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ABSTRACT OF THE THESIS

GoTcha: An Interactive Debugger for GOT-based distributed systems

By

Pritha Dawn

Master of Science in Software Engineering

University of California, Irvine, 2020

Professor Cristina V. Lopes, Irvine, Chair

Debugging distributed systems is difficult. Most of the techniques that have been developed for

debugging such systems use either model checking, or postmortem analysis of logs and traces.

Interactive debugging is a widely-used technique for debugging single threaded applications.

But only a few interactive debuggers for distributed systems are available as the techniques

used for building traditional debuggers for sequential single-threaded programs cannot be

easily transferred to a distributed setting. In this thesis, I look at the topic of designing

interactive debuggers for distributed systems and introduce GoTcha which is an interactive

debugging tool for distributed systems based on the GoT distributed programming model.

GoTcha supports the core features of traditional single-threaded debuggers like step-through

debugging and breakpoints so that users can wield these powerful tools in a distributed

context. I demonstrate the capabilities of GoTcha through a series of usage examples, and

discuss the design and architecture of GoTcha.
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Chapter 1

Introduction

Debugging distributed systems is difficult. The inherent features of distributed systems like

concurrency and distributed state [5] make distributed systems hard to reason about and

the non-determinism introduced in the system due to network delays and system failures

make bugs difficult to reproduce. Traditionally, a wide range of methods are employed to

debug distributed systems; from basic unit-testing and print statements, all the way to more

sophisticated techniques like log analysis [13], record and replay [15] and formal methods like

theorem proving [25] and model checking [27]. However, one technique that is quite popular

for single threaded systems, interactive debugging, is almost never used. This is because

building an interactive debugger for a distributed system is hard and consequently, very few

interactive debuggers for distributed systems exist.

The techniques used for building traditional interactive debuggers for single-threaded programs

cannot be applied to a distributed context due to the absence of a single controller in a

distributed system unlike in a single-machine program. Any interactive debugger needs to

support step-through debugging. To do this, the debugger needs to take control of the flow of

execution so that it is able to pause execution at any point, let the user observe the state at
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that point, and then resume execution from that point. Traditional interactive debuggers

for single-machine systems resolve this problem by using the debug APIs exposed by the

native operating system or the virtual machine (e.g. JVM) - the agent which is in control of

the execution of all the programs inside a machine. In a distributed system where there are

multiple machines running independently and communicating over the network, no single

controller exists which a debugger can use to take control of the execution.

This thesis presents an interactive debugger for a recently proposed distributed programming

model, GoT [3]. GoTcha is an interactive debugger for GoT-based distributed systems.

GoTcha provides all the core features of traditional single-threaded debuggers like step-

through debugging and breakpoints so that the users can wield these powerful tools in a

distributed context. GoTcha lets the user step-through the program, and inspect the new state

and the change in state at each step. GoTcha supports conditional breakpoints. When the

breakpoint predicate becomes True, it stops the application and provides the user with a list

of the operations executed in the system till that point. In addition to these, GoTcha supports

exploratory testing inasmuch it lets the user simulate dropping and delaying messages over

the network.

The rest of the thesis is organised as follows. In chapter 2, I discuss related work. In

chapter 3, I discuss the fundamental goals of an interactive debugger for distributed systems

and examine the role of the underlying distributed programming model in the design of an

interactive debugger. In chapter 4, I introduce the GoT distributed programming model

and in chapter 5, I introduce GoTcha which is an interactive debugging tool for GoT-based

distributed systems, and show how GoTcha achieves the goals identified in chapter 3 through

a series of usage examples. In chapter 6, I discuss the detailed architecture and design of

GoTcha. In chapter 7, I discuss directions for future work.
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Chapter 2

Related Work

Interactive debugging of parallel and distributed systems has been discussed as early as

1981 [21], but the idea has never been fully realized, mainly because it is very hard to do.

The reasons for the difficulty are described by Cheung et al [8] in detail - the problem of

maintaining precise global states, a large state space, interaction among multiple asynchronous

processes, communication limitations and error latency.

However, there are many non interactive tools which can help developers in debugging

distributed applications. A comprehensive survey of the types of methods available can be

found in Beschastnikh et al. [5]. In this survey, existing methods are grouped into seven

categories: testing, model checking, theorem proving, record and replay, tracing, log analysis,

and visualization. Each of these types of tools offers different insights for the developer to

find bugs in the application. Formal methods like model checking and theorem proving can

provide guarantees about the correctness of the system but struggle with scalability. Tools

for record and replay [15, 18, 14], tracing [19, 11], log analysis [13], and visualizers [5], try

to parse the artifacts of execution such as logs, execution stack traces, and data traces to

understand the change of state in a run of the distributed system. Record and replay tools
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place a lot of overhead on the system and suffer from the probe effect [20]. Tracing is used

to track data flow across process and machine boundaries but is less useful for the purpose

of observing state changes in the entire system. Log analysis is light-weight but the sheer

volume of information makes it harder for developers to derive useful information from the

data. Visualizers help users make sense of the logs by building visualizations of the system

execution out of the logs.

Many of these tools share features with interactive debuggers, as they share the common

objective of exposing errors in the system to the developers. For example, tools like ShiViz [5]

provide developers a way to observe the information exchanged in a distributed system by

parsing logs, inferring causal relations between messages in them, and then visualizing them.

Similarly, interactive debuggers for distributed systems would also need to provide a way to

visualize the information being exchanged. Causeway [23] is a message-oriented post-mortem

debugger which attempts to trace message flow across processes so that a user can find the

source of a bug by backtracking across the chain of messages. An interactive debugger would

also need to track message-passing in the system. D3S [18] tool allows programmers to define

predicates that, when matched during execution, parse the execution trace to determine

the source of the state changes. In interactive debugging these predicates are known as

breakpoints and are the fundamental concept in interactive debugging.

Comparatively few interactive debuggers for distributed systems exist as opposed to the

variety of post-mortem tools described above. TotalView [1] and p2d2 [17] are interactive

debugging tools which are basically extensions of traditional debuggers to a distributed system.

As such, the amount of information they display might be overwhelming for a user as the

user needs to keep track of debugging information for multiple processes at a very fine level of

granularity i.e. line of code. Millipede [24] is a multi-level interactive debugger for distributed

systems which attempts to reduce this information overload on a developer debugging a

distributed system containing multiple processes by displaying the debugging information
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to the user at different levels of abstraction ranging from process-level to message-level to

protocol-level. While an important task for a debugger for distributed systems is to filter

out unimportant information, Millipede does not seem to provide a visualization of causal

ordering between events which is helpful for a developer to be able to trace the origin of a

bug.

REME-D [6]is an interactive debugging tool meant specifically for mobile applications

developed using the Ambient-Oriented programming Model(AmOp). AmOp is a variant of

the Actor Model with non-blocking communication and event-loop concurrency. REME-D

has a decentralized design in the sense that the debugger does not attempt to control the

entire application. Only one actor is paused at a time and its state inspected. This approach

is useful in scenarios where a user has some intuition that the fault lies in a particular node.

The user can use the debugger to observe the changes in the state of that node over the

course of the execution. This can become cumbersome when the system has a large number

of heterogeneous nodes and the user has to do several debugging sessions - one session per

node.

Recently, a graphical interactive debugger for distributed systems called Oddity [26] was

presented. Using Oddity, programmers can observe communication in distributed systems.

They can perturb these communications, exploring conditions of failure, reorder messages,

duplicate messages etc. Oddity also supports the ability to explore several branching

executions without restarting the application. Oddity highlights communication. Events

are communicated, and consumed at the control of the programmer via a central Oddity

component. However, the tool does not seem to capture the change of state within the node,

it only captures the communication. Without exposing the change of state within the node

due to these communications, the picture is incomplete. With this tool, we can observe if the

wrong messages are being sent, but we cannot observe if a correct message is processed at a

node in the wrong way.
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Chapter 3

Designing an Interactive Debugger for

Distributed Systems

In this section, we discuss the design of an interactive debugger for distributed systems at

a high level. To design any system, we need to identify the requirements first. For that

reason, we discuss the high-level goals of an interactive debugger first and show that the

underlying distributed system model determines how an interactive debugger needs to be

designed to achieve these goals. We identify features of distributed system models which

facilitate interactive debugging and conclude with a discussion on the design of an interactive

debugger for few widely-used models, considering these features.

3.1 Goals of an Interactive Debugger for Distributed Sys-

tems

Any interactive debugger needs to be able to control the flow of execution and expose state

changes in a system. In a distributed system, the debugger also needs to show some form of
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Figure 3.1: State changes in a distributed system

the history of execution to the user. The history, i.e. the sequence of events and state changes

leading to a particular state, is needed to trace the origin of a bug. Inferring this sequence for

a user is complicated in a distributed context unlike for a single-threaded program because

of the inherent non-determinism of a distributed system. In this section, we discuss each of

these goals of an interactive debugger for a distributed system - expose state changes, control

flow of execution and expose history of execution.

3.1.1 Observe State Changes

A program is a sequence of operations on an initial state of a set of variables. Each operation

causes a mutation in the previous state. So, any program execution can be described

completely by the initial state, the sequence of operations and corresponding state mutations.

The task of an interactive debugger is to make these operations and internal states observable

to a user so that the user can detect erroneous states, if any.

The state at any node in a distributed system changes due to its local execution as well as due
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to its interaction with the rest of the distributed system. Fig 3.1 depicts the state changes in

a distributed system. The nodes communicate with each over via different protocols. Any

such communication encapsulates some information about the current state of the sending

node and so, can be considered to constitute a transfer in state. On receiving the changes,

the recipient node needs to process the incoming communication and reconcile its local state

with the incoming state to construct a consistent final state.

So, the debugger in a distributed system needs to expose three types of state changes -

state changes due to local execution, transfer of state, and state changes due to

reconciliation of states received from remote nodes with the local state.

Traditional sequential debuggers already show state changes due to local execution. Interactive

debuggers for a distributed system can be integrated with the traditional debuggers to expose

local state changes.

To show transfer of state, the debugger would need to observe all the communications within

the system. In order to do this, it becomes necessary to understand the underlying distributed

system model because the connectors of the underlying model need to be identified. For

example, let us consider a very simple model which provides the distributed system nodes

with a function called Send(message, destinationNode) to send a message to another node.

This send function could internally uses TCP/IP sockets to send the message in a serialized

form to the recipient node. In order to enable a debugger to snoop on communications within

this system, we could build a wrapper around this send function which would encapsulate

two send calls - one to the debugger and the other to the actual destinationNode. So, in the

debug mode, every time a node would invoke Send to send a message to another node, the

message would get sent to both the debugger and the recipient node. In this way, once the

connectors in a distributed system model are identified, the debugger can be designed to

latch onto these connectors to intercept the communications.
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Exposing reconciliation can be tricky. Many distributed models do not provide an explicit

mechanism to nodes to accept updates from outside. These models accept updates as soon

as they are received. For example, in a distributed system which uses CRDT [22] sets for

synchronization, when a node A adds an element to its set, the element also gets added to

the set at node B after some point in time if there is no network disruption. Node B has no

control over when its local state i.e. the set gets modified by an outside update. The model

has taken away this control from the node. In these systems, since reconciliation is hidden,

it is complicated for a debugger to understand when an outside update modified the local

state compared to models which provide an explicit mechanism to a node to accept outside

events. For example, in Actor models [4], updates are not applied immediately. Incoming

messages are stored in a queue first. It is left to the node to pop the message from the queue

and process the message whenever it wants.It is simpler to expose reconciliation in this case

because the debugger knows that reconciliation happens when a message is popped from the

queue and so, can track the queue pop() operations.

3.1.2 Control Flow of Execution

As mentioned earlier, there are two main debugging use-cases. First is that the user starts

the application in the debug mode and then advances the execution step by step, pausing

at each step to inspect the state. Second is that the user sets a breakpoint, execution stops

when the breakpoint is hit, the user inspects the state of the system and then resumes the

application from the point it was stopped at. A typical debugging session is a mix of the two.

Central to both of these use-cases is the capability of the debugger to pause the execution of

the program at any point. In a program executing at the single site, this is trivial but in a

distributed system, the problem of exerting control over the entire distributed application

is difficult. During the time interval when the debugger first issues a stop command to the
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point when the message reaches a node, the node will already have progressed through some

state changes. Besides, the stop command might be dropped by the network or the stop

command might reach different nodes at different times.

A solution to this problem is to have a centralized design where every operation at each

node is routed through the debugger. Every operation is permitted to happen only when the

debugger gives permission. Execution across the entire system can be stopped at once if the

debugger stops granting permissions. GoTcha uses this approach.

The disadvantage is that the concurrency of the system has been sacrificed for control. A

concurrent system has been transformed into a sequential system. So, a debugger should

provide a user with options to reorder operations so that the user can simulate concurrency

by exploring different orderings of concurrent operations. There should also be options for

aborting networked operations so that the user can simulate network failures.

3.1.3 Observe History of Execution

When a breakpoint is hit, traditional interactive debuggers pause the execution and show the

state at that point. They do not display the execution path i.e. the sequence of operations and

corresponding state changes which led to that state. Providing this information is superfluous

in a single-threaded context as the path can be extrapolated by the user. The path is implicit

in the program code. The debugger displays the line of code where the breakpoint hit and

the state of the system at that point. The path can be mapped by going backwards through

the program code from that line of code.

Extrapolating the execution path in a distributed system is not trivial. Let us consider a

simple example. Suppose that a program fails with a divide-by-zero exception. It is evident

that the divisor is being set to zero at some point in execution. The point of a debugging
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exercise would be to locate the origin of the error i.e. to find the point where the variable is

being set to zero. In a single-threaded context, it would be sufficient for the developer to look

at the code to work that out. But, in a distributed system, an outside event could have been

responsible for setting the variable to zero. The node might have received a message from

another node to decrement the value of the divisor. It would be non-trivial for a developer

to figure this out solely from the program code. If the underlying distributed system model

abstracts away the reconciliation operation and accepts updates in the background, it would

be difficult to figure out when the message was received, or what were the contents of the

message, or how the message was processed.

So, in a distributed system, a debugger needs to provide the user with a condensed form of

the history of execution - the sequence of operations and the corresponding state changes

which led to the state which triggered the breakpoint.

3.2 The Role of the Distributed System Model in Design

Traditional single-machine interactive debuggers can be applied to any single-threaded program

due to the fact that all single threaded programs share essentially the same sequential style of

execution. However, to build a generalized interactive debugger applicable for any distributed

system is difficult, if not impractical due to the wide variety in distributed programming

styles.

To build an interactive debugger applicable for a specific distributed system model is more

feasible. Distributed system models differ widely from the perspective of interactive debugging.

Some models provide more support to an interactive debugger than others. In the earlier

section, we have seen that the communication and state reconciliation mechanisms used by

the model play a heavy role in determining the design of an interactive debugger.
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In this section, we identify certain features of distributed system models which are important

from the point of view of an interactive debugger. If a distributed system model has one

or more of these features, designing an interactive debugger for the system becomes less

complex. The presence of these features can reduce the engineering effort involved in building

an interactive debugger considerably.

3.2.1 Features Which Support Interactive Debugging

Read Stability

Read stability is a property of the model where changes to the local state can only occur

when the local execution context wants it to. A model achieves read stability when it does

not accept remote updates immediately but stores them in some form first and accepts them

later with an explicit mechanism.

Read Stability is important from the point of view of interactive debugging because it enables

the debugger to easily distinguish the reconciliation operation from local state changes. As

discussed in the earlier section, the debugger must be able to expose the three types of state

changes as separate events. While debugging an application, when a user steps through a

line of code, the user assumes that the corresponding state change is caused by that line of

code. But in a model which immediately accepts remote updates e.g. Last-write-Wins, when

the line of code is being executed, this assumption is violated as a reconciliation operation

could be happening simultaneously in the background. A remote update might arrive and

get merged with the local state. In this case, what the user will observe at the end is the

aggregated state change caused by both the local execution and the reconciliation operation.

But if remote updates are not immediately applied to the local state but applied later with

an explicit directive, the two state changes are kept isolated and the debugger can display

each state change separately to the user.
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Publish Mechanism

In some models, an explicit mechanism is provided to a node to publish it’s updates to the

outside world. Other nodes are not allowed to observe a node’s local state unless the node

explicitly publishes it. This is useful because the debugger can avoid tracking each local

update in case of an explicit publish mechanism. Local state changes can be tracked from one

publish invocation to another instead of over each line of code because during this interval,

no other node can view the changes. This makes the observable set of operations smaller and

the implementation of the debugger simpler.

Shared State

Traditional interactive debuggers for single-threaded programs show the entire state to the

user at each step. The user can inspect the value of any variable or any object attribute.

Traditional debuggers are able to do this easily because the OS provides hooks which they

can use to access the address space of any process. In case of a distributed system, to do

this would be challenging due to absence of any single controller of the system as explained

earlier. More importantly, to observe the state of all the variables across multiple nodes

would overwhelm a user with the sheer amount of information. So, from the point of view of

interactive debugging, it makes sense to identify a subset of state which is important to the

user and track the changes in this subset. This simplifies the implementation significantly

and it allows the user to focus on the important information. Identification of the subset

of state which is important to the user would depend on the semantics and domain of the

application.

For a particular class of distributed systems, it is possible to identify the subset of state which

is of interest to the user without understanding the domain of the particular application. In

shared state models or variants of shared state models like replicated types, all the nodes
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operate either on a common state or on local copies of a common state. The shared state is

set of static types which is declared beforehand. For example, in multi-player online games,

all the player nodes share the same game universe - cars, obstacles et cetera. For a set of

clients reading and writing key-value pairs from a key-value data store, the shared state is

the key-value store. In these cases, the debugger can reduce its focus to the shared state only

as it is reasonable to assume that a user would be primarily interested in tracking changes in

the shared state. For other models, to understand exactly which objects or variables would

be of interest to a developer and thus, should be tracked by the debugger would require

understanding the semantics of the specific application.

History

As discussed in section 3.1.3, an important requirement for an interactive debugger for

a distributed system is to be able to display some form of the history of operations - the

sequence of operations and the corresponding state changes to the user. This allows the

user to infer causal relationships between events and helps the user trace the origin of a

bug or defect. In order to do this, the debugger would need to log the operations and state

changes that happen in the system. Some distributed systems themselves maintain history

of state changes in some form. For example, there are some distributed system frameworks

which model distributed system synchronization as a problem of version control(TARDIS [9],

Irmin [12], GOT [3]). These systems create a new version for each update and keep older

versions(until a point) in order to support sophisticated conflict resolution functions like

three-way merge. In these cases, the implementation of the debugger is simplified as the

debugger can directly leverage the history maintained by framework and display it to the

user.
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3.2.2 Design Examples

We have identified certain characteristics of distributed systems which are important from

the point of view of interactive debugging. It would be instructive to analyse some popular

distributed system models in the light of these characteristics (Table 3.1). A very rough

estimate of the complexity of designing an interactive debugger for a distributed system

model can be formed by tracking the number of features present in the model. The presence

of all of the features would indicate that the model is eminently suitable from the point of

view of interactive debugging while the absence of all of the features would mean the opposite.

Actor model [4] is a very commonly used model in concurrent/distributed programming

where independent nodes(actors) communicate by sending messages to each other. Incoming

messages are stored in a queue and processed one at a time. So, there is an explicit mechanism

for accepting remote updates which is getting the message from the queue. This allows an

interactive debugger to detect reconciliation by tracking the queue pop() operations. Actor

model implementations also generally have an explicit mechanism for publishing changes i.e.

a send primitive but this is not specified by the model. On the downside, actor model is a

message-passing system and does not have a concept of shared state. So, a relevant subset of

state would need to be identified and nodes would need to send their states in a serialized

form to the debugger with each interaction. Actor models also do not maintain any history

of the system. The debugger would need to log the messages and the states itself.

For CRDTs [22], the shared state is the replicated data structure e.g. a counter or a

set. However, most CRDT implementations do not have an explicit accept or publish

mechanism as updates to other replicas are automatically propagated in the background. So,

to design an interactive debugger, we would need to understand the mechanisms used by

the underlying CRDT implementation to send and receive messages, and establish hooks

into these mechanisms to capture transfer in state and reconciliation of state. CRDTs have
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Table 3.1: Properties in different systems

Model Read Stability Publish Mechanism Shared State History

Actor Model Yes Yes No No

State-based CRDT No No Yes No

Operation-based CRDT No No Yes No

GSP Yes Yes Yes Yes

TARDiS Yes Yes Yes Yes

GOT Yes Yes Yes Yes

implicit conflict resolution so a debugger needs to only track the receipt of changes and not

the merger of the local state with the received changes. This merger is deterministic and

happens according to well-defined rules for each CRDT structure. State-based CRDTs send

out the entire state with each update while operation-based CRDTs transmit smaller update

operations. An interactive debugger would be able to observe states by simply observing the

messages in a state-based CRDT. In a operation-based CRDT, the debugger would need to

find a different way to observe states in the system.

GSP [7, 16] is a replicated shared state model which uses Reliable Total Order Broadcast [10]

to agree on a global order of update operations for the entire system. GSP provides an

explicit mechanism to accept changes (pull). All the incoming updates are stored in a buffer

called the receivebuffer and then applied with the pull directive. There is also an explicit

directive to publish changes(push). Each node maintains a prefix of the global order of update

operations called the global update sequence. This can be considered to be a form of History

even if it does not capture the changes in the global update sequence.

Along with being shared state systems and having explicit mechanisms to accept and publish

changes and, TARDiS [9] and GOT [3] maintain history of state changes in the form of

version graphs.
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Chapter 4

The GoT Distributed Computing Model

As mentioned before, the underlying distributed computing model has a dominant influence on

the feasibility of an interactive debugger. Our interactive debugger, GoTcha, is designed for a

specific distributed programming model called Global Object Tracker (GoT) [3]. Specifically,

GoTcha is built as a debugger for a Python implementation of GoT called Spacetime. In this

section, we describe GoT, and explain its design features that are relevant to GoTcha.

4.1 GoT: Git, but for Objects

A Spacetime application consists of many nodes, called GoT nodes, that perform tasks

asynchronously within the distributed application. The GoT nodes share among themselves a

collection of objects. Each of these nodes can be executed in different machines, communicating

the changes to the state of the shared objects via the network. What is unique about GoT

is that the synchronization of object state among the distributed nodes is seen as a version

control problem, with a solution that is modeled after Git [3].

All GoT nodes that are part of the same spacetime application have a repository of the

17



shared objects, called a dataframe. The dataframe is akin to a Git repository, and, like a Git

repository, it has two components: a snapshot and a version history, as shown in Figure 4.2.

The snapshot, analogous to the staging area in Git, defines the local state of the node. All

changes made by the application code on the local dataframe are first staged in this snapshot.

The version history, on the other hand, is the published state of the node. Like in Git, changes

can be moved from the staging area to the version history using the commit primitive, and

the snapshot can be made up to date with the latest version in the version history by using

the checkout primitive. Inter-node communication happens using push and fetch requests,

used to communicate updates in version histories between nodes.

When the version history at a node receives changes (via commit, push or fetch), a conflict with

concurrent local changes is possible and must be resolved. While in Git conflicts are resolved

manually by the user, and only on a fetch, in GoT, conflicts are resolved automatically, at

the node receiving the changes, and irrespective of the primitive used. Automatic conflict

resolution is achieved via programmer-defined three-way merge functions that are invoked

when conflicts are detected.

The APIs supported by the dataframe are shown Table 4.1; this table can be used as a quick

reference for the API calls in the example explained next.

4.2 GoT Example: Distributed Word Frequency Counter

The example that we use is a distributed word frequency counter. The application takes a

file as input and shards it by line. These lines are distributed to several remotely located

workers which tokenize and count the frequency of the tokens in the lines. The partial counts

are then aggregated and presented by the application as the final word frequency tally.

The distributed word frequency counter application has two types of GoT nodes: WordCounter
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Table 4.1: API Table for a Dataframe

Dataframe API Equivalent Git API Purpose

read_{one, all} N/A Read objects from local snap-
shot.

add_{one, many} git add <untracked> Add new objects to local snap-
shot.

delete_{one, all} git rm <files> Delete objects from local snap-
shot.

git add <modified> Objects are locally modified
which is tracked by the local
snapshot.

commit git commit Write staged changes in local
snapshot to local version his-
tory.

checkout git checkout Update local snapshot to the
local version history HEAD.

push git push Write changes in local version
history to a remote version his-
tory.

fetch git fetch && git merge Get changes from remote ver-
sion history to local version his-
tory.

pull git pull fetch and then checkout.
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Figure 4.1: Network topology of an example distributed word counting application built on
Spacetime.

Figure 4.2: Structure of a GoT node. Arrows denote the direction of data flow.

and Grouper. The Grouper node controls the execution of this Spacetime application. It

is responsible for sharding the input files into lines and aggregating partial word frequency

counts to reach the final tally. The WordCounter node is responsible for tokenizing and

counting the word frequencies in each line.

WordCounter nodes are responsible for the communication in this Spacetime application.

Every WordCounter node must fetch changes from, and push changes to the Grouper node.

This relation between these nodes is shown in Figure 4.1 and defines the network topology of

our example application.

The dataframes at each WordCounter and Grouper nodes share objects of type Line, Word-

Count, and Stop that are shown in Listing 4.1.

1 class Line ( object ) :
2 line_num = primarykey ( int )
3 l i n e = dimension ( str )
4 def __init__( s e l f , line_num , l i n e ) :
5 s e l f . line_num = line_num
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6 s e l f . l i n e = l i n e
7 def proce s s ( s e l f ) :
8 # a simple t o k en i z e r
9 return s e l f . l i n e . s t r i p ( ) . s p l i t ( )

10
11 class WordCount( object ) :
12 word = primarykey ( str )
13 count = dimension ( int )
14 def __init__( s e l f , word , count ) :
15 s e l f . word = word
16 s e l f . count = count
17
18 class Stop ( object ) :
19 index = primarykey ( int )
20 accepted = dimension (bool )
21 def __init__( s e l f , index ) :
22 s e l f . index = index
23 s e l f . accepted = False

Listing 4.1: The types used by the Word Counting application.

All types registered to the dataframe have list of attributes marked as dimensions of the type,

that declare the attributes to be stored and tracked in the dataframe. One dimension in each

type is a special attribute and is defined as the primarykey. Objects are stored and retrieved

by Spacetime by the value of this primarykey attribute.

Objects of type Line are shards of the input file. The dimension line_num (defined in line 2)

is the primary key, of type integer, that represents the line number in the input file. The

dimension, line (line 3), stores the contents of the line as a string. Objects of type WordCount

store the word frequency for a unique token and have two dimensions: the primarkey, word

(line 12), is a string representing the token, and count (line 13), is an integer representing

the frequency of that token. WordCounter Nodes communicate completion using objects

of type Stop having two dimensions: the, primarykey, index (line 19), an unique identifier

representing a single WordCounter worker, and accepted (line 20), which is set to True by

the WordCounter node signalling the completion of its task. Any state in attributes outside

these dimensions is purely a local state, and is not tracked and shared by the dataframe.
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Listing 4.2 shows part of the application code for an instance of the Grouper node. The

grouper_node is instantiated (lines 18-20) with the application code, defined by the function

Grouper, along with the types to be stored in the dataframe, and the port on which to listen

to incoming connections. The grouper_node is launched using the blocking call, start (line

21), and takes in the parameters that must be passed to this instance of the Grouper node:

the input file and the number of WordCounter nodes that are going to be launched.

The Grouper function (line 1) that is executed receives the repository, dataframe, as the first

parameter, and all run-time supplied parameters as the additional parameters. The node

iterates over each line in the input file, creating new Line objects for each line. The Line

objects are added to the local dataframe (line 4), similar to how new files are added to a

changelist in git. After each Line object is added, these staged changes are committed to

the dataframe (line 5) and are available to any remote dataframe that pulls from it. After

all Line objects are added, Stop objects are added, one for each WordCounter worker in the

application, and committed to the dataframe (line 6-7). Grouper now has to wait for all

WordCounter workers to finish tokenizing the lines that it has published, and the state of

the Stop object acts as that signal (Lines 9-12). Once every worker has accepted the Stop

object associated with it, the Grouper reads all the WordCount objects in the repository and

displays the word frequency to the user.

1 def Grouper ( df , f i l ename , ncount ) :
2 i = 0
3 for l i n e in open( f i l ename ) :
4 df . add_one ( Line , Line ( i , l i n e ) )
5 df . commit ( ) ; i += 1 ;
6 df . add_many( Stop ,
7 [ Stop (n) for n in range ( ncount ) ] )
8 df . commit ( )
9 while not a l l (

10 s . accepted
11 for s in df . read_al l ( Stop ) ) :
12 df . checkout ( )
13 for w in df . read_al l (WordCount ) :
14 print (w. word , w. count )
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15
16 i f __name__ == "__main__" :
17 f i l ename , ncount = sys . argv [ 1 : ]
18 grouper_node = Node (
19 Grouper , server_port=8000
20 Types=[Line , WordCount , Stop ] )
21 grouper_node . s t a r t ( f i l ename , ncount )

Listing 4.2: The Grouper node.

Listing 4.3 shows part of the code for an instance of the WordCounter. Multiple instances of

the WordCounter node are instantiated with the remote address of the Grouper node, and

the same Types that Grouper uses (lines 32-35). Each instance is started asynchronously

with the parameters that it needs (line 36).

The application code for WordCounter (function WordCounter shown in lines 1-26) also takes

the dataframe as the first parameter. An independent and new dataframe is created for each

instance of WordCounter, and they all have the same Grouper node as the remote node. The

WordCounter keeps pulling changes from the remote node (line 4) for as long as there is a

new line to read in the updated local dataframe and until a Stop object associated with the

instance is read in the local dataframe. In each pull cycle, the WordCounter reads a Line

object from the local dataframe, using index (line 5), and tokenizes it (line 7). For every

word in the token list, the node retrieves the WordCount object associated with the word

from the dataframe (line 9), creating and new object if it does not exist (line 11-14), and

increments the count dimension in the object by one (line 16). These updates (both new

objects, and updates to existing objects), staged in the local snapshot, are committed to the

local dataframe and pushed to the remote Grouper node (line 23). The WordCounter ends

operations if after pulling updates from Grouper, a Stop object is present in the dataframe,

and there are no new Line objects to read. The stop object is accepted by setting the accepted

dimension to True and this update is committed and pushed to Grouper as the last operations

by the WordCounter node.
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1 def WordCounter ( df , index , ncount ) :
2 line_num=index ; stop=None ; l i n e=None
3 while not stop or l i n e :
4 df . pu l l ( )
5 l i n e = df . read_one ( Line , line_num )
6 i f l i n e :
7 for word in l i n e . p roc e s s ( ) :
8 # reads from the snapshot
9 word_obj = df . read_one (

10 WordCount , word )
11 i f not word_obj :
12 word_obj = WordCount(
13 word , 0 )
14 df . add_one (word_obj )
15 # changes on ly snapshot
16 word_obj . count += 1
17 line_num += ncount
18 stop = df . read_one ( Stop , index )
19 # commit changes
20 # to ver s i on h i s t o r y
21 # and push th e s e changes
22 # to remote node .
23 df . commit ( ) ; df . push ( )
24 stop . accepted = True
25 df . commit ( )
26 df . push ( )
27 i f __name__ == "__main__" :
28 workers = [ ]
29 address = sys . argv [ 1 ]
30 num_workers = int ( sys . argv [ 2 ] )
31 for i in range ( num_workers ) :
32 wnode = Node (
33 WordCounter ,
34 Types=[Line , WordCount , Stop ] ,
35 remote=(address , 8000))
36 wnode . start_async ( i , num_workers )
37 workers . append (wnode )
38 for w in workers :
39 w. j o i n ( )

Listing 4.3: The Word Counter node.
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4.3 Dataframe: Object Repository

To the code in each of the GoT nodes, the dataframe acts an object heap that consists of

in-memory objects that are under version control. As explained above, the dataframe in each

node has two components: a snapshot and an version history.

The version history is stored as a directed acyclic graph where each vertex of the graph

represents one version of the state and has a globally unique identifier that labels it and

each directed edge of the graph represents a causal “happened-after” relation. Each edge is

associated with a delta of state changes (diff) that when applied to the state of the objects

at the source version transform it to the state of the objects at the destination version. The

latest version of the node state (called the HEAD) is the state of the node that is observable

to the other nodes in the application. Changes that are staged in the snapshot cannot be

observed by external nodes until they are put into the version history.

An edge with an associated delta is added into the graph for each new version of the state

and, therefore, memory usage of the application can potentially be high. To manage the

memory, Spacetime implements an effective garbage collector in each node that cleans up

obsolete versions.

Changes that are made to the objects in the application code, are staged in the snapshot.

When the commit primitive is invoked, a new version is created in the version history,

representing the newly committed state. An edge is added from the last version the snapshot

was in, to the newly created version in the version history. The diff that was committed is

then associated with this edge. Changes to the version history, updated by external nodes,

are introduced to the snapshot via the checkout primitive.

Inter-node communication only happens between the version histories of the corresponding

nodes. As seen in the example and like Git, nodes communicate changes between version
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histories using the fetch and push primitives present in the dataframe. Fetch retrieves changes

published to the version history in a remote GoT node and applies the changes to the local

version history. Push takes changes published to the local version history and delivers it

to a remote GoT node. GoT takes advantage of the diffs stored in the version histories to

communicate via delta encoding, reducing the amount of data transferred between nodes.

4.4 Conflict Detection and Resolution

Conflicts are detected (at any node that is receiving data), when an update received is a

change from a version that is not the HEAD version in the local version history. Intuitively,

this means that at least two different nodes committed concurrent changes after having read

the exact same version. When conflicts are detected, they are resolved using a user defined

three way merge function that includes the state that was read (the original), the changes

already in the version history (yours) and the conflicting changes that are incoming (theirs).

The output of the merge function, much like the merge resolution in git, adds a new merged

version to the version history that has a happened-after relation with both the diverging

versions.

In the WordCounter example, the state of the WordCount objects created and updated by

different WordCounter nodes can be in conflict with each other when changes are pushed

to the Grouper node. For example, if two WordCounter nodes concurrently read the same

word in two different lines and the word has not been observed before, both the nodes would

create a new WordCount object for the word. When both changes are pushed to the Grouper

node, a conflict is detected and a merge function is called.

1 def merge ( conf_iter , orig_df ,
2 your_df , the i r_df ) :
3 your_df . update_not_conf l i c t ing (
4 the i r_df )
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5 for or ig , yours , t h e i r s in con f_ i t e r :
6 a s s e r t isinstance (
7 yours , WordCounter )
8 yours . count += t h e i r s . count
9 return your_df

10
11 . . .
12 # Updated Node i n i t i a l i z a t i o n
13 grouper_node = Node (
14 Grouper ,
15 Types=[Line , WordCount , Stop ] ,
16 c o n f l i c t_ r e s o l v e r=merge ,
17 server_port =8000)
18 . . .

Listing 4.4: Merge function used at the Grouper node.

An example merge function is shown in Listing 4.4. This function is called asynchronously

when a conflict is detected, and is used to only to reconcile conflicting state updates. The merge

function receives four parameters: an iterator of all objects that have direct contradictory

changes that cannot be auto resolved (conf_iter), as well as three snapshots of the state, one

for the point where the computation forked (orig_df), and two for the version at end of the

conflicting paths (your_df, their_df).

In the merge function shown, objects (Line, WordCount, and Stop objects) that are new or

modified in the incoming change but do not have conflicting changes in the local history are

first accepted (line 3). For the objects that are in conflict (only WordCount objects can be in

conflict), we read the states at three versions of the objects: the state at the fork version,

and the two states at the conflicting versions – orig, yours, and theirs from the iterator (line

3), respectively. Then, the dimension count in objects that have been updated together are

added up and stored in the object tracked by the your_df snapshot. At the end, this modified

version of your_df is considered to be the reconciled state and returned to the version history.

There is a bug, and we’ll correct it later.There is a bug in this merge function as it does not

add counts correctly. We will use this bug to demonstrate the capabilities of the interactive
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debugger. For quick reference, the correct merge function is shown in Listing 5.5 at the end

of Section 6.

4.5 GoT: Enabling an Interactive Debugger

In Section 3.2, we had identified certain characteristics of distributed system models which

make building an interactive debugger simpler - explicit primitives to accept and publish

changes, shared state and history. We look at how GoT incorporates these features in its

design.

Read Stability: Each GoT node computes only on the objects in the snapshot. The

snapshot can only be updated with external changes when the checkout or fetch primitives

are invoked. These are invoked by the application code at the node, and not automatically

behind the scenes. So, a GOT node has read stabilty as explicit primitives have been provided

by the model to accept remote updates.

Publish Mechanism: GoT also provides an explicit primitive to publish local changes -

commit. The version history is the published state which any other node can observe by using

fetch primitive. The version history is refreshed with the latest local updates by invoking the

commit primitive.

Shared State: GOT is a shared state model. A GOT application defines a set of static

types in the beginning and computation revolves around synchronizing objects of these types

across multiple nodes.

History: Each GOT node maintains version history which captures the evolution of state.

This can be exposed to the user as History.
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Chapter 5

GoTcha: Introduction and Usage

As discussed in the previous section, the version histories at GOT nodes are used for inter-

node communication. Remote updates are stored in the version history and then applied to

the local state. But a version history is more than the published state. A version history

encapsulates the evolution of state as well. Each node in the version history captures a

previous state of the node with the HEAD of the graph containing the current state while

the edges in the version history indicate causal links(happened-after relationships)between

states. This is useful information from the perspective of debugging and a debugger can use

these version histories to display state changes to the user. This is what GoTcha [2] does.

GoTcha is an interactive debugger for GOT-based distributed systems which exposes the

changes made to the version history at each node in a Spacetime application. We present

GoTcha’s key functionalities, interface and usage in this section through a series of examples.

As discussed in section 3.1.1, there are three types of state changes in a distributed system.

Similarly, errors in a distributed system can be classified according to their origin - errors

in local execution, errors in communication and errors during reconciliation of

remote changes with the local state. However, there is an additional category - error
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f oo
bar
bar
baz
bar
bar
bar
bar

Listing (5.1) Input file.

foo 1
bar 6
baz 1

Listing (5.2) Expected output.

foo 1
bar 10
baz 1

Listing (5.3) Observed output.

in the network topology of the system itself. For each category, we provide an example

and show how GoTcha can be used to detect the source of the error. We also provide an

example to show GoTcha can be used for exploratory testing. We start our discussion

with errors in reconciliation as these bugs are particularly hard to detect and this serves as

an effective example for the purpose of demonstrating GoTcha’s capabilities.

5.1 Observing State and History

We will use the distributed word-counting application introduced in the previous section, but

with a bug in the merge function. A test input file is created consisting of six lines, each with

one word – see Listing 5.1. The word frequencies for the words foo, bar, and baz are one, six,

and one respectively. The application consists of two WordCounter nodes and one Grouper

node that are launched in different machines. During execution, as shown in Listing 4.2, the

Grouper node adds six Line objects and two Stop objects into its dataframe, and waits for the

Stop objects to be accepted by the WordCounter nodes (Listing 4.2). WordCounter-0 reads,

tokenizes, and counts words on lines 1, 3, and 5. WordCounter-1 does the same for lines 2, 4,

and 6. Finally, both WordCounter nodes accept their Stop objects, and execution completes.

The expected output is shown in Listing 5.2. However, a different output is observed, shown

in Listing 5.3. The observed output is wrong, and GoTcha can be used to trace the origin of

the error.
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To start debugging the application using GotCha, the debugger needs to be instantiated

and started first – see Listing 5.4. The debugger is an application by itself and is launched

before any application nodes are launched. The shared application types need to be passed

as a parameter to the start command. For the word counter applications, these are Line,

WordCount and Stop. Then the application nodes are launched in the debug mode - they

are instantiated with an extra flag called Debug set to the network address of the debugger,

in order to register them with the debugger.

1 debugger_server = GotchaDebugger ( port = . . . )
2 debugger_server . start_async ( [ Line , WordCount , Stop ] )
3
4 grouper_node = Node ( grouper , server_port = . . . ,
5 Types=[Line , WordCount , Stop ] ,
6 debug = ( . . . , . . . ) )

Listing 5.4: Invoking the debugger.

5.1.1 Network Topology Page

GoTcha’s UI is a web application. At the start of the debugging session, after every node has

been launched in debug mode, the user is shown the network topology of the application,

as shown in Figure 5.2. In this figure, on the left, the user sees that two WordCounter

nodes and one Grouper node are being controlled by the debugger. The Grouper node is the

authoritative node in the application, with both the WordCounter nodes making fetch and

push requests to the Grouper node. On the bottom, there is an input field for the user to

add one or many breakpoint conditions to the debugger. The breakpoint condition shown

here, returns True if there exists any WordCount object with the primary key bar with the

count dimension greater than six, in the dataframe, at any GoT node.
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Figure 5.2: Debugger showing the network topology of the application.

Figure 5.3: Debugger view showing version history at the end of a commit.
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5.1.2 Version History Page

The current version history of any node can be observed by clicking on the node in the

topology graph in Figure 5.2. Figure 5.3 shows the node view of the Grouper node, observing

the result of the execution of the commit primitive at line 5 of Listing 4.2. The version history

is shown on the top left. The history shows three versions: ROOT, 3583, and 9d52. 9d52

happened-after 3583 which in turn happened-after ROOT (the start version of every version

history).

Clicking on a version shows the state of objects at that version in tabular form. The table

shows that the state at version 75ac has six objects of type Line, and shows the values of the

two dimensions (line_num, line) for the Line objects.

Similarly, clicking on a edge shows the delta change (diff) associated with that edge. The diff

associated with the edge 3583 ! 9d52 is also shown on the bottom. In this case, the diff

consists of a single object of type Line with the dimensions line_num, and line having the

values 7, and ‘bar’ respectively. The entry is also marked in green, which signifies that the

entry is a newly added object (added in line 4, Listing 4.2). Modifications are uncolored, and

deleted objects are marked in red. The state of every version, and the diff associated with

every edge can be observed. The grey line relation shows us that the state of the snapshot of

the Grouper node is known to be at version 3583.

On the right of Figure 5.3, we see the state of the actions being executed on the dataframe

at the Grouper node. The user sees the current active step being executed(CURRENT), a

list of steps that have to be executed next(NEXT)as well as a list of previous steps that have

been executed on the version history(PREVIOUS). Each step directly maps to one of the

dataframe primitives rerouted through GoTcha and is broken up into several phases.

We can see that the commit primitive has three phases. The first phase is receive data where
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a commit request is made using the diff staged in the snapshot. Stepping through this phase

brings us to the extend graph phase, where the version history graph is extended from the

current HEAD version (3583) to the newly created version (9d52). The last phase of commit,

which is yet to be executed, is the garbage collect phase where obsolete versions in the graph

(in this case 3583) are cleaned up.

Clicking on Next Step button at the bottom would allow the garbage collect phase of commit

at the Grouper node to be executed.

Since the fetch, and push primitives of the dataframe span across multiple GoT Nodes, they

are broken up into two sets of operations each: fetch and respond to fetch, push, and respond

to push, to observe the state changes at both the node making the request and the node

receiving the request.

5.2 Observing Reconciliation

To debug the mismatch between the expected and observed output of the application, we first

put in the condition for the breakpoint as seen in Figure 5.2, and hit the Submit button. We

put in this specific condition because the correct count for bar is six and we want to observe

the state of the system at the exact point when the count becomes incorrect i.e. greater than

six.

When the breakpoint is matched, the execution of all nodes is paused and GoTcha shows the

view of the Grouper node where the condition matches, shown in Figure 5.4. Here, we see

that the current step being executed is a push request from WordCounter2 from version 8528

to version 34fe. The execution is paused at the start of the send confirmation phase.

The version history contains seven versions. Starting from the top, we have ROOT again
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Figure 5.4: Debugger view at Grouper showing response to a push request.

as the start version. Version 8528 happened-after ROOT. All versions that were present

between 8528 and ROOT, have been garbage collected.

At 154b, we see a fork in the path. Both versions 34fe and 54b1 happened-after 8528, and are

siblings. These are concurrent updates and were performed on different GoT nodes. Version

54b1 is bordered in green while 34fe is bordered in red. This means that update 8528 ! 34fe

was received by the version history at Grouper after the update 8528 ! 54b1. The GoT

node resolved such conflicts using the custom merge function written in Listing 4.4. The

output of the merge function was a new version f9eb. Since f9eb happened-after both the

concurrent versions, 54b1 and 34fe, the graph was updated with the happened-after relations

and f9eb has two in-edges. Additionally, each of these edges are associated with a diff that

transforms the previous version to the version at f9eb. f9eb is the the current HEAD version

of the version history at Grouper

Looking at the dotted line relations, we see that the snapshot at Grouper is at the version

54b1. Additionally, the last known versions of WordCounter1 and WordCounter2 are 8528,
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and 54b1, respectively.

We can click on any node of the graph to get the exact state at that version. Similarly, we can

click on any edge to get the state change associated with the edge. The state at version f9eb

is shown in the table below the version history graph. The table shows us two WordCount

objects and the WordCount object for the word ‘bar’ has a count of ten, showing us why the

conditional breakpoint was hit. Looking at the version at the start of the merge, 8528, we see

that the count of ‘bar’ is four. The diffs associated with 8528 ! 34fe and 8528 ! 54b1 both

update the count of ‘bar’ to five. This means that both WordCounter0 and WordCounter1

had the count of ‘bar’ as four, and observed a ‘bar’ token updating the count concurrently to

five. At the end of the merge function, this count is set to ten, and can be see in the diffs for

both 34fe ! f9eb and 54b1 ! f9eb. This means that the error is in the merge function. We

can see that the merge function in Listing 4.4, on detecting a conflicting count, simply adds

up the counts. So receiving two counts of five, would result in a count of ten. However, the

actual increment in each update is actually just one. The right way to merge counts would

be to find the total change in count and add it to the original count. We can fix the code as

shown in Listing 5.5 and the word counting application gives the right output.

1 def merge ( conf_iter , orig_df ,
2 your_df , the i r_df ) :
3 your_df . update_not_conf l i c t ing (
4 the i r_df )
5 for or ig , yours , t h e i r s in con f_ i t e r :
6 a s s e r t isinstance (
7 yours , WordCounter )
8 yours . count += t h e i r s . count
9 i f o r i g : # False i f new o b j e c t s .

10 yours . count �= or i g . count
11 return your_df

Listing 5.5: Merge function used at the Grouper node.

This bug was found quite easily because GoTcha exposes the version history. By looking at

the evolution of the version history, even though the error had already occurred, we could
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see in which type of state change the error occurred in. In this case, we could see that the

version state was correct before the merge function, but after the reconciliation of two correct

states, the state was wrong, telling us that the error was in the custom merge function.

5.3 Observing Communication

Inter-node communication is typically a source of problems in distributed applications: the

contents of the message may be incorrect, the message may get dropped or delayed by the

network, or the sending of the message itself may never have been initiated. In order to

illustrate the debugging of these types of bugs, we will use a very simple producer-consumer

application.

5.3.1 Example: Distributed Producer-Consumer

There are multiple producers in the application, each of which generating a random string,

and a single consumer, which consumes the generated strings. The consumer prints out a

received string to the screen if it is a string it has not seen before. Listing 5.6 and Listing 5.7

show the application code for a producer node and the consumer node respectively.

1 def producer ( df ) :
2 df . add_one (Word , Word( randomString ( ) ) )
3 df . commit ( )
4 df . push ( )

Listing 5.6: A Producer.

1 def consumer ( df ) :
2 exist ingWords = set ( )
3 while True :
4 df . checkout ( )
5 newWords = df . read_al l (Word)
6 for word in newWords :
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Figure 5.5: Debugger view showing the network topology for the producer-consumer applica-
tion

7 i f word not in exist ingWords :
8 exist ingWords . add (word )
9 # pr in t the word i f i t i s a new word

10 print (word )
Listing 5.7: The Consumer.

1 def buggyProducer ( df ) :
2 df . add_one (Word , Word( randomString ( ) ) )
3 df . commit ( )

Listing 5.8: The buggy Producer.

There are five producers, each in a different machine. The network topology of the producer-

consumer application is shown in Fig 5.5 The fifth producer has a bug in its application code.

It generates a random string but does not send it, as shown in listing 5.8

Due to this bug, the consumer will only display four strings when the expected output is five

since there are five producers.
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5.3.2 Detecting The Bug

To debug, we put in the condition for breakpoint as shown in Fig 5.5 and hit the Submit

button. We put a breakpoint on the number of words in the consumer’s(C)dataframe to the

effect that the execution should pause when the number of words becomes four. The expected

number of words the consumer should display is five but the actual output only displays

four words. So, we want to observe the state of the system when the consumer has already

received the four strings. We can then advance the execution step by step to understand why

the consumer is not able to get the last string.

When the breakpoint is matched, GoTcha shows the view of the consumer node 5.6. Looking

at the CURRENT section, we note that the consumer is paused in the middle of processing

a Push request from producer P3 from version ROOT to 0072. We observe there are four

branches from the ROOT indicating that four concurrent updates have been received by the

consumer. We click on the node ae81 which is the HEAD of the graph to view the current

state of the consumer to confirm that the consumer has received four strings. Looking at

the PREVIOUS section in the bottom right of the page, we observe that Push requests have

already been received from each of the producers P0-2.

We click the next step button to complete the remaining stages of the Push from P3 to get

the state as shown in 5.7.

From Fig 5.7, we notice that P4 is not in the graph which means that no request has been

from received from P4 yet. We also note that no update from P4 is pending in the NEXT

section. We conclude that P4 has an issue and go to the version history page for P4 – Fig 5.8

by clicking on the node for P4 in the network topology page. We see that P4 has generated

its random string but that no Push request is pending in the NEXT section. Also, we can

see from the PREVIOUS section that P4 has not attempted any Push requests in the past.

Hence, we can conclude that the issue is that P4 is not sending its updates to the consumer.
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Figure 5.6: Debugger view showing the view at the consumer node in the middle of Push
from P3
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Figure 5.7: Debugger view showing the view at the consumer node after the Push from P3 is
complete
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Figure 5.8: Debugger view showing the view at the Producer node P5

5.4 Observing Local Execution

Until now, we have looked at how GoTcha can be used to detect errors during communication

and reconciliation. That is, we have seen how GoTcha is able to expose two out of the three

types of state changes discussed in section 3.1.1 - transfer of state and reconciliation of

remote state with local state to the user. The third type of change in state which should be

exposed to the user is the change in state due to local execution, which GoTcha does, to a

certain extent. While GoTcha does not let the user observe change in state over each line of

code, it lets the user observe local state change from one dataframe operation to next with

the guarantee that the state change across this interval is solely due to local execution. This

information is useful for debugging as the user can locate the node or even the section of the

application code in the node which is problematic, and use a traditional sequential debugger

to locate the exact line of code which is the source of the error. So, GoTcha can be used in

conjunction with a traditional sequential debugger to detect errors due to local execution.
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5.4.1 Scenario

We will illustrate this through another example. Going back to our distributed word-counter

example, see section 4.2, we will introduce a bug in line 16 of the word-counter (Listing 4.3) .

The line is changed as shown below:

1 word_obj . count += 2

In other words, a Word Counter node, upon finding a word, increments the count of the

word by 2 instead of 1. On running the application, the counts are doubled and we get an

incorrect output as shown in 5.9. The expected counts are shown in 5.3.

5.4.2 Detecting The Bug

To debug, we launch GoTcha and put in a breakpoint as shown in 5.9. We put a breakpoint

on the word foo such that the breakpoint is hit when the count of foo becomes two because

we know that this count is incorrect. We would want to observe the precise state of the

system when the count becomes two and the history of operations till that point. When

the breakpoint is hit, we are shown the state at the WordCounter0 node– see Fig 5.10. We

observe that the WordCounter0 is paused in the middle of a commit operation. The Garbage

Collect stage is highlighted in yellow which means that the WordCounter0 is about to start

the Garbage Collect stage and that it has completed the Apply Changes stage of the commit

operation.

We click on the HEAD of the graph-afd1 to check the current state of the WordCounter0

f oo 2
bar 12
baz 2

Listing 5.9: Incorrect output.
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Figure 5.9: Debugger view showing breakpoint on the count of foo

Figure 5.10: Debugger view showing the state of the Word Counter application when
breakpoint is met.
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node and see that the WordCounter0 node does have the word foo and that it’s count is

two. But we also notice that out of the four line objects that WordCounter0 has, only one

line contains the word foo. This finding is significant. If there is only one line with a single

occurrence of foo, the count of foo should not be two.

To find the source of the discrepancy, we click on the edge dcd9 ! afd1 to check whether

the delta state change represented by this edge includes the change in count of foo. Our

intuition is confirmed when we see that the table for the edge dcd9 ! afd1 contains foo with

the count 2. This means that the transition from version dcd9 to afd1 caused the value of

foo to be modified to 2. We note that the current commit operation itself is responsible for

this transition as the CURRENT section in the top right of the page shows the from version

and the to version of the commit operation- dcd9 and afd1 respectively. Since a commit is a

local operation where the changes made by the local code are saved to the version history,

we can conclude the source of the bug is inside the application code of the WordCounter

node between a commit and a checkout operation. We can now use a normal debugger to

debug the application code of WordCounter line by line and pinpoint the bug to line 16 of

the WordCounter code Listing 4.3.

5.5 Observing Network Topology

GOT enforces a variant of the server-client model of communication in which multiple servers

are allowed instead of a single server. Each node (client) pushes and pulls changes from

its server node. Each client when initialized needs to explicitly declare its server so that

a communication channel can be established between them. GoTcha exposes the network

topology of the system to the user. When a system is started in debug mode, GoTcha first

shows the nodes in the system and the communication links between them. This makes it

easy for a user to detect bugs in the network topology of the system itself.
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Figure 5.11: Debugger showing a fault in the network topology

46



Continuing the distributed word-counter example, a Grouper node is initialized and then

five WordCounter nodes are initialized, each in a different machine. The WordCounter nodes

are initialized as shown in listing 5.10. The server paratmeter is set to the IP address and

port of the Grouper node. This is critical as this establishes the communication link between

the WordCounter node and the Grouper node. If a WordCounter node is initialized without

the server parameter as shown in listing 5.11, that would be an error in the program as the

WordCounter node is now disconnected from the Grouper. GoTcha enables a user to detect

this error easily as it displays the network topology of the entire application in its homepage,

see Fig 5.11. A WordCounter node (Wc-5) is not connected to the Grouper node (Gr).

1 wcNode = Node (
2 WordCounter ,
3 Types=[Line , WordCount , Stop ] ,
4 s e r v e r =(ServerIP , ServerPort ) ,
5 )

Listing 5.10: Correct WordCounter Initialization.

1 wcNode = Node (
2 WordCounter ,
3 Types=[Line , WordCount , Stop ] ,
4 )

Listing 5.11: Incorrect WordCounter Initialization.

5.6 Exploratory Testing

An interactive debugger by its very definition interferes with the natural execution of a system.

This is a well-understood phenomenon and is called the probe effect [20]. So, any interactive

debugger, especially for distributed systems, should provide the user with tools to overcome

the probe effect by allowing the user to easily explore multiple runs of the system. To that

effect, GoTcha enables exploratory testing - it lets the user simulate the concurrency and
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non-determinism of a distributed system by letting the user reorder the pending operations

at a node. This also enables a user to check the correctness of the system under edge cases.

5.6.1 Interleaving Operations

We will use the distributed producer-consumer example(section 5.3.1) to illustrate how

GoTcha enables exploratory testing. Fig 5.12 shows the version history page at the Consumer

node. We see that Consumer node is at the version ROOT, indicating that it has not received

any updates yet. Looking at the NEXT section, we see that four Accept Push operations

from P0, P1, P2 and P3 are waiting to be accepted by the Consumer in that order.

If we keep clicking the Next Step button, the updates will get applied in the same order - P0

-> P1 -> P2 -> P3. In this case, we will be simulating the scenario where the Consumer

gets the message from P0 first, then P1, then P2, and finally P3. However, that is only one

of the possible scenarios in an actual execution. The message from P0 might be delayed

by the network so that the message from P1 reaches the Consumer first. Any one of the 4!

permutations could happen. GoTcha lets the user explore all of these multiple scenarios. The

user can drag and drop the pending operations in the NEXT section in order to reorder them.

Fig 5.13 shows the version history page after we have dragged and dropped the Accept Push

operation from P1 to the P0’s place at the top. So, we can now explore the scenario where

the Consumer receives the update from P1 first i.e. P1 -> P0 -> P2 -> P3 and continue the

execution from there.
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Figure 5.12: Debugger view showing the Consumer with four pending remote updates

Figure 5.13: Debugger view showing the Consumer after reordering the pending remote
updates
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Chapter 6

GoTcha: Architecture and

Implementation

In the previous Chapter, we looked at the usage of GoTcha. In this section, the architecture

and implementation of GoTcha is described in detail.

6.1 Centralized Architecture

In section 3.1.2, we saw how a centralized design where all the operations are routed through

the debugger can be used to control the flow of execution in a distributed system. GoTcha’s

design is based on this approach. A variation of this approach is used where each dataframe

operation which reads or writes from the version history (checkout, commit, fetch, push) is

routed through a central node called the Global Controller Node (GCN). With each operation,

the version history at each node is also sent to the GCN. The GCN, in turn, forwards it to the

web-based UI to be shown to the user. In debug mode, the architecture of the application is

modified from what is shown in Figure 4.2 to what is shown in Figure 6.1. While a traditional
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Figure 6.1: Architecture of GoTcha.

interactive debugger for a single threaded application would observe the change of state

between each line of code, GoTcha observes state changes over each action of read or write

performed on the version history at each node.

6.2 Global Controller Node (GCN)

The rerouting of the dataframe operations through the GCN is the key functionality that

enables GoTcha to achieve the goals of an interactive debugger. This is achieved through

the GoT programming model itself by using shared GoT objects of special types called

the debugger types. Each dataframe operation is mapped to a specific debugger type(see

table 6.1). When any dataframe operation is initiated in the debug mode, the application node

creates an object of the corresponding debugger type and uses this object to communicate

and co-ordinate with the GCN at each stage of the operation. Thus, we re-use the GoT

model in GoTcha’s design for synchronization between the nodes and the GCN.
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Table 6.1: Mapping the dataframe operations to the debugger types

Dataframe Operation Debugger Type
Commit CommitOp
Checkout CheckoutOp
Push PushOp
Fetch FetchOp
Respond to Push AcceptPushOp
Respond to Fetch AcceptFetchOp

The GCN is a GOT node itself. But unlike a regular GOT node which has a single dataframe,

GCN maintains a separate dataframe for each application node– see Fig 6.2. Each dataframe

acts as the remote repository for the debugger objects (instances of the debugger types)

created by a particular application node. The separation of dataframes ensures that there is

a separate channel of communication between the GCN and each node. No application node

can receive a debugger object created by another node.

The GCN’s application code encapsulates two separate threads of execution. The first thread

keeps polling for new application nodes. Whenever a new node registers with the debugger, a

new dataframe with the debugger types is created in the GCN for this particular node. The

second thread runs the main fuctionality of the GCN. It launches the web server which is

responsible for getting the user input from UI, and controls the execution of the application

as per user input.

6.3 Wrapped Dataframe

In the debug mode, instead of the usual dataframe, the application node receives an instance

of a WrappedDataframe.WrappedDataframe is a wrapper around the dataframe class and has

the same API as dataframe so that from the point of view of the node, there is no change. The

WrappedDataframe encapsulates two dataframes - the usual Application Dataframe which acts

as the datastore for the objects declared by the application and another dataframe -Debugger
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Figure 6.2: GOT Node in Debug Mode
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Dataframe which is the store for the debugger objects and which acts as a communication

channel to the GCN. So, in the debug mode, a GOT node’s architecture gets changed from

Fig 4.2 to Fig 6.2. Instead of a Application Dataframe which can communicate with the outside

world, a GOT node now has a WrappedDataframe which contains the Application Dataframe as

well as a Debugger Dataframe. The Application Dataframe’s usual communication capabilities

are disabled. The Debugger Dataframe is the link to the outside world. And even the

Debugger Dataframe is allowed to only communicate with the GCN. In this way, the topology

of the application gets transformed into a true server-client model or a star topology where

the GCN is the server and the nodes are the clients, and the clients only communicate with

the server.

As the WrappedDataframe has direct control over the Application Dataframe and thus, the

internals of the dataframe operations, Wrapped Dataframe is able to pause or resume an

operation as per instructions from the GCN which it receives via the debugger object in

Debugger Dataframe. For example, a commit operation means applying the local changes

to the version history. Internally, this happens in two main stages - the dataframe reads

the changes from the snapshot and then applies the changes to its version history. In debug

mode, the WrappedDataframe inserts a wait after each stage where it awaits permission from

the GCN to advance to the next stage.

Each WrappedDataframe runs a separate thread of execution to receive respond to fetch/respond

to push requests. As mentioned in section 5.1.2, fetch and push operations are divided into

two sub-operations - fetch/push at the sender node and respond to fetch/respond to push at

the receiver node. There are separate debugger types for these sub-operations– see Table 6.1.

When the GCN is overseeing a fetch/push operation, it needs to receive the fetch/push request

from the sender and forward the request to the receiver. However, the issue is that the GCN

cannot forward the requests directly to the receiver. We have explained earlier how the GCN

and the Debugger Dataframes in the application nodes use the GoT programming model to
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coordinate with each other using shared debugger objects and that the GoT model enforces a

server-client topology. Due to this, the GCN, which is the server in this case, cannot forward

the request to the receiver node directly. So, each WrappedDataframe needs a separate thread

to keep pulling changes from the GCN to detect any new respond to push/respond to fetch

objects.

6.4 Debugger Types

The definition of PushOp - the debugger type for the push operation is shown in listing

6.1. The state attribute is used by the the application node and the GCN to coordinate

the execution of the operation. The push operation has four stages - Read Changes, Send

Changes, Wait for confirmation from receiver and Garbage collect. The GCN instructs the

node to start the execution of a specific stage by seting state to an appropriate value. After

the stage is complete, the node lets the debugger know that that the execution of the stage is

complete by setting state to the corresponding value .

The node attribute stores the application name. A push operation implies sending state

changes from a particular start version to an end version (which is the head of the version

graph at the sender node). The fromVersion and toVersion store the version IDs for the start

version and the end version respectively. The delta stores the actual state changes from the

fromVersion to the toVersion in binary format.

1 class PushOp :
2
3 o id = primarykey ( str )
4
5 # Log i s t i c s
6 sender_node = dimension ( str )
7 rece iver_node = dimension ( str )
8 s t a t e = dimension ( int )
9 # I n i t i a l pay load
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10 fromVersion = dimension ( str )
11
12 # Response to r e que s t
13 toVers ion = dimension ( str )
14 de l t a = dimension ( bytes )

Listing 6.1: PushObj

6.5 Example: Controlling A Push Operation

To illustrate the interaction between the GCN and application nodes in detail, Fig 6.3 shows

the sequence diagram for a Push operation in debug mode. When a node A decides to push

changes to another node B, it invokes the push API as usual. The WrappedDataframe creates

an object of the debugger typePushOp, sets the relevant attributes, adds it to Debugger

Dataframe, commits and pushes the changes to the GCN. The WrappedDataframe then waits

till the GCN provides permission to start the push operation. The GCN in turn keeps

checking its dataframes. When GCN checksout the dataframe for Node A and detects the

PushOp object, it sets its state attribute to Start. Node A gets the modified object when

it next pulls changes from the GCN, checks that state is set to Start and starts the push

operation accordingly. It fetches the changes from its version graph, puts the changes i.e. the

state change delta in the PushOp object’s payload attribute. It then commits the updates

and pushes the updates to GCN.

Next, the GCN asks node B to accept the changes. The GCN does this by initializing an

object of the type AcceptPushOp. The GCN gets the state delta from the payload of the

PushOp object, puts the delta in the payload of the AcceptPushOp object and commits the

changes. On detecting the AcceptPushOp object, the Node B applies the state delta to its

version graph on receiving the AcceptPushOp object and sets the AcceptPushOp object’s state

to AcceptPushComplete.
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Figure 6.3: Sequence Diagram for a Push operation in Debug mode

The GCN then sets the state of the both the objects to GCStart which is a signal to the

nodes to start garbage collection on their respective version graphs. When garbage collect is

complete, the nodes set the status of the objects to GCComplete which the GCN takes to

mean that the operation is complete and that the PushOp and AcceptPushOp objects can be

deleted from their respective dataframes.

6.6 Modes of Operation

GoTcha has two modes of operation - interactive mode and free-run mode. We have seen

both the modes in the examples in the previous section. In the interactive mode, the user

executes the application step by step, pausing at each step to inspect the state. The Next

Step button in the version history page of the GoTcha UI lets the user run GoTcha in the
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interactive mode. In the free-run mode, the user does not control the execution step by step

but lets it run freely till the end or till a condition become true. The breakpoint functionality

available in the network topology page of the UI enables the user to run GoTcha in the

free-run mode.

As discussed in section 6.2, GCN controls the execution of each dataframe operation. In the

interactive mode, the GCN executes a step on receiving the Execute Next Step instruction

from the user, then waits for the next Execute Next Step instruction and so on. In this way,

the user is able to run the application step-by-step.

In the free-run mode, the GCN executes one step after another without waiting for instruction

from the user. If a conditional breakpoint has been set, at each step, the GCN loops

through all the dataframes(if the breakpoint specifies all)or checks a specific dataframe(if the

breakpoint mentions a particular dataframe)and evaluates the condition. If the breakpoint

evaluates to true, its pauses the execution.

6.7 Implementation

We describe the implementation of GoTcha briefly here.

UI: GoTcha’s UI is written in basic HTML, CSS and Javascript. The dagred3.js 1library is

used for rendering the graphs for network topology and version history.

Backend: GoTcha’s backend is currently implemented in Python3. We use the Flask web

application framework 2 for a light-weight web server.
1https://github.com/dagrejs/dagre-d3
2https://palletsprojects.com/p/flask/
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6.8 Experiment

To estimate the overhead that GoTcha imposes on a system, below experiments were per-

formed.

Experiment 1: A program where a node generates a certain number of objects and exits,

was run, see Listing 6.2. The program was run in two modes - using GoTcha and without

GoTcha(normal mode). The number of objects the node generates before stopping was varied

across executions. The time taken for the node to finish producing all the objects was noted.

The number of objects the node produces is equal to the number of commit operations the

program does. The results are shown in Fig 6.4.

Experiment 2: A program where multiple producers are producing objects and a consumer

is consuming the objects was run with GoTcha and without GoTcha,see Listing 6.3. The

time taken till the consumer receives all the objects was noted. The number of objects was

kept fixed across executions. The number of nodes was varied across executions. The results

are shown in Fig 6.5.

The experiments were run on a physical machine with a dual-core 3.07 GHz Intel(R) Xeon(R)

processor with 125 GB of RAM.

Analysis: From experiment 2, we observe that the GoTcha puts a significant overhead

on the normal execution of the program and that this overhead increases steeply with the

increase in the number of nodes. This is not surprising since GoTcha has a centralized design

and increasing the number of nodes implies increasing the number of concurrent dataframe

operations happening in the system. More and more operations get queued up at the GCN

which can only process them sequentially. From experiment 1, we observe that the overhead

also increases with the increase in the number of objects which is also expected as the increase

in the number of objects implies increase in the number of dataframe operations being done
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Figure 6.4: Results for experiment 1

in the system.

1 @pcc_set
2 class Foo :
3 i = primarykey ( int )
4
5 def __init__( s e l f , i ) :
6 s e l f . i = i
7
8 def __str__( s e l f ) :
9 return "Foo_"+ str ( s e l f . i )

10
11 def producer ( df ) :
12 s t a r t = None
13 count = 0
14 while count < numObjects :
15 df . add_one (Foo , Foo ( count ) )
16 df . commit ( )
17 count += 1
18 producer = Node ( producer , Types=[Foo ] )
19 producer . start_async ( )
20 producer . j o i n ( )

Listing 6.2: Experiment 1

1 def producer ( df , i , numProducers ) :
2 for i in range ( i , numObjects , numProducers ) :
3 df . add_one (Foo , Foo ( i ) )
4 df . commit ( )
5 df . push ( )

60



Figure 6.5: Results for experiment 2

6
7 def consumer ( df , s t a r t ) :
8 f o o s = l i s t ( )
9 while True :

10 df . checkout ( )
11 f oo s = df . read_al l (Foo )
12 i f len ( f o o s ) >= numObjects :
13 break

Listing 6.3: Experiment 2

6.9 GoTcha: Achieving the goals

In Section 3, we describe the fundamental goals that an interactive debugger must achieve.

The debugger must expose to the user all forms of state changes in the application while

minimizing the interference in the natural flow of execution, and also provide the history

of execution to the user. In this section, we discuss how GoTcha meets these fundamental
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Table 6.2: Mapping the primitives of GoT to the types of State changes

Type of state change GoT Primitives
Change in local state Commit, Checkout
Inter-node state transfer Push, Respond to Fetch
Reconciliation of states Fetch, Respond to Push,

Commit, Checkout

requirements.

Observing State Changes

There are three forms of state changes present in a distributed system that are relevant to an

interactive debugger: state changes at a node due to local execution, transfer of state between

nodes, and the reconciliation of the state received via transmission and the local state at each

node. Table 6.2 maps the GoT primitives to the type of state change that it facilitates.

Since GoTcha intercepts each of these GOT primitives, it is able to let the user observe all

the three types of state changes. We have shown through examples how GoTcha exposes all

the three types of state changes– see sections 5.2, 5.3, 5.4.

Controlling the Flow of Execution

GoTcha follows the centralized debugger design explained in Section 6.1. The central

component, GCN, takes control of all GoT primitives that read or modify the version history.

This means that even commit and checkout primitives, which are normally local operations,

are also routed through the GCN. Control over the execution of the changes to the version

history is given to the user. The user can reorder and interleave requests that have to be

processed and can explore possible execution variations, as shown in section 5.6.

Observing History As discussed earlier in section 3.1.3, an interactive debugger needs to

provide the history of execution to the user. The history of execution contains the sequence

of operations and the resulting state changes from the beginning of execution till the current
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state.

GoTcha shows this information to the user through the version history page. All the previous

operations that have happened at the node are listed in the PREVIOUS section while the

user can (mostly) infer the corresponding state changes from the version history graph. The

version history graph represents a condensed form of the state change history as the version

graph is garbage-collected and obsolete versions are deleted after each operation. So, a version

graph might not contain all the state changes that have happened since the beginning of

execution till that point. But it does encapsulate valuable information for backtracking from

an erroneous state to its origin - a sequence of states from the beginning to the current state,

even if some intermediate states are missing.
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Chapter 7

Future Work and Conclusion

7.1 Future Work

We would like to explore several avenues of future work. A brief description of each is provided

below.

7.1.1 Decentralized Design

GoTcha leverages its centralized design to control the flow of the execution of the system. All

the operations are routed through the debugger providing the debugger with complete control

over the system. But this becomes a disadvantage in large systems due to two reasons. First,

the execution of the application in the debug mode becomes slower as each operation needs

to go through the debugger. Time taken to hit the conditional breakpoints also increases,

potentially adversely affecting the user experience. Second, it becomes increasingly hard to

manually simulate the different runs of the system. As mentioned earlier, GoTcha converts a

concurrent distributed system into a sequential system in order to be able to control each
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step of the execution. In order to compensate for the lost concurrency, GoTcha provides the

user with tools for reordering operations. We leave it to the user to manually explore all the

different execution paths of the system using these tools. But manual exploration of all the

different permutations of operations becomes increasingly difficult and tedious as the size of

the system increases. In the future, we would like to explore a different trade-off between

control and concurrency, and explore a decentralized version of GoTcha where the debugger

doesn’t control each node directly, and the debugger needs to issue a stop to each node over

the network to pause execution.

7.1.2 Rollbacks

We would like to extend GoTcha to support rollbacks. This is possible as we have the version

history graph and we can go back to a previous version by reverting to the state encapsulated

by that previous version. It is important to note that by doing this, state would be rolled

back for the version history only, the local execution would not be rolled back.

7.1.3 Graph Visualization

GoTcha’s UI in its current version functions well with a limited number of nodes. However,

issues arise as the number of nodes in the system increase. The UI finds it hard to render the

network topology or the version graph if the system has a large number of nodes. We would

like to incorporate advanced graph visualization techniques in order to make the UI scalable.
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7.1.4 Breakpoints

The current implementation supports only a rudimentary conditional breakpoint functionality.

A user needs to input Python code as breakpoint. This leaves the system open to injection

attacks. We would like to remove this vulnerability by implementing input-checking. We

would also like to enhance the basic breakpoint functionality by supporting advanced querying

and search techniques like regex.

7.2 Conclusion

Debugging distributed systems is difficult - interactive debugging, even more so. In this

thesis, I presented GoTcha, an interactive debugger for distributed systems based on the

GoT programming model. I discussed the high-level goals of an interactive debugger for

distributed systems and explained how GoTcha achieves these goals through a series of usage

examples. I described the detailed architecture and implementation of GoTcha, and ended

with a discussion on how GoTcha can be extended in the future.
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