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Abstract

Purpose of Review—We offer an in-depth discussion of the time-varying confounding and 

selection bias mechanisms that give rise to the healthy worker survivor effect (HWSE).

Recent Findings—In this update of an earlier review, we distinguish between the mechanisms 

collectively known as the HWSE and the statistical bias that can result. This discussion highlights 

the importance of identifying both the target parameter and the target population for any research 

question in occupational epidemiology. Target parameters can correspond to hypothetical 

workplace interventions; we explore whether these target parameters’ true values reflect the 

etiologic effect of an exposure on an outcome or the potential impact of enforcing an exposure 

limit in a more realistic setting. If a cohort includes workers hired before the start of follow-up, 

HWSE mechanisms can limit the transportability of the estimates to other target populations.

Summary—We summarize recent publications that applied g-methods to control for the HWSE, 

focusing on their target parameters, target populations, and hypothetical interventions.

Keywords

Healthy Worker Survivor Bias; Occupational Epidemiology; G-Methods; Time-Varying 
Confounding; Selection Bias

Introduction

Determination of exposure limits to protect workers’ health requires accurate estimates of 

the risks of occupational exposures. Assessments of workplace risk are generally based 
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directly on observational studies of occupational cohorts [1]. Estimates from these studies, 

however, are often subject to bias due to the Healthy Worker Survivor Effect (HWSE), a 

ubiquitous process that results in the healthiest workers accruing the most exposure over 

their lifetimes [2–7]. It is therefore critical to attempt to control for the potential downward 

bias caused by the HWSE [1,8].

The HWSE can be conceptualized as bias due to either time-varying confounding or a 

selection process [5,7,9–11]. In a previous review, Buckley et al. detail recent applications of 

analytical approaches that control for the HWSE [8]. To emphasize the resultant loss of 

study validity, Buckley refers to the phenomenon as Healthy Worker Survivor Bias. In the 

epidemiologic literature, bias is used to refer to the mechanisms that cause results to deviate 

from the truth [12,13]. However, we want to preserve the distinction between the 

mechanisms we refer to collectively as the Healthy Worker Survivor Effect, and the 

statistical bias that it often causes, for which we will reserve the terminology Healthy 

Worker Survivor Bias. These two ideas are discussed in more detail below.

In this paper, we expand on Buckley’s review by discussing the mechanisms that give rise to 

the bias in more depth [8]. We highlight the role that identification of both target parameters 

and target populations plays in allowing occupational epidemiologists to estimate unbiased 

exposure effects from cohorts affected by the HWSE mechanism. We then review recent 

applied papers published since Buckley’s review (Table 1) that attempt to remove Healthy 

Worker Survivor Bias, focusing on their target parameters and populations [14–22].

Target Parameters

Epidemiologic studies try to answer questions about the relationship between an exposure 

and a health outcome in a population. Target parameters provide answers to those questions; 

they summarize the relationship of interest with a single number, or a series of numbers [23]. 

Familiar target parameters include standardized mortality ratios, odds ratios, hazard ratios, 

and regression slopes.

The directed acyclic graph (DAG) presented in Figure 1a describes the data generating 

process for a simplified occupational cohort study with two time points. Researchers use this 

study design to estimate the effect that long term workplace exposure has on an adverse 

health outcome, with the ultimate goal of evaluating limits to mitigate lifetime risk in the 

workforce [9,11,13,24]. Measured variables for these data are: exposure assessed at the two 

time points (A1 and A2), time-varying health status measured at the end of time point 1 (H), 

and an outcome measured at the end of time point 2 (Y). There also are unmeasured shared 

predictors (U) of underlying health status and the outcome, representing differences in 

susceptibility or other risk factors within the population.

There are two direct pathways by which exposure causes the outcome: A1 → Y and A2 

→Y. There are also two indirect pathways by which exposure causally affects the outcome: 

A1 → H → Y and A1 → H → A2 → Y. We represent the pathways in the DAG that 

constitute the Healthy Worker Survivor Effect mechanism using hollow arrows.
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One of the basic processes by which the Healthy Worker Survivor Bias perpetuates itself is 

via the arrow between H and A2. Workers in poorer health tend to accrue less exposure, 

whether by reducing the amount of time that they work, by switching to lower exposed jobs, 

or by leaving the workforce entirely. The workers who tend to survive in the active 

workforce and to accrue the most exposure, conversely, are the healthiest ones. The variable 

H acts as a time-varying confounder on the causal pathway: it both contains a portion of the 

effect of past exposure (A1 → H → Y) and acts as a confounder of the future exposure-

response relationship (A2 ← H → Y). Estimation of unbiased causal effects of exposure 

from data structures including these pathways requires the use of a class of modern 

statistical estimation approaches known collectively as g-methods [25–28].

Researchers can apply most g-methods with standard software using the traditional tools of 

epidemiologic research: standardization, weighting, and regression. Each of the g-methods 

(including inverse probability weighted estimation of marginal structural models, g-

computation, targeted maximum likelihood based estimation (TMLE), and g-estimation of 

structural nested models) can be applied to estimate different target parameters. These 

parameters are often defined using the language of interventions to articulate questions that, 

if answered, capture the causal relationship between exposure and outcome. Target 

parameters for these methods are structured as answers to questions about disease 

occurrence under counterfactual scenarios. They estimate the outcome(s) in a target 

population if the specified intervention(s) had been imposed. The ability of researchers to 

estimate these parameters from their observed data relies on the key assumptions of 

consistency, conditional exchangeability, and positivity [11,29].

Consider two possible interventions on the system described in Figure 1a. In each 

intervention, all workers experience the same fixed level of exposure: in the first, exposure is 

always high, and in the second, exposure is always low. If these two interventions were 

implemented, health status would not act as a time-varying confounder in the resulting data. 

Workers who in reality would tend to transfer to jobs with more or less exposure as a 

function of this health status would instead remain at their original exposure level for the 

entire study period. The effect of exposure could be inferred from the comparison of the 

outcomes experienced by the same worker cohort under each intervention. By defining these 

structural parameters with reference to an intervention of interest, epidemiologists can 

identify questions that isolate the causal effect of the exposure under study [30]. To be clear, 

some of these interventions are not intended to be implemented; they are clearly infeasible 

due to both practical and ethical considerations. Rather they are chosen because, if they were 

to be implemented, their resulting data would provide an easily interpretable way to estimate 

the causal effect of the exposures under study.

By contrast, target parameters from traditional approaches, such as Standardized Mortality 

Ratios or Cox proportional hazards, evaluate risk by comparing observed groups who 

actually experienced different exposure histories [11,13]. The risk among the highest 

exposed subset is evaluated among a select group of the healthiest and most robust workers. 

It is no surprise, therefore, that these estimands underestimate the risk for the entire 

population.
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We define bias as an expected difference between an estimand ( ) and the true value of its 

target (ξ0). For an unbiased estimand, the two values are equivalent ( =ξ0). 

Counterintuitively, some estimation targets (i.e. some ξ0s) are affected by the mechanisms of 

the HWSE. Thus, a parameter can be unbiased, in that =ξ0, even though the value of ξ0 

might depend on the strength of the HWSE mechanisms (for example, the causal 

relationship between H and A2).

We distinguish between two types of causal parameters corresponding to interventions. A 

causal contrast that corresponds to the biologic effect of exposure on an outcome is an 

example of a target parameter whose true value is not affected by the HWSE mechanisms. A 

valid way to evaluate this etiologic effect would be to compare the outcomes of two 

hypothetical interventions, one with high exposure, and one with low exposure, in a working 

population. All workers would remain at work for the duration of both interventions and 

receive their assigned exposure. In an occupational context, the controlled direct effect [31] 

estimated by contrasting the outcomes under these two interventions would represent the 

etiologic effect of exposure.

By contrast, a target parameter corresponding to a more realistic intervention might be 

affected by the HWSE mechanisms. For example, researchers may be interested in 

interventions that reduce occupational exposure limits to specific levels. These interventions 

are typically of the nature ‘if at work then exposure is set at or below the exposure limit’. 

These are dynamic interventions dependent on a subject’s employment status, in contrast to 

static ‘always at work and always exposed’ interventions [32,33]. These realistic 
interventions allow workers to leave work and be unexposed if not at work, as would be 

expected in a real world setting where workers can opt to leave work (the interventions may 

be unrealistic in other ways). The counterfactual outcomes under these realistic interventions 

can be compared to the observed outcome (under the natural course of events), and causal 

parameters such as the risk difference can be obtained. Under such interventions and 

comparisons, the true value of the estimand is affected by the strength of the associations 

denoted by the hollow arrows in the DAG in Figure 1a.

If exposure is an irritant, some workers might leave work earlier under a high exposure 

scenario, become subsequently unexposed, and as a result accumulate less exposure than 

they would have under a low exposure scenario. The higher exposure scenario may then 

result in lower risk for the population than the lower exposure scenario even though 

exposure is harmful. Assessment of such interventions is therefore aimed not necessarily at 

estimating the etiologic effect of exposure on an outcome, but rather at estimating what 

would happen in a realistic or real-world intervention on the target population.

Target Populations

A group of people who all start work on the same day may include workers with varying 

degrees of susceptibility to the health effects of exposure. If workers who are more 

susceptible leave work and/or experience the outcome prior the start of follow-up, then the 

subset of workers who remain eligible for the study at the start of follow-up will have a 

greater proportion of “immune” workers, or survivors, than the population of workers from 
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which they came. If the study population is then defined to include only the workers who 

were still employed at the start of follow-up, the study population consists of all surviving 

workers: those who do not yet have the exposure-related outcome of interest. One could use 

these data to obtain an unbiased estimate of the target parameter for a population of workers 

culled of the susceptible, but the estimate would likely not be generalizable to a population 

of all workers, potentially dampening its utility in guiding health-based exposure limits. If, 

instead, the target population is all workers ever employed in that workplace, then a study 

population of surviving workers may be a biased sample of the target population, and any 

resulting target parameter will suffer from selection bias.

Many occupational cohorts are defined to include a cross-sectional sample of workers 

already employed at the start of follow-up [14–16,18,21,22,34,35]. These workers constitute 

a left-truncated cohort [34,36–39]. The DAG in Figure 1b demonstrates how this choice of 

analytical cohort, in combination with the HWSE mechanisms, can result in bias due to 

selection. The DAG includes a conditioning on active employment at the start of follow-up. 

This defines a cohort based on a cross-sectional sample of the workers who began 

employment prior to the start of follow-up. The variable W, an indicator representing active 

employment, serves as the time-varying confounder on the causal pathway between 

exposure at time 0 and the outcome. The box around W represents the selection criterion for 

entry into the cohort (only workers with W = 1 are included in the study population). This 

conditioning opens up a pathway from previous exposure through the unmeasured 

confounder to the outcome (A0 →W← U → Y) and, without additional assumptions, 

prevents identification of the causal effect of exposure prior to start of follow-up [9]. That is, 

conditioning on a descendent of exposure usually results in selection bias that affects any 

estimates derived from the resultant cohort [10]. In reality, many occupational cohorts 

include those still at work at the beginning of follow-up as well as any workers hired during 

follow-up, and therefore will only be proportionally affected by this mechanism.

We can also view this effect as an instructive example of the concept of transportability, or 

external validity. Bareinboim and Pearl have given transportability a formal definition and 

demonstrated the use of DAGs to identify systems whose measured effects are transportable 

to each other [40]. If we apply this principle to our DAG in Figure 1b, we can see that the 

unblocked pathway between exposure prior to follow-up start (A0) and the outcome prevents 

simple transportability, or generalizability, between the left-truncated cohort and the original 

group of workers from which they were selected. This implies that effect measures estimated 

in the left-truncated cohort will not necessarily be the same as might be observed from the 

original ‘inception’ population. A clear discussion of the target population should 

acknowledge that any cross-sectional cohort may have been subject to a selection process 

that distinguishes it from the original full cohort from which it was sampled.

The question of external validity is fundamental to all epidemiologic research [13,41]. We 

emphasize it here to highlight the fact that the same HWSE structural mechanisms (cf 

Figures 1a and 1b) that cause time-varying confounding can also cause bias due to sample 

selection. Despite the commonalities in their origins, successfully addressing both biases 

requires distinct epidemiologic approaches. In the following sections, we discuss the roles 
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that identification of target parameters and target populations played in addressing potential 

bias due to the HWSE mechanisms in recent published research.

Methods for estimating exposure effects in cohorts with Healthy Worker 

Survivor Effect present

Using recent applications in the literature (summarized in Table 1), we describe several 

different estimation approaches used to address Healthy Worker Survivor Bias and focus on 

how the applications relate to the key ideas of target parameters and target populations 

developed above.

Inverse probability of treatment weighting (IPTW)

IPTW estimation reweights observed data using weights that are inversely proportional to 

the probability that each subject received their observed exposure history, creating a pseudo-

population in which measured confounders no longer predict exposure [42–44]. Exposure 

effects can then be estimated from this re-weighted population using marginal structural 

models that include exposure as the only predictor for the outcome.

In a cohort of actively employed aluminum manufacturing workers, Neophytou et al. 2014 

used marginal structural Cox models to estimate the effect of exposure to particulate matter 

<2.5μm in diameter (PM2.5) on the incidence of ischemic heart disease while still employed, 

adjusting for time-varying confounding by a composite health score [14]. The target 

parameter was the ratio of the average hazard of heart disease during follow-up that would 

have been observed if all workers in the target population were always exposed above the 

PM2.5 cutoff while at work, to the average hazard that would have been observed if all 

workers were always exposed below the cutoff while at work. Results from this analysis 

were protected from potential bias caused by time-varying confounding by the health risk 

score. The analytic cohort was a population of surviving workers and new hires. The results 

are considered unbiased if the target population is defined as this analytic cohort, but may 

have limited transportability to all workers. Results based on the survivor population vs. the 

inception population were explored further in Costello et al., discussed below [19].

G-computation/the parametric g-formula

G-computation, or the parametric g-formula, is an extension of standardization for time-

varying exposures. G-computation allows the estimation of the risk of an outcome as a 

weighted sum (or integral) of the probability of the outcome conditional on its risk factors. 

The parametric g-formula relies on parametric models to predict the probabilities of the 

outcome and all other risk factors.

Keil & Richardson apply the parametric g-formula to estimate the effect of hypothetical 

interventions modifying occupational exposures to arsenic in a cohort of copper smelter 

workers [21]. Cumulative incidences (from age 20 onwards) for respiratory cancers, heart 

disease, and other causes were estimated under each intervention and compared to the 

natural course (observed cumulative incidence). The interventions of interest allowed 

workers to leave work, so the true value of the target parameter was affected by the strength 
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of the relationship between exposure and leaving work and the association between leaving 

work and the outcomes. However, this does not mean that the findings were biased due to 

time-varying confounding by employment status, as the realistic target parameter of interest 

was identifiable from the observed data. Both the analytic population and target population 

included workers hired before start of follow-up. Thus their results may have limited 

generalizability to the population of all workers at this smelter.

Neophytou et al. 2016 use a similar approach to estimate risk of lung cancer under 

interventions modifying occupational exposure to diesel exhaust in a cohort of underground 

non-metal miners [22]. The authors report risk differences and risk ratios comparing each 

intervention to the natural course of each disease, as well as the attributable fraction of lung 

cancer cases for the exposure of interest. The intervention of interest allowed workers to 

leave work, so the true value of the effect being estimated was affected by the strength of the 

relationship between exposure and leaving work, but again, the findings are not affected by 

bias resulting from time-varying confounding by employment status. Start of follow-up in 

the analytic population coincided with dieselization of participating mines, but included 

workers hired before start of follow-up. Although this may be considered as an ‘inception’ 

cohort from the point of view of the exposure of interest, the results may still not be 

transportable to a population of all underground non-metal miners.

Targeted maximum likelihood estimation

Targeted maximum likelihood estimation is a generalized methodology for performing 

causal inference introduced by van der Laan and colleagues [45]. Applied to a longitudinal 

cohort, TMLE uses a sequential estimation process to remove the time-varying confounding 

at each time point, allowing the estimation of intervention-based target parameters [46,47]. 

Each sequential estimation is targeted to the parameter of interest, providing efficient 

estimation and double robustness.

Brown et al. studied the effects of airborne exposure to PM2.5 on the development of 

ischemic heart disease while employed in an active cohort of aluminum workers [18]. They 

estimated the marginal 12-year cumulative incidence of heart disease under different 

exposure interventions. The target parameter compared the incidence that would have been 

observed if all workers had remained at work and were continuously exposed above the 

median PM2.5 compared to what would have been observed if each worker were 

continuously exposed below the median PM2.5 and remained at work. They adjusted for 

potential time-varying confounding of the exposure assignment and employment termination 

processes by the underlying health risk score, hypertension, dyslipidemia, and diabetes. The 

cohort included previously hired workers, thereby limiting the transportability of the results 

to the cohort of all workers ever employed.

G-estimation of structural nested (accelerated failure time) models

Instead of combining exposures over time to compute cumulative exposure and then 

estimating its composite effect on the outcome, g-estimation of a structural nested 

accelerated failure time model removes time-varying confounding by estimating the effect of 

exposure at each time separately, adjusting only for past covariates, and then combining 
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those effects together over time. In this way, the effect estimate is free from confounding by 

measured time-varying covariates [48,49].

This approach assumes that the effect of exposure (if such exposure could occur) would be 

the same after leaving employment as it is during employment: employment status is not an 

effect measure modifier [50]. This allows us to estimate an etiologic effect, and avoid 

considering interventions on employment status. In the papers discussed below, the models 

chosen assume that there is no effect measure modification by any covariate. These 

applications of structural nested accelerated failure time models yield a parameter 

corresponding to the ratio of median survival times comparing what would have happened 

under two counterfactual exposure interventions. The exact nature of the scenarios depends 

on the model and exposure metric. Because this ratio compares two interventions on 

exposure, ignoring employment status, the true value of the target parameter does not 

depend on the observed strength of the relationship between employment status (or other 

variables H) and later exposure. Nevertheless, estimation of this target parameter still 

requires correct adjustment for time-varying covariates.

Keil et al. use this approach to assess effect of occupational exposure to radon on lung 

cancer mortality in a cohort of male uranium miners in Colorado [15]. The authors estimated 

the ratio of median survival times that would have been observed for an increase in 

cumulative exposure equivalent to 100 working level months, assuming the relationship 

between exposure and survival time to be linear. The analysis adjusted for employment 

status as the main time-varying confounder. The analytic population included workers hired 

before study initiation, possibly limiting generalizability of the results to a population of all 

workers in these mines.

The estimate of the primary parameter of an accelerated failure time model has also been 

used to derive estimates of other target parameters. Examples include (a) the hazard ratio 

comparing everyone being exposed for the first 15 years of follow-up to everyone never 

being exposed [15] and (b) the total and/or average number of person-years of life that could 

have been saved in the cohort by enforcing various exposure limits [16,17,20]. These other 

target parameters generally require additional assumptions and depend on other properties of 

the observed data, such as the distribution of survival time or exposure; those listed under (b) 

compare what would have happened under an intervention to what actually happened, and 

are therefore affected by the HWSE mechanisms in the observed data.

Excluding workers hired before start of follow-up

If the target population is all workers, one would ideally study an inception cohort (a group 

of workers followed from their very first day at work) in order to completely eliminate the 

selection bias induced by the HWSE. Such a cohort emulates features of a randomized 

controlled trial where follow-up time, exposure, and eligibility all start at the same time [51–

53]. In some situations, study design or statistical power considerations may prohibit 

analysis of an inception cohort; nevertheless, the inception cohort from which the study 

sample was drawn is often the target population.
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In a recent paper, Costello et al. analyzed data from a cohort of aluminum manufacturing 

workers exposed to PM2.5 and followed for ischemic heart disease while still employed [19]. 

When follow-up started, most workers in the cohort were currently employed; 38% were 

hired after the start of follow-up. Results were presented for the full cohort, for the sub-

cohort hired after the start of follow-up, and for those hired 10 and 25 years prior to start of 

follow-up. Restriction to those hired after the start of follow-up yielded the strongest hazard 

ratios for PM2.5 and heart disease incidence, consistent with reduced selection bias. Results 

suggest that restriction by hire date also reduces the magnitude of the selection bias. Thus, 

even if restriction to an inception cohort is not feasible, partial restriction can help alleviate 

the bias if the target population includes all workers.

Discussion

Due to their common structural origins, time-varying confounding affected by prior 

exposure and the potential for left truncation bias generally co-occur in occupational studies. 

In several of the works we discussed above in the context of one of these issues, both were 

actually addressed to a degree. Picciotto et al. 2015 and 2016 used g-estimation to address 

confounding by both employment status and intermittent time off work; the study population 

was also restricted to create an inception cohort, thus addressing both aspects of the problem 

[17,20]. Similarly, Costello et al. used ITPW to address time-varying confounding affected 

by prior exposure and cohort restriction to address left truncation in the aluminum smelter 

worker sub-cohort in which both processes were operating [19].

There are cases in which the target population is not an inception cohort, but rather includes 

workers hired before the start of follow-up. For example, a reasonable research question 

might be to quantify the impact an intervention would have had if implementation had 

occurred on a particular date and affected all current employees, similar to the interventions 

discussed in Keil & Richardson [21] and Neophytou et al. 2016 [22]. This question concerns 

a realistic workplace intervention that would have impacted both those workers employed 

prior to start of follow-up and those hired afterwards. The transportability of such a 

parameter to other worker populations including future workers, and its utility for guiding 

the development of occupational exposure limits, should be carefully evaluated in future 

research.

There are several steps that researchers can undertake in order to best address concerns 

about bias arising from the HWSE. First, identify the target population and evaluate whether 

it differs from the observed cohort. Determine if an incident cohort is a viable analytical 

sample and if there is any information about workers who left prior to the start of follow-up. 

Second, identify the target parameter, which might correspond to an intervention on 

workers’ exposure and possibly employment status, and choose an analytic approach that 

can estimate that target parameter in the particular dataset available. No single analytic 

approach is sufficient to ensure unbiased estimation in every occupational setting. Each of 

the estimation approaches we discuss above offers the ability to control for the time-varying 

confounding that characterizes the HWSE.
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IPTW estimation is the simplest to implement, and has generally been used when there are 

no concerns about structural non-positivity, such as when all follow-up time occurs among 

employed workers. When follow-up extends past employment termination, g-computation or 

longitudinal TMLE can be used, although the intervention definition should carefully 

consider the role of leaving work. G-estimation also offers the ability to use follow-up time 

after leaving work, but has thus far been applied only with a limited class of models. 

Extensions of any of these estimation approaches to different target parameters should be 

explored more in future research for various target populations. Deciding which to use may 

come down to ease of implementation and the researcher’s willingness to make modeling 

assumptions.

Conclusion

The HWSE has resisted easy classification because of its multifaceted origins. In this review, 

we distinguish between the mechanisms of HWSE and the bias it can cause through 

discussion of target populations and target parameters in the context of recent applications of 

g-methods. We conclude with the hope that more occupational epidemiologists will structure 

their research around these concepts and thereby better estimate the risks associated with 

workplace exposures.
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Figure 1. 
Directed acyclic graphs describing the data generating processes for theoretical occupational 

health cohort studies of exposure (A) on an outcome (Y). The subscripts under A represent 

the time point of the exposure, so A1 is exposure that occurs in the first year of follow-up, 

A2 represents exposure in the second year, and A0 represents exposure that occurs at time 0 

prior to the start of follow-up. U represents an unmeasured covariate affecting either an 

adverse health status (H) or work status (W) and the outcome (Y). Solid arrows represent the 

relevant causal effect of exposure on the outcome unmediated by future exposure, while 

hollow arrows represent pathways that constitute the Healthy Worker Survivor Effect 

mechanisms. a) Displays the time-varying confounding on the causal pathway that occurs 

via adverse health status (H). b) Displays the selection process that occurs when researchers 

condition on work status (W) by choosing a population of active workers for follow-up.
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