic and matrix model calculations give the same results for the entanglement

entropy of our Wilson loop.

4 Holographic calculation of entanglement entropy

The Ryu-Takayanagi prescription [16, 17] states that the entanglement entropy of a spatial

region A is given by the area of a co-dimension two minimal surface M in the bulk that is

anchored on the AdS boundary at ∂A:

SA =
Amin

4G
(10)
N

(4.1)

Since we are dealing with static states of our CFT, this surface lies on a constant time slice.

If this surface is not unique, we choose the one whose area is minimal among all such surfaces
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homologous to A.3

The spacetime of interest is an AdS2×S2×S4 fibration over Σ. We consider a surfaceM
parametrized by integrating over the S2, S4 and Σ and choosing the spatial AdS2 coordinate

in (3.2) to depend on Σ, i.e. v = v(z, z̄). The area functional becomes

A(M) = 2 Vol(S2) Vol(S4)

∫
d2z f 2

2 f
4
4 σ

2

√
1 +

f 2
1

v2σ2

∂v

∂z

∂v

∂z̄
(4.2)

Following [23, 24] it is easy to see that the minimal area surface is given by setting v(z, z̄)

to a constant, since the second term under the square root in (4.2) is always positive and

vanishes only for constant v. We will show in appendix A that the choice v = R in this

AdS2 slicing corresponds at the boundary to our desired region A: a sphere of radius R in

Poincaré slicing.

The minimal area is therefore

Amin = 2 Vol(S2) Vol(S4)

∫
d2z f 2

2 f
4
4 σ

2

= −29π3

3

∫
d2z

{
2h2

2 ∂zh1∂z̄h1 − h1h2 (∂zh1∂z̄h2 + ∂z̄h1∂zh2)
}

(4.3)

where we used (3.3) and (3.4) to express Amin in terms of the harmonic functions h1,2.

For the g = 1 solution the entanglement entropy can in principle be evaluated by substi-

tuting the explicit expressions given in [11] for the harmonic functions and performing the

integrals. Since our goal is to compare the holographic entanglement entropy to the matrix

model calculation for arbitrary g, we instead use (3.8) to rewrite the area of the minimal

surface in terms of the matrix model resolvent ω(z):

Amin = −π
3α′4

6g2
s

∫
d2z

{
2(z − z̄)2(∂zω + ∂z̄ω̄)− 4(z − z̄)(ω − ω̄)

−2(z − z̄)2∂zω ∂z̄ω̄ + (z − z̄)(ω − ω̄)(∂zω + ∂z̄ω̄)
}

(4.4)

Note that we have dropped the ∂zω̄ and ∂z̄ω terms from (4.4): these are proportional to

delta functions δ(z − x, z̄ − x), which integrate to zero against the (z − z̄) factors because x

in (2.6) is real.

We rewrite the expression for Amin by inserting the spectral representation (2.6) and per-

forming the integration over z after exchanging the order of integration. Since the integrals

are divergent one has to take care with the regularization. The details of this calculation are

presented in appendix A and the final result for the holographic entanglement entropy is

SA = N2

[
R2

ε2
− log

R

ε
− log

√
λ+

3

4
− 2ρ2

3λ
+

∫
C×C

dx dy ρ(x) ρ(y) log |x− y|
]

(4.5)

3This minimal surface prescription was recently established on a firm footing by the analysis of [22].
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where R is the radius of the spherical entangling region and ε is the UV cut-off defined in

the Fefferman-Graham chart near the AdS boundary.

This is the result for a general number of intervals, describing a Wilson loop in a general

representation R. The same expression for a single interval gives the area of the minimal

surface in AdS5 × S5. Thus, the result for the entanglement entropy of the vacuum is

S
(0)
A = N2

[
R2

ε2
− log

2R

ε
+

1

3

]
(4.6)

where we used (2.10) and ρ
(0)
2 = λ/4. The logarithmic term is universal and has coefficient

N2 as required.

The additional entanglement entropy due to the Wilson loop is found by subtracting the

above two results:

∆SA = N2

[∫
C×C

dx dy ρ(x) ρ(y) log |x− y| − 2∆ρ2

3λ
−
(

log
√
λ− log 2− 1

4

)]
(4.7)

5 Comparison

Now we are ready to compare the holographic calculation with the matrix model result

(2.11). Using (2.2), (2.3) and (2.8) we can write

log 〈WR〉 = N

g+1∑
I=1

∫
CI
dx ρ(x)

(
−2N

λ
x2 + K̂I x

)
+N2

∫
C×C

dx dy ρ(x) ρ(y) log |x− y|

+N2

(
− log

√
λ+ log 2 +

3

4

)
(5.1)

Adding this to the expression for the scaling weight hW in (2.12) we find that our result for

∆SA in (4.7) appears, along with two additional terms:

log 〈WR〉+ 8π2hW = ∆SA −
4N2

λ
∆ρ2 +N

∑
I

∫
CI

dx ρ(x) K̂I x (5.2)

In appendix B we show that the last two terms on the right hand side of (5.2) sum to zero,

once we impose the saddle-point equation (2.7). Consequently we find complete agreement

between the holographic calculation and the Lewkowycz and Maldacena result.

6 Discussion

In this note we provided a proof of the agreement between two methods to calculate the

entanglement entropy in the presence of a half-BPS circular Wilson loop: the replica method

of Lewkowycz and Maldacena and the (suitably-modified) holographic prescription of Ryu
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and Takayanagi. An essential ingredient in our proof was the matrix model description

of the expectation value of this Wilson loop (and related moments) in the saddle-point

approximation.

The original prescription for the calculation of holographic entanglement entropy consid-

ered the area of minimal surfaces in AdS spaces. Here we generalized this prescription due to

the fact that the spacetime is a fibration of AdS2×S2×S4 over a Riemann surface Σ. Specif-

ically, our prescription takes the minimal surface to span the spheres as well as the Riemann

surface Σ. Note that the same prescription has been used in related holographic calculations

of the boundary entropy of BPS interface solutions [25], which are constructed using similar

fibrations [26, 27]. It was shown in [25] that the holographic boundary entropy agreed with

the CFT results [28]. In our opinion, the new example of a highly non-trivial agreement

found in the present note further strengthens the case that the generalized prescription is

correct.

As mentioned in section 1, we could equally well have choosen global coordinates (i.e.

the hyperbolic disk) in (3.2) and found the same minimal surface. The UV cut-off is blind

to this difference because the coordinate transformation between Poincaré and global AdS2

does not involve the five-dimensional radial coordinate. Consequently the result for ∆SA

would not be modified.

Lewkowycz and Maldacena also calculated the entanglement entropy for the Wilson loop

insertion in the three-dimensional N = 6 supersymmetric Chern-Simons matter (ABJM)

theory in [4]. Unfortunately, we cannot conduct a similar consistency check for this case

because the supergravity solutions analogous to the Wilson loop solution of [11] are not

known. It would be interesting to see if such solutions can be developed using the methods

of [29].
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A Integrals and regularization

In this appendix we carefully discuss the regularization and evaluation of the integrals that

make up the area of the minimal surface (4.4). For clarity we split the integrals into two

terms and evaluate them separately:

I1 ≡
∫
d2z

{
2(z − z̄)2(∂zω + ∂z̄ω̄)− 4(z − z̄)(ω − ω̄)

}
(A.1)

I2 ≡
∫
d2z

{
−2(z − z̄)2∂zω ∂z̄ω̄ + (z − z̄)(ω − ω̄)(∂zω + ∂z̄ω̄)

}
(A.2)

To evaluate these integrals we insert the spectral representation (2.6) for the resolvents ω

and perform the integrals over z first.

First consider I1, which is linear in ρ. Working in the Cartesian coordinates z = x + i y

we obtain

I1 = −64λ

∫
C
dx1 ρ(x1)

∫ ∞
−∞

dx

∫ 0

−∞
dy

y4

((x− x1)2 + y2)2
(A.3)

This integral is quadratically divergent at large y. Superficially it appears that one can

remove x1 from I1 by a shift in the integration variable. However, as is well known from

the evaluation of Feynman diagrams, such arguments fail for integrals that have power law

divergences.

To see this, we work in polar coordinates z =
√
λ r e−iφ instead. The factor of

√
λ

will enable a cleaner identification of the Fefferman-Graham cut-off — see the end of this

appendix. We obtain

I1 = −64λ4

∫
C
dx1 ρ(x1)

∫ ∞
0

dr

∫ π

0

dφ
r5 sin4 φ

(r2λ− 2rx1

√
λ cosφ+ x2

1)2
(A.4)

Note that the integral is quadratically divergent at large r. To regularize this divergence we

cut off the radial integration at some large rc. The angular integral can be performed and

we find ∫ π

0

dφ
r5 sin4 φ

(r2λ− 2rx1

√
λ cosφ+ x2

1)2
=

{
3πr
8λ2
, r > |x1|√

λ
3πr5

8x41
, r < |x1|√

λ

(A.5)

Performing the regulated integral over r we obtain

I1 = −64λ4

∫
C
dx1 ρ(x1)

[
3π

8

(∫ rc

|x1|√
λ

dr
r

λ2
+

∫ |x1|√
λ

0

dr
r5

x4
1

)]
= 12πλ2

(
2ρ2

3λ
− r2

c

)
(A.6)

where we used ∫
C
dx ρ(x) = 1 and ρ2 =

∫
C
dx ρ(x)x2 (A.7)
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Note that in addition to the quadratically divergent piece, proportional to r2
c , there is also a

finite piece.

The integral in (A.2) is quadratic in ρ and can be expressed as

I2 = −λ
2

2

∫
C
dx1 ρ(x1)

∫
C
dx2 ρ(x2)

×
∫
d2z (z − z̄)4 (x1 − x2)2 − (z − x1)(z̄ − x2)− (z̄ − x1)(z − x2)

|z − x1|4|z − x2|4
(A.8)

where we have symmetrized appropriately. Note that the integral over z is logarithmically

divergent instead of quadratically divergent. It is therefore possible to shift the integration

variable as z = x1 +
√
λ r e−iφ such that the integral will only depend on ∆x = x1−x2. After

this shift we find

I2 = 16λ3

∫
C
dx1 ρ(x1)

∫
C
dx2 ρ(x2)

×
∫ rc

0

dr

∫ π

0

dφ r
2r2λ+ 2r∆x

√
λ cosφ−∆x2

(r2λ+ 2r∆x
√
λ cosφ+ ∆x2)2

sin4 φ (A.9)

Using∫ π

0

dφ r
2r2λ+ 2r∆x

√
λ cosφ−∆x2

(r2λ+ 2r∆x
√
λ cosφ+ ∆x2)2

sin4 φ =

{
3π
4λr
− 7π∆x2

8λ2r3
, r > |∆x|√

λ
πλr3

4∆x4
− 3πr

8∆x2
, r < |∆x|√

λ

(A.10)

and dropping terms that tend to zero as rc →∞, the regulated integral (A.9) becomes

I2 = 12πλ2

(
log rc −

3

4
+ log

√
λ−

∫
C×C

dx1 dx2 ρ(x1) ρ(x2) log |∆x|
)

(A.11)

Next we substitute the results (A.6) and (A.11) into (4.4) in order to evaluate the holo-

graphic entanglement entropy:

SA =
Amin

4G
(10)
N

=

(
−π

3α′4

6g2
s

)
1

25π6α′4
(12π)(4πgsN)2

[
2ρ2

3λ
− r2

c + log rc −
3

4
+ log

√
λ

−
∫
C×C

dx dy ρ(x) ρ(y) log |x− y|
]

= N2

[
r2
c − log rc − log

√
λ+

3

4
− 2ρ2

3λ
+

∫
C×C

dx dy ρ(x) ρ(y) log |x− y|
]

(A.12)

where we used 4G
(10)
N = 1

4π
(2π)7α′4 and also λ = 4πgsN where appropriate.

We still need to show how the radial cut-off rc is related to the UV cut-off. At large r,

any bubbling geometry of the form (3.1) asymptotes to AdS5 × S5:

ds2 = L2

{
dr2

r2
+ r2

(
ds2

AdS2
+ ds2

S2

)
+ dφ2 + sin2 φ ds2

S4

}
(A.13)

12



with the AdS2 metric given in (3.2).4 Any asymptotically AdS metric may be written as a

Fefferman-Graham expansion, at least locally, in the asymptotically AdS region. We write

this as a power series in u about u = 0, which for us takes the form

ds2 = L2

{
1

u2

(
du2 + dτ 2 + dy2 + y2ds2

S2

)
+ dχ2 + sin2 χds2

S4

}
(A.14)

plus subleading corrections. Comparing (A.13) and (A.14), at leading order we identify

u

v
=

1

r
, y = v, χ = φ (A.15)

Therefore, the large-r cut-off is related to the UV cut-off u = ε on the minimal surface v = R

near the boundary via

rc =
R

ε
(A.16)

Substituting this result into (A.12) we arrive at the final answer (4.5) for the entanglement

entropy.

It is straightforward to show how the surface v = R in AdS2 slicing ends on a sphere of

radius R at the boundary in Poincaré slicing. Near the boundary we have the map (A.15)

between the two slicings. It is well known (see [16, 17], for example) that the equation for a

minimal surface anchored on a boundary sphere of radius R in Poincaré slicing (A.14) is

u(y)2 + y2 = R2 (A.17)

Close to the boundary, the first term goes to zero and y → v. Thus we find v = R, as

required.

B Proof of equivalence

In this appendix we give the details of the proof that the matrix model and holographic

entanglement entropies are equal. The relation we have to prove is

− 4

λ
∆ρ2 +

1

N

∑
I

∫
CI

dx ρ(x) K̂I x = 0 (B.1)

First we substitute for ∆ρ2 using (2.13) and deduce that the left-hand side of this relation

can be written

LHS = 1 +
∑
I

∫
CI

dx ρ(x)x

(
−4

λ
x+

1

N
K̂I

)
(B.2)

4To see this, substitute z =
√
λ r e−iφ and the g = 0 resolvent into (3.8) and construct the metric.

13



Next we impose the saddle-point equations (2.7) and find

LHS = 1−
∫ ∞
−∞

dx ρ(x)x
ω+(x) + ω−(x)

λ
(B.3)

We are able to extend the integration range to the real line since ρ(x) vanishes outside the

intervals CI . Following the conventions of [18], the eigenvalue density can be expressed in

terms of the resolvents ω±(x) = ω(x± iε) as

ρ(x) =
i

2πλ
(ω+(x)− ω−(x)) (B.4)

and hence (B.3) can be written as

LHS = 1 +
1

2πi

1

λ2

∫ ∞
−∞

dx x
(
ω2

+(x)− ω2
−(x)

)
(B.5)

Now we employ the integral representation of ω(z) given in (2.6) to find

LHS = 1 +
1

2πi

∫ ∞
−∞

dx x

∫
C
dx1

∫
C
dx2

(
ρ(x1)

x− x1 + iε

ρ(x2)

x− x2 + iε

− ρ(x1)

x− x1 − iε
ρ(x2)

x− x2 − iε

)
(B.6)

First we exchange the order of integration. The relevant integral over x can be performed

using the residue theorem and we find∫ ∞
−∞

dx x

(
1

x− x1 + iε

1

x− x2 + iε
− 1

x− x1 − iε
1

x− x2 − iε

)
= −2πi (B.7)

Then we are simply left with

LHS = 1−
∫
C
dx1ρ(x1)

∫
C
dx2ρ(x2) (B.8)

which vanishes since the eigenvalue density is normalized to unity.

In conclusion, we have shown that (B.1) holds and thus the two expressions for the

entanglement entropy are equal.
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