## UC Berkeley UC Berkeley Electronic Theses and Dissertations

### Title

The Faint, the Poor, and the Steady: studies of low-luminosity, metal-poor, and non-pulsating populations of high-mass X-ray binaries

### Permalink

https://escholarship.org/uc/item/3qr3h2cj

## Author

Fornasini, Francesca Maria

# **Publication Date** 2016

Peer reviewed|Thesis/dissertation

The Faint, the Poor, and the Steady: studies of low-luminosity, metal-poor, and non-pulsating populations of high-mass X-ray binaries

By

Francesca Maria Fornasini

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

 $\mathrm{in}$ 

Astrophysics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge: Professor Mariska Kriek, Co-chair Dr. John Tomsick, Co-chair Professor Joshua Bloom Professor Steven Boggs Professor Aaron Parsons

Fall 2016

The Faint, the Poor, and the Steady: studies of low-luminosity, metal-poor, and non-pulsating populations of high-mass X-ray binaries

> Copyright 2016 by Francesca Maria Fornasini

Abstract

The Faint, the Poor, and the Steady: studies of low-luminosity, metal-poor, and non-pulsating populations of high-mass X-ray binaries

by

Francesca Maria Fornasini

Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Mariska Kriek, Co-chair Dr. John Tomsick, Co-chair

High-mass X-ray binaries (HMXBs) consist of a black hole or neutron star accreting material from a high-mass stellar companion. Although these systems are very rare, with only about 100 having been discovered in the Milky Way Galaxy, they provide crucial insights into the evolution of high-mass stars and may have played an important role in the early Universe, heating the gas in the intergalactic medium and facilitating its reionization by the ultraviolet light produced by the first stars and galaxies. The advent of gravitational wave astronomy further motivates a more thorough understanding of HMXB populations, since HMXBs are the likely progenitors of many of the double compact binaries whose mergers will be detected by gravitational wave observatories. This dissertation presents three studies of HMXB populations, addressing open questions about the faint end of the HMXB luminosity function, the metallicity dependence of HMXB evolution, and the nature of compact objects in non-pulsating HMXBs.

In order to identify low-luminosity HMXBs and study their properties and Galactic number density, we surveyed a square-degree region in the direction of the Norma spiral arm with the *Chandra* and *NuSTAR* X-ray telescopes. We discovered three low-luminosity HMXB candidates, all of which have main-sequence Be/B-type counterparts and X-ray luminosities equal to 0.1 - 1 solar luminosities. The *Chandra* and *NuSTAR* surveys of the Norma region also provided the opportunity to study other low-luminosity X-ray populations in the Galaxy. We found that the majority of sources detected at energies above 2 keV are cataclysmic variables (CVs), which likely dominate the hard X-ray component of the Galactic Ridge X-ray Emission. The CV candidates in the Norma region have plasma temperatures of kT = 10 - 20 keV, whereas the CVs found in similar surveys of the Galactic Center region have temperatures of kT = 20 - 50 keV. The lower temperatures of Norma CVs may result

from a significant number of them being nonmagnetic CVs, polars, or symbiotic binaries whereas the Galactic Center CVs are likely dominated by intermediate polars.

The second part of this dissertation discusses the X-ray emission of star-forming galaxies at redshifts between z = 1.4 and z = 2.6. Simulated models of HMXB populations predict that luminous HMXBs should be more numerous in low-metallicity environments. Studies of nearby galaxies have found an excess of luminous HMXBs in very metal-poor blue compact dwarf galaxies, and it has been suggested that the observed increase of the X-ray luminosity per star formation rate (SFR) of star-forming galaxies at higher redshifts is a result of the metallicity dependence of HMXBs. In order to test this hypothesis, we divided a sample of high-redshift galaxies from the MOSDEF survey into different metallicity bins, and stacked the X-ray data from deep *Chandra* extragalactic surveys to measure the average X-ray luminosity of the galaxies in each bin. Our preliminary results confirm the increase of the X-ray luminosity per SFR with redshift but do not find a significant correlation between the X-ray luminosity per SFR and the metallicity of galaxies.

The third part of this dissertation investigates the nature of the compact object in a non-pulsating HMXB. X-ray pulsations provide strong evidence that an HMXB hosts a neutron star (NS), but the absence of pulsations does not rule out the possibility that an HMXB hosts a NS. Using XMM-Newton and NuSTAR observations of IGR J18214-1318, we study the timing and spectral properties of this supergiant HMXB in detail. Our analysis rules out the presence of pulsations with periods shorter than an hour and detects an exponential cutoff to the power-law spectrum of the source with e-folding energy lower than 25 keV. This low cutoff energy indicates that the compact object in this HMXB is most likely a NS. This study exemplifies the powerful diagnostics provided by the combination of XMM-Newton and NuSTAR observations for the identification of compact objects in HMXBs.

For Michele.

"There are stars whose light reaches Earth long after they have disintegrated and are no more. And there are people whose scintillating memory lights the world after they have passed from it. These lights, which shine brightest in the darkest night, illumine for us the path." — Hannah Senesh

# Contents

| Li | st of | Figures                                                                                                                                       | v          |
|----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Li | st of | Tables                                                                                                                                        | vii        |
| A  | cknov | vledgments                                                                                                                                    | /iii       |
| 1  | Intr  | oduction                                                                                                                                      | 1          |
|    | 1.1   | High-Mass X-ray Binaries                                                                                                                      | 1          |
|    |       | 1.1.1 Classes of HMXBs                                                                                                                        | 3          |
|    |       | 1.1.2 X-Ray Properties of HMXBs                                                                                                               | 4          |
|    | 1.2   | HMXBs in a Broader Astrophysical Context                                                                                                      | 7          |
|    |       | 1.2.1 HMXBs and the Evolution of High-Mass Stars                                                                                              | 7          |
|    |       | 1.2.2 The Impact of HMXBs on Early Galaxies and the Epoch of Reionization                                                                     | 9          |
|    | 1.3   | Other Galactic X-ray Populations                                                                                                              | 10         |
|    |       | 1.3.1 Accreting Binaries                                                                                                                      | 10         |
|    |       | 1.3.2 Stellar Sources and Isolated Compact Objects                                                                                            | 12         |
|    | 1.4   | X-ray Focusing Telescopes                                                                                                                     | 14         |
|    |       | 1.4.1 <i>Chandra</i>                                                                                                                          | 14         |
|    |       | 1.4.2 <i>XMM-Newton</i>                                                                                                                       | 17         |
|    |       | $1.4.3  NuSTAR \dots \dots$             | 17         |
|    | 1.5   | Open Questions Addressed by this Dissertation                                                                                                 | 19         |
|    |       | 1.5.1 The faint: How many low-luminosity HMXBs exist in our Galaxy?<br>What types of sources dominate the Galactic ridge hard X-ray emission? | 19         |
|    |       | 1.5.2 The poor: Are HMXB populations in metal-poor environments more                                                                          | 19         |
|    |       | luminous?                                                                                                                                     | 21         |
|    |       | 1.5.3 The steady: What is the nature of the compact objects in non-pulsating                                                                  | <i>4</i> 1 |
|    |       | HMXBs?                                                                                                                                        | 21         |
| 2  | The   | Faint                                                                                                                                         | 23         |
| -  | 2.1   | Searching for low-luminosity HMXBs and identifying other faint Galactic X-ray                                                                 | -0         |
|    | 2.2   | populations                                                                                                                                   | 23<br>24   |

|   |     | 2.2.1   | Introduction                                                       | 24  |
|---|-----|---------|--------------------------------------------------------------------|-----|
|   |     | 2.2.2   | Observations and Source Catalog                                    | 25  |
|   |     | 2.2.3   | Source Detection and Localization                                  | 27  |
|   |     | 2.2.4   | Aperture photometry                                                | 34  |
|   |     | 2.2.5   | X-ray Variability                                                  | 38  |
|   |     | 2.2.6   | Infrared Counterparts                                              | 41  |
|   |     | 2.2.7   | Quantile Analysis                                                  | 43  |
|   |     | 2.2.8   | Spectral Analysis                                                  | 44  |
|   |     | 2.2.9   | Discussion of NARCS X-ray Populations                              | 54  |
|   |     | 2.2.10  | Computing the Number-Flux Distribution                             | 61  |
|   |     | 2.2.11  | The Number-Flux $(\log N - \log S)$ Distribution                   | 66  |
|   |     | 2.2.12  | Comparison to Expectations Based on Previous Surveys               | 70  |
|   |     | 2.2.13  | · ·                                                                | 73  |
|   | 2.3 | The $N$ | <i>uSTAR</i> Norma Arm Region Survey                               | 75  |
|   |     | 2.3.1   | Introduction                                                       | 75  |
|   |     | 2.3.2   | Observations                                                       | 76  |
|   |     | 2.3.3   | NuSTAR Data Processing and Mosaicking                              | 77  |
|   |     | 2.3.4   | Source Detection                                                   | 86  |
|   |     | 2.3.5   | Detection Thresholds and Source Selection                          | 88  |
|   |     | 2.3.6   | Aperture Photometry                                                | 94  |
|   |     | 2.3.7   | X-ray Variability                                                  | 99  |
|   |     | 2.3.8   |                                                                    | 103 |
|   |     | 2.3.9   |                                                                    | 105 |
|   |     | 2.3.10  | Spectral Analysis                                                  | 109 |
|   |     | 2.3.11  | Classification of <i>NuSTAR</i> Sources                            | 117 |
|   |     | 2.3.12  | Survey Sensitivity                                                 | 128 |
|   |     | 2.3.13  | The $\log N$ - $\log S$ Distribution                               | 129 |
|   |     | 2.3.14  | Comparison of the $NuSTAR$ Populations in the Norma Region and the |     |
|   |     |         | Galactic Center                                                    | 133 |
|   |     | 2.3.15  | Conclusions                                                        | 134 |
|   | 2.4 | HMXE    | 3 Candidates Discovered in the Norma Arm Region Surveys            | 136 |
|   |     | 2.4.1   | Properties of HMXB Candidates                                      | 136 |
|   |     | 2.4.2   | Prospects for Constraining the HMXB Luminosity Function            | 138 |
|   | 2.5 | Summ    | ary and Future Work                                                | 141 |
| 3 | The | Poor    |                                                                    | 143 |
|   | 3.1 | Investi | gating the metallicity dependence of HMXB populations              | 143 |
|   | 3.2 | Data    | · · · · · · · · · · · · · · · · · · ·                              | 145 |
|   |     | 3.2.1   | The MOSDEF Survey                                                  | 145 |
|   |     | 3.2.2   | Chandra Extragalactic Surveys                                      | 147 |
|   |     | 3.2.3   | Galaxy Sample Selection                                            | 148 |
|   | 3.3 | X-ray   | Stacking Analysis                                                  | 150 |
|   |     |         |                                                                    |     |

|    | $\begin{array}{c} 3.4\\ 3.5\end{array}$ | Preliminary Results                                                    | $\begin{array}{c} 155 \\ 160 \end{array}$ |
|----|-----------------------------------------|------------------------------------------------------------------------|-------------------------------------------|
| 4  | The                                     | Steady                                                                 | 163                                       |
|    | 4.1                                     | Investigating the nature of the compact object in a non-pulsating HMXB | 163                                       |
|    | 4.2                                     | XMM-Newton and NuSTAR Observations of IGR J18214-1318                  | 165                                       |
|    |                                         | 4.2.1 <i>NuSTAR</i>                                                    | 166                                       |
|    |                                         | 4.2.2 XMM-Newton                                                       | 168                                       |
|    | 4.3                                     | Timing Analysis                                                        | 168                                       |
|    | 4.4                                     | Spectral Analysis                                                      | 173                                       |
|    | 4.5                                     | Discussion                                                             | 180                                       |
|    | 1.0                                     | 4.5.1 The physical origin of the soft excess                           | 180                                       |
|    |                                         | 4.5.2 The compact object in IGR J18214-1318                            | 181                                       |
|    |                                         | 4.5.3 Comparison to other HMXBs                                        | 181                                       |
|    | 4.6                                     | Summary                                                                | 184                                       |
|    | 1.0                                     |                                                                        | 101                                       |
| 5  | Con                                     | clusions and Future Outlook                                            | 186                                       |
|    | 5.1                                     |                                                                        | 186                                       |
|    | 5.2                                     | Low-luminosity Galactic X-ray populations                              | 186                                       |
|    | 5.3                                     | The metallicity dependence of HMXBs                                    | 187                                       |
|    | 5.4                                     | Compact objects in non-pulsating HMXBs                                 | 188                                       |
|    | 5.5                                     | Future outlook                                                         | 189                                       |
| Bi | bliog                                   | raphy                                                                  | 190                                       |
| Ы  | bilog                                   | rapny                                                                  | 130                                       |
| Α  | NA                                      | RCS Catalog Tables                                                     | <b>204</b>                                |
|    | A.1                                     | Detection and Localization Table                                       | 204                                       |
|    | A.2                                     | Photometry Table                                                       | 240                                       |
|    | A.3                                     | Table of Infrared Counterparts                                         |                                           |
| в  | Add                                     | itional Chandra and NuSTAR Spectra of Norma Region Sources             | 304                                       |

# List of Figures

| Cygnus X-1                                                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | •                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X-ray focusing mirrors                                                                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chandra telescope schematic                                                                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $NuSTAR$ telescope schematic $\ldots \ldots \ldots$ |                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                      | •                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chandra mosaic image of the Norma Arm region.                                                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Modified aperture regions                                                                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Histogram of <i>Chandra</i> source counts                                                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Extended sources in the Norma Arm region                                                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Variability amplitude of <i>Chandra</i> sources                                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Color-magnitude diagram of near-IR counterparts                                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Quantile properties of <i>Chandra</i> sources                                                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Power-law model quantile grid                                                                                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chandra spectra of bright sources                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Stacked spectra of quantile groups                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NARCS sky coverage                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Recovery fraction of detection method                                                                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Examples of flux probability density distributions                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LogN-logS distribution of NARCS sources                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LogN-logS distributions of quantile groups                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Predicted $\log N - \log S$ distributions of different X-ray populations                                           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NuSTAR mosaic image and exposure map of the Norma Arm region .                                                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Trial map of the <i>NuSTAR</i> Norma Arm Region survey                                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Distribution of trial map values                                                                                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Definition of tier 1 and tier 2 sources                                                                            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                        | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lightcurve of NNR 15                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Chandra follow-up observations of NuSTAR discoveries                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | •                      | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Quantile diagrams of <i>NuSTAR</i> sources                                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | •                      | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Example Chandra and NuSTAR spectra of Norma region sources                                                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                        | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                    | X-ray focusing mirrors | X-ray focusing mirrors $\dots$ $Chandra$ telescope schematic $\dots$ $NuSTAR$ telescope schematic $\dots$ $NuSTAR$ telescope schematic $\dots$ $NuSTAR$ telescope schematic $\dots$ $Nodified aperture regions \dots Histogram of Chandra source counts \dots Extended sources in the Norma Arm region \dots Variability amplitude of Chandra sources \dots Lightcurves of periodic Lightaurves \dots Lightaurves \dots Lightaurves of Lightaurves \dots Lightaurves \dots$ | X-ray focusing mirrors | X-ray focusing mirrorsChandra telescope schematicNuSTAR telescope schematicNuSTAR telescope schematicModified aperture regionsHistogram of Chandra source countsExtended sources in the Norma Arm regionVariability amplitude of Chandra sourcesLightcurves of periodic Chandra sourcesColor-magnitude diagram of near-IR counterpartsQuantile properties of Chandra sourcesPower-law model quantile gridBremsstrahlung model quantile gridQuantile diagram locations of soft and hard Chandra sourcesChandra spectra of bright sourcesStacked spectra of quantile groupsNARCS sky coverageRecovery fraction of detection methodExamples of flux probability density distributionsLogN-logS distributions of quantile groupsPredicted logN-logS distributions of different X-ray populationsNuSTAR mosaic image and exposure map of the Norma Arm regionTrial map of the NuSTAR Norma Arm Region surveyDistribution of trial map valuesDefinition of trial map values <td>X-ray focusing mirrors</td> <td>X-ray focusing mirrors</td> <td><math display="block">      Cygnus X-1 \\ X-ray focusing mirrors \\ Chandra telescope schematic \\ NuSTAR telescope schematic \\ NuSTAR telescope schematic \\ Chandra mosaic image of the Norma Arm region. \\ Modified aperture regions \\ Histogram of Chandra source counts \\ Extended sources in the Norma Arm region \\ Variability amplitude of Chandra sources \\ Lightcurves of periodic Chandra sources \\ Lightcurves of periodic Chandra sources \\ Color-magnitude diagram of near-IR counterparts \\ Quantile properties of Chandra sources \\ Color-magnitude diagram of near-IR counterparts \\ Quantile properties of Chandra sources \\ Power-law model quantile grid \\ Bremsstrahlung model quantile grid . \\ Quantile diagram locations of soft and hard Chandra sources \\ Chandra spectra of bright sources . \\ Stacked spectra of pusper sources . \\ Stacked spectra of quantile groups . \\ NARCS sky coverage \\ Recovery fraction of detection method \\ Examples of flux probability density distributions \\ LogN-logS distributions of quantile groups . \\ Predicted logN-logS distributions of udifferent X-ray populations \\ NuSTAR mosaic image and exposure map of the Norma Arm region . \\ Trial map of the NuSTAR Norma Arm Region survey \\ Distribution of trial map values \\ Definition of trial map values \\ Definition of trial map values \\ Definition of trial map values \\ Chandra follow-up observations of NuSTAR spectra of Norma region sources \\ Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ \\ Example Chandra and NuSTAR spectra of Norm</math></td> | X-ray focusing mirrors | X-ray focusing mirrors | $      Cygnus X-1 \\ X-ray focusing mirrors \\ Chandra telescope schematic \\ NuSTAR telescope schematic \\ NuSTAR telescope schematic \\ Chandra mosaic image of the Norma Arm region. \\ Modified aperture regions \\ Histogram of Chandra source counts \\ Extended sources in the Norma Arm region \\ Variability amplitude of Chandra sources \\ Lightcurves of periodic Chandra sources \\ Lightcurves of periodic Chandra sources \\ Color-magnitude diagram of near-IR counterparts \\ Quantile properties of Chandra sources \\ Color-magnitude diagram of near-IR counterparts \\ Quantile properties of Chandra sources \\ Power-law model quantile grid \\ Bremsstrahlung model quantile grid . \\ Quantile diagram locations of soft and hard Chandra sources \\ Chandra spectra of bright sources . \\ Stacked spectra of pusper sources . \\ Stacked spectra of quantile groups . \\ NARCS sky coverage \\ Recovery fraction of detection method \\ Examples of flux probability density distributions \\ LogN-logS distributions of quantile groups . \\ Predicted logN-logS distributions of udifferent X-ray populations \\ NuSTAR mosaic image and exposure map of the Norma Arm region . \\ Trial map of the NuSTAR Norma Arm Region survey \\ Distribution of trial map values \\ Definition of trial map values \\ Definition of trial map values \\ Definition of trial map values \\ Chandra follow-up observations of NuSTAR spectra of Norma region sources \\ Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ Example Chandra and NuSTAR spectra of Norma region sources \\ \\ Example Chandra and NuSTAR spectra of Norm$ |

| 2.28 | Map of extended radio emission in the vicinity of NNR 8                                                                                                        | 120 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.29 | Sky coverage of the <i>NuSTAR</i> Norma Arm Region survey                                                                                                      | 130 |
| 2.30 | LogN-logS distribution of $NuSTAR$ Norma region sources                                                                                                        | 131 |
| 2.31 | Constraining the HMXB luminosity function                                                                                                                      | 140 |
| 3.1  | Redshift distribution of MOSDEF galaxy sample                                                                                                                  | 150 |
| 3.2  | Stellar mass versus metallicity of MOSDEF galaxies                                                                                                             | 151 |
| 3.3  | Star formation rate versus metallicity of MOSDEF galaxies                                                                                                      | 152 |
| 3.4  | $L_X/SFR$ versus galaxy metallicity                                                                                                                            | 156 |
| 3.5  | Redshift and SFR dependence of $L_X$ /SFR                                                                                                                      | 157 |
| 3.6  | $L_X/SFR$ versus stellar mass $\ldots \ldots $ | 159 |
| 4.1  | NuSTAR observation of IGR J18214-1318                                                                                                                          | 167 |
| 4.2  | XMM-Newton lightcurve of IGR J18214-1318                                                                                                                       | 169 |
| 4.3  | Leahy-normalized power spectrum                                                                                                                                | 170 |
| 4.4  | Red noise portion of rms power density spectrum                                                                                                                | 171 |
| 4.5  | Periodicity search in red noise portion of power spectrum                                                                                                      | 172 |
| 4.6  | Power-law model fit of XMM-Newton and NuSTAR spectra of IGR J18214-1318                                                                                        | 174 |
| 4.7  | Best-fit spectral models for IGR J18214-1318                                                                                                                   | 175 |
| 4.8  | Fe line emission in IGR J18214-1318 spectrum                                                                                                                   | 177 |
| 4.9  | Count rate and hardness ratio variations in different energy bands                                                                                             | 178 |
| 4.10 | Hardness ratio versus count rate                                                                                                                               | 179 |

# List of Tables

| 2.1  | Chandra Observations of the Norma Region                                                                                                                                               | 26  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.2  | Refined Astrometry of <i>Chandra</i> Observations                                                                                                                                      | 30  |
| 2.3  | Sample Chandra Catalog of Point and Extended Sources: Detection and Localization                                                                                                       | 31  |
| 2.4  | Sample Chandra Catalog of Point and Extended Sources: Photometry                                                                                                                       | 32  |
| 2.5  | Sample Chandra Catalog of Point and Extended Sources: Infrared Counterparts                                                                                                            | 33  |
| 2.6  | Aperture Region Definitions                                                                                                                                                            | 37  |
| 2.7  | Periodic Variability of <i>Chandra</i> Sources                                                                                                                                         | 41  |
| 2.8  | Spectral Fit Results for Individual Bright Sources                                                                                                                                     | 50  |
| 2.9  | Spectral Fit Results for Stacked Sources                                                                                                                                               | 52  |
| 2.10 | Spectral Comparison of Sources with and without IR Counterparts                                                                                                                        | 53  |
|      | / 021                                                                                                                                                                                  | 68  |
| 2.12 | Normalizations and Indices of $\log(N)$ - $\log(S)$ Distributions                                                                                                                      | 72  |
| 2.13 | $NuSTAR$ Observations of the Norma Arm Region $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$                                                                                | 79  |
| 2.14 | Archival <i>Chandra</i> observations used in this study                                                                                                                                | 83  |
| 2.15 | Chandra follow-up observations of NuSTAR transients                                                                                                                                    | 84  |
|      | Boresight Corrections                                                                                                                                                                  | 84  |
| 2.17 | NuSTAR Source List                                                                                                                                                                     | 91  |
|      | Photometry of <i>NuSTAR</i> Norma Region Sources                                                                                                                                       | 97  |
| 2.19 | X-ray Variability of <i>NuSTAR</i> Sources                                                                                                                                             | 101 |
| 2.20 | Properties of <i>Chandra</i> counterparts to <i>NuSTAR</i> discoveries                                                                                                                 | 103 |
| 2.21 | Spectral Fitting Results for <i>NuSTAR</i> Sources                                                                                                                                     | 112 |
|      | 1 0                                                                                                                                                                                    | 115 |
| 2.23 | Classification of $NuSTAR$ Norma Region Sources $\ldots \ldots \ldots$ | 127 |
| 4.1  | Observations of IGR J18214-1318                                                                                                                                                        | 166 |
| 4.2  | Parameters of Best-fit Spectral Models                                                                                                                                                 | 176 |
| A.1  | Chandra Catalog of Point and Extended Sources: Detection and Localization 2                                                                                                            | 207 |
| A.2  | Chandra Catalog of Point and Extended Sources: Photometry                                                                                                                              | 242 |
| A.3  | Chandra Catalog of Point and Extended Sources: Infrared Counterparts 2                                                                                                                 | 279 |

## Acknowledgments

This dissertation<sup>1</sup> is not merely the fruit of six years of work, but a testament to the support, mentorship, and education I have been fortunate to receive throughout my life. I want to express my gratitude to the vast number of people who have helped me to pursue my studies in astrophysics.

At the most practical level, my graduate research would not have been possible without funding and without X-ray observatories, so I would like to acknowledge the support I have received from the United States taxpayers. I am grateful to have received financial support from the National Science Foundation Graduate Research Fellowship, the University of California, Berkeley, and the National Aeronautics and Space Administration<sup>2</sup>. The scientific results in this thesis are based on observations made by the *Chandra X-ray Observatory*, the *Nuclear Spectroscopic Telescope Array*, the European Space Agency's *XMM-Newton*, the Keck Observatory, and the SOAR telescope at the Cerro-Tololo Inter-American Observatory<sup>3</sup>. All of these observatories receive public support, and I feel privileged to have been been able to use some of these resources to expand our knowledge of the Universe just a little further.

I owe a special debt of gratitude to my primary thesis advisor, John Tomsick. John – thank you for entrusting me with such a large and significant data set as soon as I started working with you, and for giving me the opportunity to be a part of an exciting, new mission through the NuSTAR science team. I really appreciate the time and effort you spent to guide me as a student, the patience with which you explained concepts and methods to me while I was still learning the ropes, and the feedback you provided at all stages of my research to make me a better scientist. I feel fortunate to have had you as mentor, and I look forward to our future collaborations.

My second advisor, Mariska Kriek, also deserves special recognition. During my fourth

<sup>&</sup>lt;sup>1</sup>This dissertation was typeset using the ucastrothesis  $\[mathbb{LATE}X\]$  template, courtesy of Peter Williams.

<sup>&</sup>lt;sup>2</sup>This work was partly supported by NASA under XMM Guest Observer grant NNX15AG31G and through Chandra Award Number G01-12068A issued by the Chandra X-Ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060.

<sup>&</sup>lt;sup>3</sup>Thank you to the numerous scientists and engineers involved in the development and operations of these observatories, and to those who helped create the software packages and data products that facilitate the analysis of data from these telescopes. This research has made use of software provided by the Chandra X-ray Center (CXC) in the application packages CIAO and Sherpa, as well as the *NuSTAR* Data Analysis Software (NuSTARDAS), which was jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). This work also made use of data products from observations made with ESO Telescopes at the Paranal Observatories under ESO programme ID 179.B-2002.

year, while I was preparing for my qualifying exam, I approached her with the idea for a research project to test the metallicity depedence of HMXBs. Even though this project was somewhat extraneous to her science interests, she agreed to work with me and became increasingly enthusiastic about the project; I hope to maintain that same openness to new research areas as I continue in my scientific career. Mariska – thank you for bringing me into the MOSDEF collaboration, and for providing with me with encouragement, advice, and perspective during the very stressful job application process.

During my graduate studies, I have enjoyed the support of additional mentors. Many thanks to Steve Boggs, Aaron Parsons, and Josh Bloom, who served on both my qualifying and thesis committees, providing valuable feedback on my dissertation projects. I also want to express my appreciation to the co-authors of my published papers for their insights and suggestions. In particular, I would like to thank Arash Bodaghee, Roman Krivonos, Farid Rahoui, Daniel Stern, Jaesub Hong, and Eric Gotthelf for the pieces of analysis they contributed, and the many useful discussions we had. I feel privileged to have had the opportunity to be both a student and a teaching assistant of Eugene Chiang, whose classes were meticulously crafted, peppered with humor, and among the most challenging I've taken. Eugene – thank you for pushing me to strive for excellence, and for sharing some of your favorite short stories and history of science books, to the delight of the English major in me.

I also want to thank all the staff members who have helped me to sort through administrative or technical problems, both thorny and mundane, especially Rayna Helgens, Nina Ruymaker, Bill Boyd, Lochland Trotter, and, most of all, Dexter Stewart. Dexter – not only are you an incredibly effective student affairs officer, but your beaming smile and personal engagement with each person make the department a much more cheerful, welcoming place.

I am very grateful for the research experiences I had prior to grad school, which inspired and prepared me to undertake this thesis research. I want to thank my undergraduate thesis research advisors, Seth Aubin and Irina Novikova, who taught me the fundamentals of carrying out scientific research, my REU program advisor, Lisa Kewley, who guided me through the research experience that convinced me I wanted to study astrophysics, and family friend Massimo Robberto, who let me shadow him for a few weeks at the Space Telescope Science Institute and work with *Hubble* data.

I would not have made it through grad school without the solid educational foundation and encouragement given to me by the many excellent teachers I had from elementary school through high school. To my high school physics teacher and mentor in the school of life, Fr. José Medina – thank you for introducing me to the challenge, frustration, and fascination that is the study of physics, and for showing me that, when it comes to both physics and the Mystery, there is joy to be found in the struggle. Many thanks are due to my high school math teachers, Mrs. Feinstein and Mrs. Haas, paragons of friendship who imparted memorable life advice along with fundamental math skills, including the importance of taking mental health days which proved to be sound advice during grad school. I feel indebted to my high school English teacher Mrs. Mattingly, whom I try to emulate while I edit scientific papers in order to imbue them with grace of form in addition to accuracy of content. I am also very grateful to my third grade teacher Mrs. Stopak, who showered me with patience and affection while I was struggling to learn English during my first year in the US, and my fourth grade teacher Mr. Millner, who introduced me to the fun of science experiments.

Throughout grad school, I was fortunate to belong to a tight-knit community of grad students. In particular, I want to thank Carolyn, Clio, Michelle, and Alex, with whom I shared an office at SSL as well as the daily frustrations and small victories of research, Aaron Lee, my "partner-in-crime" when it came to organizing publich outreach, teaching Astro 375, and discussing pedagogy, and Sedona Price, who patiently and expertly answered my questions when I started working in a new field. I feel especially lucky to have had wonderful classmates, whose support helped to stave off the attrition of grad school. Casey Stark and Erik Petigura, your friendship has been a beautiful, unexpected gift, and Garrett "Karto" Keating, I never imagined that my most significant discovery in grad school would be my spouse (but more on that later). I treasure the experiences we've shared together (and with "classmates-in-law" Alana and Lindsay), especially those spent around a grill, a table, or a brewing bucket of hops, and I look forward to sharing many more, despite the geographical distances that may separate us. After all, what are a few thousand miles when you've studied the Universe together?

Finally, I am filled with gratitude for my family and friends who are sources of constant love, unwavering support, and often-needed perspective. In particular, to my friends Ana Carolina, Juliet, Maria Elena, Jorge Nicolas, and Alejandra – thank you for being sources of inspiration, captive audiences, companions in difficulties, fellow wonderers<sup>4</sup>, and anchors to what makes life meaningful. To Zia Lucia, Nonna Ninetta, and Nonna Evelina – a thousand thanks for your love and for being so proud of me that you periodically Google search my name to keep track of my accomplishments, no matter how small.<sup>5</sup> To my brother Giachi – thanks for keeping me grounded and level, as any good engineer should. To Mi and Papi, who always want to see what's on the other side of that ridge and passed on that curiosity to me – I cannot thank you enough for all the ways you've supported me and guided me through the years, which are too many to enumerate. I want to thank you especially for prioritizing my education and for taking me to so many national parks while I was growing up where I could experience wonder in front of the beauty and vastness of the natural world: I will never forget when we visited the canyons in Arizona and Utah, where, for the first time, I saw a night sky so full stars that it was difficult to identify the constellations. Last but certainly not least, I am profoundly grateful to my husband, Garrett, brilliant radio astronomer, expert grill master, thoughtful spouse, and awesome friend. Even before we were dating, you were my favorite person to talk to about statistics – thank you for all the conversations that contributed to this thesis. But even more so, thank you for rejoicing with me in the ups, supporting me in the downs, and re-energizing me in the flats I experienced over the past six years, and for bringing laughter to all of them. Above all, thank you for showing me, with a certainty greater than statistics can provide, that this adventure is worth the risk.

<sup>&</sup>lt;sup>4</sup>Not a typo.

<sup>&</sup>lt;sup>5</sup>Per Zia Lucia, Nonna Ninetta, e Nonna Evelina – grazie infinite per il vostro amore e per essere così fiere di me che cercate per il mio nome sull'internet per tenere conto di tutti i miei successi, anche se siano piccoli.

## Chapter 1

## Introduction

## 1.1 High-Mass X-ray Binaries

In 1962, Riccardo Giacconi, Bruno Rossi, and their collaborators launched a rocket carrying three large area Geiger counters and detected the first source of X-rays outside the solar sytem (Giacconi et al. 1962). Their discovery marks the beginning of X-ray astronomy. The bright X-ray source they detected, Scorpius X-1, was eventually identified as a neutron star accreting material from a low-mass stellar companion ( $M \leq 1M_{\odot}$ ; Lamb 1989). Such systems, containing either a neutron star (NS) or black hole (BH) accreting from a low-mass companion, are referred to as low-mass X-ray binaries (LMXBs). Giacconi et al. (1962) also suggested that a secondary peak of X-ray emission was located in the direction of the Cygnus constellation, although its count rate was too low to ascertain whether it was likely to be a single well collimated source or an anisotropy of the diffuse X-ray background. Using data gathered by Geiger counters on two rocket flights in 1964, Bowyer et al. (1965) identified two discrete sources in the direction of the Cygnus constellation. The brighter of the two, Cygnus X-1, was later determined to be black hole with a mass of  $14.8 \pm 1.0M_{\odot}$  accreting material from a supergiant stellar companion (Bolton 1975; Bahcall 1978; Orosz et al. 2011 and references therein). An artistic illustration of Cyg X-1 is shown is Figure 1.1.

During the fifty years since the discovery of Cyg X-1, several hundred additional high-mass X-ray binaries (HMXBs) have been discovered. HMXBs consist of a NS or BH accretor and a high-mass stellar donor ( $M \gtrsim 10 M_{\odot}$ ). It is estimated that about 1% of binaries consisting of two main-sequence high-mass stars will evolve into HMXBs (Postnov & Yungelson 2014). In order for a high-mass binary to become an HMXB, the binary must survive two critical evolutionary phases. The first critical phase occurs when the more massive star in the system, the primary, expands into a supergiant. At this point, in binaries with short initial orbital periods, the primary will engulf the secondary, forming a common envelope; the secondary will lose angular momentum due to frictional drag and spiral inwards. Depending on the binding energy of the envelope of the primary and the efficiency of the transfer of orbital energy into the envelope, the secondary may either unbind the envelope and end up as a close binary or it may continue to spiral inwards and merge with the primary (Ivanova et al. 2013).



*Figure 1.1: Left:* An optical image from the digitized sky survey of Cyg X-1, which is shown in the red box. *Right:* An artist's illustration of Cyg X-1, a black hole accreting via Roche-lobe overflow from a high-mass companion. During the high soft spectral state, the X-ray emission of BH HMXBs is dominated by the accretion disk. During the low hard spectral state, the X-ray emission is dominated by the jets and hot corona. (Credit: Optical - DSS; Illustration - NASA/CXC/M.Weiss)

About 25% of high-mass binaries are expected to merge together (Sana et al. 2012). The second critical phase occurs when the primary explodes as a supernova (SN). Only 4–10% of high-mass binaries are estimated to survive the core-collapse SN explosion depending on the amount of mass lost relative to the pre-SN binary mass and the strength of the kick imparted to the compact object due to an asymmetric explosion (Postnov & Yungelson 2014). Even if a binary survives both these phases, its orbit may be too wide for appreciable accretion onto the NS or BH to take place and be detected as an HMXB.

The HMXB phase typically starts  $\approx 4 - 40$  Myr after the formation of the high-mass binary and lasts  $\sim 10^7$  years (Iben et al. 1995; Bodaghee et al. 2012c; Antoniou & Zezas 2016). The donor stars in HMXBs tend to either be supergiant (Sg) O/B stars or Oe/Be stars; the latter are rapidly rotating main-sequence or giant O/B stars which exhibit one or more Balmer lines in emission arising from an outwardly diffusing gaseous disk often referred to as a decretion disk (Rivinius et al. 2013). The spectral type of the donor star and the type of compact object that an HMXB harbors impact the X-ray properties it displays. Therefore HMXBs are typically divided into different categories based on the classification of their binary components.

#### 1.1.1 Classes of HMXBs

In the Milky Way Galaxy, about 60% of the  $\approx 100$  known HMXBs have Be donors <sup>1</sup>, 35% have Sg donors, and 5% have main-sequence or giant stellar donors which are not Oe/Be stars (Liu et al. 2006; Walter et al. 2015). In the Large Magellanic Cloud (LMC), only 4 out of 40 HMXBs have Sg donors (Antoniou & Zezas 2016), and in the Small Magellanic Cloud (SMC), only one of  $\approx 100$  HMXBs has been identified as a Sg HMXB (Haberl & Sturm 2016). Since Sg HMXBs have shorter lifetimes than Be HMXBs, the different ratios of Sg/Be HMXBs in the Milky Way, LMC, and SMC point to differences in the ages of the most recent episodes of star formation in each galaxy (Antoniou & Zezas 2016). It has also been suggested that the production of HMXBs per star formation rate (SFR) is highest in the SMC and lowest in the Milky Way (Grimm et al. 2003; Antoniou & Zezas 2016), a trend which may driven by differences in the metallicities of these galaxies (Dray 2006).

The vast majority of HMXBs in the Milky Way and the Magellanic Clouds harbor neutron stars. In the Milky Way, there are three known BH HMXBs: Cyg X-1 and Cyg X-3<sup>2</sup> are Sg-BH HMXBs while MWC 656 is the only known Be-BH binary (Casares et al. 2014). In the Magellanic Clouds, there are three BH-Sg HMXBs: LMC X-1, LMC X-3, and SMC X-1 (Hutchings et al. 1983; Cowley et al. 1983; Bahcall 1978). While BH HMXBs are rare, Sg-BH binaries are among the most luminous HMXBs because they are short period systems where the supergiant companion is (or is close to) overflowing its Roche lobe overflow<sup>3</sup>, and thus the mass accretion rates in these systems are high compared to wind-fed systems. In contrast, the only known Be-BH binary has one of the lowest measured X-ray luminosities due to its wide orbit(Munar-Adrover et al. 2014).

Accretion onto the compact object in Sg HMXBs and Be HMXBs proceeds through different processes. Since most HMXBs possess NS accretors, we focus our description of accretion processes on NS binaries. In Sg HMXBs, the NS either accretes material directly from the stellar wind or from an accretion disk that is formed when the donor star overflows its Roche lobe (Chaty 2011). In most Be HMXBs, the NS is on a wide and eccentric orbit; as it reaches periastron, the NS passes near or through the dense decretion disk of the Be star and accretes mass (Reig 2011). Many Be HMXBs exhibit periodic X-ray outbursts where the X-ray flux increases by a factor of  $\sim 10$  as the NS passes through the decretion disk; these type I outbursts, caused by thermonuclear burning of accreted material on the NS surface, are followed by longer periods of low accretion rate or even quiescence as the NS continues along the remainder of its orbit (Reig 2011). In some cases, as the NS travels through the decretion disk, an accretion disk is formed around it which can persist into quiescence (Doroshenko et al. 2014), while in other systems, no accretion disk forms or it forms but dissipates during quiescence (Klus et al. 2014; Elshamouty et al. 2016).

<sup>&</sup>lt;sup>1</sup>Throughout this dissertation, HMXBs with Oe donor stars are included in the category of Be HMXBs.

<sup>&</sup>lt;sup>2</sup>The radio and X-ray variability of Cyg X-3 favors a microquasar nature for the compact object in this source, but the estimated mass of the compact object is too uncertain to definitively rule out a neutron star nature (Zdziarski et al. 2016).

<sup>&</sup>lt;sup>3</sup>The Roche lobe is the equipotential surface bounding the region around a star within which material is gravitationally bound to that star.

4

The differences in accretion processes and stellar wind properties between Sg and Be HMXBs are reflected in their distinct locations in the Corbet diagram, which presents the NS spin period  $(P_{spin})$  versus the binary orbital period  $(P_{orb})$  (Corbet 1984). Disk-fed Sg HMXBs have short spin and orbital periods of  $\lesssim 10$  seconds and  $\lesssim 3$  days. The spin and orbital periods appear to be anti-correlated for these HMXBs, but since only a few disk-fed Sg HMXBs have been identified, it is unclear whether this trend is a selection effect or the effect of torques tending to synchronize the spin and orbital periods (Corbet 1986). Wind-fed Sg HMXBs tend to have  $10 \lesssim P_{\rm spin} \lesssim 10^4$  s and  $3 \lesssim P_{\rm orb} \lesssim 60$  days, and they do not exhibit any correlation between their spin and orbital periods, as is expected when wind accretion is very inefficient at transferring angular momentum from the stellar wind to the NS (Chaty 2011). In contrast, the spin and orbital periods of Be HMXBs are positively correlated and span the ranges of  $1 \lesssim P_{\rm spin} \lesssim 10^3$  s and  $20 \lesssim P_{\rm orb} \lesssim 500$  days (Corbet 1984). Even though accretion in Be HMXBs is often wind-fed, the equatorial decretion disks of Be stars tend to have lower velocities and steeper density gradients than Sg winds, resulting in a more efficient transfer of angular momentum in Be HMXBs than Sg HMXBs (Waters & van Kerkwijk 1989). Since neutron stars in HMXBs have strong magnetic fields ( $B \sim 10^{12}$  G; Coburn et al. 2002), in order for matter from the stellar wind to accrete onto the NS, the pressure from the infalling material must exceed the centrifugal barrier posed by the magnetosphere, which corotates with the NS. If the angular velocity of the magnetosphere at the magnetospheric radius<sup>4</sup> is higher than the Keplerian angular velocity (which is an estimate of the angular velocity of the infalling material), the propeller mechanism will fling away the material, reducing the angular momentum of the NS. If the angular velociity of the magnetosphere is lower than the Keplerian angular velocity at the magnetospheric radius, the infalling material is accreted, increasing the angular momentum of the NS. Thus, in Be HMXBs, the NS spin evolves towards an equilibrium spin period (Davidson & Ostriker 1973; Illarionov & Sunyaev 1975).

#### 1.1.2 X-Ray Properties of HMXBs

The X-ray luminosity function (LF) of HMXBs has been studied down to 2–10 keV luminosity limits of  $L_X \sim 10^{34}$  erg s<sup>-1</sup> for Galactic HMXBs and  $L_X \sim 10^{36}$  erg s<sup>-1</sup> for extragalactic HMXBs (Lutovinov et al. 2013; Mineo et al. 2012; Voss & Ajello 2010; Grimm et al. 2002). The shape and slope of the HMXB LF appears to be consistent in different galaxies, while its normalization is correlated with the SFR of the galaxy and shows significant dispersion, hinting at its potential depedence on other galaxy properties such as metallicity (Mineo et al. 2012). The HMXB LF displays a break at  $\sim 10^{37} - 10^{40}$  erg s<sup>-1</sup> (Lutovinov et al. 2013; Mineo et al. 2012; the measured value of the break luminosity differs between studies depending on whether the sample of HMXBs is limited to persistent sources, and, if transient sources are included, how their average luminosities are calculated. The power-law

<sup>&</sup>lt;sup>4</sup>The magnetospheric radius is the distance from the NS at which the magnetic field pressure is equal to the ram pressure of the infalling material.

slope of the LF is measured to be -1.4 to -1.6 at luminosities below the break and > 2 above the break (Lutovinov et al. 2013; Mineo et al. 2012.

In some external galaxies, X-ray binaries with  $L_X > 10^{39}$  erg s<sup>-1</sup> have been detected; given that the Eddington luminosity<sup>5</sup> of a NS with a typical mass of  $1.4M_{\odot}$  is  $L_X \sim 10^{38}$  erg s<sup>-1</sup>, it was hypothesized that these sources, known as ultra-luminous X-ray sources (ULXs), are black hole systems. Many ULXs exhibit X-ray variability and spectral properties similar to those of Galactic BH binaries, and it is thought that most ULXs are X-ray binaries with stellar-mass compact objects accreting at super-Eddington rates, although some may host intermediate-mass BHs with masses of  $\sim 10^2 - 10^3 M_{\odot}$  (e.g., King et al. 2001; Walton et al. 2013; Walton et al. 2015; Brightman et al. 2016). However, periodic pulsations detected in M82 X-2 revealed that some ULXs harbor neutron stars (Bachetti et al. 2014), and it has since been argued that such systems may make up a significant fraction ( $\sim 10\%$ ) of ULXs (Fragos et al. 2015; King & Lasota 2016).

HMXBs display X-ray variability on a variety of timescales. On timescales of milliseconds to hours, they exhibit significant aperiodic variability resulting in red noise continuum components in their power spectra (Belloni & Hasinger 1990). Early models of the power-law red noise described it as shot noise associated with the superposition of short X-ray ourbursts (Terrell 1972), but these models failed to account for the breaks observed in the power spectra of some NS HMXBs as well as the variations of the noise properties with X-ray luminosity. Thus, a number of other hydrodynamic processes have been suggested to contribute to this aperiodic variability including: (1) stochastic perturbations in the accretion disk at frequencies characteristic of a given radius being advected by the accretion flow to the magnetospheric radius (Revnivtsev et al. 2009a), (2) magnetohydrodynamic turbulence in the accreting plasma (Hoshino & Takeshima 1993), (3) wind inhomogeneities and instabilities in the shock front due to the photo-ionization of the stellar wind by the NS emission (Blondin 1994; Manousakis & Walter 2015), and (4) Rayleigh-Taylor instabilities at the magnetospheric boundary when the accretion rate is low and the flow is subsonic (Shakura et al. 2013). The power spectra of HMXBs can also exhibit quasi-periodic oscillations and, in the case of a NS HMXBs, pulsations due to the accretion flow being channeled towards the magnetic poles of the NS (Belloni & Hasinger 1990).

On long timescales of ~days to years, different classes of HMXBs exhibit different types of variability. As discussed in §1.1.1, many Be HMXBs exhibits periodic type I outbursts; some also display type II outbursts, during which the X-ray flux increases by a factor of ~  $10^3 - 10^4$  for the duration of a large fraction of an orbital period or multiple orbital periods (Reig 2011). Type II outbursts are thought to result from the expansion of the Be star decretion disk and can result in the disappearance of the Be disk (Reig 2011). The X-ray luminosity of typical Sg HMXBs can vary by factors of ~ 10 - 100, variations which are attributed to wind inhomogeneities and hydrodynamic processes (Walter et al. 2015). Ten Sg HMXBs exhibit flares with X-ray luminosities higher than the quiescent state by factors of ~  $10^3 - 10^5$  erg s<sup>-1</sup> and durations of a few hours (Sguera et al. 2005; Negueruela

<sup>&</sup>lt;sup>5</sup>The Eddington luminosity is the luminosity for which the force due to radiation pressure is equal to the gravitational force.

et al. 2006). These systems are referred to supergiant fast X-ray transients (SFXTs), and their extreme flaring behavior cannot be explained by the models for typical HMXBs. The strong variability of SFXTs may be explained by large density variations in clumpy winds (Negueruela et al. 2008) or by the presence of centrifugal and magnetic barriers to accretion (assuming the compact object are magnetized NS; Bozzo et al. 2008). The X-ray luminosity of Sg-BH HMXBs can vary by factors of  $\leq 10$  on long timescales; these brightness variations are correlated with spectral variations (Esin et al. 1998). The high/soft state of BH HMXBs is dominated by thermal blackbody emission from the accretion disk and exhibits power-law emission (with photon index  $\Gamma \sim 2-3$  due to Compton scattering of the blackbody emission by nonthermal electrons (Zdziarski 2000; Gilfanov 2010). In contrast, during the low/hard state, it is thought that the inner radius of the accretion disk recedes farther away from the black hole and the spectrum is characterized by the thermal Comptonized continuum from a corona of hot electrons, which exhibits a cutoff around  $kT \approx 50 - 100$  keV (Zdziarski 2000; Gilfanov 2010). Since the only known Be-BH HMXB has a very low X-ray luminosity  $(L_X \sim 10^{31} \text{ erg s}^{-1})$ , its X-ray variability and spectrum has not been well-studied and so it is not known whether its X-ray properties resemble those of Sg-BH systems.

The spectra of NS HMXBs differ from those of BH HMXBs. Accreting neutron stars typically have power-law spectra with photon indices of  $\Gamma \sim 0-2$  and exponential cutoffs with e-folding energies of  $E_{\rm cut} \leq 20$  keV (Coburn et al. 2002). Their emission has been interpreted as arising from the thermal and bulk Comptonization<sup>6</sup> of seed photons by electrons in the accretion column above the NS magnetic poles; the seed photons are thought to originate from bremmstrahlung and cyclotron emission within the accretion column and the accretion shock as well as blackbody emission from the NS polar cap (Farinelli et al. 2016). Some NS HMXB spectra exhibit cyclotron absorption features as photons are scattered by electrons whose energies are quantized into Landau levels by the strong magnetic field of the NS (Coburn et al. 2002). These cyclotron lines provide a way of measuring the strength of the NS magnetic field, which has been found to be  $B \sim 10^{12}$  G in NS HMXBs. A soft blackbody excess has been observed in some NS HMXBs (Reig et al. 2009). In disk-fed Sg systems, this excess has  $kT_{\rm BB} \approx 0.1$  keV and  $R_{\rm BB} \approx 1000$  km, and is thought to originate from the reprocessing of hard X-rays by the inner edge of the accretion disk (Hickox et al. 2004). In wind-fed Sg HMXBs, the excess has  $kT_{\rm BB} \approx 0.2$  keV and  $R_{\rm BB} \approx 100$  km, and may arise from a diffuse cloud of plasma around the NS associated with the photoionized stellar wind (Hickox et al. 2004; Masetti et al. 2006). In Be HMXBs, this blackbody excess has a higher temperature  $(kT_{\rm BB} \approx 1 \text{ keV})$  and a smaller emitting region  $(R_{\rm BB} \approx 0.1 \text{ km})$ , likely originating from the NS hot spots at the polar caps (Mukherjee & Paul 2005; La Palombara & Mereghetti 2006).

Both NS and BH HMXBs can exhibit iron (Fe) fluorescent emission lines in their spectra<sup>7</sup>.

<sup>&</sup>lt;sup>6</sup>Compton up-scattering of photons in the accretion column is thought to result from both electrons with a thermal velocity distribution and electrons moving with the bulk accretion flow velocity.

<sup>&</sup>lt;sup>7</sup>X-rays are energetic enough to eject inner shell electrons from elements such as iron, leaving the atom in an excited state. When an electron from an upper level falls down to the lower energy level in the inner shell, it produces fluorescent emission. If the electron falls down to the innermost shell, the emission is called K $\alpha$ or K $\beta$  emission depending on whether it starts from the L atomic level or an even higher level

In NS HMXBs, Fe K $\alpha$  emission is observed with equivalent widths of ~ 100 eV at 6.4 keV, indicating that is originates from neutral or low-ionization material (Coburn et al. 2002). This iron emission can be useful in studying the geometric structure of material around the NS (Manousakis & Walter 2011; Naik et al. 2011; Fürst et al. 2011). In BH HMXBs, the iron line can be relativistically broadened while the BH is in the soft state and it is thought to arise from the inner edge of the accretion disk (Remillard & McClintock 2006). The broadening of these lines can be modeled in order to estimate the spin of the BH (e.g., Tomsick et al. 2014b).

## **1.2** HMXBs in a Broader Astrophysical Context

#### 1.2.1 HMXBs and the Evolution of High-Mass Stars

An accurate understanding of massive stellar evolution is crucial in building our knowledge of our Universe, but several aspects of massive stellar evolution remain poorly constrained, because the rarity and short lifetimes of massive stars make them difficult to study. The study of HMXB populations can address some of these open questions.

Stars with masses  $\gtrsim 10 \, M_{\odot}$  are relatively rare but of profound importance to our understanding of the Universe, because due to the steep scaling between a star's initial mass and its luminosity, a small number of massive stars can outshine the much larger population of low-mass stars in a galaxy. Thus, our knowledge of star-forming galaxies across the history of the Universe depends on our ability to accurately relate their ultraviolet (UV) emission, partly reprocessed by dust and gas, to the star-formation rate (SFR) and the initial mass function (IMF) of a galaxy's stellar population. Massive stars also significantly impact their galactic environments, chemically enriching the interstellar medium with heavy elements and providing feedback that contributes to the regulation of future star formation through their UV radiation, stellar winds, and supernova explosions.

Significant uncertainties remain in our understanding of massive stellar evolution, especially with regards to mass loss due to stellar winds or eruptions, and the effect that a close binary companion (which most OB stars possess) has on stellar evolution (Sana et al. 2012; Smith 2014). The mass loss rates of stellar winds at different stages of a massive star's evolution, the stellar envelope binding energy and the efficiency of orbital energy transfer to the envelope during the common envelope phase are poorly constrained. Since these uncertainties affect the predicted luminosities and burning lifetimes of stars, improving the mass-loss prescriptions for stellar evolutionary models is important for making ultraviolet, infrared, and H $\alpha$  luminosities more reliable SFR indicators. Furthermore, while the metallicity<sup>8</sup> dependence of line-driven winds of main-sequence OB stars is fairly well understood (Vink et al. 2001), it is unknown how metallicity might affect the mass loss rates of evolved massive stars or the prevalence of mass exchange episodes in binaries (Smith 2014), which in turn will impact SFR estimates.

HMXBs provide the opportunity to learn both about the stellar winds of high-mass

<sup>&</sup>lt;sup>8</sup>Metallicity is the relative abundance of elements heavier than helium.

stars and the effects of binary interaction on stellar evolution. Some Sg HMXBs show very high levels of X-ray absorption  $(N_{\rm H} \sim 10^{23} {\rm ~cm^{-2}})$  local to the source, providing insight into the density and clumpiness of stellar winds (Negueruela et al. 2008; Walter et al. 2003). Furthermore, comparing the properties of observed HMXB populations (such as the distribution of their orbital periods, compact object masses, and luminosities) to those predicted by theoretical simulations can help constrain different phases of binary evolution. In population synthesis studies, the numbers and types of HMXBs produced from a given population of high-mass binaries depend on factors such as the stellar wind strength prescription, the physical treatment of the common envelope phase, and the speed distribution of natal kicks received by BHs and NSs when their progenitor explodes as a supernova (Fragos et al. 2013b). For example, the expected number of Be-BH systems in the Galaxy varies by an order of magnitude depending on the value adopted for the efficiency of orbital energy transfer during the common envelope phase (Belczynski & Ziolkowski 2009; Grudzinska et al. 2015); the treatment of the common envelope phase in theoretical models also results in different predictions for the correlation between the X-ray luminosity of HMXBs and their spatial offset from nearby star clusters in which they were likely born (Zuo & Li 2014). Other studies predict that due to the weaker stellar winds of low-metallicity stars, a larger number of luminous HMXBs should be formed in low-metallicity environments (Dray 2006; Zampieri & Roberts 2009; Linden et al. 2010). Thus, comparing the properties of observed populations of HMXBs to the predictions of such models can constraints on the processes governing the evolution of high-mass stars.

With the advent of gravitational wave (GW) astronomy, a more thorough understanding of HMXB populations will be especially useful for interpreting the origins of the double compact binaries detected by observatories such as the Advanced Laser Interferometer Gravitatioval-Wave Observatory (LIGO) (LIGO Scientific Collaboration et al. 2015) and the Advanced European Gravitational Observatory-VIRGO (Accadia et al. 2015). The frequency range of GW emission observable by LIGO/VIRGO enables the detection of the final inspiral and merging of NS-NS, NS-BH, and BH-BH binaries. Some of these double compact systems may be dynamically formed in clusters (O'Leary et al. 2006; Rodriguez et al. 2015), but many are expected to be the descendants of HMXBs (Belczynski et al. 2011; Bulik et al. 2011; Belczynski et al. 2013; Postnov & Yungelson 2014). Thus, HMXBs provide a means of connecting the dots between main-sequence binary stars and these inspiraling compact objects.

Two GW signals have been detected to date; both are attributed to BH-BH mergers. The masses of the BHs associated with the first GW signal were measured to be  $36^{+5}_{-4}$  and  $29 \pm 4M_{\odot}$  (Abbott et al. 2016c), while the BHs associated with the second signal have masses of  $14^{+8}_{-4}$  and  $7.5 \pm 2.3M_{\odot}$  (Abbott et al. 2016b). The latter BH masses are similar to those of Galactic BHs in X-ray binaries (Özel et al. 2010), but the former are significantly higher. If the two ~  $30M_{\odot}$  BHs whose merger produced the first GW detection are descendants of an HMXB, then they likely formed in a low-metallicity galaxy (Abbott et al. 2016a; Belczynski et al. 2016) given that an enhanced number of ULXs are found in low-metallicity galaxies (Prestwich et al. 2013), and population synthesis models predict that HMXBs in

low-metallicity environments host more massive BHs (Zampieri & Roberts 2009; Linden et al. 2010). Other more exotic origins for the first GW signal have been suggested, including the collapse of a rapidly rotating massive stars (Loeb 2016) and the coalescence of primordial BHs (Sasaki et al. 2016). Further studies of HMXB populations in low-metallicity environments will help assess the feasibility that the first GW signal was produced by the descendant of a high-mass binary rather than one of these more exotic scenarios. As more double compact mergers are detected by GW observatories, our understanding of HMXB populations will be valuable in determining the implications of the detection rates of GW sources for stellar evolutionary models.

### 1.2.2 The Impact of HMXBs on Early Galaxies and the Epoch of Reionization

Studies of extragalactic X-ray binaries (XRB) in the local and low-redshift Universe have found that the X-ray luminosity of HMXBs is strongly correlated with a galaxy's star formation rate (SFR), while the X-ray luminosity of LMXBs is correlated with a galaxy's stellar mass (Grimm et al. 2003; Lehmer et al. 2010; Mineo et al. 2012). A weaker correlation, which may be subject to sample selection biases, has been measured between the HMXB  $L_X$ /SFR and the gas-phase metallicity<sup>9</sup> of a galaxy (Basu-Zych et al. 2013a; Brorby et al. 2016). In the nearby Universe, these correlations reveal how the formation and evolution of XRB populations depend on their galactic environments; the inverse effect, the impact that XRBs can have on their host galaxy, is negligible and limited to their local environments because they constitute such a small fraction of the stellar population.

However, in the early Universe, HMXBs may play an important role in the evolution of galaxies and the intergalactic medium (IGM). It has been suggested that HMXBs may be an important source of feedback in young dwarf galaxies ( $M \leq 10^8 M_{\odot}$ ). If HMXBs "turn on" before the first energetic supernovae<sup>10</sup> inject significant energy into the interstellar medium (ISM), then feedback from HMXBs may help a galaxy to retain more of its gas which could eventually form additional stars (Justham & Schawinski 2012). The physical mechanism by which this occurs is as follows: (1) radiative feedback from HMXBs creates hot, photoionized pockets of gas, (2) when energetic SNe do explode, they preferentially expand through regions of hot, low-density gas and do not eject as much of the colder, denser gas. Justham & Schawinski (2012) argue that the interplay between the relative strength and timing of HMXB and SN feedback will result in large statistical variations of the gas retention fraction in different dwarf galaxies of similar mass.

The effect that HMXBs may have on the IGM in the early Universe may be of even greater consequence than their impact on young dwarf galaxies. Using population synthesis models and constraints on the star formation history and metallicity evolution of the universe,

<sup>&</sup>lt;sup>9</sup>The gas-phase metallicity derived from strong emission lines originating in HII regions is a proxy for the metallicity of the young stellar population, including HMXBs.

<sup>&</sup>lt;sup>10</sup>A SN will always precede the formation of an HMXB since it requires the creation of a compact object, but direct collapse SN that form BHs are not expected to produce powerful explosions.

Fragos et al. (2013a) predict that the X-ray luminosity per co-moving volume from XRBs will exceed the X-ray emissivity from AGN above  $z \gtrsim 6-8$ . Thus, during the Epoch of Reionization, when the neutral hydrogen gas in the IGM was being reionized by the first stars and galaxies, XRBs may have been the primary producers of X-ray emission. Hydrodynamic simulations which include radiative transfer of UV and X-ray photons indicate that while not having a significant net effect on star formation in a typical halo, HMXBs heat the IGM to temperatures of  $\sim 10^3$  K over scales of hundreds of kiloparsecs and smooth out small scale structures, reducing the recombination rate and making it easier to keep the reionized gas ionized (Jeon et al. 2014). Futhermore, feedback from X-ray binaries may facilitate the escape of Lyman- $\alpha$  emission from galaxies in the early Universe (Prestwich et al. 2015). Measurements of the HI 21 cm power spectrum can constrain the amount of X-ray heating during the Epoch of Reionization (Pober et al. 2014; Ewall-Wice et al. 2016) and have already ruled out models that do not include any X-ray heating (Parsons et al. 2014; Pober et al. 2015). Improving constraints on the expected number, luminosity distribution, and spectral shape of HMXBs in low-metallicity, high-redshift galaxies will help to interpret measurements of the 21 cm power spectrum.

## **1.3** Other Galactic X-ray Populations

Although the three main studies presented in this dissertation share a common motivation to improve our undestanding of HMXB populations and evolution, the largest project, which is discussed in Chapter 2, also aims to study other Galactic X-ray populations. In particular, the goals of this project were to find low-luminosity HMXBs, and to identify the dominant low-luminosity X-ray populations in the Galactic disk and compare them to the X-ray sources in the Galactic Center. Therefore, this section provides short descriptions of different X-ray populations and their X-ray emission; additional details about these different types of sources are included in Chapter 2.

#### **1.3.1** Accreting Binaries

#### Low-Mass X-ray Binaries

Low-mass X-ray binaries (LMXBs) consist of a NS or BH accreting material from a low-mass star that is overfilling its Roche lobe. LMXBs display X-ray luminosities of  $10^{35} - 10^{39}$  erg s<sup>-1</sup> and have orbital periods of  $\leq 10$  hours (Lamb 1989; Gilfanov 2004). BH LMXBs exhibit similar spectral states to BH HMXBs (see §1.1.2). NS LMXBs can be divided into two subclasses, Z sources and atoll sources, based on the pattern they trace in X-ray color-color diagrams as they transition between different spectral states (Hasinger & van der Klis 1989; van der Klis 1989b). Z sources radiate at luminosities close to the Eddington luminosity (~  $10^{38}$  erg s<sup>-1</sup>) and exhibit soft spectra regardless of their position in the color-color diagram. In contrast, atoll sources span a lower and larger luminosity range (~  $10^{35} - 10^{37}$  erg s<sup>-1</sup>), exhibiting soft spectra at high luminosities and hard power-law tails

at low luminosities. The differences between Z and atoll sources are thought to be driven by differences in the mass accretion rate, while the causes of spectral state transitions are not well understood but likely associated with variations in the inner disk radius and the size and temperature of the corona (Lamb 1989; Lin et al. 2009).

#### Cataclysmic Variables

Cataclysmic variables (CVs) are short-period ( $P_{\rm orb} \leq 20$  hours) binary systems in which a white dwarf (WD) accretes material via disk accretion from a low-mass main-sequence star overfilling its Roche lobe. CVs display a variety of spectral and timing properties and are divided into different subclasses based on the magnetic field strength of their WDs and the CV variability.

About 75% of CVs have weak magnetic fields ( $B \leq 10^4$  G); in these nonmagnetic CVs, the accretion disk extends all the way to the WD surface (Cropper 1990). Thermonuclear eruptions have been observed from some nonmagnetic CVs, releasing as much as ~ 10<sup>45</sup> ergs of energy. Classical novae are CVs from which a single, luminous eruption has been observed, while recurrent novae are CVs which have exhibited multiple eruptions that are 10–100 times less powerful that classical novae and have recurrence times of 10–100 years (Robinson 1976). Most nonmagnetic CVs are either dwarf novae, which exhibit small outbursts during which the optical flux increases by a factor of  $\leq 100$ , or novalike CVs, which do not display significant outbursts (Robinson 1976; Verbunt et al. 1997). The X-ray emission from nonmagnetic CVs primarily originates in the boundary layer between the accretion disk and the WD surface, and some of the emission is then reflected off the WD surface (Connon Smith 2007). Nonmagnetic CVs have X-ray luminosities of  $L_X = 10^{29} - 10^{32}$  erg s<sup>-1</sup> and their spectra tend to be well described by thermal bremsstrahlung spectra with  $kT \approx 1 - 15$  keV (Eracleous et al. 1991; Verbunt et al. 1997; Muno et al. 2004; Xu et al. 2016).

Polars are CVs with strong magnetic fields with  $B \sim 10^7 - 10^8$  G. The magnetic field in polars is strong enough to prevent the formation of an accretion disk; material is channeled directly from the accretion stream onto the magnetic poles of the WD. The strong magnetic field also tends to synchronize the WD spin with the binary orbital period. Intermediate polars (IPs) are CVs with magnetic field strengths of  $\sim 10^6 - 10^7$  G. In IPs, the accretion disk is truncated by the WD magnetosphere, which channels material towards the WD magnetic poles. In magnetic CVs, X-rays are produced, primarily by bremsstrahlung emission (and in polars, by cyclotron emission) in the accretion column, and can be Compton scattered to higher energies by electrons in the accretion column or reflected by the WD surface (Patterson 1994; Cropper 1990). Polars make up about 10–20% of CVs, have  $L_X = 10^{30} - 10^{32}$  erg s<sup>-1</sup>, and exhibit thermal spectra with  $kT \approx 5 - 25$  keV (Cropper 1990; Muno et al. 2004; Xu et al. 2016). It is estimated that only 5–10% of CVs are IPs, which have the highest luminosities ( $L_X = 10^{31} - 10^{33}$  erg s<sup>-1</sup>) and hardest spectra ( $kT \approx 10 - 50$  keV) of all CVs (Patterson 1994; Muno et al. 2004; Xu et al. 2016).

All CVs exhibit fluorescent iron emission lines in their X-ray spectra. The most prominent line transitions that are observed are  $K\alpha$  lines from neutral and weakly-ionized species at 6.4 keV, from helium-like iron ions at 6.7 keV, and from hydrogen-like ions at 7.0 keV. Fluorescent emission occurs as photons are reflected by the WD surface, as well as in the accretion column (for magnetic CVs) or the accretion disk (in nonmagnetic CVs). The equivalent widths and line flux ratios of the iron lines detected in nonmagnetic CVs, polars, and IPs differ from each other, and thus can be useful in distinguishing these different types of CVs (Xu et al. 2016).

#### Symbiotic Binaries

Symbiotic binaries (SBs) typically consist of a white dwarf accreting from a red giant in a wide orbit with orbital periods of ~ 100 – 1000 days (Belczyński et al. 2000). Although SBs are sometimes considered a subclass of CVs, they are distinguished by the fact that accretion is powered by the red giant wind rather than Roche lobe overflow. Nonetheless, disk formation around the WDs in SBs is common, and, as a result, the X-ray properties of SBs are similar to those of CVs (Livio & Warner 1984; Wynn 2008). Most SBs have X-ray luminosities of  $10^{31} - 10^{33}$  erg s<sup>-1</sup>, although they have been observed to be as bright as  $10^{34}$  erg s<sup>-1</sup> (Masetti et al. 2002; Smith et al. 2008; Nespoli et al. 2010; Luna et al. 2013).

SBs are divided into subclasses based on their spectral properties.  $\alpha$ -type sytems have the softest emission, with photon energies below 1 keV, which is thought to originate from a quasi-steady burning shell on the WD surface (Orio et al. 2007).  $\beta$ -type binaries are soft X-ray sources, with most photons having energies below 2.4 keV, whose emission is likely produced in collisions of the red giant wind with a wind coming off the WD (Muerset et al. 1997). The emission from hard X-ray SBs, known as  $\delta$ -type systems, is modeled as optically thin thermal plasma with  $kT \gtrsim 10$  keV; the likely origin of this hard X-ray emission is the boundary layer between the WD surface and the accretion disk (Luna et al. 2013). Finally,  $\gamma$ -type SBs, which exhibit hard Comptonized spectra with  $\Gamma = 1 - 2$ , are thought to host neutron stars accretors given the short spin periods detected in some of these systems (Lewin et al. 1971; Koyama et al. 1991; Masetti et al. 2007);  $\gamma$ -type SBs are sometimes called symbiotic X-ray binaries (SyXBs) because of they harbor NSs.

#### **1.3.2** Stellar Sources and Isolated Compact Objects

#### **Neutron Stars**

Neutron stars can produce significant amounts of X-ray emission even if they are not part of an accreting binary. NSs are born as rapidly spinning pulsars ( $P_{\rm spin} \sim 10-100$  milliseconds); isolated millisecond pulsars (MSPs) can produce X-ray luminosities of  $10^{28} - 10^{31}$  erg s<sup>-1</sup> as they spin down and emit magnetic dipole radiation (Possenti et al. 2002). If the MSPs are located in dense regions of the interstellar medium (ISM), then the interaction of the ISM and the particles accelerated in the NS magnetosphere can produce higher X-ray luminosities of  $10^{31} - 10^{33}$  erg s<sup>-1</sup> (Cheng et al. 2004). The X-ray spectra of MSPs in the 2–10 keV band are well described by power-law models with  $\Gamma \approx 2$  (Possenti et al. 2002). Young pulsars with very high spin-down luminosities can power a pulsar wind nebula (PWN; Gaensler & Slane 2006). Electrons and positrons that are accelerated by the pulsar emit synchrotron radiation that dominates the radio and X-ray emission from PWN. Young PWNe, which are often associated with supernova remnants (SNRs), have X-ray luminosities of  $10^{32} - 10^{37}$  erg s<sup>-1</sup> and typical photon indices of  $\Gamma \approx 2$  (Gotthelf 2003). Since asymmetries in supernova explosions tend to impart velocity kicks of ~ 100 - 1000 km s<sup>-1</sup> to the pulsars they produce, pulsars can travel outside of their associated SNRs in ~ 10<sup>4</sup> years (Lyne et al 1982). As the pulsar travels supersonically through the ISM, it drives a bow shock, leading to the emission of non-thermal synchrotron radiation with a cometary morphology that can be observed in the X-ray and radio bands (Gaensler & Slane 2006).

Isolated NSs can also be detected at X-ray energies if they have very high magnetic fields of  $10^{14} - 10^{15}$  G. Such NSs, known as magnetars, exhibit persistent X-ray emission of  $L_X \sim 10^{34} - 10^{35}$  erg s<sup>-1</sup>, as well as occasional outbursts that increase the X-ray flux by factors of 10–1000, powered by the decay of the magnetic field (Duncan & Thompson 1992; Thompson et al. 2002; Rea & Esposito 2011). Magnetars exhibit very soft spectra in the 2 - 10 keV band ( $\Gamma \approx 3 - 4$ ) and faint hard X-ray tails with  $\Gamma \approx 0 - 1$  extending out to hundreds of keV (Olausen & Kaspi 2014).

#### Colliding wind binaries and high-mass stars

Colliding wind binaries (CWBs) are binaries consisting of two high-mass stars that produce X-ray emission through shocks in their stellar winds. Often at least one of the binary companions in an evolved star, such as a Wolf-Rayet or a supergiant star, since these evolved stars have much more powerful winds (Pollock 1987; (Smith 2014)). CWBs can exhibit X-ray emission with  $L_X \sim 10^{33} - 10^{35}$  erg s<sup>-1</sup> and thin thermal plasma spectra with  $kT \approx 1-4$  keV (Pollock 1987; Portegies Zwart et al. 2002).

X-rays can also be produced within the wind of a single, isolated high-mass star, but the emission from an isolated star is weaker since the relative velocity of the shocked material is lower for a single star than for one in a binary (Portegies Zwart et al. 2002). The X-ray emission of isolated high-mass stars, including O-type stars, early B-type, and Wolf-Rayet stars, follow the correlation  $L_X/L_{\rm bol} \approx 10^{-7}$  (Berghoefer et al. 1997; Sana et al. 2006). The X-ray emission from isolated high-mass stars is softer than that from CWBs, having  $kT \approx 0.1 - 1$  keV (Sana et al. 2006).

#### X-ray active binaries and isolated low-mass stars

Low-mass stars of spectral type G, K, and M have dynamo-generated magnetic fields due to their rotation and large convective envelopes; late M-type stars are fully convective, but still have strong magnetic fields generated by turbulent convection. The magnetically heated coronae of low-mass stars produce soft X-rays with kT < 1 keV and low X-ray luminosities below  $10^{29}$  erg s<sup>-1</sup> (Krishnamurthi et al. 2001).

In X-ray active binaries (ABs), such as RS Canum Venaticorum (RS CVn), magnetic coronal activity is enhanced because the rotation of the two low-mass stars is higher than for

typical isolated stars; stars in ABs rotate faster because their rotation periods are tidally synchronized to the orbital period, which is  $\leq 30$  days (Dempsey et al. 1993). The persistent X-ray emission of ABs typically is in the luminosity range  $L_X = 10^{29} - 10^{31.5}$  erg s<sup>-1</sup> and has a soft spectrum with kT < 2 keV (Dempsey et al. 1993). However, they can exhibit flares with peak luminosities of  $\sim 10^{32}$  erg s<sup>-1</sup> and  $kT \approx 10$  keV (Franciosini et al. 2001).

## 1.4 X-ray Focusing Telescopes

While X-ray astronomy began with the rocket flight experiments of the 1960s, it was revolutionized by the development of telescopes that could focus X-rays. The first X-ray focusing satellite, *EINSTEIN* (Giacconi et al. 1979), was launched in 1978, and it had an angular resolution of a few arcseconds, facilitating the association of X-ray sources with multiwavelength counterparts, and a sensitivity several hundred times greater than previous satellites. X-ray wavelengths are so short that they cannot be reflected by conventional optics used for visible light. However, since the refractive index of most materials to X-rays is less than unity (the refractive index of vacuum), X-rays can undergo total external reflection when they have very low incidence angles (are almost parallel) with respect to the reflective surface. Taking advantage of this effect, Hans Wolter developed grazing incidence optics that could focus X-rays in 1952. Although Wolter developed this design for an X-ray microscope, it was adopted for X-ray telescopes by Giacconi & Rossi (1960). The Wolter-I design, shown in Figure 1.2, uses two sets of mirrors to focus X-rays; X-ray photons are first reflected off a mirror section shaped as a parabola and then reflected a second time off a section shaped as a hyperbola. The critical incidence angles, which are typically < 1-2 degrees, are very shallow and result in a small collecting area per mirror surface area; to compensate for this effect, many mirrors shells are nested within one another to increase the effective collecting area. The mirrors are typically coated with high density materials such as gold or iridium; the heavier the element used for the coating, the higher the critical incidence angle at a given photon energy is, which increases the collecting area.

The studies described in this dissertation make extensive use of data from three X-ray focusing telescopes, which are described in this section: the *Chandra X-ray Observatory* (*Chandra*), the X-ray Multi-Mirror Mission (XMM-Newton), and the Nuclear Spectroscopic Telescope Array (NuSTAR).

#### 1.4.1 Chandra

The *Chandra X-ray Observatory*, one of NASA's Great Observatories, was launched on 1999 July 23 into a 64 hour eccentric orbit and is still operating at the time of this writing (Weisskopf et al. 2002). The *Chandra* telescope, shown in Figure 1.3, is made up of four sets of nested mirrors coated with iridium, providing an effective area of  $\approx 300 \text{ cm}^2$  in the 0.1 - 10 keV band (although the effective area drops off steeply below 0.5 keV and above 7 keV). *Chandra* has the best angular resolution of any X-ray telescope launched to date,



*Figure 1.2*: Wolter-I mirror design for focusing X-rays. X-rays are reflected twice at grazing incidence, first off a paraboloid mirror and then off a hyperboloid mirror. This particular design is for the *XMM-Newton* telescope. (Credit: ESA)



*Figure 1.3*: Schematic of the *Chandra X-ray Observatory* including the locations of the instruments. (Credit: NASA/CXC)

having a half-power diameter (HPD) of 1" on-axis; however, its point spread function (PSF) significantly worsens at large off-axis angles from the telescope aim point, reaching an HPD of approximately 10" at off-axis angles of 12' for photon energies of 6 keV.

The *Chandra* data used in this dissertation is taken by the Advanced CCD Imagining Spectrometer (ACIS; Garmire et al. 2003). ACIS is equipped with eight charged-coupled devices (CCDs), up to six of which can be simultaneously collecting data for any given observation. Four CCDs are arranged in a  $2 \times 2$  configuration providing a total field of view (FoV) of  $17' \times 17'$ , while the other four are arranged in a single row. The four CCDs in the square configuration are the ones most frequently employed for large surveys, including the Norma Arm Region *Chandra* survey discussed in this dissertation. Each ACIS CCD consists of  $1024 \times 1024$  pixels, each of which subtends 0''.492 on the sky. ACIS provides moderate spectral resolution ( $E/\Delta E \approx 20$ ); its time resolution in standard mode is  $\Delta t = 3.2$  s and can be as high as ~ 6 ms in fast timing mode. For bright sources with count rates  $\gtrsim 0.1$  counts s<sup>-1</sup>, *Chandra*'s standard time resolution can result in pileup, which occurs when more than one photon hits the same pixel within a single read-out cycle; pileup affects the measured flux and spectrum of a source.

Chandra is also equipped with the High Resolution Camera (HRC; Murray et al. 2000), which provides better than arcsecond (HPD) imaging over a  $30' \times 30'$  FoV. The energy resolution of HRC ( $E/\Delta E \approx 1$ ) is lower than that of ACIS. Chandra also possesses two gratings for higher resolution spectroscopy, the High Energy Transmission Grating with  $E/\Delta E \approx 1000$  and the Low Energy Transmission Grating with  $E/\Delta E \approx 20$ .

#### 1.4.2 XMM-Newton

The ESA mission XMM-Newton was launched just a few months after Chandra on 1999 December 10 and placed in a 48 hour eccentric orbit (Jansen et al. 2001). XMM-Newton continues to operate as of this writing. There are three telescopes on board XMM-Newton; each of them consists of 58 nested mirrors with a gold coating. These telescopes provide an angular resolution of about 14" HPD.

At the focus of each of the telescopes is a CCD-based European Photon Imaging Camera (EPIC). Two of these cameras use metal oxide semiconductor (MOS) CCD arrays (Turner et al. 2001), and one uses a pn semiconductor CCD (Strüder et al. 2001). The EPIC pn effective area is approximately 800 cm<sup>-2</sup>, while the MOS cameras have an effective area of roughly 200 cm<sup>-2</sup>; the energy range covered by all three cameras is 0.1 - 12 keV, although the effective area drops off steeply below 0.5 keV and above 10 keV. Both the MOS and pn cameras have moderate spectral resolution ( $E/\Delta E \approx 50$ ); the Reflection Grating Spectrometers (den Herder et al. 2001) provide high-resolution spectra ( $E/\Delta E \approx 200 - 800$ ) in the 0.3-2.1 keV energy range and can be used with the MOS cameras.

The EPIC cameras can be operated in several different modes. Full frame mode, which collects data from the full CCD area, has a time resolution of 2.6 s and 73.4 ms for the EPIC MOS and pn cameras, respectively. The large window and small window modes trade off a smaller FoV for better time resolution. In timing mode, imaging is only carried out in a single dimension to permit high-speed readout; timing mode has a time resolution of 1.75 ms for MOS and 0.03 ms for EPIC pn.

#### 1.4.3 NuSTAR

On 2012 June 13, the NASA Small Explorer mission NuSTAR was launched into a near-equatorial, low-Earth orbit (Harrison et al. 2013). NUSTAR, shown in Figure 1.4, is the first telescope to focus hard X-rays above 15 keV. This achievement was made possible by the development of depth-graded multilayer mirror coating. These multilayer coatings consist of about 200 thin coatings of two alternating materials of different densities. The high/low density material combinations used in the NuSTAR multilayers are platinum/silicon carbide and tungsten/silicon. Due to the high density contrast of the materials, the multilayer coating effectively works as a crystal lattice, producing constructive interference that enhances the reflectivity of the mirrors. The multilayer coatings used by NuSTAR allow the mirrors to reflect photons with energies as high as 79 keV; above this energy, platinum begins to absorb rather than reflect X-rays. The full NuSTAR energy band is 3 - 79 keV.

NuSTAR has two telescopes, each with 133 nested mirrors, and two detector units (called focal plane modules), one at the focus each of the two co-aligned telescopes. Each focal plane module is comprised of four cadmium-zinc-telluride (CZT) detectors, which have a moderate energy resolution of  $E/\Delta E \approx 15$ . NuSTAR's angular resolution is 58" (HPD) and its times resolution is ~ 0.1 ms.



Figure 1.4: Top: Schematic of the NuSTAR spacecraft with the 10 meter mast extended. The deployable mast provides the long focal length required to focus X-rays. Bottom: Schematic arrangement of the NuSTAR focal plane bench. Each optics module focuses X-rays onto one of the two focal plane modules. (Credit: NASA/NuSTAR collaboration)

### 1.5 Open Questions Addressed by this Dissertation

Using data from X-ray focusing telescopes, this dissertation addresses open questions regarding HMXBs and Galactic X-ray sources. Chapter 2 describes *Chandra* and *NuSTAR* surveys of the Norma spiral arm of the Milky Way, the aim of which is to improve our understanding of low-luminosity X-ray sources and constrain the faint HMXB population. Chapter 3 presents preliminary results of a study that tests models of the metallicity dependence of HMXBs using deep extragalactic *Chandra* surveys. Chapter 4 discusses the relative fractions of NS and BH HMXBs and identification of the nature of the compact object in a non-pulsating HMXB based on detailed timing and spectral analysis using *XMM-Newton* and *NuSTAR* observations.

## 1.5.1 The faint: How many low-luminosity HMXBs exist in our Galaxy? What types of sources dominate the Galactic ridge hard X-ray emission?

## How many low-luminosity HMXBs exist in our Galaxy and what constraints do their properties place on the evolution of high-mass stars?

As discussed in §1.1.2, the luminosity function (LF) of Galactic HMXBs has been measured down to luminositities of ~  $10^{34}$  erg s<sup>-1</sup> (Lutovinov et al. 2013). Although some outbursting Be HMXBs have been detected in quiescence at lower luminosities (e.g. Rutledge et al. 2007; Doroshenko et al. 2014; Reig et al. 2014; Elshamouty et al. 2016), it is unknown how large a population of HMXBs with persistently low luminosities exists in the Galaxy. Lutovinov et al. (2013) developed a simple model for the expected luminosity function of the persistent wind-accreting HMXB population which predicts that the HMXB LF should flatten below  $10^{34}$  erg s<sup>-1</sup> from a power-law slope of -1.4 to a slope of about -1.0. This model does not take into account that magnetic and centrifugal barriers to accretion could be important in NS HMXBs accreting at low rates (Bozzo et al. 2008), and thus the flattening of the HMXB LF could be even more pronounced than predicted by this simple model. Thus, constraining the faint end of the HMXB LF can inform our understanding of how accretion proceeds at low-accretion rates.

Identifying low-luminosity HMXBs could also lead to the discovery of additional Be-BH binaries, since the only known Be-BH binary, MWC 656, has an X-ray luminosity of  $\sim 10^{31}$  erg s<sup>-1</sup> (Munar-Adrover et al. 2014). As discussed in §1.2.1, the number and orbital periods of Be-BH binaries predicted to reside in the Galaxy is very sensitive to the treatment of the common envelope phase and the strength of BH natal kicks in population synthesis models (Grudzinska et al. 2015). Thus, constraining the number of Be-BH HMXBs and their period distribution could improve our understanding of these important aspects of stellar evolution. Since Be-BH binaries could be progenitors of BH-NS systems, based on the binary properties of MWC 656, Grudzinska et al. (2015) estimate that the LIGO/VIRGO detection rate of BH-NS mergers could be as high as 1 every 5 years. Finding additional Be-BH HMXBs

and measuring their orbital periods will help to refine these estimates as well.

Therefore, one of the goals of this dissertation research is to identify low-luminosity HMXB candidates, which, once their HMXB nature is confirmed, will help constrain the faint end of the HMXB LF and contribute to our understanding of accretion processes in HMXBs and the evolution of high-mass stellar binaries. In order to find HMXB candidates, we observed a region of the Galactic disk tangent to the Norma spiral arm that has the highest number of HII regions and OB associations (clusters of high-mass stars) with *Chandra* and *NuSTAR* because HMXBs are found in close proximity to regions of recent star formation. *Chandra*'s subarcsecond angular resolution was necessary to identify unique optical and infrared counterparts to the X-ray sources we detected, which we followed-up spectroscopically to determine whether they were high-mass or low-mass stars. *NuSTAR*'s sensitivity to hard X-rays was crucial for improving the X-ray spectral constraints of detected sources, facilitating the distinction of accreting HMXBs from colliding wind binaries.

## What are the dominant low-luminosity hard X-ray populations in the Galactic disk and how do they compare to those in the Galactic Center?

The *Chandra* and *NuSTAR* surveys of the Norma region that we carried out to search for low-luminosity HMXBs are also ideally suited to the study of other low-luminosity Galactic X-ray sources. and their contribution to the Galactic ridge X-ray emission (GRXE). Since the discovery of the GRXE (Bowyer et al. 1968), several studies have been devoted to determining the source of this large-scale feature in the X-ray sky. Deep *Chandra* surveys have resolved over 80% of the GRXE into point sources in the 6–7 keV band, which corresponds to the energies of fluorescent iron line emission (Revnivtsev et al. 2009b), ruling out a diffuse origin for the bulk of the GRXE. The study of individual sources detected in these deep surveys and the comparison of the flux ratios and equivalent widths of the iron lines in the GRXE spectrum to those of nearby X-ray sources indicate that the soft (< 10 keV) X-ray component of the GRXE primarily arises from dwarf novae and active binaries (Xu et al. 2016). However, it is less clear what sources contribute to the GRXE at hard X-ray energies. It has been suggested that magnetic CVs, especially IPs, dominate the GRXE spectrum above 10 keV (Revnivtsev et al. 2006b); assuming that is the case, fitting the broadband GRXE spectrum with an IP spectral model suggests that the typical white dwarf mass in IPs is  $\approx 0.6 M_{\odot}$ (Krivonos et al. 2007; Türler et al. 2010; Yuasa et al. 2012). However, with non-focusing hard X-ray telescopes, which have poor angular resolution of ~tens of arcminutes, it was not possible to resolve the hard X-ray sources with  $L_X \lesssim 10^{33} \text{ erg s}^{-1}$  that contribute to the GRXE spectrum above 10 keV.

As the first mission to focus hard X-rays, NuSTAR is the first telescope that can resolve a significant fraction of the GRXE above 10 keV. Thus, a second goal of our *Chandra* and NuSTAR surveys of the Norma region is to classify the hard X-ray sources detected by NuSTAR, and to confirm whether IPs are the primary contributors to the GRXE at hard X-ray energies. Since similar surveys have been performed of a square degree region in the vicinity of the Galactic Center, an additional aim of this research is to compare the hard X-ray populations in the Norma and Galactic Center regions; variations in the relative fractions of different types of X-ray sources in these two regions can inform our understanding of the star formation history of the Galaxy and how stellar evolution may be impacted by different galactic environments. For example, it has been suggested, both by simulations and observations, that the initial mass function in the vicinity of the Galactic Center may be more top-heavy, which would result in more massive compact objects (Morris 1993; Paumard et al. 2006).

### 1.5.2 The poor: Are HMXB populations in metal-poor environments more luminous?

Since more metal-poor stars have weaker stellar winds (Vink et al. 2001), a star's metallicity can significantly impact its evolution. Several population synthesis studies have been performed to assess the effect of metallicity on HMXBs; while these studies differ in some details, they all predict that HMXB populations in low-metallicity environments should be more X-ray luminous due to a larger number of BH HMXBs accreting via Roche lobe overflow being produced per star formation rate (Dray 2006; Linden et al. 2010; Fragos et al. 2013b). An inverse correlation between the gas-phase metallicity of star-forming galaxies and  $L_X/SFR$  has been observed in a sample of nearby galaxies, although the correlation is largely driven by the X-ray luminosities of blue compact dwarf galaxies (BCDs; Basu-Zych et al. 2013a; Brorby et al. 2016), which have very low-metallicity and are considered analogs of high-redshift galaxies. However, the measured correlation may be biased because upper limits on  $L_X$ /SFR for BCDs that are not X-ray detected are not taken into account, and the X-ray luminosities of about half of the galaxy sample may be dominated by stochastic variations; even if the measured correlation is accurate, it may be caused by a galaxy property other than metallicity such as the compactness of BCDs compared to other nearby star-forming galaxies. Another piece of evidence often cited in favor of the hypothesis that HMXB evolution is metallicity-dependent is the increase of  $L_X/SFR$  of star-forming galaxies with increasing redshift (Basu-Zych et al. 2013b; Lehmer et al. 2016), but this evidence is indirect.

Determining whether HMXB evolution is truly metallicity dependent is of particular relevance to understanding the Epoch of Reionization. As discussed in §1.2.2, HMXBs may contribute to the heating of the IGM and to feedback in early galaxies, especially if HMXB populations are more luminous in lower-metallicity environments. Chapter 3 of this dissertation investigates the metallicity dependence of HMXB evolution through a study of the X-ray emission of star-forming galaxies at  $z \sim 2$  as a function of galaxy metallicity.

# 1.5.3 The steady: What is the nature of the compact objects in non-pulsating HMXBs?

As was mentioned in §1.1.1, only three of the  $\approx 100$  HMXBs in the Milky Way are known to host BHs. About 60% of the Milky Way HMXBs are known host NSs through the detection of X-ray pulsations (Bird et al. 2016). In the remaining Galactic HMXBs, the nature of the compact object is unclear, and additional BH HMXBs may exist within this sample. Determining whether the compact objects in these HMXBs are NSs or BHs can be useful for constraining models of stellar evolution, since the ratio of NS to BH HMXBs predicted by population synthesis models depends on parameters such as the strength of the stellar winds, the common envelope phase, and the velocity distributions of natal kicks imparted to BHs and NSs (Dray 2006; Muno 2007; Belczynski & Ziolkowski 2009). The measured BH/NS ratio in HMXBs also impacts estimates of the expected numbers of different double compact object binaries which may merge and produce gravitational waves (Postnov & Yungelson 2014).

Thus, to further our knowledge of the compact objects in Galactic HMXBs, Chapter 4 of this dissertation discusses a study performed with *XMM-Newton* and *NuSTAR* observations of the timing and spectral properties of IGR J18214-1318, an Sg HMXB whose compact object could not be identified based on previous studies.

# Chapter 2

# The Faint

# 2.1 Searching for low-luminosity HMXBs and identifying other faint Galactic X-ray populations

X-ray observations of the Galactic stellar population provide an important probe of several stages of stellar evolution. The brightest stellar X-ray sources are associated with compact stellar remants. Neutron stars (NS), black holes (BH), and white dwarfs (WD) that are accreting matter from a binary companion are bright X-ray emitters. Isolated neutron stars are also bright X-ray sources when they are young and hot, or if they accelerate particles in strong magnetic fields  $(10^{12} \leq B \leq 10^{14} \text{ G})$ . We can learn about earlier stages of stellar evolution from X-ray observations as well. Massive OB and Wolf-Rayet stars can produce X-rays through shocks in their stellar winds, and are sometimes more luminous than X-ray sources associated with compact stellar remnants. Low-mass main sequence stars can produce low levels of X-ray emission in their magnetic coronae, and young stellar objects can produce X-rays due to their strong magnetic fields.

Over the past decade, studies of X-ray source populations in several Galactic regions have been carried out using observations from the *Chandra X-ray Observatory*. These surveys have targeted the Galactic center (Wang et al. 2002; Muno et al. 2009), the Galactic bulge (Hong et al. 2009), the Orion region (Grosso et al. 2005), the Carina arm (Townsley et al. 2011), and a "typical" region of the Galactic plane without point sources brighter than  $2 \times 10^{-13}$ ergs cm<sup>-2</sup> s<sup>-1</sup> (Ebisawa et al. 2005). Although some young, X-ray emitting massive stars have been discovered in the Galactic center (Mauerhan et al. 2010), the Galactic center and bulge are dominated by old X-ray stellar populations. In contrast, the Orion region is a well-known star-forming region, and it has been argued that the Carina region is also a very young star-forming region since there is no evidence of a supernova explosion having occurred there yet (Smith & Brooks 2007).

We have conducted X-ray surveys of a square-degree region in the direction of the Norma spiral arm, which complement the aforementioned surveys since Norma's stellar population is likely more evolved than that of the Orion and Carina regions, but less evolved than that of the Galactic center and bulge. The line-of-sight tangent to the Norma spiral arm contains the highest number of massive star-forming complexes in the Galaxy (Russeil 2003), demonstrating there is a significant population of young stars in this arm. Further evidence that this is a region of recent star formation is the presence of warm dust emission in *Spitzer* 8  $\mu$ m images and several HII regions mapped by 1420 MHz continuum emission from the Southern Galactic Plane Survey (Georgelin et al. 1996). However, the supernova remnants discovered in this region (Green 2004; Combi et al. 2005; Funk et al. 2007) suggest that the Norma stellar population is older than the populations in the Orion and Carina regions observed with *Chandra*. Thus, the relative fractions of X-ray populations in the Norma arm may differ from those in other regions of the Galactic plane; in particular, the fraction of X-ray sources associated with evolved massive stars may be enhanced in Norma.

The Norma Arm region was observed by the *Chandra X-ray Observatory* in 2011 and with the *Nuclear Spectroscopic Telescope Array* (*NuSTAR*) between 2013 and 2015. The goals of these surveys were to identify the physical nature of low-luminosity ( $L_X \leq 10^{34} \text{ erg s}^{-1}$ ) X-ray sources, to compare the Norma X-ray populations to those in other Galactic regions, and to search for low-luminosity high-mass X-ray binaries (HMXBs). As discussed in §1.5.1, improving the characterization of low-luminosity X-ray populations in different Galactic regions can shed light on the origin of the Galactic Ridge X-ray Emission (GRXE), as well as further our understanding of stellar evolution and how it may be influenced by different galactic environments. The discovery of new low-luminosity HMXBs can help inform our models of the binary evolution of high-mass stars and assess the prevalence of magnetic barriers to accretion in low accretion rate systems (see §1.5.1).

The *Chandra* observations of the Norma region allowed us to localize X-ray sources to ~arcsecond precision, identify likely infrared and optical counterparts, determine the dominant X-ray populations based on their X-ray and infrared properties, and pinpoint candidate HMXBs and other sources of interest for near-IR spectroscopic follow-up. Through their sensitivity to hard X-rays (> 10 keV), the *NuSTAR* observations enabled more precise classification of the brighter Norma sources, revealing significant differences between the populations of cataclysmic variables (CVs) in the Norma region and the Galactic Center. Combined with our follow-up infrared spectroscopic campaigns, the *NuSTAR* survey also were important for narrowing our list of HMXB candidates. The Norma Arm Region *Chandra* and *NuSTAR* surveys are described in §2.2 and §2.3, respectively, and the HMXB candidates discovered by these surveys are discussed in §2.4.

# 2.2 The Norma Arm Region *Chandra* Survey (NARCS)

#### 2.2.1 Introduction

The Norma Arm Region *Chandra* Survey (NARCS) is a large *Chandra* program which observed a  $2^{\circ} \times 0.8$  region in the direction of the Norma spiral arm to a depth of 20 ks. The near side of the Norma arm is located at a distance of about 4 kpc while the far Norma arm

is at a distance of 10–11 kpc. Through *Chandra*'s superior angular resolution, which is 0".5 on-axis, we were able to detect 1130 point-like sources at  $\geq 3\sigma$  confidence in the Norma region and to identify reliable IR counterparts for 52% of them. The complete catalog of NARCS sources is provided in Appendix A. The NARCS observations are described in §2.2.2, while the source detection method is discussed in §2.2.3. In §2.2.4-2.2.6, we describe the photometric analysis (§2.2.4), X-ray variability studies (§2.2.5, and search for IR counterparts (§-2.2.6) that was performed for all sources. Since most of the sources were too faint for individual spectral modeling, we relied on quantile analysis to estimate their spectral properties §2.2.7, divided the sources into groups based on their quantile properties, and then fit the stacked spectra of these quantile groups (§2.2.8). Then we analyzed the photometric and spectral properties of each group in order to identify the dominant X-ray populations in this survey (§2.2.9). Our calculation of the NARCS number-flux distribution, including corrections for the Eddington bias, the incompleteness of our detection procedure, and the variations in sensitivity across the surveyed area, can be found in §2.2.10. Finally, the observed number-flux distribution is compared to predictions based on previous surveys of Galactic X-ray sources in §2.2.11.

## 2.2.2 Observations and Source Catalog

We performed *Chandra* ACIS-I observations in faint mode of a  $2^{\circ} \times 0.8$  region of the Norma spiral arm in June 2011. The primary goal of this survey was to discover faint High-Mass X-ray Binaries (HMXBs) that may have been missed in previous surveys performed with instruments with less sensitivity and angular resolution than *Chandra*. The Norma spiral arm was chosen as the target for this search because it hosts the largest number of known HMXBs of any line-of-sight through the Galaxy, likely due to its evolutionary state (Bodaghee et al. 2012c). Even though HMXBs are more common in the Norma arm than elsewhere, they are rare sources compared to other X-ray populations; thus, our ongoing efforts to identify new HMXBs will be discussed in future papers while here we will focus on studying the dominant classes of X-ray sources in this survey.

Our field was subdivided into 27 pointings; Table 2.1 reports their coordinates and exposure times and Figure 2.1 is a mosaic image of the survey. Our observing strategy was to cover a wide area with relatively uniform flux sensitivity and good spatial resolution; therefore, we chose field centers spaced by 12', which provided roughly 70  $\operatorname{arcmin}^2$  of overlap on the outskirts of adjacent observations such that the additional exposure time in these overlapping regions partly made up for the worsening point-spread function (PSF) at large off-axis angles. There are only four archival *Chandra* imaging observations of >20 ks which fall within the area of our survey region. We chose not to incorporate these data into our survey because they do not add much value compared to the modifications we would have to make to our analysis strategy, and because they might bias our study of faint X-ray populations in the Norma region since they only provide deeper coverage of a fourth of the surveyed area which may not be representative of the region as a whole.

The ACIS-I consists of four  $1024 \times 1024$  pixel CCDs, covering a  $17' \times 17'$  field of view (Garmire et al. 2003). The on-axis spatial resolution of the ACIS-I is fully sampled by the

| ObsID | R.A. (deg) | Dec. (deg) | Roll (deg) | Start Time (UT)      | Exposure (ks) |
|-------|------------|------------|------------|----------------------|---------------|
| (1)   | (2)        | (3)        | (4)        | (5)                  | (6)           |
| 12507 | 250.373201 | -46.662951 | 342.217237 | 2011 Jun 6 10:15:53  | 18.8          |
| 12508 | 250.155011 | -46.530604 | 342.217232 | 2011 Jun 6 15:57:13  | 18.5          |
| 12509 | 249.937805 | -46.397816 | 342.217176 | 2011 Jun 6 21:22:23  | 19.4          |
| 12510 | 250.180190 | -46.812896 | 342.217230 | 2011 Jun 9 12:29:02  | 19.9          |
| 12511 | 249.961646 | -46.681456 | 333.217149 | 2011 Jun 17 11:15:19 | 19.3          |
| 12512 | 249.743370 | -46.550407 | 317.716418 | 2011 Jun 27 04:52:55 | 20.5          |
| 12513 | 249.984947 | -46.965904 | 317.716539 | 2011 Jun 27 11:00:21 | 20.2          |
| 12514 | 249.767582 | -46.829470 | 342.217317 | 2011 Jun 10 16:07:39 | 19.8          |
| 12515 | 249.550110 | -46.695978 | 342.217265 | 2011 Jun 10 22:04:48 | 19.5          |
| 12516 | 249.790838 | -47.111874 | 342.217386 | 2011 Jun 11 03:46:38 | 19.5          |
| 12517 | 249.572205 | -46.978413 | 342.217342 | 2011 Jun 11 09:28:28 | 19.5          |
| 12518 | 249.354673 | -46.844540 | 342.217308 | 2011 Jun 11 15:10:18 | 19.5          |
| 12519 | 249.594334 | -47.262081 | 333.217286 | 2011 Jun 13 04:25:13 | 19.3          |
| 12520 | 249.375577 | -47.128273 | 333.217242 | 2011 Jun 13 10:13:08 | 19.0          |
| 12521 | 249.157932 | -46.994022 | 333.217206 | 2011 Jun 13 15:46:38 | 19.0          |
| 12522 | 249.396933 | -47.410725 | 333.217339 | 2011 Jun 13 21:20:08 | 19.0          |
| 12523 | 249.178061 | -47.276529 | 333.217293 | 2011 Jun 14 02:53:38 | 19.0          |
| 12524 | 248.960334 | -47.141940 | 333.217275 | 2011 Jun 14 08:27:08 | 19.5          |
| 12525 | 249.198427 | -47.559064 | 333.217397 | 2011 Jun 14 14:08:58 | 19.5          |
| 12526 | 248.979417 | -47.424468 | 333.217332 | 2011 Jun 14 19:50:48 | 19.0          |
| 12527 | 248.761625 | -47.289491 | 333.217351 | 2011 Jun 15 19:36:46 | 19.3          |
| 12528 | 248.998831 | -47.707016 | 333.217482 | 2011 Jun 16 01:24:35 | 19.0          |
| 12529 | 248.779750 | -47.572056 | 333.217441 | 2011 Jun 16 06:58:05 | 19.0          |
| 12530 | 248.561776 | -47.436667 | 333.217382 | 2011 Jun 16 12:31:35 | 19.3          |
| 12531 | 248.798050 | -47.854617 | 333.217515 | 2011 Jun 16 18:09:14 | 19.5          |
| 12532 | 248.578823 | -47.719259 | 333.217450 | 2011 Jun 16 23:51:04 | 19.5          |
| 12533 | 248.360823 | -47.583518 | 333.217451 | 2011 Jun 17 05:32:54 | 19.5          |

Table 2.1: Chandra Observations of the Norma Region

Notes:

(1) Observation ID number.

(2) Right ascension (J2000.0) of observation pointing.

(3) Declination (J2000.0) of observation pointing.

(4) Roll angle of observation.

(5) Start time of observation.

(6) Exposure time of observation.



*Figure 2.1*: Three-color image of the Norma survey area. Red is 0.5-2 keV, green is 2-4.5 keV, and blue is 4.5-10 keV. Each energy band was smoothed using aconvolve. Some artifacts are present at the chip edges.

 $0''_{492} \times 0''_{492}$  CCD pixel but it increases greatly off-axis. The PSF increases in size and becomes more elliptical at large off-axis angles, such that at an off-axis angle of 10', the PSF has ellipticity  $\approx 0.3$  and semi-major axis  $\approx 15'$  for an ECF of 90% for 4.5 keV photons (Allen et al. 2004). The CCDs are sensitive to incident photons with energies in the 0.3-10.0 keV range, and have a resolution of about 50-300 eV. The time resolution of the CCDs, which is determined by the read-out time, is 3.2 s.

We analyzed the data using standard tools from the CIAO package, version 4.4.<sup>1</sup> We used chandra\_repro to reprocess the level 1 event lists provided by the *Chandra* X-Ray Center (CXC). This tool calls on acis\_process\_events to clean the cosmic ray background for very faint mode observations and also applies the sub-pixel event repositioning algorithm EDSER. Background flares accounted for <1% of the exposure time and were all relatively weak so, for simplicity, they were not removed.

### 2.2.3 Source Detection and Localization

We searched for X-ray sources in each observation separately using the wavelet detection algorithm wavdetect. For each observation, we generated images in three energy bands and four spatial resolutions. The three energy bands were the full 0.5-10 keV band (FB), the soft 0.5-2 keV band (SB), and the hard 2-10 keV band (HB); these three bands were chosen to make our source search sensitive to spectrally different sources. For each energy band, we made one image with the full resolution (0.5''), one binned by a factor 2 (1''), one binned by

<sup>&</sup>lt;sup>1</sup>Available at http://cxc.harvard.edu/ciao4.4/

a factor of 4 (2''), and another binned by a factor of 8 (4''). Exposure maps for each of the three energy bands and four spatial resolutions were also generated applying the spectral weights for a power-law model with  $\Gamma = 2.0$  and  $N_{\rm H} = 5.0 \times 10^{22} {\rm cm}^{-2}$ , a column density appropriate for sources in the far Norma arm at 10 - 12 kpc distances;<sup>2</sup> the wavdetect exposure threshold was set to 0.1 to minimize spurious detections at detector locations with low exposure times. PSF maps of the 39.3% enclosed-count fraction (ECF)<sup>3</sup> at 4.5 keV (for the full and hard bands) and at 1.5 keV (for the soft band), computed using mkpsfmap, were also supplied to wavdetect. We used wavelet scales that increased by a factor of  $\sqrt{2}$  from 1 to 16; this range of wavelet scales and four different spatial resolutions were chosen because the ACIS-I PSF varies significantly with offset from the aim point. We selected the Mexican Hat wavelet, and a sensitivity threshold equal to one over the number of pixels in the image, which corresponds to the chance of detecting approximately one spurious source per image assuming a spatially uniform background. Therefore, we expect wavdetect to identify 324 spurious sources (27 observations  $\times$  3 energy bands  $\times$  4 resolutions); we find 315 sources are detected at  $< 3\sigma$ , which is in rough agreement with the expected number of spurious sources. so the sample of sources detected at  $\geq 3\sigma$  in at least one energy band is probably mostly free of spurious sources.

We combined the source lists from the four images with different spatial resolutions for each observation and energy band. Sources were identified as matches if the separation between them was smaller than the 50% encircled energy contour for the PSF of 4.5 keV photons at the detector position of the source plus the uncertainty in position due to the pixel size in the lower resolution image (e.g. when comparing sources in the full resolution image and the image binned by a factor of 2, this uncertainty is 2 pixels× $\sqrt{2} \times 0$ ."492/pixel=1".39). When duplicate sources were identified, we only retained the position of the source detected in the highest resolution image.

Then we made background maps for each of the observations and energy bands by removing the counts of sources detected in that particular observation and energy band and filling these regions in with a number of counts determined from the average local background. The source regions we removed were defined as circles centered on the source position, with a radius ( $r_{96\%}$ ) equal to the 96% enclosed count fraction (ECF) PSF for 4.5 keV photons (for the full and high energy bands) or for 1.5 keV (for the low energy band). In addition, we manually defined regions for the extended sources present in observations ObsID 12508, 12516, 12523, 12525, 12526, and 12528. The background regions were defined as annuli with an inner radius equal to the radius of the punched-out region, and an outer radius twice as large; if an annulus overlapped a punched-out region, that overlapping segment was removed from the annulus. The number of background counts to be randomly distributed within the punched-out region areas and the ratio of the region mean effective areas, as determined from the exposure maps. After the punched-out regions had been filled in with the appropriate number of background counts, the background maps were smoothed using

<sup>&</sup>lt;sup>2</sup>See §2.2.8 for details on the calculation of  $N_{\rm H}$  to a given distance.

<sup>&</sup>lt;sup>3</sup>As recommended by Freeman et al. (2002a)

*csmooth* with Gaussian kernels of sizes ranging from 20 to 50 pixels. For the observations containing extended sources, first, a smoothed background map was made with both the extended and points sources removed. This map was passed to **csmooth** as a background map, and a smoothed background map was made with only the point sources removed.

We then employed wavdetect again to search for X-ray sources in each observation, but this time we used the smoothed background maps we made instead of defaulting to the background maps automatically generated by wavdetect. We found that when the background maps we made were used, a larger fraction of sources was detected in higher resolution images than with the automatically-generated maps. As before, for each observation, we combined the source lists from the four images with different spatial resolutions. Then we combined the source lists from the three energy bands. When two sources were identified as a match, only one source entry was retained; preference was given to sources detected in the full energy band and then the soft band, because the PSF size is smaller at low energies, allowing better source localization.

In order to refine the astrometry of our observations, we searched the VISTA Variables in the Via Lactea (VVV) Survey catalog (Minniti et al. 2010) for infrared counterparts to the X-ray sources we detected<sup>4</sup> For each *Chandra* observation, we made a list of VVV sources within 12' of the observation aim point with less than a 0.137% probability of being a noise fluctuation. We then determined the reliability of each IR counterpart based on the positional uncertainties of the X-ray and IR sources, the distance between the X-ray and IR source, and the density of IR sources following the treatment of Sutherland & Saunders (1992) but without making any assumptions about the probability distribution function in magnitude of the true IR counterparts.<sup>5</sup> The  $1\sigma$  positional uncertainty of sources in the VVV catalog is typically 0.07. We determined the positional uncertainty of the *Chandra* sources using the parameterization of the statistical error as a function of offset angle and net  $counts^{6}$  in Equation 5 of Hong et al. (2005). These statistical errors were combined in quadrature with a systematic error of 0.77 (95% error<sup>7</sup>) due to Chandra guide star alignment uncertainties. We used VVV matches with a reliability greater than 0.9 and reproject\_aspect to derive a linear and rotational astrometric correction for each *Chandra* observation, reducing the systematic astrometric errors to  $\leq 0$ . We applied the same corrections to the source positions in our source lists. We replaced the 0".7 systematic errors with the average residuals from the astrometric transformation derived from the VVV counterparts to the X-ray sources. Table 2.2 presents the refined astrometry for each observation.

 $<sup>^4</sup> See \ http://www.eso.org/sci/observing/phase3/data_releases/vvv_dr1.html for the first data release used in this paper.$ 

<sup>&</sup>lt;sup>5</sup>Our calculation takes into account the probability that the NIR counterpart of an X-ray source is undetected in the VVV survey. In Sutherland & Saunders (1992) this null probability is the quantity (1-Q). Since we do not know Q a priori, we guess its value and then refine our guess iteratively until the Q value meets the criterion in Equation (7) of Sutherland & Saunders (1992). In this way, we find Q = 0.85.

<sup>&</sup>lt;sup>6</sup>These are the net counts reported by wavdetect, not those determined by aperture photometry.

<sup>&</sup>lt;sup>7</sup>See http:/cxc.harvard.edu/cal/ASPECT/celmon.

| ObsID | R.A. (deg) | Dec. (deg) | Roll (deg) | Unc.            | # Counterparts |
|-------|------------|------------|------------|-----------------|----------------|
| (1)   | (2)        | (3)        | (4)        | (5)             | (6)            |
| 12507 | 250.373197 | -46.666299 | 342.207886 | 0''.38          | 14             |
| 12508 | 250.155064 | -46.530768 | 342.256256 | 0".16           | 6              |
| 12509 | 249.937691 | -46.397888 | 342.258575 | $0''_{\cdot}42$ | 26             |
| 12510 | 250.180484 | -46.812861 | 342.220398 | 0''.32          | 21             |
| 12511 | 249.961539 | -46.681483 | 333.150848 | $0''_{}39$      | 7              |
| 12512 | 249.743528 | -46.550463 | 317.725342 | 038             | 14             |
| 12513 | 249.985150 | -46.965931 | 317.737030 | 0''.35          | 24             |
| 12514 | 249.767578 | -46.829508 | 342.200439 | 0".39           | 9              |
| 12515 | 249.550029 | -46.696055 | 342.115234 | 0''.35          | 22             |
| 12516 | 249.790920 | -47.111803 | 342.203583 | 0''.35          | 10             |
| 12517 | 249.572277 | -46.978334 | 342.136200 | 0''.54          | 5              |
| 12518 | 249.354557 | -46.844589 | 342.191071 | 0''.35          | 23             |
| 12519 | 249.594337 | -47.262048 | 333.187683 | 0".36           | 19             |
| 12520 | 249.375668 | -47.128341 | 333.142365 | 0''.35          | 3              |
| 12521 | 249.157996 | -46.994096 | 333.227539 | 0''.32          | 24             |
| 12522 | 249.396838 | -47.410790 | 333.249512 | 0''.34          | 18             |
| 12523 | 249.178005 | -47.276545 | 333.162964 | 0''.31          | 6              |
| 12524 | 248.960241 | -47.141987 | 333.209045 | 0''.34          | 24             |
| 12525 | 249.198264 | -47.559033 | 333.258545 | $0''_{}29$      | 15             |
| 12526 | 248.979187 | -47.424375 | 333.234863 | $0''_{.}28$     | 5              |
| 12527 | 248.761554 | -47.289507 | 333.188904 | 0''.37          | 19             |
| 12528 | 248.998873 | -47.707003 | 333.211639 | $0''_{}39$      | 19             |
| 12529 | 248.779969 | -47.572088 | 333.210205 | 0".30           | 9              |
| 12530 | 248.561714 | -47.436723 | 333.186920 | 0''.39          | 15             |
| 12531 | 248.797988 | -47.854470 | 333.221191 | 0''.31          | 17             |
| 12532 | 248.578674 | -47.719259 | 333.231171 | 0''.34          | 9              |
| 12533 | 248.360765 | -47.583555 | 333.165527 | 0''.32          | 18             |

Table 2.2: Refined Astrometry of Chandra Observations

<u>Notes:</u>

(1) Observation ID number.

(2) Right ascension (J2000.0) after astrometric correction.

(3) Declination (J2000.0) after astrometric correction.

(4) Roll angle after astrometric correction.

(5) Average systematic uncertainty between IR and X-ray positions after astrometric refinement.

(6) Number of VVV counterparts used to refine astrometry.

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | R.A.<br>(deg) | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags |
|-----|--------------------|-----------------------------------------------------------|---------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|-----------------|-------|
| (1) | (2)                | (3)                                                       | (4)           | (5)           | (6)              | (7)                | (8)        | (9)        | (10)       | (11)               | (12)            | (13)  |
| 1   | 163228.2 - 473755  | 33                                                        | 248.117829    | -47.632173    | 4.03             | 10.3               | 3.6        | 2.3        | 2.5        | 13.8               | 13.8            |       |
| 2   | 163241.5 - 474039  | 33                                                        | 248.172944    | -47.677522    | 1.79             | 9.5                | 9.0        | 10.4       | 2.5        | 11.9               | 11.9            |       |
| 3   | 163244.6-474133    | 33                                                        | 248.186065    | -47.692513    | 3.63             | 9.6                | 2.4        | 0.0        | 2.8        | 12.2               | 12.2            |       |
| 4   | 163248.7 - 473017  | 33                                                        | 248.203151    | -47.504857    | 1.41             | 7.9                | 8.4        | 1.2        | 8.5        | 9.2                | 9.2             |       |
| 5   | 163251.0-474135    | 33                                                        | 248.212798    | -47.693198    | 3.16             | 8.9                | 3.0        | 5.0        | 0.0        | 10.7               | 10.7            |       |
| 6   | 163253.0-474201    | 33                                                        | 248.221111    | -47.700286    | 2.26             | 9.0                | 5.2        | 1.8        | 4.8        | 10.9               | 10.9            |       |
| 7   | 163259.0-473819    | 33                                                        | 248.246176    | -47.638806    | 1.13             | 5.7                | 7.5        | 7.2        | 4.1        | 5.2                | 5.2             |       |
| 8   | 163259.4-472804    | 33                                                        | 248.247582    | -47.467941    | 3.39             | 8.3                | 2.3        | 3.4        | 0.4        | 10.1               | 10.1            |       |
| 9   | 163303.2-472547    | 33                                                        | 248.263337    | -47.429724    | 13.98            | 10.0               | 0.0        | 0.8        | 0.0        | 14.0               | 14.0            |       |
| 10  | 163306.2-473239    | 33                                                        | 248.276159    | -47.544291    | 1.55             | 4.2                | 3.3        | 0.7        | 3.1        | 3.5                | 3.5             |       |

Table 2.3: Sample Chandra Catalog of Point and Extended Sources: Detection and Localization

Notes: Table 2.3 is published in its entirety in Appendix A.1 along with detailed column descriptions. A portion is shown here for guidance regarding its form and content.

Table 2.4: Sample Chandra Catalog of Point and Extended Sources: Photometry

| No. | $C_{net}$ FB   | $C_{net}$ SB        | $C_{net}$ HB   | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$ | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$ | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$ | $\frac{E_{50}}{(\text{keV})}$ | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{ s}^{-1})$ | Phot.<br>Flag | Quantile<br>Group |
|-----|----------------|---------------------|----------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------|-----------------|-----------------|----------------------------------------------------------|---------------|-------------------|
| (1) | (2-4)          | (5-7)               | (8-10)         | (11-13)                                                   | (14-16)                                                   | (17-19)                                                   | (20-21)                       | (22-23)         | (24-25)         | (26-28)                                                  | (29)          | (30)              |
| 1   | $16^{+7}_{-6}$ | $6^{+4}_{-3}$       | $10^{+6}_{-5}$ | $3.76^{+1.57}_{-1.32}$                                    | $0.76_{-0.40}^{+0.55}$                                    | $2.47^{+1.39}_{-1.13}$                                    | $2.9{\pm}1.8$                 | $1.6{\pm}0.8$   | $5.6 {\pm} 2.4$ | $1.75^{+1.31}_{-1.25}$                                   |               | С                 |
| 2   | $47^{+9}_{-8}$ | $37^{+7}_{-6}$      | $10^{+6}_{-5}$ | $10.55_{-1.76}^{+1.99}$                                   | $4.68_{-0.80}^{+0.93}$                                    | $2.28^{+1.31}_{-1.07}$                                    | $1.4{\pm}0.1$                 | $1.0 {\pm} 0.1$ | $1.8{\pm}0.5$   | $2.35_{-0.44}^{+0.49}$                                   |               | А                 |
| 3   | $9^{+5}_{-4}$  | 3                   | $9^{+5}_{-4}$  | $3.48^{+2.15}_{-1.71}$                                    | 0.69                                                      | $3.88_{-1.69}^{+2.14}$                                    | $5.4{\pm}0.9$                 | $4.5 \pm 1.3$   | $6.1{\pm}0.9$   | $3.03^{+1.93}_{-1.56}$                                   | - S -         | D                 |
| 4   | $36^{+8}_{-7}$ | $2^{+3}_{-2}$       | $34^{+7}_{-6}$ | $7.95^{+1.69}_{-1.46}$                                    | $0.28^{+0.40}_{-0.24}$                                    | $7.60^{+1.66}_{-1.42}$                                    | $4.6{\pm}0.3$                 | $3.7 {\pm} 0.3$ | $5.2{\pm}0.5$   | $5.90^{+1.33}_{-1.17}$                                   |               | D                 |
| 5   | $13^{+6}_{-5}$ | $13^{+5}_{-4}$      | 6              | $2.85^{+1.36}_{-1.12}$                                    | $1.70^{+0.65}_{-0.51}$                                    | 1.32                                                      | $1.0{\pm}0.1$                 | $0.9{\pm}0.2$   | $1.1 {\pm} 0.1$ | $0.44_{-0.18}^{+0.21}$                                   | H             | А                 |
| 6   | $22^{+7}_{-6}$ | $4^{+4}_{-2}$       | $19^{+6}_{-5}$ | $6.00^{+1.82}_{-1.53}$                                    | $0.59\substack{+0.55\\-0.36}$                             | $5.07^{+1.71}_{-1.41}$                                    | $3.0{\pm}0.7$                 | $2.2{\pm}0.4$   | $5.7 \pm 1.2$   | $2.90^{+1.10}_{-0.99}$                                   |               | $\mathbf{C}$      |
| 7   | $20^{+6}_{-5}$ | $12^{+5}_{-3}$      | $9^{+4}_{-3}$  | $4.70^{+1.35}_{-1.10}$                                    | $1.53^{+0.60}_{-0.46}$                                    | $2.08^{+1.04}_{-0.78}$                                    | $1.8{\pm}0.6$                 | $1.5 {\pm} 0.1$ | $3.5{\pm}0.5$   | $1.37_{-0.53}^{+0.57}$                                   |               | В                 |
| 8   | $8^{+5}_{-4}$  | $7^{+4}_{-3}$       | $1^{+4}_{-1}$  | $1.82^{+1.17}_{-0.92}$                                    | $0.85^{+0.51}_{-0.37}$                                    | $0.33_{-0.33}^{+0.93}$                                    | $1.6{\pm}0.9$                 | $1.4{\pm}0.3$   | $1.8 {\pm} 3.8$ | $0.47\substack{+0.40\\-0.35}$                            |               | А                 |
| 9   | 7              | $2^{+3}_{-2}$       | 5              | 1.74                                                      | $0.27^{+0.48}_{-0.27}$                                    | 1.23                                                      | $5.2 {\pm} 4.8$               | $2.9{\pm}7.1$   | $7.6 {\pm} 7.1$ | 1.46                                                     | F - H         | $\mathbf{C}$      |
| 10  | $6^{+4}_{-3}$  | $1^{+\bar{2}}_{-1}$ | $5^{+4}_{-2}$  | $1.11\substack{+0.74 \\ -0.50}$                           | $0.08_{-0.08}^{+0.26}$                                    | $0.98\substack{+0.72 \\ -0.47}$                           | $5.1{\pm}0.8$                 | $4.4{\pm}1.4$   | $5.4{\pm}0.3$   | $0.91\substack{+0.62\\-0.44}$                            |               | Е                 |

Notes: Table 2.4 is published in its entirety in Appendix A.2, along with detailed column descriptions. A portion is shown here for guidance regarding its form and content.

| No. | VVV Source Name | R.A.       | Dec.       | $\Delta_{\rm X-IR}$ | $p_{\rm noise}$ | Reliability |
|-----|-----------------|------------|------------|---------------------|-----------------|-------------|
|     |                 | (deg)      | (deg)      | (arcsec)            |                 |             |
| (1) | (2)             | (3)        | (4)        | (5)                 | (6)             | (7)         |
| 1   | 515727792649    | 248.117752 | -47.631649 | 1.89                | 3.07e-03        | 0.3216      |
| 2   | 515726841264    | 248.172806 | -47.677017 | 1.84                | 5.29e-07        | 0.8660      |
| 3   | 515726837733    | 248.185730 | -47.693638 | 4.13                | 5.29e-07        | 0.3508      |
| 4   | 515727238897    | 248.203003 | -47.505127 | 1.05                | 1.71e-04        | 0.7804      |
| 5   | 515726847521    | 248.212341 | -47.693485 | 1.52                | 1.71e-04        | 0.9482      |
| 6   | 515727540494    | 248.220947 | -47.700108 | 0.76                | 1.71e-04        | 0.9142      |
| 7   | 515726868309    | 248.246140 | -47.638630 | 0.64                | 5.29e-07        | 0.9777      |
| 8   | 515726918176    | 248.247345 | -47.468082 | 0.78                | 9.52e-06        | 0.4607      |
| 9   | 515726930863    | 248.262817 | -47.429794 | 1.29                | 5.29e-07        | 0.0657      |
| 10  | 515727577185    | 248.276459 | -47.544682 | 1.59                | 2.81e-04        | 0.8825      |

Table 2.5: Sample Chandra Catalog of Point and Extended Sources: Infrared Counterparts

<u>Notes:</u> Table 2.5 is published in its entirety Appendix A.3, along with detailed column descriptions. A portion is shown here for guidance regarding its form and content.

We detected a total of 1658 sources but since each of the 27 observations partially overlaps with at least three other survey observations, we checked for duplicate sources between the different observations in order to only have one entry per source in our final catalog (see Tables 2.3, 2.4, and 2.5 for a sample). A source was considered a true duplicate if the distance between the two sources was smaller than the quadrature sum of the positional uncertainties of the two sources. If the distance between two sources was larger than the quadrature sum of the positional uncertainties but smaller than the regular sum of the uncertainties, then the sources were flagged for manual inspection. Some sources that met the true duplicate criterion but were unusual in some respect (e.g. one source was flagged as extended while the other was not) were also flagged by the algorithm for manual inspection. Whether or not the sources flagged for manual inspection were determined to be duplicates, they were flagged with "id" for "inspected duplicate" in the catalog.<sup>8</sup>. In total, 38 sets of sources were flagged for manual inspection and we determined 28 of them were true duplicates. The catalog entries for duplicates were combined so that exposure times and net counts were summed, source positions were weight-averaged, and the ObsIDs, offsets from the aim point, source region radii, 90% PSF sizes, and flags of the duplicate sources were all listed. If a source was determined to be variable on long timescales (see  $\S2.2.5$ ), its derived photometric properties were averaged, but if it was determined to be constant, they were weight-averaged. After combining the entries of duplicate sources, our catalog contains 1415 sources.

 $<sup>^{8}</sup>$ Flags for each source are provided in column 13 of Table 2.3. Descriptions of all flags are provided in Appendix A.1.



Figure 2.2: Examples of modified overlapping regions.

### 2.2.4 Aperture photometry

We used dmextract to compute photometric quantities for each of the X-ray sources in our catalog. In most cases, we defined an aperture region for each source as a circle with radius  $(r_{90\%})$  equal to the 90% ECF PSF for 4.5 keV photons. Given the relatively low source counts for the vast majority of sources, this radius is well-optimized to obtain the highest S/N ratio. However, if the semi-major axis of the source region provided by wavdetect was more than twice as large as  $r_{90\%}$  in all images in which the source was detected, then the semi-major axis was used as the radius of the aperture region and the source was flagged with "e" for "extended", to denote that it may be an extended source. In some cases, these "e" source regions surrounded another source region; these sources were additionally flagged with an "s" for "surrounding". We nonetheless included these sources in our analysis of point-like sources, but they only constitute 3% of sources detected at  $> 3\sigma$ . We also modified the aperture regions of overlapping sources; following the method of Hong et al. (2005), we defined a source region as the sum of a circular core and a pie sector of an annular shell that excludes the common sector with the neighbor's source region. The core size was determined empirically to maximize the source photons included and to minimize contamination from neighbors, as described in Table 2.6, which also lists the flags associated with each type of source region modification from the standard one. As was implemented in Hong et al. (2005), if the source region overlapped with more than one neighbor, the core size was determined by the nearest neighbor and the pie sector excluded all common sectors with the neighbors' aperture regions. Figure 2.2 shows some examples of these modified overlapping source regions. We manually modified 12 aperture regions of sources with multiple nearby neighbors. Finally, we manually created source and background regions for the extended sources in observations ObsID 12508. 12516, 12523, 12525, 12526, and 12528 that were not detected by wavdetect and flagged these sources with a "c" for "created".

The background region for each source was defined as an annulus with an inner radius equal to  $r_{96\%}$  and an outer radius equal to  $2r_{96\%}$ . In the few instances when a source flagged as "e" had a source radius larger than  $r_{96\%}$ , then the inner radius of the annulus was set equal to the source radius, and the outer radius was twice as large as this inner radius. As we did when making the background maps, we generated images with punched-out  $r_{96\%}$  source regions, which were again defined as circles with radii equal to  $r_{96\%}$ . When extracting photometric information from the background regions, we used these punched-out images so that contamination from neighboring sources was avoided. When calculating the background region area, we corrected the annular area for any segments that were excluded due to overlap with punched-out source regions.

Having defined source and background regions, we used dmextract to calculate the source core, source shell, and background region counts ( $C_{\text{core}}$ ,  $C_{\text{pie}}$ , and  $C_{\text{bkg}}$ ) in the full, hard, and soft energy bands, their areas ( $A_{\text{core}}$ ,  $A_{\text{pie}}$ , and  $A_{\text{bkg}}$ ), and their mean effective areas ( $E_{\text{core}}$ ,  $E_{\text{pie}}$ , and  $E_{\text{bkg}}$ ) by including exposure maps in the call to dmextract. We calculated the 1 $\sigma$  Gaussian errors in the measured counts (both in the source and background regions) using the recommended approximations for upper and lower limits in Gehrels (1986). For sources with apertures consisting of a circular core and a pie sector of an annular shell, the total source region counts, area, and effective area were calculated in the following manner, assuming azimuthal symmetry of the PSF:

$$C_{\rm src} = C_{\rm core} + \frac{A_{\rm ann}}{A_{\rm pie}} C_{\rm pie}$$
(2.1)

$$A_{\rm src} = A_{\rm core} + A_{\rm ann} \tag{2.2}$$

$$E_{\rm src} = E_{\rm core} + \frac{A_{\rm ann}}{A_{\rm pie}} E_{\rm pie}$$
(2.3)

where  $A_{\rm ann} = \pi (r_{\rm outer}^2 - r_{\rm inner}^2)$  is the total area of the annular shell. For all other sources, the source region simply consists of the circular core region, and thus  $C_{\rm src} = C_{\rm core}$ ,  $A_{\rm src} = A_{\rm core}$ , and  $E_{\rm src} = E_{\rm core}$ . The total observed source region counts include contributions from the source and from the background. The background counts within the source region were estimated and subtracted as shown below to estimate the true source counts:

$$C_{\rm net} = C_{\rm src} - fC_{\rm bkg}, \qquad f = \frac{A_{\rm src}E_{\rm src}}{A_{\rm bkg}E_{\rm bkg}}.$$
 (2.4)

If the estimated background counts were equal to or greater than the source region counts, then we calculated the 90% upper confidence limit to the net source counts based on the method described in Kraft et al. (1991). The photon flux for each energy band was calculated by dividing the net source counts by the mean source region effective area and the exposure time. Since the mean effective area was determined from the exposure maps, these photon fluxes will not be accurate for all sources because in making the exposure maps we assumed a source spectral model with  $\Gamma = 2.0$  and  $N_{\rm H} = 5.0 \times 10^{22}$  cm<sup>-2</sup>. To determine the extent to which we may be under or overestimating the fluxes of sources with different spectral properties, we made exposure maps for one observation using different spectral models spanning the range of  $\Gamma$  and  $N_{\rm H}$  covered by our sources. We find that the mean effective areas vary by  $\leq 20\%$  in the full band and  $\leq 5\%$  in the soft and hard bands, making our derived photon fluxes uncertain by the same percentages.

We also computed the probability that the sources in our catalog could be noise fluctuations of the local background using the following formula derived in Appendix A of Weisskopf et al. (2007):

$$P(\geq C_{\rm src}|C_{\rm bkg}; C_{\rm net} = 0) = \sum_{c=C_{\rm src}}^{C_{\rm bkg}+C_{\rm src}} \frac{(C_{\rm bkg}+C_{\rm src})!}{c!(C_{\rm bkg}+C_{\rm src}-c)!} \left(\frac{f}{1+f}\right)^{c} \left(1-\frac{f}{1+f}\right)^{C_{\rm bkg}+C_{\rm src}-c}$$
(2.5)

We determine the significance of a source based on this probability and the Gaussian cumulative distribution function. For sources detected in multiple observations, these probability values from individual observations were multiplied together, and the source significance was determined from this combined probability. The photometric values used in our data analysis are included in our catalog, a sample of which can be seen in Table 2.4. Although in our catalog we include all detected sources, in our analysis we only use sources detected at  $\geq 3\sigma$ in the full, soft, or hard energy band and refer to these sources as the full sample. Figure 2.3 shows the histogram distribution of the total 0.5-10 keV counts detected for these sources; as can be seen, most of these sources have fewer than 100 counts, which is roughly the number of photons required to determine their spectral and variability properties accurately enough



Figure 2.3: Histogram of 0.5-10 keV net counts for  $\geq 3\sigma$  sources. The brightest source with 14,720 counts is not shown.

|               |                                   | <i>Table 2.6</i> : <i>A</i> | Aperture Region Definition   | ons                                               |      |
|---------------|-----------------------------------|-----------------------------|------------------------------|---------------------------------------------------|------|
| Source Region | Condition                         | Core Radius                 | Refined Source               | Background                                        | Flag |
| Overlap       |                                   | $r_c$                       | Region                       | Region                                            |      |
| No            | $\Delta \ge r_{90\%} + r'_{90\%}$ | $r_{90\%}$                  | $r \le r_c = r_{90\%}$       | $r_{96\%} < r < 2r_{96\%}$ and $r'' > r''_{96\%}$ |      |
|               |                                   |                             |                              | for all neighbors                                 |      |
| Yes           | $\Delta \ge 1.5 r_{90\%}',$       | $\Delta - r'_{90\%}$        | $r \leq r_c$ and pie sector  | Same as above                                     | m1   |
|               | $\Delta < r_{90\%} + r'_{90\%}$   |                             | with $r_c < r \leq r_{90\%}$ |                                                   |      |
| Yes           | $\Delta < 1.5 r'_{90\%},$         | $\Delta - r'_{90\%}$        | Same as above                | Same as above                                     | m2   |
|               | $\Delta \ge r_{68\%} + r'_{90\%}$ |                             |                              |                                                   |      |
| Yes           | $\Delta < r_{68\%} + r'_{90\%}$   | $\Delta/3$                  | Same as above                | Same as above                                     | m3   |

<u>Notes</u>: Parameter  $\Delta$  is the distance between the source and its nearest neighbor, and  $r'_{90\%}$  is the 90% PSF radius of the nearest neighbor. r refers to the distance from the source and r'' refers to the distance from neighbors. The PSF radii are calculated for 4.5 keV photons. For sources flagged as potentially extended ("e"), these criteria remain the same, except that instead of using  $r_{90\%}$  and  $r_{96\%}$ , the radii listed in the catalog are used.



*Figure 2.4*: Mosaic image of the 0.5-10 keV band showing locations of extended sources identified by eye. Circles indicate confirmed SNRs, while the square indicates a candidate SNR, and the ellipse indicates a PWN candidate.

to determine the nature of the X-ray source. Our catalog contains 1130 point-like sources detected at  $\geq 3\sigma$  in at least one of the three energy bands and 5 extended sources which we identified by eye and are shown in Figure 2.4. Three of these extended sources are confirmed supernova remnants (G337.2+0.1, G337.8-0.1, and HESS J1640-465), another is a possible SNR based on its morphology (CXOU J163942.3-471257), and one has a jet-like morphology and is probably a pulsar wind nebula (CXOU J163802.6-471345). New results about these extended sources are discussed in Jakobsen (2013) and Jakobsen et al. (2014).

#### 2.2.5 X-ray Variability

X-ray sources can be variable on timescales from milliseconds to years, so we tried to characterize the variability of the sources in our catalog to help classify them. We determined whether a source was variable on short timescales (seconds to hour) by comparing the arrival times of events with a constant event rate using the K-S test. Sources that have  $\geq 99.73\%$  chance of not being constant are flagged with "vs" (short variability), while those that have  $\geq 95\%$  chance of not being constant are flagged with "vp" (probable short variability). The K-S test is more reliable for sources with more counts; we only consider the K-S test to be reliable for sources with at least 40 counts. Of the 80 sources with more than 40 counts (in a single observation), 27 (16) show short-timescale variability with  $\geq 95\%$  (99.73%) confidence.

We also checked whether sources detected in multiple observations demonstrated long-term variability (hours-days) by determining whether the source photon flux in two observations differed by more than  $3\sigma$  in the full, soft, or hard energy band; these sources were flagged



Figure 2.5: Variability amplitudes in the 0.5-10 keV band (maximum photon flux divided by the minimum photon flux) versus maximum photon flux for sources that are detected in multiple observations and found to vary between observations at  $\geq 3\sigma$  confidence. Different symbols represent different quantile groups.

with "vl" (long variability). In cases in which a source's flux is measured in one observation but only an upper limit can be obtained in another, we consider the source to be variable on long timescales if the measured flux and upper limit are inconsistent at >  $3\sigma$  confidence. We found 220 sets of sources detected in two or more observations with a combined significance  $\geq 3\sigma$ , 19 of which show long-term variability. We calculated the variability amplitude of each source displaying long-term variability, which we defined as the ratio of the maximum photon flux to the minimum photon flux in the 0.5-10 keV band. As shown in Figure 2.5, we do not detect significant long-term variability in sources with maximum (average) photon fluxes  $\leq 10^{-5}$  cm<sup>-2</sup> s<sup>-1</sup> ( $\leq 5.5 \times 10^{-6}$  cm<sup>-2</sup> s<sup>-1</sup>) due to the large error bars of the measured source fluxes as they approach the survey sensitivity ( $\sim 2 \times 10^{-6}$  cm<sup>-2</sup> s<sup>-1</sup>). There are 53 sets of sources that are variable on long timescales is 36%. Of the 758 sources with  $\geq 3\sigma$ confidence located in regions where multiple observations overlap, 373 are not detected in multiple observations. This is not surprising because the fluxes of all but seven of these 373 sources are lower than the flux to which 100% of our survey area is sensitive (see §2.2.10).

Finally, we searched for a coherent signal with period 6.8 s < P < 10 ks in sources



Figure 2.6: Phase-folded lightcurves of periodic sources labeled with source catalog number. Periods are presented in Table 2.7. Gray bars show  $1\sigma$  errors.

with more than 50 counts in at least one observation using the  $Z_n^2$ -test (Buccheri et al. 1983), which depends on the sum of the Fourier powers of the first n harmonics. Since it is not feasible to try an infinite number of n values, Buccheri et al. (1983) suggested using n = 2 as a general test; we decided to use both n = 2 and n = 1 since the latter is equivalent to the traditional Rayleigh test. For each source, photon arrival times were corrected to the Solar System barycenter using the JPL DE405 ephemeris and our catalog coordinates, and for sources detected in multiple observations, photon arrival times from different observations were combined. We found three sources with significant  $Z_2^2$  values; these sources have significant  $Z_1^2$  values as well. Table 2.7 provides the periods and  $Z_2^2$  values of these sources; the uncertainties in the periods were calculated using the method described in Ransom et al. (2002). In Figure 2.6 we present the phase-folded lightcurve of each periodic

Table 2.7: Periodic Variability of Chandra Sources

| No. | Source            | $C_{net}$           | Period        | $Z_{2}^{2}$ | Variability |
|-----|-------------------|---------------------|---------------|-------------|-------------|
|     | (CXOU J)          | $\operatorname{FB}$ | (s)           |             | Flags       |
| (1) | (2)               | (3)                 | (4)           | (5)         | (6)         |
| 750 | 163750.8-465545   | $1790 {\pm} 40$     | $7150{\pm}50$ | 95          | vs, vl      |
| 961 | 163855.1 - 470145 | $160 \pm 10$        | $5660 \pm 20$ | 213         | vp, vl      |
| 999 | 163905.6-464212   | $14720 \pm 120$     | $906 \pm 1$   | 368         | vs, vl      |

Notes:

(1) Catalog source number.

(2) Chandra source name.

(3) Net source counts in the full 0.5-10 keV band.

(4) Most probable period determined by the  $Z_2^2$ -test.

(5) Result of  $Z_2^2$ -test.

(6)"vl" - variability on long timescales (hours-days), "vp" - variability on short timescales (sec-hour) at  $\geq 95\%$  confidence, "vs" - variability on short timescales at  $\geq 99.73\%$  confidence

source. Source 999 is a previously discovered HMXB; the period we measure is consistent with the period found by Bodaghee et al. (2006). The other two sources are most likely magnetic cataclysmic variables (CVs), as discussed in §2.2.9.

### 2.2.6 Infrared Counterparts

We searched for infrared counterparts to our X-ray sources in the VVV catalog. First, we created a list of non-duplicate VVV sources lying within our surveyed area; we considered an entry in the VVV catalog to be duplicate if the angular difference between the source positions was less than the  $3\sigma$  positional uncertainty of the sources (approximately 0''21). Then, we determined the reliability of each counterpart as described in §2.2.3, and consider a match good if its reliability is  $\geq 90\%$  and the noise probability of the VVV source is  $\leq 0.31\%$ . The latter constraint excludes low-significance detections and very bright sources, which saturate the array and have less accurate positions and magnitudes. Table 2.5 provides information about the closest VVV source to each *Chandra* source and its reliability as a counterpart.

We have found reliable counterparts for 52% of X-ray sources detected at  $\geq 3\sigma$ . X-ray sources without reliable counterparts may have IR counterparts below the sensitivity limits of the VVV survey, have large positional uncertainties, and/or be in a particularly crowded region in which multiple IR sources are equally likely counterparts. Figure 2.7 shows the (J - H) vs. H magnitude of the reliable counterparts (the  $K_s$  magnitudes have not yet been made publicly available). In this color-magnitude diagram, the distribution of reliable counterparts does not match that of all the VVV sources located within our field-of-view, indicating that the majority of these counterparts are not random associations.



Figure 2.7: Near-IR color-magnitude diagram showing the distribution of all VVV sources in our surveyed area (black contours) and the reliable counterparts to X-ray sources in our survey (symbols). The black contours, from outside inwards, encircle 99%, 95%, 90%, 80%, 60%, 40%, 20%, and 10% of the VVV sources. For the counterparts represented with symbols, the median  $1\sigma$  error is 0.005 magnitudes for the H magnitude and 0.007 magnitudes for the (J - H) color.



Figure 2.8: Quantile diagram for sources detected at  $\geq 3\sigma$  in the 0.5-10 keV band. Sources were split into five spectral groups defined by the black lines. Short dashes at  $N_{\rm H} \approx 2 \times 10^{22}$  cm<sup>-2</sup> roughly divide nearby ( $\leq 6$  kpc) and distant ( $\geq 6$  kpc) sources. Long dashes roughly separate thermal and nonthermal sources. The dash-dotted line at  $Q_x = 0.5$  subdivides sources detected in the soft energy band from those detected in the hard energy band. Median  $1\sigma$  errors are shown in the upper left.

#### 2.2.7 Quantile Analysis

Robust identifications of X-ray sources typically require multiwavelength information, but the X-ray data itself can provide clues to the nature of a source. First, we tried to classify the sources using a hardness ratio and a soft and hard X-ray color. However, we found that this method was ineffective for distinguishing between sources with intrinsically hard spectra and very absorbed sources. This distinction is important since the HII regions near which we expect to find younger populations of X-ray sources, the primary target of this survey, are at a distance of  $\sim 11$  kpc and thus the X-ray emission from such sources would be attenuated by large amounts of intervening gas.

Therefore, we instead employed quantile analysis to classify the X-ray sources. Quantile analysis, first introduced by Hong et al. (2004), uses the median energy and other quantile energies of a source as proxies for its spectral hardness and spectral shape. Its main advantage is that it does not require subdivision of the full energy range into different bands, making it free of the selection effects inherent in the hardness ratio and colors methods and yielding

meaningful results even for low-count sources. The fundamental quantities required in quantile analysis are  $E_x$ , the energy below which x% of the source counts reside. We made event files for each source and background region and passed them to quantile.pro, an IDL program developed by J. Hong.<sup>9</sup>. The other input to this code is the ratio of source and background areas and effective areas:

$$ratio = \frac{(A_{core} + A_{pie})(E_{core} + E_{pie})}{A_{bkg}E_{bkg}}$$
(2.6)

With this code, we computed  $E_{25}$ ,  $E_{50}$ , and  $E_{75}$ , which are included in our catalog and can be seen in Table 2.4. These parameters were then combined into two quantities,  $Q_x = \log(E_{50}/E_{min})/\log(E_{max}/E_{min})$  and  $Q_y = 3(E_{25} - E_{min})/(E_{75} - E_{min})$ , where  $E_{min}$  and  $E_{max}$ are 0.5 and 10 keV, respectively.  $Q_x$  measures the hardness of the spectrum, while  $Q_y$ indicates how broad or narrow the spectrum is. Figure 2.8 shows diagrams of  $Q_x$  and  $Q_y$  for all sources in our catalog detected at  $\geq 3\sigma$  in the full energy band. To faciliate interpretation of this diagram, we have overlaid grids for a power-law model and a thermal bremsstrahlung model, both attenuated by interstellar absorption (see Figures 2.9 and 2.10).

#### 2.2.8 Spectral Analysis

One of the goals of our survey is to understand the nature of the X-ray sources in our field. Analyzing the X-ray spectrum of a source can provide important clues about its physical nature, but most of our sources have too few counts to permit meaningful spectral analysis. Therefore, to identify the dominant populations of X-ray sources in our survey, we divided them into spectral groups based on their quantile properties (see §2.2.7) and analyzed the stacked spectrum of each quantile group. Our goals in making group divisions were to combine enough sources together to reduce the errors caused by poor statistics in spectral fitting, but also to maintain the maximum spectral diversity in our sample.

As can be seen in Figure 2.8, the sources are loosely confined to a U-shaped region in the  $Q_x$ - $Q_y$  diagram, with overdensities towards the upper right and middle left. However, apart from these slight overdensities, the sources do not split up into visibly discernible groups, so we decided to split up the sources into groups with physically-motivated dividing lines roughly following the  $N_{\rm H} \approx 2 \times 10^{22}$  cm<sup>-2</sup> and  $\Gamma \approx 3$  grid lines, as shown in Figure 2.9. The dividing  $N_{\rm H}$  line corresponds to the average  $N_{\rm H}$  out to a distance of ~ 6 kpc in our survey region, as determined from the sum of  $N_{\rm HI}$  estimated from the Leiden/Argentine/Bonn (LAB) Survey (Kalberla et al. 2005) and  $N_{\rm H_2}$  estimated from the MWA CO survey (Bronfman et al. 1989);<sup>10</sup> this line roughly divides sources in the foreground and in the Scutum-Crux and near

<sup>&</sup>lt;sup>9</sup>Available at http://hea-www.harvard.edu/ChaMPlane/quantile

<sup>&</sup>lt;sup>10</sup>To estimate  $N_{\rm HI}$  ( $N_{\rm H_2}$ ) to a distance of 6 kpc, we calculated the line-of-sight velocity of an object at this distance in circular motion around the Galaxy, integrated the brightness temperature measured in the LAB (MWA) survey from 0 km/s to this velocity, and multiplied the total brightness by  $N_{\rm HI}/I_{\rm H} = 1.8 \times 10^{18} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s}$  ( $N_{\rm H_2}/I_{\rm CO} = 2 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s}$  derived in Dame et al. (2001)). The sum of  $N_{\rm HI}$  and  $N_{\rm H_2}$  will actually be a lower limit of  $N_{\rm H}$  since this calculation assumes the emission lines are optically thin.



Figure 2.9: Quantile diagram or sources detected at  $\geq 3\sigma$  in the 0.5-10 keV band. A grid of power-law spectra attenuated by interstellar absorption is overlaid. Red (primarily vertical) lines represent values of the photon index  $\Gamma = 0, 1, 2, 3$ , and 4 from right to left. Blue (primarily horizontal) lines represent values of the hydrogen column density  $N_{\rm H} = 10^{20}, 10^{21}, 10^{21.6}, 10^{22}, 10^{22.6}, 10^{23}, \text{ and } 10^{23.6}$  cm<sup>-2</sup> from bottom to top. Black solid lines separate the five spectral groups defined in §2.2.8.



Figure 2.10: Quantile diagram or sources detected at  $\geq 3\sigma$  in the 0.5-10 keV band. A grid of thin thermal plasma spectra attenuated by interstellar absorption is overlaid. Red (primarily vertical) lines represent values of the bremsstrahlung temperature kT = 0.2, 0.4, 1, 2, 4, and 10 keV from left to right. Blue (primarily horizontal) lines represent values of the hydrogen column density  $N_{\rm H} = 10^{20}, 10^{21}, 10^{21.6}, 10^{22}, 10^{22.6}, 10^{23}$ , and  $10^{23.6}$  cm<sup>-2</sup> from bottom to top. Black solid lines are the same as in Figure 2.9.

Norma spiral arms from sources in the far Norma arm. The dividing  $\Gamma$  line instead splits thermal and nonthermal sources. We further subdivided sources along  $Q_x = 0.5$ , because, as shown in Figure 2.11, this  $Q_x$  value roughly separates sources detected in the soft band from sources detected in the hard band. The equations of the dividing lines, in counterclockwise order from the top left of the diagram, are:

$$Q_{y} = Q_{x} + 0.8$$

$$Q_{x} = 0.5$$

$$Q_{y} = 0.5Q_{x} + 1.05$$

$$Q_{y} = 3.9Q_{x} - 0.84$$
(2.7)

Varying the quantile divisions by ~0.1 dex leads to no significant change in the best-fitting spectral parameters of the stacked spectrum of each quantile group (§2.2.9), and the maximum likelihood slopes of the number-flux distributions of the sources in each quantile group remain consistent at the  $2\sigma$  level or better (§2.2.11). Thus, our results are robust to ~0.1 dex variations in the quantile group definitions.

For each source, we used **specextract** to extract source and background spectra and build associated ARFs and RMFs. Then the spectra of sources within each quantile group were combined with **combine\_spectra**. Sources with more than 500 net counts were excluded from the stacked spectra to prevent individual sources from excessively influencing the combined spectrum. The spectra of these three individual sources are shown in Figure 2.12 and their best-fit spectral parameters are provided in Table 2.8. Sources 78 and 999 fall in quantile group D while source 750 falls in quantile group B, and they are best fit by absorbed power-laws.

Each of the stacked spectra was fit with an interstellar absorption model (tbabs, Wilms et al. 2000, with cross-section from Verner et al. 1996a) convolved with a power-law model (pegpwrlw) and an optically thin thermal plasma model (vapec, Smith et al. 2001, with abundances frozen to values from Güdel et al. 2007 relative to Anders & Grevesse 1989, scaled to Wilms et al. 2000). If an Fe line was visible between 6 and 7 keV, we added a Gaussian component to the power-law model. If neither the power-law nor thermal model produced a fit with reduced  $\chi^2$  less than 1.2, then a second component was added to the model; both power-law and thermal second components were tried in all such cases and the best fit was determined by the minimum reduced  $\chi^2$ . For each quantile group, we made and fit a stacked spectrum first only using sources detected at  $\geq 3\sigma$  confidence in the 0.5-10 keV band and then only using sources detected at  $\geq 3\sigma$  confidence in the 2-10 keV band. The stacked spectra and their best fits are shown in Figure 2.13 and Table 2.9.

Following the example of Ebisawa et al. (2005), we studied how the spectral parameters of sources with or without IR counterparts differ. We split up the sources detected at  $\geq 3\sigma$ in the full band in each quantile group into two groups, based on whether or not they have a VVV counterpart with  $\geq 90\%$  reliability. A stacked spectrum for each of these subgroups was made and fit with the best-fitting model for its parent quantile group. For the case of a power-law model (with or without a Gaussian component), the power-law index, column



Figure 2.11: Quantile diagram showing soft sources in red crosses (detected at  $\geq 3\sigma$  in SB but not HB), hard sources in blue X's (detected at  $\geq 3\sigma$  in HB but not SB), and bright sources in purple asterisks (detected at  $\geq 3\sigma$  in both SB and HB).

density, and the normalization of the power-law and Gaussian components were left free, while for two-temperature thermal models, only the normalizations of the two components were allowed to vary. In addition, since the strength of the Fe emission line for group E sources with and without IR counterparts appeared different, we decided to measure the equivalent width of the Fe line in the group E stacked spectra by fitting the 5-9 keV band of these stacked spectra with a power-law plus Gaussian line model. The results of this spectral analysis are shown in Table 2.10. Finally, we also studied how the spectral parameters of a given quantile group vary with source brightness. The sources within each quantile group were organized by photon flux and combined into subgroups containing 800-1000 total source counts. The analysis of the stacked spectra for these subgroups was done in the same way as for the subgroups based on the presence/absence of IR counterparts. All the brightness trends that we found can be explained by changes in the relative fraction of sources with and without IR counterparts as a function of flux. Thus, we only discuss the dependence of the spectral fitting results on the presence/absence of an IR counterpart.



Figure 2.12: X-ray spectra of sources with more than 500 net counts in the 0.5-10 keV band. Title labels provide source catalog number. Grouped data and the best-fit model convolved with the instrumental response are shown in the upper panels. Lower panels show the data residuals. Table 2.8 provides the best-fit parameters.

Table 2.8: Spectral Fit Results for Individual Bright Sources

| No. | Source            | $C_{net}$           | $N_{\rm H}$                  | Γ               | $f_X$ FB                                      | $\chi^2/{ m dof}$ | Galactic $N_{\rm H}$         | Unabsorbed $f_X$ FB                           |
|-----|-------------------|---------------------|------------------------------|-----------------|-----------------------------------------------|-------------------|------------------------------|-----------------------------------------------|
|     | CXOU J            | $\operatorname{FB}$ | $(10^{22} \mathrm{cm}^{-2})$ |                 | $(10^{-13} \text{erg cm}^{-2} \text{s}^{-1})$ |                   | $(10^{22} \mathrm{cm}^{-2})$ | $(10^{-13} \text{erg cm}^{-2} \text{s}^{-1})$ |
| (1) | (2)               | (3)                 | (4)                          | (5)             | (6)                                           | (7)               | (8)                          | (9)                                           |
| 78  | 163355.1-473804   | $530 \pm 20$        | $2.4^{+1.1}_{-0.9}$          | $0.5 {\pm} 0.4$ | $8.8^{+0.8}_{-0.9}$                           | 31/31             | 7.0                          | $10.0^{+0.9}_{-1.0}$                          |
| 750 | 163750.8 - 465545 | $1790 {\pm} 40$     | $0.12^{+0.09}_{-0.08}$       | $1.2{\pm}0.1$   | $9.9 {\pm} 0.4$                               | 124/95            | 9.4                          | $10.3 \pm 0.5$                                |
| 999 | 163905.4 - 464212 | $14720 \pm 120$     | $49 \pm 2$                   | $0.9{\pm}0.1$   | $268^{+5}_{-4}$                               | 347/314           | 8.1                          | $301^{+6}_{-5}$                               |

<u>Notes:</u> Quoted errors are  $1\sigma$  unless specified in notes.

(1) Catalog source number.

(2) Chandra source name.

(3) Net source counts in the full 0.5-10 keV band.

(4) Hydrogen column density from spectral fit with 90% uncertainties.

(5) Power-law photon index from spectral fit with 90% uncertainties.

(6) 0.5-10 keV flux determined from spectral model.

(7) Chi-square of best-fit model over degrees of freedom.

(8) Estimated line-of-sight  $N_{\rm H}$  through the Galaxy based on  $N({\rm H})$  from the LAB survey and  $N({\rm H}_2)$  from the MWA CO survey (see §2.2.8).

(9) 0.5-10 keV flux corrected for line-of-sight  $N_{\rm H}$ .



Figure 2.13: Stacked spectra and the best-fit models for each quantile group. Best-fit parameters can be found in Table 2.9.

| Power-law fit parameters |        |           |                            |                     |                            |                        |                                                              |                      |                              |  |  |  |
|--------------------------|--------|-----------|----------------------------|---------------------|----------------------------|------------------------|--------------------------------------------------------------|----------------------|------------------------------|--|--|--|
| Quantile                 | Energy | # Sources | $N_{\rm H}$                | Γ                   | Line E                     | Eq. Width              | $f_X$ 2-10 keV                                               | $\chi^2_ u/{ m dof}$ | $\epsilon^{-1}$              |  |  |  |
| Group                    | Band   |           | $(10^{22} \text{cm}^{-2})$ |                     | $(\mathrm{keV})$           | (eV)                   | $(10^{-14} \mathrm{erg} \ \mathrm{cm}^{-2} \mathrm{s}^{-1})$ |                      | $(10^{-9}\mathrm{erg/ph.})$  |  |  |  |
| (1)                      | (2)    | (3)       | (4)                        | (5)                 | (6)                        | (7)                    | (8)                                                          | (9)                  | (10)                         |  |  |  |
| С                        | full   | 170       | $1.4^{+0.3}_{-0.2}$        | $1.1 {\pm} 0.1$     | —                          | _                      | $2.94^{+0.08}_{-0.13}$                                       | 1.02/180             | 8.66                         |  |  |  |
|                          | hard   | 137       | $1.8 {\pm} 0.3$            | $1.2 {\pm} 0.1$     | _                          | _                      | $3.2^{+0.10}_{-0.2}$                                         | 0.99/158             | 8.60                         |  |  |  |
| D                        | full   | 162       | $7\pm1$                    | $0.7 {\pm} 0.2$     | $6.65_{-0.05}^{+0.04}$     | $300^{+60}_{-50}$      | $7.1^{+0.1}_{-0.4}$                                          | 1.06/153             | 11.47                        |  |  |  |
| D                        | hard   | 167       | $6.6\substack{+0.9\\-0.8}$ | $0.6 {\pm} 0.2$     | $6.60 {\pm} 0.04$          | $300_{-40}^{+50}$      | $6.83_{-0.31}^{+0.09}$                                       | 1.16/186             | 11.13                        |  |  |  |
|                          |        |           |                            | Tł                  | ermal fit par              | ameters                |                                                              |                      |                              |  |  |  |
| Quantile                 | Energy | # Sources | $N_{\rm H}$                | $kT_1$              | $N_{\rm H}$                | $kT_2$                 | $f_{X,low}/f_{X,high}$                                       | $\chi^2_ u/{ m dof}$ | $\epsilon^{-1}$              |  |  |  |
| Group                    | Band   |           | $(10^{22} \text{cm}^{-2})$ | $(\mathrm{keV})$    | $(10^{22} \text{cm}^{-2})$ | (keV)                  |                                                              |                      | $(10^{-9} \mathrm{erg/ph.})$ |  |  |  |
| (1)                      | (2)    | (3)       | (4)                        | (11)                | (4)                        | (11)                   | (12)                                                         | (9)                  | (10)                         |  |  |  |
| Δ                        | full   | 312       | < 0.43                     | $2.4^{+1.5}_{-0.4}$ | < 0.58                     | $0.75_{-0.12}^{+0.05}$ | $0.04^{+0.05}_{-0.01}$                                       | 0.95/124             | 2.60                         |  |  |  |
| А                        | hard   | 41        | $0.7 {\pm} 0.4$            | $2.4_{-0.4}^{+0.6}$ | $0.3 {\pm} 0.2$            | $0.39{\pm}0.06$        | $0.0092 {\pm} 0.0006$                                        | 1.01/106             | 5.78                         |  |  |  |
| В                        | full   | 213       | $0.3^{+0.4}_{-0.1}$        | $7\pm3$             | < 0.14                     | $1.2^{+0.1}_{-0.2}$    | $0.04{\pm}0.02$                                              | 1.08/186             | 3.83                         |  |  |  |
| D                        | hard   | 71        | $5^{+9}_{-3}$              | $4^{+3}_{-2}$       | $0.29 {\pm} 0.08$          | $2.1_{-0.3}^{+0.9}$    | $0.74 {\pm} 0.05$                                            | 1.09/134             | 7.33                         |  |  |  |
| F                        | full   | 130       | $25^{+7}_{-5}$             | $1.8^{+0.5}_{-0.3}$ | $5.4 \pm 0.9$              | $1.4_{-0.4}^{+0.8}$    | $0.25_{-0.07}^{+0.10}$                                       | 1.01/125             | 16.5                         |  |  |  |
| E                        | hard   | 127       | $24^{+7}_{-6}$             | $1.8_{-0.3}^{+0.5}$ | $6\pm1$                    | $1.2_{-0.4}^{+0.9}$    | $0.20 {\pm} 0.01$                                            | 0.99/122             | 9.51                         |  |  |  |

Table 2.9: Spectral Fit Results for Stacked Sources

<u>Notes:</u> All quoted errors are 90% unless otherwise indicated.

(1) Quantile groups defined in  $\S2.2.7$ .

(2) Stacked spectrum contains all sources that are detected at  $\geq 3\sigma$  in given energy band with fewer than 500 counts.

(3) Number of sources in stacked spectrum.

(4) Hydrogen column density associated with model component in next column.

(5) Power-law photon index.

(6) Energy of Gaussian line component.

(7) Equivalent width of Gaussian line component  $(1\sigma \text{ errors})$ .

(8) 2-10 keV absorbed flux  $(1\sigma \text{ errors})$ .

(9) Chi-square of best-fit model over degrees of freedom.

(10) Photon flux to unabsorbed energy flux conversion factor.

(11) Temperature of thin thermal plasma component.

(12) Flux ratio in 2-10 keV band of low kT component over high kT component (1 $\sigma$  errors).

|          | Power-law stacked spectra |           |                                                 |                        |                        |               |                        |                           |  |  |  |  |  |
|----------|---------------------------|-----------|-------------------------------------------------|------------------------|------------------------|---------------|------------------------|---------------------------|--|--|--|--|--|
| Quantile | With/Without              | # Sources | $N_{ m H}$                                      | Γ                      | Line Eq.               | 0 -           | <sub>x</sub> 2-10 keV  | $\chi^2_{ m  u}/{ m dof}$ |  |  |  |  |  |
| Group    | IR Counterparts           |           | $(10^{22} \mathrm{cm}^{-2})$                    |                        | Width $(eV)$           | $(10^{-14})$  | $erg cm^{-2} s^{-1}$ ) |                           |  |  |  |  |  |
| (1)      | (2)                       | (3)       | (4)                                             | (5)                    | (6)                    |               | (7)                    | (8)                       |  |  |  |  |  |
| С        | IR                        | 62        | $1.6 {\pm} 0.3$                                 | $1.3 \pm 0.2$          | —                      |               | $2.8 \pm 0.2$          | 0.93/72                   |  |  |  |  |  |
| U        | No IR                     | 108       | $1.4 \pm 0.4$                                   | $0.9 {\pm} 0.2$        | _                      |               | $3.0 {\pm} 0.2$        | 1.08/120                  |  |  |  |  |  |
| D        | IR                        | 50        | $6^{+2}_{-1}$                                   | $0.8^{+0.4}_{-0.3}$    | $330^{+150}_{-100}$    |               | $5.1^{+0.1}_{-0.7}$    | 0.89/55                   |  |  |  |  |  |
| D        | No IR                     | 112       | $7\pm1$                                         | $0.6 {\pm} 0.3$        | $270_{-50}^{+80}$      |               | $8.6_{-0.6}^{+0.2}$    | 1.12/115                  |  |  |  |  |  |
|          |                           |           | Thermal stac                                    | ked spectra            |                        |               |                        |                           |  |  |  |  |  |
| Quantile | With/Without              | # Sources | $f_X$ 2-10 keV                                  | $f_{X,low}/f_{X,high}$ | $\chi^2_{ u}/{ m dof}$ | Γ             | Line Eq.               | $\chi^2_{ u}/{ m dof}$    |  |  |  |  |  |
| Group    | IR Counterparts           |           | $(10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1})$ |                        |                        |               | Width $(eV)$           |                           |  |  |  |  |  |
| (1)      | (2)                       | (3)       | (7)                                             | (9)                    | (8)                    | (10)          | (11)                   | (12)                      |  |  |  |  |  |
| A        | IR                        | 245       | $0.49 {\pm} 0.02$                               | $0.034{\pm}0.004$      | 0.99/97                | —             | —                      | _                         |  |  |  |  |  |
| A        | No IR                     | 67        | $0.26 {\pm} 0.02$                               | $0.036 {\pm} 0.006$    | 1.71/49                | —             | _                      | —                         |  |  |  |  |  |
| В        | IR                        | 137       | $1.37 \pm 0.03$                                 | $0.034{\pm}0.003$      | 1.22/157               | _             | _                      | _                         |  |  |  |  |  |
| D        | No IR                     | 76        | $0.55 {\pm} 0.04$                               | $0.07 {\pm} 0.01$      | 1.33/57                | —             | —                      | —                         |  |  |  |  |  |
| E        | IR                        | 62        | $2.50{\pm}0.10$                                 | $0.29 {\pm} 0.02$      | 1.08/73                | $5\pm 2$      | $1700^{+1000}_{-100}$  | 0.20/11                   |  |  |  |  |  |
| E/       | No IR                     | 68        | $2.14{\pm}0.09$                                 | $0.21{\pm}0.02$        | 1.06/64                | $2^{+2}_{-1}$ | <316                   | 1.25/11                   |  |  |  |  |  |

Table 2.10: Spectral Comparison of Sources with and without IR Counterparts

Notes: All quoted uncertainties are 90% unless stated otherwise.

(1) Quantile groups defined in  $\S2.2.7$ .

(2) Stacked spectrum of sources with or without IR counterparts.

(3) Number of sources in stacked spectrum.

(4) Hydrogen column density associated with model component in next column.

(5) Power-law photon index.

(6) Equivalent width of Gaussian line component at energy 6.65 keV, line center determined from stacked spectrum of all FB, group D sources ( $1\sigma$  errors).

(7) 2-10 keV absorbed flux (1 $\sigma$  errors).

(8) Reduced chi-square of best-fit model over degrees of freedom.

(9) Flux ratio in 2-10 keV band of low kT component over high kT component (1 $\sigma$  errors).

(10) Power-law photon index of 5-9 keV band when fitting with power-law plus Gaussian line model.

(11) Equivalent width of Gaussian line component at 6.65 keV, line center determined from stacked spectrum of all FB group E sources ( $1\sigma$  errors).

(12) Reduced chi-square of best-fit model for 5-9 keV band over degrees of freedom.

### 2.2.9 Discussion of NARCS X-ray Populations

Although it is difficult to determine the nature of individual sources in our survey, it is possible to make reasonable inferences about the classes of X-ray sources that dominate each quantile group defined in §2.2.7. The stacked spectra, variability, and IR counterparts of the sources in each group provide important clues to the nature of the sources. In order to facilitate our understanding of the reliable counterparts, we estimated the J and H magnitudes of main sequence and supergiant high-mass (O,B) and low-mass (G,K,M) stars at distances of 100 pc, 1 kpc, 4 kpc, 10 kpc, 12 kpc with corresponding  $N_{\rm H}$  values<sup>11</sup> of 0.0, 0.3, 1.0, 3.0, and 5.0 × 10<sup>22</sup> cm<sup>-2</sup>. These J and H magnitude estimates were based on the absolute V magnitudes from Wegner (2007), the intrinsic colors from Ducati et al. (2001), the  $N_{\rm H} - A(V)$  relationship derived by Güver & Özel (2009), and the  $A(\lambda)/A(V)$  relations from Cardelli et al. (1989). Unless explicitly stated otherwise, we refer readers to Muno et al. (2004) and references therein for an overview of the spectral and timing properties of Galactic X-ray sources.

#### Group A

The group A stacked spectrum is best fit by a two-temperature thermal plasma model. The column density associated with each temperature component is low ( $\leq 10^{21} \text{ cm}^{-2}$ ), suggesting most sources in this group are foreground sources, located at a distance  $\leq 1$  kpc. Both components have low temperatures ( $kT \leq 2$  keV), and the sources in this group have 0.5-10 keV luminosities<sup>12</sup> between  $L_X = 10^{27} - 10^{31}$  ergs s<sup>-1</sup>, assuming they are located at a distance between 100 pc and 1 kpc. The very soft component (kT = 0.75 keV) most likely originates from the magnetic coronae of low-mass stars, which are the faintest sources of X-ray emission. X-ray active low-mass stars typically have kT < 1 keV and  $L_X < 10^{29}$ ergs s<sup>-1</sup>. The higher kT component is more consistent with X-ray emission from coronally active binaries (ABs) such as RS CVn systems. These binaries usually have  $kT \approx 0.1 - 2$ keV and  $L_X = 10^{29} - 10^{32}$  ergs s<sup>-1</sup>. Other types of sources which could contribute to the group A X-ray emission are symbiotic binaries and massive stars. Symbiotic binaries, which consist of a mass-losing cool supergiant and white dwarf companion, are often considered a subtype of CVs and tend to have kT = 0.3 - 1.3 keV and  $L_X = 10^{30} - 10^{33}$  ergs s<sup>-1</sup> (Muerset et al. 1997). X-rays can be produced in the shocks in the winds of high-mass stars, either in isolation or in a colliding-wind binary, and typically have kT = 0.1 - 6 keV; in fact, three group A sources (#622, 469, and 298) are coincident with previously identified O and B stars, HD149452, HD149358, and ALS 3666, respectively. Based on the optical band spectral and photometric information available on these sources, we estimate they are located at a distance of approximately 1-4 kpc, farther than the majority of sources in this group appear to be based on the column density of the group A stacked spectrum.

Group A contains an enhanced fraction of variable sources compared to other quantile

<sup>&</sup>lt;sup>11</sup>For each distance listed, the corresponding  $N_{\rm H}$  value was calculated as described in §2.2.8.

<sup>&</sup>lt;sup>12</sup>In the remainder of this section,  $L_X$  refers to 0.5-10 keV luminosity.

groups. Ten of 26 (38%) group A sources with  $\geq 40$  counts show variability on ~hour timescales (see §2.2.5) at  $\geq 95\%$  confidence. Of the 17 group A sources detected in multiple observations with average 0.5–10 keV fluxes  $\geq 5.5 \times 10^{-6}$  cm<sup>-2</sup> s<sup>-1</sup>, 9 (53%) are found to be variable between observations, a higher percentage than is found for sources in the full sample detected in multiple observations. The significant variability seen in this group of sources is consistent with the flaring behavior of low-mass active stars and interacting binaries. As can be seen in Figure 2.5, the fluxes of some group A sources vary by large factors (> 5) in between observations; hour-long flares with amplitudes as large as a factor of 10 have been observed in RS CVns and could be the origin of these large variability amplitudes.

In the VVV catalog, we found reliable infrared counterparts to 67% of the group A sources. The only significant difference between the X-ray properties of group A sources with and without IR counterparts is that those without counterparts tend to have lower X-ray fluxes; thus sources without IR counterparts may be intrinsically dimmer in both the X-ray and NIR bands or they may located at larger distances. As can be seen in Figure 2.7, these counterparts have blue (J - H) colors, in agreement with our inference that group A sources are mostly foreground sources. In this color-magnitude diagram, there is a tight cluster of counterparts with H magnitudes between 13 and 15, and a looser cluster of counterparts with H magnitudes between 8 and 13. The former is consistent with the colors and magnitudes of low-mass main sequence stars at a distance of  $\approx 1$  kpc, while the latter is likely a mixture of counterparts with negative (J - H) are more likely to be high mass stars at  $\approx 1$  kpc. The fact that the majority of counterparts are most likely to be low-mass stars, either on the main sequence or in a giant/supergiant phase, is consistent with the suggestion that the dominant X-ray populations in group A are X-ray active low-mass stars and interacting binaries.

#### Group B

Similar to group A, the group B stacked spectrum is also best-fit by a two-temperature thermal model with low hydrogen column densities. However, the temperature of the hotter component is significantly higher ( $kT \approx 7 \text{ keV}$ ) for the B sources than for the A sources. The origin of the low-temperature component may be low-mass X-ray active stars, ABs, and symbiotic binaries, the dominant sources in group A, while the high-temperature component is more typical of CVs. The majority of CVs are close binary systems with a white dwarf accreting matter from a low-mass main-sequence stellar companion, although some have been found to have giant donors (Kuulkers et al. 2006). CVs are typically subdivided into three main categories based on the magnetic field strength of the WD they host. The majority of CVs have weak magnetic fields ( $B \leq 10^4$  G) which do not significantly affect the accretion flow from the Roche lobe-filling donor and are called nonmagnetic CVs. About 20% of CVs are polars, exhibiting strong magnetic fields ( $B \geq 10^{6.5}$  G) which prevent the formation of an accretion disk; about 5% are intermediate polars (IPs), having intermediate strength magnetic fields which channel material from the inner accretion disk onto the magnetic poles. Nonmagnetic CVs and polars have  $\Gamma \approx 1 - 2$  or  $kT \approx 1 - 25$  keV and  $L_X = 10^{29} - 10^{32}$  erg

s<sup>-1</sup>. IPs tend to be more luminous  $(L_X = 10^{31} - 10^{33} \text{ erg s}^{-1})$  and display harder emission  $(\Gamma < 1)$  than other CVs. Assuming that the group B sources lie at a distance between 100 pc and 1 kpc based on their low  $N_{\rm H}$ , they span the luminosity range  $10^{27.4} - 10^{31.5}$  ergs s<sup>-1</sup>, consistent with the luminosities of low-mass stars at the faint end and with the luminosities of active binaries and CVs at the bright end.

Further evidence that a CV population exists in group B is provided by one of the brightest sources in our survey, source 750, which is coincident with ASCA source AX J1637.8-4656 (Sugizaki et al. 2001) This source has  $\Gamma = 1.15$  (see Table 2.8), and, assuming a distance of 1 kpc from its low  $N_{\rm H}$ ,  $L_X \approx 8 \times 10^{31}$  ergs s<sup>-1</sup>. In addition to having a luminosity and photon index consistent with that of a CV, this source is variable on both short and long timescales. As can be seen in Table 2.7, this source was determined to be periodic by the  $Z_n^2$ test (Buccheri et al. 1983), with a best period of roughly 7100 s. Periodic X-ray emission has been observed from magnetic CVs and is believed to be associated with the spin period of the white dwarf, which can range from  $10^2$  to  $10^4$  seconds (Scaringi et al. 2010). Finally, the near-IR spectrum obtained of the IR counterpart of this source 750 is likely a CV with an intermediate strength magnetic field that is not fully disrupting the accretion disk.

As mentioned in  $\S2.2.5$ , source 961, another group B source, is also likely to be a magnetic CV. Its  $\approx 5700$  second period is consistent with the spin and orbital periods of CVs. As can be seen in Figure 2.6(b), its pulse profile shows large brightness variations from approximately zero to twenty counts; such variations could either result from pulsations due to emission from accretion spots at the WD magnetic poles as the WD rotates or from eclipsing of the WD by its companion. Its location in the quantile diagram indicates it has  $\Gamma \approx 1.5$ , which is more typical of polars and nonmagnetic CVs than IPs. Although it is likely a nearby source based on its low  $N_{\rm H}$  (estimated to be ~ 10<sup>21</sup> cm<sup>-2</sup> from its quantile parameters), it has no stellar IR counterpart in the VVV survey; we do find an infrared counterpart to this source in the VVV survey, but it is morphologically classified as a galaxy, and therefore it cannot be the true counterpart since the X-ray spectrum of the *Chandra* source shows very little absorption. Since the source is likely located  $\leq 1$  kpc, the stellar IR counterpart must be very faint to avoid detection, thus making it unlikely that this source has a significant accretion disk which indicates that, of all CV types, this source is most likely a polar. Thus, there is evidence that both sources 750 and 961 are magnetic CVs, and their location in the quantile diagram supports the hypothesis that group B may contain a significant CV population.

Group B has a comparable percentage of variable sources to group A. Eight of the 17 (47%) group B sources with  $\geq 40$  counts are variable on short timescales, and 6 of the 14 (43%) group B sources detected in multiple observations with average 0.5–10 keV fluxes  $\geq 5.5 \times 10^{-6}$  cm<sup>-2</sup> s<sup>-1</sup> are variable on long timescales. Group B sources are thus comparable in variability to group A sources, which is consistent with both groups containing large numbers of X-ray active stars and ABs.

We found reliable IR counterparts for 61% of group B sources, which largely overlap in the color-magnitude diagram with the group A counterparts, indicating that they have similar stellar types and are located at similar distances. This similarity is not surprising since the X-ray properties of the group B sources indicate that they are dominated by the same X-ray populations as group A plus a population of CVs, which tend to have near-IR properties similar to low-mass main sequence or evolved stars (Hoard et al. 2002). As can be seen in Table 2.10, group B sources without IR counterparts have a lower average flux and a more significant contribution from the low kT component compared to group B sources with IR counterparts. These trends suggest that X-ray active low-mass stars make up a relatively larger fraction of group B sources without counterparts than of B sources with counterparts.

#### Group C

The group C stacked spectrum is best-fit by an absorbed power-law with  $\Gamma \approx 1.1$  and  $N_{\rm H} = 1.4 \times 10^{22}$  cm<sup>-2</sup>, which suggests that these sources are located at a distance of 3–5 kpc, in the Scutum-Crux and near Norma spiral arms. The luminosities spanned by group C sources are  $L_X = 10^{31} - 10^{32.7}$  ergs s<sup>-1</sup>, assuming a distance of 4 kpc. Possible classes of X-ray sources present in this group are magnetic and nonmagnetic CVs, hard-spectrum symbiotic binaries, low-mass X-ray binaries (LMXBs), and HMXBs. IPs and HMXBs tend to have  $\Gamma < 1$  while nonmagnetic CVs, polars, symbiotic binaries, and LMXBs tend to have  $\Gamma > 1$ . CVs are the most numerous accreting sources, so they are most likely the dominant population.

Group C sources show the lowest levels of variability of any group. Only 2 of 12 (17%) sources with  $\geq 40$  counts exhibit short-timescale variability and only one of 7 (14%) sources detected in multiple observations with average 0.5–10 keV fluxes  $\geq 5.5 \times 10^{-6}$  cm<sup>-2</sup> s<sup>-1</sup> are variable on long timescales. These results are consistent with magnetic CVs and LMXBs dominating group C, since although they show periodic variations and occasional outburts, they generally have stable emission.

Reliable IR counterparts were found for 35% of group C sources. They have redder (J-H) colors than the counterparts of group A and B sources, confirming that they are more distant than the group A or B counterparts. Their H magnitudes are consistent with high-mass stars and evolved low-mass stars located at ~4 kpc. Considering the extinction resulting from the  $N_{\rm H}$  measured for these sources and their likely distances, most main-sequence, low-mass counterparts of group C sources would be undetectable in the VVV survey. The stacked spectrum of group C sources with IR counterparts has a softer power-law index ( $\Gamma \approx 1.3$ ) than the sources lacking IR counterparts ( $\Gamma \approx 0.9$ ). Thus, the majority of group C sources with counterparts may be symbiotic binaries and CVs with subgiant and giant companions, while those without counterparts may primarily be CVs with main-sequence companions, especially IPs given the lower photon index of these sources. The presence of some type II AGN among the group C sources lacking IR counterparts could also help explain their lower photon index, but, as discussed in §2.2.9, very few AGN are likely to be found in group C.

#### Group D

The group D stacked spectrum has a very hard photon index ( $\Gamma \approx 0.7$ ), a prominent Fe line, and a high  $N_{\rm H}$  indicating that these sources typically lie on the far side of the Galaxy,

near, in, or beyond the far Norma arm. The Fe emission is well-modeled by a Gaussian centered at 6.65 keV with an equivalent width of approximately 300 eV; this emission likely results from the blending of lines at 6.4 keV and 6.7 keV, arising from low-ionization Fe and He-like Fe respectively. The presence of this strong, non-redshifted Fe line suggests that many of the sources in this group must be Galactic; otherwise, if this group were dominated by AGN, their spread in redshift would result in a smearing out of the Fe line.

Two classes of X-ray sources that are frequently observed having spectra with  $\Gamma < 1$  are IPs and HMXBs. Fe line emission has been observed from both of these types of sources. Although the luminosity range spanned by group D ( $L_X = 10^{32} - 10^{33.7}$  ergs s<sup>-1</sup> assuming d = 10 kpc) extends to higher luminosities than are typically observed for IPs, roughly 80% of group D sources have  $L_X \leq 10^{33}$  ergs s<sup>-1</sup> for d = 10 kpc, a reasonable luminosity range for IPs. Thus, IPs could be the dominant population among faint group D sources. In contrast, HMXBs can have X-ray luminosities as high as  $L_X \sim 10^{34}$  ergs s<sup>-1</sup> during quiescence and  $L_X \sim 10^{38}$  ergs s<sup>-1</sup> during outburst. In fact, one of the group D sources, source 999, is a previously discovered HMXB (Sugizaki et al. 2001; Bird et al. 2004; Bodaghee et al. 2006) and has  $\Gamma \approx 0.9$  and  $L_X \approx 10^{35.3}$  ergs s<sup>-1</sup>.

Five of 14 (36%) group D sources exhibit short-timescale variability, and 3 of 11 (27%) group D sources detected in multiple observations with average 0.5–10 keV fluxes  $\geq 5.5 \times 10^{-6}$  cm<sup>-2</sup> s<sup>-1</sup> display long-timescale variability. These modest levels of variability are consistent with, although not necessarily proof of, group D being dominated by a population of IPs, which tend to have fairly stable emission.

Only 30% of group D sources have reliable IR counterparts. The (J - H) color and H magnitudes of these counterparts are consistent with being high-mass and evolved low-mass stars at distances between 8–12 kpc. The low fraction of detected counterparts is more easily explained by a dominant population of IPs rather than HMXBs, since a large fraction of the low-mass companions of the white dwarfs in IPs would have J and H magnitudes greater than the VVV sensitivity limit when located at distances of 8–12 kpc. However, while most massive stellar counterparts of HMXBs in group D should be above the VVV sensitivity limit, they can occasionally be so obscured by circumbinary gas and dust that they are much fainter than otherwise expected (Bodaghee et al. 2012b); in fact, our counterpart-matching algorithm does not find the faint massive counterpart of HMXB IGR J16393-4643 (Bodaghee et al. 2012a) in the VVV catalog.

The X-ray spectral differences between group D sources with and without IR counterparts are not statistically significant. Nonetheless, if the lower photon index and lower Fe equivalent width of the sources without IR counterparts is a real trend, it could be explained if the sources without counterparts are primarily IPs and type II AGN (see §2.2.9), while those with counterparts include some hard-spectrum symbiotic binaries (Luna et al. 2013), whose spectra are a bit softer and whose red giant companions should be detectable by the VVV survey.

### Group E

The group E stacked spectrum is best-fit by a two-temperature thermal model, making it significantly different from the group D power-law spectrum, even though some of the same classes of X-ray sources must be present in both groups D and E since they are not sharply separated in the quantile diagram. Both temperature components have kT = 1 - 2keV but very different hydrogen column densities, the lower of which is similar to that of group D, and the higher of which is  $N_{\rm H} \approx 2.4 \times 10^{23} {\rm ~cm^{-2}}$ . This  $N_{\rm H}$  value is roughly 3 times higher than the maximum  $N_{\rm H}$  value measured through the Galaxy along a line of sight within our surveyed area, indicating that some E sources are obscured by large amounts of local absorption and/or may be imbedded in the molecular clouds of the far Norma arm. Assuming the same typical distance of 10 kpc as we did for group D, these sources span the luminosity range  $L_X = 10^{32} - 10^{33.7}$  ergs s<sup>-1</sup>. A significant fraction of these sources may be associated with the shocks produced in the winds of high-mass stars; these sources typically have kT = 0.1 - 6 keV,  $L_X \sim 10^{33} - 10^{35}$  ergs s<sup>-1</sup>, and their emission can be significantly absorbed by circumstellar material. The photometric and spectral properties of group E are also consistent with symbiotic binaries. In addition, a small number of magnetars could be present in this group. In fact, one of the group E sources is a previously discovered magnetar, SGR 1627-41, and data from this survey was used in an in-depth study of this magnetar by An et al. (2012).

Only two of the nine (22%) group E sources with  $\geq 40$  counts exhibits variability on short timescales. None of the group E sources detected in multiple observations are found to vary significantly, but only 4 of them are bright enough ( $f_{\rm ph} \geq 5.5 \times 10^{-6} \, {\rm cm}^{-2} \, {\rm s}^{-1}$ ) for long-term variability to have been detected. Thus, the variability of group E sources is not well constrained, but appears more comparable to that of groups C and D than groups A or B. Such moderate variability is consistent with populations of high-mass stars and symbiotic binaries (Luna & Sokoloski 2007; Corbet et al. 2008; Mauerhan et al. 2010), although it does not constitute proof of such a physical origin for group E sources.

Although group E sources are roughly located at the same distance as group D sources based on the  $N_{\rm H}$  measured in their stacked spectra, a higher fraction of group E sources (47%) have reliable IR counterparts. At distances of  $\approx 10$  kpc, only high-mass stars and cool giants have J and H magnitudes above the sensitivity limit of the VVV survey. The higher percentage of IR counterparts is consistent with group E having a larger fraction of high-mass stellar X-ray sources and symbiotic binaries than group D, since the high-mass and giant counterparts of these sources are brighter than the primarily main-sequence low-mass counterparts of IPs. A significant fraction of group E sources without IR counterparts are also likely to be type I AGN, as discussed in the following section.

### AGN Contribution

In addition to the Galactic classes of sources described in the previous sections, we expect a significant population of AGN to be present in our catalog. Using the AGN count-distribution from the COSMOS survey (Cappelluti et al. 2009) and taking into account the sensitivity

variations across the survey area (see §2.2.10) and the incompleteness of our detection method (see §2.2.10), we estimate that roughly 150 AGN could be present in our catalog. X-ray emission from AGN is attenuated by the integrated column density through the whole galaxy and typically has  $\Gamma \approx 1.7$  (Molina et al. 2009) for type I AGN or  $\Gamma \leq 1$  for type II AGN with a reflection component. Thus, AGN are most likely to be found in groups D and E based on the regions of quantile space they occupy. Due to the spread in  $N_{\rm H}$  values across our field of view and the large median error bars on  $Q_x$  and  $Q_y$ , some group C sources may also be AGN.

We expect to find most of the AGN in our sample among the sources without NIR counterparts. Only 2% of AGN in the Chandra COSMOS Survey (Civano et al. 2012) with  $f_X > 1 \times 10^{-15}$  erg cm<sup>-2</sup> s<sup>-1</sup> have *H* magnitudes  $\leq 18$  –the sensitivity limit of the VVV survey–and we would expect an even smaller percentage of the AGN in NARCS to be detected in the VVV survey due to the higher extinction in the Galactic plane compared to the COSMOS field; the integrated  $N_{\rm H}$  through the galaxy in the NARCS region varies between  $3 - 8 \times 10^{22} {\rm cm}^{-2}$ , which corresponds to extinction values of  $A(J) \approx 4 - 10$  mag and  $A(H) \approx 3 - 7$  mag.

Based on the spectral properties of group E sources without IR counterparts, it seems likely that many of them are AGN. Their stacked spectrum shows a more prominent high-column density component compared to the spectrum of group E sources with counterparts; this enhancement could be due to a large number of AGN, which suffer from extinction by their local environment and host galaxy as well as the Milky Way ISM. In addition, fitting the 5-9 keV stacked spectra of group E sources with and without counterparts with a power law plus Fe line model shows that the sources lacking IR counterparts have a harder spectrum with  $\Gamma \approx 2$  and a lower Fe line equivalent width. This photon index is typical of type I AGN and the lower Fe equivalent width is expected for a group of extragalactic sources whose Fe line would be smeared out due to their redshift distribution. Thus, a large number of type I AGN among the group E sources lacking IR counterparts can explain the difference between the stacked spectra of group E sources with and without IR counterparts.

There is weaker evidence for the presence of AGN among the group C and group D sources lacking IR counterparts. The stacked spectrum of group D sources without counterparts is harder ( $\Gamma \approx 0.6$ ) and has a lower Fe line equivalent width that the spectrum of sources with counterparts; however, while these trends are consistent with the presence of type II AGN with a reflection component among the sources lacking counterparts, these differences are not statistically significant. Thus, these trends may be real and indicative of an AGN population, or they may be statistical fluctuations, in which case the group D sources lacking counterparts are probably just faint and/or distant versions of the group D sources with counterparts. The stacked spectrum of group C sources without counterparts is harder ( $\Gamma \approx 0.9$ ) than that of the sources with counterparts; this difference could be driven by a population of type II AGN among the sources lacking counterparts. However, it is unlikely that many AGN would be found in group C, since the average column density of sources in this group is  $N_{\rm H} \approx 10^{22}$  cm<sup>-2</sup>, which is low for an AGN whose light would be shining through the entire Galaxy. Thus, it appears more likely that the differences between the group C sources with and without counterparts are due to different populations of Galactic sources (as discussed in  $\S2.2.9$ ), although a small AGN contribution cannot be ruled out.

In order for our survey to contain the expected number of AGN, the majority of group E sources lacking IR counterparts and 30%-50% of group C and D sources without counterparts must be AGN. Given that there is good evidence for the former and that the latter cannot be ruled out, it is possible that about 150 AGN are present in our catalog, as expected from other surveys.

# 2.2.10 Computing the Number-Flux Distribution

Having determined the X-ray populations which likely dominate each of the quantile groups, we sought to compare the populations in our survey to predictions based on surveys of other regions of the Galaxy. A useful tool in comparing the populations of different surveys is the number count distribution. In addition, for a particular population of sources located at similar distances, the number-flux distribution is closely related to the luminosity function of the sources and thus can also shed light on the physics which determines the brightness of these sources.

At faint fluxes, this calculation is complicated by the nonuniform sensitivity across the *Chandra* image, the incompleteness of the source-detection algorithm, and the Eddington bias, which is caused by fluctuations in the source and/or background making a faint source appear brighter. To help correct for these effects, we used a method similar to that developed by Georgakakis et al. (2008a) and adapted by Lehmer et al. (2012), which uses a Bayesian approach with maximum-likelihood optimizations. We decided to compute the number count distribution in the 2–10 keV band, because (1) most foreground, thermal sources are not detected in this band, allowing us to concentrate on the populations in the spiral arms, (2) photons in this energy band are less likely to be absorbed by dust along the line-of-sight, resulting in more robust conversion factors between the net counts of a source and its unabsorbed energy flux, and (3) it will enable comparisons to published number count distributions from previous surveys of Galactic X-ray populations, which are primarily in the 2–10 or 2–8 keV band. In the remainder of this section, whenever we refer to catalog sources, we only mean sources detected at  $\geq 3\sigma$  in the 2–10 keV band.

### Sensitivity Curves

Near the flux limit of a survey, a source of a given flux can only be detected over a limited fraction of the total solid angle covered by the survey due to the inhomogeneous background and nonuniform PSF across the *Chandra* image. In order to account for this varying sensitivity in our number count distribution, we calculate the effective solid angle as a function of source flux, which we refer to as the sensitivity curve. This sensitivity curve depends on the significance threshold we choose to select our sources. In computing the number count distribution of sources in our survey, we select point-like sources that have been detected by wavdetect in any energy band as described in §2.2.3 and have  $P(\geq C_{\rm src}) \leq 0.00137 = P_{\rm thresh}$  in the 2–10 keV band as determined by Equation 2.5, which is the probability

required for a  $3\sigma$  detection. This selection procedure will not include all real sources with  $P(\geq C_{\rm src}) \leq P_{\rm thresh}$  because of wavdetect's complex source detection criteria (see Freeman et al. 2002a). Correcting for this detection incompleteness is discussed in §2.2.10.

To compute the sensitivity curve, we follow the method described in Georgakakis et al. 2008a, which should allow us to extrapolate the number-flux distribution to fluxes roughly an order-of-magnitude fainter than the formal survey flux limit—the flux to which  $\geq 90\%$  of the image is sensitive. First, we determine the minimum number of counts,  $C_{\text{lim}}$ , required for a detection, such that  $P(\geq C_{\text{lim}}) = P_{\text{thresh}}$ , at each location in the image. We use the background maps (see §2.2.3) to determine the mean expected background counts,  $\langle C_{\text{bkg}} \rangle$ , within circular regions with radii equal to the local 90% ECF radius. The cumulative probability that the observed counts will exceed  $C_{\text{lim}}$  within a particular region is

$$P(\geq C_{\rm lim}) = \gamma(C_{\rm lim}, \langle C_{\rm bkg} \rangle) \tag{2.8}$$

where  $\gamma(a, x)$  is the lower incomplete gamma function, defined as

$$\gamma(a,x) = \frac{1}{\Gamma(a)} \int_0^x e^{-t} t^{a-1} dt$$
(2.9)

Equation 2.8 is a simplication of Equation 2.5 for situations in which the mean background within an aperture region is well determined. Setting  $P(\geq C_{\text{lim}}) = P_{\text{thresh}} = 0.00137$ , we invert Equation 2.8 numerically to find  $C_{\text{lim}}$  for a region with mean expected background  $\langle C_{\text{bkg}} \rangle$ . For each observation, we perform this procedure for different regions, which combined cover the full image area, thus obtaining a 2D image of  $C_{\text{lim}}$  known as a sensitivity map.

Then we can compute the probability of detecting a source of a given flux  $f_X$  and spectral shape within each region of the sensitivity map. The total observed counts in the region are the sum of the source and background contributions, which can be expressed as:

$$C_{\rm src} = C_{\rm net} + \langle C_{\rm bkg} \rangle = f_X t_{\rm exp} E_{\rm src} \eta \epsilon + \langle C_{\rm bkg} \rangle \tag{2.10}$$

where  $t_{\exp}$ ,  $E_{\rm src}$ ,  $\eta$ , and  $\epsilon$  are the exposure time, mean effective area, ECF, and unabsorbed energy flux to observed photon flux conversion factor, respectively.  $\epsilon$  includes a correction factor for extinction along the line-of-sight due to the amount of  $N_{\rm H}$  determined by the spectral fits of each quantile group, but not exceeding  $5.5 \times 10^{22}$  cm<sup>-2</sup>, the average  $N_{\rm H}$  integrated through the entire Galaxy in our surveyed area; we assume that larger values of  $N_{\rm H}$  are likely due to both interstellar and intrinsic absorption, and we do not wish to correct for absorption that may be intrinsic or very local to the source. The energy flux to photon flux conversion factor depends on the source spectrum, and we used the same  $\epsilon$  for all sources in the same quantile group; the conversion factors are listed in Table 2.9. For a region with particular values of  $\langle C_{\rm bkg} \rangle$  and  $C_{\rm lim}$ , the probability of detecting a source of flux  $f_X$  is given by

$$P_{f_X}(\geq C_{\lim}) = \gamma(C_{\lim}, C_{\operatorname{src}}).$$
(2.11)

We calculate the sensitivity curve for each observation by summing the  $P_{f_X} (\geq C_{\lim})$  distributions of individual regions, each weighted by the solid angle (in degrees) of each region.



Figure 2.14: Angular area of our survey that is sensitive to a given source flux.

Then we added together the sensitivity curves of all the individual observations, and divided the combined sensitivity curve by a factor of 1.54 so that the maximum value of the sensitivity curve was equal to the total survey area (1.3268 deg<sup>2</sup>); this division was necessary because the observations partially overlap. This combined sensitivity curve,  $A(f_X, \epsilon)$  (shown in Figure 2.14), is an approximation which overweights the overlapping regions, which generally have worse sensitivity since they are at large off-axis angles. We estimate errors in the sensitivity curve to be 0.1 dex, which are satisfactory for our purposes. We choose to only compute number counts to a flux limit of  $1 \times 10^{-15}$  erg cm<sup>-2</sup> s<sup>-1</sup>, to which 1–3% of the total solid angle is sensitive; below this flux, too few sources are detected by wavdetect to make reliable predictions. Note that the sensitivity curve as a function of source counts is the same for all spectral groups, but since different spectral groups have different count-to-flux conversions, they have different sensitivity curves as a function of flux.

### **Recovery Fraction Correction**

The sensitivity curve will only successfully correct for the incompleteness of our catalog if all sources are detected above a specific selection probability. However, due to the complex criteria of wavdetect, some faint sources that would meet the probability criterion are not detected. Employing an approach similar to that of Lehmer et al. (2012) to compute and correct for detection incompleteness, we generated 200 mock images in the full, soft, and hard energy bands of ObsID 12519, which we took to be representative of all observations since they have very similar exposure and background maps. To make each set of mock observations, we added 60 sources to the full, soft, and hard unsmoothed background images (see §2.2.3), since this was the average number of sources detected in an individual observation. Each source was assigned a random position on the sky and a random number of total counts between



Figure 2.15: Fraction of simulated sources that are detected at  $\geq 3\sigma$  in the 2-10 keV band and are also detected by our detection procedure as a function of net 2-10 keV counts. The solid line shows our best-fit model for this recovery fraction, which we use in §2.2.10 to correct for incompleteness in our number-count computation.

3 and 50, taken from a power-law count distribution with an index of -1.6 (a compromise between approximating the count distribution we measure and having a statistically significant sample of sources within each count bin). The total counts were then randomly divided between the soft and hard band. We approximated the PSF at the location of each source as an azimuthally-symmetric Rayleigh distribution in the radial direction, the normalization parameters of which were determined from the size of the PSF for 4.5 keV photons (for the full and high energy band mock images) or 1.5 keV (for the low energy band mock images) and a range of ECFs. The counts for each source were then distributed according to this approximation of the local PSF.

We determined the photometric properties of the 60 sources in each set of mock observations as described in §2.2.4. We also produced a sourcelist including photometric properties for each set of mock observations using our standard pipeline beginning with the second round of wavdetect using the background and exposure maps for ObsID 12519. Then we calculated, as a function of the input source counts in a particular energy band, what fraction of input sources that satisfy our  $3\sigma$  threshold in that energy band were detected by wavdetect. This recovery fraction is shown in Figure 2.15 for the 2–10 keV band, and it is well-fit by the analytic form  $F_{\rm rec}(C) = 1/(1 + \exp[-\delta\{C - \xi\}])$ , where C are the input source counts in a given band, and  $\delta$  and  $\xi$  are fitting constants that vary with energy band. For the 2–10 keV band,  $\delta = 0.30\pm0.07$  and  $\xi = 1.96\pm0.79$ .



Figure 2.16: Example flux probability density distributions, before and after implementing the Eddington bias correction based on the best-fit power-law index  $\beta$  reported in Table 2.11. From left to right, these sources are detected at confidence levels of  $3.2\sigma$ ,  $8.5\sigma$ , and  $29.8\sigma$ , respectively, in the 2–10 keV band.

### **Flux Probability Distributions**

In addition to correcting for incompleteness in our catalog, we take into account the fact that the observed counts in a given source aperture can be attributed to a source with a range of possible fluxes, rather than assigning a single flux value to each source. For  $C_{\rm src}$  total counts in the source aperture and  $C_{\rm bkg}$  counts in the background aperture, the probability distribution of source counts,  $C_{\rm net}$  within the source aperture is given by (derived from Weisskopf et al. (2007) with  $\psi_T \to 1$  and  $\psi_R \to 0$ )

$$P(C_{\rm net}|C_{\rm src}, C_{\rm bkg}) = \frac{1}{Z} \sum_{i=0}^{C_{\rm src}} \frac{(C_{\rm src} + C_{\rm bkg} - i)!}{C_{\rm bkg}!(C_{\rm src} - i)!} \omega_B^{C_{\rm bkg}} \omega_S^{C_{\rm src} - i} \frac{C_{\rm net}^i e^{-C_{\rm net}}}{i!}$$
(2.12)

where the partition function, Z, is

$$Z = \sum_{i=0}^{C_{\rm src}} \frac{(C_{\rm bkg} + i)!}{C_{\rm bkg}! i!} \omega_B^{C_{\rm bkg}} \omega_S^i$$
(2.13)

and  $\omega_B$  or  $\omega_S$  is the probability that a background event occurs in the background or source aperture, respectively:

$$\omega_B = \frac{A_{\rm bkg} E_{\rm bkg}}{A_{\rm bkg} E_{\rm bkg} + A_{\rm src} E_{\rm src}}, \qquad \omega_S = \frac{A_{\rm src} E_{\rm src}}{A_{\rm bkg} E_{\rm bkg} + A_{\rm src} E_{\rm src}}.$$
 (2.14)

 $P(C_{\text{net}})$  is normalized and converted into  $P(f_X)$ , using the relationship included in Equation 2.10. Finally, assuming that the differential counts of sources within each quantile group obey a power law of the form  $dN/df_X \propto f_X^\beta$ , we corrected for the Eddington bias by multiplying each source flux distribution,  $P(f_X)$ , by  $f_X^\beta$ . Examples of the resulting flux distributions are shown in Figure 2.16.

### **Cumulative Number-Flux Computation**

The number count distribution is equal to the sum of the flux probability distributions of individual sources, divided by the sensitivity curve calculated in  $\S2.2.10$  and the recovery fraction function determined in  $\S2.2.10$ :

$$N(>f_X) = \int_{f_X}^{\infty} \left[ \sum_{i=1}^{N_{\rm src}} \frac{P_i(f_X)}{A(f_X, \epsilon_i) F_{{\rm rec},i}} \right] df_X$$
(2.15)

However, the number count distribution depends on the power-law index  $\beta$  through  $P(f_X)$ . We estimate  $\beta$  using a maximum likelihood (ML) method with power-law differential number-flux Bayesian priors. The probability of source *i* being present in our catalog is

$$p_i = \frac{\int P_i(f_X) df_X}{\int dN/df_X|_{\epsilon_i} A(f_X, \epsilon_i) F_{\text{rec},i} df_X}$$
(2.16)

Therefore, the total likelihood of obtaining the sources in our catalog is  $\prod_i p_i$ . We find the best-fit power-law index for each quantile group by maximizing the total likelihood for each quantile group model separately. The normalization, K, of each group model was found by computing the differential number counts in 20 flux bins,

$$\frac{dN}{df_X} = \left(\int_{f_{X,\min}}^{f_{X,\max}} \left[\sum_{i=1}^{N_{\rm src}} \frac{P_i(f_X)}{A(f_X,\epsilon_i)F_{{\rm rec},i}}\right] df_X\right) / (f_{X,\max} - f_{X,\min})$$
(2.17)

calculating 20 corresponding normalizations, and then weight-averaging these normalization values. We calculate the statistical errors of the number counts using the bootstrap method; we resample our list of catalog sources, determine new best-fit  $\beta$  and K parameters, and recompute the number count distribution.

# 2.2.11 The Number-Flux $(\log N - \log S)$ Distribution

Figure 2.17 compares the number-flux distribution calculated using the methodology described in §2.2.10 with the "simple" distribution constructed using a single flux value for each detected source and without corrections for the Eddington bias, sensitivity curve, or recovery fraction. As can be seen in the figure, we can compute the number-flux distribution down to a flux limit roughly an order-of-magnitude below the nominal flux limit of the survey, the point at which the "simple" distribution turns over  $(f_X \approx 2 \times 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1})$  The



Figure 2.17: Cumulative number-flux distribution for all sources detected at  $\geq 3\sigma$  in the 2-10 keV band. The red dotted line is calculated by assigning a single flux value to each detected source and not correcting for any systematic errors. The bars represent  $1\sigma$  uncertainties. The gray dashed line represents the sum of the maximum-likelihood models for each quantile group computed as described in §2.2.10. The black solid line is the result of using a flux probability distribution for each source and correcting for the Eddington bias, the variations in sensitivity across the surveyed area, and the incompletness of our detection procedure. A line with a power-law index equal to -1.1 is shown as a visual aid.

power-law parameters describing the differential count distribution for each quantile group in the 2-10 keV band that are found to have maximum likelihood are provided in Table 2.11, and the differential and cumulative count distributions are shown in Figure 2.18. The combined cumulative distribution for all groups has a power-law index of roughly -1.1. This index is similar to those found for the cumulative distributions of sources in other surveys, which vary from -1.0 to -1.5 (Muno et al. 2009; Hong et al. 2009; Ebisawa et al. 2005). The group D sources dominate in the 2-10 keV band down to a flux limit of  $\approx 5 \times 10^{-14}$  erg cm<sup>-2</sup> s<sup>-1</sup>, below which group C and E sources dominate. We modified the quantile groups divisions by  $\sim 0.1$  dex and re-calculated the number-flux distributions; the power-law indices of the differential count distributions of the modified quantile groups vary by  $< 2\sigma$ , and the log*N*-log*S* distributions also remain consistent at the  $2\sigma$  level or better.

Groups B, C, and E have differential count distributions with power-law indices that are consistent with each other at  $\leq 1\sigma$  confidence, with  $\beta \approx -2.4$ . The similarity between the group B and C slopes was expected since the majority of hard sources in these groups are likely to be a mixture of different types of CVs. However, it is somewhat surprising that the group E slope is so similar to those of groups B and C since we expect group E to contain a significant fraction of high-mass stars and AGN in addition to white dwarf binary systems. Perhaps group E does not contain quite as many high-mass stellar X-ray sources as

| Quantile     | β                       | Knorm                                                                 |
|--------------|-------------------------|-----------------------------------------------------------------------|
| Group        |                         | $(10^{14} \text{ deg}^{-2} (\text{erg cm}^{-2} \text{ s}^{-1})^{-1})$ |
| (1)          | (2)                     | (3)                                                                   |
| A            | $-3.1 \pm 0.3$          | $20^{+4}_{-8}$                                                        |
| В            | $-2.5 \pm 0.1$          | $52^{+8}_{-11}$                                                       |
| $\mathbf{C}$ | $-2.37^{+0.05}_{-0.08}$ | $150_{-20}^{+10}$                                                     |
| D            | $-1.97 \pm 0.05$        | $200_{-30}^{+10}$                                                     |
| ${ m E}$     | $-2.31 \pm 0.05$        | $200^{+10}_{-30} \\ 140^{+20}_{-50}$                                  |

Table 2.11: Maximum Likelihood Parameters for  $dN/df_X$  Distributions in 2-10 keV Band

Notes: All quoted errors are  $1\sigma$  statistical.

(1) Quantile groups defined in  $\S2.2.7$ .

(2) Power-law index of  $dN/df_X$  distribution.

(3) Normalization of  $dN/df_X$  distribution.

we expect based on the spectral properties of this group, or perhaps the flux distribution of X-ray sources associated with high-mass stars is similar to that CVs.

The group A power-law index is significantly steeper than  $\beta \approx -2.4$ , which may be because this group is made up of very different X-ray populations, such as low-mass X-ray active stars, coronally active binaries, and high-mass stars. However, this very steep power-law index may be a result of poor statistics, since only a small number of group A sources detected in the 2-10 keV band. In addition, since only about 5 group A sources have fluxes higher than fluxes at which the sensitivity curve and recovery fraction corrections become important, its differential count distribution parameters will be more severely impacted than any other group by any systematic imperfections in these corrections. However, even if the maximum likelihood results for this group are not reliable, the results for all other groups are independent and since group A only contributes  $\leq 10\%$  of sources at all fluxes, it also has little impact on the combined group distribution.

The other power-law index that significantly differs from those of groups B, C, and E is that of group D, which is significantly flatter. It is not too surprising that the group D slope is different since this group appears to be dominated by a single class of CVs, intermediate polars, rather than a mixture of magnetic and nonmagnetic CVs. As can be seen in Figure 2.18, only the group D differential-count distribution deviates at >  $3\sigma$  confidence from a simple power-law model at fluxes <  $10^{-13}$  erg cm<sup>-2</sup> s<sup>-1</sup>; while other group distributions deviate significantly from a simple power-law model above this flux, there are simply not enough bright sources in each group to constitute a statistically significant sample. The group D distribution deviates from the simple power-law model at fluxes  $\leq 10^{-14}$  erg cm<sup>-2</sup> s<sup>-1</sup> by as much as  $8\sigma$  at the faintest fluxes. The turnover in the group D distribution remains significant even when we modify the quantile divisions by ~0.1 dex. Although our sensitivity curve, recovery fraction, and Eddington bias corrections may still not perfectly correct for all these systematic errors, it is unlikely that this group D deviation is simply due to a systematic error since it is the only group displaying this turnover at faint fluxes.



Figure 2.18: Upper panel shows the differential number counts versus 2-10 keV flux calculated as described in §2.2.10. The solid lines represent the maximum-likelihood simple power-law models while the points represent the corrected data with  $1\sigma$  errors. Lower panel shows the cumulative number counts versus 2-10 keV flux. Lines represent the corrected data with  $1\sigma$  errors. Both dN/dS and logN-logS are shown for the five quantile groups and for all groups combined.

Thus, the turnover at faint fluxes in the group D number-count distribution is likely indicative of a real break in the power-law distribution. Such a break could result if the sources in group D have a break in their luminosity function, a minimum luminosity, or a high enough luminosity to be seen through the entire galaxy. As discussed in  $\{2.2.9, 30-50\%$ of group D sources without IR counterparts may be AGN, which have a number-count distribution that is shallower at fluxes  $< 10^{-14}$  erg cm<sup>-2</sup> s<sup>-1</sup> (Cappelluti et al. 2009), and therefore, the break in the AGN distribution could at least partly explain the break in the group D distribution. However, if the turnover in the group D distribution is primarily due to AGN, it is surprising that a significant turnover is not also seen in the group E distribution, since there is stronger evidence for AGN being present in group E than group D. Since group D appears to be dominated by IPs, this break in the number-count distribution could be an indication of a break in the luminosity function of IPs, although we emphasize that this is a possibility but it cannot be confirmed with this data alone. A break in the IP luminosity function could be due to the propeller effect, a centrifugal barrier to accretion at low mass accretion rates that results when the magnetosphere of a compact object has a higher angular velocity than the accretion flow at the Alfven radius (Illarionov & Sunvaev 1975). The propeller effect has been invoked to explain the turnover of the HMXB luminosity function at the faint end (Shtykovskiy & Gilfanov 2005), the variability of supergiant fast X-ray transients (SFXTs, Bozzo et al. 2008), and the state transitions in some LMXBs (Zhang et al. 1998). Although this effect has primarily been used to explain the behavior of low-luminosity accreting neutron stars, similar physical mechanisms may be important in accreting white dwarf systems, even in CVs with weak magnetic fields (Matthews et al. 2006). We only present this interpretation of the break in the group D number-count distribution as a speculative hypothesis; a theoretical study of the propeller effect in IPs is beyond the scope of this paper, and multiwavelength follow-up of group D sources that will help to confirm whether they indeed are primarily IPs is ongoing.

## 2.2.12 Comparison to Expectations Based on Previous Surveys

Having calculated the number-count distribution of the NARCS X-ray sources, we want to compare it to the expected distribution based on other Galactic surveys since any significant discrepancies would indicate that the X-ray populations in this region might be unusual in some way. Thus, we estimated the expected contributions of ABs, CVs, LMXBs, HMXBs, and AGN to the observed number-count distribution.

In the hard X-ray band, CVs are the most numerous Galactic X-ray sources and they are thought to be the main contributors to the observed Galactic Ridge X-Ray Emission, the large-scale background emission of the Galaxy. CVs are low-luminosity sources ( $L_X \leq 10^{33}$ erg s<sup>-1</sup>) and trace the old stellar population of the Milky Way. Another significant population of low-luminosity sources that follow the stellar mass distribution are ABs. Thus, to calculate the expected flux distribution of ABs and CVs in NARCS, both their luminosity functions and a model of the Galactic stellar mass distribution are required. Sazonov et al. (2006) measured the combined luminosity function of ABs and CVs in the local vicinity of the Sun



*Figure 2.19*: The observed number-flux distribution compared to the combined estimates of the expected AB/CV, HMXB, and AGN flux distributions based on the luminosity functions of these populations from other surveys. Estimated uncertainties for the predictions are shown as shaded regions. The AB/CV line shown is the average distribution of the ones we calculated by varying the parameters of the Galatic stellar mass model.

over the luminosity range  $L_X = 10^{27} - 10^{34}$  erg s<sup>-1</sup>. Since the local AB/CV cumulative emissivity per unit stellar mass was found to be consistent with that measured elsewhere in the Galaxy (Revnivtsev et al. 2006b; Revnivtsev & Sazonov 2007; Krivonos et al. 2007; Revnivtsev et al. 2008), we used the AB/CV luminosity function per unit stellar mass from Sazonov et al. (2006) to estimate the AB/CV flux distribution in NARCS. We utilize a stellar mass model similar to that used by Sazonov et al. (2006), which is an exponential disk with a central hole:

$$\rho \propto \exp\left[-\left(\frac{R_{\rm m}}{R}\right)^3 - \frac{R}{R_{\rm scale}} - \frac{z}{z_{\rm scale}}\right]$$
(2.18)

where R is the radial distance from the Galactic center, z is the height above the plane,  $R_{\rm m}$  is the radius of the hole in the Galactic disk,  $R_{\rm scale}$  is the disk scale length, and  $z_{\rm scale}$  is the scale height of CVs. We assume  $R_{\rm m} = 3$  kpc (Binney et al. 1997; Freudenreich 1998), but adopt a range of values for parameters that are not well constrained: 2.5-3.5 kpc for  $R_{\rm scale}$  (Binney et al. 1997; Freudenreich 1998; Hammersley et al. 1999) and 80-220 pc for  $z_{\rm scale}$  (Revnivtsev et al. 2008). For our stellar mass model we further adopt a disk-to-bulge mass ratio of 2:1 and a range of values for the Galactic bulge mass of  $1.3 \pm 0.5 \times 10^{10} {\rm M}_{\odot}$  (Dwek et al. 1995). Using this model, the projected stellar mass contained in NARCS is roughly  $1.4 \times 10^8 M_{\odot}$ .

To compute the number of ABs/CVs expected above a given flux,  $f_{\rm lim}$ , in our survey,

we first consider a small volume element dV within the surveyed volume, and integrate the luminosity function per stellar mass from  $L_{\text{lim}} = f_{\text{lim}} \times 4\pi d^2$ , where d is the distance to dV, to  $L_{\text{max}}$ . Multiplying by the stellar mass contained in dV as determined from our stellar mass model distribution then gives the number of ABs/CVs with  $f_X > f_{\text{lim}}$  in dV. Integrating the number per volume over all distances d and all lines of sight through our survey, and then simply repeating this procedure for the range  $10^{-15} < f_{\text{lim}} < 10^{-11}$ , we obtain the expected logN-logS for ABs/CVs. We repeat this calculation many times, choosing values randomly for each of the uncertain stellar mass model parameters.

| Population      | Normalization     | Power-law Index                                                                                                                                  |
|-----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| (1)             | (2)               | (3)                                                                                                                                              |
| Observed        | 630               | $\begin{cases} -1.14, f_X < 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1} \\ -1.24, f_X > 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1} \end{cases}$ |
| AB/CV predicted | $250{\pm}100$     | -1.21                                                                                                                                            |
| HMXB predicted  | $4^{+4}_{-2}$     | -0.40                                                                                                                                            |
| AGN predicted   | $260^{+40}_{-50}$ | $\begin{cases} -0.90, f_X < 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1} \\ -1.46, f_X > 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1} \end{cases}$ |

Table 2.12: Normalizations and Indices of  $\log(N)$ - $\log(S)$  Distributions

Notes:

(1) Population of sources, observed or predicted.

(2) Number of sources with  $f_X > 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1}$ .

(3) Power-law index of distribution.

LMXBs are more luminous and far rarer than CVs, but they too scale with the old stellar mass. Thus, to estimate the number of LXMBs expected in NARCS, we take the LMXB luminosity function from Sazonov et al. (2006) and apply the same method as for ABs/CVs, except that we use a scale height of  $z_{scale} = 410$  pc (Grimm et al. 2002). We find that  $\leq 1$  LMXB is expected in our survey region.

Unlike CVs and LMXBs, the number of HMXBs is not correlated with the old stellar mass, and thus our estimate of the HMXBs in NARCS is independent of the Galactic stellar mass model. Our predictions for the HMXB contribution to the number-count distribution is based on the luminosity function from Lutovinov et al. (2013), which is derived from the number of Galactic HMXBs observed by *International Gamma-Ray Astrophysics Laboratory* (*INTEGRAL*, Winkler et al. (2003)). Since the *INTEGRAL* luminosity function was calculated in the 17-60 keV band, we converted it to the 2-10 keV band by assuming a typical spectral model for accreting pulsars that includes a power-law with a high-energy cutoff (White et al. 1983):

$$f(E) \propto E^{-\Gamma} \times \begin{cases} 1, & (E \le E_{\rm cut}) \\ e^{-(E - E_{\rm cut})/E_{\rm fold}}, & (E > E_{\rm cut}) \end{cases}$$
(2.19)

Using  $\Gamma = 1$ ,  $E_{\text{cut}} = 20$  keV,  $E_{\text{fold}} = 10$  keV, and intrinsic  $N_{\text{H}} = 5 \times 10^{22}$  cm<sup>-2</sup> (Filippova et al. 2005), the conversion factor  $f_{2-10\text{keV}}/f_{17-60\text{keV}} \simeq 0.5$ . Since out HMXB prediction is

based on a survey of the HMXB population throughout the whole Galaxy, it does not take into account that, as discussed in §2.2.1, the Norma region appears to have an enhanced number of HMXBs due to its star formation activity. Therefore, we may be underestimating the number of HMXBs in this region, but probably by no more than a factor of two based on the comparison of predictions and observations presented in Lutovinov et al. (2013) for the brightest HMXBs in the whole Norma arm.

One population of sources whose contribution is difficult to predict are isolated high-mass stars and colliding wind binaries (CWBs) because they are not evenly distributed throughout the Galaxy and their X-ray luminosity functions have yet to be determined. However, we do expect high-mass stellar X-ray sources to be present in our survey due to the presence of massive-star forming complexes and HII regions along this line-of-sight, and we have already identified a small number of these sources. As discussed in  $\S2.2.9$ , three group A sources with known massive counterparts are likely isolated high-mass stars. In addition, Rahoui et al. (2014) find that five of 20 NARCS counterparts for which they obtained infrared spectra are high-mass stars; their X-ray properties favor the interpretation that three of these sources (#239, 1168, and 1326) are quiescent HMXBs and two (#1278 and 1279) are CWBs. Ongoing spectroscopic follow-up of IR counterparts and improved constraints on the X-ray properties of NARCS sources with NuSTAR observations will help to determine their total number and their flux distribution. Given the rarity of high-mass stars even in regions of recent star formation like the Norma arm, we do not expect these sources to constitute a large fraction of the NARCS population; however, identifying even a small sample ( $\sim 10$ ) of such sources would be a significant contribution to the number of known high-mass X-ray sources (e.g. Mauerhan et al. 2010; Gagné et al. 2011) and our understanding of their X-ray properties.

Figure 2.19 shows our estimates for the expected flux distributions of ABs/CVs and HMXBs in our survey region (there are too few expected LMXBs to be shown), while Table 2.12 provides their power-law indices and normalizations. The observed AGN distribution from the COSMOS survey (Cappelluti et al. 2009) is also included, attenuated by the average column density from the outer Norma arm to the outer edge of the Galaxy ( $N_{\rm H} \approx 3 \times 10^{22}$  cm<sup>-2</sup>). Uncertainties in the predicted AGN distribution are determined by considering  $N_{\rm H}$  values from zero to  $8 \times 10^{22}$  cm<sup>-2</sup>, the maximum measured along any line-of-sight in our surveyed area.

As can be seen, the sum of the predicted distributions of ABs/CVs, AGN, and HMXBs matches the calculated flux distribution of hard sources in NARCS. The fact that the slope of the expected distribution matches the observed one so well, including some of the kinks in the slope, suggests that ABs, CVs, and AGN are the dominant populations in our survey and that their relative numbers are similar to the proportions predicted from other observations.

### 2.2.13 Conclusions

We constructed a catalog of  $1130 \ge 3\sigma$  point-like sources and five extended sources detected in a *Chandra* survey of a  $2^{\circ} \times 8^{\circ}$  region in the direction of the Norma spiral arm. These sources span the luminosity range  $L_X = 10^{27} - 10^{35}$  erg s<sup>-1</sup>. The systematic positional

errors were reduced by matching X-ray sources to infrared VVV counterparts, so that the median positional error for sources in our catalog is 1".26 (95% statistical plus systematic uncertainty). The median number of counts for sources in our survey is 11, making most of them too faint to enable accurate determination of their spectral properties. Therefore, to help classify the sources, we split them into five spectral groups based on their quantile properties. The stacked spectra, photometric variability, and IR counterparts of the sources within each spectral group allowed us to identify the classes of X-ray sources that populate the foreground, the Scutum-Crux and near Norma arm, and the far Norma arm. Foreground sources, which make up roughly 50% of catalogued sources, are a heterogeneous group, probably containing X-ray active low-mass stars, interacting binaries, symbiotic binaries, and CVs. The X-ray populations of the Scutum-Crux and near Norma arms are most likely dominated by a mixture of magnetic and nonmagnetic CVs. The far Norma arm hard X-ray population is likely dominated by IPs, while the softer X-ray population probably includes high-mass stars (both isolated and in colliding wind binaries) and symbiotic binaries.

We also calculated the number-flux distribution for sources in our survey down to a flux limit of  $10^{-15}$  erg cm<sup>-2</sup> s<sup>-1</sup>, correcting for the Eddington bias, the variations in sensitivity across the surveyed area, and the incompleteness of our detection procedure. The observed distribution matches predictions based on AB, CV, AGN, and HMXB luminosity functions very well, lending further support to our conclusions that CVs are the dominant population in NARCS. Furthermore, the fact that the observed number-flux distribution shows the same changes in slope as the predicted distribution, suggests that roughly a third of the NARCS sources detected in the hard energy band probably are AGN as predicted; we see some evidence for the presence of AGN in the stacked spectrum of group C, D, and E sources lacking NIR counterparts. However, it is unclear whether AGN can fully account for the flattening at faint fluxes that is seen in the number-flux distribution of group D sources; additional X-ray observations to better constrain the spectrum and variability of NARCS sources can help to disentangle the relative fractions of AGN and IPs in this group and determine which population is responsible for the break in the log*N*-log*S* distribution.

Our analysis of NARCS sources was primarily statistical in nature, but multiwavelength data has permitted the classification and deepened understanding of individual sources. Our follow-up campaigns were focused on but not limited to group D X-ray sources, since any HMXBs in this survey are most likely to belong to this group. Near-IR spectroscopic follow-up of counterparts to 42 X-ray sources has been completed (Rahoui et al. 2014; Corral-Santana et al, in prep) and helped us to determine which of these X-ray sources have high-mass versus low-mass counterparts. By constraining the hard X-ray emission and variability of NARCS sources, the *NuSTAR* survey of the Norma region has also provided important clues to identify the physical nature of 28 of the brightest NARCS sources. In  $\S 2.3-\S 2.4$ , we describe how the combination of this multiwavelength data enables us to distinguish different populations of X-ray sources and to identify the most likely HMXB candidates.

# 2.3 The *NuSTAR* Norma Arm Region Survey

## 2.3.1 Introduction

Hard X-ray observations of the Galaxy can be used to identify compact stellar remnants – white dwarfs, neutron stars, and black holes – and probe stellar evolution in different environments. While a number of sensitive surveys of Galactic regions (e.g. Muno et al. 2009; Townsley et al. 2011; Fornasini et al. 2014) have been performed by the *Chandra X-ray Observatory*, its soft X-ray band (0.5–10 keV) is often insufficient for differentiating between different types of compact objects. The *Nuclear Spectroscopic Telescope Array (NuSTAR*; Harrison et al. 2013), with its unprecedented sensitivity and angular resolution at hard X-ray energies above 10 keV, provides a unique opportunity to study the X-ray populations in the Galaxy. During the first two years of its science mission, *NuSTAR* performed surveys of the Galactic Center and the Norma spiral arm in order to compare the X-ray populations in these regions of the Galaxy, which differ with regard to their star formation history and stellar density. The *NuSTAR* sources found among the old, high-density Galactic Center stellar population are described in Hong et al. (2016), and, in this chapter, we present the results from the *NuSTAR* Norma Arm survey.

As discussed in §2.2, in 2011, the Norma Arm Region *Chandra* Survey (NARCS) observed a  $2^{\circ} \times 0.8$  region in the direction of the Norma spiral arm (Fornasini et al. 2014, hereafter F14). The Norma region was targeted because its stellar populations are younger than those in the Galactic Center but older than those in the young Carina and Orion star-forming regions observed by *Chandra* (F14 and references therein). An additional goal of this survey was to identify low-luminosity high-mass X-ray binaries (HMXBs) falling below the sensitivity limits of previous surveys in order to constrain the faint end of the HMXB luminosity function; the evolutionary state of the Norma arm and the large number of OB associations along this line-of-sight (Bodaghee et al. 2012c) make it an ideal place to search for HMXBs.

About 300 of the 1130 *Chandra* sources detected at  $\geq 3\sigma$  confidence in the Norma region were found to be spectrally hard in the 0.5–10 keV band, with median energies >3 keV. The majority of these sources are expected to be magnetic cataclysmic variables (CVs) and active galactic nuclei (AGN), although some could also be HMXBs, low-mass X-ray binaries (LMXBs), or colliding wind binaries (CWBs). Distinguishing between these types of sources is not possible based on *Chandra* data alone, especially since most of the Norma X-ray sources have low photon statistics.

Since *Chandra*'s resolution enables the identification of unique optical/infrared counterparts, spectral identification of the counterparts has helped shed light on the physical nature of some of the Norma X-ray sources (Rahoui et al. 2014). However, not even this information is necessarily sufficient; for example, HMXBs and CWBs both have massive stellar counterparts in the optical/infrared and it can be difficult to differentiate them spectrally in the *Chandra* band with < 100 photon counts, as is the case for most NARCS sources. *NuSTAR* observations, due to their superior sensitivity above 10 keV and in the energy range of the iron K $\alpha$  and K $\beta$  lines, provide critical information to differentiate hard X-ray sources. For example, CWBs can be distinguished from HMXBs because they have thermal spectra that fall off steeply above 10 keV and strong 6.7 keV Fe emission (Mikles et al. 2006 and references therein), and magnetic CVs can be distinguished from non-magnetic CVs by their harder spectra, lower equivalent widths of the 6.7 keV line, and higher line ratios of 7.0/6.7 keV Fe emission (e.g. Xu et al. 2016).

The first set of observations of the NuSTAR Norma Arm survey were carried out in February 2013 and improved the identification of three NARCS sources (Bodaghee et al. 2014, hereafter B14), discovered one transient (Tomsick et al. 2014a, hereafter T14), and permitted the study of the disk wind of the LMXB 4U 1630-472 (King et al. 2014). In this section, we present a catalog of all point sources detected in the NuSTAR Norma Arm survey. The NuSTAR observations and basic data processing are described in § 2.3.2. Descriptions of our analysis, including our source detection technique, aperture photometry, and spectral analysis are found in § 2.3.4–2.3.10. In § 2.3.11-2.3.14, we discuss the physical nature of NuSTAR sources, present their number-flux distribution, and compare the Norma X-ray populations to those seen in the Galactic Center region.

## 2.3.2 Observations

## NuSTAR

NuSTAR observations of the Norma arm region began in February 2013, and were completed in June 2015. During this period, NuSTAR performed 61 observations in the Norma region, shown in Figure 2.20; every pointing consists of data from two co-aligned focal plane modules (FPM), A and B, each of which has a field-of-view (FOV) of  $13' \times 13'$ .

The *NuSTAR* observations were planned to minimize contamination from stray light and ghost rays. Stray light is the result of zero-bounce photons reaching the detector from bright sources within a few degrees of the FOV, while ghost rays are single-bounce photons from bright sources within about 1° of the FOV. The pattern of stray light contamination is well-understood and can be carefully predicted<sup>13</sup>, while the patterns of ghost rays are more challenging to model (Koglin et al. 2011; Harrison et al. 2013; Wik et al. 2014; Mori et al. 2015; Madsen et al. 2015).

Therefore, rather than observing the whole region surveyed by *Chandra*, we performed simulations of stray light contamination and focused our observations on three areas of the sky that would be least affected by stray light. Even in these "cleaner" areas, at least one of the focal plane modules was often affected by stray light, so exposure times for more contaminated observations were lengthened to compensate for the fact that we would not be able to combine data from both modules. Seven additional pointings were specifically made at the locations of some of the brightest NARCS sources found to be hard in the *Chandra* band and for which optical or infrared spectra have been obtained (Rahoui et al. 2014, Corral-Santana et al., in prep). Unfortunately, despite this adopted strategy, the first

 $<sup>^{13}</sup>$  Stray light constraints for new observations can be checked with the stray light simulation tool at http://www.srl.caltech.edu/NuSTAR\_Public/NuSTAROperationSite/CheckConstraint.php

mini-survey of the Norma region was highly contaminated by ghost rays because a black hole binary in the region, 4U 1630-472, serendipitously went into outburst while the *NuSTAR* observations were taking place (B14). Having learned about the spatial extent of ghost ray contamination, later observations in proximity of 4U 1630-472 were timed to occur only when it was in quiescence.

Finally, in addition to the observations dedicated to the Norma survey either as part of the baseline NuSTAR science program or the NuSTAR legacy program, a series of observations were made to regularly monitor the pulsar associated with HESS J1640-465 (Gotthelf et al. 2014, hereafter G14), a very luminous TeV source which resides within the Norma survey area. When combining all such observations taken prior to March 2015, they yield a total exposure of 1 Ms over a 100 arcmin<sup>2</sup> field, which we call the "deep HESS field". While the detailed analysis of the pulsar's braking index is discussed in Archibald et al. (2016), here we present the other NuSTAR sources detected in the deep HESS field.

Table 2.13 lists all the NuSTAR observations included in our analysis. Although the sources in the first mini-survey (King et al. 2014; B14; T14), HESS J1640-465 (G14), and IGR J16393-4643 (Bodaghee et al. 2016, hereafter B16) have been analyzed separately and in more detail by others, we include these sources in our analysis to measure the photometric properties of all sources in a consistent way, allowing us to calculate the number-flux (logN-logS) distribution of NuSTAR Norma Region (NNR) sources.

### Chandra

In this study, we make extensive use of information from the Norma Arm Region *Chandra* Survey (NARCS) catalog as well as the soft (< 10 keV) X-ray spectra of some of the NARCS sources. The analysis of these *Chandra* observations and the details of the spectral extraction are provided in F14. We also use two other archival *Chandra* observations that cover part of the area surveyed by *NuSTAR*: ObsID 7591 provides an additional epoch for a transient source (NuSTAR J164116-4632.2, discussed in § 2.3.8), and ObsID 11008 provides spatially resolved observations of NARCS sources 1278 and 1279 (Rahoui et al. 2014), which are blended in the NARCS and *NuSTAR* Norma observations. For reference, we provide information about all these relevant archival *Chandra* observations in Table 2.14.

Furthermore, in this study we make use of *Chandra* observations which were triggered to follow-up four transient sources discovered by NuSTAR. These *Chandra* observations were used to constrain their soft X-ray spectra and better localize their positions so as to be able to search for optical and infrared counterparts. The follow-up observations of one of these transients, NuSTAR J163433-4738.7, are discussed in T14, and the others are presented in § 2.3.8 and listed in Table 2.15.

# 2.3.3 NuSTAR Data Processing and Mosaicking

The raw data of each observation was processed using CALDB v20150612 and the standard NuSTAR pipeline v1.3.1 provided under HEASOFT v6.15.1 to produce event files and







Figure 2.20: The top panel shows the smoothed 3–40 keV count rate mosaic (units of counts per second) and the bottom shows the 3–40 keV exposure map without vignetting correction (units of seconds). The mosaics have been cleaned of most contamination from ghost rays and stray light; some residual ghost ray contamination can be seen in the first mini survey (upper right of the mosaic) while one wedge of stray light around  $(\ell, b) = (338^\circ, 0.08^\circ)$ , which is due to GX 340+0, is not removed since a bright source, IGR J16393-4643, is embedded in it.

| ObsID       | Po                  | inting (J200      | )0)            | Start Time       | Exposure | SL Removal | SL      | Other                     |
|-------------|---------------------|-------------------|----------------|------------------|----------|------------|---------|---------------------------|
|             | R.A. ( $^{\circ}$ ) | Dec. $(^{\circ})$ | $PA(^{\circ})$ | $(\mathrm{UT})$  | (ks)     | (FPM)      | Source  | Contamination             |
| (1)         | (2)                 | (3)               | (4)            | (5)              | (6)      | (7)        | (8)     | (9)                       |
| Wide Shallo | w Survey            |                   |                |                  |          |            |         |                           |
| First mini- | -survey             |                   |                |                  |          |            |         |                           |
| 40014001001 | 248.4829            | -47.7204          | 160.1494       | 2013-02-24 01:46 | 18.4     |            |         | Ghost rays from 4Ub in AB |
| 40014002001 | 248.3623            | -47.6444          | 160.1471       | 2013-02-24 11:31 | 19.5     |            |         | Ghost rays from 4Ub in AB |
| 40014003001 | 248.2407            | -47.5669          | 160.1266       | 2013-02-21 20:31 | 20.8     |            |         | Ghost rays from 4Ub in AB |
| 40014004001 | 248.5977            | -47.6374          | 160.1231       | 2013-02-22 07:46 | 19.5     |            |         | Ghost rays from 4Ub in AB |
| 40014005001 | 248.4775            | -47.5622          | 160.1304       | 2013-02-22 17:31 | 21.3     |            |         | Ghost rays from 4Ub in AB |
| 40014006001 | 248.3529            | -47.4868          | 160.1393       | 2013-02-23 04:46 | 18.9     |            |         | Ghost rays from 4Ub in AB |
| 40014007001 | 248.7099            | -47.5554          | 160.1350       | 2013-02-23 14:31 | 22.7     |            |         | Ghost rays from 4Ub in AB |
| 40014008002 | 248.5845            | -47.4826          | 160.1196       | 2013-02-20 23:32 | 16.6     |            |         | Ghost rays from 4Ub in AB |
| 40014009001 | 248.4670            | -47.4038          | 160.1198       | 2013-02-21 10:46 | 14.7     |            |         | Ghost rays from 4Ub in AB |
| Later obser | rvations            |                   |                |                  |          |            |         |                           |
| 40014011002 | 250.0712            | -46.4909          | 280.7063       | 2013-06-20 00:06 | 21.5     | AB         | 4Ua     |                           |
| 40014012001 | 250.0006            | -46.4546          | 280.7266       | 2013-06-20 14:21 | 19.7     | AB         | 4Ua     |                           |
| 40014013001 | 249.9200            | -46.4004          | 281.4251       | 2013-06-21 03:16 | 20.5     | А          | 4Ua     |                           |
| 40014014001 | 250.2358            | -46.3989          | 285.7049       | 2013-06-21 17:46 | 16.4     |            |         | 1.5' streak in AB         |
| 40014015001 | 250.0770            | -46.3706          | 285.7091       | 2013-06-22 08:21 | 19.2     |            |         |                           |
| 40014016001 | 250.2620            | -46.5441          | 285.6937       | 2013-06-23 21:21 | 19.6     | AB         | 4Ua     |                           |
| 40014017001 | 250.1762            | -46.5238          | 285.6774       | 2013-06-23 11:51 | 24.2     | AB         | 4Ua     |                           |
| 40014018001 | 249.9326            | -46.3469          | 286.8740       | 2013-06-24 00:51 | 23.8     |            |         |                           |
| 40014019001 | 250.1520            | -46.3873          | 286.8743       | 2013-06-24 15:21 | 25.6     |            |         |                           |
| 40014021002 | 249.1106            | -47.1553          | 168.0928       | 2014-03-09 21:56 | 29.1     | AB         | GX, 4Ua |                           |
| 40014022001 | 249.0348            | -46.9577          | 168.0985       | 2014-03-10 15:31 | 28.4     | AB         | GX, 4Ua |                           |
| 40014023001 | 249.2029            | -47.1072          | 168.1000       | 2014-03-11 07:41 | 28.8     | AB         | GX, 4Ua |                           |
| 40014024001 | 248.8388            | -46.9903          | 168.1169       | 2014-03-11 23:46 | 28.1     | AB         | GX, 4Ua |                           |
| 40014025001 | 248.8796            | -47.0734          | 168.1144       | 2014-03-12 17:36 | 29.1     | AB         | GX, 4Ua |                           |
| 40014026001 | 249.1206            | -46.9073          | 168.0941       | 2014-03-13 11:26 | 30.2     | AB         | GX, 4Ua |                           |
| 40014027001 | 249.1610            | -47.0090          | 168.1171       | 2014-03-14 03:31 | 30.2     | AB         | GX, 4Ua |                           |
|             |                     |                   |                |                  |          |            |         | -1                        |

Table 2.13:  $\it NuSTAR$  Observations of the Norma Arm Region

| ObsID       | Poi      | inting (J200      | )0)            | Start Time       | Exposure | SL Removal | SL      | Other                     |
|-------------|----------|-------------------|----------------|------------------|----------|------------|---------|---------------------------|
|             | R.A. (°) | Dec. $(^{\circ})$ | $PA(^{\circ})$ | (UT)             | (ks)     | (FPM)      | Source  | Contamination             |
|             |          |                   |                |                  |          |            |         |                           |
| 40014028002 | 249.0277 | -47.1640          | 168.1544       | 2014-03-18 12:36 | 29.6     | AB         | GX, 4Ua |                           |
| 40014029001 | 249.9367 | -46.8984          | 168.2590       | 2014-03-19 04:41 | 29.2     | AB         | GX, 4Ua |                           |
| 40014030001 | 250.2174 | -46.7179          | 168.3050       | 2014-03-19 20:46 | 27.3     | В          | 4Ua     |                           |
| 40014031001 | 250.5222 | -46.7773          | 168.3521       | 2014-03-20 13:01 | 30.0     | В          | 4Ua     |                           |
| 40014032001 | 250.4317 | -46.7896          | 168.4181       | 2014-03-21 05:01 | 30.9     | В          | 4Ua     |                           |
| 40014033002 | 250.4849 | -46.6649          | 168.2038       | 2014-03-24 10:41 | 31.5     | В          | 4Ua     |                           |
| 40014034001 | 250.2701 | -46.8265          | 168.1849       | 2014-03-25 02:46 | 31.2     | AB         | GX, 4Ua |                           |
| 40014035001 | 250.0454 | -46.8714          | 168.1523       | 2014-03-25 18:56 | 39.2     | AB         | GX, 4Ua |                           |
| 30001008002 | 249.8301 | -46.6567          | 295.0558       | 2014-06-26 02:21 | 50.4     |            |         |                           |
| 30001012002 | 248.6712 | -47.6364          | 171.9830       | 2013-03-23 08:31 | 16.3     | А          | GX      | Ghost rays from 4Ub in AB |
| 30001016002 | 248.5333 | -47.3795          | 164.6452       | 2014-03-06 22:56 | 21.3     | AB         | GX, 4Ua |                           |
| 30001017002 | 248.8967 | -47.3836          | 210.3881       | 2014-05-12 21:31 | 49.0     | AB         | GX, 4Ua |                           |
| 30001033002 | 249.4897 | -46.9015          | 145.8254       | 2015-01-28 05:16 | 51.8     | AB         | GX, 4Ua |                           |
| 30160001002 | 249.3137 | -47.5723          | 267.7851       | 2015-06-11 14:46 | 49.4     | AB         | GX, 4Ua |                           |
| 30160002002 | 248.9436 | -47.5918          | 261.9558       | 2015-06-07 23:46 | 97.1     | AB         | GX, 4Ua |                           |
| 30160003002 | 249.0412 | -47.8404          | 244.4634       | 2015-05-31 11:11 | 76.7     | AB         | GX, 4Ua |                           |
| 40001022002 | 249.5341 | -47.2183          | 164.5577       | 2014-03-07 11:51 | 100.6    | AB         | GX, 4Ua |                           |
| Deep HESS   | Field    |                   |                |                  |          |            |         |                           |
| 30002021002 | 250.1049 | -46.5763          | 353.7407       | 2013-09-29 6:56  | 62.8     | AB         | GX, 4Ua | SL of unknown origin in A |
| 30002021003 | 250.1324 | -46.5412          | 353.7551       | 2013-09-30 16:31 | 20.8     | А          | 4Ua     | SL of unknown origin in A |
| 30002021005 | 250.2036 | -46.5095          | 161.2653       | 2014-02-38 23:16 | 99.5     | AB         | 4Ua     |                           |
| 30002021007 | 250.2027 | -46.5145          | 161.2702       | 2014-03-06 01:51 | 35.9     | AB         | 4Ua     |                           |
| 30002021009 | 250.2175 | -46.5088          | 166.7254       | 2014-03-14 21:21 | 32.5     | AB         | 4Ua     |                           |
| 30002021011 | 250.2296 | -46.5012          | 179.7925       | 2014-04-11 13:11 | 22.5     | AB         | 4Ua     |                           |
| 30002021013 | 250.1923 | -46.5268          | 227.3736       | 2014-05-25 01:56 | 21.6     |            |         |                           |
| 30002021015 | 250.1802 | -46.5601          | 289.9801       | 2014-06-23 12:51 | 29.2     | А          | 4Ua     |                           |
| 30002021017 | 250.1814 | -46.5644          | 295.1336       | 2014-06-25 13:31 | 22.0     |            |         |                           |
| 30002021019 | 250.1913 | -46.5447          | 295.1661       | 2014-06-28 01:20 | 19.5     |            |         |                           |
| 30002021021 | 250.1762 | -46.5687          | 295.1179       | 2014-06-30 01:41 | 19.8     |            |         | 80                        |

NuSTAR Observations (continued)

NuSTAR Observations (continued)

| ObsID       | Poi      | inting (J200 | )0)               | Start Time       | Exposure          | SL Removal | $\operatorname{SL}$ | Other          |
|-------------|----------|--------------|-------------------|------------------|-------------------|------------|---------------------|----------------|
|             | R.A. (°) | Dec. (°)     | PA ( $^{\circ}$ ) | (UT)             | (ks) (FPM) Source |            | Source              | Contamination  |
|             |          |              |                   |                  |                   |            |                     |                |
| 30002021023 | 250.1892 | -46.5586     | 311.5738          | 2014-07-11 02:21 | 22.1              |            |                     |                |
| 30002021025 | 250.1569 | -46.5398     | 330.9082          | 2014-08-10 05:36 | 21.9              | А          | IGR, 4Ua            | 6' streak in B |
| 30002021027 | 250.1477 | -46.5524     | 344.3607          | 2014-09-11 10:56 | 20.0              | AB         | GX, 4Ua             |                |
| 30002021029 | 250.1247 | -46.5392     | 356.5397          | 2014-10-11 01:01 | 22.1              | AB         | 4Ua                 |                |
| 30002021031 | 250.1400 | -46.5260     | 15.7729           | 2014-11-05 07:56 | 4.3               | AB         | 4Ua                 |                |
| 30002021033 | 250.2058 | -46.4950     | 129.7677          | 2015-01-08 04:46 | 4.2               |            |                     |                |
| 30002021034 | 250.2115 | -46.4858     | 129.7237          | 2015-01-12 18:16 | 16.7              |            |                     |                |
| 30002031036 |          |              | 2015-02-16 02:41  | 31.8             | AB                | 4Ua, 4Ub   |                     |                |

Notes: (4) Position angle (east of North).

(7) Focal plane module(s) from which stray light background photons from sources in column 8 were removed.

(8) Stray light background sources: GX = GX 340+0, 4Ua = 4U 1624-49, 4Ub = 1630-472, IGR = IGR J16318-4848. Although additional stray light from IGR J16320-4751 was present in some of the first mini-survey observations, and stray light from 4U 1624-49 and GX 340+0 was present in observation 30001008002, this stray light background was not removed since real sources could be seen in the raw data residing in the stray light-contaminated regions. The contamination in observations 30002021002A, 30002021003A, 30002021003B, and 30001012002 was so extensive that these observations were not included in our analysis.

exposure maps for both focal plane modules. We made exposure maps with and without vignetting corrections to be used in different parts of our analysis.

Next, we cleaned the event files of stray light contamination by filtering out X-ray events in stray light affected regions. Table 2.1 indicates whether stray light removal occurred in either FPMA or FPMB as well as the source responsible for the stray light. In one exceptional case, we did not remove stray light seen in FPMA and FPMB of observation 30001008002, since a bright source, IGR J16393-4643, is located within the stray light regions caused by GX 340+0 and 4U 1624-49. We also excised the most significant ghost rays from observations from the first mini-survey, defining the ghost ray pattern regions in the same way as B14. One observation, 30001012002, was performed to follow-up NuSTAR J163433-4738.7, a transient source discovered in the first mini-survey; this observation helped to characterize the outburst duration of this transient (T14), but it was so extensively contaminated by ghost rays that it was not included in our analysis. Finally, a few observations show additional contamination features such as sharp streaks, listed in Table 2.1, which were also removed.

To improve the astrometric accuracy of the NuSTAR observations, we calculated the shifts between the positions of bright NuSTAR sources and their Chandra counterparts in NARCS observations which were astrometrically registered using infrared counterparts in the VISTA Variables in the Via Lactea (VVV; Minniti et al. 2010) survey (Fornasini et al. 2014). The positions of bright sources, which could be easily identified in raw images, were determined using the IDL gcntrd tool, which makes use of the DAOPHOT "FIND" centroid algorithm. This source localization was done independently for each FPM of each observation and was used to apply translational shifts to event files and exposure maps. In performing astrometric corrections, we limited ourselves to using sources with > 100 net counts in each individual observation and FPM and located on-axis. For on-axis sources with this number of counts, we expect the statistical error on the centroid to be < 6'' based on simulations (Brian Grefenstette, personal communication, May 7, 2014). NARCS 999 is very bright, with > 10,000 net counts, and therefore the statistical uncertainties of the astrometric corrections derived from this source are < 2'' at 90% confidence; the other sources used for astrometric corrections have 100 - 300 net counts, and their associated statistical uncertainties are expected to be 5-6'' at 90% confidence. Table 2.16 lists the applied boresight shifts and the bright sources used for astrometric correction. We were only able to apply these astrometric corrections to 23 out of 60 observations (43 out of 117 modules) due to the dearth of bright X-ray sources in our survey. Our inability to astrometrically correct all the observations does not significantly impact the results of our photometric and spectral analysis since the radii of the source regions we use are significantly larger than the expected shifts. The boresight shifts range from 1" to 14''; 20% of the shifts are larger than 8", which is more than expected based on NuSTAR's nominal accuracy of  $\pm 8''$  at 90% confidence (Harrison et al. 2013), but is not unexpected given that the statistical errors on the source positions may be as high as 6''. Checking each shifted and un-shifted image by eye and comparing the locations of NuSTARsources with their *Chandra* counterparts in shifted and un-shifted mosaic images, we confirm that these boresight shifts constitute an improvement over the original NuSTAR positions.

We re-projected the event files of each observation onto a common tangent point and

| Chandra | Pointing          | (J2000)           | Start Time       | Exposure | References              |
|---------|-------------------|-------------------|------------------|----------|-------------------------|
| ObsID   | R.A. $(^{\circ})$ | Dec. $(^{\circ})$ | $(\mathrm{UT})$  | (ks)     |                         |
| (1)     | (2)               | (3)               | (4)              | (5)      | (6)                     |
| 7591    | 250.187126        | -46.520108        | 2007-05-11 11:01 | 28.8     | Lemiere et al. 2009     |
| 11008   | 250.134287        | -46.393394        | 2010-06-19 22:10 | 39.6     | Rahoui et al. 2014      |
| Norma 1 | Arm Region        | Chandra S         | urvey (NARCS)    |          | Fornasini et al. $2014$ |
| 12507   | 250.373201        | -46.662951        | 2011-06-06 10:15 | 18.8     |                         |
| 12508   | 250.155011        | -46.530604        | 2011-06-06 15:57 | 18.5     |                         |
| 12509   | 249.937805        | -46.397816        | 2011-06-06 21:22 | 19.4     |                         |
| 12510   | 250.180190        | -46.812896        | 2011-06-09 12:29 | 19.9     |                         |
| 12511   | 249.961646        | -46.681456        | 2011-06-17 11:15 | 19.3     |                         |
| 12512   | 249.743370        | -46.550407        | 2011-06-27 04:52 | 20.5     |                         |
| 12513   | 249.984947        | -46.965904        | 2011-06-27 11:00 | 20.2     |                         |
| 12514   | 249.767582        | -46.829470        | 2011-06-10 16:07 | 19.8     |                         |
| 12515   | 249.550110        | -46.695978        | 2011-06-10 22:04 | 19.5     |                         |
| 12516   | 249.790838        | -47.111874        | 2011-06-11 03:46 | 19.5     |                         |
| 12517   | 249.572205        | -46.978413        | 2011-06-11 09:28 | 19.5     |                         |
| 12518   | 249.354673        | -46.844540        | 2011-06-11 15:10 | 19.5     |                         |
| 12519   | 249.594334        | -47.262081        | 2011-06-13 04:25 | 19.3     |                         |
| 12520   | 249.375577        | -47.128273        | 2011-06-13 10:13 | 19.0     |                         |
| 12521   | 249.157932        | -46.994022        | 2011-06-13 15:46 | 19.0     |                         |
| 12522   | 249.396933        | -47.410725        | 2011-06-13 21:20 | 19.0     |                         |
| 12523   | 249.178061        | -47.276529        | 2011-06-14 02:53 | 19.0     |                         |
| 12524   | 248.960334        | -47.141940        | 2011-06-14 08:27 | 19.5     |                         |
| 12525   | 249.198427        | -47.559064        | 2011-06-14 14:08 | 19.5     |                         |
| 12526   | 248.979417        | -47.424468        | 2011-06-14 19:50 | 19.0     |                         |
| 12527   | 248.761625        | -47.289491        | 2011-06-15 19:36 | 19.3     |                         |
| 12528   | 248.998831        | -47.707016        | 2011-06-16 01:24 | 19.0     |                         |
| 12529   | 248.779750        | -47.572056        | 2011-06-16 06:58 | 19.0     |                         |
| 12530   | 248.561776        | -47.436667        | 2011-06-16 12:31 | 19.3     |                         |
| 12531   | 248.798050        | -47.854617        | 2011-06-16 18:09 | 19.5     |                         |
| 12532   | 248.578823        | -47.719259        | 2011-06-16 23:51 | 19.5     |                         |
| 12533   | 248.360823        | -47.583518        | 2011-06-17 05:32 | 19.5     |                         |

Table 2.14: Archival Chandra observations used in this study

 $\underline{\text{Notes:}}$ 

(6) References in which archival observations were previously presented and analyzed.

| Chandra | Src | Pointing (J2000)  |                   | Start Time       | Exposure | Delay between |
|---------|-----|-------------------|-------------------|------------------|----------|---------------|
| ObsID   | No. | R.A. $(^{\circ})$ | Dec. $(^{\circ})$ | $(\mathrm{UT})$  | (ks)     | obs (days)    |
| (1)     | (2) | (3)               | (4)               | (5)              | (6)      | (7)           |
| 16170   | 19  | 250.315079        | -46.540562        | 2014-03-17 05:44 | 4.9      | 3             |
| 16171   | 20  | 250.591644        | -46.716049        | 2014-10-20 06:31 | 4.9      | 210           |
| 17242   | 25  | 248.999542        | -47.807671        | 2015-07-04 10:26 | 9.8      | 34            |

Table 2.15: Chandra follow-up observations of NuSTAR transients

<u>Notes:</u>

(2) NNR source that triggered the *Chandra* observation.

(7) Time elapsed between NuSTAR observation where source is detected and *Chandra* follow-up observation. These times vary significantly because some of these sources were obvious in the raw images while others required mosaicking and careful photometric analysis to determine that they were significant detections.

merged all the observations and both FPM together to maximize photon statistics. We then generated mosaic images on the common sky grid in the 3–78, 3–10, 3–40, 10–20, 10–40, 20–40, and 40–78 keV bands. To create mosaic exposure maps, we combined the individual exposure maps by adding exposure values at the location of each sky pixel in the mosaic image; we made exposure maps both without vignetting corrections and with vignetting corrections evaluated at 8, 10, and 20 keV. We used the exposure maps without vignetting corrections when we calculated the source significance and net counts, since these calculations require comparing the exposure depth in the source and background region apertures and the background is dominated by non-focused emission. Instead, when calculating sensitivity curves (§ 2.3.12), we used exposure maps with vignetting corrections since the source emission is focused by the telescope mirrors. When calculating the source fluxes, vignetting corrections are taken into account through the ancillary response file (ARF). An exposure-corrected *NuSTAR* mosaic image in the 3–40 keV band and exposure map without vignetting correction are shown in Figure 2.1. As can be seen, the typical exposure depth of the Norma survey is 30–100 ks while the exposure of the deep field is 1 Ms.

Table 2.16: Boresight Corrections

| ObsID        | Total shift<br>(") | R.A. Shift<br>(") | Dec. Shift<br>(") | Reference Source<br>(NARCS ID) |
|--------------|--------------------|-------------------|-------------------|--------------------------------|
| (1)          | (2)                | (3)               | (4)               | (5)                            |
| 30001008002A | 5.5                | -6.5              | 3.25              | 999                            |
| 30001008002B | 6.9                | -0.1              | 6.7               | 999                            |
| 30001033002A | 5.6                | -1.9              | -5.4              | 750                            |
| 30001033002B | 3.2                | -2.1              | -2.8              | 750                            |
| 30002021002B | 4.2                | 6.0               | 0.0               | 1321                           |
| 30002021003B | 10.8               | 13.7              | -5.2              | 1321                           |
| 30002021005A | 4.5                | 5.0               | -2.9              | 1321                           |

| ObsID        | Total shift | R.A. Shift | Dec. Shift | Reference Source |
|--------------|-------------|------------|------------|------------------|
|              | (")         | (")        | (")        | (NARCS ID)       |
|              |             |            |            |                  |
| 30002021005B | 3.7         | -5.3       | 0.5        | 1321             |
| 30002021007A | 4.2         | 3.1        | -3.6       | 1321             |
| 30002021007B | 3.7         | -5.4       | -0.8       | 1321             |
| 30002021009A | 1.7         | -0.3       | -1.7       | 1321             |
| 30002021009B | 4.4         | -6.1       | 1.2        | 1321             |
| 30002021011A | 4.3         | -4.4       | 3.1        | 1321             |
| 30002021011B | 4.7         | -6.9       | 0.3        | 1321             |
| 30002021013A | 7.9         | 8.2        | 5.5        | 1321             |
| 30002021013B | 6.1         | 1.8        | 6.0        | 1321             |
| 30002021015A | 4.5         | 3.7        | 3.7        | 1321             |
| 30002021015B | 6.0         | 0.6        | 5.9        | 1321             |
| 30002021017A | 2.2         | 2.1        | 1.6        | 1321             |
| 30002021017B | 2.9         | 4.1        | 0.6        | 1321             |
| 30002021019A | 7.1         | 10.0       | -1.6       | 1321             |
| 30002021019B | 10.0        | 11.2       | 6.4        | 1321             |
| 30002021021A | 1.8         | -0.6       | -1.8       | 1321             |
| 30002021021B | 7.2         | 9.4        | 3.2        | 1321             |
| 30002021023A | 1.2         | 1.8        | 0.1        | 1321             |
| 30002021023B | 7.9         | -6.2       | -6.6       | 1321             |
| 30002021025A | 7.7         | 11.2       | 0.0        | 1321             |
| 30002021025B | 9.3         | 13.3       | 1.0        | 1321             |
| 30002021027A | 0.6         | 0.9        | 0.1        | 1321             |
| 30002021027B | 8.7         | 11.7       | -3.2       | 1321             |
| 30002021029A | 10.2        | 12.1       | -5.9       | 1321             |
| 30002021029B | 5.9         | 5.9        | -4.3       | 1321             |
| 30002021031A | 9.3         | 10.9       | 5.5        | 1321             |
| 30002021031B | 7.2         | 0.8        | 7.2        | 1321             |
| 30002021033A | 7.2         | 1.3        | -7.1       | 1321             |
| 30002021033B | 14.4        | -20.6      | -2.6       | 1321             |
| 30002021034A | 10.5        | -8.7       | -8.7       | 1321             |
| 30002021034B | 9.8         | 10.8       | 6.3        | 1321             |
| 30002021036A | 5.7         | -8.4       | -0.1       | 1321             |
| 40001022002A | 4.9         | -5.9       | -2.9       | 786              |
| 40001022002B | 6.4         | -9.5       | 0.3        | 786              |
| 40014017001A | 9.0         | 6.9        | -7.7       | 1321             |
| 40014017001B | 7.7         | 6.6        | 6.2        | 1321             |

Boresight Corrections (continued)

| ObsID | Total shift | R.A. Shift | Dec. Shift | Reference Source |
|-------|-------------|------------|------------|------------------|
|       | (")         | (")        | (")        | (NARCS ID)       |

Boresight Corrections (continued)

Notes:

The 90% confidence statistical uncertainties of the astrometric corrections are estimated to be < 2'' for NARCS 999 and 5 - 6'' for all other NARCS sources.

(2) Angular distance between original pointing and boresight corrected pointing.

(5) NARCS ID of source used to determine astrometric correction.

# 2.3.4 Source Detection

## Generating trial maps

To identify sources in the NuSTAR Norma survey, we employed a technique that was specifically developed for the NuSTAR surveys. This technique, which we refer to as the "trial map" technique, is described in detail by Hong et al. (2016), so we only provide a brief explanation here. The NuSTAR Galactic Center region survey (Hong et al. 2016), and the NuSTAR extragalactic surveys (Civano et al. 2015; Mullaney et al. 2015; Lansbury et al., submitted) all use this technique as the basis for their detection method. As a result of NuSTAR's point spread function (PSF) being larger and its background being higher and more complex compared to other focusing X-ray telescopes such as *Chandra* and *XMM-Newton*, the utility of typical detection algorithms, such as wavdetect (Freeman et al. 2002b), is limited when applied to NuSTAR data. One way of dealing with this problem is to add an additional level of screening to the results of conventional algorithms, calculating the significance of detections by independent means and setting a significance detection threshold. The trial map technique is more direct, skipping over the initial step of using a detection algorithm such as wavdetect.

To make a trial map, for each sky pixel, we calculate the probability of acquiring more than the total observed counts within a source region due to a random background fluctuation. For each pixel, the source and background regions are defined as a circle and an annulus, respectively, centered on that pixel. The mean background counts expected within the source region are estimated from the counts in the background region scaled by the ratio of the areas and exposure values of the source and background regions. Using background regions that are symmetric around the central pixel helps to account for spatial variations of the background. In making trial maps, we plot the inverse of the random chance probability, which is the number of random trials required to produce the observed counts simply by



Figure 2.21: Composite trial map showing the 3–10 keV band in red, 10–20 keV band in green, and 20–40 keV band in blue. The colors are scaled by the logarithmic trial map values. Tier 1 sources are labeled in green, if they were observed by NARCS or were previously well-studied, or cyan, if they were discovered by the NuSTAR Norma survey. Tier 2 sources are labeled in yellow. The streaks in the vicinity of NNR 2 are due to stray light which has not been removed because NNR 2 is partially embedded in it. The small streaks seen in the area covered by the first mini-survey are due to ghost rays from NNR 1.

random background fluctuations, such that brighter sources with higher significance have higher values in the maps.

We generated trial maps using three different source region sizes with radii of 9".5, 12", and 17" (corresponding to 15, 22, and 30% enclosures of the PSF, respectively) and six different energy bands (3–78, 3–10, 10–40, 40–78, 10–20, 20–40 keV). The source region sizes we used are slightly larger than those used in the analysis of the *NuSTAR* Galactic Center survey since the smaller sizes are especially suited for picking out relatively bright sources in areas of diffuse emission, but in the Norma region there is no evident diffuse emission apart from stray light and ghost rays. The inner and outer radii of the background regions are 51" (corresponding to 70% of the PSF) and 85" (equal to 5/3 of the inner radius), respectively, in all cases . Figure 2.21 shows trial maps made using the 22% PSF enclosure and the 3–10, 10-20, and 20-40 keV bands; the three energy bands are combined into a three-color image so that spectral differences between sources can be seen.

## 2.3.5 Detection Thresholds and Source Selection

When considering how to set detection thresholds for our trial maps, we excluded the observations from the first mini-survey and observation 30001008002 since they have significantly higher levels of stray light and ghost ray contamination than the rest of the survey; in the remainder of this paper, we will refer to this subset of observations as the "clean" sample. Figure 2.22 shows the fractional distributions of the values from the "clean" trial maps using source region sizes of 22% PSF enclosures. As can be seen, the distribution for the 40–78 keV band is very close to that expected for a Poissonian distribution of random background fluctuations, and in fact no sources are clearly visible in the "clean" trial maps.

Following the procedure described in Hong et al. (2016) to establish detection thresholds, we began by cross-correlating each trial map with the NARCS source catalog. Figure 2.23 shows the maximum trial map value within 10" of the locations of NARCS sources detected at >  $3\sigma$  in the 2–10 keV band as a function of *Chandra* photon flux. Above *Chandra* fluxes of  $6 \times 10^{-6}$  cm<sup>-2</sup> s<sup>-1</sup>, more than 1/3 of NARCS sources have trial map values which are significantly higher than the bulk of NARCS sources clustered between trial map values of  $10^{0.3}$  to  $10^3$ . For *Chandra* fluxes lower than  $2 \times 10^{-6}$  cm<sup>-2</sup> s<sup>-1</sup>, the distribution of trial map values are uncorrelated with source flux, having a linear Pearson correlation coefficient |p| < 0.04 for all trial maps.

For a source to be considered for the final catalog, we require that it exceed the detection threshold in at least two trial maps. If all 18 trial maps were independent of each other, the expected number of false sources  $(N_{\rm F})$  would be equal to  $N_{\rm can}C(18,2)p^{16}(1-p)^2$ , where  $N_{\rm can}$  is the number of NARCS sources included in a NuSTAR counterpart search, C(i, j)is a binomial coefficient, and p is the fraction of false sources to be rejected in each map (Hong et al. 2016). However, the trial maps are not completely independent given that their energy ranges overlap. Thus, to at least partly account for the fact that some of the trial maps are correlated, we set a stringent limit on the expected number of false sources, setting  $N_{\rm F}=0.5$ . Since the long-term variability of NARCS sources is unknown, we search for NuSTAR detections among all NARCS sources. Thus, in the "clean" map regions,  $N_{\rm can}=579$ ; limiting  $N_{\rm F}$  to 0.5 requires a rejection percentage p = 99.76%. Making a cumulative distribution function of the trial map values of uncorrelated NARCS sources lying in the gray area of Figure 2.23, we determine the corresponding trial value threshold for each trial map; the detection thresholds range from  $10^{5.2}$  in the 20–40 keV band with 15% PSF enclosures to  $10^{10.3}$  in the 3–10 keV band for 30% PSF enclosures.

Having established detection thresholds for each trial map, we first searched for any *Chandra* sources detected by *NuSTAR*. We cross-correlated all NARCS sources detected at >  $3\sigma$  in the 2–10 keV *Chandra* band with the trial maps of the full set of observations, including those with significant background contamination. We considered all NARCS sources that exceed the detection threshold in at least two trial maps as tier 1 candidate sources. All sources with 2–10 keV *Chandra* flux >  $6 \times 10^{-6}$  cm<sup>-2</sup> s<sup>-1</sup> that are not tier 1 sources are considered tier 2 candidate sources, regardless of their trial map values. Although for tier 2 sources, we do not expect to be able to retrieve significant spectral information, we can at



Figure 2.22: Distribution of trial map values in different energy bands for 22% PSF enclosures. The x-axis is shown in a double logarithmic scale. The 40–78 keV distribution closely matches the random distribution expected due to Poissonian fluctuations of the background; this is consistent with the fact that among the "clean" observations included in creating this plot, only one source is detected in the 40–78 keV band. The vertical dashed line shows the detection threshold set for the 3–10 keV band trial map. The excess of high trial map values relative to the 40–78 keV band distribution is due to the presence of sources, stray light, and ghost rays; the excess of low trial map values result from the vicinity of bright sources, which effectively increase the local background.

least check for significant variability between the *Chandra* and *NuSTAR* observations and place upper limits on the flux above 10 keV. We also performed a blind search for *NuSTAR* sources that were not detected in NARCS; we consider any pixels that exceed the detection threshold in at least three trial maps as additional tier 1 candidate sources.

We then examine all tier 1 and tier 2 candidate sources by eye, looking at them in each trial map, image mosaic, as well as individual observations to check that they are not associated with artifacts due to stray light, ghost rays, or the edges of different observations. In twelve cases, multiple NARCS sources are associated with a single *NuSTAR* detection due to *NuSTAR*'s much larger PSF; however, in all these cases, one NARCS source is more clearly centered on the *NuSTAR* position and is also significantly brighter, demonstrating the more likely association. In addition, since tier 2 candidate sources do not exceed the trial map detection thresholds, in order for them to be included in our final catalog, we require that their aperture photometry have a signal-to-noise ratio (S/N) >  $3\sigma$  in at least one of the 3–10, 3–40, or 10–20 keV energy bands (see § 2.3.6 for details). In total, after these different screenings, 28 out of 41 tier 1 candidates and 10 of 21 tier 2 candidates are included in our final source list, shown in Table 2.17.

To determine the best position of tier 1 NuSTAR sources, we applied the DAOPHOT



Figure 2.23: Trial map value in the 3–10 keV band using 22% PSF enclosures versus Chandra 2–10 keV photon flux for NARCS sources in the surveyed NuSTAR area. Fluxes of sources in the gray region are uncorrelated with the trial map values and used to set the detection threshold, which is shown by the red horizontal line. Sources above the horizontal line in at least two trial maps are tier 1 sources, while bright sources below that line but to the right of the vertical dashed line are tier 2 candidates.

"FIND" algorithm in the proximity of each source in the 3-10 keV trial map with 22% PSF enclosure; we found that using the centroid algorithm on the trial maps rather than the mosaic images yielded better results, allowing the algorithm to converge for all tier 1 sources with lower statistical errors. When applying the centroid algorithm, we used the 3–10 keV, 22% PSF trial map since all the tier 1 sources are clearly discernible in this map. The tier 2 sources are not bright enough for the centroid algorithm to yield reliable results, so we simply adopt the *Chandra* positions for these sources. The offsets between tier 1 sources and their Chandra counterparts vary from 0''9 to 14'', excluding two extended sources (NNR 8 and 21) whose *Chandra* positions were determined subjectively by eye and whose *NuSTAR* positions were slightly adjusted so that their aperture regions would reside on a single detector. There are four sources with offsets significantly larger than 8'', constituting 16% of the sample, which is a bit larger than the 10% expected based on NuSTAR's nominal astrometric accuracy, but understandable considering that both the *Chandra* and *NuSTAR* positions have associated statistical and systematic uncertainties and that most of the NNR sources are much fainter than those used to determine NuSTAR's nominal accuracy. Looking carefully at the four sources with the largest offsets, the similarity between their fluxes and/or spectral properties in the 2–10 keV band between *Chandra* and NuSTAR suggests that they are true counterparts despite the large positional offsets. Table 2.17 provides information about the detection of all

| Src | R.A.       | Dec.       | Unc.        | Source                | NARCS        | Offset     | Exp.            | No. Trials $(1 \circ Y)$ | Band   | EEF  | No.  | Tier |
|-----|------------|------------|-------------|-----------------------|--------------|------------|-----------------|--------------------------|--------|------|------|------|
| No. | (J20       | /          | (")         | Name                  | ID           | (")        | (ks)            | $(10^{X})$               | (keV)  | (%)  | Det. |      |
| (1) | (2)        | (3)        | (4)         | (5)                   | (6)          | (7)        | (8)             | (9)                      | (10)   | (11) | (12) | (13) |
| 1   | 248.506998 | -47.392280 | 8           | 4U 1630-472           | _            | _          | 63              | 1596934.6                | 3-78   | 30   | 18   | 1    |
| 2   | 249.773296 | -46.704057 | $2^{\star}$ | IGR J16393-4643       | 999          | 2.3        | 101             | 15406.9                  | 3-78   | 30   | 18   | 1    |
| 3   | 250.181262 | -46.527207 | $2^{\star}$ | CXOU J164043.5-463135 | $1321^{a}$   | 2.3        | 1039            | 1180.9                   | 3-78   | 30   | 17   | 1    |
| 4   | 249.462661 | -46.929877 | $2^{\star}$ | CXOU J163750.8-465545 | 750          | 3.2        | 96              | 141.2                    | 3-10   | 30   | 10   | 1    |
| 5   | 249.511239 | -47.232651 | $2^{\star}$ | CXOU J163802.6-471358 | 786          | 0.9        | 200             | 132.6                    | 3-10   | 30   | 14   | 1    |
| 6   | 248.481220 | -47.634188 | 8           | CXOU J163355.1-473804 | 78           | 4.3        | 43              | 92.3                     | 3-78   | 30   | 13   | 1    |
| 7   | 250.121368 | -46.392912 | 8           | CXOU J164029.5-462329 | $1278/9^{b}$ | 6.6        | 215             | 77.6                     | 3-10   | 30   | 6    | 1    |
| 8   | 248.946823 | -47.623795 | —           | CXOU J163547.0-473739 | $365^{c}$    | $14.0^{*}$ | 94              | 64.9                     | 3 - 78 | 30   | 12   | 1    |
| 9   | 249.805954 | -46.402649 | 8           | CXOU J163912.9-462357 | 1024         | 13.2       | 87              | 45.4                     | 3-10   | 30   | 12   | 1    |
| 10  | 248.640661 | -47.643862 | 8           | NuSTAR J163433-4738.7 | —            | _          | $45^{\dagger}$  | 40.6                     | 3-10   | 30   | 6    | 1    |
| 11  | 250.146690 | -46.499055 | 9           | CXOU J164035.5-462951 | 1301         | 6.6        | 1123            | 34.9                     | 3-10   | 30   | 10   | 1    |
| 12  | 250.114312 | -46.422583 | 9           | CXOU J164027.8-462513 | 1276         | 8.5        | 654             | 31.1                     | 3-10   | 30   | 10   | 1    |
| 13  | 249.991123 | -46.432861 | 9           | CXOU J163957.8-462549 | 1181         | 8.4        | 208             | 28.4                     | 3-78   | 30   | 12   | 1    |
| 14  | 249.994262 | -46.858396 | 10          | CXOU J163957.2-465126 | 1180         | 14.1       | 69              | 28.0                     | 3-10   | 30   | 6    | 1    |
| 15  | 250.382330 | -46.514530 | 9           | CXOU J164130.8-463048 | 1379         | 9.7        | 39              | 27.7                     | 3-10   | 30   | 6    | 1    |
| 16  | 248.463884 | -47.776170 | 11          | CXOU J163350.9-474638 | 72           | 5.7        | 37              | 21.8                     | 3 - 78 | 30   | 11   | 1    |
| 17  | 249.942056 | -46.402268 | 10          | CXOU J163946.1-462359 | 1137         | 8.3        | 161             | 19.4                     | 3-10   | 30   | 6    | 1    |
| 18  | 248.374250 | -47.556869 | 9           | CXOU J163329.5-473332 | 38           | 8.5        | 37              | 18.4                     | 3-78   | 30   | 6    | 1    |
| 19  | 250.317553 | -46.537330 | 10          | NuSTAR J164116-4632.2 | —            | 13.2       | $424^{\dagger}$ | 15.7                     | 3-10   | 30   | 5    | 1    |
| 20  | 250.592695 | -46.715336 | 10          | NuSTAR J164222-4642.9 | —            | 3.6        | 123             | 14.9                     | 3-10   | 30   | 8    | 1    |
| 21  | 248.987518 | -47.320057 | —           | CXOU J163555.4-471907 | $402/4^d$    | $16.9^{*}$ | 47              | 14.8                     | 3-10   | 30   | 3    | 1    |
| 22  | 250.115636 | -46.805970 | 10          | CXOU J164027.6-464814 | 1273         | 7.0        | 66              | 13.4                     | 3-10   | 20   | 4    | 1    |
| 23  | 249.061868 | -46.873598 | 13          | CXOU J163614.2-465222 | 454          | 6.7        | 86              | 12.8                     | 3-10   | 30   | 6    | 1    |
| 24  | 248.964993 | -47.589350 | 13          | CXOU J163551.8-473523 | 391          | 2.8        | 187             | 12.8                     | 3-78   | 30   | 4    | 1    |
| 25  | 249.002044 | -47.807801 | 11          | NuSTAR J163600-4748.4 | _            | 6.1        | 77              | 11.8                     | 3-78   | 30   | 5    | 1    |
| 26  | 249.891094 | -46.925434 | 12          | CXOU J163933.2-465530 | 1090         | 6.7        | 58              | 10.8                     | 3-78   | 30   | 9    | 1    |
| 27  | 250.130394 | -46.814203 | 15          | CXOU J164031.0-464845 | 1291         | 6.1        | 121             | 9.9                      | 10-20  | 30   | 3    | 1    |
| 28  | 250.010117 | -46.533497 | _           | CXOU J164002.4-463200 | 1203         | _          | 212             | 8.7                      | 3-10   | 30   | 0    | 2    |
| 29  | 249.238168 | -46.816093 | 13          | CXOU J163657.1-464903 | 585          | 5.6        | 26              | 8.5                      | 3-10   | 20   | 2    | 1    |
|     |            |            |             |                       |              |            |                 |                          |        |      |      |      |

Table 2.17: NuSTAR Source List

| Src | R.A.       | Dec.       | Unc. | Source                | NARCS | Offset | Exp. | No. Trials | Band    | EEF | No.  | Tier |
|-----|------------|------------|------|-----------------------|-------|--------|------|------------|---------|-----|------|------|
| No. | (J200)     | (° 00      | ('') | Name                  | ID    | ('')   | (ks) | $(10^{X})$ | (keV)   | (%) | Det. |      |
|     |            |            |      |                       |       |        |      |            |         |     |      |      |
| 30  | 250.519111 | -46.728140 | —    | CXOU J164204.5-464341 | 1408  | _      | 177  | 7.2        | 3-10    | 30  | 0    | 2    |
| 31  | 248.378422 | -47.426572 | —    | CXOU J163330.8-472535 | 40    | _      | 11   | 6.0        | 3-78    | 30  | 0    | 2    |
| 32  | 248.644724 | -47.296690 | —    | CXOU J163434.7-471748 | 139   | _      | 20   | 5.6        | 10-20   | 30  | 0    | 2    |
| 33  | 250.028717 | -46.487190 | _    | CXOU J164006.8-462913 | 1216  | _      | 434  | 5.3        | 3-10    | 30  | 0    | 2    |
| 34  | 249.835116 | -46.835169 | _    | CXOU J163920.4-465006 | 1039  | _      | 29   | 5.1        | 3-10    | 30  | 0    | 2    |
| 35  | 248.901036 | -47.096680 | _    | CXOU J163536.2-470548 | 325   | _      | 115  | 4.6        | 10 - 20 | 20  | 0    | 2    |
| 36  | 250.345276 | -46.758179 | _    | CXOU J164122.8-464529 | 1374  | _      | 178  | 4.4        | 3-10    | 30  | 0    | 2    |
| 37  | 248.951799 | -47.358978 | _    | CXOU J163548.4-472132 | 373   | _      | 89   | 3.6        | 40-78   | 15  | 0    | 2    |
| 38  | 248.406225 | -47.411937 | —    | CXOU J163337.4-472442 | 52    | _      | 21   | 2.3        | 3-10    | 30  | 0    | 2    |

NuSTAR Source List (continued)

<u>Notes:</u>

(1) NuSTAR Norma Region (NNR) source ID.

(2-3) Right ascension and declination of source determined from centroid algorithm for tier 1 sources and adopting *Chandra* positions from Fornasini et al. (2014) for tier 2 sources.

(4) 90% confidence positional uncertainty, including statistical and systematic uncertainties summed in quadrature. In most cases, the 90% confidence systematic uncertainty is 8"; however for sources that were used to derive astrometric corrections (\*), the 90% systematic uncertainty is taken to be the maximum estimate based on simulations (2" for NARCS 999 and 6" for all sources marked with a \*). Uncertainties for tier 2 sources are not provided since the positions of these sources are simply set to the *Chandra* positions.

(5) NARCS source name or other commonly used name for source. For NuSTAR discoveries, a NuSTAR name is provided.

(6) NARCS catalog ID number.

(7) Angular distance between the source positions in NuSTAR and Chandra observations. For tier 2 sources, no offset is shown since the *Chandra*-determined position in adopted for the NuSTAR analysis.

(8) Total NuSTAR exposure, including both modules (FPMA and FPMB) and all observations used in measuring photometric properties of the source (see § 2.3.6 for details).

(9) The maximum value from the trial maps at the location of the source; this value is the number of random trials required to produce the observed counts from a random background fluctuation. For extended sources, this is the maximum trial map value within 30" of the listed source location.

(10) The energy band of the trial map in which the maximum trial value for the source is measured.

(11) The PSF enclosed energy fraction of the trial map in which the maximum trial value for the source is measured.

NuSTAR Source List (continued)

| $\operatorname{Src}$ | R.A.   | Dec. | Unc. | Source | NARCS | Offset | Exp. | No. Trials | Band             | EEF | No.  | Tier |
|----------------------|--------|------|------|--------|-------|--------|------|------------|------------------|-----|------|------|
| No.                  | (J200) | 0°)  | ('') | Name   | ID    | ('')   | (ks) | $(10^{X})$ | $(\mathrm{keV})$ | (%) | Det. |      |

(12) The total number of trial maps in which the source exceeds the detection threshold. There are 18 trial maps in total, using six different energy bands and three different PSF enclosure fractions.

(13) Tier 1 sources are those detected in at least two trial maps. Tier 2 sources are NARCS sources with 2–10 keV fluxes >  $6 \times 10^{-6}$  ph cm<sup>-2</sup> s<sup>-1</sup> which do not meet the NuSTAR detection threshold requirements but have S/N> 3 in the 3–10, 10–20, or 3–40 keV bands (S/N values can be found in Table 2.18).

(a) Point source embedded in extended emission. We treat it as a point source and leave the detailed analysis of the extended emission to Gotthelf et al. (2014). (b) Blend of two *Chandra* sources, which are also blended in NARCS but resolved in *Chandra* ObsID 11008 (Rahoui et al. 2014). (c) Extended source. (d) In *Chandra*, point source 402 is resolved within extended emission (404), but in *NuSTAR* the two are not distinguishable so we treat it as extended source.

(\*) These large offsets are due to the fact that the positions for these extended sources were determined by eye in NARCS. The NuSTAR position of NNR 21 is also adjusted slightly so that the source region falls primarily on a single detector.

 $(^{\dagger})$  For these transients sources, the exposure times listed only include observations in which the source was detected at  $> 2\sigma$  level.

NuSTAR Norma region (NNR) sources. The tier 1 sources include five sources not detected in NARCS; one of them is the well-known LMXB 4U 1630-472 (Kuulkers et al. 1997) while the others are new transient sources discussed in § 2.3.8.

# 2.3.6 Aperture Photometry

### Defining source and background regions

For photometry and spectral extraction, we used circular source regions and, whenever possible, annular background regions centered on the source positions provided in Table 2.17. At energies below 20 keV, the *NuSTAR* background is not uniform as it is dominated by non-focused emission, which exhibits spatial variations due to shadowing of the focal plane (Harrison et al. 2013). Using aperture regions that are symmetric about the source position helps to compensate for this non-uniformity. We performed our photometric analysis with two different source extraction regions with 30" and 40" radii (corresponding to roughly 50% and 60% PSF enclosures, respectively), to assess possible systematic errors associated with aperture selection. The default background regions are annuli with 60" inner radii and 90" outer radii. For NNR 8 and 21, which appear extended and are not fully contained within the default source regions, we adopted radii of 45" and 60" for the small and large circular source regions, respectively, and annular background regions with 80" inner radii and 110" outer radii.

For about 1/3 of sources, it was necessary to modify the background aperture regions. In order to prevent contamination to the background from other sources, it is preferable for background regions not to extend within 60'' of any tier 1 source. In addition, above 20 keV, as the relative contribution of the internal background becomes more significant, the background is fairly uniform across any given detector but differs between detectors (Harrison et al. 2013; Wik et al. 2014), so it is advantageous for the background region to be located on the same detector as the source region. Furthermore, when a source is located close to the edge of the field of view, using an annular background region may not sample a statistically large enough number of background counts. Finally, although we removed the most significant patches of stray light and ghost ray contamination from NuSTAR observations, non-uniform low-level contamination remains. Thus, we modified the background region in situations where the default background region comes within 60'' of any tier 1 source, the low-level contamination from stray light or ghost rays appears to differ significantly between the source and default background regions, or > 50% of the annular background region falls outside the observation area or on a detector different from the one where the source is located. In these cases, we adopted a circle with a 70'' radius for the background region and placed it in as ideal a location as possible following these criteria:

i. Keeping the region as close to the source as possible to minimize variations due to vignetting effects and other background inhomogeneities, but at least 60" away from the source and any tier 1 sources.

ii. Maximizing the fraction of the background region area that falls on the same detector

as the source region.

iii. Placing the background region at a location that exhibits a similar level of low-level stray light or ghost ray contamination as the source region.

For a given source, background aperture regions were defined for each observation and FPM individually since stray light and ghost ray contamination as well as the fraction of the default annular background that lies on a given detector varies depending on the observation and the module. Furthermore, if a source fell close to the edge of an observation, such that >50% of the area of a 40" radius source region was outside the observation area, that observation was not used to extract photometric or spectral information for the source. Thus, the exposure value at the location of a source in the mosaicked exposure map may be higher than the effective exposure for the source based only on observations used for photometric analysis; the latter effective exposure is the value reported in Table 2.17. Table 2.18 provides the results of our aperture photometry and includes flags that indicate which sources required modified background regions.

The only exceptions to this method of defining background regions are NNR 22 and 27. These sources are only separated by 47" and thus contaminate each other's default background regions although they do not suffer from any additional background problems. Therefore, since annular background regions are preferable for minimizing vignetting effect, we simply redefined their background regions as an annulus with an 80" inner radius and 110" outer radius centered in between the two sources. Due to their proximity, the photometric and spectral properties of these sources as derived from 40" radius circular apertures are less reliable than those from the 30" radius apertures.

#### Net counts and source significance

Having defined aperture regions, we extracted the source and background counts for each source in each observation. We then calculated the expected number of background counts  $(\langle c_{\rm bkg} \rangle)$  in each source region by multiplying the counts in the background region by the ratio  $(A_{\rm src}E_{\rm src})/(A_{\rm bkg}E_{\rm bkg})$ , where  $A_{\rm src}$  and  $A_{\rm bkg}$  are the areas, in units of pixels, and  $E_{\rm src}$  and  $E_{\rm bkg}$  are the exposures (without vignetting corrections) of the source and background regions, respectively. Then for each source, we summed the source counts  $(C_{\rm src})$ , total background counts expected in the source region  $(\langle C_{\rm bkg} \rangle)$ , and exposures across all observations and modules in 7 different energy bands: 3–78, 3–40, 40–78, 3–10, 10–40, 10–20, and 20–40 keV. The 1 $\sigma$  errors in the total counts were calculated using the recommended approximations for upper and lower limits in Gehrels (1986). Then, the net source counts  $(C_{\rm net})$  were calculated by subtracting the total expected background counts in the source region from the total source counts.

In each energy band, we then calculated the signal-to-noise ratio (S/N) of the photometric measurements from the probability that the source could be generated by a noise fluctuation

of the local background using the following equation from Weisskopf et al. (2007):

$$P(\geq C_{\rm src}|C_{\rm bkg}; C_{\rm net} = 0) = \sum_{c=C_{\rm src}}^{C_{\rm bkg}+C_{\rm src}} \frac{(C_{\rm bkg}+C_{\rm src})!}{c!(C_{\rm bkg}+C_{\rm src}-c)!} \left(\frac{f}{1+f}\right)^{c} \left(1-\frac{f}{1+f}\right)^{C_{\rm bkg}+C_{\rm src}-c} (2.20)$$

where  $f = \langle C_{\rm bkg} \rangle / C_{\rm bkg}$ . Using this probability, we define the S/N as the equivalent Gaussian significance in units of the standard deviation (e.g., P = 0.0013 corresponds to S/N=  $3\sigma$ ). These S/N measurements are used to select which tier 2 sources to include in our catalog, but not to set detection thresholds for tier 1 sources, which are determined by the trial maps. Only five sources have photometric measurements with S/N  $\geq 3\sigma$  above 20 keV. Therefore, we focus the remainder of our analysis on the 3–40, 3–10, and 10–20 keV energy bands. Of the tier 2 source candidates, we only included those with S/N  $\geq 3\sigma$  in at least one of these three energy bands, using either of the two source aperture regions, in our final source list. Table 2.18 provides the significance of each source in our final catalog in these three energy bands, the net counts in the 3–40 keV band, and additional photometric properties described in the following sections.

#### Photon and energy fluxes

In  $\S$  2.3.10, we describe how we derived fluxes from spectral modeling, but for all sources we also derived fluxes in a model-independent way since the spectral fitting of faint sources is prone to significant uncertainty. or each source and background region in each observation and module, we used **nuproducts** to extract a list of photon counts as a function of energy and generate both an ARF and a response matrix file (RMF); the ARFs are scaled by the PSF energy fraction enclosed by the aperture region. We first calculated the source photon flux within each observation and module in the 3-10 and 10-20 keV bands by dividing the counts in each channel by the corresponding ARF, summing all these values within the given energy band, and then dividing by the source region exposure; the estimated background contribution, scaled from the photon flux measured in the background region, was subtracted. These photon flux measurements assume a quantum efficiency of 1, which is a decent approximation for the NuSTAR CdZnTe detectors, which have a quantum efficiency of 0.98 over the vast majority of the NuSTAR energy range (Bhalerao 2012). If the significance of a source in a particular observation was  $< 1\sigma$ , then we calculated a 90% confidence upper limit to its photon flux by converting the probability distribution of true source counts (from Equation A21 in Weisskopf et al. 2007) to a photon flux distribution using the source region effective area.

For the five transient sources which were detected by NuSTAR but not by NARCS, we looked at lightcurves of their 3–10 keV photon fluxes to check whether they are detected at  $> 2\sigma$  confidence in individual NuSTAR observations. We found that NNR 1 is only detected in ObsIDs 40014008002 and 40014009001, NNR 10 is only detected in ObsID 40014007001 (which is consistent with T14), and NNR 19 is only detected in ObsIDs 30002021005, 30002021007,

| $\operatorname{Src}$ | S/N                    | S/N                    | S/N                 | Net Counts                                | Ph. Flux (10                                      |                                           | En. Flux $(10^{-1})$                        |                                                                       | Hardness                | $E_{50}$            | QR                      | -               | Flag         | Aper.          |
|----------------------|------------------------|------------------------|---------------------|-------------------------------------------|---------------------------------------------------|-------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|-------------------------|---------------------|-------------------------|-----------------|--------------|----------------|
| No.<br>(1)           | 3–40 keV<br>(2)        | 3–10 keV<br>(3)        | 10–20 keV<br>(4)    | 3–40 keV<br>(5)                           | 3–10 keV<br>(6)                                   | 10–20 keV<br>(7)                          | 3–10 keV<br>(8)                             | 10-20  keV (9)                                                        | Ratio<br>(10)           | (keV)<br>(11)       | (12)                    | NuST<br>(13)    | Chan<br>(14) | Flag<br>(15)   |
| 1                    | $134534.5 \\ 130019.1$ | $142889.4 \\ 138317.1$ | 15742.0<br>15422.4  | $3214900 \pm 18000$<br>$4079200 \pm 2000$ | $598180 \pm 340$<br>$603320 \pm 300$              | $19112 \pm 55$<br>$19060 \pm 49$          | $473890 \pm 270$<br>$477130 \pm 240$        | $38210 \pm 110$<br>$38119 \pm 100$                                    | $-0.9246 \pm 0.0008$    | $5.3245 \pm 0.0006$ | $1.0334 \pm 0.0004$     | 1               | -            | pcm            |
| 2                    | $616.4 \\ 581.4$       | $350.0 \\ 331.0$       | 648.6<br>614.8      | $37360 \pm 200$<br>$46720 \pm 240$        | $1634{\pm}14$<br>$1623{\pm}13$                    | $1710 \pm 14$<br>$1694 \pm 13$            | $1748 \pm 14$<br>$1737 \pm 13$              | $3954 \pm 32$<br>$3914 \pm 29$                                        | $-0.112 \pm 0.006$      | $9.83 \pm 0.03$     | $^{1.077}_{\pm +0.006}$ | $\mathrm{sp}^*$ | $_{\rm slp}$ | pcm            |
| 3                    | $144.2 \\ 153.3$       | $128.5 \\ 140.4$       | $84.4 \\ 87.4$      | $9590 \pm 120$<br>$13550 \pm 150$         | $50.1 \pm 0.8$<br>$57.9 \pm 0.8$                  | $21.5 \pm 0.5$<br>$23.3 \pm 0.5$          | $46.4 {\pm} 0.7$<br>$53.3 {\pm} 0.7$        | $48.7 \pm 1.2$<br>$52.7 \pm 1.2$                                      | $-0.41 \pm 0.01$        | $8.0{\pm}0.1$       | $0.90 {\pm} {+} 0.02$   | $\mathrm{sp}^*$ |              | $\mathbf{pcm}$ |
| 4                    | $21.3 \\ 20.3$         | 24.6<br>23.3           | $6.5 \\ 5.9$        | $556 \pm 32$<br>723 \pm 40                | $49.1 \pm 2.7$<br>$50.8 \pm 2.7$                  | $7.6 \pm 1.3$<br>$7.8 \pm 1.4$            | $40.3 \pm 2.2$<br>$41.8 \pm 2.2$            | $18.8 \pm 3.2$<br>$19.7 \pm 3.4$                                      | $-0.72 \pm 0.06$        | $6.4{\pm}0.1$       | $0.92 {\pm} {+} 0.10$   | 1               | $_{\rm slp}$ | $\mathbf{pcm}$ |
| 5                    | $23.0 \\ 21.4$         | 22.9<br>21.3           | $9.6 \\ 9.1$        | $842 \pm 42$<br>1087 $\pm 55$             | $23.6 \pm 1.3$<br>$24.0 \pm 1.4$                  | $6.4 \pm 0.8$<br>$6.9 \pm 0.9$            | $21.6 \pm 1.2$<br>$22.0 \pm 1.2$            | $13.7 \pm 2.0$<br>14.7 $\pm 2.2$                                      | $-0.55 {\pm} 0.06$      | $7.8 {\pm} 0.3$     | $0.93 {\pm} {+} 0.06$   |                 |              | р              |
| 6                    | $14.3 \\ 13.4$         | $12.8 \\ 11.7$         | 6.9<br>7.3          | $359\pm29$<br>$464\pm38$                  | $77.8 \pm 7.7$<br>$76.0 \pm 8.0$                  | $18.0 \pm 3.2$<br>$21.2 \pm 3.3$          | $67.7 {\pm} 6.2$<br>$67.6 {\pm} 6.5$        | $40.0 \pm 7.1$<br>$46.4 \pm 7.5$                                      | $-0.63 \pm 0.09$        | $6.5 \pm 0.2$       | $0.91 {\pm} {+} 0.14$   |                 |              | $\mathbf{pc}$  |
| 7                    | $17.5 \\ 17.0$         | 20.6<br>19.6           | $1.7 \\ 3.0$        | $621 \pm 40$<br>$835 \pm 53$              | $37.4 \pm 2.2$<br>$38.1 \pm 2.2$                  | $1.1 \pm 0.8$<br>$2.3 \pm 1.0$            | $29.6 \pm 1.7$<br>$30.6 \pm 1.8$            | $1.7^{+2.0}_{-1.7}$<br>$4.4\pm2.2$                                    | $-0.92 \pm 0.08$        | $5.5 \pm 0.2$       | $0.90 {\pm} {+} 0.06$   |                 |              | $\mathbf{pc}$  |
| 8                    | $24.9 \\ 21.9$         | 22.3<br>20.0           | $14.4 \\ 12.5$      | $884 \pm 41$<br>1083 \pm 52               | $40.5\pm2.3$<br>$44.9\pm2.5$                      | $17.0\pm1.4$<br>$17.6\pm1.6$              | $37.6\pm2.0$<br>$40.7\pm2.2$                | $37.4\pm3.3$<br>$38.3\pm3.7$                                          | $-0.41 \pm 0.05$        | $8.0{\pm}0.2$       | $0.90 {\pm} {+} 0.06$   |                 |              | е              |
| 9                    | 13.4<br>11.9           | 13.3<br>12.5           | $7.1 \\ 5.8$        | $303\pm 26$<br>$371\pm 34$                | $33.9\pm3.2$<br>$37.1\pm3.4$                      | $14.1\pm2.5$<br>$12.9\pm2.5$              | $32.1 \pm 3.0$<br>$33.4 \pm 3.0$            | $30.8\pm5.6$<br>$28.5\pm5.9$                                          | $-0.47 \pm 0.09$        | $7.5 \pm 0.4$       | $1.02 {\pm} {+} 0.11$   |                 |              | р              |
| 10                   | 9.7<br>6.5             | 10.6<br>6.9            | 1.7<br>1.6          | $240\pm27$<br>$220\pm35$                  | $84.0\pm9.1$<br>$56.2\pm9.1$                      | $4.0^{+3.1}_{-2.8}$<br>$3.8\pm3.1$        | $67.3 \pm 7.1$<br>$46.5 \pm 7.1$            | $8.0^{+7.0}_{-6.3}$<br>$6.9\pm6.9$                                    | $-0.89^{+0.14}_{-0.11}$ | $5.6 {\pm} 0.3$     | $0.83 {\pm} {+} 0.11$   | 1               | _            | р              |
| 11                   | 17.1<br>17.1           | 18.8<br>19.0           | 6.8<br>6.6          | $1310\pm81$<br>$1830\pm110$               | $9.8 \pm 0.6$<br>10.9 \pm 0.6                     | $1.9\pm0.3$<br>$2.1\pm0.4$                | $40.3\pm7.1$<br>$8.3\pm0.5$<br>$9.4\pm0.5$  | $4.1\pm0.8$<br>$4.6\pm0.8$                                            | $-0.64 \pm 0.07$        | $6.4 {\pm} 0.1$     | $0.92 {\pm} {+} 0.08$   | 1               |              | pcm            |
| 12                   | 12.6<br>12.2           | 13.9<br>13.7           | 5.0<br>5.0          | $687\pm58$<br>$929\pm79$                  | $10.3\pm0.0$<br>$11.1\pm0.9$<br>$12.1\pm1.0$      | $2.1\pm0.4$<br>$2.2\pm0.5$<br>$2.5\pm0.6$ | $9.7 \pm 0.8$<br>$10.5 \pm 0.8$             | $4.5 \pm 0.3$<br>$4.5 \pm 1.2$<br>$5.3 \pm 1.4$                       | $-0.65 \pm 0.09$        | $6.6 {\pm} 0.2$     | $1.06 {\pm} {+} 0.15$   |                 |              | pcm            |
| 13                   | 12.2<br>10.5<br>9.3    | 8.6                    | 6.6                 | $929\pm79$<br>339±35<br>418±47            | $10.1 \pm 1.5$                                    | $2.3\pm0.0$<br>$5.8\pm1.0$<br>$5.9\pm1.0$ | $9.7 \pm 1.3$<br>$9.2 \pm 1.3$              | $3.3\pm1.4$<br>$13.4\pm2.4$<br>$13.5\pm2.5$                           | $-0.34 \pm 0.11$        | $8.9{\pm}0.7$       | $0.95 {\pm} {+} 0.11$   |                 |              | р              |
| 14                   | 9.3<br>7.7<br>6.5      | 7.4<br>9.9<br>9.3      | $6.1 \\ 0.9 \\ 0.3$ | $418\pm47$<br>$159\pm23$<br>$187\pm30$    | $9.5 \pm 1.6$<br>$20.9 \pm 2.5$<br>$21.6 \pm 2.5$ | $3.9\pm1.0$<br><3.6<br><3.2               | $9.2\pm1.3$<br>$17.2\pm2.1$<br>$17.7\pm2.1$ | <8.8<br><7.8                                                          | >-1                     | $5.7 {\pm} 0.4$     | $1.11 {\pm} {+} 0.19$   |                 |              | р              |
| 15                   | 6.0<br>6.0             | 7.8                    | 0.6<br>0.3          | $89\pm16$<br>125 $\pm22$                  | $21.0\pm2.3$<br>$28.6\pm4.4$<br>$31.2\pm4.6$      | < 3.2<br>< 3.9<br>< 3.9                   | $23.5\pm3.6$<br>$24.7\pm3.7$                | <8.5<br><9.0                                                          | >-1                     | $5.6 {\pm} 0.6$     | $0.87 {\pm} {+} 0.13$   | s               |              | р              |
| 16                   | 9.6                    | 7.5<br>8.5             | 4.2                 | $287 \pm 32$                              | $60.8{\pm}8.9$                                    | $10.2^{+3.0}_{-2.8}$                      | $54.9 {\pm} 7.1$                            | $22.5_{-6.1}^{+6.7}$                                                  | $-0.71 \pm 0.14$        | $6.4 {\pm} 0.3$     | $0.85 {\pm} {+} 0.10$   |                 |              | р              |
| 17                   | 9.4<br>7.8             | 8.5<br>8.1             | 3.4<br>3.0          | $393 \pm 44$<br>$215 \pm 30$              | $65.7 \pm 9.6$<br>$9.0 \pm 1.5$                   | $8.6 \pm 2.8$<br>$2.5 \pm 1.0$            | $60.2 \pm 7.7$<br>$9.2 \pm 1.3$             | $18.7 \pm 6.3$<br>$5.0 \pm 2.3$                                       | $-0.62 \pm 0.15$        | $7.3 {\pm} 0.5$     | $1.13 \pm +0.22$        |                 |              | р              |
| 18                   | 7.5<br>6.3             | 7.3<br>6.6             | 3.9<br>1.9          | $292 \pm 40$<br>$134 \pm 23$              | $9.2 \pm 1.7$<br>47.7 $\pm 8.0$                   | $3.8 \pm 1.1$<br>$3.7^{+3.1}_{-2.7}$      | $9.3 \pm 1.4$<br>$38.1 \pm 6.2$             | ${}^{8.3\pm2.6}_{5.8}{}^{+6.6}_{-5.8}_{5.6}{}^{+7.4}_{-5.6}$          | $-0.78^{+0.21}_{-0.20}$ | $5.9 {\pm} 0.7$     | $0.54 \pm +0.09$        |                 | s            | pc             |
| 19                   | 5.4<br>10.3            | 5.8<br>11.7            | 1.5<br>2.7          | $159 \pm 30$<br>$399 \pm 41$              | $47.8 \pm 8.5$<br>$11.0 \pm 1.1$                  | $3.3^{+3.3}_{-3.1}$<br>$1.6\pm0.6$        | $37.5 \pm 6.6$<br>$9.5 \pm 0.9$             | $5.6^{+7.4}_{-5.6}$<br>$3.7\pm1.5$                                    |                         |                     |                         | 1               |              |                |
|                      | 9.0<br>5.9             | $10.5 \\ 6.7$          | 2.0<br>3.3          | $487 \pm 56$<br>$126 \pm 23$              | $11.1 \pm 1.2$<br>$10.0 \pm 1.9$                  | $1.3 \pm 0.7$<br>$4.5^{+1.5}_{-1.3}$      | $9.4{\pm}1.0$<br>$9.4{\pm}1.6$              | $3.1 \pm 1.6$<br>$11.7^{+3.6}_{-3.3}$                                 | -0.77±0.12              | 6.6±0.2             | $1.09 \pm +0.18$        | 1               | _            | р              |
| 20                   | 6.4<br>13.4            | 7.1<br>13.5            | 3.5<br>6.1          | $191\pm31$<br>$312\pm26$                  | $11.8\pm2.0$<br>$46.4\pm4.1$                      | $5.0\pm1.4$<br>12.1 $\pm2.4$              | $11.1 \pm 1.7$<br>$39.9 \pm 3.5$            | $12.4 \pm 3.3$<br>$12.6 \pm 5.4$                                      | $-0.53 \pm 0.17$        | $6.8 \pm 0.6$       | $1.27 \pm +0.39$        | 1               | -            | р              |
| 21                   | 12.3                   | 12.7                   | 5.5                 | $408 \pm 35$                              | $52.3 \pm 4.5$                                    | $13.4 {\pm} 2.7$                          | $45.4 \pm 3.8$                              | $29.9 {\pm} 6.3$                                                      | -0.58±0.09              | $6.7 {\pm} 0.3$     | $0.79 \pm +0.11$        |                 |              | е              |
| 22                   | $6.0 \\ 5.9$           | 7.4<br>7.6             | $1.4 \\ 1.4$        | $96 \pm 18$<br>$132 \pm 23$               | $17.5 \pm 2.7$<br>$20.0 \pm 2.9$                  | $2.1^{+2.2}_{-2.0}$<br>$2.3\pm2.2$        | $15.0\pm2.3$<br>$17.3\pm2.4$                | $\begin{array}{r} 4.3^{+5.2}_{-4.3} \\ 4.3^{+5.1}_{-4.3} \end{array}$ | $-0.75^{+0.22}_{-0.21}$ | $6.9 \pm 0.5$       | $1.30 {\pm} {+} 0.43$   |                 |              | р              |

Table 2.18: Photometry of NuSTAR Norma Region Sources

97

| Src | S/N          | S/N          | S/N          | Net Counts                     | Ph. Flux (10 <sup>-</sup>                      | -6 $-2$ $-1$                                                                | En. Flux (10 <sup>-</sup>                        | $^{14} \mathrm{~erg~cm}^{-2} \mathrm{~s}^{-1})$                                            | Hardness                         | E <sub>50</sub> | QR                              | 17 | Flag | Aper.          |
|-----|--------------|--------------|--------------|--------------------------------|------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------|-----------------|---------------------------------|----|------|----------------|
| No. | 3-40 keV     | 3–10 keV     | 10-20  keV   | 3-40 keV                       | 3–10 keV                                       | 10–20 keV                                                                   | 3–10 keV                                         | 10-20 keV                                                                                  | - Ratio                          | (keV)           | QA                              | -  | Chan | Flag           |
| 23  | 6.0<br>4.8   | 5.9<br>4.9   | 2.7<br>2.2   | $108\pm20$<br>$122\pm26$       | $8.4 \pm 1.8$<br>$7.5 \pm 1.9$                 | $2.6^{+1.2}_{-1.1}$ $2.1\pm1.1$                                             | $7.6 \pm 1.5$<br>$7.1 \pm 1.6$                   | $6.0^{+2.8}_{-2.5}$<br>$4.4\pm2.6$                                                         | -0.55±0.20                       | 7.4±0.9         | $0.91 {\pm} {+} 0.30$           |    |      | р              |
| 24  | $6.7 \\ 5.4$ | 5.0<br>3.5   | $4.0 \\ 3.0$ | $198 \pm 31$<br>$222 \pm 42$   | $6.8 \pm 1.2$<br>$5.9 \pm 1.3$                 | $2.3\pm0.6$<br>1.9 $\pm0.7$                                                 | $5.3 \pm 1.0$<br>$4.6 \pm 1.0$                   | $4.7 \pm 1.5$<br>$3.7 \pm 1.6$                                                             | $-0.37 \pm 0.18$                 | $9.0{\pm}2.1$   | $0.35 {\pm} {+} 0.10$           |    |      | $\mathbf{pcm}$ |
| 25  | $6.0 \\ 6.2$ | 5.8<br>5.5   | 1.4 2.0      | $98 \pm 18$<br>144 \pm 24      | $6.4{\pm}1.5$<br>$6.8{\pm}1.6$                 | ${}^{1.4^{+0.9}_{-0.8}}_{1.8^{+1.0}_{-0.9}}$                                | $6.4 \pm 1.3$<br>$6.7 \pm 1.3$                   | $3.8^{+2.4}_{-2.1} \\ 4.6^{+2.4}_{-2.2}$                                                   | $-0.74_{-0.24}^{+0.25}$          | $8.1{\pm}0.9$   | $0.60 {\pm} {+} 0.25$           | 1  | _    | р              |
| 26  | $6.0 \\ 6.1$ | $5.7 \\ 6.1$ | $4.3 \\ 4.1$ | $107 \pm 19$<br>$152 \pm 26$   | $11.5 \pm 2.2$<br>$13.2 \pm 2.3$               | $6.6 \pm 1.7$<br>$6.4 \pm 1.7$                                              | $9.5 \pm 1.8$<br>11.5 $\pm 2.0$                  | -2.2<br>16.6±4.1<br>14.8±4.1                                                               | $-0.25 \pm 0.16$                 | $8.3{\pm}0.9$   | $0.55 {\pm} {+} 0.16$           |    |      | pcm            |
| 27  | $7.3 \\ 7.4$ | $6.0 \\ 6.5$ | $5.3 \\ 5.0$ | $179\pm26$<br>$252\pm35$       | $11.0\pm2.1$<br>$13.9\pm2.3$                   | $8.5 \pm 1.8$<br>$9.1 \pm 1.9$                                              | $10.0\pm1.8$<br>$12.4\pm2.0$                     | $20.3 \pm 4.3$<br>$22.5 \pm 4.6$                                                           | $-0.20 \pm 0.14$                 | $8.3 {\pm} 1.1$ | $0.75 {\pm} {+} 0.18$           | 1  |      | р              |
| 28  | $5.5 \\ 4.7$ | $6.0 \\ 5.5$ | 2.3<br>3.0   | $169 \pm 32$<br>$201 \pm 43$   | $9.1{\pm}1.7$<br>$9.0{\pm}1.8$                 | $2.3 \pm 1.1$<br>$3.5 \pm 1.3$                                              | $8.1 \pm 1.4$<br>$8.2 \pm 1.5$                   | $5.0 \pm 2.7$<br>$7.5 \pm 3.0$                                                             | $-0.60 \pm 0.20$                 | $7.5 {\pm} 0.8$ | $0.94 {\pm} {+} 0.30$           | 1  |      | $\mathbf{pcm}$ |
| 29  | $3.5 \\ 3.0$ | $2.7 \\ 2.1$ | 2.7<br>2.2   | $32^{+11}_{-10}$<br>37±13      | ${}^{15.3^{+7.0}_{-5.9}}_{11.5^{+6.6}_{-5.8}}$ | ${}^{11.6^{+6.1}_{-4.9}}_{10.4^{+5.9}_{-4.9}}$                              | ${}^{11.9^{+5.7}_{-4.9}}_{9.4^{+5.6}_{-4.9}}$    | $28.7^{+15.3}_{-12.2}\\25.7^{+14.8}_{-12.2}$                                               | $-0.17\substack{+0.36 \\ -0.30}$ | $10.3 \pm 4.1$  | $0.42 {\pm} {+} 0.26$           | 1  |      | р              |
| 30  | $4.7 \\ 3.9$ | $6.1 \\ 5.8$ | $0.9 \\ 0.8$ | $128 \pm 28$<br>147 $\pm 39$   | $6.6 \pm 1.3$<br>$7.9 \pm 1.5$                 | $<\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $6.1 \pm 1.1$<br>$6.6 \pm 1.2$                   | <15.9 < 6.2                                                                                | >-1                              | $6.3 \pm 0.6$   | $0.93 {\pm} {+} 0.41$           |    |      | pcm            |
| 31  | $4.6 \\ 4.5$ | $3.9 \\ 3.7$ | 1.5<br>1.7   | $29^{+9}_{-8}\\38^{+11}_{-10}$ | $37.7^{+15.8}_{-13.3}\\29.9^{+13.9}_{-12.2}$   | ${}^{10.4^{+10.2}_{-7.5}}_{12.3^{+9.7}_{-7.7}}$                             | $35.3^{+13.7}_{-11.6}$<br>$33.1^{+12.6}_{-11.0}$ | $23.7 \begin{array}{c} +23.5 \\ -17.2 \\ 28.1 \begin{array}{c} +22.4 \\ -17.6 \end{array}$ | $-0.61\substack{+0.42\\-0.34}$   | $7.0 {\pm} 2.3$ | $0.67 {\pm} {+} 0.44$           |    |      | $\mathbf{pc}$  |
| 32  | $2.5 \\ 3.0$ | $1.9 \\ 1.6$ | 1.9<br>2.3   | $18^{+9}_{-8}\\32^{+12}_{-11}$ | $9.0^{+6.4}_{-5.3}\\10.0^{+6.8}_{-5.8}$        | $ \substack{8.5^{+6.2}_{-4.9}\\11.7^{+6.5}_{-5.4} } $                       | $8.4^{+5.6}_{-4.6}\\8.1^{+5.7}_{-4.8}$           | $19.1^{+14.6}_{-11.5}\\26.4^{+15.3}_{-12.6}$                                               | $-0.11^{+0.49}_{-0.39}$          | $10.1 \pm 3.8$  | $0.68\substack{+0.56 \\ -0.68}$ |    |      | р              |
| 33  | $2.5 \\ 2.0$ | $3.4 \\ 2.8$ | $0.5 \\ 0.0$ | $113 \pm 45 \\ 125 \pm 63$     | $3.2 \pm 1.3$<br>$2.9 \pm 1.4$                 | < 1.6 < 1.3                                                                 | $3.2 \pm 1.0$<br>$3.0 \pm 1.1$                   | $<\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                | >-1                              | $6.6 {\pm} 0.4$ | $1.62 {\pm} {+} 0.57$           |    | 1    | р              |
| 34  | $3.1 \\ 2.4$ | 3.3<br>3.2   | $1.5 \\ 0.5$ | $46 \pm 15 \\ 49 \pm 21$       | $14.6 \pm 4.7$<br>$17.4 \pm 5.2$               | $5.1^{+4.2}_{-3.7}$<br><7.9                                                 | $12.6 \pm 4.1$<br>$13.9 \pm 4.5$                 | ${}^{11.1^{+10.0}_{-8.9}}_{<18.7}$                                                         | $-0.49\substack{+0.34\\-0.33}$   | $6.2{\pm}1.4$   | $0.83{\pm}{+}0.38$              |    |      | Р              |
| 35  | $4.1 \\ 3.6$ | $3.6 \\ 4.2$ | $3.3 \\ 1.5$ | $85\pm 22$<br>104 $\pm 30$     | $5.4 \pm 1.6$<br>$6.6 \pm 1.8$                 | $3.4^{+1.2}_{-1.1}$<br>$1.6\pm1.1$                                          | $4.4 \pm 1.3$<br>5.7 $\pm 1.5$                   | $8.3^{+2.8}_{-2.5}$<br>$3.8\pm2.5$                                                         | -0.25±0.23                       | $7.4 {\pm} 1.0$ | $0.82 {\pm} {+} 0.37$           | 1  |      | р              |
| 36  | $3.5 \\ 4.2$ | 1.7<br>2.4   | $3.2 \\ 3.5$ | $101\pm29 \\ 168\pm41$         | $3.3 \pm 1.5$<br>$4.7 \pm 1.7$                 | $3.5 \pm 1.2$<br>$4.4 \pm 1.3$                                              | $2.1 \pm 1.2$<br>$3.1 \pm 1.4$                   | $8.4{\pm}2.9$<br>10.6 ${\pm}3.2$                                                           | $0.17 {\pm} 0.31$                | $11.8 \pm 3.3$  | $0.48\substack{+0.42 \\ -0.48}$ | 1  | sl   | р              |
| 37  | $2.2 \\ 3.4$ | 2.2<br>3.2   | 1.0<br>1.4   | $40\pm18$<br>$84\pm25$         | $3.4 \pm 1.6$<br>$6.7 \pm 1.9$                 | ${}^{1.2^{+1.1}_{-1.0}}_{1.8^{+1.2}_{-1.1}}$                                | $2.7 \pm 1.3$<br>$5.0 \pm 1.6$                   | $3.2^{+2.7}_{-2.4} \\ 4.8^{+2.9}_{-2.7}$                                                   | $-0.56\substack{+0.51 \\ -0.44}$ | $6.5 {\pm} 2.0$ | $0.32\substack{+0.50 \\ -0.32}$ |    |      | р              |
| 38  | 2.8<br>3.2   | $3.7 \\ 3.3$ | $0.5 \\ 1.6$ | $23^{+10}_{-9}$<br>$37\pm12$   | ${}^{11.4^{+4.3}_{-3.8}}_{11.4^{+4.3}_{-3.9}}$ | <4.4<br>$3.6^{+2.6}_{-2.2}$                                                 | ${}^{10.7^{+3.7}_{-3.2}}_{10.0^{+3.6}_{-3.2}}$   | <11.5<br>$8.9^{+6.2}_{-5.1}$                                                               | >-1                              | $7.1 {\pm} 1.6$ | $0.61\substack{+0.60 \\ -0.61}$ |    |      | pc             |

Photometry of NuSTAR Norma Region Sources (continued)

Notes: (2)-(9) The signal-to-noise ratios, net counts, photon flux, and energy flux of the source in the specified energy bands. Values in the top (bottom) row for each entry are based on using source aperture regions with small (large) radius. All other table column values are based on using small aperture regions.

(10) The hardness ratio is defined as (H-S)/(H+S), where H represents the net counts in the 10-20 keV band and S represents the net counts in the 3-10 keV band.

(11)-(12) Median energy in the 3-40 keV band, and the y-value of the quantile plot, defined as  $3(E_{25}-3 \text{ keV})/(E_{75}-3 \text{ keV})$ .

(13) Flags indicating source variability: 's' - short timescale (< few hours) variability, 'p' - long timescale (weeks-years) variability, 'p' - periodic modulations detected. See 2.3.7 for details.

(14) Variability flags from Fornasini et al. (2014): 's' - short timescale ( $\langle$  few hours) variability; within a single observation, KS test probability that the source is constant is  $\langle 0.3\%, 4' \rangle$ long timescale (days-weeks) variability; the 0.5–10, 0.5–2, or 2–10 keV photon flux varies by  $> 3\sigma$  between NARCS observations, 'p' - periodic modulations detected by  $Z_n^2$  test, '-' - source not detected in NARCS.

(15) 'p' - point source region aperture; circle with 30''/40'' radius, 'e' - extended source aperture; circle with 45''/60'' radius, 'c' - background region is a circle with 70'' radius offset from the source rather than an annulus centered on the source, 'm' - stray light and background spatial variations require background regions to be modified for each observation.

(\*) Periodic variability for NNR 2 detected by Bodaghee et al. (2016), and for NNR 3 by Gotthelf et al. (2014).

30002021009, 30002021011, and 30002021013. Excluding the observations in which the transient sources are not detected, we re-evaluated their 3–40 keV net counts and source significance as described in § 2.3.6, and continued to exclude these observations for these sources when determining their other average photometric and spectral properties. Thus, the photometric and spectral properties derived for NNR 1, 10, 19, and 25 should be considered as their average properties during high flux states.

For each source, we then computed average 3–10 and 10–20 keV photon fluxes by combining the count lists and ARFs from different observations and modules. These measurements are presented in Table 2.18. We also calculate the average 3–10 and 10–20 keV energy flux for each source using the same model-independent method but with the additional step of multiplying the source counts in each channel by the channel energy. Fluxes derived using the two different source region sizes are in  $1\sigma$  agreement with one another, except for three sources which are located in regions of diffuse emission or ghost rays and thus do not appear as exactly point-like. Comparing the model-independent fluxes with those we derived from spectral modeling (see  $\S$  2.3.10) for tier 1 sources, we find they are in good agreement when using the smaller aperture regions, but show a significant number of discrepancies at  $> 2\sigma$ confidence when using the larger aperture regions. In the larger aperture regions, while the net number of source counts is higher, so is the background/source count ratio, which is why in most cases the source significance derived from the larger aperture regions is slightly lower; as a result, accurate background subtraction is more important when using the larger aperture regions and it is not surprising that our crude subtraction method, which assumes a spectrally flat background, for the model-independent fluxes leads to discrepancies with the spectral fluxes.

## 2.3.7 X-ray Variability

NuSTAR's high time resolution allows us to characterize the timing properties of detected sources over a range of timescales. NuSTAR's time resolution is good to ~ 2 ms rms, after being corrected for thermal drift of the on-board clock, and the absolute accuracy is known to be better than < 3 ms (Mori et al. 2014; Madsen et al. 2015). For our timing studies, all photon arrival times were converted to barycentric dynamical time (TDB) using the NuSTARcoordinates of each point source.

To characterize the source variability on ~ hourly timescales we used the Kolmogorov-Smirnov (KS) statistic to compare the temporal distributions of X-ray events extracted from source and background apertures in the 3-20 keV energy band. The background light curve acts as a model for the count rate variations expected in the source region due to the background. The maximal difference between the two cumulative normalized light curves gives the probability that they are drawn from the same distribution, i.e. that the light curve in the source region is consistent with that expected from the background plus a source with constant flux. Any source with a KS statistic lower than 0.05% in any observation is flagged as short-term variable by an "s" in Table 2.18. For each source, we ran the KS test independently for each of the observations in which it was covered. Since the KS test



*Figure 2.24*: Light curve of NNR 15 in the *NuSTAR* 3–20 keV band from ObsID 40014016001, FPMA and FPMB combined. The light curve displays evident short-term variability. The blue dashed lines in the top two panels show the mean background count rate scaled by the source region area.

is applied 160 times in total, the adopted threshold corresponds to  $\leq 1$  spurious detection. We identify two sources as variable using the KS test. An examination of the lightcuves of these sources, NNR 2 (presented in B16) and NNR 15 (Figure 5), shows clear variability on  $\sim$ hourly timescales.

We checked for variability of the NNR sources on week to year timescales by comparing the flux detected between repeated NuSTAR observations. Sources were flagged as long-term variable with an "I" in Table 2.18 if their 3 – 10 keV photon flux differed by >  $3\sigma$  based on their flux measured uncertainties; given the number of flux comparisons performed, this  $3\sigma$ threshold should result in  $\leq 1$  spurious detection. NNR 1, 10, 11, 19, and 28 were found to be variable using this criterion. In addition, we compared *Chandra* and *NuSTAR* fluxes to check for variability on year timescales. For all sources with sufficient photon statistics, we compared the joint spectral fits to *Chandra* and *NuSTAR* data (see § 2.3.10 for details), and identified sources with normalizations that differed at the > 90% confidence level. Since we performed these joint fits for 24 sources, we would expect as many as two spurious detections of variability, but we made the criterion more stringent by requiring that for a source to be considered variable between the *Chandra* and *NuSTAR* observations, its *Chandra* and *NuSTAR* normalizations must be inconsistent regardless of which of three different spectral

|        |                  | Ū.                                            | e e                 |                |
|--------|------------------|-----------------------------------------------|---------------------|----------------|
| Source | NuSTAR           | Max. 3–10 keV Flux                            | Var. Amplitude      | _              |
| No.    | Var. Flag        | $(10^{-6} \text{ ph cm}^{-2} \text{ s}^{-1})$ | 3-10  keV           | Var. Detection |
| (1)    | (2)              | (3)                                           | (4)                 | (5)            |
| 1      | 1                | $641200 \pm 700$                              | > 427500            | T, N           |
| 2      | $^{\mathrm{sp}}$ | $10100 \pm 700$                               | > 34                | —              |
| 4      | 1                | $71^{+2}_{-5}$                                | $1.5_{-0.2}^{+0.1}$ | CS             |
| 10     | 1                | $84 \pm 9$                                    | > 56                | T, N           |
| 11     | 1                | $26 \pm 4$                                    | > 18                | N, CS          |
| 15     | $\mathbf{S}$     | $220 \pm 40$                                  | > 6                 | _              |
| 19     | 1                | $11 \pm 1$                                    | > 7                 | T, N           |
| 20     | 1                | $10\pm 2$                                     | > 2                 | CS             |
| 25     | 1                | $6\pm1$                                       | > 4                 | T              |
| 27     | 1                | $11\pm2$                                      | $2.2^{+1.6}_{-0.9}$ | CS             |
| 28     | 1                | $40\pm7$                                      | $6.5 \pm 1.3$       | N              |
| 29     | 1                | $15^{+7}_{-6}$                                | $11^{+8}_{-6}$      | CQ             |
| 35     | 1                | $13\pm2$                                      | $2.5 \pm 0.6$       | CQ             |
| 36     | 1                | $9^{+2}_{-1}$                                 | $2.8 \pm 1.4$       | CQ             |
| 35     | 1<br>1<br>1      | $13 \pm 2$                                    | $2.5 \pm 0.6$       | CQ             |

Table 2.19: X-ray Variability of NuSTAR Sources

#### Notes:

(2) NuSTAR variability flag: 's' - short timescale (< few hours) variability, long timescale (weeks-years) variability, 'p' - periodic modulations detected. See 2.3.7 for details.

(3) Maximum 3–10 keV photon flux either from *Chandra* photometry or *NuSTAR* photometry (based on 30"-radius aperture regions).

(4) Ratio of maximum to minimum 3–10 keV photon fluxes.

(5) Criteria by which long-term variability was determined for sources flagged with "I": T - transient source detected by NuSTAR but falling below the survey sensitivity of NARCS, N - photon flux varies by  $> 3\sigma$  between different NuSTAR observations, CS - cross-normalization between Chandra and NuSTAR spectra is inconsistent at > 90% confidence, CQ - Chandra 2–10 keV and NuSTAR 3–10 keV photon fluxes are inconsistent at > 90% confidence when adopting a range of spectral models consistent with the quantile values of the source

models is adopted. This more selective criterion is only met by NNR 4, 11, and 27. For fainter sources (NNR 28-38), we considered a range of spectral models that would be consistent with their quantile values, and assessed whether their 2–10 keV *Chandra* flux was incompatible with their average 3–10 keV *NuSTAR* flux at > 90% confidence, regardless of the spectral model assumed. NNR 29, 35, and 36 are found to be variable by this criterion. In Table 2.19, we provide maximum photon fluxes and the ratio of maximum and minimum fluxes for all *NuSTAR* sources that demonstrate X-ray variability; the transient sources, NNR 1, 10, 19, 20, and 25, which are detected by *NuSTAR* but not detected in NARCS, are flagged as long-term variable and included in this table as well.

We searched for a periodic signal from those NuSTAR sources with sufficient counts to detect a coherent timing signal, determined as follows. The ability to detect pulsations depends strongly on the source and background counts and number of search trials. For a sinusoidal signal, the aperture counts (source plus background) necessary to detect a signal of pulsed fraction  $f_p$  is  $N = 2S/f_p^2$ , where S is the power associated with the single trial false detection probability of a test signal  $\wp = e^{-S/2}$ ; S is distributed as  $\chi^2$  with two degrees of freedom (van der Klis 1989a). In practice, for a blind search, we need to take into account the number of frequencies tested  $N_{trials} = T_{span}/f_{Nyq}$ , when  $T_{span}$  is the data span and  $f_{Nyq} = 250$  Hz, the effective NuSTAR Nyquist frequency. In computing N we must allow for the reduced sensitivity of the search due to background contamination in the source aperture  $(N_b)$ ; the minimum detectable pulse fraction  $f_p(\min)$  is then increased by  $(N_s + N_b)/N_s$ .

We computed the detectability in individual observations for each source in our sample and considered those suitable for a pulsar search, with  $f_p(\min) > 50\%$  at the  $3\sigma$  level. For the three brightest sources in the Norma survey, their timing properties are already presented elsewhere: i) the quasi-periodic oscillations of the black hole binary 4U 1630- 472 (NNR 1) were extensively studied using the *Rossi X-ray Timing Explorer* (Tomsick & Kaaret 2000; Dieters et al. 2000; Seifina et al. 2014), ii) the high mass X-ray binary pulsar HMXB IGR J16393-4643 (NNR 2) with a period of 904 seconds, whose spin-up rate was determined from recent *NuSTAR* observations (B16), and iii) the *NuSTAR*-discovered 206 ms pulsar PSR J1640-4631 (NNR 3) associated with the TeV source HESS J1640-465 (G14;Archibald et al. 2016).

For NNR 4, 5, 8, and 21, we extracted event lists in the 3-20 keV band from r = 40''radius apertures and searched for periodic signals between 4 ms and 100 seconds. For each source, we evaluated the power at each frequency (oversampling by a factor of two) using the unbinned  $Z_n^2$  test statistic (Buccheri et al. 1983) summed over n = 1, 2, 3, 5 harmonics, to be sensitive to both broad and narrow pulse profiles. We repeated our search for an additional combination of energy ranges 3 < E < 25 keV, 3 < E < 10 keV, 10 < E < 25 keV, 10 < E < 40 keV, and aperture size r < 20'' and r < 30''. For all these searches, no significant signals were detected. For NNR 5 and 8, we can constrain the pulsed fraction of X-ray emission to be < 45% and < 48%, respectively, at the  $3\sigma$  confidence. We also performed periodic searches for longer periods, with special attention to NNR 4 for which *Chandra* detected a 7150 second period, but we were unable to pick out any signals that could clearly be attributed to the *NuSTAR* sources due to the artifacts introduced by *NuSTAR*'s orbital

|        | 10000 2.20 | . 1 10per tites 0 | n Chund | the counterpart      | 5 10 11 40 1111      |                  |                 |
|--------|------------|-------------------|---------|----------------------|----------------------|------------------|-----------------|
| Source | R.A.       | Dec.              | Unc.    | Significance         | Net counts           | $E_{50}$         | QR              |
| No.    | J200       | 0 (°)             | (")     | $0.510~\mathrm{keV}$ | $0.510~\mathrm{keV}$ | $(\mathrm{keV})$ |                 |
| (1)    | (2)        | (3)               | (4)     | (5)                  | (6)                  | (7)              | (8)             |
| 19     | 250.315033 | -46.540543        | 0.68    | 15                   | $245_{-16}^{+17}$    | $2.9{\pm}0.2$    | $0.92{\pm}0.06$ |
| 20     | 250.591644 | -46.716049        | 0.87    | 2.9                  | $3^{+3}_{-2}$        | _*               | _               |
| 25     | 248.999542 | -47.807671        | 0.71    | 6                    | $33^{+7}_{-6}$       | $2.3 \pm 0.4$    | $0.9 \pm 0.3$   |

Table 2.20: Properties of Chandra counterparts to NuSTAR discoveries

Notes:

(4) 90% statistical and systematic positional uncertainties summed in quadrature.

(\*) The *Chandra* counterpart of NNR 20 has too few counts to perform quantile analysis. The energies of the three photons attributed to this source are 4.2, 5.7, and 7.0 keV; since the *Chandra* effective area is higher at softer energies, the fact that no photons are detected with energies < 4 keV suggests that this source is subject to high levels of absorption.

occultations to the Fourier power spectrum.

### 2.3.8 Chandra Follow-up of NuSTAR Discoveries

As discussed in § 2.3.2, we triggered *Chandra* follow-up observations for the four sources discovered by *NuSTAR*, NNR 10, 19, 20, and 25. NNR 10, 19, and 25 were not detected by NARCS despite its much higher sensitivity compared to the *NuSTAR* Norma survey, indicating these are transient sources. NNR 20 falls outside the area surveyed by *Chandra*, but our follow-up *Chandra* observations show that its flux is also highly variable.

The analysis of the *Chandra* follow-up of NNR 10 is presented in T14, while the analysis of the other three observations, which are listed in Table 2.15, is described here. The archival *Chandra* observation 7591 (see Table 2.14, which provides additional coverage of NNR 19) was also subjected to the same analysis. The *Chandra* observations were processed using CIAO version 4.7 adopting standard procedures. Then we used wavdetect to determine the positions of *Chandra* sources in the vicinity of the *NuSTAR* sources. The statistical uncertainties of the *Chandra* positions were calculated using the parametrization in Equation 5 of Hong et al. (2005); the 90% statistical uncertainty was then combined with *Chandra*'s 0'.64 systematic uncertainty<sup>14</sup> in quadrature. Since NNR 19 was also detected in an archival *Chandra* observation, we averaged the positions determined from ObsIDs 7591 and 16170. The *Chandra* positions and uncertainties are reported in Table 2.20. The *Chandra* follow-up observations of NNR 9, 20, and 25 are shown in Figure 2.25, where green circles indicate the *NuSTAR* source positions and magenta circles show the locations of the nearest *Chandra* sources.

The closest *Chandra* source to NNR 19 is located at a distance of  $13''_{.2}$ , which is outside of the 90% confidence *NuSTAR* error circle. However, as noted in Table 2.17, a few of the

<sup>&</sup>lt;sup>14</sup>See http:/cxc.harvard.edu/cal/ASPECT/celmon.



(c) NNR 25, Chandra ObsID 17242

Figure 2.25: Chandra follow-up observations of NuSTAR transients in the 0.5–10 keV band (see Table 2.15). NuSTAR source positions are shown with 90% confidence error circles in green, and the locations of the nearest Chandra sources are indicated with 90% confidence error circles in magenta. The NuSTAR and Chandra positional uncertainties are provided in Tables 2.17 and 2.20, and are approximately 10" and 0".7, respectively, for all three sources.

NARCS counterparts have similarly large offsets, suggesting that in some cases the systematic NuSTAR positional uncertainties may be underestimated. The fact that only three days elapsed between the NuSTAR and *Chandra* observations of NNR 19 strengthens the case that these sources are indeed associated. Furthermore, this *Chandra* source was detected in 2007 in *Chandra* ObsID 7591, but undetected in 2011 in ObsID 12508; the fact that this *Chandra* source is a transient boosts the probability that it is the counterpart of NNR 19.

The only *Chandra* source in the vicinity of NNR 20 lies within the *NuSTAR* error circle but is only detected at  $2.9\sigma$  confidence. NNR 20 was not covered by previous *Chandra* observations, including NARCS, so before our follow-up observation (ObsID 16171), we did not know whether this source was a transient or not; based on its *NuSTAR* 3–10 keV flux, we would have expected to detect at least 10 counts from its *Chandra* counterpart if it was persistent. Thus, even if it is not definite that the weak *Chandra* detection is truly the counterpart of NNR 20, the lack of any brighter *Chandra* sources proves NNR 20 is a variable source.

Follow-up observations of NNR 25 were performed 34 days after the *NuSTAR* observations, and a *Chandra* source is clearly detected within the *NuSTAR* error circle. This *Chandra* source was not detected during the 2011 NARCS observations; its transient nature boosts the probability that it is the true counterpart of the transient NNR 25. As was done by F14 for all the NARCS sources, we searched for infrared counterparts to the *NuSTAR*-discovered sources in the VVV survey. We did not find any infrared counterparts to NNR 19, 20, or 25 within the 95% uncertainty of the *Chandra*-derived positions.

In order to extract photometric and spectral information for each *Chandra* counterpart, we defined source aperture regions as circles with 2".5 radii and background regions as annuli with 15" inner radii and 44" outer radii. As the counterpart of NNR 19 was at a larger angular offset from the *Chandra* aimpoint in ObsID 7591, and the *Chandra* PSF increases in size with angular offset, the circular source region used for this observation had a 5" radius. For each source in each *Chandra* observation, we calculate the net 0.5-10 keV counts, detection significance, and quantile values (see § 2.3.9), which are provided in Table 2.20.

## 2.3.9 Hardness Ratios and Quantile Analysis

Since spectral fitting can be unreliable or impractical for faint sources, we use hardness ratios and quantile values (Hong et al. 2004) to probe and compare the spectral properties of NuSTAR sources. In order to reduce the level of background contamination and prevent the hardness ratios and quantile values from being skewed towards the values of the NuSTAR background, we opted to use the aperture regions with smaller radii to derive these spectral parameters. The hardness ratio for each source is calculated as (H - S)/(H + S), where H is the counts in the hard (10–20 keV) band and S is the counts in the soft (3–10 keV) band. The NuSTAR hardness ratios are listed in Table 2.18.

While hardness ratios are the most widely used proxy for spectral hardness of faint X-ray sources, they are subject to selection effects associated with having to choose two particular energy bands and they do not yield meaningful information for sources which have zero net



(a) NuSTAR quantile diagram. To make it easier to view all the sources, the quantile error bars have been reduced to 25% of the actual  $1\sigma$  errors. The NuSTAR 3–40 keV background has  $E_{50} = 10-15$  keV and QR = 0.4-0.6, which is why several tier 2 sources, which are most affected by the background, are found near that position in the diagram. Grids representing absorbed bremsstrahlung, blackbody, and power-law models are shown in blue, green, and orange, respectively. Roughly vertical grid lines represent different values of the temperature (kT) or photon index ( $\Gamma$ ). Primarily horizontal grid lines represent  $N_{\rm H} = 10^{22}, 10^{23}, 5 \times 10^{23}$  cm<sup>-2</sup> from bottom to top.

Figure 2.26: Quantile diagrams showing the quantile ratio on the y-axis and the median energy on the x-axis (or median energy "normalized" by the *Chandra* 0.5–10 keV band for the lower panel). Quantile values of tier 1 sources are shown in black and those of tier 2 sources are shown in gray. Comparing the positions of sources in the quantile diagrams to the spectral model gridlines provides a rough measurement of their spectral parameters. The *Chandra* quantiles are very sensitive to the amount of absorption suffered by a source, while the *NuSTAR* quantiles are more capable of differentiating sources with different spectral slopes.



(b) Chandra quantile diagram. The error bars have been reduced to 50% of the actual  $1\sigma$  errors. A grid of a power-law spectral model attenuated by interstellar absorption is overlaid. Red (primarily vertical) lines represent values of the photon index  $\Gamma = 0, 1, 2, 3$ , and 4 from right to left. Blue (primarily horizontal) lines represent values of the hydrogen column density  $N_{\rm H} = 10^{20}, 10^{21}, 10^{21.6}, 10^{22}, 10^{22.6}, 10^{23}$ , and  $10^{23.6}$  cm<sup>-2</sup> from bottom to top.

Figure 2.26: This figure is continued from the previous page.

counts in one of the two energy bands. Therefore, we also calculated quantile values for each source in the 3–40 keV band; these values are the median energy  $E_{50}$ ,  $E_{25}$  and  $E_{75}$ , the energies below which 25% and 75% of the source counts reside, respectively. The latter energies were combined into a single quantile ratio (QR) which is a measure of how broad or peaked the spectrum is and is defined as  $QR = 3(E_{25} - E_{\min})/(E_{75} - E_{\min})$ , where  $E_{\min}$ is the lower bound of the energy band, 3 keV for NuSTAR and 0.5 keV for Chandra. The NuSTAR median energy and QR value of each source is provided in Table 2.18 and shown in Figure 2.26(a). The gridlines in this figure indicate where a source with a particular blackbody, bremsstrahlung, or power-law spectrum would fall in the NuSTAR quantile space; gridlines which are roughly vertical represent different temperatures (kT) or photon indices  $(\Gamma)$  while roughly horizontal gridlines represent different values of the absorbing column density along the line-of-sight to the source  $(N_{\rm H})$ .

Figure 2.26(b) shows the quantile values of the *Chandra* counterparts of the *NuSTAR* sources in the 0.5–10 keV band. Most of these values are taken from the NARCS catalog (F14). The quantile values for *Chandra* counterparts of NNR 19 and 25 were derived using the aperture regions described in § 2.3.8; the values for NNR 19 derived from ObsIDs 7591 and 16170 were combined in a weighted average. The *Chandra* counterpart of NNR 20 only has 3 counts, which are too few for quantile analysis; however, all three photons have energies > 4 keV, indicating that this source is subject to significant absorption since *Chandra*'s effective area peaks below 2 keV. Finally, we did not adopt the NARCS catalog quantile values for extended sources, because they were derived using aperture regions whose position and extent were determined by eye and which removed embedded point sources not distinguishable with *NuSTAR*. Instead, we recalculated the quantiles for extended sources using circular aperture regions with 45"-radii centered on the *NuSTAR*-determined positions of NNR 8 and 21; these *Chandra* quantiles are weighted averages of values derived from ObsIDs 12528 and 12529<sup>15</sup> for the counterpart of NNR 8 and ObsIDs 12523 and 12526 for the counterpart of NNR 21.

As can be seen in Figure 2.26, the *Chandra* quantiles can easily differentiate between foreground sources and those subject to high levels of absorption due to gas along the line-of-sight. The integrated column density of neutral and molecular hydrogen due to the interstellar medium along the line-of-sight in the Norma region varies from  $4 - 9 \times 10^{22}$  cm<sup>-2</sup>, as derived from the sum of  $N_{\rm HI}$  measured by the Leiden/Argentine/Bonn survey (Kalberla et al. 2005) and  $N_{\rm H2}$  estimated from the MWA CO survey (Bronfman et al. 1989) using the  $N_{\rm H2}/I_{\rm CO}$  factor from Dame et al. (2001); since these surveys have 0.5° resolution, the interstellar  $N_{\rm HI+H2}$  values we derive are averages over 0.25 deg<sup>2</sup> regions, so it is possible that the interstellar absorption is actually higher or lower along particular lines-of-sight due to the clumpy nature of molecular clouds. Thus, the sources whose X-ray spectra show column densities in excess of these values may be located behind dense molecular clouds or suffer from

<sup>&</sup>lt;sup>15</sup>The Chandra counterpart of NNR 8 is also observed in ObsID 12525. However, in this observation, a nearby transient point source which falls within the aperture region is visible. Comparing the 3–10 keV photon fluxes of NNR 8 in Chandra and NuSTAR, it does not appear that this nearby transient was present during the NuSTAR observation, and therefore we decided not to include ObsID 12525 in our Chandra analysis.

additional absorption due to gas or dust local to the X-ray source. The NuSTAR quantiles are not particularly sensitive to  $N_{\rm H}$ , but instead are able to separate sources with intrinsically soft and hard spectra, regardless of their level of absorption. Thus, the combination of quantile values in the *Chandra* and *NuSTAR* bands allows us to learn a fair amount about the spectral properties of sources which are too faint for spectral fitting and provide a check on spectral fitting results which can depend on the choice of binning for low photon statistics.

# 2.3.10 Spectral Analysis

For all tier 1 sources with >100 net counts in the 40" radius aperture in the 3–40 keV band, we perform spectral analysis using XSPEC version 12.8.2 (Arnaud 1996), jointly fitting the NuSTAR and Chandra data when it is available. All spectral parameters were tied together for these joint fits, except for a cross-normalization factor between the *Chandra* and NuSTAR observations which was left as a free parameter to account for source variability and differences in instrumental calibrations (measured to be consistent to 10% precision, Madsen et al. 2015). We also included a cross-normalization constant between NuSTAR FPMA and FPMB in our models; for most sources, due to limited photon statistics, the errors on this normalization constant are large and the constant is consistent with 1.0 to better than 90%confidence. Thus, for the NuSTAR sources detected with lowest significance (i.e., with trial map values  $< 10^{15}$ ), we fixed the FPMA/B normalization constant to 1. To maximize the number of counts per spectral bin, we used the larger aperture source regions to extract information for spectral fitting; however, for NNR 22 and 27, which are only separated by 47'', we extracted spectral information from 30'' source regions to limit the blending of the two sources. The spectra of the *Chandra* counterparts were extracted as described in F14 for NARCS sources and  $\S$  2.3.8 for the counterparts of NuSTAR discoveries; however, for the extended counterparts of NNR 8 and 21, we defined aperture regions as 60''-radius circles centered on the NuSTAR-derived position in order to match the NuSTAR extraction region.

The Chandra and NuSTAR spectra were grouped into bins of  $> 2 - 10\sigma$  confidence, depending on the net counts of each source. For the three brightest sources which have been carefully analyzed in other papers, we adopt simplified versions of the best-fitting models found in King et al. (2014), B16, and G14, in order to easily measure their observed and unabsorbed fluxes in the 3–10 and 10–20 keV bands which we use to calculate the log*N*-log*S* distribution of our survey (§ 2.3.13). For other tier 1 sources, we fit absorbed power-law, bremsstrahlung, and collisionally-ionized models; we employed the tbabs absorption model with solar abundances from Wilms et al. (2000) and photoionization cross-sections from Verner et al. (1996b). When Fe line emission was clearly visible between 6.4 and 7.1 keV, we also included a Gaussian line in the spectral models. Due to *NuSTAR*'s 0.4 keV resolution at 6–7 keV enegies, multiple Fe lines would appear blended in our spectra, especially given the low photon statistics. Thus, measurements of the Fe line parameters should be interpreted as the average energy of the Fe line complex and the combined equivalent width of the Fe lines. If Fe line emission was not evident, the source spectrum was first fit without a Gaussian component. Then, having determined which of the three spectral models best fit the spectrum, a Gaussian component was added in order to place constraints on the strength of Fe line emission that may not be visible due to poor photon statistics. The central energy of this Gaussian component was constrained to be between 6.3 and 7.1 keV and its width was fixed to zero; we tested the effect of fixing the width to values as high as 0.1 keV, but the impact on the results was negligible. Then the 90% upper limit on the line normalization was used to calculate the 90% upper limit on the Fe line equivalent width. In addition, when significant residuals remained at soft energies, we introduced a partial covering model (pcfabs) to test if it provides a significant improvement of the chi-squared statistic. Including this component substantially improved  $\chi^2$  for NNR 4 and 6, but for NNR 6 the  $N_{\rm H}$  of the partial absorber could not be well constrained and the covering fraction was found to be consistent with 1.0 to 90% confidence. Thus, since the spectral quality of NNR 6 was not good enough to constrain the additional pcfabs component, we did not include it in our final model fit for NNR 6.

The results of our spectral analysis can be found in Table 2.21, and the spectra and fit residuals are shown in Figure 2.27 and the appendix. As can be seen, spectra with < 300 NuSTAR counts cannot place strong constraints on the spectral parameters. However, we nonetheless include these results to be able to compare non-parametric fluxes with spectrally derived fluxes, and as a reference to aid the design of future NuSTAR surveys.

We used the model fit with the best reduced chi-square statistic to determine observed energy fluxes for each source in the 2–10, 3–10, and 10–20 keV bands and conversion factors from photon fluxes to unabsorbed energy fluxes, which are listed in Table 2.22. These conversion factors are used to calculate the log*N*-log*S* distribution for unabsorbed fluxes (see § 2.3.13). The faintest tier 1 source, NNR 29, does not have enough counts to permit spectral fitting; based on its quantile values, it has  $N_{\rm H} \approx 10^{23}$  cm<sup>-2</sup> and  $\Gamma \approx 1.8$ . Fixing the parameters of an absorbed power-law model to these values while allowing the *Chandra* and *NuSTAR* normalizations to vary independently, we fit the unbinned spectra of NNR 29 using the C-statistic (Cash 1979) and find a goodness of fit lower than 28%. The observed and unabsorbed fluxes of NNR 29 measured from these fits are included in Table 2.22.

To ensure that these results were not significantly dependent on the binning that was chosen, we compared the best-fitting parameters with those derived by fitting unbinned spectra using the C-statistic and the locations of sources in the quantile diagrams; no significant discrepancies were found except for sources with strong Fe lines, which is to be expected since the quantile grids do not account for the presence of Fe lines. However, for NNR 17, our analysis yields a harder spectrum than is found by B14. This source lies in the ghost ray pattern of 4U 1630-472, making background subtraction particularly challenging. The background region we selected contains higher ghost ray contamination than the background chosen by B14; we consider our selection more appropriate given that this source resides in a region of high ghost ray contamination. Since the spectrum of 4U 1630-472 is dominated by a blackbody component with  $kT \approx 1.4$  keV, the fact that B14 measured a softer spectrum for NNR 17 than we do, with  $\Gamma = 3.7 \pm 0.5$  rather than  $2.0^{+1.0}_{-0.8}$ , suggests that the background contribution from ghost rays may have been underestimated by B14. The photon index we measure is also more consistent with the hard photon index indicated by the *Chandra* quantiles (see Figure 2.26(b)).



*Figure 2.27*: Example *Chandra* and *NuSTAR* spectra with residuals of best-fitting model. *Chandra* data is shown in black, *NuSTAR* FPMA data is shown in red, and FPMB data is shown in blue. Additional spectra are shown in Appendix B. Spectral analysis results can be found in Table 2.21.

| Table 2.21: | Spectral | Fitting | $\mathbf{Results}$ | $\mathbf{for}$ | NuSTAR Sources |
|-------------|----------|---------|--------------------|----------------|----------------|
|-------------|----------|---------|--------------------|----------------|----------------|

| Src<br>No. | Model<br>tbabs*X      | N/C norm                                                                                                                                    | FPMA/B<br>norm                                                                                                                    | $\binom{N_{\rm H}}{(10^{22} {\rm cm}^{-2})}$   | Г                                                                                                                        | E <sub>cut</sub><br>(keV)                                                                                                          | Power-law<br>norm                                                                                                                           | $kT_{BB}$<br>(keV)                              | Bbody<br>norm                                                                    | $\chi^2_{ u}/{ m dof}$        | Bin<br>$(\sigma)$                | Comments                                                                                                                                                                                                                                                                                                                                             |
|------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1)        | (2)                   | (3)                                                                                                                                         | (4)                                                                                                                               | (10 cm )<br>(5)                                | (6)                                                                                                                      | (Rev)<br>(7)                                                                                                                       | (8)                                                                                                                                         | (9)                                             | (10)                                                                             | (11)                          | (b) (12)                         | (13)                                                                                                                                                                                                                                                                                                                                                 |
| 1          | PL+diskbb             | _                                                                                                                                           | $0.978^{+0.01}_{-0.02}$                                                                                                           | $12.47 \pm 0.08$                               | $2.15 \pm 0.03$                                                                                                          | _                                                                                                                                  | $0.22 {\pm} 0.02$                                                                                                                           | $1.425\substack{+0.002\\-0.003}$                | 192±2                                                                            | 2.68/806                      | 10                               | See King et al. (2014) for fit<br>including disk reflection and<br>wind absorption.                                                                                                                                                                                                                                                                  |
| 2          | cutoffpl<br>+bbodyrad | $0.67^{+0.02}_{-0.01}$                                                                                                                      | $1.02^{+0.03}_{-0.02}$                                                                                                            | $46.0 \pm 1.5$                                 | $-2.5^{+0.4}_{-0.5}$                                                                                                     | $4.05^{+0.33}_{-0.06}$                                                                                                             | $1.3^{+1.5}_{-0.1} \times 10^{-5}$                                                                                                          | $1.56^{+0.06}_{-0.08}$                          | $0.75_{-0.08}^{+0.12}$                                                           | 1.14/1096                     | 5,5                              | See Bodaghee et al. (2016) for<br>fit including cyclotron absorp-<br>tion line.                                                                                                                                                                                                                                                                      |
| Src<br>No. | Model<br>tbabs*X      | N/C norm                                                                                                                                    | FPMA/B<br>norm                                                                                                                    | $\stackrel{N_{\rm H}}{(10^{22}{\rm cm}^{-2})}$ | $ \begin{array}{c} \Gamma \text{ or} \\ kT \text{ (keV)} \\ (14) \end{array} $                                           | $\begin{array}{c} \text{Norm} \\ (10^{-5}) \\ (15) \end{array}$                                                                    | Line En.<br>(keV)<br>(16)                                                                                                                   | Line Eq.<br>(keV)<br>(17)                       | $ \begin{array}{c} \text{Line norm} \\ (10^{-6}) \\ (18) \end{array} $           | $\chi^2_{ u}/{ m dof}$        | $\frac{\mathrm{Bin}}{(\sigma)}$  | Comments                                                                                                                                                                                                                                                                                                                                             |
| 3          | PL                    | $3.4^{+1.0}_{-0.7}$                                                                                                                         | $1.04\substack{+0.04 \\ -0.03}$                                                                                                   | $12\pm2$                                       | $1.71 {\pm} 0.06$                                                                                                        | $6.7^{+1.0}_{-0.6}$                                                                                                                |                                                                                                                                             |                                                 |                                                                                  | 1.02/263                      | 3,5                              | Chandra only includes point<br>source while $NuSTAR$ in-<br>cludes extended emission. See<br>Gotthelf et al. (2014) for de-<br>tailed analysis.                                                                                                                                                                                                      |
| 4          | PCA*(PL+G)            | $\begin{array}{c} 0.59 \substack{+0.10 \\ -0.09 \\ 0.57 \substack{+0.09 \\ -0.08 \\ 0.56 \substack{+0.04 \\ -0.08 \end{array}} \end{array}$ | $\begin{array}{c} 0.92 \substack{+0.15 \\ -0.13} \\ 0.90 \substack{+0.15 \\ -0.12} \\ 0.90 \substack{+0.16 \\ -0.12} \end{array}$ | $0.35_{-0.10}^{+0.11}$                         | $2.34 \pm 0.22$                                                                                                          | $56^{+26}_{-17} \\ 24^{+4}_{-3} \\ 68^{+11}_{-9}$                                                                                  | $\begin{array}{r} 6.65 \substack{+0.10 \\ -0.06 \\ 6.65 \substack{+0.09 \\ -0.06 \\ 6.56 \substack{+0.12 \\ -0.17 \end{array}} \end{array}$ | $0.9^{+0.2}_{-0.1}$                             |                                                                                  | 1.19/154                      | 3,3                              | pcfabs reduces $\chi^2_{\nu}$ by $\approx 0.2$ .                                                                                                                                                                                                                                                                                                     |
| 4          | PCA*(BR+G)            | $0.57^{+0.03}_{-0.08}$                                                                                                                      | $0.90^{+0.10}_{-0.12}$                                                                                                            | ${}^{0.14\pm0.08}_{0.13}{}^{+0.09}_{-0.08}$    | $7.9^{+2.4}_{-1.7}$<br>$7.4^{+2.1}_{-1.5}$                                                                               | $24^{+4}_{-3}$                                                                                                                     | $6.65^{+0.03}_{-0.06}$                                                                                                                      | $0.8 \pm 0.2$<br>$0.2 \pm 0.1$                  | $5.6^{+2.1}_{-1.8}$                                                              | 1.20/154                      | 3,3<br>3,3                       | For PL, $N_{\rm H, cvr} = 6^{+2}_{-1} \times 10^{22}$                                                                                                                                                                                                                                                                                                |
|            | PCA*(AP+G)            |                                                                                                                                             | $0.90^{+}_{-0.12}$                                                                                                                | $0.13 \pm 0.08$                                | 1.4-1.5                                                                                                                  | 68 <u>-</u> 9                                                                                                                      | 0.30-0.17                                                                                                                                   | 0.2±0.1                                         | 2.1-1.6                                                                          | 1.19/154                      | 3,3                              | $ \begin{array}{l} \mbox{pcfabs reduces } \chi^2_{\nu} \mbox{ by $\approx 0.2$.} \\ \mbox{For PL, $N_{\rm H,cvr} = 6^{+2}_{-1} \times 10^{22}$} \\ \mbox{cm}^{-2}, \mbox{ cvrf= } 0.77^{+0.06}_{-0.08}. \mbox{ For BR and $P$, $N_{\rm H,cvr} = $} \\ \mbox{5 $\pm 2 \times 10^{22}$ cm}^{-2}, \mbox{ cvrf= } \\ \mbox{0.5 $\pm 0.1$}. \end{array} $ |
| 5          | PL<br>BR<br>AP        | $1.3^{+0.5}_{-0.3}\\1.3^{+0.5}_{-0.3}\\1.2^{+0.5}_{-0.3}$                                                                                   | $\begin{array}{c} 0.9^{+0.3}_{-0.2} \\ 0.9^{+0.3}_{-0.2} \\ 0.9^{+0.3}_{-0.2} \end{array}$                                        | $27^{+10}_{-8}\\21^{+8}_{-6}\\17^{+6}_{-5}$    | $2.3 \pm 0.3 \\ 10^{+5}_{-3} \\ 13^{+5}_{-3}$                                                                            | $28^{+40}_{-16} \\ 9^{+5}_{-3} \\ 21^{+8}_{-7}$                                                                                    | 6.3-7.1                                                                                                                                     | < 0.36                                          | < 1.3                                                                            | 1.07/47<br>1.07/47<br>1.15/47 | 3,3<br>3,3<br>3,3                |                                                                                                                                                                                                                                                                                                                                                      |
| 6          | PL+G<br>BR+G<br>AP+G  | $1.0\pm0.2$<br>$1.0^{+0.3}_{-0.2}$<br>$1.0\pm0.2$                                                                                           | $0.9^{+0.3}_{-0.2} \\ 0.98 {\pm} 0.25 \\ 1.0^{+0.3}_{-0.2}$                                                                       | $5\pm1\\4.3^{+0.9}_{-1.5}\\4.3^{+0.9}_{-0.7}$  | $1.5 \pm 0.3$<br>> 15<br>> 15                                                                                            | $13^{+7}_{-4} \\ 18^{+3}_{-2} \\ 51^{+9}_{-6}$                                                                                     | ${}^{6.5+0.3}_{-1.7}_{6.5+0.4}_{-0.3}_{-0.3}_{6.4\pm0.4}$                                                                                   | $1.5 \pm 0.5$<br>$1.3 \pm 0.4$<br>$1.2 \pm 0.5$ | ${ \begin{array}{c} 11^{+62}_{-5} \\ 10^{+7}_{-5} \\ 9^{+6}_{-5} \end{array} } $ | 1.79/27<br>1.72/27<br>1.69/27 | 5,3<br>5,3<br>5,3                |                                                                                                                                                                                                                                                                                                                                                      |
| 7          | PL+G<br>BR+G<br>AP    | $1.0 \pm 0.2$<br>$1.0 \pm 0.2$<br>$1.0 \pm 0.2$                                                                                             | $\begin{array}{c} 0.8 \substack{+0.2 \\ -0.1} \\ 0.9 \substack{+0.2 \\ -0.1} \\ 0.9 \substack{+0.2 \\ -0.1} \end{array}$          | $15^{+3}_{-2}$<br>$11^{+2}_{-1}$<br>$11\pm 2$  | $\begin{array}{r} 3.4 \substack{+0.4 \\ -0.3} \\ 3.4 \substack{+0.7 \\ -0.6} \\ 3.2 \substack{+0.8 \\ -0.5} \end{array}$ | $220^{+80}_{-90} \\ 32^{+6}_{-7} \\ 100^{+30}_{-25}$                                                                               | $6.76 \pm 0.12$<br>$6.76 \pm 0.12$                                                                                                          | $0.65 {\pm} 0.20$<br>$0.5 {\pm} 0.2$            | $2.1^{+1.1}_{-0.9}\\1.8^{+1.1}_{-0.9}$                                           | 0.92/75<br>0.93/75<br>0.89/77 | 2.5, 2.5<br>2.5, 2.5<br>2.5, 2.5 | apec abundance = $0.5\pm0.3$ .<br>NARCS 1278 flux is 30% of total (Rahoui et al. 2014).                                                                                                                                                                                                                                                              |
| 8          | PL<br>BR<br>AP        | $1.0 \pm 0.2$<br>$1.0 \pm 0.2$<br>$1.0 \pm 0.2$                                                                                             | -<br>-<br>-                                                                                                                       | $14^{+7}_{-5}\\12^{+5}_{-4}\\10^{+4}_{-3}$     | $1.8 \pm 0.2$<br>$25^{+22}_{-9}$<br>> 21                                                                                 | $18^{+15}_{-8}\\15^{+5}_{-4}\\44^{+11}_{-10}$                                                                                      | 6.3-7.1                                                                                                                                     | < 0.26                                          | <1.9                                                                             | 1.01/27<br>1.03/27<br>1.14/27 | 3,5<br>3,5<br>3,5                | Only FPMA used.                                                                                                                                                                                                                                                                                                                                      |
| 9          | PL+G<br>BR+G<br>AP+G  | $\begin{array}{c} 0.9^{+0.3}_{-0.2} \\ 0.9^{+0.3}_{-0.2} \\ 0.8^{+0.3}_{-0.2} \end{array}$                                                  | ${}^{0.9^{+0.3}_{-0.2}}_{0.9^{+0.3}_{-0.2}}_{-0.2}$                                                                               | $7^{+3}_{-2} \\ 7^{+2}_{-1} \\ 7^{+2}_{-1}$    | $1.5 \pm 0.3$<br>> 15<br>> 15                                                                                            | $9^{+7}_{-4} \\ 11^{+6}_{-2} \\ 33^{+8}_{-6}$                                                                                      | ${}^{6.5\pm1.2}_{{}^{-0.7}_{-0.3}}_{6.4}{}^{+0.7}_{-0.5}_{-0.4}$                                                                            | $0.6 \pm 0.4$<br>$0.5 \pm 0.3$<br>$0.4 \pm 0.2$ | $3^{+25}_{-2} \\ 3^{+8}_{-2} \\ 2.2^{+2.7}_{-1.7}$                               | 0.84/29<br>0.83/29<br>0.82/29 | 3,2.5<br>3,2.5<br>3,2.5          |                                                                                                                                                                                                                                                                                                                                                      |
| 10         | PL<br>BR<br>AP        | -<br>-<br>-                                                                                                                                 | $\begin{array}{c} 0.9 \substack{+0.6 \\ -0.3} \\ 0.9 \substack{+0.6 \\ -0.3} \\ 0.9 \substack{+0.6 \\ -0.4} \end{array}$          | 28<br>17<br>17                                 | $\begin{array}{r} 4.1 \substack{+0.9 \\ -0.8 \\ 3 \substack{+2 \\ -1 \\ 1.9 \substack{+5.0 \\ -0.7 \end{array}}}$        | $1800^{+6400}_{-1400}\\70^{+100}_{-40}\\330^{+800}_{-290}$                                                                         | 6.3-7.1                                                                                                                                     | < 0.61                                          | < 4.2                                                                            | 1.09/10<br>1.14/10<br>1.77/10 | 2<br>2<br>2                      | $N_{\rm H}$ set to values from<br>Tomsick et al. (2014)                                                                                                                                                                                                                                                                                              |
| 11         | PL<br>BR<br>AP        | $5^{+7}_{-2} \\ 6^{+21}_{-3} \\ 17^{+15}_{-12}$                                                                                             | $1.3^{+0.9}_{-0.8}\\1.3^{+1.1}_{-1.0}\\1.4^{+3.4}_{-0.6}$                                                                         | $11^{+11}_{-9}$<br>< 14<br>< 5                 | $2.3 \pm 0.4 \\ 10^{+6}_{-3} \\ 14^{+5}_{-3}$                                                                            | $\begin{array}{c} 2.4 \substack{+6.1 \\ -2.0 \\ 0.7 \substack{+0.9 \\ -0.6 \\ 0.6 \substack{+1.6 \\ -0.3 \end{array}} \end{array}$ | 6.3-7.1                                                                                                                                     | < 0.35                                          | < 0.1                                                                            | 1.32/42<br>1.27/42<br>1.33/42 | 3,3<br>3,3<br>3,3                |                                                                                                                                                                                                                                                                                                                                                      |

| Src<br>No. | Model<br>tbabs*X | N/C norm                                                                                                                | ${ m FPMA/B} { m norm}$                                                                                                            | ${N_{ m H} \over (10^{22} { m cm}^{-2})}$                                                          | $\Gamma$ or $kT$ (keV)                                   | $_{(10^{-5})}^{\rm Norm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Line En.<br>(keV)                                                                       | Line Eq.<br>(keV)   | Line norm $(10^{-6})$                        | $\chi^2_ u/{ m dof}$ | $\frac{\text{Bin}}{(\sigma)}$ | Comments                                                     |
|------------|------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------|----------------------------------------------|----------------------|-------------------------------|--------------------------------------------------------------|
|            | PL+G             | $1.1^{+0.5}$                                                                                                            | $1.0^{+0.4}$                                                                                                                       | $20^{+9}$                                                                                          | $2.4 {\pm} 0.5$                                          | $14^{+26}_{-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $6.78^{+0.14}_{-0.12}$                                                                  | $1.2 \pm 0.4$       | $1.7^{+1.2}$                                 | 1.14/33              | 2.5, 2.5                      |                                                              |
| 12         | BR+G             | $1.0^{+0.3}$                                                                                                            | $1.0^{+0.4}$                                                                                                                       | $16^{+7}$                                                                                          |                                                          | $^{-9}_{5\pm 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 6.78\substack{+0.14\\-0.12}\\ 6.77\substack{+0.13\\-0.12}\end{array}$ | $1.2^{+0.5}_{-0.3}$ | ${}^{1.7^{+1.2}_{-0.8}}_{1.6^{+1.2}_{-0.8}}$ | 1.17/33              | 2.5, 2.5                      |                                                              |
|            | AP               | ${}^{1.1 + 0.5}_{-0.3} \\ {}^{+0.5}_{-0.3} \\ {}^{1.0 + 0.5}_{-0.3} \\ {}^{1.1 + 0.5}_{-0.3} $                          | $1.0^{+0.4}_{-0.3}$ $1.0^{+0.4}_{-0.3}$ $1.0^{+0.4}_{-0.3}$                                                                        | $20^{+9}_{-6}\\16^{+7}_{-5}\\19^{+7}_{-5}$                                                         | $\substack{9^{+8}_{-3}\\6^{+3}_{-1}}$                    | $17^{+8}_{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.12                                                                                   |                     |                                              | 1.21/36              | 2.5,2.5                       |                                                              |
|            | PL               | ${}^{1.5^{+1.1}_{-0.6}}_{1.6^{+1.1}_{-0.6}}$                                                                            | $1.0^{+0.7}_{-0.4}$ $1.0^{+0.7}_{-0.4}$ $1.0^{+0.7}_{-0.4}$ $1.0^{+0.7}_{-0.4}$                                                    | $\substack{9^{+17}_{-6}\\11^{+11}_{-6}\\13^{+24}_{-7}}$                                            | $1.0 {\pm} 0.5$                                          | $0.7^{+1.8}_{-0.5}\\2.9^{+2.2}_{-0.4}\\7^{+1}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.3 - 7.1                                                                               | < 2.7               | < 3.4                                        | 1.22/23              | 2,2                           |                                                              |
| 13         | BR               | $1.6^{+1.1}_{-0.6}$                                                                                                     | $1.0^{+0.7}_{-0.4}$                                                                                                                | $11^{+11}_{-6}$                                                                                    | > 31                                                     | $2.9^{+2.2}_{-0.4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                     |                                              | 1.25/23              | $^{2,2}$                      |                                                              |
|            | AP               | $1.6 {\pm} 0.7$                                                                                                         | $1.0^{+0.7}_{-0.4}$                                                                                                                |                                                                                                    | > 21                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                     |                                              | 1.28/23              | $^{2,2}$                      |                                                              |
| 14         | PL+G             | ${}^{0.7^{+0.2}_{-0.1}}_{0.7^{+0.2}_{-0.1}}$                                                                            | -                                                                                                                                  | $29^{+9}_{-7} \\ 22^{+7}_{-5} \\ 25^{+7}_{-5} $                                                    | ${}^{4.1^{+1.2}_{-0.9}}_{2.4^{+1.4}_{-0.9}}$             | $760^{+5700}_{-610}$<br>$60^{+130}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-30}_{-3$ | ${}^{6.59 + 0.08}_{-0.06}_{6.59 + 0.10}_{-0.06}$                                        | $1.8 \pm 0.5$       | $^{6^{+3}}_{5^{+3}}_{-2}$                    | 1.07/28              | $^{3,2.5}$                    | Only FPMB used.                                              |
| 14         | BR+G             | $0.7^{+0.2}_{-0.1}$                                                                                                     | _                                                                                                                                  | $22^{+7}_{-5}$                                                                                     | $2.4^{+1.4}_{-0.9}$                                      | $60^{+130}_{-30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $6.59^{+0.10}_{-0.06}$                                                                  | $1.7^{+0.6}_{-0.4}$ | $5^{+3}_{-2}$                                | 1.08/28              | $^{3,2.5}$                    | Only FPMB used.                                              |
|            | AP               | $0.8 {\pm} 0.2$                                                                                                         | -                                                                                                                                  | $25^{+7}_{-5}$                                                                                     | $2.1^{+0.9}_{-0.5}$                                      | $190^{+240}_{-90}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                     |                                              | 1.11/31              | $^{3,2.5}$                    |                                                              |
| 15         | PL               | ${1.9^{+1.4}_{-0.8}}\atop{1.8^{+1.1}_{-0.8}}\atop{1.8^{+1.1}_{-0.8}}$                                                   | $\begin{array}{c} 0.7^{+0.4}_{-0.3} \\ 0.6^{+0.3}_{-0.2} \\ 0.6^{+0.3}_{-0.2} \end{array}$                                         | < 0.4                                                                                              | $2.6 \pm 0.4$                                            | $13^{+6}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.3 - 7.1                                                                               | < 1.7               | < 2.1                                        | 0.75/20              | $^{3,2}$                      |                                                              |
| 15         | BR               | $1.8^{+1.1}_{-0.8}$                                                                                                     | $0.6^{+0.3}_{-0.2}$                                                                                                                | < 0.08                                                                                             | $2.9^{+1.0}_{-0.7}$ $2.9^{+0.8}_{-0.7}$                  | $11\pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |                     |                                              | 0.90/20              | $^{3,2}$                      |                                                              |
|            | AP               | $1.8^{+1.1}_{-0.8}$                                                                                                     | $0.6^{+0.3}_{-0.2}$                                                                                                                | < 0.10                                                                                             | $2.9^{+0.8}_{-0.7}$                                      | $28^{+9}_{-7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |                     |                                              | 0.82/19              | 3,2                           |                                                              |
|            | PL               | $1.6^{+0.7}$                                                                                                            | $0.7^{+0.3}_{-0.2}$                                                                                                                | $19^{+6}$                                                                                          | $2.9^{+0.6}_{-0.5}$                                      | $130^{+240}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |                     |                                              | 1.05/24              | 3,2.5                         | Harder spectrum than found                                   |
| 16         | BR               | $1.6^{+0.6}$                                                                                                            | $0.7^{+0.2}_{-0.2}$                                                                                                                | $19^{+6}_{-5}\\14^{+4}_{-3}$                                                                       | $5^{+3}_{-1}$                                            | $25^{+14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.3-7.1                                                                                 | < 0.8               | < 4.8                                        | 0.95/24              | 3,2.5                         | by Bodaghee et al. (2014) due                                |
|            | AP               | $1.6^{+0.7}_{-0.5}$ $1.6^{+0.6}_{-0.5}$ $1.2^{+0.5}_{-0.4}$                                                             | $0.7\pm0.2$                                                                                                                        | $^{-3}_{13\pm 3}$                                                                                  | $6^{+1}_{-2}$                                            | $130^{+240}_{-80}\\25^{+14}_{-14}\\58^{+27}_{-15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                     |                                              | 1.06/24              | $^{3,2.5}$                    | to different background<br>regions.                          |
|            | PL               |                                                                                                                         | $0.8\substack{+0.6\\-0.4}$                                                                                                         | $21^{+32}_{-16}\\16^{+24}_{-12}$                                                                   | $2.0^{+1.0}_{-0.8}$                                      | $6^{+65}_{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.3-7.1                                                                                 | < 1.0               | < 1.3                                        | 0.94/13              | 2,2                           |                                                              |
| 17         | BR               | $1.1^{+1.3}_{-0.5}$                                                                                                     | $0.8^{+0.6}_{-0.4}$                                                                                                                | $16^{+24}_{-12}$                                                                                   | > 6                                                      | $3^{+6}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                     |                                              | 0.95/13              | $^{2,2}$                      |                                                              |
|            | AP               | $\begin{array}{c} 1.1 \substack{+1.2 \\ -0.5 \\ 1.1 \substack{+1.3 \\ -0.5 \\ 1.1 \substack{+1.3 \\ -0.5 \end{array}}}$ | $0.8^{+0.6}_{-0.4}\\0.8^{+0.6}_{-0.4}$                                                                                             | $14_{-10}^{+17}$                                                                                   | > 8                                                      | $\substack{ 6^{+65}_{-5} \\ 3^{+6}_{-2} \\ 9^{+9}_{-5} }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |                     |                                              | 0.94/13              | $^{2,2}$                      |                                                              |
| 10         | PL               | ${}^{1.1^{+0.6}_{-0.5}}_{1.1^{+0.6}_{-0.4}}_{1.0^{+0.5}_{-0.4}}$                                                        | $\begin{array}{c} 0.8 \substack{+0.7 \\ -0.4 \\ 0.8 \substack{+0.7 \\ -0.4 \\ 0.8 \substack{+0.8 \\ -0.4 \end{array}} \end{array}$ | $19^{+9}_{-6}\\16^{+7}_{-4}\\13^{+7}_{-3}$                                                         | $2.6^{+1.0}_{-0.8}\\6^{+11}_{-3}\\9^{+24}_{-6}$          | $50^{+260}_{-40}\\16^{+19}_{-6}\\33^{+51}_{-8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                     |                                              | 1.87/13              | $^{3,2}$                      |                                                              |
| 18         | BR               | $1.1^{+0.6}_{-0.4}$                                                                                                     | $0.8^{+0.7}_{-0.4}$                                                                                                                | $16^{+7}_{-4}$                                                                                     | $6^{+11}_{-3}$                                           | $16^{+19}_{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.3-7.1                                                                                 | < 0.9               | < 3                                          | 1.81/13              | $^{3,2}$                      |                                                              |
|            | AP               | $1.0^{+0.5}_{-0.4}$                                                                                                     |                                                                                                                                    |                                                                                                    |                                                          | $33^{+51}_{-8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                     |                                              | 1.97/13              | 3,2                           |                                                              |
|            | PL               | $1.0 {\pm} 0.3$                                                                                                         | ${}^{1.2^{+0.6}_{-0.4}}_{1.1^{+0.6}_{-0.3}}$                                                                                       | $1.7^{+0.8}_{-0.6}$                                                                                | $1.7^{+0.3}_{-0.4}$                                      | $4\pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         |                     |                                              | 1.66/25              | 3,3                           | $N/C = 0.8^{+0.3}_{-0.2}$ for <i>Chandra</i>                 |
| 19         | BR               | $1.0^{+0.4}_{-0.2}$                                                                                                     | $1.1^{+0.6}_{-0.3}$                                                                                                                | $1.4^{+0.5}_{-0.4}$                                                                                | $13^{+18}_{-5}$                                          | $4.0\substack{+0.8\\-0.6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         |                     |                                              | 1.44/25              | $^{3,3}$                      | Obs 7591.                                                    |
|            | AP               | $1.0 {\pm} 0.3$                                                                                                         | $1.1^{+0.6}_{-0.3}$                                                                                                                | ${}^{1.7 + 0.8}_{-0.6} \\ {}^{1.4 + 0.5}_{-0.4} \\ {}^{1.4 + 0.5}_{-0.4} \\ {}^{1.4 + 0.5}_{-0.4}$ | ${}^{1.7^{+0.3}_{-0.4}}_{13^{+18}_{-5}}_{11^{+18}_{-4}}$ | $12\pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.3-7.1                                                                                 | < 1.3               | < 2.4                                        | 1.44/25              | 3,3                           |                                                              |
| 00         | PL               | 1                                                                                                                       | 1                                                                                                                                  | $70^{+130}_{-50}\\60^{+90}_{-40}\\50^{+50}_{-30}$                                                  | $2.6^{+2.1}_{-1.4}$                                      | $52^{+15000}_{-50}\\ 8^{+80}_{-5}\\ 18^{+27}_{-8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.3-7.1                                                                                 | < 0.6               | < 6.4                                        | 1.26/11              | $^{2,2}$                      | If the cross-normalization                                   |
| 20         | BR               | 1                                                                                                                       | 1                                                                                                                                  | $60^{+90}_{-40}$                                                                                   | > 3                                                      | $8^{+80}_{-5}_{-57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                     |                                              | 1.31/11              | $^{2,2}$                      | constant between $Chandra$<br>and $NuSTAR$ is left as a free |
|            | AP               | 1                                                                                                                       | 1                                                                                                                                  | $50^{+50}_{-30}$                                                                                   | > 6                                                      | $18^{+27}_{-8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                     |                                              | 1.30/11              | 2,2                           | parameter, $N/C > 2$ at 90% confidence.                      |
|            | PL               | $0.9{\pm}0.2$                                                                                                           | _                                                                                                                                  | $26^{+9}_{-7}$<br>$20^{+7}_{-5}$                                                                   | $2.6^{+0.5}_{-0.4} \\ 8^{+5}_{-2} \\ 10^{+7}_{-3}$       | ${}^{120 + 200}_{-70} \\ {}^{31 + 15}_{-9} \\ {}^{71 + 22}_{-16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.3-7.1                                                                                 | < 0.5               | < 4.6                                        | 1.01/47              | 3,3                           | Only FPMB used. Point                                        |
| 21         | BR               | $0.9{\pm}0.2$                                                                                                           | -                                                                                                                                  | $20^{+7}_{-5}$                                                                                     | $8^{+5}_{-2}$                                            | $31^{+15}_{-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                     |                                              | 1.04/47              | $^{3,3}$                      | source (NARCS 402) flux is $20\pm5\%$ of total.              |
|            | AP               | $0.8 {\pm} 0.2$                                                                                                         | -                                                                                                                                  | $17^{+5}_{-4}$                                                                                     |                                                          | $71^{+22}_{-16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                     |                                              | 1.13/47              | 3,3                           |                                                              |
| 00         | PL               | $1.7^{+1.5}_{-0.8}\\1.6^{+1.4}_{-0.8}\\1.8^{+1.3}_{-0.7}$                                                               | 1                                                                                                                                  | $13^{+12}_{-7}$                                                                                    | $2.0^{+1.3}_{-1.2}$                                      | $5.1_{-4.4}^{+41}$ $3_{-1}^{+6}$ $12_{-6}^{+24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |                     |                                              | 1.92/10              | $^{2,2}$                      |                                                              |
| 22         | BR               | $1.6^{+1.4}_{-0.8}$                                                                                                     | 1                                                                                                                                  | $11^{+10}_{-5}$                                                                                    | > 4                                                      | $3^{+6}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                     |                                              | 1.91/10              | $^{2,2}$                      |                                                              |
|            | AP               |                                                                                                                         | 1                                                                                                                                  | $13^{+13}_{-5}$                                                                                    | $5^{+23}_{-3}$                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.3-7.1                                                                                 | < 3.8               | < 4.4                                        | 1.67/10              | 2,2                           |                                                              |
|            | PL               | $1.7^{+2.1}_{-0.9}$                                                                                                     | 1                                                                                                                                  | $7^{+65}_{-5}$<br>$6^{+49}_{-4}$                                                                   | $1.8^{+2.0}_{-0.8}$                                      | $1.6^{+340}_{-1.3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                     |                                              | 0.83/6               | $^{2,2}$                      |                                                              |
| 23         | BR               | $1.7^{+2.1}_{-0.9}$ $1.7^{+2.0}_{-0.9}$ $1.7^{+2.0}_{-0.9}$                                                             | 1                                                                                                                                  | $6^{+49}_{-4}$                                                                                     | > 4                                                      | $1.6^{+1.3}_{-1.3}$ $1.5^{+14.5}_{-0.9}$ $4.6^{+13}_{-2.6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |                     |                                              | 0.75/6               | $^{2,2}$                      |                                                              |
|            | AP               | $1.7^{+2.0}_{-0.9}$                                                                                                     | 1                                                                                                                                  | $7^{+29}_{-5}$                                                                                     | > 5                                                      | $4.6^{+13}_{-2.6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.3 - 7.1                                                                               | < 3.9               | < 2.9                                        | 0.64/6               | $^{2,2}$                      |                                                              |

Spectral Fitting Results for NuSTAR Sources (continued)

113

| Src | Model   | N/C                                                                                         | FPMA/B | N <sub>H</sub>                                                                             | $\Gamma$ or                                                       | Norm                                                                  | Line En. | Line Eq. | Line norm   | $\chi^2_ u/{ m dof}$ | Bin        | Comments        |
|-----|---------|---------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|----------|----------|-------------|----------------------|------------|-----------------|
| No. | tbabs*X | norm                                                                                        | norm   | $(10^{22} \mathrm{cm}^{-2})$                                                               | $kT \ (keV)$                                                      | $(10^{-5})$                                                           | (keV)    | (keV)    | $(10^{-6})$ |                      | $(\sigma)$ |                 |
|     | PL      | $0.7 {\pm} 0.3$                                                                             | 1      | $28^{+12}_{-8}$                                                                            | $5.0^{+2.2}_{-1.4}$<br>$1.7^{+1.3}_{-0.7}$<br>$1.4^{+0.8}_{-0.4}$ | $1180^{+41220}_{-1070}\\50^{+290}_{-30}$                              | 6.3-7.1  | < 16     | < 6.2       | 1.25/23              | 2,2        |                 |
| 24  | BR      | $0.7 {\pm} 0.3$                                                                             | 1      | $20_{-6}^{+8}$                                                                             | $1.7^{+1.3}_{-0.7}$                                               | $50^{+290}_{-30}$                                                     |          |          |             | 1.33/23              | $^{2,2}$   |                 |
|     | AP      | $0.7{\pm}0.3$                                                                               | 1      | $24^{+\tilde{7}}_{-6}$                                                                     | $1.4^{+0.8}_{-0.4}$                                               | $160^{+500}_{-110}$                                                   |          |          |             | 1.32/23              | $^{2,2}$   |                 |
|     | PL      | $1.3^{+1.3}_{-0.6}$                                                                         | _      | $3.1^{+3.8}_{-2.8}$                                                                        | $1.8 {\pm} 0.7$                                                   | $1.9^{+4.2}_{-1.5}$                                                   |          |          |             | 1.14/8               | $^{2,2}$   |                 |
| 25  | BR      | $1.3^{+1.7}_{-0.6}$                                                                         | _      | $2.3^{+3.0}_{-2.2}$                                                                        | > 6                                                               | $1.7^{+1.1}_{-1.0}$                                                   |          |          |             | 1.05/8               | $^{2,2}$   | Only FPMA used. |
|     | AP      | ${\begin{array}{c}{}1.3^{+1.3}_{-0.6}\\1.3^{+1.7}_{-0.6}\\1.3^{+1.7}_{-0.6}\end{array}}$    | -      | $\begin{array}{r} 3.1^{+3.8}_{-2.8} \\ 2.3^{+3.0}_{-2.2} \\ 2.3^{+2.9}_{-2.1} \end{array}$ | > 6                                                               | $5\pm3$                                                               | 6.3-7.1  | < 2.1    | < 1.8       | 1.02/8               | $^{2,2}$   |                 |
|     | PL      | $1.3^{+2.8}_{-0.7}$                                                                         | 1      | $30^{+35}_{-23}\\28^{+31}_{-21}\\28^{+28}_{-19}$                                           | $1.5^{+1.0}_{-0.9}$                                               | $2.8^{+30}_{-2.5}\\3.5^{+5.5}_{-2.5}$                                 | 6.3-7.1  | < 1.2    | < 1.9       | 1.57/10              | $^{2,2}$   |                 |
| 26  | BR      | $1.3^{+2.6}_{-0.6}$                                                                         | 1      | $28^{+31}_{-21}$                                                                           | > 9                                                               | $3.5^{+5.5}_{-2.5}$                                                   |          |          |             | 1.58/10              | $^{2,2}$   |                 |
|     | AP      | $1.3^{+2.6}_{-0.6}\\1.3^{+2.5}_{-0.6}$                                                      | 1      | $28^{+\overline{28}}_{-19}$                                                                | > 13                                                              | $11^{+12}_{-8}$                                                       |          |          |             | 1.59/10              | $^{2,2}$   |                 |
|     | PL      | $\begin{array}{r} 4.4^{+5.9}_{-3.5} \\ 6.3^{+6.2}_{-5.2} \\ 7.4^{+10.2}_{-2.7} \end{array}$ | 1      | < 23                                                                                       | $0.9^{+0.8}_{-0.4}$                                               | $0.18^{+2.68}_{-0.09}$                                                | 6.3-7.1  | < 1.1    | < 0.5       | 0.85/8               | $^{2,2}$   |                 |
| 27  | BR      | $6.3^{+6.2}_{-5.2}$                                                                         | 1      | < 27                                                                                       | > 23                                                              | $0.7^{+6.0}_{-0.3}$                                                   |          |          |             | 0.95/8               | $^{2,2}$   |                 |
|     | AP      | $7.4_{-2.7}^{+10.2}$                                                                        | 1      | < 34                                                                                       | > 20                                                              | ${0.18}^{+2.68}_{-0.09}\\ {0.7}^{+6.0}_{-0.3}\\ {1.4}^{+13.8}_{-0.7}$ |          |          |             | 1.08/8               | $^{2,2}$   |                 |

Spectral Fitting Results for NuSTAR Sources (continued)

Notes: Errors provided are 90% confidence intervals, except for errors on the line equivalent widths which are  $1\sigma$  confidence intervals.

(2) For sources NNR 1-3, which have been analyzed in more detail in other papers, we present the results of simplified models, used to derive the fluxes and conversion factors in Table 2.22. For all other sources, we present fits using power-law (PL), bremsstrahlung (BR), and collisionally-ionized apec models (AP). Some models include a Gaussian line (G) or partial covering absorption (PCA). The best-fitting model for each source is written in bold text.

(3) Multiplicative constant included in all spectral models. The constant is set to 1.0 for *Chandra* and, if enough spectral bins are available, it is allowed to vary independently for *NuSTAR* FPMA and FPMB. *N/C* provides the ratio of the *NuSTAR* FPMA constant relative to *Chandra*.

(4) Ratio of the FPMA to FPMB fitting constants, providing the cross-calibration of the two NuSTAR modules. For sources with insufficient photon statistics, this ratio is set to 1.0.

(11) Reduced  $\chi^2$  statistic and degrees of freedom for the best-fitting model.

(12) Minimum significance of bins for Chandra, NuSTAR spectra.

(16-18) The central energy, equivalent width, and normalization of a Gaussian model accounting for iron line emission. In cases where an iron line is clearly visible in the spectrum, a Gaussian line (G) is included in the model; otherwise, we provide the results of the best-fit models without a Gaussian line and an upper limit to the Fe line equivalent width derived by adding a Gaussian component as described in § 2.3.10.

|                      | Ph.                  | Flux $(10^{-6} \text{cm}^{-6})$                             | $^{-2}s^{-1})$                                                             | Abs. Fl                                                                                  | ux $(10^{-14} \text{erg})$                  | $cm^{-2}s^{-1}$ )                                                                    | Ph. flux | to unabs.          | flux $(10^{-9} \text{erg/ph})$ |
|----------------------|----------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------|----------|--------------------|--------------------------------|
| $\operatorname{Src}$ | Chandra              | NuSTAR                                                      | NuSTAR                                                                     | Chandra                                                                                  | NuSTAR                                      | NuSTAR                                                                               | Chandra  | NuSTAR             | NuSTAR                         |
| No.                  | 210  keV             | 3-10  keV                                                   | $10\mathchar`-20~{\rm keV}$                                                | 210  keV                                                                                 | 3-10  keV                                   | $10\mathchar`-20~{\rm keV}$                                                          | 210  keV | $310~\mathrm{keV}$ | 10-20  keV                     |
| (1)                  | (2)                  | (3)                                                         | (4)                                                                        | (5)                                                                                      | (6)                                         | (7)                                                                                  | (8)      | (9)                | (10)                           |
| 1                    | _                    | $614000 \pm 300$                                            | $19950^{+30}_{-50}$                                                        | _                                                                                        | $490300^{+200}_{-300}$                      | $39590^{+60}_{-100}$                                                                 | _        | 12.2               | 20.9                           |
| 2                    | $2200^{+200}_{-500}$ | $1500^{+100}_{-300}$                                        | $1700^{+500}$                                                              | $2500^{+300}_{-600}$                                                                     | $1700^{+200}_{-300}$                        | $4000^{+1000}_{-2000}$                                                               | 27.0     | 24.7               | 26.3                           |
| 3                    | $19_{-0.3}^{+0.2}$   | $56.0^{+0.3}_{-1.9}$                                        | $22.8^{+0.1}_{-0.8}$                                                       | $16 \pm 2$                                                                               | $52.1_{-1.8}^{+0.2}$                        | $51.3_{-1.9}^{+0.3}$                                                                 | 14.4     | 12.6               | 23.4                           |
| 4                    | $101^{+3}_{-7}$      | $43^{+1}_{-4}$                                              | $7.0^{+0.4}_{-0.7}$                                                        | $71^{+2}_{-6}$                                                                           | $36^{+1}_{-3}$                              | $15.3^{+0.8}_{-1.6}$                                                                 | 9.3      | 9.7                | 22.3                           |
| 5                    | $16^{+2}_{-4}$       | $21.8_{-3.6}^{+0.4}$                                        | $7.1_{-1.4}^{+0.2}$                                                        | $15_{-4}^{+1}$                                                                           | $20.6_{-3.4}^{+0.3}$                        | $15.7^{+0.3}_{-3.0}$                                                                 | 26.5     | 19.0               | 24.1                           |
| 6                    | $82^{+3}_{-7}$       | $68^{+4}_{-9}$                                              | $21^{+2}_{-5}$                                                             | $68^{+3}_{-7}$                                                                           | $63^{+3}_{-8}$                              | $47^{+4}_{-11}$                                                                      | 9.9      | 10.2               | 22.7                           |
| 7                    | $42^{+1}_{-3}$       | $36^{+1}_{-3}$                                              | $21^{+2}_{-5}$ $1.7^{+0.2}_{-0.4}$                                         | $32^{+1}_{-3}$                                                                           | $29.1^{+0.9}_{-2.5}$                        | $3.3^{+0.4}_{-0.8}$                                                                  | 14.3     | 11.7               | 20.7                           |
| 8                    | $43^{+3}_{-7}$       | $40.3_{-6.4}^{+0.6}$                                        | $16.6^{+0.3}_{-2.6}$                                                       | $39^{+3}_{-6}$                                                                           | $37.8^{+0.5}_{-5.8}$                        | $37.5_{-6.0}^{+0.8}$                                                                 | 15.7     | 13.4               | 23.5                           |
| 9                    | $43\pm3$             | $33^{+2}_{-3}$                                              | $12.5_{-1.1}^{+0.9}$                                                       | $37\pm3$                                                                                 | $31\pm2$                                    | $28\pm2$                                                                             | 11.2     | 10.9               | 22.9                           |
| 10                   | _                    | $55^{+3}_{-24}$                                             | $3.6^{+0.3}_{-2.1}$                                                        | _                                                                                        | $44^{+2}_{-19}$                             | $7.5_{-4.4}^{+0.7}$                                                                  | _        | 23.2               | 23.0                           |
| 11                   | $2.6^{+0.6}_{-1.1}$  | $10.3_{-4.1}^{+0.2}$                                        | $2.15^{+0.03}_{-0.98}$                                                     | $2.0^{+0.6}_{-0.9}$                                                                      | $9.0^{+0.2}_{-3.5}$                         | $4.65_{-2.13}^{+0.06}$                                                               | 9.8      | 10.0               | 22.0                           |
| 12                   | $10.4_{-3.9}^{+0.8}$ | $10.4_{-3.1}^{+0.2}$                                        | $2.35_{-0.8}^{+0.03}$                                                      | $\begin{array}{c} 2.0 \\ -0.9 \\ 9^{+2}_{-3} \\ 6^{+1}_{-3} \\ 0.0 \end{array}$          | $9.7^{+0.1}_{-2.8} \\ 8.27^{+0.09}_{-3.38}$ | $5.18^{+0.06}_{-1.70}$                                                               | 20.7     | 15.6               | 23.5                           |
| 13                   | $6.4_{-2.8}^{+0.9}$  | $8.4^{+0.2}_{-3.4}$                                         | $5.8^{+0.1}_{-2.4}$                                                        | $6^{+1}_{-3}$                                                                            | $8.27^{+0.09}_{-3.38}$                      | $13.5^{+0.2}_{-5.5}$                                                                 | 12.5     | 11.9               | 23.7                           |
| 14                   | $28.3^{+0.9}_{-4.1}$ | $20^{+1}_{-4}$                                              | $1.1^{+0.2}_{-0.4}$                                                        | $23.5^{+0.9}_{-3.7}$                                                                     | $16.9^{+0.9}_{-3.4}$                        | $2.4^{+0.4}_{-0.8}$                                                                  | 48.5     | 22.5               | 23.1                           |
| 15                   | $25\pm4$             | $30^{+3}_{-5}$                                              | $3.6_{-0.9}^{+0.5}$                                                        | $14^{+3}_{-2}$                                                                           | $23^{+3}_{-4}$                              | $8^{+1}_{-2}$                                                                        | 5.9      | 7.8                | 21.7                           |
| 16                   | $41^{+2}_{-7}$       | $69^{+4}_{-13}$                                             | $9.1^{+0.9}_{-2.2}$                                                        | $34^{+2}_{-6}$                                                                           | $60^{+3}_{-11}$                             | $19^{+2}_{-5}$                                                                       | 16.0     | 13.1               | 21.8                           |
| 17                   | $8^{+2}_{-3}$        | $9.5_{-2.8}^{+0.5}$                                         | $3.6_{-1.1}^{+0.2}$                                                        | $ \begin{array}{r}     14^{+3}_{-2} \\     34^{+2}_{-6} \\     7^{+2}_{-3} \end{array} $ | $9.0^{+0.4}_{-2.6}$                         | $8.2_{-2.6}^{+0.5}$                                                                  | 20.3     | 15.9               | 23.8                           |
| 18                   | $26^{+1}_{-11}$      | $31^{+3}_{-12}$                                             | $5.1_{-2.5}^{+0.6}$ $1.9_{-0.9}^{+0.3}$                                    | $22^{+1}_{-10}$                                                                          | $28^{+2}_{-11}$                             | $11^{+1}_{-5}$                                                                       | 17.0     | 13.9               | 22.2                           |
| 19                   | $15^{+3}_{-4}$       | $10.1^{+0.4}_{-1.8}$                                        | $1.9_{-0.9}^{+0.3}$                                                        | $11^{+2}_{-3}$                                                                           | $8.8_{-1.7}^{+0.4}$                         | $4.2^{+0.7}_{-2.0}$                                                                  | 7.8      | 9.0                | 21.8                           |
| 20                   | $7.3_{-5.5}^{+0.2}$  | $7.3^{+0.1}_{-5.2}$                                         | $4.4_{-2.5}^{+0.2}$ $11.5_{-4.2}^{+0.4}$                                   | $7.8_{-5.8}^{+0.2}$                                                                      | $7.79\substack{+0.09 \\ -5.52}$             | $9.7\substack{+0.6 \\ -5.6}$                                                         | 80.5     | 52.4               | 28.3                           |
| 21                   | $49^{+1}_{-15}$      | $43.4_{-12.2}^{+0.9}$                                       | $11.5_{-4.2}^{+0.4}$                                                       | $43.9_{-14.1}^{+0.8}$                                                                    | $40.0^{+0.6}_{-11.3}$                       | $25^{+1}_{-9}$                                                                       | 27.9     | 19.1               | 23.9                           |
| 22                   | $8.4_{-4.9}^{+0.5}$  | $13.4^{+0.1}$                                               | $1.7^{+0.3}_{1.6}$                                                         | $7.1_{-4.6}^{+0.4}$ $5_{-3}^{+1}$                                                        | $12.0^{+0.1}_{-8.3}$                        | $3.6^{+0.8}_{-3.3}$                                                                  | 14.9     | 12.7               | 21.8                           |
| 23                   | $6^{+1}_{-4}$        | $7 0^{+0.1}$                                                | $1 0^{+0.2}$                                                               | $5^{+1}_{-3}$                                                                            | $-7.1\pm0.1$                                | $4.3^{+0.6}_{-4.0}$                                                                  | 11.1     | 10.7               | 22.3                           |
| 24                   | $9.8^{+0.2}_{-3.0}$  | $6.3^{+0.7}_{-2.4}$                                         | $0.16\substack{+0.03\\-0.09}$                                              | $6.9^{+0.2}_{-2.3}$                                                                      | $4.7^{+0.5}_{-1.8}$                         | $0.32^{+0.06}_{-0.18}$                                                               | 78.9     | 25.8               | 22.5                           |
| 25                   | $8^{+1}_{-5}$        | $7.9^{+0.1}_{-4.9}$ $6.3^{+0.7}_{-2.4}$ $7.6^{+0.1}_{-3.7}$ | $\begin{array}{c} 1.3 \\ -1.8 \\ 0.16 \\ -0.09 \\ 1.8 \\ -1.6 \end{array}$ |                                                                                          | $4.7^{+0.5}_{-1.8}\\6.7^{+0.2}_{-3.3}$      | $\begin{array}{r} 0.32\substack{+0.06\\-0.18}\\ 4.0\substack{+0.6\\-3.5}\end{array}$ | 8.4      | 9.4                | 22.1                           |

Table 2.22: Spectrally Derived Fluxes of NuSTAR Sources

115

|                      | Ph. I               | Flux $(10^{-6} \text{cm})$ | $^{-2}s^{-1})$              | Abs. Flu            | $10^{-14} \text{erg}$ | $cm^{-2}s^{-1})$            | Ph. flux           | ux to unabs. flux $(10^{-9} { m erg/ph})$ |            |  |  |
|----------------------|---------------------|----------------------------|-----------------------------|---------------------|-----------------------|-----------------------------|--------------------|-------------------------------------------|------------|--|--|
| $\operatorname{Src}$ | Chandra             | NuSTAR                     | NuSTAR                      | Chandra             | NuSTAR                | NuSTAR                      | Chandra            | NuSTAR                                    | NuSTAR     |  |  |
| No.                  | 210  keV            | 3-10  keV                  | $10\mathchar`-20~{\rm keV}$ | 210  keV            | 3-10  keV             | $10\mathchar`-20~{\rm keV}$ | $210~\mathrm{keV}$ | 3-10  keV                                 | 10-20  keV |  |  |
| 26                   | $6.1^{+0.7}_{-3.0}$ | $7.8^{+0.2}_{-4.2}$        | $5.4^{+0.1}_{-3.1}$         | $6.3^{+0.8}_{-3.1}$ | $8.0^{+0.1}_{-4.2}$   | $12.4_{-7.1}^{+0.2}$        | 23.9               | 19.7                                      | 25.0       |  |  |
| 27                   | $3.0^{+0.2}_{-2.0}$ | $10.1^{+0.6}_{-5.7}$       | $6.2_{-4.2}^{+0.3}$         | $2.4_{-1.6}^{+0.2}$ | $9.5^{+0.4}_{-5.2}$   | $14.3_{-9.6}^{+0.7}$        | 8.1                | 9.4                                       | 23.2       |  |  |
| $29^{*}$             | $2.1 \pm 0.7$       | $24.9_{-4.6}^{+0.1}$       | $8.79_{-2.07}^{+0.06}$      | $1.8 \pm 0.6$       | $22.6_{-4.1}^{+0.1}$  | $19.8_{-4.7}^{+0.1}$        | 13.1               | 11.8                                      | 23.2       |  |  |

Spectrally Derived Fluxes of NuSTAR Sources (continued)

<u>Notes</u>: These fluxes and conversion factors are determined from spectral fitting. The NuSTAR fluxes represent the average of the FPMA and FPMB fluxes. Errors provided are  $1\sigma$  confidence intervals.

(\*) Due to the poor photon statistics of NNR 29, it was not possible to perform spectral fitting in the same way as for the other sources. Adopting an absorbed power-law model for this source with  $\Gamma = 1.8$  and  $N_{\rm H} = 10^{23}$  cm<sup>-2</sup>, we determined the *Chandra* and *NuSTAR* fluxes using the C-statistic (see § 2.3.10 for more details).

### 2.3.11 Classification of *NuSTAR* Sources

The X-ray spectral and timing properties of the NuSTAR sources, as well as information about their optical and infrared counterparts, can help identify their physical nature. The three brightest sources in the NuSTAR Norma survey are well-studied and classified; 4U 1630-472 (NNR 1) is a black hole LMXB (e.g. Barret et al. 1996; Klein-Wolt et al. 2004), IGR J16393-4643 (NNR 2) is a neutron star HMXB (Bodaghee et al. 2006; B16), and HESS J1640-465 (NNR 3) is a pulsar and associated pulsar wind nebula (G14;Archibald et al. 2016). Here we present the most likely classifications of the fainter NuSTAR sources and their hard X-ray properties.

#### Colliding wind binaries

Two of the NuSTAR sources in the Norma region are likely colliding wind binaries (CWBs), NNR 7 and 14.

NNR 7 actually consists of two *Chandra* sources blended together due to *NuSTAR*'s PSF. In *Chandra* ObsID 11008, where these two sources are resolved, they exhibit very similar spectral properties ( $N_{\rm H}$  and kT values are consistent at  $<1\sigma$  level), but the 0.5–10 keV flux of NARCS 1279 is 2 times higher than the flux of NARCS 1278. These sources are blended in *Chandra* ObsIDs 12508 and 12509 because they are far off-axis, and the combined flux of the two sources is a factor of 3 higher in these later observations. Spectroscopic follow-up of the near-IR counterparts of both of these *Chandra* sources revealed they are Wolf-Rayet stars of spectral type WN8 (Rahoui et al. 2014). These stars belong to the young massive cluster Mercer 81 (Mercer et al. 2005) located at a distance of  $11\pm2$  kpc (Davies et al. 2012). The *Chandra* spectra of these sources were better fit by thermal plasma models than power-law models, suggesting that these sources were more likely to be CWBs than HMXBs with compact objects accreting from the powerful Wolf-Rayet stellar winds.

The NuSTAR data provides even stronger support for the CWB hypothesis for NNR 7. Joint fitting of the Chandra (from NARCS) and NuSTAR spectra of these blended sources reveal that they fall off steeply above 1 keV and show prominent Fe line emission, primarily due to Fe XXV based on its 6.76±0.1 keV line energy (House 1969). The spectra are best fit by an apec thermal model with  $kT = 3.2^{+0.8}_{-0.5}$  keV and a metal abundance of 0.5±0.3 solar, or a steep power-law model with  $\Gamma = 3.4^{+0.4}_{-0.3}$  and Fe line emission with 650 ± 20 eV equivalent width. These spectral properties rule out the possibility that NNR 7 could be an accreting HMXB, since accreting HMXBs have harder power-law spectra and Fe I K $\alpha$  emission at 6.4 keV, typically with equivalent widths < 100 eV (Torrejón et al. 2010). Elshamouty et al. (2016) found that, in quiescence, one neutron star HMXB, V0332+53 exhibits a soft spectrum ( $\Gamma \approx 4$  or  $kT_{\rm BB} \approx 0.4$  keV) without prominent Fe lines; if this spectrum is typical of quiescent HMXBs, then we can also rule out the possibility that NNR 7 is a quiescent HMXB given its hard spectrum and prominent Fe emission. The unabsorbed 0.5–10 keV flux of NNR 7 based on the combined NARCS and NuSTAR spectrum<sup>16</sup> is  $1.20^{+0.04}_{-0.12} \times 10^{-12}$  erg cm<sup>-2</sup> s<sup>-1</sup>.

 $<sup>^{16}</sup>$ The unabsorbed 0.5–10 keV flux reported here for NARCS 1278 and 1279 combined is higher than that

Adopting the 0.5–10 keV flux ratio for NARCS 1278 and 1279 and the bolometric luminosities of their Wolf-Rayet counterparts calculated by Rahoui et al. (2014), we find that their respective X-ray luminosities are  $5 \times 10^{33}$  erg s<sup>-1</sup> and  $1.2 \times 10^{34}$  erg s<sup>-1</sup>, and they have  $L_X/L_{\rm bol} = 1.3 \times 10^{-6}$  and  $8 \times 10^{-7}$ , respectively.

Isolated high-mass stars are known to be X-ray emitters, but their spectra typically have  $kT \sim 0.5$  keV and their 0.5–10 keV luminosities follow the scaling relation  $L_X/L_{\rm bol} \approx 10^{-7}$ (e.g. Berghoefer et al. 1997; Sana et al. 2006). The harder X-ray emission and higher  $L_X/L_{\rm bol}$ exhibited by NNR 7 have been observed from the wind-wind shocks in CWBs (Zhekov & Skinner 2000; Portegies Zwart et al. 2002) and the magnetically channeled shocks of high-mass stars with  $\sim$ kG fields (Gagné et al. 2005; Petit et al. 2013). For NNR 7, a CWB nature is more likely given the strength of the Fe line at 6.7 keV; magnetic high-mass stars tend to exhibit weak Fe XXV line emission (Schulz et al. 2000; Schulz et al. 2003), while the Fe XXV lines in CWB spectra can have equivalent widths as large as  $\sim 1-2$  keV (Viotti et al. 2004; Mikles et al. 2006). The X-ray spectrum of NNR 7 exhibits substantial absorption corresponding to  $N_{\rm H} = 1.1 \pm 0.2 \times 10^{23}$  cm<sup>-2</sup>, which is in excess of the integrated interstellar absorption along the line-of-sight  $(N_{\rm HI+H_2} = 7.8 \times 10^{22} \text{ cm}^{-2})$ . The excess absorption measured in the X-ray spectrum of NNR 7 could either be due to inhomogeneities in the ISM or local absorption, which is observed in some CWBs, such as  $\eta$  Carinae (Hamaguchi et al. 2007). Finally, X-ray variability is more common in CWBs than isolated high-mass stars (Corcoran 1996). The X-ray flux variations displayed by CWBs are primarily associated with the orbital period of the binary and can be as large as a factor of  $\approx 20$  (Pittard et al. 1998; Corcoran 2005). Thus, the X-ray variability exhibited by NNR 7 provides further evidence of its CWB origin.

NNR 14 shares many similarities with NNR 7 and is also likely to be a CWB. The near-IR spectrum of the counterpart of NNR 14 shows emission lines typical of a Wolf-Rayet star of spectral type WN7 in the K-band, but the H-band spectrum lacks the emission lines expected for this spectral type. Overall, the near-IR spectrum may be consistent with an O3I star (Corral-Santana et al., in prep). Its X-ray spectrum is well fit by an apec thermal model with  $kT = 2.1^{+0.9}_{-0.5}$  keV or a power-law with  $\Gamma = 4.1^{+1.2}_{-0.9}$  and Fe line emission centered at  $6.59^{+0.08}_{-0.06}$  keV (consistent with Fe XXV 6.7 keV emission) with a very high equivalent width of  $1.8 \pm 0.5$  keV, making it very similar to the CWB candidate CXO J174536.1-285638 (Mikles et al. 2006). Furthermore, NNR 14 exhibits a very high X-ray absorbing column  $(N_{\rm H} = 2.9^{+0.9}_{-0.7} \times 10^{23} \text{ cm}^{-2})$  that is well in excess of the integrated interstellar column density along the line-of-sight  $(N_{\rm HI+H_2} = 8 \times 10^{22} \text{ cm}^{-2})$ ; this amount of absorption local to the X-ray source is larger than for NNR 7 but still within the range observed in CWBs (Hamaguchi et al. 2007). NNR 14 is coincident with G338.0-0.1, an HII region most likely located at a distance of 14.1 kpc (Wilson et al. 1970; Kuchar & Clark 1997; Jones & Dickey 2012). It would not be surprising for NNR 14 and G338.0-0.1 to be physically associated since HII regions are photoionized by high-mass stars and the extreme  $N_{\rm H}$  along the line-of-sight to NNR 14 indicates it is likely located in the far Norma arm or beyond. Thus, adopting a distance of 14 kpc for NNR 14, its unabsorbed 3–10 keV luminosity is  $10^{34}$  erg s<sup>-1</sup>, which is

reported in Rahoui et al. (2014) because we account for the absorption due to the X-ray derived  $N_{\rm H}$  while in Rahoui et al. (2014) only absorption attributed to the ISM is removed.

within the typical range for CWBs.

#### Supernova remnants and pulsar wind nebulae

In addition to HESS J1640-465, there are three other extended sources in the NuSTAR Norma survey, NNR 5, 8, and 21.

Jakobsen et al. (2014) identified the *Chandra* counterpart of NNR 5 as a pulsar wind nebula (PWN) candidate due to its bow-shock, cometary morphology and hard power-law spectrum. Although an AGN or LMXB origin cannot be ruled out, these possibilities were disfavored due to the lack of significant X-ray variability, both on short-term timescales during the NuSTAR observation and on long-term timescales between the Chandra and NuSTAR observations, separated by three years. Our search for pulsations in the NuSTARdata did not yield a detection that would have secured a PWN origin, but our search was only sensitive to high pulsed fractions > 45%. A joint spectral fit to the NuSTAR and Chandra data, covering the point source and extended emission in both data sets, yielded a higher  $N_{\rm H}$  value and steeper photon index than measured by Jakobsen et al. (2014). Our best fit photon index of  $\Gamma = 2.3 \pm 0.3$  for a power-law model is possible for a pulsar/PWN ( $\Gamma \sim 1-2$ ; Kargaltsev & Pavlov 2008), which is consistent with the earlier results, derived using Chandra and XMM-Newton data. However, the  $N_{\rm H}$  value we measure  $(2.7^{+1.0}_{-0.8} \times 10^{23} \text{ cm}^{-2})$  is higher than the integrated interstellar absorption along the line-of-sight ( $N_{\rm H} = 8 \times 10^{22} \ {\rm cm}^{-2}$ ), indicating that NNR 5 is likely on the far side of the Galaxy and may be associated with the star-forming complexes located at  $\sim 10$  kpc; this source may be subject to additional local absorption or lie within or behind molecular clouds.

The source NNR 8 is a region of extended emission with a centrally peaked morphology coincident with the CTB 33 supernova remnant (SNR) and HII complex located at a distance of ~11 kpc and visible at radio wavelengths (Sarma et al. 1997). While NNR 8 may be associated with this complex, it notably does not overlap nearby SNR G337.0-0.1, as shown in Figure 2.28. This hard X-ray diffuse emission was discovered in an *XMM-Newton* field containing the soft gamma-ray repeater (SGR) 1627-41 (here NNR 24) and is attributed by Esposito et al. (2009) to either a galaxy cluster or a PWN. The joint *Chandra* and *NuSTAR* spectrum of NNR 8 is well-fit by an absorbed power-law model with a typical pulsar/PWN index of  $\Gamma = 1.8 \pm 0.2$ . In contrast, an absorbed bremsstrahlung model yields a temperature of  $kT = 25^{+22}_{-9}$  keV in the 0.5–20 keV band, which is higher than expected for most galaxy clusters (Maughan et al. 2012). No pulsations were detected from NNR 8, but our search was only sensitive to periodic signals with very high pulsed fractions (> 48%), leaving open the possibility of a pulsar embedded in diffuse PWN emission.

Assuming NNR 8 is a PWN, we can estimate the spin down energy loss of the pulsar from correlations based on the PWN X-ray luminosity and photon index. Since the high  $N_{\rm H} (1.4^{+0.7}_{-0.5} \times 10^{23} \text{ cm}^{-2})$  measured from the X-ray spectrum of NNR 8 indicates that it lies on the far side of the Galaxy and it is reasonable to expect a PWN to be in the vicinity of star-forming regions, we adopt the 11 kpc distance of the far Norma arm and CTB 33 for NNR 8 and calculate its unabsorbed 2–10 keV luminosity to be  $1.0 \times 10^{34} \text{ erg s}^{-1}$ . Using



Figure 2.28: NuSTAR image of the region around NNR 8. The 3–10 keV band is shown in red, 10-20 keV in green, and 20-40 keV in blue. White contours show the radio continuum emission of the CTB 33 complex from Sarma et al. (1997). Green points denote the positions of NuSTAR sources. G337.0-0.1 is a confirmed supernova remnant while G336.9-0.2 is an HII region. It has been suggested that the magnetar, NNR 24, is associated with this SNR (Brogan et al. 2000). However, the extended emission of NNR 8 is clearly not coincident with G337.0-0.1 and its origin may be an unassociated PWN.

the correlation between 2–10 keV luminosity and spin down energy loss from Possenti et al. (2002), we estimate the pulsar  $\dot{E} \approx 7 \times 10^{36}$  erg s<sup>-1</sup>. The pulsar spin-down luminosity can also be estimated from the PWN photon index using correlations derived by Gotthelf (2003); the photon index of NNR 8 yields  $\dot{E} \approx 1.4 \times 10^{37}$  erg s<sup>-1</sup>, which is consistent with the value determined from the correlation of  $L_X$  and  $\dot{E}$  given the statistical uncertainties of the X-ray luminosity and photon index of NNR 8. The fact that these estimates of  $\dot{E}$  are consistent provides additional support in favor of a PWN origin for this source.

The extended emission of NNR 21 is associated with SNR G337.2+0.1, located at a distance of ~ 14 kpc. Using *Chandra* observations, Jakobsen (2013) found that the radial profile of the SNR exhibits a central compact source, suggesting a pulsar powering a PWN, as well as excess emission at a radius of  $\approx 1.8$ , attributable to the SNR shell. The dearth of *NuSTAR* photons from the central point source does not allow for a significant detection of a pulsar signal, so we cannot confirm the PWN origin of NNR 21. *XMM-Newton* observations of this SNR revealed that it has a non-thermal spectrum which steepens further from the central core (Combi et al. 2006, hereafter C06), as is seen in many plerionic SNRs (e.g. IC 443, 3C 58, G21.5-0.9; Bocchino & Bykov 2001 and references therein). Spectral fitting of the

NuSTAR and Chandra data results in a higher column density  $(N_{\rm H} = 2.6^{+0.9}_{-0.7} \times 10^{23} \text{ cm}^{-2})$ and steeper photon index ( $\Gamma = 2.6^{+0.5}_{-0.4}$ ) than measured by C06 for the pulsar/PWN (central source and extended emission combined). The Chandra/NuSTAR-derived photon index, while consistent at the 90% confidence level with the XMM measured value ( $\Gamma = 1.82 \pm 0.45$ ), is steeper than expected for a pulsar/PWN. We find that the unabsorbed 2–10 keV luminosity of NNR 21 is  $3 \times 10^{34}$  erg s<sup>-1</sup>, and thus the  $L_X - \dot{E}$  correlation from Possenti et al. (2002) yields a spin-down luminosity estimate of  $\dot{E} \approx 1.5 \times 10^{37}$  erg s<sup>-1</sup>. The spin-down luminosity that is estimated using the  $\Gamma - \dot{E}$  correlation from Gotthelf (2003) is in good agreement if it is based on the XMM-derived  $\Gamma = 1.8$  ( $\dot{E} \approx 1.4 \times 10^{37}$  erg s<sup>-1</sup>), but it is at odds if the Chandra/NuSTAR-derived  $\Gamma$  is adopted ( $\dot{E} > 1.7 \times 10^{38}$  erg s<sup>-1</sup>).<sup>17</sup>

Comparing our power-law fits of NNR 21 with the results of C06, the Chandra/NuSTARderived  $N_{\rm H}$  is statistically higher than the  $N_{\rm H} = 1.15 \pm 0.27 \times 10^{23} \ {\rm cm}^{-2}$  measured by C06 for the whole PWN, but it is consistent at better than 90% confidence with the value C06 measure for the outer region of the PWN ( $N_{\rm H} = 1.62 \pm 0.56 \times 10^{23} \text{ cm}^{-2}$ ), which excludes the central 12"-radius region; this central region has a much lower column density of  $5.9 \pm 1.5 \times 10^{22}$  cm<sup>-2</sup>. Even if we compare the results of our apec model fits with C06, the Chandra/NuSTAR-derived  $N_{\rm H}$  is more consistent with the  $N_{\rm H}$  value that C06 measure for the outer region rather than the whole PWN. One possible explanation for these spatial and temporal  $N_{\rm H}$  variations is that the outer region of the PWN is interacting with a molecular cloud. This scenario would naturally explain the higher  $N_{\rm H}$  measured in the outer region of the PWN compared to the central region by C06, and the increase in the average  $N_{\rm H}$ measured for the whole PWN between the 2004 XMM observation and the 2011 Chandra observation could be attributed to a larger fraction of the PWN interacting with the dense interstellar medium as the PWN expands. Additional X-ray observations to obtain spatially resolved spectroscopy of NNR 21 are required to better understand the origin of the spectral variations exhibited by this SNR.

#### Magnetars

A known magnetar and a magnetar candidate are present in the *NuSTAR* Norma survey. NNR 24 is a known soft gamma-ray repeater, SGR 1627-41, which was discovered by the Burst and Transient Source Experiment (BATSE) when the source went into outburst in 1998 June (Woods et al. 1999). It has been suggested that this SGR is associated with the young SNR G337.0-0.1 in the CTB 33 complex (Hurley et al. 1999), shown in Figure 2.28. SGR 1627-41 last went into outburst in 2008 (Esposito et al. 2008) and it was found to have returned to quiescence by 2011 in NARCS observations (An et al. 2012). The cross-normalization constant from fitting the *NuSTAR* and *Chandra* spectra is consistent with 1.0 at 90% confidence, indicating that the magnetar persists in quiescence and has not significantly decreased in flux since 2011. We measure a photon index of  $5.0^{+2.2}_{-1.4}$  which is steeper but still consistent with that measured by An et al. (2012) at 90% confidence. Assuming a distance of 11 kpc,

<sup>&</sup>lt;sup>17</sup>The  $\Gamma - \dot{E}$  correlation is only valid for  $\Gamma < 2.36$ , so we can only provide a lower bound on  $\dot{E}$  for the *Chandra/NuSTAR*-derived  $\Gamma = 2.6^{+0.5}_{-0.4}$ .

based on the association with the CTB 33 complex, we find that NNR 24 has unabsorbed luminosities of  $2.3 \times 10^{33}$  erg s<sup>-1</sup> in the 3–10 keV band and  $5.2 \times 10^{31}$  erg s<sup>-1</sup> in the 10–20 keV band.

NNR 10, a transient source, may also be a magnetar. The long-term variability and spectral analysis of this source is described in detail in T14, and our spectral analysis yields consistent results. The flux of NNR 10 varies by more than a factor of 20 over a three-week period, with the peak of activity lasting between 11 hours and 1.5 days and having a soft spectrum with  $\Gamma = 4.1^{+0.9}_{-0.8}$  or  $kT = 3^{+2}_{-1}$  keV for a bremsstrahlung model. The high  $N_{\rm H}$  measured from the X-ray spectrum of NNR 10 suggests that this source is located at  $\geq 10$  kpc and thus has a peak  $L_X \geq 10^{34}$  erg s<sup>-1</sup> in the 2–10 keV band. As argued by T14, NNR 10 is most likely either a shorter than average outburst from a magnetar or an unusually bright flare from a chromospherically active binary.

#### Black hole binary candidate

Among the remaining NuSTAR Norma sources not discussed in § 2.3.11- 2.3.11, NNR 15 stands out as the only source showing clear short-timescale variability in the NuSTAR band and also having the lowest median energy. As can be seen in Figure 2.24, NNR 15 displays flaring behavior in the 3–20 keV band; during one flare lasting about 15 ks, the source flux increases by a factor of >6, and during a smaller flare lasting about 7 ks, the flux increases by a factor of >2. This source also shows variability on year-long timescales since the 3–10 keV flux measured in 2013 NuSTAR observations is a factor of 2 higher than the Chandra flux measured from 2011 observations. The NuSTAR and Chandra spectra are well-fit by an absorbed power-law model with very low  $N_{\rm H}$ , indicating that the source must reside within a few kiloparsecs, and  $\Gamma = 2.6 \pm 0.4$  (or  $kT = 2.9^{+1.0}_{-0.7}$  keV for a bremsstrahlung model). No Fe line is visible in the spectrum, but due to the limited photon statistics, we can only constrain the equivalent width of a potential Fe line feature to be < 1.7 keV, a loose constraint that does not help to distinguish between different types of X-ray sources. Assuming a distance of 2 kpc, NNR 15 has an average unabsorbed 3–20 keV luminosity of  $1.5 \times 10^{32}$  erg s<sup>-1</sup>. Its optical/infrared counterpart has been identified as a mid-GIII star (Rahoui et al. 2014).

Based on these properties, we identify NNR 15 as a black hole LMXB candidate in quiescence, although an active binary (AB) or CV origin cannot be entirely ruled out. In quiescence, ABs typically have  $L_X = 10^{29} - 10^{31.5}$  erg s<sup>-1</sup> and kT < 2 keV (Dempsey et al. 1993) but they can exhibit flares with peak luminosities of  $\sim 10^{32}$  erg s<sup>-1</sup> and  $kT \approx 10$  keV (Franciosini et al. 2001). However, AB flares tend to have very short rise times and long decay times (Pandey & Singh 2012), whereas the flares seen in NNR 15 appear to have more symmetric profiles. CVs have  $L_X = 10^{29-33}$  erg s<sup>-1</sup> and kT = 1 - 25 keV (e.g. Eracleous et al. 1991; Muno et al. 2004), with magnetic CVs being more luminous and spectrally harder than non-magnetic CVs (Barlow et al. 2006; Landi et al. 2009), so their properties are consistent with NNR 15. However, the flaring exhibited by NNR 15 is not typically seen in CVs. Non-magnetic CVs have outbursts that last several days and have recurrence times of weeks to months; intermediate polars (IPs) have outbursts of similar duration but

which are very rare (Hellier et al. 1997; Szkody et al. 2002), and polars exhibit flares with ~hour-long durations but they tend to be very soft (kT < 1 keV; Choi et al. 1999; Still & Mukai 2001; Traulsen et al. 2010). The properties of NNR 15 are reminiscent of the quiescent state of V404 Cyg, a well-known LMXB hosting a black hole (BH; Makino et al. 1989; Casares et al. 1992; Shahbaz et al. 1996). Recent NuSTAR observations of V404 Cyg in quiescence show that, in the 3–25 keV band, its power-law spectrum has  $\Gamma = 2.35 \pm 0.2$ and it exhibits flux variations of up to a factor of 10 over periods of a few hours (Rana et al. 2016). Given the similarities between the X-ray spectra and light curves of NNR 15 and V404 Cyg, NNR 15 is most likely a BH LMXB, although it may be a CV or an AB. To order-of-magnitude accuracy, it is estimated that  $\sim 1000$  quiescent BH LMXBs reside in the Galaxy (Tanaka 1996); the primary source of uncertainty in this estimate is our limited knowledge of the typical recurrence timescale of BH transients. Making the simplifying assumption that quiescent BH binaries trace the stellar mass distribution of Galaxy and using the estimate of the stellar mass enclosed in the Norma survey area by F14, we would expect ~ 4 BH LMXBs to reside in the survey area. Thus, it is at least plausible that one BH binary would be detected in the *NuSTAR* Norma survey.

#### Cataclysmic variables and active galactic nuclei

Based on NARCS results, we expect that the majority of NuSTAR Norma sources should be a mixture of CVs and AGN. CVs typically have thermal spectra with  $kT \approx 1 - 30$  keV although IPs can display even higher temperatures ( $kT \approx 30 - 50$  keV; Landi et al. 2009), while AGN exhibit power-law spectra with  $\Gamma \approx 1.5 - 2$  (Tozzi et al. 2006; Sazonov et al. 2008). The remaining 17 tier 1 sources (NNR 4, 6, 9, 11–13, 16–20, 22, 23, 25–27, and 29) have bremsstrahlung temperatures and photon indices consistent with being either CVs or AGN. With the NuSTAR, Chandra, and infrared data available for these sources, there are three primary ways to distinguish CVs and AGN:

i. If the absorbing column density inferred from X-ray spectral fitting or *Chandra* quantiles is significantly lower than the integrated interstellar  $N_{\rm H}$  along the line-of-sight to the source, it is a Galactic source.

ii. If the source does not have a point-like infrared counterpart with > 98% reliability in the VVV survey, it may be an AGN or a Galactic source with a K or M main-sequence companion, which would fall below the VVV sensitivity limits (Ks < 18 mag) if located at  $\geq 2$  kpc. Since the energy bands used by the Wide-Field Infrared Survey Explorer (WISE; Wright et al. 2010) can be more useful than the J, H, or K bands for identifying AGN (Stern et al. 2012; Mateos et al. 2012), we also searched for counterparts to the NuSTAR sources in the AllWISE catalog (Cutri & et al. 2013). The BH binary candidate NNR 15 and four tier 2 sources (NNR 28, 30, 31, and 38) have WISE matches located within the 95% positional uncertainty of their Chandra counterparts. The counterparts of NNR 15, 28, and 30 have been idenfitied as low-mass stars through spectroscopic follow-up (Rahoui et al. 2014), and the other WISE counterparts have W1 - W2 < 0.1, far below the typical value of  $W1 - W2 \ge 0.8$  for X-ray luminous AGN (Stern et al.

2012); furthermore, the near-IR spectra of the counterparts of NNR 31 and 38 indicate they are Galactic sources (Corral-Santana et al., in prep). Thus, none of the NNR sources with *WISE* counterparts are AGN, but we cannot rule out the possibility that some AGN are undetected by *WISE*. For instance, in the *NuSTAR* serendipitous survey, which has comparable sensitivity limits to the *NuSTAR* Norma survey, about 25% of *NuSTAR* sources at Galactic latitudes  $|b| > 10^{\circ}$ , which are likely to be AGN, do not have a WISE counterpart (Lansbury et al. 2016).

iii. If the source exhibits strong unshifted Fe emission, it is more likely to be a CV than an AGN. Both magnetic and non-magnetic CVs often exhibit Fe emission; in some sources, individual Fe lines at 6.4, 6.7, and 6.97 keV with equivalent widths of 100–200 eV can be seen, while in others, a broad component centered around 6.7 keV with an equivalent width of up to a few keV is seen, likely resulting from the blending of multiple Fe lines due to low energy resolution (e.g. Mukai & Shiokawa 1993; Ezuka & Ishida 1999; Baskill et al. 2005; Bernardini et al. 2012; Xu et al. 2016). Both type I and type II AGN often exhibit red-shifted Fe emission, with the neutral Fe line typically being strongest, except in some highly ionized AGN where the He-like and H-like Fe lines can rival the neutral Fe line in strength; Fe line emission from AGN typically has equivalent widths < 100 eV, but they can be higher in Compton-thick AGN (Page et al. 2004; Iwasawa et al. 2012; Ricci et al. 2014). The Fe lines in X-ray binaries also tend to have equivalent widths  $\leq 100$  eV, so the strength of Fe line emission can also help discriminate between CVs and LMXBs (Hirano et al. 1987; Nagase 1989).

Seven of the tier 1 sources (NNR 4, 6, 9, 12, 18, 19, 25) fulfill at least one of the three criteria listed above and are most likely CVs. NNR 4 meets all three criteria and there is strong evidence that it is an IP, a CV in which the white dwarf (WD) magnetic field is strong enough  $(B \approx 10^6 - 10^7 \text{ G})$  to truncate the accretion disk and channel the accreting material onto the magnetic poles. The X-ray spectrum of NNR 4 shows low absorption  $(N_{\rm H} < 4 \times 10^{21} {\rm ~cm^{-2}})$ , indicating it is a Galactic source residing at a distance of  $\lesssim 2 {\rm ~kpc}$ . The joint fitting of the Chandra and NuSTAR spectra provides evidence for partial-covering absorption, which is frequently observed in IPs as some of the X-rays produced in the accretion column pass through the accretion curtain on their way to the observer (de Martino et al. 2004; Bernardini et al. 2012). The near-IR counterpart of NNR 4 is variable and displays emission lines often produced in the accretion streams of IPs (Rahoui et al. 2014). Furthermore, this source also exhibits Fe line emission centered at  $6.65^{+0.10}_{-0.06}$  keV line with high equivalent width  $(0.9^{+0.2}_{-0.1} \text{ keV})$ , and a 7150 second period detected by *Chandra*, both of which are typical for IPs (Scaringi et al. 2010). NNR 4 exhibits flux variations on month-year timescales, which is more typical for non-magnetic CVs and polars than IPs (Ramsay et al. 2004), but the flux only varies by a factor < 2, so the case for this source being an IP remains strong. Assuming a distance of 2 kpc, the unabsorbed 3–10 keV luminosity of NNR 4 is  $2 - 4 \times 10^{32}$  erg s<sup>-1</sup>. which is within the luminosity range of IPs (Muno et al. 2004 and references therein).

Sources NNR 6, 9, and 12 all have strong Fe emission centered between 6.4 and 6.8 keV and equivalent widths of  $1.3 \pm 0.4$ ,  $0.4 \pm 0.2$ , and  $1.2 \pm 0.4$  keV, respectively, strongly

indicating that these sources are CVs since both AGN and X-ray binaries tend to have much weaker Fe emission and the Fe emission from AGN is likely to be redshifted. These large equivalent widths are likely due to multiple Fe lines being blended due *NuSTAR*'s low energy resolution. Both NNR 6 and 9 are best-fit by thermal models with high plasma temperatures (kT > 15 keV), which are more typical of magnetic rather than non-magnetic CVs (Landi et al. 2009; Xu et al. 2016). The lack of flux variations for NNR 6 and 9 suggest they are most likely IPs. In addition, NNR 6 has a low-mass (late GIII) stellar counterpart (Rahoui et al. 2014), lending further support to a CV origin for this source. The nature of NNR 12 is less certain, because its softer spectrum ( $kT = 6^{+3}_{-1}$  keV for an **apec** model) is typical for both non-magnetic and magnetic CVs. NNR 21 is likely located at a distance > 10 kpc given its high  $N_{\rm H}$ , so its 3–10 keV luminosity is likely  $\geq 2 \times 10^{33}$  erg s<sup>-1</sup>; this high luminosity coupled with the lack of flux variability suggests this source is also probably an IP.

Another likely IP candidate is NNR 13. This source displays one of the hardest spectra of all the *NuSTAR* Norma sources, having kT > 21 keV or  $\Gamma = 1.0 \pm 0.5$ . Its very hard spectrum and constant flux over long timescales is typical of IPs.

The nature of NNR 18 is discussed in B14; our spectral analysis yields consistent results, finding a high  $N_{\rm H}$  of  $1.9^{+0.9}_{-0.6} \times 10^{23}$  cm<sup>-2</sup> and  $\Gamma = 2.6^{+1.0}_{-0.8}$ . Assuming a distance of > 10 kpc based on the high  $N_{\rm H}$  value, NNR 18 has an unabsorbed 3–10 keV luminosity  $\gtrsim 5 \times 10^{33}$  erg s<sup>-1</sup>. NNR 18 has an early MIII counterpart and exhibited mild X-ray variability on short timescales in *Chandra* observations. As discussed by B14, these properties are consistent with an IP or an LMXB. Another possibility is that this source is a hard-spectrum symbiotic binary (SB) hosting a WD or a symbiotic X-ray binary (SyXB) hosting a NS (Luna et al. 2013); the compact objects in SBs and SyXBs accrete material from the wind of a red giant companion, which is typically of spectral type M or K (Morihana et al. 2016). Hard-spectrum SBs and SyXBs display X-ray luminosities between  $10^{32}$  and  $10^{34}$  erg s<sup>-1</sup> (Masetti et al. 2002; Smith et al. 2008; Nespoli et al. 2010), and variability on short and long timescales (Luna & Sokoloski 2007; Corbet et al. 2008). An IP origin is favored for NNR 18 based on its low levels of variability, while its estimated luminosity and the M giant spectral type of its counterpart favors an SB or SyXB origin.

NNR 19 and 25 show low absorption in their X-ray spectra, indicating they are Galactic sources and probably located at a distance of a few kpc. Both sources are transients which were not detected in NARCS, but they are detected in follow-up *Chandra* observations taken 3 and 34 days after the *NuSTAR* observations, respectively. The flux of NNR 25 increased by a factor of  $\geq 4$  in the couple of years between the NARCS and *NuSTAR* observations and remained high for at least 34 days. NNR 19 was detected at a consistent flux level in multiple *NuSTAR* observations that span  $\approx 100$  days. About 250 days before it is first detected by *NuSTAR*, the 90% confidence upper limit for its 3–10 keV photon flux is  $2 \times 10^{-6}$  cm<sup>-2</sup> s<sup>-1</sup> (a factor 4 below its peak flux), and about 40 days after it is detected by *NuSTAR*, its flux falls below  $4 \times 10^{-6}$  cm<sup>-2</sup> s<sup>-1</sup>. Thus, we find that the flux of NNR 19 increased by a factor of  $\geq 4$  and remained high for a period between 100 and 400 days. In addition, NNR 19 was detected in the archival *Chandra* ObsID 7591, demonstrating that this transient experienced an outburst in 2007, during which its flux was a factor of  $\geq 7$ 

higher than the upper limit measured by NARCS in 2011. The spectra of NNR 19 and 25 have  $kT = 11^{+18}_{-4}$  keV ( $\Gamma = 1.7^{+0.3}_{-0.4}$ ) and kT > 6 keV ( $\Gamma = 1.8 \pm 0.7$ ), respectively. The temporal and spectral properties of NNR 19 and 25 most closely resemble those of polars, CVs with magnetic fields so strong ( $B > 10^7$  G) that the white dwarf magnetosphere inhibits the formation of an accretion disk. Thus, compared to other CVs, polar X-ray emission is very sensitive to changes in the mass transfer rate, and they exhibit flux variations of factors  $\geq 4$  as they transition between low and high accretion states on ~month-year timescales (Ramsay et al. 2004; Worpel et al. 2016), very similar to the behavior of NNR 19 and 25. No IR counterparts in the VVV survey are found for NNR 19 or 25 within the 90% positional uncertainty determined from *Chandra*. While the variability and spectra of NNR 19 and 25 would also be consistent with hard-spectrum SBs or SyXBs, the lack of a counterpart with *Ks* < 18 mag rules out the possibility that these sources have red giant companions, which should be visible out to  $\gtrsim 10$  kpc. In contrast, it is possible for main-sequence K or M-type stars located at distances of a few kiloparsecs to fall below the VVV survey sensitivity.

The nine remaining tier 1 sources (NNR 11, 16, 17, 20, 22, 23, 26, 27, 29) are well-fit either by thermal models with kT = 4 - 30 keV or power-law models with  $\Gamma \approx 2$ , consistent with the spectra of CVs, SBs, SyXBs, LMXBs, or AGN; the uncertainties in the spectral parameters for many of these sources are quite large since they are among the faintest in our survey. All of these sources have high absorption, that is equal to or in excess of the ISM column density through the Galaxy, and they lack IR counterparts, so it is difficult to determine whether they are Galactic or extragalactic. The lack of counterparts does rule out the possibility that these sources are SBs or SyXBs since their red giant companions should be visible through most of the galaxy given the sensitivity of the VVV survey (Ks < 18 mag). Based on the  $\log N - \log S$  distribution of AGN measured in the COSMOS survey (Cappelluti et al. 2009) and accounting for Galactic absorption, conversion from the 2–10 keV to the 3–10 keV band, and the sensitivity curve of the NuSTAR Norma survey (see § 2.3.12), we estimate that about five AGN are present in this survey. Therefore, roughly half of the remaining tier 1 sources may be AGN. The other half are probably CVs since quiescent LMXBs are expected to be relatively rare (Tanaka 1996). Additional NuSTAR or XMM observations are required to distinguish between the possible CV or AGN origin of these nine sources by measuring the strength of Fe line emission and better constraining their spectral hardness. The 3–10 keV fluxes of NNR 11, 20, and 29 vary by factors of > 5 between the NARCS and NuSTAR observations. Such long-term variability is common for AGN, polars, and non-magnetic CVs (Orio et al. 2001; Markowitz & Edelson 2004; Ramsay et al. 2004; Baskill et al. 2005), so it does not help us discriminate between Galactic and extragalactic sources but it at least excludes an IP origin for these three sources.

The ten tier 2 sources included in our catalog do not have enough NuSTAR counts to meaningfully constrain their spectral properties, but their distribution in the *Chandra* quantile diagram is very similar to the distribution of the 17 tier 1 sources described in this subsection; two are foreground sources while the rest are heavily absorbed and have  $\Gamma < 2$ . Seven of these tier 2 sources (NNR 28, 30, 31, 34, 35, 36, and 38) have reliable IR counterparts, three of which (NNR 28, 30, and 36) have been spectrally identified as low-mass stars (Rahoui et al. 2014). These seven sources are likely to be a mixture of CVs, SBs, and SyXBs like the majority of identified tier 1 sources. Sources NNR 28 and 36 display such low absorption that they are likely located within a few kpc and thus have 3–10 keV luminosities  $\leq 3 \times 10^{31}$  erg s<sup>-1</sup>, so they could also be active binaries given their low luminosity (Strassmeier et al. 1993). An AGN origin cannot be ruled out for NNR 34 and 35, which have VVV counterparts but are not detected by *WISE*. NNR 32, 33, and 37 lack IR counterparts and are heavily absorbed, and could be AGN or Galactic sources. Based on the log*N*-log*S* derived for AGN and CVs in the Norma region by F14, a 1:2 ratio of AGN to CVs/ABs is expected in the 2–10 keV flux range of these tier 2 sources (4×10<sup>-14</sup> <  $f_X < 1 \times 10^{-13}$  erg cm<sup>-2</sup> s<sup>-1</sup>). Such a ratio is plausible among tier 2 sources given the current constraints we can place on their physical nature. However, it is odd that none of the sources which may be AGN are detected by *WISE* with  $W1 - W2 \ge 0.8$ , since the majority of AGN discovered in the *NuSTAR* serendipitous survey have these properties (Lansbury et al. 2016). The fact that our AGN candidates either lack IR counterparts or have only VVV, but not *WISE*, counterparts indicates that, if they truly are AGN, they are likely to have low-luminosities ( $L_X \lesssim 10^{43}$  erg s<sup>-1</sup>).

| Source No. | Classification                    |
|------------|-----------------------------------|
|            | Confirmed                         |
| 1          | BH LMXB                           |
| 2          | NS HMXB                           |
| 3          | m pulsar/PWN                      |
|            | Candidate                         |
| 4          | CV (IP)                           |
| 5          | bow shock PWN                     |
| 6          | CV (IP)                           |
| 7          | CWB                               |
| 8          | young PWN                         |
| 9          | CV (IP)                           |
| 10         | magnetar or AB                    |
| 11         | CV (polar or non-magnetic) or AGN |
| 12         | CV (IP)                           |
| 13         | CV (IP)                           |
| 14         | CWB                               |
| 15         | BH LMXB                           |
| 16         | CV or AGN                         |
| 17         | CV or AGN                         |
| 18         | CV (IP), SB, SyXB                 |
| 19         | CV (polar)                        |
| 20         | CV (polar or non-magnetic) or AGN |
| 21         | PWN/SNR                           |

Table 2.23: Classification of NuSTAR Norma Region Sources

| Source No. | Classification                    |
|------------|-----------------------------------|
| 22         | CV or AGN                         |
| 23         | CV or AGN                         |
| 25         | CV (polar)                        |
| 26         | CV or AGN                         |
| 27         | CV or AGN                         |
| 29         | CV (polar or non-magnetic) or AGN |
|            | Tentative                         |
| 28         | Galactic                          |
| 30         | Galactic                          |
| 31         | Galactic                          |
| 32         | Galactic or AGN                   |
| 33         | Galactic or AGN                   |
| 34         | Galactic or AGN                   |
| 35         | Galactic or AGN                   |
| 36         | Galactic                          |
| 37         | Galactic or AGN                   |
| 38         | Galactic                          |

Classification of *NuSTAR* Norma Region Sources (continued)

<u>Notes</u>: Classifications of NNR sources are discussed in § 2.3.11. The classifications of NNR 1, 2, and 3 are robust, while all other classifications for tier 1 sources should be considered candidate identifications (see § 2.3.11 for details). For candidate CVs, we provide in parenthesis the most likely CV type when possible. For tier 2 sources we provide only tentative classifications of these sources as Galactic or extragalactic AGN.

## 2.3.12 Survey Sensitivity

To compute the sky coverage for the NuSTAR Norma survey, we used the same method employed for NARCS, which is taken from Georgakakis et al. (2008b). For a given detection probability threshold,  $P_{\text{thresh}}$ , we determined the minimum number of total counts required for a detection ( $C_{\text{lim}}$ ) at each position in the image, such that  $P(\geq C_{\text{lim}}) = P_{\text{thresh}}$ . To this end, we made background maps in the 3–10 keV and 10–20 keV bands by removing the counts within 60" (90") radius circular regions centered on the point (extended) source positions listed in Table 2.17, and then filling in these regions by randomly distributing the expected background counts determined from the local background. Using these background maps, we calculated the mean expected background counts ( $\langle C_{\text{bkg}} \rangle$ ) in circular regions centered on each pixel with radii equal to the 15, 22, and 30% PSF enclosures, which are the cell sizes we used for source detection (see § 2.3.4). The probability that the observed counts will exceed  $C_{\rm lim}$  within a particular region is

$$P(\geq C_{\rm lim}) = \gamma(C_{\rm lim}, \langle C_{\rm bkg} \rangle) \tag{2.21}$$

where  $\gamma(a, x)$  is the lower incomplete gamma function, defined as

$$\gamma(a,x) = \frac{1}{\Gamma(a)} \int_0^x e^{-t} t^{a-1} dt$$
 (2.22)

Calculating  $C_{\text{lim}}$  requires setting  $P(\geq C_{\text{lim}}) = P_{\text{thresh}}$ , and inverting Equation 2.21 numerically.

Then we computed the probability of detecting a source of a given flux  $f_X$  at each pixel, given by

$$P_{f_X}(\geq C_{\lim}) = \gamma(C_{\lim}, C_{\operatorname{src}}) \tag{2.23}$$

and  $C_{\rm src} = f_X t_{\rm exp} A_{\rm src} \epsilon + \langle C_{\rm bkg} \rangle$ , where  $t_{\rm exp}$ ,  $A_{\rm src}$ , and  $\epsilon$  are the exposure time, mean effective area, and unabsorbed energy flux to observed photon flux conversion factor, respectively. For  $\epsilon$ , we used the mean of the ratios of photon fluxes to energy fluxes measured for tier 1 sources for a given energy band. To estimate the effective area at each pixel location, we made vignetting-corrected exposure maps, and by comparing the ratio of the vignetting-corrected exposure over the the uncorrected exposures to the effective areas of tier 1 sources, we derived a linear relation to convert the exposure ratio at a given source location to the source-spectrum average effective area. These relations were derived using vignetting corrections evaluated at 8 keV for the 3–10 keV band and at 10 keV for the 10–20 keV band; they were also calibrated for the three different cell sizes. Different  $\epsilon$  values and effective area to exposure ratio relations are derived based on non-parametric and modeling-derived fluxes. Finally, the sky coverage is given by the sum of probabilities in Equation 2.23 over all pixels multiplied by the solid angle per pixel. We repeated this calculation for a range of fluxes to produce a sensitivity curve for each of the three detection cell sizes in both the 3–10 keV and 10–20 keV bands.

Figure 2.29 shows the sky coverage for different energy bands and cell sizes. We used the sensitivity curves for the 22% PSF enclosures to calculate the log*N*-log*S* distribution and sensitivity limits of our survey, because the largest number of tier 1 sources are detected in the 22% PSF trial maps and its sky coverage represents a rough average of the different curves. The deep field of the *NuSTAR* Norma survey has an area of about 0.04 deg<sup>2</sup> and sensitivity limits of  $4 \times 10^{-14}$  erg cm<sup>-2</sup> s<sup>-1</sup> ( $5 \times 10^{-14}$  erg cm<sup>-2</sup> s<sup>-1</sup>) in the observed (unabsorbed) 3–10 keV band and  $4 \times 10^{-14}$  erg cm<sup>-2</sup> s<sup>-1</sup> in the 10–20 keV band. The shallow survey has an area of  $\sim 1 \text{ deg}^2$  with sensitivity limits of  $1 \times 10^{-13}$  erg cm<sup>-2</sup> s<sup>-1</sup> in the 10–20 keV band. The shallow survey has an area of  $\sim 1 \text{ deg}^2$  with sensitivity limits of  $1 \times 10^{-13}$  erg cm<sup>-2</sup> s<sup>-1</sup> in the 10–20 keV band. The shallow survey has an area of  $\sim 1 \text{ deg}^2$  with sensitivity limits of  $1 \times 10^{-13}$  erg cm<sup>-2</sup> s<sup>-1</sup> in the 10–20 keV band.

### 2.3.13 The log*N*-log*S* Distribution

Since many of the *NuSTAR* Norma sources have fluxes approaching our sensitivity limits, when calculating the number-count distribution for our survey, it is important to consider the effect of Poisson fluctuations of the source and background counts on the measured source



*Figure 2.29*: Sky coverage of the *NuSTAR* Norma Region survey for different energy bands and PSF enclosure fractions.

flux. Thus, rather than assigning a single flux value to each source, we determine its flux probability distribution by computing the source count distribution from Equation A21 in Weisskopf et al. (2007) and converting counts to energy fluxes. The number count distribution is then equal to the sum of the flux probability distributions of individual sources, divided by the sensitivity curve calculated in § 2.3.12.

We compute  $\log N \cdot \log S$  distributions in the 3–10 keV and 10–20 keV bands, both for observed and unabsorbed fluxes; in order to check for systematic errors, we perform these calculations using both the modeling-derived and non-parametric fluxes. When constructing the distribution in a given energy band, we only included the sources that exceed the detection threshold in that particular energy band. In addition, in order to compare the *NuSTAR* number-count distribution with that derived from NARCS, we excluded extended sources, and for sources that are blended in *NuSTAR* observations but resolved with *Chandra*, we estimate the *NuSTAR* fluxes of individual sources by assuming the ratio of fluxes (see comments in Table 2.21) of the two sources is the same in *NuSTAR* as it is in the *Chandra* 2–10 keV band. Thus, NNR 8 is excluded from the sample of sources used in the number-count distribution, the fluxes of the point sources at the center of the extended sources, NNR 3 and 21, are estimated to be 30% and 20% of the total respectively, and the fraction of NNR 7's flux attributed to NARCS 1278 and 1279 is 30% and 70%, respectively.

Figure 2.30 shows the resulting log*N*-log*S* distributions for the *NuSTAR* Norma region. In these panels, magenta and green lines show the log*N*-log*S* distribution measured by NARCS converted from the unabsorbed 2–10 keV band to the *NuSTAR* bands assuming different spectral models, thermal models with kT = 10, 20, and 50 keV and power-law models with  $\Gamma = 1$ , 2, and 3; when converting to observed energy fluxes, a typical  $N_{\rm H}$  value of  $10^{23}$  cm<sup>-2</sup>



(a) The  $\log N$ - $\log S$  distribution in the 3–10 keV band, calculated using observed fluxes derived from spectral fitting, as well as non-parametric fluxes calculated from aperture photometry using 30'' and 40'' radius regions.



(b) The logN-logS distribution in the 3–10 keV band calculated using unabsorbed fluxes derived from spectral fitting. The blue band shows the  $1\sigma$  errors on the distribution shown in blue.

Figure 2.30: All: The log*N*-log*S* distributions shown in black include all tier 1 sources exceeding the detection threshold in a given energy band; the gray band shows the  $1\sigma$  errors on the log*N*-log*S* distribution. The log*N*-log*S* distributions shown in blue exclude NNR 2, 4, and 5, which were specifically targeted by *NuSTAR*. The green dotted (magenta dashed) lines show the NARCS log*N*log*S* converted from unabsorbed 2–10 keV into the given bands assuming power-law spectral models with  $\Gamma = 3$ , 2, and 1 (thermal models with kT=10, 20 and 50 keV). When converting the NARCS distribution into the observed 3–10 or 10–20 keV bands, a column density of  $N_{\rm H} = 10^{23}$  cm<sup>-2</sup> is used, the mean of measured  $N_{\rm H}$  values for the *NuSTAR* sources; varying  $N_{\rm H}$  between  $0.7 - 2.0 \times 10^{23}$  cm<sup>-2</sup> does not significantly change the conversion factor.



(c) The  $\log N$ - $\log S$  distribution in the 10–20 keV band, calculated using observed fluxes derived from spectral fitting, as well as non-parametric fluxes calculated from aperture photometry using 30" and 40" radius regions.

*Figure 2.30*: This figure is continued from the previous page.

is used. The log*N*-log*S* distributions shown in black include all tier 1 sources that exceed the detection threshold in a given energy band, while the blue distributions exclude the sources that were specifically targeted by *NuSTAR* and detected (NNR 2, 4, and 5), which could unnaturally inflate the log*N*-log*S* distribution. As shown in the top panel, there is little difference between the NARCS distributions converted using different spectral models into the observed 3–10 keV band, which is not surprising given its large amount of overlap with the *Chandra* 2–10 keV band. Regardless of how the source energy fluxes are calculated, the *NuSTAR* distribution is consistent with the NARCS distribution at 1 $\sigma$  confidence, exhibiting a similar slope of  $\alpha \approx -1.24$ . The *NuSTAR* distribution only deviates significantly from the NARCS distribution at low fluxes. This discrepancy may be due to the Eddington bias or variance in the spatial density of sources, given that the sources with the lowest fluxes are only detected in the deep HESS field, which is only 100  $\operatorname{arcmin}^2$  in size.

The middle panel of Figure 2.30 shows the log*N*-log*S* distribution calculated using the unabsorbed 3–10 keV fluxes from spectral fitting. Although this distribution is still largely consistent with the NARCS distribution at  $1\sigma$  confidence when the sources specifically targeted by *NuSTAR* are removed (shown in blue), the *NuSTAR* distribution is slightly higher than the *Chandra* distribution above  $> 3 \times 10^{-13}$  erg cm<sup>-2</sup> s<sup>-1</sup>. The fact that this excess is only seen using unabsorbed 3–10 keV fluxes but not the observed 3–10 keV fluxes suggests that, for some sources, we measure  $N_{\rm H}$  values that are too high and thus overcorrect for absorption.

The bottom panel of Figure 2.30 shows the log*N*-log*S* distributions calculated using modeling-derived and non-parametric fluxes in the observed 10–20 keV band. Since there is very little difference between the observed and unabsorbed 10–20 keV fluxes, the log*N*-log*S* distribution in the unabsorbed 10–20 keV band is not shown. Although the 10–20 keV *NuSTAR* distributions deviate from a simple power-law due to the small number of sources (16) detected in this hard X-ray band, overall the slope is still consistent with the NARCS slope. The normalizations of the different NARCS distributions extrapolated into the 10–20 keV band are distinct depending on the spectral model assumed; for the *NuSTAR* and NARCS normalizations to be consistent, the average spectrum of Norma sources must either have kT = 10 - 20 keV or  $\Gamma = 2$ . This average spectrum is indeed consistent with the individual spectral fits of most of the *NuSTAR* sources and their locations in the *NuSTAR* quantile space.

## 2.3.14 Comparison of the NuSTAR Populations in the Norma Region and the Galactic Center

Comparing the log*N*-log*S* distributions of sources in the Norma region and the  $1^{\circ} \times 0.6^{\circ}$ Galactic Center (GC) region surveyed by *NuSTAR*, the number density of *NuSTAR* sources is  $\approx 2$  times higher in the GC (Hong et al. 2016), which is to be expected since the stellar density in the vicinity of the GC is higher than the stellar density along the line-of-sight of the Norma region. The power-law slope of the number-count distribution is also steeper in the GC ( $\alpha \approx -1.4$ ; Hong et al. 2016), which is consistent with the trend that is seen for *Chandra* sources in the GC and the field in the 0.5–8 keV band (Muno et al. 2009). In order for the normalizations of the GC *NuSTAR* and *Chandra* number-count distributions to be consistent, the typical spectrum of GC sources must either have kT = 20 - 50 keV or  $\Gamma \approx 1.5$ , which is harder than the typical spectrum of Norma sources.

Hong et al. (2016) argue that 40-60% of NuSTAR GC sources are magnetic CVs, primarily IPs, given their very hard X-ray spectra ( $\Gamma \leq 1.5$ ) and the presence of strong Fe emission. All but two of the Norma CV candidates have softer spectra ( $\Gamma > 1.5$ ,  $kT \leq 20$  eV). The spectral differences between the NuSTAR populations in the Norma and GC regions are mirrored in the differences between the Galactic Ridge X-ray emission (GRXE; Revnivtsev et al. 2006b; Revnivtsev et al. 2006a; Revnivtsev et al. 2009b) and the central hard X-ray emission (CHXE) discovered by NuSTAR in the GC (Perez et al. 2015). The lower temperatures of the Norma CV candidates are consistent with the thermal spectra of the GRXE, whose hot component has a temperature of  $kT \approx 15$  keV (Türler et al. 2010; Yuasa et al. 2012), while the high temperatures of GC CVs resemble the kT > 25 keV emission observed in the inner few parsecs of the Galaxy (Perez et al. 2015; Hong et al. 2016).

However, it is unclear why the X-ray populations in the GC and the disk are different. Under the assumption that most of the sources contributing to the CHXE and GRXE are IPs, the differences in their typical X-ray temperatures have been attributed to differences in their WD masses, with WDs in the GC CVs having masses  $\geq 0.8M_{\odot}$  (Perez et al. 2015; Hong et al. 2016) and those in the disk CVs having masses  $\approx 0.6M_{\odot}$  (Krivonos et al. 2007; Türler et al. 2010; Yuasa et al. 2012). However, the mean WD mass among all CVs has been measured to be  $0.83 \pm 0.23 M_{\odot}$  (Zorotovic et al. 2011), and the X-ray inferred masses of confirmed field IPs are consistent with this higher value of  $\approx 0.8 M_{\odot}$  (Hailey et al. 2016). The discrepancy between the measured WD masses for field CVs and the lower masses inferred from the temperature of the GRXE suggests that it may be incorrect to assume that the GRXE is dominated by IPs (Hailey et al. 2016). Thus, it may be similarly incorrect to attribute the temperature differences between the NuSTAR CV candidates in the GC and Norma regions to differences in their WD masses.

In fact, as discussed in § 2.3.11, a significant fraction of the Norma CV candidates may not be IPs but rather a mixture of polars, non-magnetic CVs, hard-spectrum SBs, and SyXBs. These types of sources have softer spectra than IPs, and thus the difference in the average temperatures of Norma and GC sources may be explained by variations in the relative fractions of different types of CVs and symbiotic binaries. It is unclear what physical processes would drive variations in the relative fractions of different types of compact object binaries in these two Galactic regions, but investigating these issues further will first require confirmining the true nature of the CV candidates.

The clearest ways of distinguishing different types of CVs and SBs is by measuring the relative flux ratios of their Fe emission lines (Xu et al. 2016) or measuring both their spin and orbital periods (Scaringi et al. 2010), but since most of the Norma CV candidates are quite faint, it will be difficult to obtain X-ray spectra or light curves with enough photons to make such measurements with current telescopes. Monitoring the long-term X-ray and infrared variability of the CV candidates, and determining the spectral types of their counterparts more accurately to estimate distances and luminosities will help to identify the nature of these sources.

#### 2.3.15 Conclusions

We have detected 28 hard X-ray sources in a square-degree region in the direction of the Norma spiral arm surveyed by NuSTAR, which are designated as tier 1 sources. Twenty-three of these sources were previously detected in observations of the Norma Arm Region *Chandra* survey, one was a well-studied black hole transient (4U 1630-472), and four were newly discovered transients that we followed up and localized with *Chandra*. Out of 28 sources, 16 of them are detected above 10 keV. In addition, we found ten NARCS sources with 2–10 keV fluxes >  $6 \times 10^{-6}$  cm<sup>-2</sup> s<sup>-1</sup> that did not exceed our formal detection threshold for *NuSTAR* but which displayed significant X-ray emission (S/N> 3) in at least one of three energy bands, which are designated as tier 2 sources. We have provided photometric information for these sources in our catalog but do not include them in our calculation of the log*N*-log*S* distribution since they do not meet our detection thresholds.

The logN-logS distribution of NuSTAR sources in the 3–10 keV band is consistent with the distribution of 2–1 keV *Chandra* sources in the Norma region. The NuSTAR logN-logSdistribution in the 10–20 keV band is consistent with the 2–10 keV *Chandra* distribution if the average spectrum of the NuSTAR sources can be described by a power-law model with  $\Gamma = 2$  or a single temperature **apec** model with a plasma temperature between 10 and 20 keV. The broadband (3–40 keV) energy quantiles of the *NuSTAR* sources show that the majority of sources have photon indices of  $\Gamma = 2 - 3$  for a power-law model or kT = 5 - 30 keV for a bremsstrahlung model, which are consistent with the spectral parameters required for good agreement between the 10–20 keV and 2–10 keV log*N*-log*S* distributions.

We fit the joint *Chandra* and *NuSTAR* spectra of all sources with > 100 counts in the 3–40 keV band, but find that > 300 NuSTAR counts are required to provide meaningful constraints on spectral model parameters. We find good agreement between the spectral parameters from our fits and the location of sources in the quantile diagrams.

Four of the sources detected in the NuSTAR Norma Arm Region survey are previously well-studied sources: NNR 1 is the black hole LMXB 4U 1630-472, NNR 2 is the supergiant HMXB IGR J16393-4643, NNR 3 is the PWN and luminous TeV source HESS J1640-465, and NNR 24 is the magnetar SGR J1627-41. Based on the X-ray variability, spectral fits, and infrared counterpart information for each source, we determined the most likely nature of the fainter sources in our survey, which are summarized in Table 2.23. Sources NNR 5, 8, and 21 are PWN candidates, NNR 7 and 14 are likely colliding wind binaries, NNR 10 is a possible magnetar, and NNR 15 is a quiescent black hole LMXB candidate. The other sources are primarily CV candidates, a mixture of IPs, polars, non-magnetic CVs, and symbiotic binaries. We estimate that five background AGN are present among the tier 1 NuSTAR sources.

Compared to the NuSTAR sources that are detected in the Galactic Center region, the sources in the Norma region have softer spectra on average. Even restricting the comparison to the CV candidates in these two regions, the Norma CVs exhibit lower plasma temperatures than those in the GC. The  $kT \approx 15$  keV temperatures of Norma CV candidates resemble the hot component of the GRXE spectrum.

If most of the Norma CV candidates are IPs, then their plasma temperatures indicate the white dwarfs in these systems have masses of  $\approx 0.6 M_{\odot}$ , which are lower than the WD masses of  $\gtrsim 0.8 M_{\odot}$  estimated for the GC IPs. However, we argue that it is more likely that the fraction of IPs relative to polars, non-magnetic CVs, and symbiotic binaries is lower among Norma CV candidates than in the GC region. Since IPs have the hardest X-ray spectra of all these types of sources, a lower fraction of IPs in the Norma region would result in lower plasma temperatures for the average source.

In order to understand the nature of the hard X-ray sources in the Norma region and why they differ from the hard X-ray sources in the GC region, it is necessary to continue monitoring the X-ray variability of the Norma CV candidates, better characterize the variability and spectral types of their infrared counterparts, and obtain higher quality spectra, especially at Fe line energies, for the brighter sources. Follow-up multiwavelength observations of the candidate PWN, CWBs, and quiescent black hole binary would be useful in furthering our understanding of compact stellar remnants and the evolution of massive stars.

## 2.4 HMXB Candidates Discovered in the Norma Arm Region Surveys

As discussed in §2.1, one of the goals of the *Chandra* and *NuSTAR* Norma surveys was to search for low-luminosity HMXBs in order to further our understanding of the HMXB luminosity function and the evolution of high-mass stars. The primary criteria used to identify candidates HMXBs are the presence of a high-mass stellar counterpart, the X-ray spectral properties typical of accreting HMXBs, and X-ray luminosities higher than typical values for isolated massive stars.

Accurately distinguishing an optical/IR counterpart as a high-mass star requires optical or near-IR spectroscopy. As discussed in Rahoui et al. (2014), it would require too much observing time to obtain optical or infrared spectra for all the  $\sim 500$  optical/IR counterparts of the NARCS sources. therefore, we prioritized X-ray sources to follow-up based on six criteria: (1) X-ray brightness high enough to place meaningful constraints on source's X-ray spectrum, (2) a hard X-ray spectrum with  $\Gamma < 2$  in the 0.5-10 keV band, which is typical of accreting HMXBs, (3) X-ray variability, which is common in HMXBs, (4) a high column density  $(N_{\rm H} > 10^{22} {\rm ~cm^{-2}})$  to focus on sources at distances of the Scutum arm or beyond where most of the known star-forming regions and OB associations are located, which are correlated with the locations of HMXBs (Bodaghee et al. 2012c), (5) a counterpart with J-Kcolor > 1.5, indicating that it is also subject to significant absorption, and (6) the reliability of the near-IR counterpart. We obtained near-IR spectra for the 20 most highly prioritized NARCS sources using the Ohio State Infrared Imager/Spectrometer (OSIRIS) mounted on the 4m SOAR telescope at CTIO (Rahoui et al. 2014), and obtained near-IR spectra for 22 additional NARCS counterparts using the MMT and Magellan Infrared Spectrograph (MMIRS) on Magellan's 6.5m Clay telescope (Corral-Santana & et al. in prep).

We have identified six high-mass stars among the 42 near-IR counterparts we observed. Three of these are supergiant stars, including two Wolf-Rayet stars, and are discussed in §2.3.11; the *NuSTAR* spectra of these sources indicate they are most likely colliding wind binaries rather than HMXBs since they exhibit strong 6.7 keV emission and fall off steeply above 10 keV (having  $\Gamma > 3$ ). The remaining three sources are HMXB candidates whose properties are described in §2.4.1.

#### 2.4.1 Properties of HMXB Candidates

We have discovered three HMXB candidates in the Norma region: CXOU J163515.1-472304, J163955.2-463145, and J164045.5-464607 (NARCS 239, 1168, and 1326, respectively).

Two of these sources, NARCS 239 and 1326 exhibit emission lines in their near-IR spectra and IR excess consistent with Be III/V or supergiant B[e] stars (Rahoui et al. 2014); in the former, the IR excess is attributed to bremsstrahlung emission from an ionized decretion disk (Rivinius et al. 2013), while in the latter it is attributed to a combination of bremsstrahlung and thermal dust emission from a complex circumstellar environment (Zickgraf et al. 1985). NARCS 239 and 1326 also have very similar quantile values and lie in a region of the quantile diagram (see §2.2.7) that indicates they are highly absorbed  $(N_{\rm H} > 4 \times 10^{22} {\rm cm}^{-2})$  and have  $\Gamma \leq 2$  in the *Chandra* energy band. Since the similarity of their quantile values suggests they have similar spectral properties, we jointly fit the *Chandra* spectra of these two sources, maintaining only their flux normalizations as independent free parameters. Adopting an absorbed power-law model, we measured the spectral parameters for these sources to be  $N_{\rm H} = 1.2^{+1.7}_{-0.6} \times 10^{23} {\rm cm}^{-2}$  and  $\Gamma = 2.4^{+3.0}_{-1.3}$ . The unabsorbed 2–10 keV fluxes of NARCS 239 and 1326 were found to be  $8.5^{+1.8}_{-1.2} \times 10^{-14} {\rm erg cm}^{-2} {\rm s}^{-1}$  and  $7.3^{+1.8}_{-1.5} \times 10^{-14} {\rm erg cm}^{-2} {\rm s}^{-1}$ , respectively. The high  $N_{\rm H}$  and  $A_V$  measured for these two sources suggest they lie at a distance of  $\gtrsim 10 {\rm kpc}$  (Rahoui et al. 2014). Adopting a 10 kpc distance, the 2–10 keV luminosities of NARCS 239 and 1326 are  $L_X \sim 10^{33} {\rm erg s}^{-1}$ .

The X-ray luminosities of NARCS 239 and 1326 are > 2 orders of magnitude higher than typical isolated Be stars (Cohen et al. 1997). Thus, if the IR counterparts of these sources are Be stars, NARCS 239 and 1326 are likely either Be HMXBs or  $\gamma$ -Cas analogs.  $\gamma$ -Cas analogs are rare Be stars that exhibit brighter ( $L_X \sim 10^{32} - 10^{33}$  erg s<sup>-1</sup>) and harder ( $kT \approx 10 - 20$ keV)<sup>18</sup> X-ray emission than most Be stars (Lopes de Oliveira 2007); it has been suggested that this hard X-ray emission may either be due to accretion onto a white dwarf companion or from the interaction of the Be star's equatorial magnetic field with its circumstellar disk. Recent work indicates that  $\gamma$ -Cas analogs may be the fastest rotating Be stars and favors the latter hypothesis (Motch et al. 2015). Another possibility is that these two sources are sgB[e] stars in colliding wind binaries. A couple of sgB[e] CWBs have been discovered, and they have  $L_X \sim 10^{33}$  erg s<sup>-1</sup> like NARCS 239 and 1326 (Clark et al. 2013b; Clark et al. 2013a). However, CWBs, including the known sgB[e] CWBS, have softer spectra than NARCS 239 and 1326, typically having thermal spectra with  $kT \approx 2 - 3$  keV (Clark et al. 2013b). Thus, NARCS 239 and 1326 are most likely to be low-luminosity accreting Be HMXBs or  $\gamma$ -Cas analogs.

The third HMXB candidate, NARCS 1168, has a B8-A3IV/V counterpart and is estimated to lie at a distance of 3.5 kpc based on its stellar blackbody temperature (Rahoui et al. 2014). Fitting the X-ray spectrum of NARCS 1168 with an absorbed power-law model, we measure its spectral parameters to be  $N_{\rm H} = 3^{+3}_{-2} \times 10^{21}$  cm<sup>-2</sup> and  $\Gamma = 1.8 \pm 0.4$ . Its average unabsorbed 2–10 keV flux is  $7 \pm 0.7 \times 10^{14}$  erg cm<sup>-2</sup> s<sup>-1</sup> and varies by a factor of 2 in between *Chandra* observations on ~month timescales. Its X-ray luminosity is  $1.0 \pm 0.1 \times 10^{32}$  erg s<sup>-1</sup>, and its X-ray-to-bolometric luminosity is  $L_X/L_{\rm bol} \approx 10^{-4}$ . This X-ray luminosity is at least an order of magnitude higher than isolated B8-A3 stars (Berghoefer et al. 1997). Its X-ray luminosity, X-ray variability, and hard photon index make NARCS 1168 a strong HMXB candidate.

None of the three HMXB candidates were detected in the NuSTAR Norma survey. The upper limits derived on the 3–10 keV fluxes from the NuSTAR data are consistent with the fluxes measured in the *Chandra* observations. The lack of strong NuSTAR detections for these sources does not allow us to improve our measurements of their spectral parameters, which could have shed light on whether they truly are HMXBs, and if so, whether they harbor black holes or neutron stars.

<sup>&</sup>lt;sup>18</sup>In the *Chandra* 0.5–10 keV band and with the low photon statistics of these HMXB candidates, a thermal spectrum with  $kT \approx 10$  keV is indistinguishable from a power-law spectrum with  $\Gamma \approx 2$ .

#### 2.4.2 Prospects for Constraining the HMXB Luminosity Function

As discussed in §1.5.1, one of the motivations for searching for low-luminosity HMXBs is to place constraints on the faint end of the HMXB luminosity function (LF). Although the nature of the HMXB candidates still needs to be confirmed in order to place firm constraints on the HMXB LF, in the meantime, we can assess the potential constraints they could place on the HXMB LF.

In order to assess these potential constraints, it is important to determine the completeness of our HXMB candidate sample. Our detection method and the NARCS sky coverage are complete to X-ray sources of similar brightness to the three HMXB candidates (see Figures 2.14-2.15). Seventy *Chandra* sources with fluxes greater than or equal to the fluxes of the HMXB candidates were detected in quantile regions B, C, D, and E, where accreting HMXBs could reside (see  $\S2.2.7$ ). Twenty-one of these sources belong to the sample of near-IR counterparts we followed-up spectroscopically. Sixteen of these sources have reliable near-IR counterparts which we have not yet followed-up. The high-mass donor stars in HMXBs are bright enough that they should be detectable in the near-IR through the whole Galaxy, so if any additional HMXB candidates are present in this survey, they would likely be among the subsample of X-ray sources with reliable IR counterparts. Since the near-IR counterparts we already followed-up are those which we deemed most likely to potentially be HMXBs, we would not expect to find as large a fraction of HMXB candidates among the sources that have not yet been followed-up. Thus, to place an upper limit on the number of unidentified HMXB candidates that exist in NARCS, we assume that the fraction of high-mass stars among near-IR counterparts that have not yet been followed-up is the same as for those that have been followed-up. Under this assumption, we estimate that up to two additional HMXB candidates with X-ray fluxes greater than or equal to those of the three candidates we have identified could be present in the Norma region.

Due to large uncertainties in the current distance estimates to some of our HMXB candidates, rather than attempting to place constraints on the HMXB LF directly, we instead assess the constraints that can be placed on the HMXB  $\log N - \log S$  distribution. Lutovinov et al. (2013) (hereafter L13) measure the HMXB LF down to a 17–60 keV luminosity limit of  $10^{34} \text{ erg s}^{-1}$  using persistent HMXBs detected by *INTEGRAL*. The power-law slope of the HMXB LF between  $10^{34}$  and  $10^{36}$  erg s<sup>-1</sup> is measured to be  $-1.4 \pm 0.2$ ; L13 develop a toy model for the wind-accreting NS HXMBs that fits the measured LF well and predicts that the power-law slope of the LF flattens below  $10^{34}$  erg s<sup>-1</sup>. For both the measured and toy model LF, L13 calculate the average surface density of HMXBs in the Galactic Plane as a function of 17-60 keV flux, shown in the black lines in Figure 2.31; the upper solid line represents the expected surface density distribution assuming that there is no break in the power-law slope at  $\sim 10^{34}$  erg s<sup>-1</sup>, while the lower dash-dotted line assumes that below  $10^{34}$  erg s<sup>-1</sup>, the power-law index flattens to -1.0 as predicted by the toy model. To compare the constraints from the NARCS HMXB candidates to the predicted distributions, we convert the X-ray fluxes from the 2–10 keV to the 17–60 keV band by using a range of  $F_{2-10}/F_{17-60}$  ratios of 0.3–0.8 based on typical NS HMXB spectra (Filippova et al. 2005).

The estimate of the HMXB surface density determined from the presence of IGR J16393-4643, a confirmed HMXB, in NARCS is shown in green in Figure 2.31. The blue point, which is consistent with the constraint set by IGR J16393-4643, shows the surface density of HMXBs in a wider survey of the Norma arm  $(300^{\circ} < \ell < 345^{\circ})$  evaluated at the lower flux limit reached by the *INTEGRAL* Galactic Plane survey. The solid purple line indicates the constraint that would be placed on the faint end of the log*N*-log*S* HMXB distribution if all three of the Norma HMXB candidates are confirmed to be HMXBs; the yellow polygon represents  $1\sigma$  uncertainties associated with this measurement. The dashed purple lines indicate the possible extremes of the HMXB distribution measured using NARCS sources; the lower line represents the case in which none of the HMXB candidates are truly HMXBs while the upper line represents the case where two additional HMXB candidates are discovered in the NARCS sample and all five candidates are confirmed to be HMXBs.

Given the large statistical uncertainty associated with our potential measurement, it will not be possible in most cases to determine whether the NARCS HMXB distribution is more consistent with a LF with or without a break at ~  $10^{34}$  erg s<sup>-1</sup>. However, if none of the HMXB candidates turn out to be true HMXBs, it would suggest that the HMXB LF flattens even more below  $10^{34}$  erg s<sup>-1</sup> than predicted by L13. A lack of faint HMXBs in the Norma region would be especially surprising given that the L13 predictions in Figure 2.31 are for an average sightline through the Galaxy but the Norma region is expected to have an enhanced number of HMXBs due to its large number of star-forming regions and OB associations. A change in power-law slope of the HMXB LF more extreme than predicted by L13 would suggest that in low accretion rate HMXBs, accretion onto the compact object is somehow inhibited. At low accretion rates, the magnetospheric radius of the NS in a HMXB can become larger than the corotation radius, causing accretion to stall or be greatly reduced (Illarionov & Sunyaev 1975; Bozzo et al. 2008). In this propeller regime, not only can the X-ray emission of an HMXB be significantly lowered but it may also be spectrally softer than in the normal accretion regime. While some NS HMXBs continue to exhibit hard power-law spectra while in quiescence (e.g. Doroshenko et al. 2014, Rutledge et al. 2007), others only display blackbody spectra with  $kT \sim 1$  keV which is thought to originate from the hot polar caps of the NS (e.g. Reig et al. 2014; Elshamouty et al. 2016). Quiescent HMXBs with soft spectra would be unlikely to be detected by our Norma surveys, since they are likely to be associated with star-forming regions, most of which are located at distances > 3 - 4kpc, and HMXBs at such distances would be subject to significant interstellar absorption. Therefore, these surveys can only place constraints on the surface density of HMXBs that continue accreting even at low-luminosities, but not on the total number of binaries that host a high-mass star and a NS or BH.

Confirming the nature of the NARCS HMXB candidates could provide insight into the physics of accretion in low-luminosity HMXBs. In pursuit of this goal, we are continuining our efforts to follow-up these sources and determine their true physical nature. Future X-ray observations with XMM-Newton could help confirm whether NARCS 239 and 1326 are Be HMXBs or  $\gamma$ -Cas analogs, since the latter have much stronger Fe emission than HMXBs and XMM-Newton has very high effective area between 6 and 7 keV. We are also pursuing



Figure 2.31: Predicted log*N*-log*S* distributions of HMXBs from Lutovinov et al. (2013) are shown in black. The upper solid black curve assumes that the slope of the HMXB luminosity function does not change below  $10^{34}$  erg s<sup>-1</sup>, while the lower dash-dotted black curve assumes that the faint end of the HMXB LF flattens below  $10^{34}$  erg s<sup>-1</sup> to  $\alpha = -1.0$ . The green point represents the constraint on the HMXB flux distribution in the Norma region based on IGR J16393-4643. The blue point represents the minimum flux constraint derived from the HXMBs detected by the *INTEGRAL* Galactic Plane survey at Galactic latitudes  $300^{\circ} < \ell < 345^{\circ}$ , a wider section of the Norma arm than was covered by our *Chandra* and *NuSTAR* surveys. The solid purple line displays our measurement of the faint end of the HMXB flux distribution in the Norma region, assuming that the three HMXB candidates we discovered are all HMXBs and constitute a complete sample in the Norma region; the yellow polygon represents the  $1\sigma$  uncertainty associated with this measurement. The dashed purple lines represent the possible extreme values of the HMXB flux distribution in the Norma region; the lower dashed line assumes that none of our HMXBs candidates are true HMXBs, while the upper dashed line assumes that all three candidates are HMXBs and that as many as two additional HMXBs with similar X-ray fluxes have been missed by our current surveys.

additional spectroscopic near-IR observations of these HMXB candidates to more accurately determine their spectral types, which can improve estimates of the source distances, and to measure radial velocity (RV) curves for these systems; detecting Doppler shifts in these systems would confirm their binary nature, and RV measurements would allow us to constrain the mass of the compact object.

If any of the HMXB candidates contain a black hole, that would be especially interesting since only one Be-BH binary has been discovered to date (Casares et al. 2014) and was found to have very low X-ray luminosity ( $L_X \sim 10^{31} \text{ erg s}^{-1}$ ; Munar-Adrover et al. 2014). The discovery of additional B/Be-BH binaries could help constrain some uncertain aspects of the binary evolution of high-mass stars such as the common envelope phase, the different physical treatments of which results in theoretical estimates of the total number of B/Be-BH systems that vary by more than an order of magnitude (Grudzinska et al. 2015). As possible progenitors of BH-NS binaries that may merge and produce gravitational waves detectable by advanced LIGO/VIRGO, the discovery of additional Be-BH systems and the determination of their orbital parameters could also help constrain predictions of the BH-NS merger rate. If some of the HMXB candidates are determined to be  $\gamma$ -Cas analogs, they could place constraints on the surface density of  $\gamma$ -Cas analogs in the Galaxy. Constraining the prevalence of the  $\gamma$ -Cas phenomenon among Be stars can help to distinguish between models that attribute the rapid rotation of Be stars to spin-up during main-sequence evolution (Granada et al. 2013) or mass transfer from a binary companion that is then ejected when it explodes as a supernova (de Mink et al. 2013); the former model cannot easily produce critically rotating Be stars, which is thought to be the most likely origin of the  $\gamma$ -Cas phenomenon (Motch et al. 2015). Finally, it is clear from Figure 2.31 that the Norma survey may not be sufficient to determine whether the HMXB LF does or does not flatten below  $10^{34}$  erg s<sup>-1</sup>. Finding additional faint HMXBs in archival *Chandra* observations of the Galactic plane would help to reduce the statistical uncertainties on the HMXB surface density and to account for potential variations in the spatial distribution of HMXBs.

## 2.5 Summary and Future Work

The *Chandra* and *NuSTAR* surveys of the Norma Arm region have shed light on the nature of the faint X-ray populations in the Galactic disk and allowed us to identify three low-luminosity HMXB candidates for further study. The *Chandra* survey reached a sensitivity limits of  $10^{-14}$  erg cm<sup>-2</sup> s<sup>-1</sup> in the 2–10 keV band, detecting 1130 point sources. About half of the *Chandra* sources have soft thermal spectra and exhibit low X-ray absorption indicating they are primarily isolated X-ray active stars and active binaries located at a distance of  $\leq 2$  kpc. The other half of the *Chandra* sources exhibit harder X-ray spectra, and the majority of them were identified as CVs based on their stacked *Chandra* spectra.

Along with the spectroscopic follow-up of the near-IR counterparts of some of the *Chandra* sources, NuSTAR observations of the Norma region have facilitated the individual classification of 28 of the brightest hard *Chandra* sources, including two colliding wind binaries, three

pulsar wind nebulae, a candidate black hole binary. We confirmed that a plurality of *NuSTAR* sources are most likely to be CVs. The CV candidates in the Norma region have plasma temperatures of  $\approx 10-20$  keV, consistent with the spectrum of the Galactic Ridge X-ray emission but lower than those of CVs near the Galactic Center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs and symbiotic binaries when compared to the Galactic Center. The *NuSTAR* log*N*-log*S* distribution in the 10–20 keV band is consistent with the log*N*-log*S* distribution measured by *Chandra* in the 2–10 keV band if the average source spectrum is assumed to be a thermal model with  $kT \approx 15$  keV, as observed for the CV candidates.

Determining the underlying physical reasons for the difference in the observed CV populations in the Norma and Galactic Center regions will require more accurate classifications of these X-ray sources. Monitoring of the long-term X-ray variability of the CV candidates and *XMM-Newton* observations, which are better suited to detect and measure the strength of Fe lines, are the best current tools for ascertaining the fraction of IPs among the CV candidate in the Norma and Galactic Center regions.

Through the combination of *Chandra*, *NuSTAR*, and near-IR data for X-ray sources in the Norma region, we have identified three HMXB candidates with X-ray luminosities of  $10^{32} - 10^{33}$  erg s<sup>-1</sup>. All three HMXB candidates have main-sequence Be/B counterparts. The X-ray luminosities of these HMXB candidates are lower than the typical quiescent state luminosities of known HMXBs ( $L_X \sim 10^{34}$  erg s<sup>-1</sup>), but 1–2 orders of magnitude higher than the typical luminosities of isolated Be/B stars.

Determining how many of these candidates truly are HMXBs would help us understand how common it is for accretion in low-luminosity systems to be inhibited by physical mechanisms such as the propeller effect. If any of the HMXB candidates are found to harbor BHs, they would be useful in constraining theoretical models of the binary evolution of high-mass stars, and if any are determined to be  $\gamma$ -Cas analogs, their study could contribute to our understanding of the Be phenomenon. *XMM-Newton* observations to constrain the Fe line emission of the HMXB candidates, and radial velocity studies of their near-IR counterparts are crucial to confirm the HMXB nature of these sources. The discovery of additional HMXB candidates in archival *Chandra* observations of the Galactic plane will enhance the impact of these results by reducing the statistical uncertainties associated with all these measurements.

# Chapter 3

# The Poor

# 3.1 Investigating the metallicity dependence of HMXB populations

It has been well-established that the integrated X-ray luminosity of a population of HMXBs is linearly correlated with a galaxy's star formation rate (SFR; Ranalli et al. 2003; Grimm et al. 2003; Persic et al. 2004; Gilfanov et al. 2004; Lehmer et al. 2010; Mineo et al. 2012), which is not surprising given the fact that HMXBs form just  $\approx$ 4-40 Myr after a starburst and remain X-ray active only for ~ 10 Myr (Iben et al. 1995; Bodaghee et al. 2012c; Antoniou & Zezas 2016). However, there is a lot of scatter (~ 0.4 dex) in the  $L_{X,HMXB}$ -SFR correlation measured by these studies. Mineo et al. (2012) show that possible contamination from LMXBs or active galactic nuclei (AGN), dust attenuation, and survey sensitivity variations cannot explain the observed scatter, and suggest that metallicity (Z) is the primary quantity source of scatter. Additional possible sources of scatter include HMXB variability and the fact that the ultraviolet (UV) and infrared (IR) SFR indicators typically used in these studies are sensitive to star formation on timescales which are longer (~ 10<sup>8</sup> years; Conroy 2013) than the lifetimes of HMXBs.

Over the past decade, several binary population synthesis studies have investigated the effects of metallicity on HMXB evolution. Since the winds of main-sequence high-mass stars are line-driven, higher-metallicity stars experience higher mass loss rates due to the large number of metal atomic lines in the UV band. As a result, it is expected that in lower-metallicity binaries, the more massive star (i.e., the compact object progenitor) loses less mass prior to exploding as a supernova and is more likely to produce a BH than a NS (Belczynski et al. 2004; Dray 2006; Fragos et al. 2013b). Another effect of the weaker winds of lower-metallicity stars is that less angular momentum is lost from the binary, resulting in a larger fraction of HMXBs in which accretion occurs via Roche lobe overflow (Linden et al. 2010). Thus, lower-metallicity HMXB populations are expected to contain larger fractions of Roche lobe overflow BH HMXBs, which can drive higher accretion rates than NS HMXBs. There is a general consensus that larger populations of luminous HMXBs exist in

lower metallicity environments, although the strength of this trend varies between studies. Estimates of the increase in X-ray luminosity per SFR between  $Z_{\odot}$  and  $0.1Z_{\odot}$  vary from a factor of 2 to 10 (Linden et al. 2010; Fragos et al. 2013b).

There is increasing observational evidence that a larger number of HMXBs, especially ultra-luminous X-ray sources (ULXs,  $L_X \gtrsim 10^{39}$  erg s<sup>-1</sup>), per unit SFR exist is nearby low-metallicity galaxies (Mapelli et al. 2011; Kaaret et al. 2011; Prestwich et al. 2013; Basu-Zych et al. 2013a; Brorby et al. 2014; Douna et al. 2015). This enhanced number of bright HMXBs cannot be accounted for by stochasticity and suggests that at very low metallicities (12+log(O/H) < 8.0), the HMXB production rate is approximately 10 times higher than in solar metallicity galaxies (Brorby et al. 2014; Douna et al. 2015). Using a compilation of measurements for 49 galaxies from the literature, Brorby et al. (2016) parametrize the  $L_X/SFR-Z$  correlation as:

$$\log\left(\frac{L_X}{\text{erg s}^{-1}}\frac{M_{\odot} \text{ yr}^{-1}}{\text{SFR}}\right) = b \times (12 + \log(\text{O/H}) - 8.69) + c$$
(3.1)

where the solar gas phase metallicity is taken to be  $12+\log(O/H)=8.69$ , and the best-fitting parameters are  $b = -0.59 \pm 0.13$  and  $c = 39.49 \pm 0.09$ . However, the correlation is largely driven by the blue compact dwarf galaxies (BCDs) in the sample that are X-ray detected. and the parametrization is likely biased since it does not take into account the upper limits on  $L_X/SFR$  for 20 BCDs that are not X-ray detected. Thus, the  $L_X/SFR-Z$  correlation may not be as strong as measured by Brorby et al. (2016). Furthermore, even if the  $L_X/SFR-Z$ trend is as strong as is claimed, it may be driven by factors other than metallicity. BCDs have star-forming regions that are more spatially concentrated and form denser star clusters than other nearby star-forming galaxies (Elmegreen et al. 1996; Hunter & Elmegreen 2004); it is therefore possible that the crowded star-forming clouds in BCDs have higher gas surface densities, which simulations predict should result in a more top-heavy stellar initial mass function (IMF; Krumholz et al. 2010). Thus, the enhanced number of HMXBs per SFR in BCDs could result from a top-heavy IMF rather than metallicity-dependent HMXB evolution. Similarly, the increase of  $L_X/SFR$  of star-forming galaxies with increasing redshift up to  $z \sim 3$  (Basu-Zych et al. 2013b; Lehmer et al. 2016), which is typically attributed to the lower metallicities of high-redshift galaxies, may instead reflect differences in the star formation process in high-redshift galaxies.

Therefore, additional investigations are required to confirm whether more luminous HMXBs are formed in low-metallicity environments. This chapter presents the preliminary results of a study which seeks to measure the  $L_X/SFR-Z$  correlation using data from the *Chandra* extragalactic surveys and a star-forming sample of galaxies at  $z \sim 2$  from the MOSFIRE Deep Evolution Field (MOSDEF; Kriek et al. 2015) survey. At this redshift, most star-forming galaxies are too X-ray faint to be detected even in the deepest X-ray surveys, so we stack the X-ray data from groups of galaxies with similar metallicity to obtain significant detections and measure their average X-ray luminosities. §3.2 describes the data sets used in this study, §3.3 explains our X-ray stacking method, and §3.4 discusses our preliminary results and planned improvements to the current study. In addition to teaching us about the

metallicity evolution of high-mass stars, this study could also have significant implications for estimates of the contribution of HMXBs to the heating of the intergalactic medium during the Epoch of Reionization at  $z \gtrsim 8$  (Power et al. 2009; Parsons et al. 2014; Pober et al. 2015), as discussed in §1.2.2. Throughout this chapter, we assume a cosmology with  $\Omega_m = 0.3$ ,  $\Omega_{\Lambda} = 0.7$ , and h = 0.7.

## 3.2 Data

#### 3.2.1 The MOSDEF Survey

Our galaxy sample for this study is taken from the MOSDEF survey (Kriek et al. 2015). This four-year survey has obtained moderate-resolution (R = 3000-3650) rest-frame optical spectra for about 1500 *H*-band selected galaxies in the AEGIS, COSMOS, GOODS-N, and GOODS-S fields, where extensive multi-wavelength coverage is available (Grogin et al. 2011; Koekemoer et al. 2011). Targets were selected in three redshift intervals  $(1.37 \le z \le 1.70)$ .  $2.09 \le z \le 2.61$ , and  $2.95 \le z \le 3.80$ ), which were chosen with the criterion of maximizing coverage of strong rest-frame optical emission lines falling within atmospheric transmission windows. The redshifts used for target selection were determined by simultaneously fitting the broadband photometry and grism spectra obtained by the 3D-HST survey (Brammer et al. 2012; Momcheva et al. 2016), as well as some previous spectroscopic campaigns (Reddy et al. 2006; Barger et al. 2008; Coil et al. 2011; Cooper et al. 2012; Newman et al. 2013; van de Sande et al. 2013). The magnitude limits used to select galaxies in each of these redshift intervals are H = 24.0, H = 24.5, and H = 25.0 for the lower, middle, and higher redshift intervals, respectively; these magnitude limits roughly correspond to a lower mass limit of  $\sim 10^9 M_{\odot}$  in each redshift interval. For this preliminary study, we use MOSDEF data taken during the first three years of the survey, which includes about 1000 galaxies.

#### **MOSDEF** Data Reduction and Galaxy Measurements

The MOSDEF survey observations were peformed with the MOSFIRE multi-object near-IR spectrograph (McLean et al. 2012) on the 10-meter Keck I telescope. The MOSFIRE spectra were reduced using a custom automated pipeline which divides the multi-object science frames into individual two-dimensional slits, performs flatfielding, subtracts sky contamination, cleans cosmic rays, rectifies the frames, combines all individual exposures for a given source, and calibrates the flux (see Kriek et al. (2015) for details). The reduced 2D spectra were calibrated using telluric standards by comparing the spectrum of a slit star with the photometry from the 3D-HST catalogs (Skelton et al. 2014). An additional slit-loss correction was applied to account for the fact that galaxies are resolved using the galaxy profiles from *Hubble Space Telescope* (*HST*) F160W imaging (Kriek et al. 2015); the uncertainties in flux calibration performed using this procedure were determined to be  $\approx 16\%$ with a bias of < 18\%. Two-dimensional error spectra were calculated which include the effects of Poisson counts from the source and sky as well as read noise. Then one-dimensional science and error spectra were optimally extracted based on the algorithm of Horne (1986).

Emission-line fluxes were measured by fitting Gaussian line profiles to the one-dimensional spectra. Flux uncertainties were estimated by performing 1,000 Monte Carlo realizations of the spectrum of each object perturbed by its error spectrum and refitting the line profiles; the average line fluxes and dispersions were measured from the resulting line flux distributions. Spectroscopic redshifts were measured using the centroids of the highest signal-to-noise ratio (S/N) emission lines, typically H $\alpha$  or [OIII]  $\lambda$ 5007.

Stellar masses were estimated by modeling the available photometric data (Skelton et al. 2014) for each galaxy with the spectral energy distribution (SED) fitting program FAST (Kriek et al. 2009), adopting the MOSDEF-derived redshift for each galaxy. For the SED fitting, we used the stellar population synthesis models of Conroy et al. (2009), assumed a Chabrier (2003) IMF, adopted the Calzetti et al. (2000) dust attenuation curve, and parametrized star-formation histories using delayed exponentially declining models of the form SFR(t)  $\propto te^{-t/\tau}$ , where t is the time since the onset of star formation and tau is the characteristic star formation timescale. For each galaxy, the best-fitting model was found through  $\chi^2$  minimization, with the free parameters being the stellar population age, characteristic star formation timescale, metallicity, and dust extinction; stellar masses and SFRs are derived from the best-fitting model parameters. For each stellar population parameter, confidence intervals were calculated from the distributions from 500 Monte Carlo simulations which perturbed the input SED and refit it.

SFRs were also derived from dust-corrected H $\alpha$  luminosities. The dust corrections were calculated using the Balmer decrement (H $\alpha$ /H $\beta$ ), correcting the H $\alpha$  and H $\beta$  fluxes for Balmer absorption and adopting the Calzetti et al. (2000) dust-attenuation curve (Reddy et al. 2015). The dust-corrected H $\alpha$  luminosities were converted into SFRs using the calibration of Kennicutt (1998) converted to a Chabrier (2003) IMF. An H $\alpha$ -derived SFR is only calculated if both H $\alpha$  and H $\beta$  are detected with S/N  $\geq$  3.

The gas-phase metallicity of each galaxy is derived from the fluxes of emission lines originating in HII regions, and is thus a proxy for the metallicity of the young stellar population including HMXBs. The N2 (log([NII] $\lambda$ 6584/H $\alpha$ )) and O3N2 (log(([OIII] $\lambda$ 5007/H $\beta$ )/([NII] $\lambda$ 6584/H $\alpha$ ))) indicators were used to estimate the gas-phase oxygen abundances. If one of the emission lines used in a given line flux ratio was not detected with S/N $\geq$  3, then a 3 $\sigma$  upper limit on the line flux was computed and used to calculate an upper or lower limit for the metallicity indicator. For both the N2 and O3N2 indicators, we used the calibrations of Pettini & Pagel (2004), which are based on a sample of HII regions with direct electron temperature measurements. These calibrations are

$$12 + \log(O/H) = 8.90 + 0.57 \times N2$$
 (3.2)

$$12 + \log(O/H) = 8.73 - 0.32 \times O3N2$$
 (3.3)

where  $12+\log(O/H)$  is the oxygen abundance. For reference, the solar oxygen abundance is measured to be  $12+\log(O/H) \approx 1.69$  (Allende Prieto et al. 2001; Asplund et al. 2004). Pettini

& Pagel (2004) find that 68% of the log(O/H) measured by the direct electron temperature method lie within  $\pm 0.18$  ( $\pm 0.14$ ) of the value determined by the N2 (O3N2) calibrator.

#### 3.2.2 Chandra Extragalactic Surveys

During the course of its first 17 years in space, the *Chandra X-ray Observatory* performed several deep surveys of extragalactic CANDELS fields. For this study, we make use of the *Chandra* ACIS imaging in the GOODS-N, GOODS-S, and EGS fields, since they have the deepest X-ray exposures. The exposure depths reached by the data used from these fields is 4 Ms in GOODS-S<sup>1</sup>, 2 Ms in GOODS-N, and 800 ks in EGS (Rosati et al. 2002; Giacconi et al. 2002; Alexander et al. 2003; Luo et al. 2008; Laird et al. 2009; Xue et al. 2011; Nandra et al. 2015). The flux limits (over > 50% of the survey area) in the 0.5–2 keV band reached by these surveys are  $7 \times 10^{-17}$ ,  $1.2 \times 10^{-16}$ , and  $2 \times 10^{-16}$  erg cm<sup>-2</sup> s<sup>-1</sup>, respectively, which correspond to 2–10 keV rest-frame X-ray luminosities of  $2 \times 10^{42}$ ,  $4 \times 10^{42}$ ,  $7 \times 10^{42}$  erg s<sup>-1</sup> at  $z \sim 2$  assuming a power-law spectrum with  $\Gamma = 1.8$ .

#### Data Processing

The *Chandra* data from all three fields were analyzed using a consistent procedure described in detail in Laird et al. (2009), Nandra et al. (2015), and Aird et al. (2015). The data was processed using the CIAO analysis software v4.1.2. Each observation was cleaned and calibrated using standard CIAO algorithms, and periods of high background were rejected. Then, the astrometry of individual observations was improved using the Canada-France-Hawaii Telescope Legacy survey (CFHTLS) *i*-band catalog. For each observation, the *Chandra* wavelet source detection algorithm wavdetect was run on the 0.5–7 keV band image with a detection threshold of  $10^{-6}$ . The positions of wavdetect sources were then compared to sources from the CFHTLS *i*-band catalog using the CIAO tool reproject\_aspect, which applied a positional shift to each *Chandra* observation that minimized the offsets between *Chandra* positions and CFHTLS counterparts.

For each individual observation, event files, images, exposure maps, and PSF maps of the 90% encircled energy fraction (EEF) as calculated by the MARX simulator were created in the 0.5–7, 0.5–2, 2–7, and 4–7 keV bands. The exposure maps provide the exposure multiplied by the effective collecting area at each pixel location; they were weighted for a  $\Gamma = 1.4$  power-law spectrum since AGN and X-ray binaries exhibit power-law spectra with  $\Gamma \approx 1-2$  in the *Chandra* band<sup>2</sup>. Then, for each field, the event files, images, exposure maps, and PSF maps were merged together using the CIAO tool merge\_all. These mosaic files for each field were used in our X-ray stacking analysis (see §3.3).

<sup>&</sup>lt;sup>1</sup>The total exposure depth of in the *Chandra* Deep Field South to date is 7 Ms, but we have not yet included the most recent 3 Ms of observations in our preliminary study.

<sup>&</sup>lt;sup>2</sup>Adopting a different value of  $\Gamma$  in the range from 1.0 to 2.0 would change the exposure map values by < 10%.

#### Source Catalogs

An important part of our X-ray stacking analysis is the removal of detected sources from our background maps. Source catalogs for the *Chandra* Deep Field South (CDFS), *Chandra* Deep Field North (CDFN), and AEGIS-X Deep (AEGIS-XD) surveys are provided by Xue et al. (2011), Alexander et al. (2003), and Nandra et al. (2015), respectively. In this preliminary study, we make use of these published catalogs, but since they use different false probability thresholds with the wavdetect tool and perform the searches in different energy bands, in the future we will make a catalog using a common detection threshold and the same energy bands across all the fields.

We also make use of the MOSDEF X-ray catalog from Coil et al. (2015). This catalog matches *Chandra* sources detected by wavdetect with a false probability threshold  $< 4 \times 10^{-6}$ in at least one of four energies bands (0.5–7, 0.5–2, 2–7, and 4–7 keV) to likely counterparts in the 3D-HST catalog used for MOSDEF target selection. For X-ray sources observed by MOSDEF, this catalog provides 2–10 keV rest-frame X-ray luminosities assuming a power-law spectrum with  $\Gamma = 1.9$  subject only to Galactic absorption ( $N_{\rm H} \sim 10^{20}$  cm<sup>-2</sup>). For all galaxies in the MOSDEF sample that are not associated with an X-ray detection, Coil et al. (2015) estimate 95% confidence upper limits on the X-ray luminosity.

#### 3.2.3 Galaxy Sample Selection

Since our goal is to study HMXB emission from star-forming galaxies, we applied several selection criteria to the MOSDEF galaxy sample in order to minimize contamination from other X-ray sources. First, we excluded from our sample any MOSDEF galaxy that was identified as an AGN using the three criteria described in Coil et al. (2015). We excluded galaxies that were individually detected in the Chandra extragalactic surveys since their high X-ray luminosities  $(L_X > 10^{42} \text{ erg s}^{-1})$  indicate they host AGN; the MOSDEF galaxies that are X-ray detected have 2–10 keV rest-frame X-ray luminosities of  $10^{43}$  to  $10^{45}$  erg s<sup>-1</sup> Since Spitzer IRAC data is available for MOSDEF galaxies (Skelton et al. 2014), we also excluded from our sample any galaxies that meet the Donley et al. (2012) criteria for IR AGN; these IR criteria select AGN with heavy obscuration  $(N_{\rm H} > 10^{24} {\rm ~cm^{-2}})$ , which may not be detected in the rest-frame X-ray 2–10 keV band. We also used line flux ratios to exclude optically-identified AGN from our sample. Optical diagnostics such as the "BPT diagram" (Baldwin et al. 1981; Veilleux & Osterbrock 1987) can be used to identify AGN via their enhanced ratios of nebular emission lines [OIII] $\lambda$ 5008 to H $\beta$  and [NII] $\lambda$ 6584 to H $\alpha$ ; these optical diagnostics can identify AGN even if the direct line-of-sight to the accretion disk is obscured. We remove from our sample any galaxy with  $\log([NII\lambda 6584/H\alpha) > -0.3$ and any galaxy with  $[OIII/H\beta]$  and  $[NII]/H\alpha$  values or lower limits that place it above the Kauffmann et al. (2003) line in the BPT diagram. Some of the galaxies above the Kauffmann et al. (2003) may be starbursts, but we choose to be conservative in our sample selection to limit AGN contamination as much as possible.

While the X-ray luminosity of HMXB populations is correlated with the SFR, the X-ray

luminosity of LMXBs scales with the stellar mass of the galaxy (Gilfanov 2004). Thus, to maximize the contributions of HMXBs relative to LMXBs to the total X-ray luminositiy, we only include galaxies with high specific SFR (sSFR>  $10^{-10}$  yr<sup>-1</sup>), which is defined as the ratio of SFR to stellar mass ( $M_*$ ). The sSFR limit we adopt is based on studies of local galaxies, which find that the sSFR at which a galaxy's X-ray luminosity transitions from being LMXB-dominated to HMXB-dominated is ~  $10^{-10}$  yr<sup>-1</sup> (Lehmer et al. 2010). We think this sSFR limit is reasonable for  $z \sim 2$  galaxies as well, since while it is expected that between z = 0 and  $z \approx 2$ , the X-ray luminosity of LMXBs per  $M_*$  increases by about an order-of-magnitude (Fragos et al. 2013b), simulations indicate galaxies may grow in mass by an order-of-magnitude during the same time (Moster et al. 2013).

We also exclude from our galaxy sample any galaxies with SFR  $< 1M_{\odot}$  yr<sup>-1</sup>. At lower SFRs, the number of HMXBs that are produced is so small that the HMXB luminosity function is not well sampled and stochastic variations dominate the integrated X-ray luminosity (Grimm et al. 2003). At low SFR, the typical galaxy luminosity produced by HMXBs is lower than the mean X-ray luminosity (averaged over a population of galaxies), and the scatter of HMXB luminosities in low-SFR galaxies is much larger than in high-SFR galaxies (Justham & Schawinski 2012).

We only included galaxies from the GOODS-S, GOODS-N, and EGS fields, since the *Chandra* data in these fields is much deeper than in COSMOS or UDS. Furthermore, only galaxies in the two lowest redshift intervals  $(1.37 \le z \le 1.70 \text{ and } 2.09 \le z \le 2.61)$  are used because the galaxy sample at  $z \sim 3$  is too small to produce significant detections through X-ray stacking analysis.

Finally, we restricted our sample to galaxies with H $\alpha$ -derived SFRs, since they are more reliable than SED-derived SFRs and sensitive to star formation on shorter timescales, more similar to those of HMXBs (Conroy 2013). In the MOSDEF observations gathered before mid-2015, there are 158 (154) galaxies which meet these criteria and for which MOSDEF metallcity measurements or upper/lower limits derived with the N2 (O3N2) indicator are available. We primarily use the sample with O3N2 metallicity measurements, since comparisons of metallicity indicators between z = 0 - 2 suggest that the O3N2 indicator is not significantly biased at high-redshift (Liu et al. 2008; Steidel et al. 2014), while the N2 indicator tends to overestimate oxygen abundance in high-redshift galaxies (Liu et al. 2008; Newman et al. 2014). The O<sub>32</sub> and R<sub>23</sub> indicators appear to be the most robust as a function of redshift (Shapley et al. 2015), but they require the [OII] $\lambda\lambda$ 3726,3729 line, which is only detected in a smaller subsample of galaxies.

The redshift distribution for the sample of MOSDEF galaxies meeting our selection criteria is shown in Figure 3.1. A quarter of the sample is made up of galaxies with  $z \sim 1.5$ , while the majority of the sample has  $z \sim 2.3$ . Figures 3.2 and 3.3 display the distributions of metallicities, SFRs, and stellar masses of our galaxy sample. As can be seen in the histogram distributions, the  $z \sim 1.5$  and  $z \sim 2.3$  galaxy samples cover similar ranges in SFR and stellar mass, but the mean metallicity of the  $z \sim 1.5$  galaxies is lower than that of the  $z \sim 2.3$  galaxies, which is not surprising due to the metallicity evolution of the Universe. The correlation between galaxy mass and metallicity, which has been well-studied locally and



*Figure 3.1*: Redshift distribution of the sample of MOSDEF galaxies used in our *Chandra* stacking analysis. This distribution includes all galaxies meeting our selection criteria and for which we have either a metallicity measurement or an upper/lower limit on metallicity based on the O3N2 indicator.

confirmed at redshifts up to  $z \sim 3.5$  (e.g. Tremonti et al. 2004; Kewley & Ellison 2008; Erb et al. 2006; Maiolino et al. 2008), can be seen in Figure 3.2; Sanders et al. (2015) studied this correlation with the MOSDEF sample specifically and found that, unlike at low redshifts, the mass-metallicity relation at  $z \sim 2$  is independent of SFR. In line with this result from Sanders et al. (2015), we do not find a significant correlation between metallicity and SFR in our sample of MOSDEF galaxies (see Figure 3.3).

## 3.3 X-ray Stacking Analysis

The typical X-ray luminosities of normal (non-AGN) star-forming galaxies with SFRs~  $1-100M_{\odot} \text{ yr}^{-1}$  are  $L_X \sim 10^{39.5} - 10^{41.5} \text{ erg s}^{-1}$  in the rest-frame 2–10 keV band. Since these luminosities fall below the sensitivity limits of the *Chandra* extragalactic surveys, studying the X-ray emission of these galaxies requires stacking the X-ray data. We developed an X-ray stacking technique that is similar to that used by Rangel et al. (2013) and Mezcua et al. (2016). In order to achieve the highest sensitivity, we performed the stacking in the 0.5–2 keV band because *Chandra* has the highest effective area and best angular resolution at soft X-ray energies. Thus, any time we refer to images or exposure maps

First, in order to prevent contamination from detected sources to our stacks, we removed counts lying within two times the 90% EEF PSF radius of the position of any detected sources in the CDFS, CDFN, and AEGIS-XD source catalogs (Alexander et al. 2003; Xue et al. 2011; Nandra et al. 2015), regardless of what energy band the source was detected in. To keep track of the areas of the mosaics from which counts were removed, we created a mask with pixel values of zero in regions where counts were removed and values of one everywhere else.



Figure 3.2: The main plot shows the stellar mass versus oxygen abundance derived from the O3N2 indicator for individual galaxies. Metallicity measurements (which require S/N> 3 detections of [OIII], [NII], H $\alpha$ , and H $\beta$ ) are shown in gray points,  $3\sigma$  upper limits are shown as orange triangles, and  $3\sigma$  lower limits are shown as blue triangles. The top panel shows the distribution of metallicity measurements (not including upper/lower limits) for  $z \sim 1.5$  galaxies in yellow and for the full redshift sample in gray. The right panel shows the distribution of stellar masses. Gray error bars represent the  $1\sigma$  confidence intervals.



*Figure 3.3*: This figure is organized in the same way as Figure 3.2, except that it shows the star formation rates rather than the stellar masses of our MOSDEF galaxy sample.

For each of the galaxies in our MOSDEF sample, we created source and background aperture regions. Each source aperture was defined as a circular region centered on the galaxy position from the 3D-HST catalog with a radius equal to the 90% EEF PSF radius. Each background aperture was defined as an annulus with an inner radius equal to 10" and an outer radius equal to 30".

Then we made some final refinements to our galaxy sample. To further reduce contamination to our stacks, we excluded any galaxies that were located within a distance less than three times the 90% EEF radius from any detected X-ray sources. We also excluded a small number of galaxies located so far off-axis in the *Chandra* observations that their 90% EEF radius was larger than 6", since such large aperture regions would introduce a lot of additional background to the stacks. Finally, we removed four galaxies from our sample whose *Chandra* apertures overlapped with one another and one galaxy located in an area of diffuse X-ray emission.

We extracted the counts  $(C_{\rm src}, C_{\rm bkg})$ , exposure times  $(t_{\rm src}, t_{\rm bkg})$ , and mean effective areas  $(A_{\rm src}, A_{\rm bkg})$  in both the source and background regions for each galaxy using the CIAO tool dmextract. The background region counts were extracted from a background map we made by removing the counts within the source aperture regions from the mosaic images; in corresponding fashion, we also punched out the source aperture regions from the mask we created, setting the mask value to zero in regions from which counts were removed. We then used the background mask to calculate what fraction of each aperture area may be "lost" to the regions we punched out from the mosaics.

For each source, we calculated the net background-subtracted counts and a conversion factor to translate the net counts into the rest-frame X-ray luminosity. The net source counts are given by:

$$C_{\rm net} = C_{\rm src} - C_{\rm bkg} \times \frac{t_{\rm src} A_{\rm src} P_{\rm src}}{t_{\rm bkg} A_{\rm bkg} P_{\rm bkg}}$$
(3.4)

where  $P_{\rm src}$  and  $P_{\rm bkg}$  are the source and background aperture areas, respectively, in units of pixels<sup>2</sup> and corrected for any fraction of the aperture that overlaps with any of the regions punched-out from the mosaic images. For an individual source, converting the net counts in the 0.5–2 keV band into the rest-frame 2–10 keV X-ray luminosity requires the following components: the exposure time, effective area, the EEF, the mean energy per photon  $(E_{avg})$ , the luminosity distance  $(D_{\rm L}, \text{ and the } k$ -correction  $(k_{\rm corr})$ , which is the multiplicative factor required to convert the luminosity in the observed band to the chosen rest-frame. The mean photon energy and the k-correction depend on the source spectrum, which we assume to be a power-law with  $\Gamma = 1.7$ , a typical 2–10 keV spectrum for HMXBs in nearby galaxies (Ptak et al. 1999). Galactic absorption along the line-of-sight to the *Chandra* extragalactic fields is negligible, and for the rest-frame 2–10 keV band emission to be significantly absorbed. the column density within the host galaxy would have to be  $\gtrsim 5 \times 10^{22}$  cm<sup>-2</sup>. It has been suggested that a simple power-law spectrum may not be appropriate for HMXB populations in low-metallicity galaxies, since the HMXB luminosity of nearby, low-Z dwarf galaxies is dominated by ULXs, which exhibit exponentially cutoff power-law spectra with  $\Gamma \approx 1 - 1.5$ and  $E_{\rm cut} \approx 2-6$  keV (Kaaret 2014). However, when converting fluxes from the 0.5–2 keV

band to the rest-frame 2–10 keV band for z < 4, the k-correction for these different spectral models differs by  $\leq 15\%$ . Therefore, we adopt a  $\Gamma = 1.7$  power-law model for simplicity. The k-correction is calculated as follows:

$$k_{\rm corr} = \frac{E_{\rm rest,2}^{(2-\Gamma)} - E_{\rm rest,1}^{(2-\Gamma)}}{E_{\rm obs,2}^{(2-\Gamma)} - E_{\rm obs,1}^{(2-\Gamma)}} (1+z)^{(\Gamma-2)}$$
(3.5)

where  $E_{\text{obs},1} = 0.5$  keV,  $E_{\text{obs},2} = 2.0$  keV,  $E_{\text{rest},1} = 2.0$  keV, and  $E_{\text{rest},2} = 10.0$  keV. For each source, we calculate a conversion factor to convert the observed photon flux to the rest-frame X-ray luminosity, defined as:

$$f_{\rm conv} = 4\pi D_{\rm L}^2 E_{\rm avg} k_{\rm corr} / \text{EEF}$$
(3.6)

For a given galaxy stack, the net counts and the expected number of background counts of individual source apertures were summed. We also computed the product of exposure time and effective area ( $w_{exp} = t_{src}A_{src}$ ) for individual galaxies, and then added these products together. To calculate the average X-ray luminosity of the galaxy stack, the total net counts were divided by the sum of  $w_{exp}$  and multiplied by a weighted average of the luminosity conversion factors,  $f_{conv}$ . The weights applied to  $f_{conv}$  are  $w_{exp}$ , because the combination of exposure time and effective area determines the relative sensitivity (S/N) of observations of different sourcesl. Since our goal is to study the relationship between  $L_X/SFR$  and metallicity, for each galaxy stack, we also calculate the weighted average SFR, applying the same weights ( $w_{exp}$ ) used to calculate the X-ray luminosity of each stack.

Since we need to combine galaxies from different redshifts and from surveys with different exposure depths in our stacks to obtain enough sensitivity, we tested whether our stacking procedure can accurately measure average X-ray luminosities even when combining galaxies between  $z \sim 1.3$  and  $z \sim 2.6$  and exposure depths ranging from 800 ks to 4 Ms. For this test, we applied our stacking procedure to groups of detected X-ray sources in the CDFS, CDFN, and AEGIS-XD surveys with a similar redshift distribution to our MOSDEF galaxy sample. We calculated the average X-ray luminosity of stacks of these sources using our stacking method and compared them to exposure-weighted averages of their individual X-ray luminosities in *Chandra* catalogs. We found that the average X-ray luminosities derived using our stacking procedure were consistent with the averages of individual measurements at the 3% level.

We considered two sources of error on each stacked signal. The first is Poisson noise associated with the background, which we used to establish the significance of the signal in each stack. We calculated the Poisson probability that a random fluctuation of the total background counts could result in a number of counts within the combined source aperture greater than or equal to the total stacked counts (source plus background). If this probability is  $\leq 0.0036\%$ , the significance is  $\geq 2.7\sigma$  and the stacked signal is considered to be a detection; otherwise, only an upper limit on the average X-ray luminosity of the galaxies in the stack was calculated. These upper limits and the uncertainties associated with the measured X-ray luminosities are calculated using a bootstrapping method, which measures how the contribution of individual sources affects the average stacked signal. To determine the bootstrapping errors, we randomly resampled the galaxies in each stacking bin 1000 times and repeated our stacking analysis with these samples. The number of galaxies in a given stack is conserved during the resampling, leading some values to be duplicated while others are eliminated in a particular iteration. From the resulting distribution of stacked X-ray luminosities, we measure  $1\sigma$  confidence intervals for stacked signals exceeding our detection threshold and  $2\sigma$  upper limits for stacked signals which do not exceed the threshold.

## 3.4 Preliminary Results

We divided the MOSDEF galaxies into different metallicity bins and stacked their X-ray data to measured the average X-ray luminosity per SFR of galaxies in each bin. We tried two different binning schemes with the O3N2-derived oxygen abundances, dividing the galaxies into two metallicity bins with  $\approx 3.8\sigma$  significance or splitting them into three metallicity bins with  $\approx 3.1\sigma$  significance. We also stacked the galaxies in two metallicity bins based on the N2 indicator to test whether any trends we saw were independent of the metallicity-indicator use.

The resulting  $L_X$ /SFR measurements are shown in Figure 3.4. The green lines in this figure display the  $L_X$ -SFR correlation measured using nearby samples of galaxies; Mineo et al. (2012) measure a linear relationship between  $L_X$  and SFR for HMXB-dominated galaxies while Lehmer et al. (2010) find that the X-ray emission from both LMXB and HMXB dominated galaxies can be accounted for by a linear depedence on  $M_*$  in addition to a linear dependence on SFR. These studies did not investigate whether the HMXB luminosity varies with metallicity, but they did find significant scatter of 0.3-0.4 dex in the  $L_X$ -SFR correlation and suggested that metallicity-dependent HMXB evolution (Dray 2006; Linden et al. 2010) could be one of the underlying causes of the scatter. As can be seen in Figure 3.4, the  $L_X$ /SFR values of the MOSDEF galaxies lie  $\geq 2\sigma$  above the z = 0 relations, which is consistent with other studies that have found that galaxies at redshifts  $\gtrsim 1$  have higher values of  $L_X$ /SFR compared to star-forming galaxies in the local Universe (Basu-Zych et al. 2013b; Lehmer et al. 2016).

Regardless of the metallicity bins used, the  $L_X/SFR$  values of the MOSDEF stacks are not statistically correlated with metallicity. In Figure 3.4, the purple dashed line shows the  $L_X/SFR-Z$  relationship predicted by population synthesis models for HMXBs (Fragos et al. 2013a), while the purple dotted line shows the  $L_X/SFR-Z$  correlation measured by Brorby et al. (2016) using samples of normal star forming galaxies, Lyman-break analogs, and blue compact dwarf galaxies (BCDs). Although the MOSDEF stacks are consistent with a constant  $L_X/SFR$ , due to the large uncertainties of these  $L_X/SFR$  measurements, we cannot definitively rule out that the predicted correlation does not exist. With the exception of the middle metallicity bin of the three-bin O3N2-indicator stacks, the  $L_X/SFR$  values of the stacks are consistent at < 1.2 $\sigma$  confidence with the  $L_X/SFR-Z$  relations from Fragos et al. (2013a) and Brorby et al. (2016).



Figure 3.4: The weighted average rest-frame 2–10 keV X-ray luminosity per SFR for stacks of  $z \sim 2$ star-forming galaxies as a function of metallicity. Black (orange) points split up the sample into three (two) metallicity bins based on the O3N2 indicator, while blue points split up the sample into two metallicity bins based on the N2 indicator. There are systematic offsets between the oxygen abundances derived using the N2 and O3N2 indicators, just as is the case at low redshift. Vertical error bars show  $1\sigma$  confidence interval of  $L_X/SFR$ , while horizontal error bars represent the range of metallicity of the galaxies in a given stack. The two green lines show measured  $L_X/SFR$  relations using samples of nearby galaxies. The dashed green line shows the linear  $L_X$ -SFR relation measured by Mineo et al. (2012), and the dash-dotted line displays a model for a galaxy's X-ray luminosity from Lehmer et al. (2010) which includes a linear dependence on both SFR due to HMXBs and  $M_*$ due to LMXBs; in order to compare the latter model to the MOSDEF stacks, Lehmer et al. (2010)'s relation was converted into a function of Z for this plot using the SFR- $M_*$  correlation from Shivaei et al. (2015) and the  $M_* - Z$  correlation from Steidel et al. (2014). The dotted purple line is the measured  $L_X/SFR-Z$  correlation from Brorby et al. (2016) based on nearby normal star-forming and dwarf galaxies. The dashed purple line is the predicted  $L_X/SFR-Z$  relation for HMXBs based on population synthesis models by Fragos et al. (2013a). All the  $L_X$ -SFR relations shown have been calibrated for the O3N2 metallicity indicator.



Figure 3.5: Left: The weighted average  $L_X/SFR$  versus metallicity for stacks of MOSDEF galaxies divided into high and low SFR groups. The light (dark) orange points show  $L_X/SFR$  for galaxies with SFR<  $50M_{\odot} \text{ yr}^{-1}$  (SFR>  $50M_{\odot} \text{ yr}^{-1}$ ), along with  $1\sigma$  uncertainties. Right: The weighted average  $L_X/SFR$  versus metallicity for stacks of MOSDEF galaxies divided into two redshift intervals. The light orange points are  $2\sigma$  upper limits on  $L_X/SFR$  for  $z \sim 1.5$  galaxies. The dark orange points represent  $L_X/SFR$  for  $z \sim 2.3$  galaxies, along with  $1\sigma$  uncertainties. In both panels, horizontal error bars show the metallicity range spanned by the galaxies in a given stack. The purple lines are the same as in Figure 3.4.

We investigate whether any systematic effects may be flattening the appearance of the  $L_X/SFR-Z$  relation in our MOSDEF stacks. First, we consider the impact of the SFR on the measurements of  $L_X/SFR$  versus Z. We split up the MOSDEF galaxy sample into two SFR bins and two metallicity bins. As shown in Figure 3.5, galaxies with lower SFR have higher  $L_X/SFR$ ; this trend has been observed in other studies, and is attributed to a larger fraction of a galaxy's X-ray luminosity being produced by LMXBs as the SFR, and therefore the contribution of HMXBs, decreases (e.g., Lehmer et al. 2010; Basu-Zych et al. 2013b). In Figure 3.4, the higher-metallicity bins contain galaxies with higher average SFRs. Thus, taking into account the observed trend between  $L_X/SFR$  and SFR, we conclude that the  $L_X/SFR$  values of higher-metallicity bins in Figure 3.4 may be biased towards lower values than they should be. Thus, potential bias due to the SFR distribution of galaxies in each metallicity bin cannot explain why the predicted negative correlation between  $L_X/SFR$  and Z is not observed.

We also consider the effects of redshift evolution on the observed  $L_X/SFR-Z$  relation. Figure 3.5 shows  $L_X/SFR$  for MOSDEF galaxies that have been split into two redshift intervals and two metallicity bins. There are not enough galaxies in the lower redshift  $(1.37 \le z \le 1.61)$  interval to obtain significant stacked X-ray detections so we calculate upper limits for these lower-redshift stacks. The upper limit we can place on the lower-Z bin is not particularly meaningful, but the limit we can place on the higher-Z  $(12+\log(O/H)>8.4)$  bin is lower than the  $L_X/SFR$  value of the higher-redshift (2.09  $\leq z \leq$  2.61) galaxies in the higher-Z bin, indicating that  $L_X/SFR$  does increase between  $z \sim 1.5$  and  $z \sim 2.3$ . Since a larger fraction of the galaxies in the higher-metallicity stacks in Figure 3.4 are at  $z \sim 1.5$ , when we combine galaxies from different redshift intervals in our stacks, the  $L_X/SFR$  values of the higher-metallicity bins are more impacted relative to the lower-metallicity bins. When we measure  $L_X/SFR$  versus Z for the  $z \sim 2.3$  galaxies by themselves, the higher-metallicity bin lies  $\approx 2.0\sigma$  above the predicted  $L_X/SFR-Z$  relation, and the data is more consitent with either no correlation or a positive correlation of  $L_X/SFR$  with Z rather than a negative correlation, as shown in Figure 3.5.

While the X-ray luminosity of HMXBs is predicted to be inversely correlated with metallicity, the X-ray luminosity of AGN could be positively correlated with metallicity. Studies of AGN and their host galaxies in the redshift range 0.2 < z < 2.5 discovered that the AGN occupation fraction (the fraction of galaxies hosting an AGN) increases with stellar mass (Bongiorno et al. 2012; Aird et al. 2012; Jones et al. 2014). A galaxy at the upper end of the mass range  $(\log(M_*/M_{\odot})=11)$  of the MOSDEF sample is approximately 6–10 times more likely to host an AGN than a galaxy at the lower end of the mass range  $(\log(M_*/M_{\odot})=9.3)$ . Therefore, given the positive correlation between stellar mass and metallicity (e.g. Sanders et al. 2015), galaxies with higher metallicities are more likely to host an AGN. If, despite our efforts to remove AGN from our galaxy sample, some AGN contamination is still present, we would expect to see a stronger positive correlation between  $L_X/SFR$  and mass than between  $L_X$ /SFR and metallicity. We therefore divided the MOSDEF galaxy sample in three mass bins; the  $L_X/SFR$  of these stacks is shown in Figure 3.6, and they do not exhibit any correlation with stellar mass. Although this result does not definitively rule out the possibility that low-luminosity AGN could be contaminating our galaxy sample, it does suggest that the level of such contamination is low. Interestingly, the highest-mass bin has a large upper error bar on  $L_X/SFR$ , suggesting that there may be one or more sources with significantly higher  $L_X$ /SFR than the rest of the sources in this bin. As part of the improvements we intend to make to these preliminary results, we will identify the sources responsible for the large upper error bar of this bin and examine their location in the BPT diagram, their IRAC colors, and their individual X-ray significance to assess whether they may be AGN.

Having examined the systematics that could impact our results, there are two important caveats to keep in mind when interpreting the lack of correlation that we observe between the X-ray luminosity per SFR and the metallicity of star-forming galaxies at  $z \sim 2$ : (i) our preliminary results cannot rule out the possibility that AGN contamination among the higher-metallicity galaxies is artificially inflating their measured  $L_X/SFR$ , and (ii) since we can only measure the global metallicity of each galaxy, the metallicity we measure may not always correspond to the metallicity of its HMXB population, which will introduce scatter into any  $L_X/SFR-Z$  dependence that may exist. Thus, we cannot definitively conclude that there is no correlation between the X-ray luminosity per SFR and the metallicity of HMXBs at  $z \sim 2$ .

However, if our results are not significantly biased by AGN contamination or discrepancies between the metallicities of HMXBs and their host galaxies, they challenge the increasingly



Figure 3.6: The weighted average  $L_X/SFR$  versus stellar mass. Vertical error bars show  $1\sigma$  confidence interval of  $L_X/SFR$ . Horizontal error bars show the metallicity range spanned by the galaxies in a given stack.

accepted hypothesis that the metallicity dependence of HMXB evolution is the underlying cause of the observed increase in the  $L_X/SFR$  of star-forming galaxies with redshift. It is possible that the enhanced number of bright HMXBs observed in very low-metallicity BCDs  $(12+\log(O/H)<8.0)$  is driven by a variable other than the metallicity dependence of stellar winds, such as the compactness and density of star-formation regions, which may impact the stellar IMF (Krumholz et al. 2010). Similar conditions in star forming clouds in high-redshift galaxies might then explain the increase of  $L_X/SFR$  with redshift. It is also possible that metallicity does play a role, but is not the only factor involved, in producing the higher HMXB luminosities per SFR in BCDs and high-redshift galaxies.

Apart from our results, there are other reasons to be skeptical of the predictions of population synthesis models with regards to the metallicity dependence of HMXBs. Over the past decade, two key developments have revealed inadequacies in our stellar evolutionary models. First, observations of wind clumping indicate that mass-loss rates for line-driven winds had been previously overestimated by factors of  $\sim 3 - 10$  (e.g., Bouret et al. 2005, Fullerton et al. 2006) while the mass lost during the short-lived, eruptive episodes of Luminous Blue Variables (LBVs) had probably been underestimated (Smith & Owocki 2006). The physical mechanism responsible for LBV eruptions is poorly understood and may not be metallicity-dependent, in which case the total fraction of mass lost by a high-mass star during its lifetime may not be a strong function of metallicity (Smith 2014), as current models predict (Belczynski et al. 2010). Second, studies of the high binary fraction among massive stars suggest that the vast majority of them have orbital periods that are short enough for mass exchange to occur (Sana et al. 2012), and therefore most massive stars cannot be treated as isolated systems. Even if population synthesis models that study HMXB production have included the effects of binary evolution (such as mass transfer and the common envelope

phase) into their simulations, the stellar evolutionary tracks they adopt for high-mass stars have been calibrated by comparing the observed massive stellar population with evolutionary models that do not typically include binary interactions (Smith 2014). Thus, it is possible that the metallicity dependence of HMXBs is overestimated by current population synthesis models.

There are several improvements we can make to these preliminary results and establish with greater confidence whether there is a correlation between  $L_X/SFR$  and metallicity in star-forming galaxies at  $z \sim 2$ . The most valuable improvement we will make is to increase our galaxy sample by roughly 50%, making use of the data from full MOSDEF survey. With this larger sample, we will be able to split up the galaxies into more metallicity bins and simultaneously probe multiple parameters, such as SFR,  $M_*$ , and redshift. With a larger sample, we may also be able to use the  $O_{32}$  and  $R_{23}$  metallicity indicators, which are more consistent across different redshifts, improving the accuracy of comparisons between  $z \sim 0$ local relations and our stacked measurements. Using all the observations that are currently available for the *Chandra* Deep Field South, which provide a total exposure depth of 7 Ms, will also help to maximize the number of bins we can use in our stacking analysis. In addition, we can also make several improvements to our background subtraction and stacking analysis. We can apply a consistent detection method to all *Chandra* fields rather than relying on the published catalogs which use different detection thresholds. In order to check for systematics in our analysis, we will compare the distribution of net counts within from the apertures of our galaxy sample to the net counts from randomly distributed apertures, and then apply our stacking analysis to the randomly distributed apertures to check for false detections. Furthermore, we will also update the H $\alpha$ -derived SFRs using the attenuation curve derived from the MOSDEF galaxy sample by Reddy et al. (2015), which can alter the derived SFRs by  $\approx 20\%$ . Finally, we will perform a new fit for the local  $L_X/SFR-Z$  relation based on the galaxy sample from Brorby et al. (2016) including the upper limits of galaxies which are not detected; this will allow us to better assess the significance of the local relation and of the difference between our results and the local relation.

### 3.5 Summary

We studied the X-ray emission of a sample of  $\approx 150$  star-forming galaxies in the CANDELS fields with spectroscopically confirmed redshifts in the range  $1.37 \leq z \leq 2.61$  in order to investigate the metallicity dependence of HMXBs. Population synthesis models predict that HMXB populations produced in low-metallicity environments should be more X-ray luminous (Dray 2006; Linden et al. 2010; Fragos et al. 2013b), and studies of local galaxies have discovered an enhanced number of bright HMXBs in very low-metallicity blue compact dwarf galaxies (Kaaret 2014; Douna et al. 2015; Brorby et al. 2016). The X-ray luminosity per SFR of star-forming galaxies is observed to increase with redshift, a trend which which is attributed to the metallicity dependence of HMXBs, even though this correlation has not been measured directly (Basu-Zych et al. 2013b; Lehmer et al. 2016). The goal of this study was to measure the  $L_X/SFR-Z$  relation in high-redshift galaxies and to test whether the metallicity dependence of HMXBs can account for the observed increase in  $L_X/SFR$  as a function of redshift.

The sample of galaxies used in this study was selected from the MOSDEF survey. AGN were identified by their X-ray luminosity, IRAC colors, or location in the BPT diagram and removed from the sample. From the emission lines in the near-IR MOSSFIRE spectrum of each galaxy, we calculated the galaxy redshift, H $\alpha$ -derived star formation rate, and metallicity based on the O3N2 oxygen abundance indicator. Stellar masses were derived from the multiwavelength photometric data sets available in the CANDELS fields.

The X-ray binary emission from individual star-forming galaxies at  $z \sim 2$  is too faint to be detected, even in the deep *Chandra* extragalactic fields. Therefore, we developed code to stack the X-ray data at the positions of galaxies from the three deepest *Chandra* fields, the 4 Ms *Chandra* Deep Field South, the 2 Ms *Chandra* Deep Field North, and the *Chandra* AEGIS-X Deep survey. All detected sources included in the published catalogs of these *Chandra* surveys were removed from our mosaic images prior to stacking the individually undetected star-forming galaxies. For a given X-ray stack, the net X-ray counts of all individual galaxies were summed together, and an exposure-weighted average conversion factor was calculated to convert 0.5–2 keV photon counts into the rest-frame 2–10 keV luminosity.

Dividing the galaxy sample into three metallicity bins, we calculated the average X-ray luminosity per SFR for galaxies in each bin. Our preliminary results show that the  $L_X/SFR$  of  $z \sim 2$  star-forming galaxies is a factor of 2-3 higher than the value measured in local galaxies, as has been found by previous studies. However, we do not find any significant correlation between  $L_X/SFR$  and Z. Splitting the galaxies into different SFR bins, we find that galaxies with lower SFRs have higher  $L_X/SFR$ , a trend discovered by other studies. Measuring the  $L_X/SFR$  of galaxies in different redshift intervals ( $1.37 \leq z \leq 1.70$  and  $2.09 \leq z \leq 2.61$ ) also does not yield a significant correlation between  $L_X/SFR$  and Z, and the highest metallicity bin for galaxies at  $z \sim 2.3$  has a value of  $L_X/SFR$  that is  $\approx 2\sigma$  higher than the predictions of population synthesis models.

Although we take an aggressive approach to removing AGN from our galaxy sample, it is possible that low-luminosity AGN could be contaminating our sample at high stellar masses because the AGN occupancy fraction increases with mass. Due to the mass-metallicity correlation (e.g., Sanders et al. 2015), such AGN contamination could inflate the value of  $L_X$ /SFR in high-metallicity bins. We stack the galaxies in mass bins to look for a positive correlation between  $M_*$  and  $L_X$ /SFR that would provide evidence of AGN contamination, but we do not find evidence of such a correlation. Thus, there is no significant indication of AGN contamination, but neither can we definitively rule it out.

Nonetheless, our results suggest that we should exercise caution regarding the claim that the metallicity dependence of HMXB evolution is the underlying cause of the observed increase in the  $L_X$ /SFR of star-forming galaxies with redshift. Other factors may contribute to the enhanced X-ray luminosity of HMXBs at high-redshift and in local blue compact dwarfs, such as the compactness of star forming regions resulting in a top-heavy IMF. We will improve our preliminary measurement of the  $L_X$ /SFR-Z relation at  $z \sim 2$  by expanding our galaxy sample once the data from the complete MOSDEF survey is analyzed. Future work could explore HMXB luminosity as a function of the concentration and clumpiness of galaxies through the use of Gini coefficients (Conselice 2003; Lotz et al. 2004) or the luminosity of high-density tracers of molecular clouds.

# Chapter 4

# The Steady

# 4.1 Investigating the nature of the compact object in a non-pulsating HMXB

High-mass X-ray binaries (HMXBs) inform our understanding of the evolution of massive stars, which is still subject to significant uncertainties (Smith 2014). Studying the accreting neutron stars (NS) and black holes (BH) in these systems offers a special tool to probe the strength and clumping of the stellar winds of their massive companions. Moreover, comparing the properties of HMXB populations to predictions of population synthesis models (i.e. distributions of their orbital periods, compact object masses, and donor spectral types) helps constrain theoretical models of stellar mass loss, mass transfer episodes in massive binaries, and the natal kicks received by compact objects during supernova explosions (e.g., Negueruela et al. 2008; Linden et al. 2010; Fragos et al. 2013b; Grudzinska et al. 2015). Since HMXBs are the likely progenitors of many of the double compact binaries which may merge and produce gravitational waves (Postnov & Yungelson 2014), such as the BH-BH mergers recently detected by LIGO (Abbott et al. 2016c; Abbott et al. 2016b), studies of HMXB populations naturally complement the new field of gravitational wave astronomy and will be useful in determining the implications of gravitational wave sources for stellar evolutionary models. Constraining the ratio of NS to BH HMXBs and whether this ratio varies with binary properties (e.g., donor spectral type and metallicity) can shed light on the net mass loss experienced by a high-mass star due to its stellar wind, binary interactions, and supernova explosion (Dray 2006; Muno 2007; Belczynski & Ziolkowski 2009) as well as improve our estimates of the relative fractions of different double compact binaries expected to descend from HMXBs (Postnov & Yungelson 2014).

HMXBs hosting black holes exhibit different spectral properties than those hosting neutron stars. NS HMXBs typically have hard power-law spectra with exponential cutoffs with e-folding energies typically  $\leq 20$  keV (Coburn et al. 2002), whereas BH HMXBs exhibit power-law cutoffs around 50–100 keV in their hard states and  $\Gamma \sim 2$  power-law tails extending to MeV energies in their soft states (Grove et al. 1998; Zdziarski 2000). Thus, the presence of an exponential cutoff below 20 keV in the X-ray spectrum of an HMXB is a strong indication that it harbors a neutron star; however, only the detection of X-ray pulsations or cyclotron line features constitute definitive proof of the presence of a neutron star. Most X-ray pulsars in HMXBs have spin periods between ~ 0.1 and ~  $10^3$  seconds (Corbet 1986; Chaty 2013), although a couple of longer-period pulsars have been discovered (Reig et al. 2009; Corbet et al. 1999). In addition to NS X-ray pulsations, the X-ray lightcurves of some HMXBs can exhibit orbital or superorbital modulations with typical periods of a few hours to a few hundred days (Corbet et al. 2006; Corbet & Krimm 2013). The cyclotron lines that have been observed in some HMXB spectra have energies between 10 and 80 keV, corresponding to magnetic field strengths of a few  $10^{12}$  G (Coburn et al. 2002; Pottschmidt et al. 2005; Caballero et al. 2007; Doroshenko et al. 2010; Caballero & Wilms 2012; Tsygankov et al. 2012; Fürst et al. 2014; Tendulkar et al. 2014; Yamamoto et al. 2014; Bellm et al. 2014). An HMXB with an unbroken power-law spectrum extending beyond 50 keV which does not show X-ray pulsations can be considered a black hole candidate, but confirming the BH nature of the compact object requires a dynamical mass measurement in excess of 2–3  $M_{\odot}$ , the maximum theoretically expected NS mass (Lattimer 2012), although such measurements can be challenging to obtain.

Since its launch in 2002, the International Gamma-Ray Astrophysics Laboratory (IN-TEGRAL) has discovered a large number of sources that were given "IGR" source names, including 40 new HMXBs in the 4th IBIS/ISGRI catalog (Bird et al. 2016). X-ray pulsations have only been detected from about a quarter of the IGR HMXBs, and the nature of the compact object in the remaining systems is undetermined since many of them are relatively recent discoveries and have not yet been well-studied. Identifying the nature of compact objects in IGR HMXBs is of special interest since they are demographically different from the population of HMXBs discovered prior to *INTEGRAL*, consisting of roughly equal numbers of HMXBs with Be and supergiant (Sg) stellar companions, whereas Be HMXBs dominate the pre-INTEGRAL population (Walter et al. 2015). Many of the IGR Sg HMXBs have unusual properties, exhibiting high levels of obscuration  $(N_{\rm H} \sim 10^{23} - 10^{24} \text{ cm}^{-2})$  local to the source (Walter et al. 2006; Chaty et al. 2008) or extreme flaring behavior characterized by hard X-ray flux variations of several orders of magnitude on timescales of a few hours (Negueruela et al. 2006; Sguera et al. 2006). The discovery of these Sg HMXBs was made possible by the greater sensitivity and higher cadence of the *INTEGRAL* Galactic Plane survey compared to previous hard X-ray missions.

A few of the flaring IGR Sg HMXBs, known as supergiant fast X-ray transients (SFXTs), are known to host neutron stars based on the detection of X-ray pulsations (Romano et al. 2014) or cyclotron lines (Bhalerao et al. 2015), and several of the models proposed to explain SFXT behavior depend on the presence of a NS magnetosphere (the propeller effect, Grebenev & Sunyaev 2007; magnetic gating, Bozzo et al. 2008; quasi-spherical settling accretion of hot plasma shells, Shakura et al. 2014), suggesting that all SFXTs may host neutron stars. However, the nature of compact objects in many IGR HMXBs which are not SFXTs remains unknown, and as several Sg HMXBs are known to harbor BHs (e.g., Cyg X-1, M33 X-7, LMC X-1, LMC X-3) compared to only one known Be-BH binary (Casares et al. 2014), IGR Sg

HMXBs consistute a particularly promising group to search for BHs.

IGR J18214-1318 is one of the Sg HMXBs lacking a clear compact object identification. This source was first reported in the second IBIS/ISGRI catalog (Bird et al. 2006) and detected consistently by INTEGRAL with a flux of 1–2 mCrab in the 20-40 keV band (Krivonos et al. 2012; Bird et al. 2016). The source was localized with arcsecond precision to  $R.A. = 18^{h}21^{m}19.76^{s}$ , decl. =  $-13^{\circ}18'38.9''$  through a *Chandra* observation (Tomsick et al. 2008). The localization of this source permitted its association with an optical counterpart which is a high-mass star of most likely spectral-type O9 I (Butler et al. 2009), thus securing the identification of IGR J18214-1318 as a Sg HMXB. Its Chandra spectrum is well-fit by an absorbed power-law with  $N_{\rm H} = 1.2 \pm 0.3 \times 10^{23} \text{ cm}^{-2}$  and  $\Gamma = 0.7^{+0.6}_{-0.5}$ . Later Swift observations of this source measured a similar photon index ( $\Gamma = 0.4 \pm 0.2$ ) but a much lower absorbing column density of  $N_{\rm H} = 3.5^{+0.8}_{-0.5} \times 10^{22} \text{ cm}^{-2}$ , which is consistent with the Galactic  $N_{\rm H}$  integrated along the line-sight  $(3.1 \times 10^{22} \text{ cm}^{-2})^1$ . Although the Chandra data suffered from photon pile-up, since the photon indices derived by *Chandra* and *Swift* are so similar, it is unlikely that the large difference in the derived  $N_{\rm H}$  values is simply a result of the photon pile-up in *Chandra*. Thus, the large variability of  $N_{\rm H}$  is likely real and associated with material local to the source; similar  $N_{\rm H}$  variations have been seen in other Sg HMXBs (e.g, IGR J19140+0951; Prat et al. 2008). The hard power-law index measured in the soft X-ray band suggests that the compact object in IGR J18214-1318 is more likely to be a neutron star than a black hole, but it does not constitute strong or definitive evidence.

Therefore, we observed IGR J18214-1318 with the Nuclear Spectroscopic Telescope Array (NuSTAR) and XMM-Newton (§4.2) to better constrain the nature of the compact object in this HMXB. NuSTAR and XMM-Newton are ideally suited for this study, because their instruments have the fast temporal resolution required to search for X-ray pulsations and their combined broadband X-ray spectral coverage from 0.3-79 keV permits the measurement of cyclotron lines and hard X-ray cutoffs which may be present in the HMXB power-law spectrum. Spectral analysis of this data, resulting in the detection of a high-energy cutoff, is described in §4.4, and timing analysis ruling out the existence of a pulse period  $\leq 1$  hour is presented in §4.3. In §4.5, we discuss IGR J18214-1318 in the context of other non-pulsating and long pulse period HMXBs.

# 4.2 XMM-Newton and NuSTAR Observations of IGR J18214-1318

NuSTAR and XMM-Newton observed IGR J18214-1318 on 2014 September 18. Observation details are provided in Table 4.1. The duration of the NuSTAR observation is about twice as long as that of XMM-Newton because Earth occultations reduce the effective exposure of NuSTAR. The exposure times of the two NuSTAR focal plane modules (FPM)

<sup>&</sup>lt;sup>1</sup>The Galactic  $N_{\rm H}$  along the line-of-sight to IGR J18214-1318 is calculated as the sum of the HI contribution measured from the Leiden/Argentine/Bonn (LAB) survey of HI (Kalberla et al. 2005) and the H<sub>2</sub> contribution estimated from the MWA CO survey (Bronfman et al. 1989).

| Table 4.1: Observations of IGR J18214-1318 |                |                     |          |                         |                                      |  |
|--------------------------------------------|----------------|---------------------|----------|-------------------------|--------------------------------------|--|
| Telescope                                  | Observation ID | Start Time          | Duration | Instrument/             | Exposure                             |  |
|                                            |                | (UTC)               | (ks)     | Detector                | (ks)                                 |  |
| (1)                                        | (2)            | (3)                 | (4)      | (5)                     | (6)                                  |  |
| NuSTAR                                     | 3000114002     | 2014-09-18 01:16:07 | 49.8     | FPMA<br>FPMB            | $26.0 \\ 25.8$                       |  |
| XMM-Newton                                 | 0741470201     | 2014-09-18 02:34:26 | 26.9     | EPIC pn<br>MOS1<br>MOS2 | $     18.5 \\     25.9 \\     25.8 $ |  |

- .. . . 

Notes: (6) Exposure does not include dead time.

and the two XMM Metal Oxide Semi-conductor (MOS) CCD arrays of the European Photon Imaging Camera (EPIC) are roughly equal (26 ks), while the exposure time of the EPIC pn CCD is significantly lower (18.5 ks) due to its higher dead-time fraction.

#### 4.2.1NuSTAR

NuSTAR is the first hard X-ray focusing telescope in space, providing 58" half-power diameter angular resolution (Harrison et al. 2013). The NuSTAR FPMs cover the 3-79 keV band with moderate energy resolution (0.4 keV energy at 6 keV) and operate with 0. ms temporal resolution (Harrison et al. 2013). We processed the data from the two NuSTARinstruments, FPMA and FPMB, with the NuSTARDAS pipeline software v1.4.1, the 20150612 version of the NuSTAR Calibration Database (CALDB), and High Energy Astrophysics Software (HEASOFT) version 6.16.

Cleaned event lists were produced with the routine nupipeline. We used nuproducts to extract spectra, including response matrix files (RMFs) and ancillary response files (ARFs), and light curves, applying barycenter and deadtime corrections. In order to choose the aperture region sizes, we measured the surface brightness of the profile of the source by measuring the average count rate per pixel in concentric annuli centered on the source. We found that the profile substantially flattens at a distance of 150" from the source, so to guarantee a clean background measurement, we defined the background region as an annulus centered on the source with an inner radius of 200" and an outer radius of 250". Within 60" of the source, the count rate per pixel is at least 10 times higher than in the background region, so we defined the source aperture region as a circle with a 60" radius (corresponding to the PSF encircled energy fraction of 75%) to limit background contamination while still ensuring good photon statistics ( $\sim 30,000$  counts in FPMA and FPMB combined). Figure 4.1 displays the NuSTAR FPMA observation with the source and background regions. We checked the lightcurves from the background regions for significant count rate variations, but did not find any significant background variability in the 3–79, 3–12, or 12–30 keV bands. The 3–30 keV dead-time corrected source count rate is 1.2 counts  $s^{-1}$  for FPMA and FPMB



Figure 4.1: The NuSTAR FPMA observation in the 3–79 keV band smoothed by a Gaussian kernel with a 3 pixel radius. The colorbar displays the counts per pixel on a logarithmic scale. The source region is represented by a white circle, and the background region is represented by a green annulus.

combined.

#### 4.2.2 XMM-Newton

We made use of data from the EPIC pn and MOS instruments on XMM-Newton, which provides 15" HPD angular resolution at soft X-ray energies. Observations were performed in small window mode with a medium filter. The EPIC pn instrument covers the 0.3–12 keV band with energy resolution of 150 eV at 6 keV and, in the small window mode, it has 5.7 ms time resolution (Strüder et al. 2001). The MOS cameras provide similar energy resolution in the 0.3–10 keV band but have poorer timing resolution of 0.3 s in small window mode (Turner et al. 2001).

We processed the XMM-Newton data with Science Analysis Software (SAS) v13.5.0, making images, spectra, and light curves for EPIC pn, MOS1, and MOS2. To look for contamination from proton flares, we made EPIC pn and MOS light curves in the 10–12 keV bandpass, but we did not find any significant flares. For all three instruments, we made new event lists using the standard filtering criteria<sup>2</sup>, and we converted the photon arrival times to the solar system barycenter.

We used xmmselect to extract the data products, using the images primarily to create the source and background extraction regions. The source extraction region is a circle with a 40" radius centered on the source position. For EPIC pn, the background region is a rectangle with an area of 1.4 square arcminutes that is located approximately 2' from the source. For the MOS detectors, rectangular background regions are also used, but they are farther away from the source because they had to be located on one of the outer MOS CCDs due to the CCD configuration of the small window mode. The 0.3–12 keV live-time corrected count rate is 1.3 counts s<sup>-1</sup> with EPIC pn and 0.8 counts s<sup>-1</sup> for the two MOS cameras combined. We checked the observations for pile-up and found that it was not an issue.

# 4.3 Timing Analysis

IGR J18214-1318 exhibits a high level of variability in its X-ray lightcurve, as can be seen in Figure 4.2. This strong aperiodic variability is common in HMXBs (Belloni & Hasinger 1990), and in order to determine whether this HMXB hosts a neutron star, we searched for periodic pulsations in this noisy lightcurve through analysis of its power spectrum. We performed this pulsation search using both *NuSTAR* and *XMM-Newton* EPIC pn data, since the EPIC pn camera has the highest temporal resolution and effective area of the *XMM* instruments. Although *NuSTAR*'s temporal resolution is better than *XMM*'s, the Earth occultations *NuSTAR* experiences during its orbit create large gaps in its lightcurves, which in turn introduce additional noise in the power spectrum at low frequencies. Furthermore, since pulsars in Sg HMXBs tend to have periods  $\gtrsim$ 1 second (Corbet 1986; Skinner et al. 1982), the 5.7 ms resolution of *XMM-Newton* should be sufficient for detecting possible pulsations

<sup>&</sup>lt;sup>2</sup>See http://xmm.esac.esa.int/sas/current/documentation/threads/



Figure 4.2: Dead-time corrected lightcurve from XMM-Newton EPIC pn instrument binned by 50 seconds.  $1\sigma$  errors shown in gray.

in IGR J18214-1318. We first describe our analysis of the XMM EPIC pn power spectrum, and then compare the results to those obtained using NuSTAR data.

We corrected the arrival time of each event detected by the XMM-Newton EPIC pn instrument to the solar system barycenter, and used this corrected event list to make a light curve in the 0.3–12 keV band with the maximum possible time resolution of 5.6718 ms. We then used the XRONOS tool **powspec** to produce a Leahy-normalized power spectrum (Leahy et al. 1983) of this light curve, shown in Figure 4.3. The power spectrum spans frequencies from  $3.7 \times 10^{-5}$  Hz (based on the 27 ks duration of the observation) to 88.1 Hz (the Nyquist frequency). In a Leahy-normalized power spectrum, Poissonian noise results in power being distributed as a  $\chi^2$  probability distribution with 2 degrees of freedom (dof); we used this distribution and the number of trials (which is equal to the number of frequency bins) to calculate the 90% confidence detection threshold for this power spectrum as 35.1, shown by the dashed lines in Figure 4.3. This detection threshold is only exceeded at frequencies  $< 5.06 \times 10^{-3}$  Hz, but significant red noise at low frequencies suggests we should be cautious in ascribing this excess power to periodic pulsations. Thus, in order to account for the red noise present at frequencies <0.1 Hz, we analyzed the power spectrum above and below 0.1 Hz separately.

Above 0.1 Hz, the maximum Leahy power  $(P_{\text{max}})$  measured is 30.9, which is below the 90% confidence threshold but can be used to calculate an upper limit on the strength of a periodic signal. As derived by van der Klis (1989a), the 90% confidence upper limit of the Leahy power  $(P_{\text{UL}})$  is given by  $P_{\text{UL}} = P_{\text{max}} - P_{\text{exceed}}$ , where  $P_{\text{exceed}}$  is the power level exceeded by 90% of the frequency bins. In our case,  $P_{\text{exceed}}$  is 0.2, which implies that  $P_{\text{UL}}$ 



Figure 4.3: Leahy-normalized power spectrum based on XMM-Newton EPIC pn lightcurve in the 0.3–12 keV band. Short-dashed black line shows 90% confidence detection threshold of 35.1, which is exceeded below  $5.06 \times 10^{-3}$  Hz due to red noise from source's aperiodic variability. The inset image shows a zoom-in of the portion of the power spectrum above 0.1 Hz (with a linear frequency scale) so that the highest power peaks in the high-frequency part of the power spectrum can be seen.

is 30.7. This upper limit on the Leahy power can be converted into an upper limit on the source fractional rms variability for a periodic signal using the following formula:

$$rms = \sqrt{\frac{P_{\rm UL} - 2}{CR} \left(\frac{S+B}{S}\right)^2 \Delta\nu}$$
(4.1)

where CR is the mean (source plus background) count rate, S represents the net source counts, B represents the estimated background counts in the source region, and  $\Delta\nu$  is the width of the frequency bin. Thus, the 90% upper limit on the rms noise level for a periodic signal between 0.1 and 88 Hz is < 2.2%.

In order to search for periodic signals at low frequencies, we first characterized the red noise below 0.1 Hz. We produced a 0.3–12 keV light curve with 5 second resolution, and used it to make a rms-normalized power density spectrum (PDS) with a Nyquist frequency of 0.1 Hz and a minimum frequency of  $9.8 \times 10^{-5}$  Hz, since we averaged together PDS made from three time intervals of ~ 10 ks. The rebinned PDS from which the Poisson noise level of 2.0 has been subtracted is shown in Figure 4.4. The PDS is dominated by red noise below 0.02 Hz, so we fit the PDS below this frequency with a power-law model ( $P = A(\nu/1\text{Hz})^{-\alpha}$ ) using Whittle statistics (Whittle 1953; Whittle 1957). The best-fit parameters are  $\alpha = 1.40^{+0.02}_{-0.20}$  and  $A = 0.0018^{+0.006}_{-0.0001}$ , where the quoted errors correspond to the 90% confidence intervals. The integrated source fractional rms for frequencies between  $10^{-3}$  to 0.1 Hz is  $24 \pm 1\%$ .



Figure 4.4: The rms-normalized power density spectrum with  $1\sigma$  error bars based on the XMM-Newton 0.3–12 keV lightcurve. The Poisson noise level of 2.0 has been subtracted from the PDS. The black line shows the best power-law fit to the red noise dominated PDS below 0.02 Hz with  $\alpha = 1.40^{+0.02}_{-0.20}$ .

rms PDS slope and integrated fractional rms measured using 3–12 keV XMM lightcurves are consistent with the values measured from the 0.3–12 keV data to better than  $1\sigma$  confidence. Fitting a power-law model plus a constant to the Leahy-normalized power spectrum from  $9.8 \times 10^{-5}$  to 88 Hz results also results in a consistent power-law slope. We also tried fitting a broken power-law model to the rms-normalized and the Leahy-normalized power spectra, but in both cases, the best-fitting break frequency was poorly constrained and exceeded the maximum frequency of the power spectrum. Thus, we do not find a significant break in the power spectrum between 0.0003 and 88 Hz.

In order to properly subtract the red noise component from the Leahy-normalized power spectrum in the 0.00003–0.1 Hz range, we follow the procedure described in van der Klis (1989a). The Leahy power spectrum was multiplied by a factor of 2 and then divided by the (appropriately re-normalized) best-fit power-law model; we checked that the resulting power spectrum, shown in Figure 4.5, follows a  $\chi^2$  distribution with 2 dof, a requirement for applying the method described in van der Klis (1989a) to power spectra with red noise. Taking into account the number of trials, we calculated the 90% confidence detection threshold to be 21.2. As can be seen in Figure 4.5, no frequency bin exceeds this power level. Given that  $P_{\text{max}}$  in this low-frequency range is 17.0 and  $P_{\text{exceed}}$  is 0.2,  $P_{\text{UL}}$  is 16.8, which corresponds to an upper limit on the source fractional rms of 1.7%. We verified that varying the red noise slope and normalization within their 90% confidence intervals does not significantly affect these results.

In some binaries, a periodic signal may be difficult to detect because it may be spread out in frequency space due to orbital motion. However, HMXBs tend to have orbital periods of a



Figure 4.5: Upper panel shows low-frequency part of the Leahy-normalized power spectrum based on the XMM-Newton 0.3–12 keV lightcurve. The red solid line shows the appropriately re-normalized power-law model derived by fitting the PDS. The lower panel shows the Leahy power spectrum divided by the model and multiplied by 2. The dashed line shows the 90% confidence detection threshold for frequencies below 0.1 Hz, which is equal to 21.2.

few to hundreds of days, and thus our observations of IGR J18214-1318 are short enough that orbital modulations of the pulsation frequency should not be significant. Thus, given the stringent upper limits on the fractional rms for periodic signals in the 0.00003–88 Hz frequency range, pulsations with periods  $\leq 1$  hour are strongly ruled out.

We performed the same timing analysis with NuSTAR data in the 3–12 and 12–30 keV bands. All NuSTAR photon arrival times were converted to barycentric dynamical time (TDB). After being corrected for thermal drift of the on-board clock, the NuSTAR time resolution is ~ 2 ms rms, and its absolute accuracy is known to be better than 3 ms (Mori et al. 2014). Thus, we used the NuSTAR data to search for spin periods as short as ~1 ms by binning the lightcurves by 1/2048 seconds (488  $\mu$ s). We produced Leahy-normalized power spectra from FPMA and FPMB lightcurves using both the XRONOS tool **powspec** and the power spectrum tools developed by M. Bachetti <sup>3</sup>, but we did not find any significant peaks in the power spectrum below 1024 Hz. Above 0.1 Hz, the 90% confidence upper limit on the

 $<sup>^{3}</sup>$ Tools can be found at https://bitbucket.org/mbachett/maltpynt and are described in Bachetti et al. (2015).

source fractional rms is 3.4% in the 3–12 keV band and 6.4% in the 12–30 keV band.

We produced a rms-normalized, noise-subtracted PDS and fit the red noise dominated continuum in the  $6 \times 10^{-5}$  to 0.02 Hz frequency range with a power-law model. Jointly fitting the PDS produced from FPMA and FPMB data yields  $\alpha = 1.32^{+0.06}_{-0.10}$  in the 3–12 keV band and  $\alpha = 1.46^{+0.07}_{-0.12}$  in the 12–30 keV band. These measured power-law slopes are consistent with the values derived from XMM-Newton. Using the PDS power-law fits to "normalize" the red noise continuum in the Leahy power spectrum below 0.1 Hz, we checked that the resulting power spectrum follows a  $\chi^2$  distribution with 2 dof, and then calculated that the 90% confidence upper limit on the source fractional rms is 2.7% in the 3–12 keV band and 6.0% in the 12–30 keV band. The integrated source fractional rms between  $10^{-3}$  to 0.1 Hz is  $31\pm 2\%$  and  $23\pm 8\%$  in the 3–12 and 12–30 keV bands, respectively. Thus, the NuSTAR 3–12 keV integrated fractional rms is higher at  $3\sigma$  confidence than that measured in the XMM-Newton 3–12 keV band; this difference may be partly attributed to the XMM-Newton and NuSTAR observations not being fully coincident in time and the additional artificial noise injected into the NuSTAR power spectrum by the lightcurve gaps due to Earth occultations. Due to the large errors bars of the integrated fractional rms measured in the NuSTAR 12–30 keV band, this value is consistent at  $1\sigma$  confidence with both the integrated rms measured by XMM-Newton and the NuSTAR 3-12 keV band.

Overall, the results from our XMM-Newton and NuSTAR timing analysis are in agreement, ruling out the presence of pulsations with periods shorter than about an hour. The integrated source fractional rms values measured between  $10^{-3}$  and 0.1 Hz by both telescopes are within the typical range of 10-30% seen in HMXBs (Belloni & Hasinger 1990). For most accreting X-ray pulsars, the red noise power-law index is  $\alpha = 1.4 - 2.0$  at frequencies higher than the pulsation frequency and  $\alpha = 0 - 1.0$  at lower frequencies (Hoshino & Takeshima 1993). Thus, the red noise power-law slope of IGR J18214-1318 is similar to the slopes observed above the pulsation frequency in X-ray pulsars. This fact, combined with the lack of a frequency break in the red noise continuum, suggests, but does not prove, that the pulsation frequency in IGR J18214-1318 may be lower than the range probed by our data.

## 4.4 Spectral Analysis

We extracted spectra, ARFs, and RMFs from the XMM-Newton EPIC pn, MOS1/2, and NuSTAR FPMA/B instruments as described in §4.2. The spectra were rebinned with the requirement that the source significance in each bin be  $\geq 10$ , except for the highest energy bin which was required to have a significance  $\geq 3$ . We used the XSPEC version 12.8.2 software to jointly fit the five spectra, allowing for different calibration constants for each instrument. The cross-calibration constants for the MOS1 and MOS2 instruments were consistent in all the fits, differing by less than  $1\sigma$  from each other, so we linked the MOS1/2 constants together, removing one free parameter from the models.

We first fit the data using an absorbed power-law model (tbabs\*powerlaw), adopting the abundances from Wilms et al. (2000) and photoionization cross-sections from Verner et al.



Figure 4.6: Spectrum of IGR J18214-1318, with XMM-Newton EPIC pn data shown in black, MOS1 in green, MOS2 in red, NuSTAR FPMA in light blue, and FPMB in dark blue. Data points are shown with  $1\sigma$  error bars. Fit shown is for a simple absorbed power-law model. The residuals in the lower panel show there is an excess below 2 keV and a flux deficit above 10 keV.

(1996b). This simple model, which was sufficient for describing previously available soft X-ray data with lower photon statistics (Tomsick et al. 2008; Rodriguez et al. 2009), yields a poor fit ( $\chi^2_{\nu} = 3.3$  for 585 dof). As can be seen in the residuals in Figure 4.6, this simple power-law fit underestimates the flux below 2 keV and overestimates it above 20 keV. Accounting for the flux above 20 keV requires introducing an exponential cutoff to the power-law spectrum, while the soft excess can be accounted for either by adding a blackbody component (Model 1) or a partial covering absorber (Model 2), which provide equally good fits. Adding only one of these components (highecut, bbody, or pcfabs) to the absorbed powerlaw model is insufficient, leaving large residuals either below 2 keV or above 20 keV.

The spectral fits and residuals resulting from our best-fitting models are shown in Figure 4.7. These models also include a Gaussian line to fit the Fe K $\alpha$  line emission at 6.40±0.02 keV which is clearly visible in Figure 4.8. The energy of this line indicates it must originate in cool, low-ionization material located in the supergiant wind (Torrejón et al. 2010). The spectral parameters of the best-fitting models are listed in Table 4.2. As can be seen, the reduced  $\chi^2$  values of the spectral fits are good enough that no additional components are required, and no prominent features remain in the residuals.

However, in order to statistically test for the presence of cyclotron lines, we added a cyclotron absorption component (cyclabs) to our models and performed new spectral fits. Since the cyclotron line width was very poorly constrained when left as a free parameter, we set its upper limit to 10 keV, since cyclotron line widths of accreting X-ray pulsars typically fall in the 1–10 keV range (Coburn et al. 2002). We also set the optical depth of the second



Figure 4.7: Left: The model fit shown is for an absorbed power-law with a high-energy cutoff, a partial covering absorber, and a Gaussian Fe line. Right: The spectral energy density is shown with a model including blackbody and cutoff power-law components subject to the same absorption. A Gaussian line to account for Fe K $\alpha$  emission is also included. The different model components are shown with dashed lines. Colors of data points shown are as described in Figure 4.6.

harmonic to zero since it could not be constrained. The spectral parameters of all the other Model 1 and 2 components were allowed to vary in order to find the best-fitting model which includes cyclabs as a multiplicative component. The best-fitting cyclotron line parameters derived by adding cyclabs to Model 1 are an optical depth  $\tau_{\rm cyc} = 0.25^{+0.21}_{-0.18}$  and line energy  $E_{\rm cyc} = 27^{+4}_{-6}$  keV; the inclusion of cyclabs only reduced the chi-squared value of the fit by 5 and left  $\chi^2_{\nu}$  unchanged. The cyclotron parameters derived by adding cyclabs to Model 2 are  $\tau_{\rm cyc} = 0.16 \pm 0.06$  and  $E_{\rm cyc} = 11^{+4}_{-7}$  keV, which differs from the cyclotron energy found for Model 1; adding the cyclabs component to Model 2 improved the chi-squared value by 19.2 and reduced  $\chi^2_{\nu}$  to 1.07 from 1.10, a marginal improvement on the quality of the fit.

In order to determine the significance of this improvement to the chi-squared value for Model 2, we generated 1000 simulated datasets, including both the *NuSTAR* and *XMM* data and followed the procedure applied in Bellm et al. (2014), Bhalerao et al. (2015), and Bodaghee et al. (2016). Each simulated dataset was fit by the null model (Model 2 without cyclabs) and the test model with a cyclabs feature, and the difference in chi-squared values  $(\Delta \chi^2)$  between the two model fits was calculated. The maximum value of  $\Delta \chi^2$  from these simulations was 19.3, slightly higher than the observed value. Based on the distribution of  $\Delta \chi^2$  from our simulations, we estimate there is roughly a 0.001% chance of measuring the observed value of  $\Delta \chi^2 = 19.2$  by chance, and that therefore the significance of the cyclotron line in IGR J18214-1318 is about  $3.3\sigma$ . Given the fact that this detection is marginal and dependent on adopting Model 2 rather than Model 1 for the soft excess, it does not constitute substantive evidence for the presence of a cyclotron absorption feature.

Nonetheless, the absence of such features does not disprove the possibility that IGR J18214-1318 harbors a neutron star. The fact that the e-folding energy of the exponential

| <i>Table 4.2</i> : Parameters of Best-fit Spectral Models |                                                             |                                                              |  |  |
|-----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--|--|
|                                                           | Model 1<br>tbabs*(bbody+<br>powerlaw*highecut<br>+gaussian) | Model 2<br>tbabs*pcfabs*<br>(powerlaw*highecut<br>+gaussian) |  |  |
| $N_{\rm H} \ (10^{22} \ {\rm cm}^{-2})$                   | $4.2^{+0.3}_{-0.2}$                                         | <u>4.3±0.6</u>                                               |  |  |
| $kT_{ m BB}/N_{ m H, partial}$                            | $1.74^{+0.04}_{-0.05}$ keV                                  | $9.8^{+1.5}_{-1.1} \times 10^{22} \text{ cm}^{-2}$           |  |  |
| BB norm./Cov. frac.                                       | $1.7 \pm 0.2 \times 10^{-4}$                                | $0.77^{+0.05}_{-0.06}$                                       |  |  |
| Γ                                                         | $0.4^{+0.3}_{-0.4}$                                         | $1.48^{+0.08}_{-0.07}$                                       |  |  |
| PL norm.                                                  | $1.6^{+1.7}_{-1.1} \times 10^{-4}$                          | $3.9^{+0.7}_{-0.5} \times 10^{-3}$                           |  |  |
| $E_{\rm cut}$ (keV)                                       | $12.0^{+1.0}_{-1.3}$                                        | $7.4\substack{+0.6 \\ -0.5}$                                 |  |  |
| $E_{\rm fold} \ (\rm keV)$                                | $14.0^{+3.2}_{-1.5}$                                        | $23.0^{+3.3}_{-2.4}$                                         |  |  |
| $E_{\text{line}}$ (keV)                                   | $6.40^{+0.03}_{-0.02}$                                      | $6.40 {\pm} 0.02$                                            |  |  |
| $\sigma_{\rm line}~({\rm eV})$                            | < 85                                                        | < 102                                                        |  |  |
| $\rm EW_{line}~(eV)$                                      | $53^{+16}_{-21}$                                            | $57^{+16}_{-14}$                                             |  |  |
| $C_{ m MOS1,2}$                                           | $1.04 \pm 0.02$                                             | $1.04{\pm}0.02$                                              |  |  |
| $C_{ m FPMA}$                                             | $1.25 \pm 0.02$                                             | $1.24 {\pm} 0.02$                                            |  |  |
| $C_{ m FPMB}$                                             | $1.32 {\pm} 0.03$                                           | $1.31 {\pm} 0.03$                                            |  |  |
| $\chi^2_ u/{ m dof}$                                      | 1.10/578                                                    | 1.10/578                                                     |  |  |

Table 4.2: Parameters of Best-fit Spectral Models

<u>Notes</u>: Errors provided are 90% confidence. Cross-normalizations between instruments are calculated relative to *XMM-Newton* EPIC pn instrument. Abbreviations: BB-blackbody, PL-power-law. The BB normalization is the source luminosity in units of  $10^{39}$  erg s<sup>-1</sup> assuming a distance of 10 kpc. The PL normalization is the photon flux at 1 keV.



*Figure 4.8*: Zoom-in of spectrum from 4-10 keV band clearly shows presence of Fe line around 6.4 keV. Colors of data points shown are as described in Figure 4.6.

cutoff is < 25 keV, regardless of which of the two best models is adopted, strongly suggests that IGR J18214-1318 is a NS HMXB. Furthermore, the photon index below the cutoff is harder when adopting the blackbody rather than the partial-covering model, but in both cases is within the range observed in NS HMXBs, which tend to exhibit harder photon indices than BH HMXBs (Coburn et al. 2002).

For Model 1, the blackbody component accounting for the soft excess has a temperature of 1.7 keV, which is higher than the  $kT \approx 0.1$  keV thermal component exhibited by BH HMXBs in the hard state (Di Salvo et al. 2001; McClintock & Remillard 2006; Makishima et al. 2008); BH HMXBs can exhibit blackbody temperatures as high as 2 keV in the soft state, but the power-law component of IGR J18214-1318 is much stronger than that of a BH in the soft state (McClintock & Remillard 2006). Assuming that IGR J18214-1318 lies at a distance of 9-10 kpc, as favored by the properties of its near-IR counterpart (Butler et al. 2009), the radius of the blackbody emitting region is 0.3 km, which is consistent with the size of NS hot spots. However, while the blackbody interpretation thus provides some additional evidence in favor of the NS hypothesis, the soft excess seen in the spectrum can be equally well-fit by a partial covering model. Using this model, we measure that the whole system lies behind a column density of  $4 \times 10^{22}$  cm<sup>-2</sup>, which is just in excess of the Galactic interstellar column density integrated along the line-of-sight, and that about 77% of the X-ray emission is obscured by an additional column density of  $\sim 10^{23}$  cm<sup>-2</sup>. This partial-covering absorber can be attributed to dense clumps in the supergiant wind, and thus does not provide any additional insight about the compact object in this HMXB.

The mean 3–12 keV flux is  $1.70^{+0.02}_{-0.05} \times 10^{-11}$  erg cm<sup>-2</sup> s<sup>-1</sup> in the XMM-Newton EPIC pn observations and  $2.18^{+0.03}_{-0.10} \times 10^{-11}$  erg cm<sup>-2</sup> s<sup>-1</sup> in the NuSTAR observations (FPMA



Figure 4.9: Left: XMM-Newton EPIC pn lightcuves in the 0.3–3 and 3–12 keV bands binned by 100 seconds. The hardness ratio in the lower panel is defined as (H - S)/(H + S), where H is the count rate in the 3–12 keV band and S is the count rate in the 0.3–3 keV band. Time on the x-axis is measured from the beginning of the NuSTAR observations. Right: NuSTAR lightcurves, FPMA and FPMB combined, binned by 100 seconds. The hardness ratio is calculated with 3–12 keV as the soft band and 12–30 keV as the hard band. The gaps in the lightcurves are due to Earth occultations. The red dashed lines indicate the beginning and end of the XMM-Newton observations.



Figure 4.10: The left panel XMM-Newton hardness ratio versus 3-12 keV count rate, while right panel shows the same for NuSTAR data. Gray points show data from 100 second lightcurve bins. Red points show the average hardness ratio in five count rate bins.

and FPMB averaged). At a distance of 9–10 kpc, these fluxes correspond to unabsorbed luminosities of  $\approx 1 - 2 \times 10^{35}$  erg/s. Through simultaneous *NuSTAR* and *XMM-Newton* observations of PKS 2155-304 and 3C 273, Madsen et al. (2015) found that the flux crosscalibrations of the *XMM-Newton* and *NuSTAR* instruments are accurate to better than 7%; in our spectral fits, the *NuSTAR* fluxes (see Table 4.2) are higher than the *XMM-Newton* fluxes by about 30% primarily because the *NuSTAR* observations cover a longer duration of time and the source undergoes some large flares after the *XMM-Newton* observations end, as shown in Figure 4.9. The average X-ray flux during these observations is a factor of 3 lower than the average flux during the 2008 and 2009 observations (Tomsick et al. 2008; Rodriguez et al. 2009), and the lightcurves in Figure 4.9 show that on hour-long timescales the flux can vary by more than a factor of 20.

Since IGR J18214-1318 exhibits strong variability, we checked whether its spectrum varies substantially with the source flux. As shown in Figure 4.9, the hardness ratios in both the XMM-Newton and NuSTAR bands, which are proxies for spectral shape, remain pretty constant throughout the observations but the errors on the hardness ratio calculated within each 100-second section of the observations are large. To better establish the significance of any potential correlation between the source flux and spectral properties, we split up the 100-second lightcurve fragments into five count rate bins and evaluated the mean hardness ratio in each bin. As can be seen in Figure 4.10, in the XMM-Newton band, the mean hardness ratio decreases slightly with increasing count rate, whereas in the NuSTAR band, the mean hardness ratio appears to increase slightly with count rate. If real, such trends could indicate that as the source flux increases, both  $N_{\rm H}$  and  $\Gamma$  decrease, which is seen in other Sg HMXBs (e.g., IGR J16207-5129 and 4U 2206+54; Tomsick et al. 2009; Wang 2013), but the significance of these trends is <  $2\sigma$  and, even if present, such spectral variations are likely small given that the hardness ratio changes by < 0.1. Therefore, we do not expect any strong spectral variations with brightness, lending confidence to the spectral parameters derived from our joint fitting of the XMM-Newton and NuSTAR spectra of IGR J18214-1318 even though the mean count rates differed in these observations.

### 4.5 Discussion

#### 4.5.1 The physical origin of the soft excess

As discussed in §4.4, the soft excess below 2 keV seen in the spectrum of IGR J18214-1318 can be accounted for either by introducing a blackbody component with properties typical of NS hot spots or a partial-covering absorber associated with the clumpy supergiant wind. In both models, the column density obscuring the whole binary system is measured to be  $N_{\rm H} \approx 4 \times 10^{22}$  cm<sup>-2</sup>, which can largely be ascribed to the interstellar medium and is consistent with the low column density measured by Rodriguez et al. (2009). The high column density measured by Tomsick et al. (2008), well in excess of the ISM value, is comparable to the  $N_{\rm H}$ of the partial-covering absorber. Thus, the partial-covering model can naturally explain the observed variations in  $N_{\rm H}$  as the result of changes in the density of clumps in the supergiant wind or how deeply embedded the compact object is in the stellar wind at different orbital phases.

However, these observed spectral variations are more difficult to explain using the blackbody model for the soft excess. Since spectra from the 2008 and 2009 soft X-ray observations of IGR J18214-1318 were fit with simple aborbed power-law models due to their low photon statistics, it is possible that variations in the strength of the blackbody emission could be incorrectly interpreted as  $N_{\rm H}$  variations. If this blackbody emission is indeed associated with hot spots at the NS polar caps, then it should be pulsed due to the NS spin. Based on our timing analysis, such pulsations would have periods longer than an hour, and thus it is possible that, given their short 5-6 ks exposures, during one of the 2008/2009 observations the hot spot was visible while during the other the hot spot was primarily hidden. We made fake 0.3–10 keV spectra with blackbody components of different strengths and fit them with simple absorbed power-law models to determine the effect that the blackbody emission alone can have on the measured  $N_{\rm H}$ , but found that it can only account for about 25% of the measured variations, which span the range of  $3-12 \times 10^{22}$  cm<sup>-2</sup>). Thus, even in the case that the soft excess is modeled by blackbody emission, significant obscuration  $(N_{\rm H} \sim 10^{23} \text{ cm}^{-2})$ from the stellar wind is required to explain some of the observed  $N_{\rm H}$  measurements, making IGR J18214-1318 part of the class of highly obscured HMXBs discovered by INTEGRAL (Walter et al. 2006).

In addition to the fact that the partial-covering absorber model provides a more natural explanation for the observed  $N_{\rm H}$  variations, some unusual properties of the blackbody model make the partial-covering model the preferred interpretation for the soft excess. Although the temperature  $(kT \sim 1.7 \text{ keV})$  and size  $(R_{\rm BB} \approx 0.3 \text{ km})$  of the blackbody emission region are

typical for NS hot spots, emission from these hot spots is typically only seen in NS HMXBs with Be or main-sequence donors and  $L_X \lesssim 10^{35}$  erg/s (Reig et al. 2009). Furthermore, the flux of the blackbody component of IGR J18214-1318 is 65% of the total 0.3–10 keV flux, which is much higher than the  $\sim 30\%$  hot spot blackbody flux fraction typically seen in other HMXBs (Mukherjee & Paul 2005; La Palombara & Mereghetti 2006; La Palombara & Mereghetti 2007; La Palombara et al. 2009). Sg HMXBs can also exhibit soft excess emission, but it tends to have lower temperature  $(kT \sim 0.2 \text{ keV})$  and originate from larger areas  $(R_{\rm BB} \sim 100 \text{ km})$  (Reig et al. 2009). Such emission likely arises from a cloud of diffuse photoionized plasma around the compact object associated with the supergiant wind; the photoionized plasma only absorbs photons at  $\gtrsim 2$  keV and produces significant emission at  $\lesssim 1$  keV, resulting in a soft excess (Hickox et al. 2004, Szostek & Zdziarski 2008). However, the soft excess of IGR J18214-1318 exhibits a higher blackbody temperature and smaller radius than is typically seen in Sg HMXBs with photoionized winds (Reig et al. 2009). As a result, we believe that the introduction of a partial-covering absorber is the most natural way of accounting for the soft excess, even if the blackbody model cannot be definitively dismissed.

### 4.5.2 The compact object in IGR J18214-1318

Since neither pulsations nor cyclotron lines are detected in the XMM-Newton and NuSTAR data of IGR J18214-1318, we cannot definitively identify the compact object in this HMXB. Although we cannot rule out that this system hosts a black hole, the exponential cutoff to its power-law spectrum with e-folding energy < 25 keV argues in favor of a neutron star since BH HMXBs exhibit power-law spectra out to  $\gtrsim 100$  keV (Zdziarski 2000). Fitting the NuSTAR spectrum above 20 keV with a power-law model, we find that  $\Gamma = 2.5 \pm 0.2$ . This soft photon index above the cutoff energy is typical for "normal" accreting pulsars, whereas anomalous X-ray pulsars (AXPs), which are thought to be magnetars, have  $\Gamma = 1 - 2$  above 20 keV (Reig et al. 2012). The persistence of the hard X-ray emission from IGR J18214-1318 also disfavors a magnetar origin for this source, since most magnetars (all soft gamma-ray repeaters (SGRs) and many AXPs) exhibit bursting behavior (Olausen & Kaspi 2014 and references therein). Thus, the compact object in IGR J18214-1318 is most likely an accreting neutron star with a typical magnetic field strength  $(10^{12} - 10^{13} \text{ G})$ . The lack of detected pulsations with periods  $\leq 1$  hour can be explained by the geometry of the system (e.g., the nearly-perfect alignment of the magnetic and rotational axes of the neutron star, the NS beam being narrow and not pointing towards Earth, or the NS beam being broad enough so as to wash out spin modulations) or a spin period > 1-2 hours, longer than is typically seen in NS HMXBs.

### 4.5.3 Comparison to other HMXBs

IGR J18214-1318 belongs to a small but growing number of HMXBs that may host neutron stars but do not exhibit pulsations with periods  $\leq 10^3$  seconds. For two of these HMXBs,

4U 2206+54 and 2S 0114+650, long pulsation periods of 1.5 and 2.7 hours respectively have been measured (Reig et al. 2009; Corbet et al. 1999), which implies that they both host slowly spinning neutron stars. The 3-50 keV spectra of these sources are quite similar and resemble the spectrum of IGR J18214-1318, with photon indices of  $\approx 1$  and exponential cutoffs with  $E_{\rm cut} \approx 6$  keV and  $E_{\rm fold} \approx 12 - 15$  keV (Farrell et al. 2008; Reig et al. 2009). Neither source exhibits clear cyclotron absorption features, although low-significance detections of such features have been claimed by some authors (Bonning & Falanga 2005; Torrejón et al. 2004). 4U 2206+54 displays a soft excess below 2 keV, which is well-fit by a blackbody with  $kT \approx 1.6$  keV and  $R_{\rm BB} \approx 0.4$  km attributed to hot spots at the polar caps of the neutron star (Reig et al. 2012); as discussed in §4.5.1, the possibility that the soft excess in IGR J18214-1318 originates from NS hot spots is disfavored in part because it is unusual to see hot spot emission from Sg HMXBs, but the donor star in 4U 2206+54 is an O9.5 V star with an unusually slow stellar wind velocity of  $\sim 350$  km/s (Ribó et al. 2006) which resembles the donor stars in Be HMXBs where hot spot blackbody emission is frequently seen. In contrast, the donor star in 2S 0114+650 is a B1 Ia supergiant (Reig et al. 1996), making it a closer analogue to IGR J18214-1318 than 4U 2206+54. Li & van den Heuvel (1999) proposed that the slow spin of the neutron star in 2S 0114+650 indicates that it was born as a magnetar with  $B \gtrsim 10^{14}$  G, was slowed down efficiently by the propeller effect before its magnetic field significantly decayed to its current expected value of  $\sim 10^{12}$  G. In the case of 4U 2206+54. magneto-rotational models which can account for the neutron star's spin and spin-down rate require magnetic fields strengths between  $5 \times 10^{13}$  and  $3 \times 10^{15}$  G (Ikhsanov & Beskrovnaya 2010); thus, it is possible that 4U 2206+54 currently contains a magnetar and would evolve into a system like  $2S \ 0114+650$ .

Neutron stars with long spin periods have also been discovered in some symbiotic X-ray binaries (SyXBs). The two SyXBs with the longest spin periods, IGR J16358-4726 and 4U 1954+319, have spin periods of ~1.6 hr and ~5.3 hr, respectively (Kouveliotou et al. 2003; Patel et al. 2004; Corbet et al. 2006; Marcu et al. 2011). Both of these sources have spectra which are very similar to those of long spin-period HMXBs and IGR J18214-1318 (Patel et al. 2007; Enoto et al. 2014), but they have giant M-type stellar companions rather than high-mass donors. While SyXBs with slowly spinning NSs share many properties in common with long-period HMXBs and IGR J18214-1318, their late-type stellar counterparts indicate a distinct evolutionary origin. Although it has been suggested that the long spin-period SyXBs may host magnetars or magnetar descendants just like long spin-period HMXBs (Patel et al. 2007; Enoto et al. 2014), models which assume quasi-spherical wind accretion for SyXBs rather than disk accretion do not require magnetar-strength fields to explain their timing properties (Lü et al. 2012).

We know of five HMXBs other than IGR J18214-1318 from which pulsations have not yet been detected despite sensitive searches for periods  $\leq 10^3$  seconds and for which the nature of the compact object remains uncertain. All but one of these non-pulsating<sup>4</sup> HMXBs have supergiant donor stars; the source with a main-sequence OB companion is IGR J08262-3736

 $<sup>^4\</sup>mathrm{Here}$  we use the term "non-pulsating" to mean having no detected pulsation with a period lower than 1000 seconds.

(Masetti et al. 2010). This HMXB also differs from all the other non-pulsating or longpulsation HMXBs in that its X-ray luminosity of  $3 \times 10^{34}$  erg/s is significantly lower than that of the others ( $L_X \sim 10^{35} - 10^{36}$  erg/s), and its power-law spectrum with  $\Gamma \approx 1.8$  does not show a cutoff below 70 keV (Bozzo et al. 2012). Like IGR J18214-1318, the spectrum of IGR J08262-3736 exhibits a soft excess which can be accounted for either by a partial absorber or a blackbody component potentially arising from NS hot spots (Bozzo et al. 2012); since we cannot discriminate between these two possibilities, the soft excess should not be interpreted as evidence for the presence of a neutron star. Rather, the lack of an exponential cutoff in the spectrum of IGR J08262-3736 makes it the most plausible BH candidate of all the non-pulsating HMXBs, and differentiates it from all the other HMXBs discussed in this section, including 4U 2206+54 which also hosts a main-sequence donor star.

The four currently known non-pulsating HMXBs with supergiant donors, IGR J16207-5129, IGR J16318-4848, IGR J19140+0951, and 4U 1700-377, all exhibit exponential cutoffs with e-folding energies < 25 keV, suggesting they all likely harbor neutron stars. IGR J16207-5129 is the non-pulsating HMXB that most resembles IGR J18214-1318. It has a very similar X-ray spectrum, with  $\Gamma \approx 1.0$ , an exponetial cutoff with e-folding energy  $\approx 20$  keV (Bodaghee et al. 2010), and a soft excess which Tomsick et al. (2009) argue most likely results from partial obscuration by the stellar wind with  $N_{\rm H} \approx 10^{23}$  cm<sup>-2</sup>. This source has a B1 Ia donor star (Nespoli et al. 2008) and its 0.5-10 keV X-ray luminosity is  $2 - 3 \times 10^{35}$  erg/s, similar to IGR J18214-1318. The power density spectrum of IGR J16207-5129 has been carefully studied, and, like the PDS of IGR J18214-1318, it shows significant red noise below 0.01 Hz which is well-fit by a simple power-law; however, the slope of the red noise in IGR J16207-5129 is steeper, having power-law index  $\alpha = 1.76 \pm 0.05$  (Tomsick et al. 2009), which is typical value for frequencies above the pulsation frequency, suggesting but not proving that the neutron star in this HMXB may have a period longer than the ~ 2 hour limit probed by the data.

Another non-pulsating Sg HMXB that is similar to IGR J18214-1318 is IGR J19140+0951, which has a B0.5 Ia donor star (Hannikainen et al. 2007). Its average X-ray luminosity is approximately  $3 \times 10^{35}$  erg/s (Prat et al. 2008), similar to both IGR J18214-1318 and IGR J16207-5129. The spectrum of this source varies strongly with orbital phase ( $P_{\rm orb} = 15.55$ days);  $\Gamma$  varies between 1 and 2, the e-folding energy of the exponential cutoff fluctuates between 6 and 10 keV, and  $N_{\rm H}$  varies from  $< 10^{22}$  and  $2 \times 10^{23}$  cm<sup>-2</sup> (Prat et al. 2008). These large variations in  $N_{\rm H}$  are similar to those observed in IGR J18214-1318, although for that source we do not know whether the variations are related to orbital phase. One spectral component that is seen in IGR J19140+0951 but not IGR J18214-1318 is a soft excess modeled by a kT = 0.3 keV blackbody, which is attributed to a shock formed between the ionized gas around the neutron star and the stellar wind (Prat et al. 2008). However, this soft excess is only seen at particular points of its 13.6 day orbit, which may be the reason it has not been seen in the limited observations of IGR J18214-1318.

IGR J16318-4848 is the HMXB with the highest measured local column density ( $N_{\rm H} \sim 10^{24}$  cm<sup>-2</sup>; Walter et al. 2003), which is due to its sgB[e] donor star (Filliatre & Chaty 2004). The relatively slow 400 km/s wind of this donor star helps maintain a high mass accretion rate onto the compact object, resulting in a slightly higher X-ray luminosity ( $L_X \sim 10^{36}$  erg/s)

than in other Sg HMXBs (Barragán et al. 2009). Aside from its extreme obscuration and unusually strong Fe line emission, the spectral properties of IGR J16318-4848 are similar to those of IGR J18214-1318 and other Sg HMXBs; it exhibits a power-law spectrum with  $\Gamma \approx 0.7$  and an e-folding cutoff energy of 20 keV (Barragán et al. 2009). However, due to the influence of its extremely dense stellar wind, the spectral similarity of IGR J16318-4848 does not necessarily imply that the radiative processes occurring in this system are the same as those in other non-pulsating Sg HMXBs.

The final non-pulsating HMXB is 4U 1700-377, which has a very similar X-ray spectrum to the other Sg HMXBs, but also has many unique properties. This source has  $\Gamma \approx 1.0$ ,  $E_{\text{fold}} \approx 24$  keV,  $E_{\text{cut}} \approx 6$  keV, and a soft excess that may either result from a blackbody component with  $kT \approx 0.2$  keV, as seen in IGR J19140+0951, or line emission (Reynolds et al. 1999; van der Meer et al. 2005). The donor star in this HMXB is an O6.5 Iaf star (Heap & Corcoran 1992), and it displays the highest levels of variability of any of the non-pulsating Sg HMXBs; its flux, even at hard X-ray energies, varies by factors >100, and the pattern of spectral variations as a function of luminosity are further evidence that 4U 1700-377 likely hosts a neutron star (Seifina et al. 2016). However, the mass of the compact object in this system has been measured to be 2.44±0.27  $M_{\odot}$  (Clark et al. 2002), placing it among the most massive neutron stars observed (Ozel & Freire 2016).

In summary, in addition to IGR J18214-1318, there are five currently known HMXBs lacking pulsations with periods  $\leq 10^3$  seconds, four of which have exponential cutoff energies < 25 keV, suggesting they most likely harbor neutron stars. Like IGR J18214-1318, all four of these HMXBs have supergiant donor stars and resemble the Sg HMXB 2S 0114+650. which hosts a neutron star with a 2.7 hour pulsation period thought to have been born as a magnetar. Population synthesis models predict that 8-9% of all neutron stars are born as magnetars, and that only  $\sim 2\%$  of neutron stars in binaries are magnetars; these models predict that an even a smaller percentage of magnetars would be part of an X-ray binary because many of them are produced from the secondary rather than the primary (Popov & Prokhorov 2006). About 100 HMXBs have been discovered in the Galaxy, and only about 60 of them are known to host pulsars (Bird et al. 2016), so with the discovery of 2S 0114+650and 4U 2206+54, both of which may host magnetars (or former magnetars), the observed number of magnetar HMXBs already agrees with theoretical expectations. Thus, if future observations reveal that several of the "non-pulsating" HMXBs actually host long-period pulsars, it could imply that either current models of magnetar origins or models of the spin evolution of neutron stars in binaries need to be revised.

### 4.6 Summary

Timing analysis of the XMM-Newton and NuSTAR observations of IGR J18214-1318 shows that this HMXB has strong levels of aperiodic variability but no pulsations with periods shorter than an hour. Joint fitting of the XMM-Newton and NuSTAR spectra reveals the presence of an exponential cutoff with e-folding energy < 25 keV. Thus, although we cannot definitively identify the nature of the compact object in this system, the spectral cutoff energy is a strong indication that it is a neutron star. A soft excess is also detected in the spectrum of IGR J18214-1318, which we argue most likely results from partial covering absorption from the supergiant wind; the column density associated with the stellar wind is  $\sim 10^{23}$  cm<sup>-2</sup>, making this source a candidate member of the group of highly obscured Sg HMXBs discovered by *INTEGRAL*.

This study demonstrates the usefulness of the combination of XMM-Newton and NuSTAR observations to identify the likely nature of compact objects in HMXBs. Similar observations of other HMXBs will help place better constrains on the BH/NS ratio in HMXB populations. We know of four other HMXBs which, like IGR J18214-1318, have supergiant donor stars, cutoff energies  $\leq 20$  keV suggesting they harbor neutron stars, but no detected pulsations despite sensitive timing observations. These sources also resemble 2S 0114+950, a Sg HMXB with 2.7 hour pulsations thought to host a former magnetar. Determining how many of the non-pulsating HMXBs in fact harbor long-period pulsars could shed light on the origins of magnetars and their possible connection to long-period pulsars in HMXBs.

# Chapter 5

# **Conclusions and Future Outlook**

## 5.1

High-mass X-ray binaries were among the first X-ray sources discovered outside our solar system by the rocket flight X-ray experiments in the 1960s, but many open questions persist about the factors that impact their formation and evolution, and the physics of accretion in the extreme gravity and magnetic fields of the compact objects they host. A more complete knowledge of the properties of HMXB populations, (such as the relative fractions of different HMXB classes, the diversity of temporal and spectral behavior, and their luminosity function) and how these properties differ depending on the galactic environment, can inform our understanding of massive stellar evolution, accretion processes in binaries, and the physical properties of compact objects. This dissertation contributes to three questions regarding HMXB populations:

i. How many low-luminosity HMXBs exist in our Galaxy and what are their properties?

ii. Are HMXB populations in low-metallicity environments more luminous?

iii. What is the nature of the compact objects in non-pulsating HMXBs?

# 5.2 Low-luminosity Galactic X-ray populations

In order to address the first question, *Chandra* and *NuSTAR* observed a square degree region in the direction of the Norma spiral arm. *Chandra* detected about 1100 point sources in this region, and *NuSTAR* measured the hard X-ray emission for the brightest  $\approx 30$  sources. Since at most  $\sim 10$  of these sources were expected to be HMXBs, these surveys also provided the opportunity to study other faint X-ray populations in the Galaxy. Combined with companion *Chandra* and *NuSTAR* surveys of a square-degree region of the Galactic Center, the Norma region surveys also sought to address the following questions:

iv. What are the dominant populations of hard X-ray sources in the Galactic disk and how do they compare to those in the vicinity of the Galactic Center?

Through analysis of the spectra, X-ray variability, and the infrared counterparts of Chandra and NuSTAR sources, we determined that the dominant population of hard X-ray sources in the Norma region are CVs with plasma temperatures of  $kT \approx 10-20$  keV, which is consistent with the hard X-ray component of the Galactic Ridge X-ray Emission. Although the majority of hard X-ray sources in the vicinity of the Galactic Center are also CVs, they have temperatures of  $kT \approx 20-50$  keV. It is possible that the majority of CVs in both Galactic regions are primarily intermediate polars, in which case, their temperature differences correspond to differences in the mass of their white dwarfs. However, based on their variability properties, we think it is more likely that the Norma CV candidates have lower average temperatures because a larger fraction of them are non-magnetic CVs, polars, and symbiotic binaries rather than intermediate polars. It is unclear what evolutionary processes may cause the differences between the CV populations of the Norma region and the Galactic Center, but more accurate classifications of these CV candidates would help to develop new hypotheses. Monitoring the long-term variability of the CV candidates and measuring the equivalent widths and line flux ratios of their iron emission lines would aid this classification.

Through near-IR spectroscopic follow-up of hard X-ray sources detected in the *Chandra* and NuSTAR surveys of the Norma region, we identified three HMXB candidates. All three HMXB candidates have main-sequence Be/B counterparts. Their X-ray luminosities of  $10^{32} - 10^{33}$  erg s<sup>-1</sup> are lower than the typical quiescent state luminosities of known HMXBs, but 1–2 orders of magnitude higher than the typical luminosities of isolated Be/B stars. Future spectroscopic observations of the infrared counterparts of these candidates will be able to confirm whether they are indeed binaries through the detection of Doppler shifts; if they are binaries, measuring their radial velocity curves will determine their orbital period and constrain the mass of the compact object in these systems. If these sources are HMXBs, their low X-ray luminosities could be due to: (i) very wide orbits, which could teach us about the maximum initial period distribution of HMXBs and the strength of natal kicks from supernovae, (ii) the inhibition of accretion by the magnetosphere of neutron star accretors, or *(iii)* black holes accreting material inefficiently from the stellar wind, which would be especially interesting since only one Be-BH binary has been discovered to date and finding additional Be-BHs would help constrain models of massive stellar evolution. If none of these sources are HMXBs, it would suggest that the luminosity function of HMXBs flattens considerably at  $L_X < 10^{34} \text{ erg s}^{-1}$ , possibly as a result of centrifugal inhibition of accretion by the NS magnetosphere at low accretion rates.

# 5.3 The metallicity dependence of HMXBs

It is increasingly assumed that the enhanced number of bright HMXBs observed in lowmetallicity blue compact dwarf galaxies and the increase of  $L_X/SFR$  of star-forming galaxies are the result of metallicity-dependent HMXB evolution. To investigate this hypothesis, we studied the X-ray emission of star-forming galaxies at  $z \sim 2$  from the MOSDEF survey. Using a sample of galaxies in the GOODS-N, GOODS-S, and EGS fields, where *Chandra* extragalactic surveys have achieved the deepest exposures, we grouped the galaxies into different metallicity bins and stacked the X-ray data to measure the average X-ray luminosity per SFR of galaxies in each bin. In agreement with previous studies, we find that the average  $L_X/SFR$  of star-forming galaxies at  $z \sim 2$  is elevated compared to local z = 0 galaxies and that  $L_X/SFR$  decreases with increasing SFR. However, in contrast to the expectations of population synthesis models, our preliminary results do not find a significant correlation between the  $L_X/SFR$  and the galaxy metallicity in the metallicity range  $8.0 < 12 + \log(O/H) < 8.8$ . Although we cannot rule out the possibility that contamination from low-luminosity AGN is biasing our results, the lack of correlation nonetheless suggests that we should not de facto assume that the redshift evolution of  $L_X/SFR$  of star-forming galaxies is driven by the metallicity dependence of HMXB evolution and that it may be worthwhile to investigate other possible origins for this trend. Our results will be improved by using the full MOSDEF galaxy sample now that the survey has been completed and by more thoroughly checking our background subtraction method and stacking analysis for possible systematic biases.

# 5.4 Compact objects in non-pulsating HMXBs

The detection of X-ray pulsations from an HMXB is strong proof of the presence of a neutron star in the system. However, X-ray pulsations may not always be detected from a NS HMXB depending on the geometry of the orbit and the angle between the rotational and magnetic axis of the NS. Thus, the nature of the compact object in a non-pulsating HMXB is unclear without more detailed study. In order to make progress towards a more complete characterization of the Galactic HMXB population, we performed a detailed study of the timing and spectral properties of IGR J18214-1318, a Sg HMXB from which no pulsations have been detected. Using observations from XMM-Newton and NuSTAR, we ruled out the presence of pulsations with periods shorter than an hour and measured an exponetial cutoff in the power-law spectrum of this source. The e-folding energy of this cutoff, which is below 25 keV, indicates that this HMXB hosts a NS accretor. IGR J18214-1318 shares many similarities with four Sg HMXBs which exhibit spectral cutoff energies  $\leq 20$  keV but no detected pulsations with periods  $\leq 1$  hour, and it also resembles 2S 0114+950, a Sg HMXB with a long pulsation period of 2.7 hours. Long-period pulsars may be born as magnetars, and therefore determining whether any of the non-pulsating HMXBs actually host long-period pulsars could inform our understanding of magnetar formation. As exemplified by this study, future XMM-Newton and NuSTAR observations of other HMXBs which lack pulsations but have not been studied in detail would be powerful tools for identifying the likely nature of their compact objects.

### 5.5 Future outlook

Over the next decade, there will be great synergy between studies of HMXBs and the new frontiers of gravitational wave astronomy and the Epoch of Reionization. HMXBs are possible progenitors of NS/NS, NS/BH, and BH/BH binaries which may merge and produce gravitational waves detectable by Advanced LIGO/VIRGO. Advanced LIGO detected two gravitational wave signals produced by BH/BH mergers during its first observing run in 2015, and by 2018,  $\sim$  30 more BH/BH mergers are expected to be detected (The LIGO Scientific Collaboration et al. 2016). Increasing our knowledge of the properties of the HMXB populations, especially the ratio of HMXBs hosting BHs versus NSs, the HMXB orbital period distribution, and how these properties may vary with redshift and in different galactic environments, will improve estimates of the expected merger rates from HMXB descendants, helping to determine the evolutionary origins of the merging double compact binaries and to assess the implications of the gravitational wave merger rates for stellar evolutionary models.

Measurements of the HI 21 cm power spectrum are beginning to place constraints on the level of X-ray heating of the intergalactic medium (IGM) during the Epoch of the Reionization. The next generation of 21 cm experiments will be capable of constraining parameters such as the spectral shape of the sources of X-ray heating to  $\leq 10\%$  accuracy (Ewall-Wice et al. 2016). Further investigations of how the number, X-ray luminosity, and X-ray spectral shape of HMXBs depends on metallicity and other environmental variables will improve models of the contribution of HMXBs to the heating of the IGM in the early Universe, and constraints from the 21 cm power spectrum on these models will in turn inform our understanding of the evolution of the first generations of stars.

Direct X-ray detections of the first HMXBs and AGN which helped to heat and reionize the IGM will be possible with the next generation of X-ray observatories, *Athena* and *X-ray Surveyor*<sup>1</sup>. These future missions will not only enable the study of HMXBs out to high redshifts, but also provide enough sensitivity to study the individual spectra of a much larger fraction of Galactic X-ray sources, resulting in more accurate measurements of the relative numbers of different X-ray populations based on the classification of individual sources rather than the modeling of stacked spectra.

<sup>&</sup>lt;sup>1</sup>Athena has been selected as a large-scale mission by ESA to be launched in 2028, whereas X-ray Surveyor is in the mission concept study phase and, if selected by NASA, would likely be launched in the early 2030s.

# Bibliography

- Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a, ApJ, 818, L22
- —. 2016b, Physical Review Letters, 116, 241103
- —. 2016c, Physical Review Letters, 116, 061102
- Accadia, T., Acernese, F., Agathos, M., et al. 2015, in Particle Physics at the Year of Centenary of Bruno Pontecorvo - PROCEEDINGS OF THE SIXTEENTH LOMONOSOV CONFERENCE ON ELEMENTARY PARTICLE PHYSICS. Edited by STUDENIKIN ALEXANDER I. Published by World Scientific Publishing Co. Pte. Ltd., 2015. ISBN #9789814663618, pp. 261-270, ed. S. V. Salikhov, 261
- Aird, J., Coil, A. L., Georgakakis, A., et al. 2015, MNRAS, 451, 1892
- Aird, J., Coil, A. L., Moustakas, J., et al. 2012, ApJ, 746, 90
- Alexander, D. M., Bauer, F. E., Brandt, W. N., et al. 2003, AJ, 126, 539
- Allen, C., Jerius, D. H., & Gaetz, T. J. 2004, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 5165, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. K. A. Flanagan & O. H. W. Siegmund, 423
- Allende Prieto, C., Lambert, D. L., & Asplund, M. 2001, ApJ, 556, L63
- An, H., Kaspi, V. M., Tomsick, J. A., et al. 2012, ApJ, 757, 68
- Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
- Antoniou, V., & Zezas, A. 2016, MNRAS, 459, 528
- Archibald, R. F., Gotthelf, E. V., Ferdman, R. D., et al. 2016, ApJ, 819, L16
- Arnaud, K. A. 1996, in Astronomical Society of the Pacific Conference Series, Vol. 101, Astronomical Data Analysis Software and Systems V, ed. G. H. Jacoby & J. Barnes, 17
- Asplund, M., Grevesse, N., Sauval, A. J., Allende Prieto, C., & Kiselman, D. 2004, A&A, 417, 751
- Bachetti, M., Harrison, F. A., Walton, D. J., et al. 2014, Nature, 514, 202
- Bachetti, M., Harrison, F. A., Cook, R., et al. 2015, ApJ, 800, 109
- Bahcall, J. N. 1978, ARA&A, 16, 241
- Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5
- Barger, A. J., Cowie, L. L., & Wang, W.-H. 2008, ApJ, 689, 687
- Barlow, E. J., Knigge, C., Bird, A. J., et al. 2006, MNRAS, 372, 224
- Barragán, L., Wilms, J., Pottschmidt, K., et al. 2009, A&A, 508, 1275
- Barret, D., McClintock, J. E., & Grindlay, J. E. 1996, ApJ, 473, 963
- Baskill, D. S., Wheatley, P. J., & Osborne, J. P. 2005, MNRAS, 357, 626

- Basu-Zych, A. R., Lehmer, B. D., Hornschemeier, A. E., et al. 2013a, ApJ, 774, 152 - . 2013b, ApJ, 762, 45
- Belczynski, K., Bulik, T., & Bailyn, C. 2011, ApJ, 742, L2
- Belczynski, K., Bulik, T., Fryer, C. L., et al. 2010, ApJ, 714, 1217
- Belczynski, K., Bulik, T., Mandel, I., et al. 2013, ApJ, 764, 96
- Belczynski, K., Holz, D. E., Bulik, T., & O'Shaughnessy, R. 2016, Nature, 534, 512
- Belczynski, K., Kalogera, V., Zezas, A., & Fabbiano, G. 2004, ApJ, 601, L147
- Belczyński, K., Mikołajewska, J., Munari, U., Ivison, R. J., & Friedjung, M. 2000, A&AS, 146, 407
- Belczynski, K., & Ziolkowski, J. 2009, ApJ, 707, 870
- Bellm, E. C., Fürst, F., Pottschmidt, K., et al. 2014, ApJ, 792, 108
- Belloni, T., & Hasinger, G. 1990, A&A, 230, 103
- Berghoefer, T. W., Schmitt, J. H. M. M., Danner, R., & Cassinelli, J. P. 1997, A&A, 322, 167
- Bernardini, F., de Martino, D., Falanga, M., et al. 2012, A&A, 542, A22
- Bhalerao, V. 2012, PhD thesis, Caltech <EMAIL>varun@astro.caltech.edu</EMAIL>
- Bhalerao, V., Romano, P., Tomsick, J., et al. 2015, MNRAS, 447, 2274
- Binney, J., Gerhard, O., & Spergel, D. 1997, MNRAS, 288, 365
- Bird, A. J., Barlow, E. J., Bassani, L., et al. 2004, ApJ, 607, L33
- —. 2006, ApJ, 636, 765
- Bird, A. J., Bazzano, A., Malizia, A., et al. 2016, ApJS, 223, 15
- Blondin, J. M. 1994, ApJ, 435, 756
- Bocchino, F., & Bykov, A. M. 2001, A&A, 376, 248
- Bodaghee, A., Rahoui, F., Tomsick, J. A., & Rodriguez, J. 2012a, ApJ, 751, 113
- Bodaghee, A., Tomsick, J. A., & Rodriguez, J. 2012b, ApJ, 753, 3
- Bodaghee, A., Tomsick, J. A., Rodriguez, J., et al. 2010, ApJ, 719, 451
- Bodaghee, A., Tomsick, J. A., Rodriguez, J., & James, J. B. 2012c, ApJ, 744, 108
- Bodaghee, A., Walter, R., Zurita Heras, J. A., et al. 2006, A&A, 447, 1027
- Bodaghee, A., Tomsick, J. A., Krivonos, R., et al. 2014, ApJ, 791, 68
- Bodaghee, A., Tomsick, J. A., Fornasini, F. M., et al. 2016, ApJ, 823, 146
- Bolton, C. T. 1975, ApJ, 200, 269
- Bongiorno, A., Merloni, A., Brusa, M., et al. 2012, MNRAS, 427, 3103
- Bonning, E. W., & Falanga, M. 2005, A&A, 436, L31
- Bouret, J.-C., Lanz, T., & Hillier, D. J. 2005, A&A, 438, 301
- Bowyer, C. S., Field, G. B., & Mack, J. E. 1968, Nature, 217, 32
- Bowyer, S., Byram, E. T., Chubb, T. A., & Friedman, H. 1965, Science, 147, 394
- Bozzo, E., Falanga, M., & Stella, L. 2008, ApJ, 683, 1031
- Bozzo, E., Pavan, L., Ferrigno, C., et al. 2012, A&A, 544, A118
- Brammer, G. B., van Dokkum, P. G., Franx, M., et al. 2012, ApJS, 200, 13
- Brightman, M., Harrison, F. A., Barret, D., et al. 2016, ArXiv e-prints, arXiv:1607.03903 [astro-ph.HE]
- Brogan, C. L., Frail, D. A., Goss, W. M., & Troland, T. H. 2000, ApJ, 537, 875
- Bronfman, L., Alvarez, H., Cohen, R. S., & Thaddeus, P. 1989, ApJS, 71, 481

- Brorby, M., Kaaret, P., & Prestwich, A. 2014, MNRAS, 441, 2346
- Brorby, M., Kaaret, P., Prestwich, A., & Mirabel, I. F. 2016, MNRAS, 457, 4081
- Buccheri, R., Bennett, K., Bignami, G. F., et al. 1983, A&A, 128, 245
- Bulik, T., Belczynski, K., & Prestwich, A. 2011, ApJ, 730, 140
- Butler, S. C., Tomsick, J. A., Chaty, S., et al. 2009, ApJ, 698, 502
- Caballero, I., & Wilms, J. 2012, Mem. Soc. Astron. Italiana, 83, 230
- Caballero, I., Kretschmar, P., Santangelo, A., et al. 2007, A&A, 465, L21
- Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
- Cappelluti, N., Brusa, M., Hasinger, G., et al. 2009, A&A, 497, 635
- Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
- Casares, J., Charles, P. A., & Naylor, T. 1992, Nature, 355, 614
- Casares, J., Negueruela, I., Ribó, M., et al. 2014, Nature, 505, 378
- Cash, W. 1979, ApJ, 228, 939
- Chabrier, G. 2003, PASP, 115, 763
- Chaty, S. 2011, in Astronomical Society of the Pacific Conference Series, Vol. 447, Evolution of Compact Binaries, ed. L. Schmidtobreick, M. R. Schreiber, & C. Tappert, 29
- Chaty, S. 2013, Advances in Space Research, 52, 2132
- Chaty, S., Rahoui, F., Foellmi, C., et al. 2008, A&A, 484, 783
- Cheng, K. S., Taam, R. E., & Wang, W. 2004, ApJ, 617, 480
- Choi, C.-S., Dotani, T., & Agrawal, P. C. 1999, ApJ, 525, 399
- Civano, F., Elvis, M., Brusa, M., et al. 2012, ApJS, 201, 30
- Civano, F., Hickox, R. C., Puccetti, S., et al. 2015, ApJ, 808, 185
- Clark, J. S., Bartlett, E. S., Coe, M. J., et al. 2013a, A&A, 560, A10
- Clark, J. S., Goodwin, S. P., Crowther, P. A., et al. 2002, A&A, 392, 909
- Clark, J. S., Ritchie, B. W., & Negueruela, I. 2013b, A&A, 560, A11
- Coburn, W., Heindl, W. A., Rothschild, R. E., et al. 2002, ApJ, 580, 394
- Cohen, D. H., Cassinelli, J. P., & MacFarlane, J. J. 1997, ApJ, 487, 867
- Coil, A. L., Blanton, M. R., Burles, S. M., et al. 2011, ApJ, 741, 8
- Coil, A. L., Aird, J., Reddy, N., et al. 2015, ApJ, 801, 35
- Combi, J. A., Albacete Colombo, J. F., Romero, G. E., & Benaglia, P. 2006, ApJ, 653, L41
- Combi, J. A., Benaglia, P., Romero, G. E., & Sugizaki, M. 2005, A&A, 431, L9
- Connon Smith, R. 2007, ArXiv Astrophysics e-prints, astro-ph/0701654
- Conroy, C. 2013, ARA&A, 51, 393
- Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699, 486
- Conselice, C. J. 2003, ApJS, 147, 1
- Cooper, M. C., Griffith, R. L., Newman, J. A., et al. 2012, MNRAS, 419, 3018
- Corbet, R., Barbier, L., Barthelmy, S., et al. 2006, The Astronomer's Telegram, 797
- Corbet, R. H. D. 1984, A&A, 141, 91
- —. 1986, MNRAS, 220, 1047
- Corbet, R. H. D., Finley, J. P., & Peele, A. G. 1999, ApJ, 511, 876
- Corbet, R. H. D., & Krimm, H. A. 2013, ApJ, 778, 45
- Corbet, R. H. D., Sokoloski, J. L., Mukai, K., Markwardt, C. B., & Tueller, J. 2008, ApJ,

675, 1424

- Corcoran, M. F. 1996, in Revista Mexicana de Astronomia y Astrofisica Conference Series, Vol. 5, Revista Mexicana de Astronomia y Astrofisica Conference Series, ed. V. Niemela, N. Morrell, P. Pismis, & S. Torres-Peimbert, 54
- Corcoran, M. F. 2005, AJ, 129, 2018
- Corral-Santana, J., & et al. in prep, in preparation
- Cowley, A. P., Crampton, D., Hutchings, J. B., Remillard, R., & Penfold, J. E. 1983, ApJ, 272, 118
- Cropper, M. 1990, Space Sci. Rev., 54, 195
- Cutri, R. M., & et al. 2013, VizieR Online Data Catalog, 2328
- Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792
- Davidson, K., & Ostriker, J. P. 1973, ApJ, 179, 585
- Davies, B., de La Fuente, D., Najarro, F., et al. 2012, MNRAS, 419, 1860
- de Martino, D., Matt, G., Belloni, T., et al. 2004, Nuclear Physics B Proceedings Supplements, 132, 693
- Dempsey, R. C., Linsky, J. L., Fleming, T. A., & Schmitt, J. H. M. M. 1993, ApJS, 86, 599
- den Herder, J. W., Brinkman, A. C., Kahn, S. M., et al. 2001, A&A, 365, L7
- Di Salvo, T., Done, C., Zycki, P. T., Burderi, L., & Robba, N. R. 2001, ApJ, 547, 1024
- Dieters, S. W., Belloni, T., Kuulkers, E., et al. 2000, ApJ, 538, 307
- Donley, J. L., Koekemoer, A. M., Brusa, M., et al. 2012, ApJ, 748, 142
- Doroshenko, V., Santangelo, A., Doroshenko, R., et al. 2014, A&A, 561, A96
- Doroshenko, V., Suchy, S., Santangelo, A., et al. 2010, A&A, 515, L1
- Douna, V. M., Pellizza, L. J., Mirabel, I. F., & Pedrosa, S. E. 2015, A&A, 579, A44 Dray, L. M. 2006, MNRAS, 370, 2079
- Ducati, J. R., Bevilacqua, C. M., Rembold, S. B., & Ribeiro, D. 2001, ApJ, 558, 309
- Duncan, R. C., & Thompson, C. 1992, ApJ, 392, L9
- Dwek, E., Arendt, R. G., Hauser, M. G., et al. 1995, ApJ, 445, 716
- Ebisawa, K., Tsujimoto, M., Paizis, A., et al. 2005, ApJ, 635, 214
- Elmegreen, B. G., Elmegreen, D. M., Salzer, J. J., & Mann, H. 1996, ApJ, 467, 579
- Elshamouty, K., Heinke, C., & Chouinard, R. 2016, ArXiv e-prints, arXiv:1604.07808 [astro-ph.HE]
- Enoto, T., Sasano, M., Yamada, S., et al. 2014, ApJ, 786, 127
- Eracleous, M., Halpern, J., & Patterson, J. 1991, ApJ, 382, 290
- Erb, D. K., Shapley, A. E., Pettini, M., et al. 2006, ApJ, 644, 813
- Esin, A. A., Narayan, R., Cui, W., Grove, J. E., & Zhang, S.-N. 1998, ApJ, 505, 854
- Esposito, P., Israel, G. L., Zane, S., et al. 2008, MNRAS, 390, L34
- Esposito, P., Tiengo, A., Mereghetti, S., et al. 2009, ApJ, 690, L105
- Ewall-Wice, A., Hewitt, J., Mesinger, A., et al. 2016, MNRAS, 458, 2710
- Ezuka, H., & Ishida, M. 1999, ApJS, 120, 277
- Farinelli, R., Ferrigno, C., Bozzo, E., & Becker, P. A. 2016, A&A, 591, A29
- Farrell, S. A., Sood, R. K., O'Neill, P. M., & Dieters, S. 2008, MNRAS, 389, 608
- Filippova, E. V., Tsygankov, S. S., Lutovinov, A. A., & Sunyaev, R. A. 2005, Astronomy

Letters, 31, 729

- Filliatre, P., & Chaty, S. 2004, ApJ, 616, 469
- Fornasini, F. M., Tomsick, J. A., Bodaghee, A., et al. 2014, ApJ, 796, 105
- Fragos, T., Lehmer, B. D., Naoz, S., Zezas, A., & Basu-Zych, A. 2013a, ApJ, 776, L31
- Fragos, T., Linden, T., Kalogera, V., & Sklias, P. 2015, ApJ, 802, L5
- Fragos, T., Lehmer, B., Tremmel, M., et al. 2013b, ApJ, 764, 41
- Franciosini, E., Pallavicini, R., & Tagliaferri, G. 2001, A&A, 375, 196
- Freeman, P. E., Kashyap, V., Rosner, R., & Lamb, D. Q. 2002a, ApJS, 138, 185
  —. 2002b, ApJS, 138, 185
- Freudenreich, H. T. 1998, ApJ, 492, 495
- Fullerton, A. W., Massa, D. L., & Prinja, R. K. 2006, ApJ, 637, 1025
- Funk, S., Hinton, J. A., Pühlhofer, G., et al. 2007, ApJ, 662, 517
- Fürst, F., Suchy, S., Kreykenbohm, I., et al. 2011, A&A, 535, A9
- Fürst, F., Pottschmidt, K., Wilms, J., et al. 2014, ApJ, 780, 133
- Gaensler, B. M., & Slane, P. O. 2006, ARA&A, 44, 17
- Gagné, M., Oksala, M. E., Cohen, D. H., et al. 2005, ApJ, 628, 986
- Gagné, M., Fehon, G., Savoy, M. R., et al. 2011, ApJS, 194, 5
- Garmire, G. P., Bautz, M. W., Ford, P. G., Nousek, J. A., & Ricker, Jr., G. R. 2003, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4851, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. J. E. Truemper & H. D. Tananbaum, 28
- Gehrels, N. 1986, ApJ, 303, 336
- Georgakakis, A., Nandra, K., Laird, E. S., Aird, J., & Trichas, M. 2008a, MNRAS, 388, 1205 —. 2008b, MNRAS, 388, 1205
- Georgelin, Y. M., Russeil, D., Marcelin, M., et al. 1996, A&AS, 120, 41
- Giacconi, R., Gursky, H., Paolini, F. R., & Rossi, B. B. 1962, Physical Review Letters, 9, 439
- Giacconi, R., & Rossi, B. 1960, J. Geophys. Res., 65, 773
- Giacconi, R., Branduardi, G., Briel, U., et al. 1979, ApJ, 230, 540
- Giacconi, R., Zirm, A., Wang, J., et al. 2002, ApJS, 139, 369
- Gilfanov, M. 2004, MNRAS, 349, 146
- Gilfanov, M. 2010, in Lecture Notes in Physics, Berlin Springer Verlag, Vol. 794, Lecture Notes in Physics, Berlin Springer Verlag, ed. T. Belloni, 17
- Gilfanov, M., Grimm, H.-J., & Sunyaev, R. 2004, MNRAS, 347, L57
- Gotthelf, E. V. 2003, ApJ, 591, 361
- Gotthelf, E. V., Tomsick, J. A., Halpern, J. P., et al. 2014, ApJ, 788, 155
- Granada, A., Ekström, S., Georgy, C., et al. 2013, A&A, 553, A25
- Grebenev, S. A., & Sunyaev, R. A. 2007, Astronomy Letters, 33, 149
- Green, D. A. 2004, Bulletin of the Astronomical Society of India, 32, 335
- Grimm, H.-J., Gilfanov, M., & Sunyaev, R. 2002, A&A, 391, 923 —. 2003, MNRAS, 339, 793
- Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011, ApJS, 197, 35
- Grosso, N., Feigelson, E. D., Getman, K. V., et al. 2005, ApJS, 160, 530

- Grove, J. E., Johnson, W. N., Kroeger, R. A., et al. 1998, ApJ, 500, 899
- Grudzinska, M., Belczynski, K., Casares, J., et al. 2015, MNRAS, 452, 2773
- Güdel, M., Briggs, K. R., Arzner, K., et al. 2007, A&A, 468, 353
- Güver, T., & Özel, F. 2009, MNRAS, 400, 2050
- Haberl, F., & Sturm, R. 2016, A&A, 586, A81
- Hailey, C. J., Mori, K., Perez, K., et al. 2016, ApJ, 826, 160
- Hamaguchi, K., Corcoran, M. F., Gull, T., et al. 2007, ApJ, 663, 522
- Hammersley, P. L., Cohen, M., Garzón, F., Mahoney, T., & López-Corredoira, M. 1999, MNRAS, 308, 333
- Hannikainen, D. C., Rawlings, M. G., Muhli, P., et al. 2007, MNRAS, 380, 665
- Harrison, F. A., Craig, W. W., Christensen, F. E., et al. 2013, ApJ, 770, 103
- Hasinger, G., & van der Klis, M. 1989, A&A, 225, 79
- Heap, S. R., & Corcoran, M. F. 1992, ApJ, 387, 340
- Hellier, C., Mukai, K., & Beardmore, A. P. 1997, MNRAS, 292, 397
- Hickox, R. C., Narayan, R., & Kallman, T. R. 2004, ApJ, 614, 881
- Hirano, T., Hayakawa, S., Nagase, F., Masai, K., & Mitsuda, K. 1987, PASJ, 39, 619
- Hoard, D. W., Wachter, S., Clark, L. L., & Bowers, T. P. 2002, ApJ, 565, 511
- Hong, J., Schlegel, E. M., & Grindlay, J. E. 2004, ApJ, 614, 508
- Hong, J., van den Berg, M., Schlegel, E. M., et al. 2005, ApJ, 635, 907
- Hong, J., Mori, K., Hailey, C. J., et al. 2016, ApJ, 825, 132
- Hong, J. S., van den Berg, M., Grindlay, J. E., & Laycock, S. 2009, ApJ, 706, 223 Horne, K. 1986, PASP, 98, 609
- Hoshino, M., & Takeshima, T. 1993, ApJ, 411, L79
- House, L. L. 1969, ApJS, 18, 21
- Hunter, D. A., & Elmegreen, B. G. 2004, AJ, 128, 2170
- Hurley, K., Kouveliotou, C., Woods, P., et al. 1999, ApJ, 519, L143
- Hutchings, J. B., Crampton, D., & Cowley, A. P. 1983, ApJ, 275, L43
- Iben, Jr., I., Tutukov, A. V., & Yungelson, L. R. 1995, ApJS, 100, 217
- Ikhsanov, N. R., & Beskrovnaya, N. G. 2010, Astrophysics, 53, 237
- Illarionov, A. F., & Sunyaev, R. A. 1975, A&A, 39, 185
- Ivanova, N., Justham, S., Chen, X., et al. 2013, A&A Rev., 21, 59
- Iwasawa, K., Mainieri, V., Brusa, M., et al. 2012, A&A, 537, A86
- Jakobsen, S. J. 2013, Master's thesis, Niels Bohr Institute, Copenhagen University
- Jakobsen, S. J., Tomsick, J. A., Watson, D., Gotthelf, E. V., & Kaspi, V. M. 2014, ApJ, 787, 129
- Jansen, F., Lumb, D., Altieri, B., et al. 2001, A&A, 365, L1
- Jeon, M., Pawlik, A. H., Bromm, V., & Milosavljević, M. 2014, MNRAS, 440, 3778
- Jones, C., & Dickey, J. M. 2012, ApJ, 753, 62
- Jones, T. M., Kriek, M., van Dokkum, P. G., et al. 2014, ApJ, 783, 25
- Justham, S., & Schawinski, K. 2012, MNRAS, 423, 1641
- Kaaret, P. 2014, MNRAS, 440, L26
- Kaaret, P., Schmitt, J., & Gorski, M. 2011, ApJ, 741, 10

- Kalberla, P. M. W., Burton, W. B., Hartmann, D., et al. 2005, A&A, 440, 775
- Kargaltsev, O., & Pavlov, G. G. 2008, in American Institute of Physics Conference Series, Vol. 983, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, ed. C. Bassa,
  Z. Wang, A. Cumming, & V. M. Kaspi, 171
- Z. Wang, A. Cumming, & V. M. Kaspi, 171
- Kauffmann, G., Heckman, T. M., Tremonti, C., et al. 2003, MNRAS, 346, 1055
- Kennicutt, Jr., R. C. 1998, ARA&A, 36, 189
- Kewley, L. J., & Ellison, S. L. 2008, ApJ, 681, 1183
- King, A., & Lasota, J.-P. 2016, MNRAS, 458, L10
- King, A. L., Walton, D. J., Miller, J. M., et al. 2014, ApJ, 784, L2
- King, A. R., Davies, M. B., Ward, M. J., Fabbiano, G., & Elvis, M. 2001, ApJ, 552, L109
- Klein-Wolt, M., Homan, J., & van der Klis, M. 2004, Nuclear Physics B Proceedings Supplements, 132, 381
- Klus, H., Ho, W. C. G., Coe, M. J., Corbet, R. H. D., & Townsend, L. J. 2014, MNRAS, 437, 3863
- Koekemoer, A. M., Faber, S. M., Ferguson, H. C., et al. 2011, ApJS, 197, 36
- Koglin, J. E., An, H., Barrière, N., et al. 2011, in Proc. SPIE, Vol. 8147, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 81470J
- Kouveliotou, C., Patel, S., Tennant, A., et al. 2003, IAU Circ., 8109
- Koyama, K., Kunieda, H., Takeuchi, Y., & Tawara, Y. 1991, ApJ, 370, L77
- Kraft, R. P., Burrows, D. N., & Nousek, J. A. 1991, ApJ, 374, 344
- Kriek, M., van Dokkum, P. G., Labbé, I., et al. 2009, ApJ, 700, 221
- Kriek, M., Shapley, A. E., Reddy, N. A., et al. 2015, ApJS, 218, 15
- Krishnamurthi, A., Reynolds, C. S., Linsky, J. L., Martín, E., & Gagné, M. 2001, AJ, 121, 337
- Krivonos, R., Revnivtsev, M., Churazov, E., et al. 2007, A&A, 463, 957
- Krivonos, R., Tsygankov, S., Lutovinov, A., et al. 2012, A&A, 545, A27
- Krumholz, M. R., Cunningham, A. J., Klein, R. I., & McKee, C. F. 2010, ApJ, 713, 1120
- Kuchar, T. A., & Clark, F. O. 1997, ApJ, 488, 224
- Kuulkers, E., Norton, A., Schwope, A., & Warner, B. 2006, in Compact stellar X-ray sources, ed. W. H. G. Lewin & M. van der Klis ((Cambridge University Press), 421
- Kuulkers, E., Parmar, A. N., Kitamoto, S., Cominsky, L. R., & Sood, R. K. 1997, MNRAS, 291, 81
- La Palombara, N., & Mereghetti, S. 2006, A&A, 455, 283
- —. 2007, A&A, 474, 137
- La Palombara, N., Sidoli, L., Esposito, P., Tiengo, A., & Mereghetti, S. 2009, A&A, 505, 947
- Laird, E. S., Nandra, K., Georgakakis, A., et al. 2009, ApJS, 180, 102
- Lamb, F. K. 1989, in ESA Special Publication, Vol. 296, Two Topics in X-Ray Astronomy, Volume 1: X Ray Binaries. Volume 2: AGN and the X Ray Background, ed. J. Hunt & B. Battrick
- Landi, R., Bassani, L., Dean, A. J., et al. 2009, MNRAS, 392, 630
- Lansbury, G. B., Stern, D., Aird, J., et al. 2016, submitted to ApJ
- Lattimer, J. M. 2012, Annual Review of Nuclear and Particle Science, 62, 485

- Leahy, D. A., Darbro, W., Elsner, R. F., et al. 1983, ApJ, 266, 160
- Lehmer, B. D., Alexander, D. M., Bauer, F. E., et al. 2010, ApJ, 724, 559
- Lehmer, B. D., Xue, Y. Q., Brandt, W. N., et al. 2012, ApJ, 752, 46
- Lehmer, B. D., Basu-Zych, A. R., Mineo, S., et al. 2016, ApJ, 825, 7
- Lewin, W. H. G., Ricker, G. R., & McClintock, J. E. 1971, ApJ, 169, L17
- Li, X.-D., & van den Heuvel, E. P. J. 1999, ApJ, 513, L45
- LIGO Scientific Collaboration, Aasi, J., Abbott, B. P., et al. 2015, Classical and Quantum Gravity, 32, 074001
- Lin, D., Remillard, R. A., & Homan, J. 2009, ApJ, 696, 1257
- Linden, T., Kalogera, V., Sepinsky, J. F., et al. 2010, ApJ, 725, 1984
- Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2006, A&A, 455, 1165
- Liu, X., Shapley, A. E., Coil, A. L., Brinchmann, J., & Ma, C.-P. 2008, ApJ, 678, 758
- Livio, M., & Warner, B. 1984, The Observatory, 104, 152
- Loeb, A. 2016, ApJ, 819, L21
- Lopes de Oliveira, R. 2007, PhD thesis, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão 1226, 05508-090 São Paulo, Brazil Observatoire Astronomique, UMR 7550 CNRS, Université Louis Pasteur, 11 rue de l'Université, 67000 Strasbourg, France <EMAIL>rlopes@astro.iag.usp.br;</EMAIL>
- Lotz, J. M., Primack, J., & Madau, P. 2004, AJ, 128, 163
- Lü, G.-L., Zhu, C.-H., Postnov, K. A., et al. 2012, MNRAS, 424, 2265
- Luna, G. J. M., & Sokoloski, J. L. 2007, ApJ, 671, 741
- Luna, G. J. M., Sokoloski, J. L., Mukai, K., & Nelson, T. 2013, A&A, 559, A6
- Luo, B., Bauer, F. E., Brandt, W. N., et al. 2008, ApJS, 179, 19
- Lutovinov, A. A., Revnivtsev, M. G., Tsygankov, S. S., & Krivonos, R. A. 2013, MNRAS, 431, 327
- Lyne, A. G., Anderson, B., & Salter, M. J. 1982, MNRAS, 201, 503
- Madsen, K. K., Harrison, F. A., Markwardt, C. B., et al. 2015, ApJS, 220, 8
- Maiolino, R., Nagao, T., Grazian, A., et al. 2008, A&A, 488, 463
- Makino, F., Wagner, R. M., Starrfield, S., et al. 1989, IAU Circ., 4786
- Makishima, K., Takahashi, H., Yamada, S., et al. 2008, PASJ, 60, 585
- Manousakis, A., & Walter, R. 2011, A&A, 526, A62
- —. 2015, A&A, 575, A58
- Mapelli, M., Ripamonti, E., Zampieri, L., & Colpi, M. 2011, Astronomische Nachrichten, 332, 414
- Marcu, D. M., Fürst, F., Pottschmidt, K., et al. 2011, ApJ, 742, L11
- Markowitz, A., & Edelson, R. 2004, ApJ, 617, 939
- Masetti, N., Orlandini, M., dal Fiume, D., et al. 2006, A&A, 445, 653
- Masetti, N., Dal Fiume, D., Cusumano, G., et al. 2002, A&A, 382, 104
- Masetti, N., Landi, R., Pretorius, M. L., et al. 2007, A&A, 470, 331
- Masetti, N., Parisi, P., Palazzi, E., et al. 2010, A&A, 519, A96
- Mateos, S., Alonso-Herrero, A., Carrera, F. J., et al. 2012, MNRAS, 426, 3271
- Matthews, O. M., Wheatley, P. J., Wynn, G. A., & Truss, M. R. 2006, MNRAS, 372, 1593

- Mauerhan, J. C., Muno, M. P., Morris, M. R., Stolovy, S. R., & Cotera, A. 2010, ApJ, 710, 706
- Maughan, B. J., Giles, P. A., Randall, S. W., Jones, C., & Forman, W. R. 2012, MNRAS, 421, 1583
- McClintock, J. E., & Remillard, R. A. 2006, Black hole binaries, ed. W. H. G. Lewin & M. van der Klis, 157
- McLean, I. S., Steidel, C. C., Epps, H. W., et al. 2012, in Proc. SPIE, Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy IV, 84460J
- Mercer, E. P., Clemens, D. P., Meade, M. R., et al. 2005, ApJ, 635, 560
- Mezcua, M., Civano, F., Fabbiano, G., Miyaji, T., & Marchesi, S. 2016, ApJ, 817, 20
- Mikles, V. J., Eikenberry, S. S., Muno, M. P., Bandyopadhyay, R. M., & Patel, S. 2006, ApJ, 651, 408
- Mineo, S., Gilfanov, M., & Sunyaev, R. 2012, MNRAS, 419, 2095
- Minniti, D., Lucas, P. W., Emerson, J. P., et al. 2010, New Astronomy, 15, 433
- Molina, M., Bassani, L., Malizia, A., et al. 2009, MNRAS, 399, 1293
- Momcheva, I. G., Brammer, G. B., van Dokkum, P. G., et al. 2016, ApJS, 225, 27
- Mori, K., Gotthelf, E. V., Dufour, F., et al. 2014, ApJ, 793, 88
- Mori, K., Hailey, C. J., Krivonos, R., et al. 2015, ApJ, 814, 94
- Morihana, K., Tsujimoto, M., Dubath, P., et al. 2016, PASJ, arXiv:1604.06779 [astro-ph.HE] Morris, M. 1993, ApJ, 408, 496
- Moster, B. P., Naab, T., & White, S. D. M. 2013, MNRAS, 428, 3121
- Motch, C., Lopes de Oliveira, R., & Smith, M. A. 2015, ApJ, 806, 177
- Muerset, U., Wolff, B., & Jordan, S. 1997, A&A, 319, 201
- Mukai, K., & Shiokawa, K. 1993, ApJ, 418, 863
- Mukherjee, U., & Paul, B. 2005, A&A, 431, 667
- Mullaney, J. R., Del-Moro, A., Aird, J., et al. 2015, ApJ, 808, 184
- Munar-Adrover, P., Paredes, J. M., Ribó, M., et al. 2014, ApJ, 786, L11
- Muno, M. P. 2007, in American Institute of Physics Conference Series, Vol. 924, The Multicolored Landscape of Compact Objects and Their Explosive Origins, ed. T. di Salvo, G. L. Israel, L. Piersant, L. Burderi, G. Matt, A. Tornambe, & M. T. Menna, 166
- Muno, M. P., Arabadjis, J. S., Baganoff, F. K., et al. 2004, ApJ, 613, 1179
- Muno, M. P., Bauer, F. E., Baganoff, F. K., et al. 2009, ApJS, 181, 110
- Murray, S. S., Austin, G. K., Chappell, J. H., et al. 2000, in Proc. SPIE, Vol. 4012, X-Ray Optics, Instruments, and Missions III, ed. J. E. Truemper & B. Aschenbach, 68
- Nagase, F. 1989, PASJ, 41, 1
- Naik, S., Paul, B., & Ali, Z. 2011, ApJ, 737, 79
- Nandra, K., Laird, E. S., Aird, J. A., et al. 2015, ApJS, 220, 10
- Negueruela, I., Smith, D. M., Reig, P., Chaty, S., & Torrejón, J. M. 2006, in ESA Special Publication, Vol. 604, The X-ray Universe 2005, ed. A. Wilson, 165
- Negueruela, I., Torrejón, J. M., Reig, P., Ribó, M., & Smith, D. M. 2008, in American Institute of Physics Conference Series, Vol. 1010, A Population Explosion: The Nature & Evolution of X-ray Binaries in Diverse Environments, ed. R. M. Bandyopadhyay, S. Wachter,

- D. Gelino, & C. R. Gelino, 252
- Nespoli, E., Fabregat, J., & Mennickent, R. E. 2008, A&A, 486, 911
- —. 2010, A&A, 516, A94
- Newman, J. A., Cooper, M. C., Davis, M., et al. 2013, ApJS, 208, 5
- Newman, S. F., Buschkamp, P., Genzel, R., et al. 2014, ApJ, 781, 21
- Olausen, S. A., & Kaspi, V. M. 2014, ApJS, 212, 6
- O'Leary, R. M., Rasio, F. A., Fregeau, J. M., Ivanova, N., & O'Shaughnessy, R. 2006, ApJ, 637, 937
- Orio, M., Covington, J., & Ögelman, H. 2001, A&A, 373, 542
- Orio, M., Zezas, A., Munari, U., Siviero, A., & Tepedelenlioglu, E. 2007, ApJ, 661, 1105
- Orosz, J. A., McClintock, J. E., Aufdenberg, J. P., et al. 2011, ApJ, 742, 84
- Ozel, F., & Freire, P. 2016, ArXiv e-prints, arXiv:1603.02698 [astro-ph.HE]
- Özel, F., Psaltis, D., Narayan, R., & McClintock, J. E. 2010, ApJ, 725, 1918
- Page, K. L., O'Brien, P. T., Reeves, J. N., & Turner, M. J. L. 2004, MNRAS, 347, 316
- Pandey, J. C., & Singh, K. P. 2012, MNRAS, 419, 1219
- Parsons, A. R., Liu, A., Aguirre, J. E., et al. 2014, ApJ, 788, 106
- Patel, S. K., Kouveliotou, C., Tennant, A., et al. 2004, ApJ, 602, L45
- Patel, S. K., Zurita, J., Del Santo, M., et al. 2007, ApJ, 657, 994
- Patterson, J. 1994, PASP, 106, 209
- Paumard, T., Genzel, R., Martins, F., et al. 2006, ApJ, 643, 1011
- Perez, K., Hailey, C. J., Bauer, F. E., et al. 2015, Nature, 520, 646
- Persic, M., Rephaeli, Y., Braito, V., et al. 2004, A&A, 419, 849
- Petit, V., Owocki, S. P., Wade, G. A., et al. 2013, MNRAS, 429, 398
- Pettini, M., & Pagel, B. E. J. 2004, MNRAS, 348, L59
- Pittard, J. M., Stevens, I. R., Corcoran, M. F., & Ishibashi, K. 1998, MNRAS, 299, L5
- Pober, J. C., Liu, A., Dillon, J. S., et al. 2014, ApJ, 782, 66
- Pober, J. C., Ali, Z. S., Parsons, A. R., et al. 2015, ApJ, 809, 62
- Pollock, A. M. T. 1987, ApJ, 320, 283
- Popov, S. B., & Prokhorov, M. E. 2006, MNRAS, 367, 732
- Portegies Zwart, S. F., Pooley, D., & Lewin, W. H. G. 2002, ApJ, 574, 762
- Possenti, A., Cerutti, R., Colpi, M., & Mereghetti, S. 2002, A&A, 387, 993
- Postnov, K. A., & Yungelson, L. R. 2014, Living Reviews in Relativity, 17, arXiv:1403.4754 [astro-ph.HE]
- Pottschmidt, K., Kreykenbohm, I., Wilms, J., et al. 2005, ApJ, 634, L97
- Power, C., Wynn, G. A., Combet, C., & Wilkinson, M. I. 2009, MNRAS, 395, 1146
- Prat, L., Rodriguez, J., Hannikainen, D. C., & Shaw, S. E. 2008, MNRAS, 389, 301
- Prestwich, A. H., Jackson, F., Kaaret, P., et al. 2015, ApJ, 812, 166
- Prestwich, A. H., Tsantaki, M., Zezas, A., et al. 2013, ApJ, 769, 92
- Ptak, A., Serlemitsos, P., Yaqoob, T., & Mushotzky, R. 1999, ApJS, 120, 179
- Rahoui, F., Tomsick, J. A., Fornasini, F. M., Bodaghee, A., & Bauer, F. E. 2014, A&A, 568, A54
- Ramsay, G., Cropper, M., Wu, K., et al. 2004, MNRAS, 350, 1373

- Rana, V., Loh, A., Corbel, S., et al. 2016, ApJ, 821, 103
- Ranalli, P., Comastri, A., & Setti, G. 2003, A&A, 399, 39
- Rangel, C., Nandra, K., Laird, E. S., & Orange, P. 2013, MNRAS, 428, 3089
- Ransom, S. M., Eikenberry, S. S., & Middleditch, J. 2002, AJ, 124, 1788
- Rea, N., & Esposito, P. 2011, Astrophysics and Space Science Proceedings, 21, 247
- Reddy, N. A., Steidel, C. C., Erb, D. K., Shapley, A. E., & Pettini, M. 2006, ApJ, 653, 1004
- Reddy, N. A., Kriek, M., Shapley, A. E., et al. 2015, ApJ, 806, 259
- Reig, P. 2011, Ap&SS, 332, 1
- Reig, P., Chakrabarty, D., Coe, M. J., et al. 1996, A&A, 311, 879
- Reig, P., Doroshenko, V., & Zezas, A. 2014, MNRAS, 445, 1314
- Reig, P., Torrejón, J. M., & Blay, P. 2012, MNRAS, 425, 595
- Reig, P., Torrejón, J. M., Negueruela, I., et al. 2009, A&A, 494, 1073
- Remillard, R. A., & McClintock, J. E. 2006, ARA&A, 44, 49
- Revnivtsev, M., Churazov, E., Postnov, K., & Tsygankov, S. 2009a, A&A, 507, 1211
- Revnivtsev, M., Molkov, S., & Sazonov, S. 2006a, MNRAS, 373, L11
- Revnivtsev, M., & Sazonov, S. 2007, A&A, 471, 159
- Revnivtsev, M., Sazonov, S., Churazov, E., et al. 2009b, Nature, 458, 1142
- Revnivtsev, M., Sazonov, S., Gilfanov, M., Churazov, E., & Sunyaev, R. 2006b, A&A, 452, 169
- Revnivtsev, M., Sazonov, S., Krivonos, R., Ritter, H., & Sunyaev, R. 2008, A&A, 489, 1121
- Reynolds, A. P., Owens, A., Kaper, L., Parmar, A. N., & Segreto, A. 1999, A&A, 349, 873
- Ribó, M., Negueruela, I., Blay, P., Torrejón, J. M., & Reig, P. 2006, A&A, 449, 687
- Ricci, C., Ueda, Y., Paltani, S., et al. 2014, MNRAS, 441, 3622
- Rivinius, T., Carciofi, A. C., & Martayan, C. 2013, A&A Rev., 21, 69
- Robinson, E. L. 1976, ARA&A, 14, 119
- Rodriguez, C. L., Morscher, M., Pattabiraman, B., et al. 2015, Physical Review Letters, 115, 051101
- Rodriguez, J., Tomsick, J. A., & Chaty, S. 2009, A&A, 494, 417
- Romano, P., Krimm, H. A., Palmer, D. M., et al. 2014, A&A, 562, A2
- Rosati, P., Tozzi, P., Giacconi, R., et al. 2002, ApJ, 566, 667
- Russeil, D. 2003, A&A, 397, 133
- Rutledge, R. E., Bildsten, L., Brown, E. F., et al. 2007, ApJ, 658, 514
- Sana, H., Rauw, G., Nazé, Y., Gosset, E., & Vreux, J.-M. 2006, MNRAS, 372, 661
- Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444
- Sanders, R. L., Shapley, A. E., Kriek, M., et al. 2015, ApJ, 799, 138
- Sarma, A. P., Goss, W. M., Green, A. J., & Frail, D. A. 1997, ApJ, 483, 335
- Sasaki, M., Suyama, T., Tanaka, T., & Yokoyama, S. 2016, Physical Review Letters, 117, 061101
- Sazonov, S., Krivonos, R., Revnivtsev, M., Churazov, E., & Sunyaev, R. 2008, A&A, 482, 517
- Sazonov, S., Revnivtsev, M., Gilfanov, M., Churazov, E., & Sunyaev, R. 2006, A&A, 450, 117
- Scaringi, S., Bird, A. J., Norton, A. J., et al. 2010, MNRAS, 401, 2207
- Schulz, N. S., Canizares, C., Huenemoerder, D., & Tibbets, K. 2003, ApJ, 595, 365

- Schulz, N. S., Canizares, C. R., Huenemoerder, D., & Lee, J. C. 2000, ApJ, 545, L135
- Seifina, E., Titarchuk, L., & Shaposhnikov, N. 2014, ApJ, 789, 57
- —. 2016, ApJ, 821, 23
- Sguera, V., Barlow, E. J., Bird, A. J., et al. 2005, A&A, 444, 221
- Sguera, V., Bazzano, A., Bird, A. J., et al. 2006, ApJ, 646, 452
- Shahbaz, T., Bandyopadhyay, R., Charles, P. A., & Naylor, T. 1996, MNRAS, 282, 977
- Shakura, N., Postnov, K., Sidoli, L., & Paizis, A. 2014, MNRAS, 442, 2325
- Shakura, N. I., Postnov, K. A., Kochetkova, A. Y., & Hjalmarsdotter, L. 2013, Physics Uspekhi, 56, 321
- Shapley, A. E., Reddy, N. A., Kriek, M., et al. 2015, ApJ, 801, 88
- Shivaei, I., Reddy, N. A., Shapley, A. E., et al. 2015, ApJ, 815, 98
- Shtykovskiy, P., & Gilfanov, M. 2005, A&A, 431, 597
- Skelton, R. E., Whitaker, K. E., Momcheva, I. G., et al. 2014, ApJS, 214, 24
- Skinner, G. K., Bedford, D. K., Elsner, R. F., et al. 1982, Nature, 297, 568Smith, N. 2014, ARA&A, 52, 487
- Smith, N., & Brooks, K. J. 2007, MNRAS, 379, 1279
- Smith, N., & Owocki, S. P. 2006, ApJ, 645, L45
- Smith, R. K., Brickhouse, N. S., Liedahl, D. A., & Raymond, J. C. 2001, ApJ, 556, L91
- Smith, R. K., Mushotzky, R., Mukai, K., et al. 2008, PASJ, 60, S43
- Steidel, C. C., Rudie, G. C., Strom, A. L., et al. 2014, ApJ, 795, 165
- Stern, D., Assef, R. J., Benford, D. J., et al. 2012, ApJ, 753, 30
- Still, M., & Mukai, K. 2001, ApJ, 562, L71
- Strassmeier, K. G., Hall, D. S., Fekel, F. C., & Scheck, M. 1993, A&AS, 100, 173
- Strüder, L., Briel, U., Dennerl, K., et al. 2001, A&A, 365, L18
- Sugizaki, M., Mitsuda, K., Kaneda, H., et al. 2001, ApJS, 134, 77
- Sutherland, W., & Saunders, W. 1992, MNRAS, 259, 413
- Szkody, P., Nishikida, K., Erb, D., et al. 2002, AJ, 123, 413
- Szostek, A., & Zdziarski, A. A. 2008, MNRAS, 386, 593
- Tanaka, Y. 1996, in Roentgenstrahlung from the Universe, ed. H. U. Zimmermann, J. Trümper, & H. Yorke, 85
- Tendulkar, S. P., Fürst, F., Pottschmidt, K., et al. 2014, ApJ, 795, 154
- Terrell, Jr., N. J. 1972, ApJ, 174, L35
- The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott, B. P., et al. 2016, ArXiv e-prints, arXiv:1606.04856 [gr-qc]
- Thompson, C., Lyutikov, M., & Kulkarni, S. R. 2002, ApJ, 574, 332
- Tomsick, J. A., Chaty, S., Rodriguez, J., Walter, R., & Kaaret, P. 2008, ApJ, 685, 1143
- Tomsick, J. A., Chaty, S., Rodriguez, J., et al. 2009, ApJ, 694, 344
- Tomsick, J. A., & Kaaret, P. 2000, ApJ, 537, 448
- Tomsick, J. A., Gotthelf, E. V., Rahoui, F., et al. 2014a, ApJ, 785, 4
- Tomsick, J. A., Nowak, M. A., Parker, M., et al. 2014b, ApJ, 780, 78
- Torrejón, J. M., Kreykenbohm, I., Orr, A., Titarchuk, L., & Negueruela, I. 2004, A&A, 423, 301

- Torrejón, J. M., Schulz, N. S., Nowak, M. A., & Kallman, T. R. 2010, ApJ, 715, 947
- Townsley, L. K., Broos, P. S., Corcoran, M. F., et al. 2011, ApJS, 194, 1
- Tozzi, P., Gilli, R., Mainieri, V., et al. 2006, A&A, 451, 457
- Traulsen, I., Reinsch, K., Schwarz, R., et al. 2010, A&A, 516, A76
- Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, ApJ, 613, 898
- Tsygankov, S. S., Krivonos, R. A., & Lutovinov, A. A. 2012, MNRAS, 421, 2407
- Türler, M., Chernyakova, M., Courvoisier, T. J.-L., et al. 2010, A&A, 512, A49
- Turner, M. J. L., Abbey, A., Arnaud, M., et al. 2001, A&A, 365, L27
- van de Sande, J., Kriek, M., Franx, M., et al. 2013, ApJ, 771, 85
- van der Klis, M. 1989a, in NATO Advanced Science Institutes (ASI) Series C, Vol. 262, NATO Advanced Science Institutes (ASI) Series C, ed. H. Ögelman & E. P. J. van den Heuvel, 27
- van der Klis, M. 1989b, in ESA Special Publication, Vol. 296, Two Topics in X-Ray Astronomy, Volume 1: X Ray Binaries. Volume 2: AGN and the X Ray Background, ed. J. Hunt & B. Battrick
- van der Meer, A., Kaper, L., di Salvo, T., et al. 2005, A&A, 432, 999
- Veilleux, S., & Osterbrock, D. E. 1987, ApJS, 63, 295
- Verbunt, F., Bunk, W. H., Ritter, H., & Pfeffermann, E. 1997, A&A, 327, 602
- Verner, D. A., Ferland, G. J., Korista, K. T., & Yakovlev, D. G. 1996a, ApJ, 465, 487
  —. 1996b, ApJ, 465, 487
- Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574
- Viotti, R. F., Antonelli, L. A., Rossi, C., & Rebecchi, S. 2004, A&A, 420, 527
- Voss, R., & Ajello, M. 2010, ApJ, 721, 1843
- Walter, R., Lutovinov, A. A., Bozzo, E., & Tsygankov, S. S. 2015, A&A Rev., 23, 2
- Walter, R., Rodriguez, J., Foschini, L., et al. 2003, A&A, 411, L427
- Walter, R., Zurita Heras, J., Bassani, L., et al. 2006, A&A, 453, 133
- Walton, D. J., Fuerst, F., Harrison, F., et al. 2013, ApJ, 779, 148
- Walton, D. J., Middleton, M. J., Rana, V., et al. 2015, ApJ, 806, 65
- Wang, Q. D., Gotthelf, E. V., & Lang, C. C. 2002, Nature, 415, 148
- Wang, W. 2013, MNRAS, 432, 954
- Waters, L. B. F. M., & van Kerkwijk, M. H. 1989, A&A, 223, 196
- Wegner, W. 2007, MNRAS, 374, 1549
- Weisskopf, M. C., Brinkman, B., Canizares, C., et al. 2002, PASP, 114, 1
- Weisskopf, M. C., Wu, K., Trimble, V., et al. 2007, ApJ, 657, 1026
- White, N. E., Swank, J. H., & Holt, S. S. 1983, ApJ, 270, 711
- Whittle, P. 1953, Ark. Mat., 2, 423
- —. 1957, J R. Statistical Soc. B, 19, 38
- Wik, D. R., Hornstrup, A., Molendi, S., et al. 2014, ApJ, 792, 48
- Wilms, J., Allen, A., & McCray, R. 2000, ApJ, 542, 914
- Wilson, T. L., Mezger, P. G., Gardner, F. F., & Milne, D. K. 1970, A&A, 6, 364
- Winkler, C., Courvoisier, T. J.-L., Di Cocco, G., et al. 2003, A&A, 411, L1
- Woods, P. M., Kouveliotou, C., van Paradijs, J., et al. 1999, ApJ, 519, L139

- Worpel, H., Schwope, A. D., Granzer, T., et al. 2016, ArXiv e-prints, arXiv:1605.00927 [astro-ph.HE]
- Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
- Wynn, G. 2008, in Astronomical Society of the Pacific Conference Series, Vol. 401, RS Ophiuchi (2006) and the Recurrent Nova Phenomenon, ed. A. Evans, M. F. Bode, T. J. O'Brien, & M. J. Darnley, 73
- Xu, X.-j., Wang, Q. D., & Li, X.-D. 2016, ApJ, 818, 136
- Xue, Y. Q., Luo, B., Brandt, W. N., et al. 2011, ApJS, 195, 10
- Yamamoto, T., Mihara, T., Sugizaki, M., et al. 2014, PASJ, 66, 59
- Yuasa, T., Makishima, K., & Nakazawa, K. 2012, ApJ, 753, 129
- Zampieri, L., & Roberts, T. P. 2009, MNRAS, 400, 677
- Zdziarski, A. A. 2000, in IAU Symposium, Vol. 195, Highly Energetic Physical Processes and Mechanisms for Emission from Astrophysical Plasmas, ed. P. C. H. Martens, S. Tsuruta, & M. A. Weber, 153
- Zdziarski, A. A., Segreto, A., & Pooley, G. G. 2016, MNRAS, 456, 775
- Zhang, S. N., Yu, W., & Zhang, W. 1998, ApJ, 494, L71
- Zhekov, S. A., & Skinner, S. L. 2000, ApJ, 538, 808
- Zickgraf, F.-J., Wolf, B., Stahl, O., Leitherer, C., & Klare, G. 1985, A&A, 143, 421
- Zorotovic, M., Schreiber, M. R., & Gänsicke, B. T. 2011, A&A, 536, A42
- Zuo, Z.-Y., & Li, X.-D. 2014, MNRAS, 442, 1980

## Appendix A NARCS Catalog Tables

Below are detailed descriptions of the information provided in the Norma Arm Region *Chandra* Survey catalog, followed by the complete catalog tables. In these tables, when a value is presented along with its errors, the first column listed in the column range contains the value. In the case of symmetric errors, the second column contains the error. In the case of asymmetric errors, the second column contains the upper error and the third column contains the lower error.

## A.1 Detection and Localization Table

(1) NARCS catalog source number.

(2) Chandra source name.

(3) Observation(s) in which wavdetect detects the source. The format of ObsID numbers is 125XX, where the last two digits are those provided in the catalog. See  $\S2.2.3$  for details about wavdetect usage.

(4–5) Right ascension and declination (J2000.0) of the source. If the source is detected in multiple observations, the position reported is the weighted average of its positions in different observations.

(6) Positional uncertainty of the source. For a source detected in a given observation, this uncertainty is equal to the quadrature sum of the 95% statistical uncertainty based on Equation 5 of Hong et al. (2005) and the average systematic uncertainty of positions in that observation after astrometric refinement (see Column 5 in Table 2.2). For sources detected in multiple observations, the uncertainties associated with the source position in different observations were combined to provide the uncertainty of the weighted average of the source positions.

(7) Offset angular separation of the source from the center of the observation aim point. For sources detected in multiple observations, a semicolon-separated list of the offset angle of the source from each observation aim point is provided; the order of offsets matches the order of ObsIDs reported in Column 3.

(8–10) Significance of source in the full 0.5-10 keV band, the soft 0.5-2 keV band, and the hard 2-10 keV band. It is calculated by finding the probability that the source is a noise fluctuation using Equation 2.5 and using the Gaussian cumulative distribution function to determine the corresponding source significance. If the source is detected in multiple observations, the reported significance is the sum in quadrature of the source significance in individual observations.

(11) Radius of the aperture source region. For most sources, the aperture source region is defined as a circle with radius equal to the 90% ECF for 4.5 keV photons (see Column 12). For potentially extended sources, flagged with "e" (see Column 13), the radius is instead equal to the semi-major axis of the aperture region defined by wavdetect. In cases where two or more sources have overlapping circular regions, the regions are redefined as a circular core plus an annular pie sector following the guidelines in Table 2.6; in such cases, the radius provided in the catalog represents the outer radius of the pie sector. For sources detected in multiple observations, a semicolon-separated list of the aperture region radius used in different observations is provided; the order of radii matches the order of ObsIDs reported in Column 3.

(12) PSF radius for 90% ECF for 4.5 keV photons at the detector location of the source. The PSF radius varies with detector position, generally increasing with increasing offset angle from the observation aim point. For sources detected in multiple observations, a semicolon-separated list of the PSF radius at the source detector position in different observations is provided; the order of PSF radii matches the order of ObsIDs reported in Column 3.

(13) An alphabetical list of the possible flags:

"b" - "blended": Blended source that is unblended in another observation.

"c" - "created": Source noticed by eye but not detected by wavdetect. The source aperture region was created manually based on the visible position and extent of the source. The positional uncertainties calculated for such sources underestimate the true uncertainties, since the source is found by eye and not by wavdetect.

"e" - "extended": Possibly extended source. The semi-major axis of the smallest aperture region defined by wavdetect for such sources is larger than twice the PSF radius reported in Column (12). These sources are typically detected in images that have been binned by  $4 \times 4$  or  $8 \times 8$  pixels.

"id" - "inspected duplicate": Possible duplicate source flagged for manual inspection. A "duplicate" source refers to a single source detected in multiple overlapping observations; sources were considered to be duplicates of one another if the distance between them was smaller than the quadrature sum of their positional uncertainties. Sources were flagged for manual inspection if: a) they were separated by a distance greater than the quadrature sum of their positional uncertainties but smaller than the simple sum of their positional uncertainties, or b) they were separated by a distance smaller than the quadrature sum of their positional uncertainties but differed in a substantial way (e.g. one is flagged as possibly extended while another is not, one is found to have two duplicates by the distance criterion but these two duplicates of the first source are not found to be duplicates of one another by the distance criterion). Generally, if sources flagged with "id" showed consistent photon fluxes and quantile parameters, they were determined to be true duplicates.

"m1", "m2", or "m3" - "modified": In cases where the circular source aperture region overlaps with the aperture region of another source, the source region is modified to reduce overlapping. See Table 2.6 for details.

"nb" - "near bright": Source near a very bright source which may be a spurious detection.

"nd" - "not detected": Source is located where at least two observations overlap but it is only detected in one observation.

"s" - "surrounding": A possibly extended source that completely surrounds one or more point sources. The aperture regions of the surrounded sources are excluded from the aperture region of the source flagged with "s".

"vl" - "variable long": Source determined to be variable on long (hours-days) timescales. The photon flux in at least one energy band (full, soft, or hard) varies by  $\geq 3\sigma$  between different observations.

"vp" - "variable probable": Source is probably variable on short (second-hour) timescales. The K-S test finds the source lightcurve within a single observation to be inconsistent with a constant lightcurve at  $\geq 95\%$  confidence.

"vs" - "variable short": Source is variable on short (second-hour) timescales. The K-S test finds the source lightcurve within a single observation to be inconsistent with a constant lightcurve at  $\geq 3\sigma$  confidence.

For sources detected in multiple observations, a semicolon-separated list of the flags relevant for the source region in each observation is provided; the order of flags matches the order of ObsIDs reported in Column 3.

| No. | Source            | ObsID        | R.A.       | Dec.       | Unc.                      | Offset   | Sig. | Sig. | Sig. | Radius   | PSF      | Flags |     |
|-----|-------------------|--------------|------------|------------|---------------------------|----------|------|------|------|----------|----------|-------|-----|
|     | (CXOU J)          | $(125^{**})$ | (deg)      | (deg)      | $(\operatorname{arcsec})$ | (arcmin) | FB   | SB   | HB   | (arcsec) | (arcsec) | ( )   |     |
| (1) | (2)               | (3)          | (4)        | (5)        | (6)                       | (7)      | (8)  | (9)  | (10) | (11)     | (12)     | (13)  |     |
| 1   | 163228.2 - 473755 | 33           | 248.117829 | -47.632173 | 4.03                      | 10.3     | 3.6  | 2.3  | 2.5  | 13.8     | 13.8     |       |     |
| 2   | 163241.5 - 474039 | 33           | 248.172944 | -47.677522 | 1.79                      | 9.5      | 9.0  | 10.4 | 2.5  | 11.9     | 11.9     |       |     |
| 3   | 163244.6 - 474133 | 33           | 248.186065 | -47.692513 | 3.63                      | 9.6      | 2.4  | 0.0  | 2.8  | 12.2     | 12.2     |       |     |
| 4   | 163248.7 - 473017 | 33           | 248.203151 | -47.504857 | 1.41                      | 7.9      | 8.4  | 1.2  | 8.5  | 9.2      | 9.2      |       |     |
| 5   | 163251.0-474135   | 33           | 248.212798 | -47.693198 | 3.16                      | 8.9      | 3.0  | 5.0  | 0.0  | 10.7     | 10.7     |       |     |
| 6   | 163253.0-474201   | 33           | 248.221111 | -47.700286 | 2.26                      | 9.0      | 5.2  | 1.8  | 4.8  | 10.9     | 10.9     |       |     |
| 7   | 163259.0-473819   | 33           | 248.246176 | -47.638806 | 1.13                      | 5.7      | 7.5  | 7.2  | 4.1  | 5.2      | 5.2      |       |     |
| 8   | 163259.4 - 472804 | 33           | 248.247582 | -47.467941 | 3.39                      | 8.3      | 2.3  | 3.4  | 0.4  | 10.1     | 10.1     |       |     |
| 9   | 163303.2 - 472547 | 33           | 248.263337 | -47.429724 | 13.98                     | 10.0     | 0.0  | 0.8  | 0.0  | 14.0     | 14.0     |       |     |
| 10  | 163306.2 - 473239 | 33           | 248.276159 | -47.544291 | 1.55                      | 4.2      | 3.3  | 0.7  | 3.1  | 3.5      | 3.5      |       |     |
| 11  | 163308.1 - 474316 | 33           | 248.284072 | -47.721337 | 3.92                      | 8.8      | 2.5  | 1.4  | 1.9  | 10.5     | 10.5     |       |     |
| 12  | 163309.3 - 472957 | 33,30        | 248.288757 | -47.499290 | 0.65                      | 5.8;11.7 | 25.6 | 16.9 | 19.4 | 5.7;17.6 | 5.7;17.6 | vs;   |     |
| 13  | 163312.4 - 473322 | 33           | 248.301795 | -47.556327 | 0.79                      | 2.9      | 5.6  | 2.4  | 5.0  | 2.4      | 2.4      |       |     |
| 14  | 163313.9 - 473817 | 33           | 248.308169 | -47.638068 | 0.80                      | 3.9      | 2.4  | 1.4  | 1.8  | 10.2     | 3.3      | е     |     |
| 15  | 163315.2 - 473215 | 33           | 248.313374 | -47.537728 | 1.09                      | 3.4      | 3.7  | 2.3  | 2.8  | 2.8      | 2.8      |       |     |
| 16  | 163315.5 - 473938 | 33           | 248.314750 | -47.660642 | 1.50                      | 5.0      | 4.4  | 0.0  | 4.6  | 4.2      | 4.2      |       |     |
| 17  | 163315.6-473727   | 33           | 248.315323 | -47.624352 | 0.99                      | 3.1      | 5.4  | 0.0  | 5.7  | 2.5      | 2.5      |       |     |
| 18  | 163315.7 - 474642 | 32           | 248.315681 | -47.778491 | 13.44                     | 11.2     | 0.0  | 0.0  | 0.0  | 16.4     | 16.4     |       |     |
| 19  | 163316.8 - 473632 | 33           | 248.320023 | -47.609018 | 0.62                      | 2.2      | 7.3  | 7.1  | 3.6  | 2.3      | 2.3      |       |     |
| 20  | 163316.9 - 473121 | 33,30        | 248.320450 | -47.522675 | 0.86                      | 4.0;11.0 | 7.8  | 8.3  | 2.0  | 3.4;15.7 | 3.4;15.7 | ;vp   |     |
| 21  | 163317.1 - 474023 | 33           | 248.321563 | -47.673061 | 0.77                      | 5.6      | 15.9 | 18.4 | 1.6  | 5.1      | 5.1      |       |     |
| 22  | 163318.1 - 473444 | 33           | 248.325455 | -47.579086 | 0.68                      | 1.5      | 4.2  | 0.0  | 4.5  | 2.1      | 2.1      |       |     |
| 23  | 163319.5-473711   | 33           | 248.331526 | -47.619894 | 1.01                      | 2.5      | 4.9  | 0.0  | 5.1  | 2.4      | 2.4      |       |     |
| 24  | 163322.2-473624   | 33           | 248.342527 | -47.606780 | 0.73                      | 1.6      | 3.6  | 4.7  | 0.0  | 2.2      | 2.2      |       |     |
| 25  | 163322.6-473904   | 33           | 248.344210 | -47.651117 | 1.21                      | 4.1      | 4.2  | 6.1  | 0.0  | 3.4      | 3.4      |       |     |
| 26  | 163322.6-472659   | 30           | 248.344535 | -47.449869 | 8.54                      | 8.8      | 0.7  | 2.4  | 0.0  | 10.8     | 10.8     | vp,nd |     |
| 27  | 163323.0-472755   | 30           | 248.346189 | -47.465502 | 8.73                      | 8.9      | 2.5  | 3.2  | 0.7  | 10.9     | 10.9     | nd    |     |
| 28  | 163323.2-473830   | 33           | 248.346712 | -47.641881 | 0.90                      | 3.5      | 5.5  | 4.1  | 3.8  | 3.0      | 3.0      |       |     |
| 29  | 163323.5-473848   | 33           | 248.348197 | -47.646885 | 0.61                      | 3.8      | 15.8 | 17.4 | 3.0  | 3.2      | 3.2      |       |     |
| 30  | 163323.8-472610   | 33           | 248.349562 | -47.436341 | 4.69                      | 8.8      | 1.7  | 1.4  | 1.1  | 11.4     | 11.4     | nd    |     |
| 31  | 163325.0-473726   | 33           | 248.354177 | -47.624065 | 0.74                      | 2.4      | 5.0  | 5.7  | 1.4  | 2.4      | 2.4      |       |     |
| 32  | 163325.0-473138   | 33           | 248.354420 | -47.527468 | 1.01                      | 3.4      | 4.2  | 0.9  | 4.0  | 2.8      | 2.8      | nd    |     |
| 33  | 163325.6-474838   | 32           | 248.356710 | -47.810764 | 2.17                      | 10.5     | 9.9  | 4.5  | 8.3  | 14.4     | 14.4     |       |     |
| 34  | 163326.1-473203   | 30           | 248.358832 | -47.534286 | 4.83                      | 10.1     | 2.6  | 2.1  | 1.6  | 13.3     | 13.3     |       |     |
| 35  | 163328.4-473902   | 33           | 248.368607 | -47.650776 | 1.00                      | 4.0      | 1.5  | 2.2  | 0.4  | 10.0     | 3.4      | е     |     |
| 36  | 163328.5-473302   | 33           | 248.368761 | -47.550832 | 0.80                      | 2.0      | 4.3  | 0.0  | 4.5  | 2.1      | 2.1      |       |     |
| 37  | 163329.3-473026   | 33           | 248.372126 | -47.507292 | 1.34                      | 4.6      | 3.9  | 1.6  | 3.4  | 4.0      | 4.0      | nd    |     |
| 38  | 163329.5-473332   | 33           | 248.373255 | -47.559121 | 0.47                      | 1.6      | 32.6 | 2.8  | 32.8 | 2.0      | 2.0      | vs    |     |
| 39  | 163330.7-473726   | 33           | 248.378097 | -47.624007 | 0.67                      | 2.5      | 8.1  | 3.4  | 7.2  | 2.4      | 2.4      |       |     |
| 40  | 163330.8-472535   | 30           | 248.378422 | -47.426572 | 0.84                      | 7.5      | 23.4 | 10.9 | 20.7 | 8.0      | 8.0      |       |     |
| 41  | 163332.7-474204   | 33           | 248.386480 | -47.701167 | 3.02                      | 7.1      | 3.9  | 4.4  | 0.3  | 7.3      | 7.3      | nd    |     |
| 42  | 163332.8-473152   | 30           | 248.386793 | -47.531170 | 2.92                      | 9.1      | 3.6  | 0.0  | 5.0  | 11.1     | 11.1     | nd    | 5   |
|     |                   |              |            |            |                           |          |      |      |      |          |          |       | ``` |

Table A.1: Chandra Catalog of Point and Extended Sources: Detection and Localization

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | R.A.<br>(deg) | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF (arcsec) | Flags   |     |
|-----|--------------------|-----------------------------------------------------------|---------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|--------------|---------|-----|
| 43  | 163332.8-473157    | 33                                                        | 248.387054    | -47.532697    | 0.69             | 3.2                | 8.6        | 0.0        | 9.0        | 2.7                | 2.7          | nd      |     |
| 44  | 163335.1-472338    | 30                                                        | 248.396347    | -47.394103    | 5.64             | 7.2                | 2.5        | 2.8        | 1.0        | 7.7                | 7.7          | m3      |     |
| 45  | 163335.6-472336    | 30                                                        | 248.398348    | -47.393364    | 4.67             | 7.1                | 4.3        | 4.3        | 2.1        | 7.6                | 7.6          | m3      |     |
| 46  | 163335.6-473748    | 33                                                        | 248.398416    | -47.630193    | 0.65             | 3.2                | 10.5       | 4.9        | 9.2        | 2.7                | 2.7          |         |     |
| 47  | 163335.6-473011    | 30                                                        | 248.398434    | -47.503189    | 1.10             | 7.7                | 14.9       | 13.1       | 8.3        | 8.4                | 8.4          | vs,nd   |     |
| 48  | 163335.9-474547    | 33                                                        | 248.399978    | -47.763324    | 3.50             | 10.9               | 4.2        | 3.4        | 1.7        | 15.3               | 15.3         |         |     |
| 49  | 163336.1 - 472224  | 30                                                        | 248.400658    | -47.373404    | 2.08             | 7.6                | 5.5        | 6.8        | 1.5        | 8.3                | 8.3          |         |     |
| 50  | 163336.7-473546    | 33                                                        | 248.402928    | -47.596240    | 0.78             | 1.9                | 4.1        | 1.4        | 3.8        | 2.2                | 2.2          |         |     |
| 51  | 163336.8-473107    | 33                                                        | 248.403655    | -47.518875    | 1.63             | 4.3                | 1.7        | 2.0        | 0.7        | 10.5               | 3.7          | e,vp,nd |     |
| 52  | 163337.4-472442    | 30                                                        | 248.406225    | -47.411937    | 1.04             | 6.5                | 11.6       | 5.5        | 10.2       | 6.5                | 6.5          |         |     |
| 53  | 163338.0-474827    | 32                                                        | 248.408375    | -47.807728    | 2.64             | 8.7                | 4.5        | 4.5        | 1.6        | 10.3               | 10.3         |         |     |
| 54  | 163338.6-473337    | 33                                                        | 248.411209    | -47.560326    | 0.63             | 2.5                | 7.7        | 3.4        | 6.8        | 2.3                | 2.3          |         |     |
| 55  | 163338.8-474718    | 32                                                        | 248.411805    | -47.788410    | 4.69             | 7.9                | 2.3        | 3.5        | 0.2        | 8.8                | 8.8          |         |     |
| 56  | 163338.8-474342    | 33                                                        | 248.411952    | -47.728370    | 10.70            | 8.9                | 1.9        | 1.4        | 1.3        | 10.7               | 10.7         | nd      |     |
| 57  | 163340.1-474848    | 32                                                        | 248.417261    | -47.813455    | 2.24             | 8.6                | 5.6        | 1.4        | 4.7        | 10.2               | 10.2         | vp      |     |
| 58  | 163341.0-472139    | 30                                                        | 248.420843    | -47.360872    | 2.50             | 7.3                | 4.2        | 0.0        | 4.5        | 7.9                | 7.9          |         |     |
| 59  | 163341.8-473402    | 33                                                        | 248.424209    | -47.567346    | 0.61             | 2.7                | 10.8       | 0.0        | 11.2       | 2.4                | 2.4          | vs      |     |
| 60  | 163341.8 - 472422  | 30                                                        | 248.424566    | -47.406211    | 3.35             | 5.9                | 2.8        | 0.0        | 3.2        | 5.6                | 5.6          |         |     |
| 61  | 163341.9-472331    | 30                                                        | 248.424658    | -47.392126    | 2.30             | 6.2                | 2.8        | 0.0        | 3.5        | 6.1                | 6.1          |         |     |
| 62  | 163342.1 - 474525  | 32                                                        | 248.425739    | -47.756945    | 2.08             | 6.6                | 4.3        | 1.5        | 3.9        | 6.6                | 6.6          | nd      |     |
| 63  | 163343.4 - 473435  | 33                                                        | 248.431246    | -47.576428    | 1.22             | 2.9                | 4.0        | 4.3        | 1.4        | 2.5                | 2.5          |         |     |
| 64  | 163343.9 - 473318  | 33                                                        | 248.432959    | -47.555140    | 1.20             | 3.4                | 3.7        | 4.8        | 0.1        | 2.9                | 2.9          | nd      |     |
| 65  | 163344.8-473327    | 33                                                        | 248.437025    | -47.557691    | 1.01             | 3.5                | 3.7        | 4.8        | 0.2        | 2.9                | 2.9          | nd      |     |
| 66  | 163345.3-474620    | 33                                                        | 248.438830    | -47.772349    | 17.55            | 11.8               | 2.3        | 0.3        | 0.1        | 17.5               | 17.5         | m1      |     |
| 67  | 163345.9 - 474243  | 32                                                        | 248.441496    | -47.712078    | 1.20             | 5.6                | 2.2        | 0.0        | 2.6        | 5.1                | 5.1          | nd      |     |
| 68  | 163346.6 - 474849  | 32                                                        | 248.444337    | -47.813698    | 1.85             | 7.8                | 5.4        | 5.4        | 2.7        | 8.6                | 8.6          |         |     |
| 69  | 163347.7 - 472257  | 30                                                        | 248.448864    | -47.382552    | 1.73             | 5.6                | 3.9        | 4.8        | 0.6        | 5.3                | 5.3          | vp      |     |
| 70  | 163347.7 - 474536  | 32                                                        | 248.449088    | -47.760149    | 2.48             | 5.8                | 3.0        | 4.0        | 1.1        | 14.5               | 5.4          | e,vs,nd |     |
| 71  | 163348.5 - 474624  | 33                                                        | 248.452249    | -47.773433    | 18.14            | 12.0               | 2.5        | 0.2        | 2.3        | 18.1               | 18.1         | m1      |     |
| 72  | 163350.9 - 474638  | 32                                                        | 248.462212    | -47.777293    | 0.63             | 5.8                | 29.0       | 1.5        | 29.8       | 5.5                | 5.5          |         |     |
| 73  | 163352.0-471815    | 30                                                        | 248.467082    | -47.304243    | 2.84             | 8.8                | 4.5        | 7.3        | 0.0        | 11.3               | 11.3         |         |     |
| 74  | 163352.3-471541    | 30                                                        | 248.468020    | -47.261394    | 8.78             | 11.2               | 1.3        | 0.0        | 1.5        | 17.3               | 17.3         |         |     |
| 75  | 163354.2 - 473655  | 33                                                        | 248.475956    | -47.615332    | 2.02             | 5.0                | 4.0        | 3.9        | 1.9        | 4.3                | 4.3          | nd      |     |
| 76  | 163354.8 - 473700  | 32                                                        | 248.478369    | -47.616792    | 2.02             | 7.4                | 3.1        | 0.0        | 3.8        | 8.1                | 8.1          | nd      |     |
| 77  | 163354.8 - 473403  | 33,32                                                     | 248.478409    | -47.567680    | 1.62             | 4.9;9.9            | 3.7        | 6.0        | 0.0        | 4.2;13.7           | 4.2;13.7     | ;vp     |     |
| 78  | 163355.1 - 473804  | 32,33                                                     | 248.479614    | -47.634697    | 0.44             | 6.5; 5.7           | 50.5       | 19.4       | 48.8       | 6.7; 5.3           | 6.7; 5.3     | ;       |     |
| 79  | 163355.7 - 472636  | 30                                                        | 248.482210    | -47.443440    | 0.82             | 3.3                | 2.1        | 0.9        | 1.8        | 15.2               | 2.7          | e       |     |
| 80  | 163357.9-474251    | 32                                                        | 248.491266    | -47.714409    | 0.95             | 3.5                | 5.0        | 2.4        | 4.2        | 3.0                | 3.0          | nd      |     |
| 81  | 163358.9-474214    | 33, 32                                                    | 248.495621    | -47.704166    | 0.54             | 9.1; 3.5           | 25.6       | 3.5        | 25.7       | 11.1;2.9           | 11.1;2.9     | ;       |     |
| 82  | 163358.9-472702    | 30                                                        | 248.495681    | -47.450716    | 0.88             | 2.8                | 4.7        | 6.8        | 0.0        | 2.4                | 2.4          | ••••    |     |
| 83  | 163359.2 - 471646  | 30                                                        | 248.497039    | -47.279545    | 3.85             | 9.8                | 3.3        | 0.0        | 2.8        | 13.4               | 13.4         |         |     |
| 84  | 163402.1 - 473244  | 33                                                        | 248.508766    | -47.545663    | 2.44             | 6.4                | 4.1        | 0.0        | 4.3        | 6.5                | 6.5          | nd      |     |
| 85  | 163402.1 - 472926  | 33                                                        | 248.508776    | -47.490734    | 3.43             | 8.2                | 2.6        | 0.2        | 2.7        | 9.8                | 9.8          |         | 1   |
| 86  | 163403.6-474505    | 32                                                        | 248.515144    | -47.751655    | 0.86             | 3.2                | 6.4        | 0.0        | 6.6        | 2.7                | 2.7          |         | 200 |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | $\begin{array}{c} \text{Dec.} \\ \text{(deg)} \end{array}$ | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags      |     |
|-----|--------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------|--------------------|------------|------------|------------|--------------------|-----------------|------------|-----|
| 87  | 163404.7-474318    | 32                                                        | 248.519873                                                 | -47.721741                                                 | 0.68             | 2.4                | 2.9        | 0.0        | 3.1        | 7.9                | 2.3             | е          |     |
| 88  | 163404.8-473702    | 32,33,29                                                  | 248.520218                                                 | -47.617321                                                 | 1.48             | 6.6;6.8;10.8       | 6.8        | 7.9        | 2.9        | 6.9;6.9;15.4       | 6.9;6.9;15.4    | ;;         |     |
| 89  | 163405.8-473054    | 30                                                        | 248.524188                                                 | -47.515047                                                 | 2.17             | 4.9                | 3.9        | 4.4        | 1.4        | 4.1                | 4.1             | nd         |     |
| 90  | 163406.6-474500    | 32                                                        | 248.527601                                                 | -47.750135                                                 | 0.85             | 2.8                | 4.4        | 5.8        | 0.2        | 2.4                | 2.4             |            |     |
| 91  | 163407.5-475440    | 31                                                        | 248.531593                                                 | -47.911312                                                 | 16.47            | 11.2               | 0.0        | 0.0        | 2.0        | 16.5               | 16.5            |            |     |
| 92  | 163408.8-474400    | 32                                                        | 248.536707                                                 | -47.733427                                                 | 0.65             | 1.9                | 3.0        | 0.0        | 3.6        | 5.8                | 2.2             | е          |     |
| 93  | 163410.2-474207    | 32                                                        | 248.542662                                                 | -47.701981                                                 | 0.72             | 1.8                | 3.9        | 0.0        | 4.2        | 2.1                | 2.1             |            |     |
| 94  | 163412.4-473719    | 29, 33, 32                                                | 248.552002                                                 | -47.622143                                                 | 0.81             | 9.7; 8.1; 5.9      | 13.3       | 5.7        | 12.1       | 25.8; 9.2; 5.9     | 12.6; 9.2; 5.9  | e,id;id;id |     |
| 95  | 163413.3-474810    | 32                                                        | 248.555428                                                 | -47.803024                                                 | 1.24             | 5.1                | 5.5        | 7.0        | 0.3        | 4.4                | 4.4             | •••        |     |
| 96  | 163413.4-475113    | 32                                                        | 248.556098                                                 | -47.853776                                                 | 2.82             | 8.1                | 3.3        | 5.8        | 0.0        | 9.1                | 9.1             |            |     |
| 97  | 163415.7-471610    | 27                                                        | 248.565728                                                 | -47.269673                                                 | 2.98             | 8.1                | 3.4        | 0.9        | 3.3        | 9.3                | 9.3             |            |     |
| 98  | 163416.2-472715    | 30                                                        | 248.567672                                                 | -47.454311                                                 | 0.54             | 1.1                | 15.7       | 5.1        | 14.8       | 2.1                | 2.1             |            |     |
| 99  | 163416.7-472600    | 30                                                        | 248.569595                                                 | -47.433510                                                 | 1.00             | 0.4                | 6.1        | 6.9        | 1.2        | 2.0                | 2.0             |            |     |
| 100 | 163416.9 - 471817  | 27                                                        | 248.570808                                                 | -47.304847                                                 | 2.39             | 7.8                | 4.4        | 4.9        | 1.7        | 8.7                | 8.7             | nd         |     |
| 101 | 163417.6-474913    | 32                                                        | 248.573562                                                 | -47.820424                                                 | 0.69             | 6.1                | 23.1       | 3.5        | 23.2       | 5.8                | 5.8             |            |     |
| 102 | 163417.8-471404    | 27                                                        | 248.574498                                                 | -47.234531                                                 | 6.34             | 8.3                | 2.4        | 1.2        | 1.9        | 9.9                | 9.9             |            |     |
| 103 | 163417.9-474557    | 32                                                        | 248.574736                                                 | -47.765969                                                 | 0.59             | 2.8                | 12.4       | 10.8       | 6.6        | 2.5                | 2.5             |            |     |
| 104 | 163418.1-473207    | 30                                                        | 248.575820                                                 | -47.535330                                                 | 2.81             | 5.9                | 2.8        | 4.6        | 0.0        | 5.6                | 5.6             | nd         |     |
| 105 | 163418.3-472221    | 27                                                        | 248.576275                                                 | -47.372604                                                 | 3.68             | 9.0                | 4.2        | 2.9        | 2.0        | 11.0               | 11.0            | nd         |     |
| 106 | 163419.9-472029    | 30                                                        | 248.582997                                                 | -47.341440                                                 | 3.72             | 5.8                | 1.9        | 4.4        | 0.0        | 5.6                | 5.6             | nd         |     |
| 107 | 163420.6-472830    | 30                                                        | 248.586042                                                 | -47.475114                                                 | 0.87             | 2.5                | 4.4        | 0.0        | 4.6        | 2.4                | 2.4             |            |     |
| 108 | 163420.6-474201    | 32                                                        | 248.586152                                                 | -47.700417                                                 | 0.67             | 1.2                | 1.6        | 0.2        | 1.5        | 6.3                | 2.0             | е          |     |
| 109 | 163421.4-474943    | 32                                                        | 248.589483                                                 | -47.828881                                                 | 3.73             | 6.6                | 1.6        | 3.5        | 0.0        | 6.5                | 6.5             |            |     |
| 110 | 163421.6-472713    | 30                                                        | 248.590085                                                 | -47.453853                                                 | 0.73             | 1.5                | 4.4        | 0.0        | 4.6        | 2.2                | 2.2             |            |     |
| 111 | 163421.7-472327    | 30                                                        | 248.590825                                                 | -47.390917                                                 | 0.83             | 3.0                | 5.7        | 5.1        | 3.1        | 2.5                | 2.5             | nd         |     |
| 112 | 163422.3-474446    | 32                                                        | 248.592956                                                 | -47.746248                                                 | 0.71             | 1.7                | 4.6        | 2.6        | 3.7        | 2.2                | 2.2             |            |     |
| 113 | 163422.6-474318    | 32                                                        | 248.594485                                                 | -47.721830                                                 | 0.53             | 0.7                | 8.3        | 8.5        | 3.2        | 2.0                | 2.0             |            |     |
| 114 | 163422.7-471804    | 27                                                        | 248.594927                                                 | -47.301223                                                 | 2.45             | 6.8                | 3.2        | 0.2        | 3.3        | 7.0                | 7.0             |            |     |
| 115 | 163423.1-473621    | 30                                                        | 248.596271                                                 | -47.606070                                                 | 4.41             | 10.3               | 3.1        | 1.8        | 2.4        | 13.5               | 13.5            | vp,nd      |     |
| 116 | 163423.4-473736    | 32                                                        | 248.597555                                                 | -47.626878                                                 | 1.55             | 5.6                | 5.3        | 4.7        | 3.1        | 5.4                | 5.4             | m3,nd      |     |
| 117 | 163423.5 - 473742  | 32                                                        | 248.598293                                                 | -47.628375                                                 | 1.85             | 5.5                | 2.7        | 0.1        | 2.3        | 5.2                | 5.2             | m3,nd      |     |
| 118 | 163425.4 - 473658  | 32,30                                                     | 248.606247                                                 | -47.616154                                                 | 1.47             | 6.3;10.9           | 7.1        | 4.5        | 5.9        | 6.5; 15.3          | 6.5;15.3        | ;          |     |
| 119 | 163425.7 - 473743  | 29,32                                                     | 248.607224                                                 | -47.628857                                                 | 1.64             | 7.8;5.5            | 6.2        | 1.4        | 6.0        | 8.5; 5.3           | 8.5; 5.3        | ;          |     |
| 120 | 163426.3-473308    | 30                                                        | 248.609978                                                 | -47.552246                                                 | 4.48             | 7.2                | 0.6        | 2.4        | 0.0        | 7.4                | 7.4             | nd         |     |
| 121 | 163426.6 - 471839  | 30                                                        | 248.610909                                                 | -47.310947                                                 | 3.30             | 7.8                | 3.4        | 3.4        | 1.6        | 9.1                | 9.1             | nd         |     |
| 122 | 163426.7-472508    | 30                                                        | 248.611515                                                 | -47.419009                                                 | 0.88             | 2.3                | 3.7        | 2.6        | 2.6        | 2.3                | 2.3             |            |     |
| 123 | 163426.8-473346    | 29                                                        | 248.612038                                                 | -47.562791                                                 | 2.72             | 6.8                | 2.8        | 3.4        | 0.9        | 7.0                | 7.0             | vp,nd      |     |
| 124 | 163426.9 - 474320  | 32                                                        | 248.612215                                                 | -47.722327                                                 | 0.77             | 1.4                | 4.5        | 4.4        | 1.8        | 2.1                | 2.1             |            |     |
| 125 | 163427.0-471837    | 27                                                        | 248.612514                                                 | -47.310412                                                 | 1.06             | 6.2                | 10.0       | 8.8        | 5.7        | 6.0                | 6.0             | nd         |     |
| 126 | 163429.0-473215    | 29                                                        | 248.621017                                                 | -47.537775                                                 | 2.01             | 6.7                | 4.1        | 2.3        | 3.2        | 7.0                | 7.0             | vp,nd      |     |
| 127 | 163430.6-471559    | 27                                                        | 248.627812                                                 | -47.266529                                                 | 1.12             | 5.6                | 7.2        | 0.2        | 7.4        | 5.2                | 5.2             |            |     |
| 128 | 163431.1-474740    | 32                                                        | 248.629961                                                 | -47.794595                                                 | 1.92             | 5.0                | 2.9        | 4.4        | 0.0        | 4.2                | 4.2             | nd         |     |
| 129 | 163431.6-472254    | 30                                                        | 248.631837                                                 | -47.381884                                                 | 1.59             | 4.4                | 2.9        | 0.8        | 2.6        | 3.8                | 3.8             | nd         | Г   |
| 130 | 163432.1-471305    | 27                                                        | 248.633806                                                 | -47.218285                                                 | 1.40             | 6.7                | 7.6        | 1.4        | 7.6        | 7.0                | 7.0             | •••        | 607 |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | R.A.<br>(deg) | $\begin{array}{c} \text{Dec.} \\ (\text{deg}) \end{array}$ | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF (arcsec) | Flags       |        |
|-----|--------------------|-----------------------------------------------------------|---------------|------------------------------------------------------------|------------------|--------------------|------------|------------|------------|--------------------|--------------|-------------|--------|
| 131 | 163433.1-473312    | 29                                                        | 248.638043    | -47.553348                                                 | 1.64             | 5.8                | 4.7        | 0.2        | 4.9        | 5.6                | 5.6          | nd          |        |
| 132 | 163433.1-471931    | 27,30                                                     | 248.638138    | -47.325485                                                 | 0.98             | 5.5;7.4            | 9.9        | 2.1        | 9.8        | 4.9;8.2            | 4.9;8.2      | ;           |        |
| 133 | 163433.5-472137    | 30,27                                                     | 248.639984    | -47.360321                                                 | 2.03             | 5.6; 6.5           | 3.8        | 5.7        | 0.0        | 5.3; 6.4           | 5.3;6.4      | ;           |        |
| 134 | 163433.5-474346    | 32                                                        | 248.639987    | -47.729688                                                 | 0.66             | 2.6                | 7.3        | 4.9        | 5.4        | 2.4                | 2.4          | ,<br>       |        |
| 135 | 163433.8-475420    | 32                                                        | 248.641237    | -47.905598                                                 | 5.65             | 11.5               | 2.0        | 0.3        | 2.0        | 16.8               | 16.8         | nd          |        |
| 136 | 163434.1 - 472746  | 30,29                                                     | 248.642136    | -47.462875                                                 | 1.07             | 3.6; 8.6           | 4.7        | 1.4        | 4.4        | 3.1;10.6           | 3.1;10.6     | ;           |        |
| 137 | 163434.4-471317    | 27                                                        | 248.643631    | -47.221662                                                 | 2.39             | 6.3                | 3.7        | 0.0        | 4.2        | 6.3                | 6.3          | vp          |        |
| 138 | 163434.6-473224    | 30                                                        | 248.644415    | -47.540095                                                 | 5.13             | 7.1                | 1.7        | 3.6        | 0.0        | 7.2                | 7.2          |             |        |
| 139 | 163434.7-471748    | 27                                                        | 248.644724    | -47.296690                                                 | 0.75             | 4.8                | 13.1       | 0.0        | 13.7       | 4.0                | 4.0          |             |        |
| 140 | 163434.8 - 473552  | 32                                                        | 248.645089    | -47.597883                                                 | 4.35             | 7.8                | 1.4        | 1.0        | 1.0        | 20.2               | 9.0          | e,nd        |        |
| 141 | 163436.0-471832    | 27                                                        | 248.650295    | -47.308897                                                 | 1.61             | 4.7                | 3.9        | 3.9        | 2.0        | 3.9                | 3.9          |             |        |
| 142 | 163436.4 - 474957  | 32                                                        | 248.651682    | -47.832557                                                 | 2.27             | 7.4                | 4.2        | 0.6        | 4.5        | 7.7                | 7.7          | vp          |        |
| 143 | 163437.2-472608    | 30                                                        | 248.655262    | -47.435561                                                 | 1.14             | 3.8                | 3.0        | 0.9        | 2.7        | 7.5                | 3.2          | e,nd        |        |
| 144 | 163438.4 - 470929  | 27                                                        | 248.660211    | -47.158329                                                 | 2.83             | 8.9                | 4.8        | 1.7        | 4.4        | 11.4               | 11.4         |             |        |
| 145 | 163438.4-471701    | 27                                                        | 248.660403    | -47.283706                                                 | 0.78             | 4.1                | 9.8        | 11.6       | 0.0        | 3.5                | 3.5          | vp          |        |
| 146 | 163438.9 - 472157  | 30,27                                                     | 248.662231    | -47.365891                                                 | 0.91             | 5.9; 6.1           | 10.7       | 10.4       | 5.5        | 5.8; 5.8           | 5.8; 5.8     | ;vp         |        |
| 147 | 163439.3 - 474953  | 31                                                        | 248.663908    | -47.831490                                                 | 1.23             | 5.6                | 6.1        | 4.7        | 4.0        | 5.1                | 5.1          | vp,nd       |        |
| 148 | 163439.3 - 472325  | 30                                                        | 248.664049    | -47.390472                                                 | 2.44             | 5.0                | 1.8        | 1.4        | 1.1        | 4.4                | 4.4          | nd          |        |
| 149 | 163440.4-471449    | 27                                                        | 248.668508    | -47.246996                                                 | 1.02             | 4.6                | 2.5        | 0.7        | 2.3        | 14.0               | 3.9          | е           |        |
| 150 | 163441.0-474349    | 32                                                        | 248.670971    | -47.730510                                                 | 1.39             | 3.8                | 3.3        | 3.7        | 1.0        | 3.2                | 3.2          | nd          |        |
| 151 | 163441.1 - 474145  | 29,32                                                     | 248.671570    | -47.695892                                                 | 0.68             | 8.6;4.0            | 12.1       | 5.0        | 11.1       | 10.1; 3.4          | 10.1;3.4     | ;           |        |
| 152 | 163441.4 - 474229  | 32                                                        | 248.672521    | -47.708161                                                 | 0.67             | 3.8                | 11.8       | 13.0       | 2.7        | 3.3                | 3.3          | vp          |        |
| 153 | 163441.8 - 473323  | 30,29                                                     | 248.674484    | -47.556644                                                 | 0.91             | 8.5;4.4            | 8.4        | 1.6        | 8.4        | 10.0; 3.7          | 10.0; 3.7    | ;           |        |
| 154 | 163441.9 - 471955  | 27                                                        | 248.674611    | -47.332054                                                 | 1.25             | 4.4                | 3.9        | 0.0        | 4.2        | 3.7                | 3.7          | nd          |        |
| 155 | 163442.3 - 471916  | 27                                                        | 248.676398    | -47.321312                                                 | 0.98             | 4.0                | 5.9        | 7.8        | 0.0        | 3.3                | 3.3          |             |        |
| 156 | 163442.6-474613    | 31                                                        | 248.677875    | -47.770489                                                 | 2.45             | 7.0                | 2.5        | 0.0        | 2.9        | 7.5                | 7.5          | vp,nd       |        |
| 157 | 163442.8 - 473134  | 29                                                        | 248.678707    | -47.526265                                                 | 2.62             | 4.9                | 3.3        | 3.4        | 1.4        | 4.2                | 4.2          | nd          |        |
| 158 | 163443.0-472603    | 29,30                                                     | 248.679367    | -47.434250                                                 | 0.81             | 9.2;4.8            | 12.0       | 7.0        | 9.8        | 12.1;4.1           | 12.1;4.1     | ;           |        |
| 159 | 163443.3-471017    | 27                                                        | 248.680660    | -47.171444                                                 | 1.46             | 7.8                | 8.6        | 9.7        | 2.2        | 9.1                | 9.1          | vp          |        |
| 160 | 163443.8 - 473528  | 30,29                                                     | 248.682541    | -47.591179                                                 | 0.64             | 10.5; 4.1          | 14.5       | 9.4        | 11.2       | 14.1; 3.4          | 14.1; 3.4    | ;           |        |
| 161 | 163444.0-475653    | 31                                                        | 248.683693    | -47.948216                                                 | 2.31             | 7.3                | 4.0        | 1.1        | 3.8        | 7.5                | 7.5          |             |        |
| 162 | 163444.1 - 473645  | 29                                                        | 248.684160    | -47.612747                                                 | 1.33             | 4.6                | 4.3        | 4.0        | 2.1        | 3.8                | 3.8          | nd          |        |
| 163 | 163444.4 - 474341  | 32                                                        | 248.685311    | -47.728176                                                 | 1.16             | 4.3                | 3.6        | 1.8        | 3.0        | 3.7                | 3.7          | nd          |        |
| 164 | 163444.9 - 473649  | 32,29                                                     | 248.687210    | -47.613873                                                 | 0.90             | 7.7;4.5            | 7.9        | 0.0        | 8.2        | 8.8;3.8            | 8.8;3.8      | ;           |        |
| 165 | 163445.2 - 471218  | 27                                                        | 248.688481    | -47.205240                                                 | 1.66             | 5.9                | 4.0        | 4.5        | 1.3        | 5.7                | 5.7          | VS          |        |
| 166 | 163445.3-471627    | 27                                                        | 248.688862    | -47.274297                                                 | 0.77             | 3.1                | 8.0        | 8.6        | 1.9        | 2.5                | 2.5          |             |        |
| 167 | 163445.4 - 472912  | 29,30                                                     | 248.689529    | -47.486683                                                 | 1.09             | 6.3; 6.0           | 8.6        | 10.1       | 3.6        | 6.4;5.7            | 6.4;5.7      | ;           |        |
| 168 | 163445.5 - 474125  | 32                                                        | 248.689629    | -47.690396                                                 | 1.32             | 4.8                | 4.5        | 1.4        | 4.2        | 4.2                | 4.2          | nd          |        |
| 169 | 163446.5 - 474921  | 31                                                        | 248.693777    | -47.822550                                                 | 1.46             | 4.6                | 4.3        | 5.8        | 0.0        | 3.9                | 3.9          | nd          |        |
| 170 | 163447.0-475031    | 32                                                        | 248.696196    | -47.842115                                                 | 2.41             | 8.8                | 4.9        | 2.4        | 3.3        | 10.4               | 10.4         | vs,nd       |        |
| 171 | 163447.2-472732    | 29                                                        | 248.697027    | -47.459048                                                 | 6.08             | 7.6                | 2.8        | 0.4        | 2.8        | 8.5                | 8.5          | nd          |        |
| 172 | 163447.8-473243    | 29                                                        | 248.699522    | -47.545481                                                 | 1.20             | 3.6                | 6.1        | 0.8        | 6.5        | 10.0               | 3.0          | e,s,id,nd   |        |
| 173 | 163447.8-473243    | 29                                                        | 248.699522    | -47.545481                                                 | 1.20             | 3.6                | 3.3        | 2.1        | 3.0        | 3.0                | 3.0          | id,m3,nd    | l<br>H |
| 174 | 163448.0-473246    | 29,30                                                     | 248.700073    | -47.546196                                                 | 1.67             | 3.6; 8.7           | 6.3        | 3.0        | 5.7        | 3.0;10.3           | 3.0;10.3     | id,m3;id,m2 |        |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | $\begin{array}{c} \text{Dec.} \\ \text{(deg)} \end{array}$ | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags         |     |
|-----|--------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------|--------------------|------------|------------|------------|--------------------|-----------------|---------------|-----|
| 175 | 163448.3-472119    | 30,27                                                     | 248.701340                                                 | -47.355438                                                 | 1.63             | 7.5;4.6            | 4.4        | 6.1        | 0.0        | 8.2;3.9            | 8.2;3.9         | ;             |     |
| 176 | 163448.5-473230    | 29,30                                                     | 248.702225                                                 | -47.541721                                                 | 0.83             | 3.6;8.6            | 8.3        | 6.5        | 5.7        | 3.0;10.0           | 3.0;10.0        | id;id,m3      |     |
| 177 | 163448.8-473839    | 29                                                        | 248.703698                                                 | -47.644425                                                 | 0.69             | 5.3                | 18.8       | 14.4       | 12.3       | 4.7                | 4.7             | vs,nd         |     |
| 178 | 163449.4-471944    | 27                                                        | 248.705882                                                 | -47.328937                                                 | 1.02             | 3.3                | 3.2        | 1.2        | 2.9        | 6.7                | 2.7             | e             |     |
| 179 | 163450.0-474054    | 31                                                        | 248.708623                                                 | -47.681912                                                 | 14.21            | 11.0               | 1.8        | 2.0        | 0.9        | 16.6               | 16.6            | nd            |     |
| 180 | 163450.3-471133    | 27                                                        | 248.709848                                                 | -47.192699                                                 | 1.80             | 6.2                | 4.1        | 3.5        | 2.5        | 6.3                | 6.3             | nd            |     |
| 181 | 163450.3-474450    | 31                                                        | 248.709999                                                 | -47.747339                                                 | 5.78             | 7.4                | 2.9        | 4.0        | 0.9        | 8.1                | 8.1             | nd            |     |
| 182 | 163450.4-472040    | 27                                                        | 248.710232                                                 | -47.344661                                                 | 1.19             | 3.9                | 4.1        | 6.2        | 0.0        | 3.3                | 3.3             | nd            |     |
| 183 | 163450.5 - 474832  | 31,32                                                     | 248.710632                                                 | -47.809032                                                 | 0.71             | 4.5;7.6            | 12.4       | 4.6        | 11.3       | 3.8; 8.1           | 3.8; 8.1        | ;             |     |
| 184 | 163450.7 - 472047  | 27                                                        | 248.711328                                                 | -47.346405                                                 | 0.95             | 4.0                | 6.1        | 6.3        | 2.4        | 3.3                | 3.3             | vp,nd         |     |
| 185 | 163450.7-473918    | 32                                                        | 248.711634                                                 | -47.655077                                                 | 1.61             | 6.6                | 4.6        | 3.2        | 3.2        | 6.9                | 6.9             | nd            |     |
| 186 | 163450.7-474510    | 31                                                        | 248.711665                                                 | -47.752955                                                 | 2.27             | 7.0                | 4.0        | 4.7        | 1.2        | 7.6                | 7.6             |               |     |
| 187 | 163450.8 - 473712  | 32                                                        | 248.711762                                                 | -47.620191                                                 | 3.79             | 8.0                | 2.3        | 0.8        | 2.0        | 9.5                | 9.5             |               |     |
| 188 | 163450.9 - 474621  | 32,31                                                     | 248.712219                                                 | -47.772636                                                 | 1.33             | 6.3; 6.0           | 5.9        | 8.4        | 0.0        | 6.1;5.9            | 6.1; 5.9        | ;             |     |
| 189 | 163451.2 - 472320  | 30                                                        | 248.713455                                                 | -47.388937                                                 | 2.67             | 6.8                | 4.8        | 4.8        | 2.1        | 7.1                | 7.1             | nd            |     |
| 190 | 163451.2 - 472818  | 30                                                        | 248.713601                                                 | -47.471845                                                 | 2.16             | 6.5                | 3.6        | 2.9        | 2.3        | 6.5                | 6.5             | nd            |     |
| 191 | 163452.3 - 475207  | 31                                                        | 248.718237                                                 | -47.868731                                                 | 0.92             | 3.3                | 4.7        | 0.0        | 5.1        | 2.8                | 2.8             |               |     |
| 192 | 163452.9 - 475723  | 31                                                        | 248.720758                                                 | -47.956473                                                 | 6.69             | 6.9                | 0.2        | 0.0        | 0.6        | 6.9                | 6.9             |               |     |
| 193 | 163453.2-471240    | 27                                                        | 248.721905                                                 | -47.211229                                                 | 1.93             | 5.0                | 3.0        | 4.4        | 0.0        | 4.3                | 4.3             | nd            |     |
| 194 | 163453.8 - 473318  | 29                                                        | 248.724227                                                 | -47.555141                                                 | 0.65             | 2.5                | 6.8        | 0.0        | 7.3        | 2.3                | 2.3             | $\mathbf{vp}$ |     |
| 195 | 163453.9 - 474009  | 29,32                                                     | 248.724655                                                 | -47.669289                                                 | 1.32             | 6.2; 6.6           | 6.8        | 7.8        | 2.7        | 6.0; 6.9           | 6.0; 6.9        | ;m1           |     |
| 196 | 163453.9 - 473425  | 29                                                        | 248.724726                                                 | -47.573822                                                 | 0.60             | 2.2                | 8.4        | 10.4       | 0.6        | 2.3                | 2.3             |               |     |
| 197 | 163454.1 - 471927  | 27                                                        | 248.725808                                                 | -47.324234                                                 | 0.70             | 2.5                | 6.8        | 3.4        | 5.8        | 2.4                | 2.4             |               |     |
| 198 | 163454.6 - 473609  | 29                                                        | 248.727798                                                 | -47.602767                                                 | 0.71             | 2.8                | 7.0        | 0.0        | 7.2        | 2.4                | 2.4             |               |     |
| 199 | 163454.8 - 474125  | 32,31                                                     | 248.728363                                                 | -47.690353                                                 | 1.97             | 6.3;10.3           | 3.7        | 4.8        | 0.0        | 6.3;14.6           | 6.3;14.6        | ;             |     |
| 200 | 163454.9 - 474003  | 32                                                        | 248.729126                                                 | -47.667518                                                 | 2.90             | 6.8                | 2.8        | 1.6        | 2.1        | 7.2                | 7.2             | m3,nd         |     |
| 201 | 163455.4 - 474008  | 32,29                                                     | 248.731110                                                 | -47.669125                                                 | 1.84             | 6.8; 6.1           | 5.3        | 4.0        | 3.9        | 7.2;5.8            | 7.2;5.8         | m3;           |     |
| 202 | 163455.8 - 473003  | 29                                                        | 248.732527                                                 | -47.500928                                                 | 1.71             | 4.7                | 3.2        | 4.8        | 0.0        | 4.1                | 4.1             | nd            |     |
| 203 | 163455.9 - 471300  | $24,\!27$                                                 | 248.733185                                                 | -47.216732                                                 | 0.94             | 10.3; 4.5          | 7.5        | 8.4        | 0.4        | 13.9; 3.9          | 13.9; 3.9       | m3;           |     |
| 204 | 163456.1 - 475214  | 31                                                        | 248.733804                                                 | -47.870668                                                 | 0.89             | 2.8                | 4.1        | 3.7        | 2.3        | 2.4                | 2.4             |               |     |
| 205 | 163456.1 - 471909  | 27                                                        | 248.733899                                                 | -47.319360                                                 | 0.71             | 2.1                | 5.5        | 1.5        | 5.2        | 2.3                | 2.3             | VS            |     |
| 206 | 163456.2 - 471223  | 24                                                        | 248.734575                                                 | -47.206492                                                 | 7.94             | 10.0               | 3.3        | 3.7        | 0.0        | 13.0               | 13.0            | nd            |     |
| 207 | 163456.4 - 475738  | 31                                                        | 248.735054                                                 | -47.960678                                                 | 6.86             | 6.8                | 0.0        | 1.2        | 0.0        | 6.9                | 6.9             |               |     |
| 208 | 163456.6 - 471317  | $27,\!24$                                                 | 248.735992                                                 | -47.221573                                                 | 0.77             | 4.2;10.3           | 9.7        | 0.0        | 10.2       | 3.6;13.8           | 3.6;13.8        | ;m3           |     |
| 209 | 163457.3-471041    | 27                                                        | 248.738826                                                 | -47.178080                                                 | 5.59             | 6.7                | 2.6        | 4.0        | 0.0        | 7.2                | 7.2             | nd            |     |
| 210 | 163457.7 - 472651  | 29                                                        | 248.740759                                                 | -47.447638                                                 | 5.44             | 7.6                | 1.8        | 2.4        | 0.5        | 8.7                | 8.7             | nd            |     |
| 211 | 163457.8 - 471353  | 27                                                        | 248.741118                                                 | -47.231419                                                 | 0.89             | 3.6                | 6.2        | 6.1        | 2.6        | 3.0                | 3.0             | nd            |     |
| 212 | 163458.0-473937    | 29                                                        | 248.741791                                                 | -47.660290                                                 | 1.76             | 5.5                | 4.9        | 4.2        | 3.0        | 4.9                | 4.9             | nd            |     |
| 213 | 163459.8 - 473555  | 29                                                        | 248.749259                                                 | -47.598617                                                 | 0.74             | 2.0                | 4.3        | 0.0        | 4.5        | 2.2                | 2.2             |               |     |
| 214 | 163500.6-474356    | 29                                                        | 248.752669                                                 | -47.732240                                                 | 10.58            | 9.7                | 0.5        | 0.0        | 1.2        | 12.2               | 12.2            | nd            |     |
| 215 | 163500.9 - 471947  | 27                                                        | 248.754074                                                 | -47.329736                                                 | 0.68             | 2.4                | 7.0        | 0.0        | 7.3        | 2.4                | 2.4             | vp            |     |
| 216 | 163502.1 - 473757  | 29                                                        | 248.759166                                                 | -47.632671                                                 | 1.14             | 3.7                | 4.4        | 4.5        | 1.8        | 3.1                | 3.1             |               |     |
| 217 | 163503.5 - 474347  | 32                                                        | 248.764734                                                 | -47.729759                                                 | 3.28             | 7.5                | 2.5        | 3.1        | 0.5        | 8.2                | 8.2             | nd            | L.  |
| 218 | 163503.6-471847    | 27                                                        | 248.765164                                                 | -47.313282                                                 | 0.74             | 1.4                | 4.0        | 4.1        | 1.8        | 2.2                | 2.2             |               | L L |

Chandra Catalog: Detection and Localization (continued)

| No.          | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF (arcsec)   | Flags  |        |
|--------------|--------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|----------------|--------|--------|
| 219          | 163504.0-475020    | 31                                                        | 248.766731                                                 | -47.839006    | 0.73             | 1.6                | 4.4        | 0.0        | 4.7        | 2.1                | 2.1            |        |        |
| $210 \\ 220$ | 163504.2-475132    | 31                                                        | 248.767763                                                 | -47.859065    | 0.62             | 1.0                | 6.4        | 4.7        | 4.2        | 2.1                | 2.1            |        |        |
| $220 \\ 221$ | 163504.3-480037    | 31                                                        | 248.768263                                                 | -48.010496    | 10.11            | 9.4                | 2.3        | 2.1        | 1.4        | 11.7               | 11.7           |        |        |
| 222          | 163504.7-472422    | 26,27                                                     | 248.769653                                                 | -47.406353    | 1.64             | 8.6;7.0            | 6.6        | 2.0        | 6.2        | 10.4;7.1           | 10.4;7.1       |        |        |
| 223          | 163505.5-471802    | 27                                                        | 248.772978                                                 | -47.300809    | 0.65             | 0.8                | 4.5        | 1.5        | 4.1        | 2.1                | 2.1            | vp     |        |
| 224          | 163506.3-475125    | 31                                                        | 248.776270                                                 | -47.857024    | 0.00<br>0.71     | 0.9                | 3.6        | 4.6        | 0.0        | 2.1                | 2.1            | •P<br> |        |
| 225          | 163506.6-473236    | 29                                                        | 248.777717                                                 | -47.543476    | 0.62             | 1.7                | 6.1        | 3.7        | 4.7        | 2.1                | 2.1            |        |        |
| 226          | 163507.2-471641    | $\frac{20}{27}$                                           | 248.780381                                                 | -47.278114    | 0.52             | 1.0                | 16.8       | 18.4       | 2.7        | 2.0                | 2.0            |        |        |
| 227          | 163508.5-474519    | 28,31                                                     | 248.785828                                                 | -47.755383    | 2.19             | 9.1;6.0            | 5.9        | 5.4        | 2.9        | 11.3;6.0           | 11.3;6.0       | ;      |        |
| 228          | 163509.6-473215    | 29                                                        | 248.790216                                                 | -47.537651    | 0.81             | 2.1                | 0.7        | 3.1        | 0.0        | 6.8                | 2.1            | e      |        |
| 229          | 163509.7-470616    | $24^{-3}$                                                 | 248.790699                                                 | -47.104449    | 1.05             | 7.3                | 13.3       | 14.9       | 3.4        | 7.8                | 7.8            | vp     |        |
| 230          | 163509.7-471933    | 27                                                        | 248.790740                                                 | -47.326103    | 0.92             | 2.5                | 4.6        | 2.7        | 3.5        | 2.4                | 2.4            | •••    |        |
| 231          | 163510.3-471509    | 24                                                        | 248.792937                                                 | -47.252514    | 10.54            | 9.5                | 2.8        | 2.4        | 1.9        | 12.0               | 12.0           |        |        |
| 232          | 163511.1-473547    | 29                                                        | 248.796570                                                 | -47.596643    | 0.73             | 1.6                | 5.0        | 5.5        | 0.7        | 2.2                | 2.2            |        |        |
| 233          | 163511.9-472741    | 29                                                        | 248.799762                                                 | -47.461410    | 1.67             | 6.7                | 1.4        | 1.4        | 0.7        | 16.1               | 7.1            | e,nd   |        |
| 234          | 163512.1-473726    | 29                                                        | 248.800540                                                 | -47.623991    | 0.85             | 3.2                | 6.2        | 3.2        | 5.1        | 2.7                | 2.7            |        |        |
| 235          | 163513.0-475625    | 31                                                        | 248.804238                                                 | -47.940436    | 2.35             | 5.2                | 2.9        | 3.8        | 0.4        | 4.4                | 4.4            |        |        |
| 236          | 163513.7-474310    | 32                                                        | 248.807296                                                 | -47.719579    | 6.12             | 9.2                | 2.1        | 0.1        | 2.2        | 11.8               | 11.8           | nd     |        |
| 237          | 163514.5-473809    | 29                                                        | 248.810689                                                 | -47.635919    | 1.33             | 4.0                | 3.9        | 4.5        | 1.0        | 3.4                | 3.4            |        |        |
| 238          | 163514.6-474702    | 31,28                                                     | 248.810913                                                 | -47.784023    | 0.91             | 4.3; 8.9           | 7.6        | 9.8        | 0.0        | 3.7;10.8           | 3.7;10.8       | ;      |        |
| 239          | 163515.1-472304    | 30,27,26                                                  | 248.813293                                                 | -47.384453    | 0.89             | 10.7;6.1;7.1       | 12.0       | 0.0        | 12.7       | 15.4;5.8;7.6       | 15.4; 5.8; 7.6 | ;;     |        |
| 240          | 163515.7 - 471914  | 27                                                        | 248.815453                                                 | -47.320581    | 0.84             | 2.9                | 6.3        | 4.1        | 4.7        | 2.5                | 2.5            |        |        |
| 241          | 163515.9-471536    | 24                                                        | 248.816471                                                 | -47.260079    | 9.45             | 9.2                | 0.5        | 2.5        | 0.0        | 11.3               | 11.3           | nd     |        |
| 242          | 163517.2-471822    | 27                                                        | 248.821811                                                 | -47.306236    | 0.67             | 2.6                | 2.4        | 2.1        | 1.3        | 13.1               | 2.4            | е      |        |
| 243          | 163517.2-470426    | 24                                                        | 248.822071                                                 | -47.073891    | 2.80             | 7.0                | 3.2        | 4.7        | 0.1        | 7.4                | 7.4            |        |        |
| 244          | 163517.3-474941    | 31                                                        | 248.822173                                                 | -47.828062    | 0.74             | 1.9                | 0.4        | 1.1        | 0.0        | 15.3               | 2.1            | e,s    |        |
| 245          | 163517.4-474940    | 31                                                        | 248.822852                                                 | -47.827788    | 1.05             | 1.9                | 3.0        | 2.8        | 1.5        | 5.6                | 2.1            | e      |        |
| 246          | 163517.8-471837    | 27                                                        | 248.824264                                                 | -47.310353    | 0.77             | 2.8                | 6.3        | 1.0        | 6.4        | 2.5                | 2.5            |        |        |
| 247          | 163517.8-471342    | 27                                                        | 248.824436                                                 | -47.228559    | 2.87             | 4.5                | 2.7        | 0.0        | 3.2        | 3.9                | 3.9            | nd     |        |
| 248          | 163518.2-473208    | 29,26                                                     | 248.825974                                                 | -47.535801    | 0.58             | 2.9;9.1            | 12.3       | 13.4       | 4.0        | 2.4;11.2           | 2.4;11.2       | ;      |        |
| 249          | 163518.3 - 474833  | 31,28                                                     | 248.826324                                                 | -47.809277    | 0.62             | 3.0; 9.3           | 11.2       | 4.0        | 10.5       | 2.5;11.5           | 2.5;11.5       | ;      |        |
| 250          | 163518.6 - 473945  | 29                                                        | 248.827879                                                 | -47.662609    | 2.37             | 5.8                | 2.0        | 4.2        | 0.0        | 5.3                | 5.3            | nd     |        |
| 251          | 163518.9 - 472724  | 26                                                        | 248.828803                                                 | -47.456813    | 2.44             | 6.4                | 2.4        | 3.3        | 0.0        | 17.1               | 6.3            | e,nd   |        |
| 252          | 163519.1 - 472231  | 26                                                        | 248.829743                                                 | -47.375530    | 2.36             | 6.7                | 3.4        | 0.0        | 3.7        | 7.0                | 7.0            | nd     |        |
| 253          | 163519.4 - 475139  | 31                                                        | 248.831026                                                 | -47.861111    | 0.62             | 1.4                | 2.5        | 0.0        | 2.7        | 5.4                | 2.1            | e      |        |
| 254          | 163519.7 - 471006  | 27                                                        | 248.832140                                                 | -47.168354    | 8.25             | 7.8                | 0.7        | 2.4        | 0.0        | 9.1                | 9.1            |        |        |
| 255          | 163520.0-475109    | 31                                                        | 248.833344                                                 | -47.852588    | 0.49             | 1.4                | 16.4       | 18.0       | 1.7        | 2.1                | 2.1            |        |        |
| 256          | 163520.1 - 471245  | 27                                                        | 248.834038                                                 | -47.212543    | 1.65             | 5.5                | 4.7        | 1.1        | 4.6        | 5.2                | 5.2            | vp,nd  |        |
| 257          | 163520.2-472625    | 27                                                        | 248.834182                                                 | -47.440401    | 3.99             | 9.5                | 3.9        | 6.4        | 0.0        | 11.9               | 11.9           | nd     |        |
| 258          | 163520.3-475152    | 31                                                        | 248.834658                                                 | -47.864518    | 0.59             | 1.6                | 5.9        | 5.4        | 3.0        | 2.2                | 2.2            |        |        |
| 259          | 163520.4 - 472756  | 29                                                        | 248.835396                                                 | -47.465612    | 2.51             | 6.8                | 3.8        | 1.1        | 3.6        | 7.2                | 7.2            | nd     |        |
| 260          | 163520.5 - 472831  | 29,26                                                     | 248.835434                                                 | -47.475475    | 1.48             | 6.2; 6.6           | 5.6        | 6.5        | 2.2        | 6.3; 6.6           | 6.3; 6.6       | ;      |        |
| 261          | 163520.6-474147    | 29                                                        | 248.835879                                                 | -47.696495    | 3.76             | 7.8                | 2.5        | 2.8        | 1.1        | 8.4                | 8.4            | vs,nd  | 717    |
| 262          | 163520.6-474028    | 29,28                                                     | 248.835907                                                 | -47.674667    | 2.18             | 6.6; 6.9           | 3.9        | 5.7        | 0.0        | 6.5;7.2            | 6.5;7.2        | ;      | ۲<br>۲ |

Chandra Catalog: Detection and Localization (continued)

| No.        | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | $\begin{array}{c} \text{Dec.} \\ \text{(deg)} \end{array}$ | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB        | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags       |  |
|------------|--------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------|--------------------|------------|-------------------|------------|--------------------|-----------------|-------------|--|
| 263        | 163520.6-472515    | 26                                                        | 248.836005                                                 | -47.421007                                                 | 2.07             | 5.8                | 4.3        | 1.3               | 4.0        | 5.5                | 5.5             | nd          |  |
| 264<br>264 | 163520.8-473058    | 20<br>29                                                  | 248.836910                                                 | -47.516156                                                 | 1.58             | 4.1                | 3.7        | 3.6               | 1.8        | 8.0                | 3.5             | e           |  |
| 265        | 163520.8-474326    | 20<br>31                                                  | 248.837040                                                 | -47.724069                                                 | 6.25             | 8.0                | 1.7        | 2.5               | 0.1        | 9.5                | 9.5             | nd          |  |
| 266        | 163521.1-471744    | 27                                                        | 248.838037                                                 | -47.295590                                                 | 0.20             | 3.1                | 6.8        | $\frac{2.6}{7.6}$ | 1.4        | 2.6                | 2.6             |             |  |
| 267        | 163521.4-475903    | 31                                                        | 248.839542                                                 | -47.984336                                                 | 4.43             | 8.0                | 2.5        | 3.7               | 0.2        | 8.7                | 8.7             |             |  |
| 268        | 163521.7-474940    | 31                                                        | 248.840750                                                 | -47.827837                                                 | 0.55             | 2.4                | 13.4       | 9.4               | 9.6        | 2.3                | 2.3             |             |  |
| 269        | 163521.8-471918    | 27,26                                                     | 248.840836                                                 | -47.321758                                                 | 0.65             | 3.8;8.3            | 14.0       | 15.8              | 3.3        | 3.2;10.1           | 3.2;10.1        | ;           |  |
| 270        | 163521.9-471337    | 24                                                        | 248.841369                                                 | -47.227051                                                 | 2.74             | 7.0                | 3.5        | 5.3               | 0.0        | 7.2                | 7.2             | nd          |  |
| 271        | 163522.6-470209    | 24                                                        | 248.844251                                                 | -47.035949                                                 | 5.42             | 7.9                | 0.8        | 3.0               | 0.0        | 9.2                | 9.2             |             |  |
| 272        | 163522.6-473916    | 28                                                        | 248.844429                                                 | -47.654563                                                 | 2.92             | 7.0                | 4.3        | 4.5               | 2.0        | 7.4                | 7.4             | nd          |  |
| 273        | 163523.2-472819    | 26                                                        | 248.846763                                                 | -47.472132                                                 | 1.51             | 6.1                | 5.1        | 3.5               | 3.7        | 5.8                | 5.8             | nd          |  |
| 274        | 163523.8-474046    | 28,29                                                     | 248.849213                                                 | -47.679508                                                 | 1.50             | 6.3;7.0            | 6.6        | 8.2               | 1.4        | 6.2;7.1            | 6.2;7.1         | ;           |  |
| 275        | 163523.9-470624    | 24                                                        | 248.849977                                                 | -47.106826                                                 | 1.68             | 5.0                | 3.5        | 0.6               | 3.4        | 4.3                | 4.3             | ,           |  |
| 276        | 163524.1-472839    | 27                                                        | 248.850442                                                 | -47.477674                                                 | 17.79            | 11.9               | 1.5        | 0.3               | 1.4        | 17.8               | 17.8            | nd          |  |
| 277        | 163524.2-472554    | 27                                                        | 248.851187                                                 | -47.431727                                                 | 7.67             | 9.3                | 0.0        | 2.9               | 0.0        | 11.4               | 11.4            | nd          |  |
| 278        | 163524.4-470324    | 24                                                        | 248.851988                                                 | -47.056787                                                 | 1.17             | 6.8                | 9.1        | 10.7              | 1.9        | 7.1                | 7.1             |             |  |
| 279        | 163524.5-471117    | 27                                                        | 248.852486                                                 | -47.188300                                                 | 2.46             | 7.1                | 0.3        | 0.0               | 0.5        | 7.8                | 7.8             | m3,nd       |  |
| 280        | 163524.6-471110    | 27                                                        | 248.852885                                                 | -47.186386                                                 | 7.93             | 7.2                | 2.7        | 0.0               | 3.2        | 7.9                | 7.9             | m3,nd       |  |
| 281        | 163524.6-471455    | 27                                                        | 248.852892                                                 | -47.248836                                                 | 1.47             | 4.4                | 4.3        | 0.0               | 4.7        | 3.8                | 3.8             | nd          |  |
| 282        | 163524.8-480231    | 31                                                        | 248.853694                                                 | -48.041948                                                 | 16.70            | 11.5               | 3.0        | 2.0               | 2.2        | 16.7               | 16.7            |             |  |
| 283        | 163525.3-475155    | 31                                                        | 248.855625                                                 | -47.865385                                                 | 0.88             | 2.4                | 4.2        | 5.0               | 0.5        | 2.3                | 2.3             |             |  |
| 284        | 163525.3-473734    | 28                                                        | 248.855756                                                 | -47.626381                                                 | 2.24             | 7.5                | 3.7        | 2.5               | 2.7        | 8.3                | 8.3             | nd          |  |
| 285        | 163525.7 - 465856  | 24                                                        | 248.857335                                                 | -46.982484                                                 | 6.61             | 10.5               | 0.9        | 0.0               | 1.1        | 15.1               | 15.1            |             |  |
| 286        | 163525.7-475116    | 31                                                        | 248.857381                                                 | -47.854721                                                 | 0.63             | 2.4                | 8.1        | 10.1              | 0.0        | 2.3                | 2.3             |             |  |
| 287        | 163525.8-472937    | 29,26                                                     | 248.857605                                                 | -47.493832                                                 | 1.11             | 5.7; 6.5           | 7.1        | 0.0               | 7.2        | 5.4;6.4            | 5.4;6.4         | ;           |  |
| 288        | 163525.9-473800    | 29,28                                                     | 248.857971                                                 | -47.633415                                                 | 1.25             | 4.8;7.2            | 7.5        | 9.9               | 0.0        | 4.1;7.8            | 4.1;7.8         | ;           |  |
| 289        | 163526.3 - 471138  | 27                                                        | 248.859597                                                 | -47.194020                                                 | 2.33             | 7.0                | 1.8        | 1.6               | 1.1        | 15.3               | 7.5             | e,nd        |  |
| 290        | 163526.5 - 471424  | 27,24                                                     | 248.860809                                                 | -47.240078                                                 | 0.87             | 5.0;7.1            | 9.7        | 13.0              | 0.0        | 4.4;7.3            | 4.4;7.3         | ;           |  |
| 291        | 163526.7 - 474856  | 31                                                        | 248.861662                                                 | -47.815771                                                 | 0.72             | 3.5                | 8.2        | 8.4               | 3.2        | 2.9                | 2.9             | nd          |  |
| 292        | 163527.0-471138    | 24                                                        | 248.862592                                                 | -47.194074                                                 | 1.51             | 5.1                | 4.5        | 2.4               | 3.7        | 4.3                | 4.3             | nd          |  |
| 293        | 163527.2 - 470258  | 24                                                        | 248.863401                                                 | -47.049563                                                 | 3.18             | 6.8                | 2.1        | 3.7               | 0.0        | 7.2                | 7.2             |             |  |
| 294        | 163527.6-470012    | 24                                                        | 248.865039                                                 | -47.003459                                                 | 3.99             | 9.2                | 2.3        | 0.0               | 2.5        | 12.0               | 12.0            |             |  |
| 295        | 163527.7 - 475833  | 31                                                        | 248.865592                                                 | -47.976043                                                 | 2.17             | 7.8                | 5.4        | 6.9               | 1.0        | 8.3                | 8.3             |             |  |
| 296        | 163527.8-471314    | 27                                                        | 248.865912                                                 | -47.220738                                                 | 1.69             | 5.9                | 4.5        | 5.2               | 1.4        | 5.8                | 5.8             | nd          |  |
| 297        | 163527.9 - 474715  | 31,28                                                     | 248.866409                                                 | -47.787609                                                 | 1.96             | 4.9;7.2            | 4.7        | 6.0               | 0.7        | 4.3;7.4            | 4.3;7.4         | ;           |  |
| 298        | 163528.7 - 475540  | 31                                                        | 248.869851                                                 | -47.927861                                                 | 1.32             | 5.3                | 5.3        | 6.6               | 0.8        | 4.6                | 4.6             |             |  |
| 299        | 163528.8 - 473946  | 29,28                                                     | 248.870209                                                 | -47.662983                                                 | 1.63             | 6.6; 5.8           | 6.0        | 7.2               | 1.7        | 6.5; 5.6           | 6.5; 5.6        | ;vp         |  |
| 300        | 163528.9 - 465804  | 24                                                        | 248.870710                                                 | -46.967962                                                 | 12.47            | 11.1               | 0.6        | 1.3               | 0.0        | 16.9               | 16.9            |             |  |
| 301        | 163529.3-470716    | 24                                                        | 248.872395                                                 | -47.121299                                                 | 3.20             | 3.8                | 3.1        | 1.2               | 2.7        | 3.2                | 3.2             |             |  |
| 302        | 163529.5 - 474457  | 28                                                        | 248.872974                                                 | -47.749275                                                 | 1.28             | 5.7                | 6.1        | 6.6               | 2.2        | 5.2                | 5.2             | nd          |  |
| 303        | 163529.5 - 470723  | 24                                                        | 248.872995                                                 | -47.123077                                                 | 1.43             | 3.7                | 1.9        | 0.0               | 2.1        | 3.1                | 3.1             |             |  |
| 304        | 163529.6-471643    | $24,\!27,\!26$                                            | 248.873459                                                 | -47.278755                                                 | 0.66             | 8.9; 4.6; 9.7      | 17.9       | 18.7              | 5.8        | 10.7; 4.0; 13.2    | 10.7; 4.0; 13.2 | vl;vs,vl;vl |  |
| 305        | 163529.7 - 474559  | 31,28                                                     | 248.874100                                                 | -47.766472                                                 | 2.43             | 6.1; 6.2           | 3.5        | 5.7               | 0.0        | 6.2; 5.9           | 6.2;5.9         | ;           |  |
| 306        | 163529.9 - 473805  | 29,28                                                     | 248.874756                                                 | -47.634724                                                 | 1.15             | 5.4;6.6            | 5.6        | 5.8               | 3.2        | 12.6; 6.9          | 4.8;6.9         | e,id;id     |  |

Chandra Catalog: Detection and Localization (continued)

| No.        | Source<br>(CXOU J)                 | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | Dec.<br>(deg)            | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB  | Sig.<br>HB   | Radius<br>(arcsec) | PSF (arcsec) | Flags  |  |
|------------|------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|--------------------------|------------------|--------------------|------------|-------------|--------------|--------------------|--------------|--------|--|
| 307        | 163530.8-473125                    | 26                                                        | 248.878374                                                 | -47.523702               | 3.29             | 7.2                | 2.2        | 0.0         | 2.6          | 7.4                | 7.4          | m3,nd  |  |
| 308        | 163531.2-473120                    | 26                                                        | 248.880214                                                 | -47.522237               | 4.57             | 7.1                | 3.0        | 0.0         | 3.5          | 7.3                | 7.3          | m3,nd  |  |
| 309        | 163531.3-473605                    | 28                                                        | 248.880583                                                 | -47.601512               | 4.47             | 7.9                | 2.5        | 4.1         | 0.0          | 9.3                | 9.3          | nd     |  |
| 310        | 163531.4-475748                    | 31                                                        | 248.881211                                                 | -47.963364               | 3.39             | 7.3                | 3.0        | 4.5         | 0.0          | 7.6                | 7.6          |        |  |
| 311        | 163531.5-475821                    | 31                                                        | 248.881359                                                 | -47.972664               | 5.18             | 7.8                | 1.7        | 3.9         | 0.0          | 8.5                | 8.5          |        |  |
| 312        | 163532.0-475320                    | 31                                                        | 248.883626                                                 | -47.888998               | 1.53             | 4.0                | 4.8        | 6.7         | 0.0          | 3.4                | 3.4          |        |  |
| 313        | 163532.1-474636                    | 31,28                                                     | 248.884079                                                 | -47.776844               | 1.33             | 5.8;6.2            | 6.2        | 6.8         | 2.7          | 5.7;6.0            | 5.7;6.0      | ;      |  |
| 314        | 163532.6-471228                    | 24,27                                                     | 248.886154                                                 | -47.207813               | 0.97             | 5.0;7.1            | 10.1       | 0.0         | 10.2         | 4.2;7.6            | 4.2;7.6      | ;      |  |
| 315        | 163533.1-472130                    | 26,27                                                     | 248.888214                                                 | -47.358437               | 0.84             | 5.4;6.6            | 9.9        | 12.3        | 1.7          | 5.0;6.6            | 5.0;6.6      | ;      |  |
| 316        | 163533.7-474006                    | 29                                                        | 248.890706                                                 | -47.668361               | 3.38             | 7.3                | 2.3        | 0.0         | 3.0          | 7.6                | 7.6          | nd     |  |
| 317        | 163534.0-471126                    | 20<br>24                                                  | 248.891845                                                 | -47.190634               | 1.53             | 4.0                | 3.1        | 4.3         | 0.0          | 3.4                | 3.4          |        |  |
| 318        | 163534.0-470315                    | 24 21                                                     | 248.892012                                                 | -47.054267               | $1.00 \\ 17.09$  | 11.5               | 2.0        | 4.5<br>0.0  | 0.0          | 17.1               | 17.1         | <br>nd |  |
| 319        | 163534.1-473933                    | 29,28                                                     | 248.892487<br>248.892487                                   | -47.659344               | 0.48             | 6.9;5.2            | 39.2       | 32.5        | 23.3         | 7.1;4.6            | 7.1;4.6      | ;      |  |
| 320        | 163534.4-473305                    | 29,20                                                     | 248.893579                                                 | -47.551465               | 2.14             | 4.8                | 5.2        | 52.0<br>5.3 | 2.4          | 4.1                | 4.1          | nd     |  |
| 321        | 163534.4-475133                    | 31                                                        | 248.893586<br>248.893586                                   | -47.859381               | 0.77             | 3.9                | 8.9        | 6.0         | 6.7          | 3.3                | 3.3          |        |  |
| 321        | 163534.4-475135<br>163534.7-470930 | $\frac{31}{24}$                                           | 248.893580<br>248.894763                                   | -47.859581<br>-47.158511 | 0.66             | 3.9<br>2.8         | 9.7        | 10.4        | 2.4          | 3.3<br>2.4         | 2.4          | vp     |  |
| 323        | 163535.3-474426                    | $\frac{24}{28}$                                           | 248.894703<br>248.897172                                   | -47.138511<br>-47.740670 | 1.14             | 2.8<br>4.6         | 9.7<br>5.3 | 5.2         | $2.4 \\ 2.5$ | 2.4<br>3.9         | 2.4<br>3.9   | VS     |  |
| 323<br>324 | 163536.1 - 473509                  | $\frac{28}{29}$                                           | 248.897172<br>248.900745                                   | -47.740070<br>-47.586099 | $1.14 \\ 1.92$   | $\frac{4.0}{5.0}$  | 3.0        | 5.2<br>4.8  | $2.3 \\ 0.0$ | 3.9<br>4.3         | 5.9<br>4.3   | <br>nd |  |
|            |                                    |                                                           |                                                            |                          |                  |                    |            |             |              |                    |              |        |  |
| 325        | 163536.2-470548                    | 24                                                        | 248.901036                                                 | -47.096680               | 0.56             | 3.6                | 22.6       | 4.3         | 22.6         | 3.0                | 3.0          |        |  |
| 326        | 163536.5-470508                    | 24                                                        | 248.902466                                                 | -47.085781               | 1.60             | 4.1                | 3.3        | 4.5         | 0.0          | 3.5                | 3.5          | <br>   |  |
| 327        | 163536.8-471631                    | 27                                                        | 248.903386                                                 | -47.275519               | 1.38             | 5.8                | 5.8        | 3.8         | 4.3          | 5.6                | 5.6          | nd     |  |
| 328        | 163537.0-471516                    | 27                                                        | 248.904348                                                 | -47.254493               | 2.26             | 6.2                | 3.8        | 0.1         | 3.9          | 6.2                | 6.2          | nd     |  |
| 329        | 163537.6-471802                    | 27                                                        | 248.906870                                                 | -47.300681               | 3.68             | 6.0                | 2.2        | 3.2         | 0.4          | 5.7                | 5.7          | nd     |  |
| 330        | 163537.8-470709                    | 24                                                        | 248.907733                                                 | -47.119317               | 0.81             | 2.5                | 4.8        | 0.0         | 5.0          | 2.3                | 2.3          |        |  |
| 331        | 163538.6-470956                    | 24                                                        | 248.911122                                                 | -47.165679               | 0.80             | 2.5                | 4.2        | 0.0         | 4.5          | 2.3                | 2.3          |        |  |
| 332        | 163538.8-471829                    | 26                                                        | 248.911679                                                 | -47.308194               | 3.86             | 7.5                | 1.5        | 0.0         | 2.1          | 8.4                | 8.4          | nd     |  |
| 333        | 163539.0-474123                    | 29                                                        | 248.912571                                                 | -47.689804               | 7.77             | 8.9                | 1.1        | 2.9         | 0.0          | 10.7               | 10.7         |        |  |
| 334        | 163540.0-475728                    | 31                                                        | 248.917024                                                 | -47.957961               | 3.48             | 7.8                | 2.8        | 3.3         | 0.8          | 8.5                | 8.5          |        |  |
| 335        | 163540.4-475043                    | 31                                                        | 248.918376                                                 | -47.845401               | 1.60             | 4.9                | 4.2        | 5.4         | 0.3          | 4.2                | 4.2          | nd     |  |
| 336        | 163540.6-473759                    | 25                                                        | 248.919309                                                 | -47.633056               | 14.77            | 12.1               | 2.0        | 0.0         | 0.0          | 18.9               | 18.9         | ,      |  |
| 337        | 163540.8-473722                    | 29                                                        | 248.920107                                                 | -47.623010               | 2.08             | 6.5                | 3.7        | 5.5         | 0.4          | 6.4                | 6.4          | vs,nd  |  |
| 338        | 163540.8-465922                    | 24                                                        | 248.920181                                                 | -46.989580               | 1.25             | 9.3                | 15.3       | 16.9        | 3.8          | 12.3               | 12.3         | vs     |  |
| 339        | 163541.0-475228                    | 31                                                        | 248.920866                                                 | -47.874662               | 1.72             | 5.1                | 4.6        | 4.8         | 1.9          | 4.4                | 4.4          |        |  |
| 340        | 163542.0-473341                    | 29                                                        | 248.925256                                                 | -47.561424               | 1.95             | 5.9                | 3.4        | 4.6         | 0.6          | 5.7                | 5.7          | nd     |  |
| 341        | 163542.5-473344                    | 28                                                        | 248.927090                                                 | -47.562443               | 3.48             | 9.1                | 3.7        | 2.7         | 1.3          | 12.0               | 12.0         | nd     |  |
| 342        | 163542.7-470258                    | 21                                                        | 248.927946                                                 | -47.049453               | 7.78             | 10.0               | 0.4        | 0.0         | 0.5          | 13.1               | 13.1         | nd     |  |
| 343        | 163543.1-475225                    | 31                                                        | 248.929763                                                 | -47.873644               | 3.28             | 5.4                | 0.9        | 3.0         | 0.0          | 4.9                | 4.9          |        |  |
| 344        | 163543.2-473411                    | 26                                                        | 248.930065                                                 | -47.569853               | 1.84             | 9.0                | 7.6        | 2.8         | 7.0          | 10.8               | 10.8         | nd     |  |
| 345        | 163543.3-471204                    | 27                                                        | 248.930483                                                 | -47.201269               | 6.86             | 8.7                | 2.0        | 0.0         | 2.4          | 10.8               | 10.8         |        |  |
| 346        | 163543.3-474737                    | 28,31                                                     | 248.930573                                                 | -47.793663               | 0.69             | 5.9; 6.5           | 16.2       | 19.0        | 2.2          | 5.5; 6.7           | 5.5; 6.7     | ;      |  |
| 347        | 163543.5 - 470853                  | 24                                                        | 248.931394                                                 | -47.148158               | 0.69             | 1.2                | 1.5        | 0.2         | 1.5          | 8.7                | 2.1          | e      |  |
| 348        | 163543.9 - 470201                  | 24                                                        | 248.933139                                                 | -47.033619               | 2.55             | 6.6                | 3.0        | 2.2         | 1.9          | 6.9                | 6.9          | vp,nd  |  |
| 349        | 163544.5 - 475003                  | 28                                                        | 248.935758                                                 | -47.834172               | 4.15             | 8.0                | 3.1        | 1.1         | 2.8          | 8.9                | 8.9          | m1,nd  |  |
| 350        | 163545.0-470509                    | 24                                                        | 248.937876                                                 | -47.085994               | 1.24             | 3.5                | 3.0        | 0.0         | 3.3          | 2.9                | 2.9          |        |  |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | $\begin{array}{c} \text{Dec.} \\ (\text{deg}) \end{array}$ | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags             |
|-----|--------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------|--------------------|------------|------------|------------|--------------------|-----------------|-------------------|
| 351 | 163545.3-470136    | 21                                                        | 248.938850                                                 | -47.026846                                                 | 4.19             | 9.2                | 2.3        | 0.0        | 0.3        | 24.4               | 11.5            | e,id,nd           |
| 352 | 163545.3-470138    | $24^{$                                                    | 248.938959                                                 | -47.027435                                                 | 1.96             | 6.9                | 4.7        | 2.5        | 3.8        | 7.5                | 7.5             | id,nd             |
| 353 | 163545.4-471121    | 24                                                        | 248.939366                                                 | -47.189312                                                 | 0.96             | 3.0                | 3.4        | 5.0        | 0.0        | 2.5                | 2.5             |                   |
| 354 | 163545.7-470400    | 24                                                        | 248.940501                                                 | -47.066849                                                 | 1.88             | 4.6                | 2.4        | 4.1        | 0.0        | 4.0                | 4.0             | nd                |
| 355 | 163545.8-473731    | 29                                                        | 248.941056                                                 | -47.625451                                                 | 2.54             | 7.3                | 4.9        | 0.0        | 5.1        | 7.6                | 7.6             | nd                |
| 356 | 163545.9-474537    | 28                                                        | 248.941365                                                 | -47.760315                                                 | 1.34             | 4.0                | 4.2        | 0.0        | 4.7        | 3.3                | 3.3             | m1,nd             |
| 357 | 163546.0-475011    | 28                                                        | 248.941862                                                 | -47.836579                                                 | 3.73             | 8.1                | 2.9        | 4.4        | 0.2        | 9.1                | 9.1             | m1,nd             |
| 358 | 163546.1-474754    | 31                                                        | 248.942208                                                 | -47.798588                                                 | 2.14             | 6.7                | 4.6        | 3.0        | 3.4        | 7.0                | 7.0             | nd                |
| 359 | 163546.3-474540    | 28                                                        | 248.943221                                                 | -47.761330                                                 | 2.99             | 4.0                | 2.5        | 2.1        | 1.4        | 3.3                | 3.3             | m1,nd             |
| 360 | 163546.5-470524    | 24                                                        | 248.943868                                                 | -47.090137                                                 | 0.86             | 3.2                | 5.4        | 4.3        | 3.5        | 2.6                | 2.6             |                   |
| 361 | 163546.5-473732    | 28                                                        | 248.944135                                                 | -47.625820                                                 | 1.70             | 5.3                | 3.4        | 0.0        | 3.6        | 4.9                | 4.9             | nd                |
| 362 | 163546.8-471440    | $24^{-5}$                                                 | 248.945072                                                 | -47.244652                                                 | 1.89             | 6.2                | 4.5        | 1.0        | 4.4        | 5.9                | 5.9             | nd                |
| 363 | 163546.8-472744    | 26                                                        | 248.945343                                                 | -47.462413                                                 | 0.81             | 2.7                | 5.3        | 7.0        | 0.0        | 2.4                | 2.4             |                   |
| 364 | 163546.8-471024    | 24                                                        | 248.945351                                                 | -47.173446                                                 | 0.89             | 2.0                | 3.5        | 4.9        | 0.0        | 2.2                | 2.2             |                   |
| 365 | 163547.0-473739    | 28,25                                                     | 248.946121                                                 | -47.627659                                                 | _                | 5.2;10.7           | 6.6        | 0.0        | 7.6        | 45.3;49.7          | 4.7;14.9        | c,e,s,id;c,e,s,id |
| 366 | 163547.0-474024    | 28                                                        | 248.946153                                                 | -47.673458                                                 | 1.12             | 2.9                | 0.2        | 1.3        | 0.0        | 2.4                | 2.4             | ••••              |
| 367 | 163547.2-470622    | 24                                                        | 248.946743                                                 | -47.106202                                                 | 0.69             | 2.2                | 5.8        | 7.3        | 0.0        | 2.2                | 2.2             |                   |
| 368 | 163547.3-473725    | 29                                                        | 248.947211                                                 | -47.623705                                                 | 2.63             | 7.5                | 4.5        | 1.2        | 4.2        | 7.9                | 7.9             | nd                |
| 369 | 163547.4-473608    | 29,28                                                     | 248.947739                                                 | -47.602360                                                 | 1.14             | 7.0;6.6            | 8.4        | 9.3        | 3.7        | 7.3;7.0            | 7.3;7.0         | ;                 |
| 370 | 163547.7-471401    | 24                                                        | 248.949038                                                 | -47.233792                                                 | 1.89             | 5.5                | 3.9        | 0.4        | 3.9        | 5.0                | 5.0             | nd                |
| 371 | 163548.3-472128    | 26                                                        | 248.951348                                                 | -47.358029                                                 | 0.82             | 4.1                | 7.5        | 0.0        | 8.0        | 3.5                | 3.5             | id,nd             |
| 372 | 163548.3-473649    | 29,28                                                     | 248.951370                                                 | -47.613770                                                 | 1.52             | 7.3;5.9            | 5.9        | 5.8        | 3.8        | 7.8;5.8            | 7.8;5.8         | ;vp               |
| 373 | 163548.4 - 472132  | 23                                                        | 248.951799                                                 | -47.358978                                                 | 2.88             | 10.4               | 6.0        | 1.2        | 5.8        | 14.3               | 14.3            | id,nd             |
| 374 | 163548.9-471918    | 26                                                        | 248.953872                                                 | -47.321716                                                 | 1.80             | 6.2                | 4.3        | 2.8        | 2.4        | 6.4                | 6.4             | nd                |
| 375 | 163548.9-471950    | 27                                                        | 248.954127                                                 | -47.330680                                                 | 2.94             | 8.2                | 2.8        | 1.8        | 2.1        | 9.5                | 9.5             | nd                |
| 376 | 163549.1 - 474117  | 28                                                        | 248.954759                                                 | -47.688073                                                 | 0.56             | 2.1                | 15.6       | 13.5       | 8.5        | 2.2                | 2.2             | VS                |
| 377 | 163549.4 - 473429  | 25                                                        | 248.955928                                                 | -47.574998                                                 | 12.94            | 9.9                | 1.6        | 2.4        | 0.5        | 12.9               | 12.9            | nd                |
| 378 | 163549.7-472205    | 26                                                        | 248.957304                                                 | -47.368195                                                 | 0.97             | 3.5                | 4.4        | 2.2        | 3.7        | 2.9                | 2.9             |                   |
| 379 | 163550.0-472817    | 26                                                        | 248.958358                                                 | -47.471413                                                 | 0.87             | 2.9                | 4.6        | 6.6        | 0.0        | 2.5                | 2.5             |                   |
| 380 | 163550.0-473654    | 28                                                        | 248.958628                                                 | -47.615067                                                 | 3.01             | 5.8                | 2.1        | 3.6        | 0.1        | 5.6                | 5.6             | nd                |
| 381 | 163550.1 - 475306  | 31                                                        | 248.958765                                                 | -47.885237                                                 | 2.87             | 6.7                | 3.7        | 2.1        | 3.0        | 6.9                | 6.9             |                   |
| 382 | 163550.1 - 474556  | 31                                                        | 248.958938                                                 | -47.765741                                                 | 7.10             | 8.4                | 1.4        | 2.1        | 0.0        | 10.2               | 10.2            |                   |
| 383 | 163550.4 - 471319  | 24                                                        | 248.960360                                                 | -47.222211                                                 | 1.27             | 4.8                | 6.2        | 2.0        | 5.8        | 4.0                | 4.0             | vp,nd             |
| 384 | 163550.8 - 473739  | 25                                                        | 248.961949                                                 | -47.627749                                                 | 2.54             | 10.4               | 5.9        | 4.1        | 4.5        | 14.2               | 14.2            | nd                |
| 385 | 163551.0-471056    | 24                                                        | 248.962814                                                 | -47.182270                                                 | 0.78             | 2.4                | 4.6        | 1.3        | 4.3        | 2.4                | 2.4             |                   |
| 386 | 163551.1-470010    | 24                                                        | 248.963138                                                 | -47.002862                                                 | 4.61             | 8.3                | 2.5        | 0.0        | 2.8        | 10.3               | 10.3            | nd                |
| 387 | 163551.2-472300    | 26                                                        | 248.963362                                                 | -47.383405                                                 | 0.59             | 2.5                | 9.4        | 0.0        | 9.8        | 2.3                | 2.3             |                   |
| 388 | 163551.2 - 465822  | 21                                                        | 248.963527                                                 | -46.972788                                                 | 6.99             | 8.1                | 2.5        | 3.0        | 1.0        | 9.3                | 9.3             |                   |
| 389 | 163551.2-474346    | 28                                                        | 248.963727                                                 | -47.729717                                                 | 0.52             | 2.0                | 30.9       | 14.3       | 27.2       | 2.2                | 2.2             |                   |
| 390 | 163551.3-471111    | 24                                                        | 248.963864                                                 | -47.186524                                                 | 0.81             | 2.7                | 2.6        | 2.9        | 1.0        | 6.1                | 2.4             | е                 |
| 391 | 163551.8 - 473523  | 29,25,28                                                  | 248.965942                                                 | -47.589813                                                 | 0.72             | 7.6; 9.6; 7.1      | 19.3       | 1.0        | 19.8       | 8.3;12.3;7.9       | 8.3;12.3;7.9    | id;id;id          |
| 392 | 163552.1 - 473518  | 26                                                        | 248.967298                                                 | -47.588480                                                 | 4.20             | 9.9                | 4.1        | 0.8        | 3.9        | 12.6               | 12.6            | nb,id,nd          |
| 393 | 163552.4 - 470812  | 24                                                        | 248.968385                                                 | -47.136720                                                 | 0.65             | 0.5                | 5.0        | 6.2        | 0.0        | 2.0                | 2.0             |                   |
| 394 | 163553.0-474614    | 31,28                                                     | 248.971069                                                 | -47.770710                                                 | 0.75             | 8.6;4.0            | 12.2       | 11.3       | 6.7        | 10.6; 3.3          | 10.6;3.3        | vs,vl;vl          |

Chandra Catalog: Detection and Localization (continued)

| No.          | Source<br>(CXOU J)                                                                  | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | $\begin{array}{c} \text{Dec.} \\ \text{(deg)} \end{array}$ | Unc.<br>(arcsec)                            | $\begin{array}{c} \text{Offset} \\ (\text{arcmin}) \end{array}$ | Sig.<br>FB                                | Sig.<br>SB                                                      | Sig.<br>HB        | $\begin{array}{c} \text{Radius} \\ (\text{arcsec}) \end{array}$ | PSF (arcsec)                             | Flags             |
|--------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|-------------------|-----------------------------------------------------------------|------------------------------------------|-------------------|
| 395          | 163553.3-470525                                                                     | 94 91                                                     | 949 079479                                                 | 47.000460                                                  | 0.72                                        | 2 1.0 5                                                         | 0 5                                       | 0.1                                                             | 8.4               | 9.6.19.0                                                        | 26.120                                   | _                 |
| 395<br>396   | 163553.5-470525                                                                     | $24,21 \\ 24,21$                                          | 248.972473<br>248.973007                                   | -47.090469<br>-47.010311                                   | $\begin{array}{c} 0.73 \\ 0.83 \end{array}$ | 3.1;9.5<br>7.9;7.6                                              | $8.5 \\ 17.0$                             | $2.1 \\ 4.7$                                                    | $^{0.4}_{16.4}$   | 2.6;12.0<br>9.3;8.3                                             | 2.6;12.0<br>9.3;8.3                      | ;                 |
|              | 163553.8-470338                                                                     | 24,21<br>24,21                                            | 248.973007<br>248.974518                                   | -47.010311<br>-47.060715                                   |                                             | 4.9;7.0<br>4.9;8.5                                              | $17.0 \\ 20.9$                            | $\frac{4.7}{20.7}$                                              | 10.4<br>8.9       | 9.3;8.3<br>4.3;10.0                                             | 9.3;8.3<br>4.3;10.0                      | ;                 |
| 397          |                                                                                     | ,                                                         |                                                            |                                                            | 0.61                                        | '                                                               |                                           | $\frac{20.7}{3.3}$                                              |                   | '                                                               | 4.3;10.0<br>11.9                         | ;<br>d            |
| 398          | 163553.9-473602                                                                     | 25                                                        | 248.974647<br>248.976091                                   | -47.600664                                                 | 3.75                                        | $9.4 \\ 10.2$                                                   | 3.2                                       |                                                                 | 1.9               | $11.9 \\ 13.5$                                                  | 13.5                                     | nd                |
| 399<br>400   | $\begin{array}{c} 163554.2 \hbox{-} 471844 \\ 163554.3 \hbox{-} 465740 \end{array}$ | 24                                                        |                                                            | -47.312461                                                 | 4.40                                        | 7.7                                                             | $\frac{1.8}{2.5}$                         | $     \begin{array}{c}       0.8 \\       4.1     \end{array} $ | $1.6 \\ 0.2$      | 13.5<br>8.5                                                     | 8.5                                      | nd                |
| 400<br>401   | 163554.3 - 465740<br>163555.2 - 470436                                              | $21 \\ 24$                                                | 248.976254<br>248.980248                                   | -46.961325                                                 | $5.48 \\ 1.11$                              |                                                                 |                                           | 4.1<br>4.3                                                      |                   | 8.5<br>3.4                                                      | 8.5<br>3.4                               | <br>d             |
| 401 402      | 163555.2-470450<br>163555.2-471904                                                  |                                                           | 248.980248<br>248.980286                                   | -47.076853<br>-47.317921                                   | $1.11 \\ 1.21$                              | 4.0                                                             | $\frac{4.9}{7.7}$                         |                                                                 | $2.6 \\ 8.0$      |                                                                 |                                          | nd<br>id amid     |
| 402          | 163555.2-470316                                                                     | $26,23 \\ 21$                                             | 248.980280<br>248.980312                                   | -47.054544                                                 | 3.21                                        | 6.4;8.4<br>8.1                                                  | $7.7 \\ 3.4$                              | $0.0 \\ 3.7$                                                    | 8.0<br>1.1        | 6.6;9.8<br>9.2                                                  | 6.6;9.8<br>9.2                           | id,vp;id<br>nd    |
|              |                                                                                     |                                                           | 248.980312<br>248.980835                                   | -47.034344<br>-47.318779                                   |                                             |                                                                 | $\frac{3.4}{9.7}$                         | 0.1                                                             | $1.1 \\ 10.6$     |                                                                 |                                          |                   |
| 404          | 163555.4-471907                                                                     | 23,26                                                     | 248.980855<br>248.981554                                   |                                                            |                                             | 8.4;6.3<br>2.4                                                  |                                           | $\frac{0.1}{2.4}$                                               | 6.0               | 47.8;60.9<br>2.3                                                | 9.9;6.5<br>2.3                           | c,e,s,id;c,e,s,id |
| 405          | 163555.5-470614                                                                     | 24                                                        |                                                            | -47.103890                                                 | 0.72                                        |                                                                 | 6.5                                       |                                                                 |                   | $2.3 \\ 2.2$                                                    | 2.3                                      |                   |
| 406          | 163555.5-472656                                                                     | 26<br>24                                                  | 248.981561                                                 | -47.449020                                                 | 0.55                                        | 1.5                                                             | 7.3                                       | $\begin{array}{c} 0.0 \\ 8.9 \end{array}$                       | 7.7               | 2.2                                                             |                                          |                   |
| 407          | 163555.5-470631                                                                     | 24                                                        | 248.981631<br>248.983187                                   | -47.108814                                                 | 0.62                                        | 2.2                                                             | 8.2                                       |                                                                 | 1.7<br>0.0        | 2.2<br>6.8                                                      | 2.2<br>2.0                               |                   |
| 408          | 163555.9-474120                                                                     | 28                                                        |                                                            | -47.688979                                                 | 0.75                                        | 1.3                                                             | 1.4                                       | 2.9                                                             |                   |                                                                 |                                          | e                 |
| 409          | 163555.9-474549                                                                     | 28                                                        | 248.983260<br>248.983364                                   | -47.763819                                                 | 0.87                                        | 3.5                                                             | 6.3                                       | 0.8                                                             | $6.4 \\ 4.2$      | 2.9                                                             | $2.9 \\ 8.0$                             |                   |
| $410 \\ 411$ | 163556.0-475134<br>163556.0-475122                                                  | $\frac{31}{28}$                                           | 248.983637<br>248.983637                                   | -47.859578<br>-47.856387                                   | 1.73                                        | $7.5 \\ 9.0$                                                    | $\begin{array}{c} 6.0 \\ 3.0 \end{array}$ | $4.5 \\ 0.0$                                                    | $\frac{4.2}{3.2}$ | $\frac{8.0}{10.8}$                                              | 8.0<br>10.8                              | <br>d             |
| 411 412      | 163557.6-472026                                                                     | $\frac{28}{26}$                                           | 248.985057<br>248.990173                                   | -47.830387<br>-47.340774                                   | $4.95 \\ 1.38$                              | 9.0<br>5.0                                                      | $\frac{3.0}{4.4}$                         | $0.0 \\ 0.5$                                                    | 5.2<br>4.4        | 4.5                                                             | 4.5                                      | nd<br>nd          |
|              | 163557.0-472020<br>163558.9-474103                                                  |                                                           |                                                            |                                                            |                                             |                                                                 |                                           | $\frac{0.5}{5.3}$                                               | $\frac{4.4}{0.6}$ |                                                                 | 2.0                                      |                   |
| $413 \\ 414$ | 163559.0-473131                                                                     | $\frac{28}{25}$                                           | 248.995696<br>248.996180                                   | -47.684201<br>-47.525502                                   | $0.70 \\ 7.11$                              | $1.4 \\ 8.4$                                                    | $4.5 \\ 0.6$                              | 0.0                                                             | 0.0               | $2.0 \\ 10.1$                                                   | $2.0 \\ 10.1$                            | <br>d             |
| $414 \\ 415$ |                                                                                     |                                                           | 248.990180<br>248.996765                                   |                                                            |                                             | 8.4<br>8.7;3.6                                                  |                                           | $\frac{0.0}{2.7}$                                               |                   |                                                                 | 10.1<br>10.3;3.0                         | nd                |
| 415          | 163559.2-470517                                                                     | $21,24 \\ 28$                                             | 248.990705<br>249.000365                                   | -47.088135<br>-47.872755                                   | $1.19 \\ 7.41$                              | 8.7;3.0<br>9.9                                                  | 5.6<br>0.8                                | $\frac{2.7}{0.0}$                                               | $4.2 \\ 0.7$      | $10.3;3.0 \\ 12.8$                                              |                                          | ;<br>nd           |
|              | 163600.0-475221                                                                     |                                                           |                                                            |                                                            |                                             |                                                                 |                                           |                                                                 |                   |                                                                 | 12.8                                     | nd                |
| 417          | 163601.2-474853                                                                     | 28                                                        | 249.005345                                                 | -47.814953                                                 | 1.32                                        | 6.5                                                             | 7.4                                       | 2.7                                                             | 6.8               | $\begin{array}{c} 6.3\\ 3.0 \end{array}$                        | $\begin{array}{c} 6.3\\ 3.0 \end{array}$ | vp,nd             |
| 418          | 163601.9-474556                                                                     | $28 \\ 24,21$                                             | 249.007946                                                 | -47.765621                                                 | $1.28 \\ 1.27$                              | $3.5 \\ 6.1; 6.9$                                               | $\frac{3.1}{7.3}$                         | $4.1 \\ 9.8$                                                    | $0.1 \\ 1.5$      |                                                                 | 6.1;7.0                                  |                   |
| $419 \\ 420$ | $\frac{163601.9}{163603.3} + 470247$                                                | 24,21<br>28                                               | 249.008301<br>249.014032                                   | -47.046520<br>-47.737949                                   | 0.81                                        | 2.0                                                             | 7.5<br>1.7                                | 9.8<br>0.0                                                      | $1.5 \\ 1.8$      | $6.1;7.0 \\ 5.3$                                                | 2.2                                      | ;                 |
| $420 \\ 421$ | 163603.3-474410<br>163603.3-470840                                                  | $\frac{28}{24}$                                           | 249.014032<br>249.014058                                   | -47.144614                                                 |                                             | 2.0<br>2.2                                                      | 6.2                                       | 1.2                                                             | 6.0               | 2.3                                                             | 2.2                                      | e                 |
| 421          | 163603.5 - 470840<br>163603.5 - 471955                                              | $\frac{24}{26}$                                           | 249.014038<br>249.014862                                   | -47.144014<br>-47.332163                                   | $0.67 \\ 2.26$                              | 5.7                                                             | 0.2<br>0.6                                | 1.2<br>2.7                                                      | 0.0               | 14.7                                                            | 5.6                                      |                   |
| 422          | 163603.5 - 471955<br>163603.7 - 472136                                              | $26 \\ 26,23$                                             | 249.014802<br>249.015594                                   | -47.360245                                                 | 0.72                                        | 4.1;8.3                                                         | 11.0                                      | $\frac{2.7}{0.4}$                                               | 10.0              | 3.6;9.5                                                         | 3.6;9.5                                  | e,nd              |
| 423<br>424   | 163604.5-472753                                                                     | 20,23<br>26                                               | 249.015594<br>249.018932                                   | -47.300243<br>-47.464775                                   | $0.72 \\ 0.75$                              | 4.1;8.5<br>2.9                                                  | 7.4                                       | $0.4 \\ 0.0$                                                    | 10.9<br>7.7       | 2.5                                                             | 2.5                                      | ;                 |
| 424<br>425   | 163604.6-474458                                                                     | 20<br>28                                                  | 249.018932<br>249.019179                                   | -47.404773<br>-47.749668                                   | $0.75 \\ 0.75$                              | $2.9 \\ 2.7$                                                    | 1.9                                       | $0.0 \\ 0.1$                                                    | 2.0               | 12.2                                                            | 2.3                                      | е                 |
| 426          | 163604.0-474438<br>163604.7-471215                                                  | $\frac{28}{24}$                                           | 249.019179<br>249.019610                                   | -47.204174                                                 | 1.36                                        | 4.4                                                             | 1.9<br>3.9                                | 0.1                                                             | $\frac{2.0}{3.7}$ | 3.7                                                             | 3.7                                      |                   |
| $420 \\ 427$ | 163604.7 - 471213<br>163604.8 - 465236                                              | $\frac{24}{21}$                                           | 249.019610<br>249.020372                                   | -47.204174<br>-46.876798                                   | 4.09                                        | 4.4<br>9.0                                                      | 3.9<br>3.8                                | 1.1                                                             | 3.7<br>3.5        | 3.7<br>11.6                                                     | 3.7<br>11.6                              | nd<br>m3          |
| 427          | 163604.9 - 465246                                                                   | $\frac{21}{21}$                                           | 249.020372<br>249.020698                                   | -46.879614                                                 | 4.09<br>4.72                                | 9.0<br>8.9                                                      | 1.6                                       | 0.0                                                             | $\frac{3.3}{2.3}$ | 11.0                                                            | 11.0                                     | m3                |
| 428<br>429   | 163604.9 - 465240<br>163605.2 - 465744                                              | $\frac{21}{21}$                                           | 249.020098<br>249.022027                                   | -46.962464                                                 | 4.72<br>3.29                                | 5.9                                                             | 3.2                                       | 0.0                                                             | $^{2.3}_{3.4}$    | 5.6                                                             | 5.6                                      |                   |
| 429<br>430   | 163605.2 - 465744<br>163605.6 - 470841                                              | $\frac{21}{24}$                                           | 249.022027<br>249.023524                                   | -40.902404<br>-47.144910                                   | 0.87                                        | 2.6                                                             | 3.2<br>4.6                                | $\frac{0.0}{4.2}$                                               | $\frac{5.4}{2.4}$ | 2.4                                                             | 2.4                                      |                   |
| 430<br>431   | 163605.8-470841<br>163605.8-473933                                                  | $\frac{24}{25}$                                           | 249.023524<br>249.024206                                   | -47.144910<br>-47.659346                                   | 5.53                                        | 2.0<br>9.3                                                      | $\frac{4.0}{1.1}$                         | $4.2 \\ 0.1$                                                    | $\frac{2.4}{1.1}$ | 2.4<br>11.5                                                     | 2.4<br>11.5                              | $m_{1,nd}$        |
| 431 432      | 163605.9-473953                                                                     | $\frac{25}{25}$                                           | 249.024200<br>249.024862                                   | -47.059540<br>-47.664856                                   | 3.95                                        | 9.5<br>9.5                                                      | 3.3                                       | $1.4^{0.1}$                                                     | $\frac{1.1}{2.9}$ | $11.5 \\ 11.9$                                                  | $11.5 \\ 11.9$                           | m1,nd             |
| 432          | 163606.0-470709                                                                     | $\frac{23}{24}$                                           | 249.024802<br>249.025309                                   | -47.004850<br>-47.119358                                   | 1.07                                        | 3.0                                                             | $\frac{3.3}{4.6}$                         | 6.6                                                             | $\frac{2.9}{0.0}$ | 2.5                                                             | 2.5                                      |                   |
| 433          | 163606.0-470709<br>163606.1-474400                                                  | $\frac{24}{28}$                                           | 249.025309<br>249.025770                                   | -47.733458                                                 | 0.62                                        | 1.9                                                             | $\frac{4.0}{8.7}$                         | 0.0<br>9.3                                                      | 1.8               | 2.3                                                             | 2.3<br>2.2                               |                   |
| $434 \\ 435$ | 163606.1 - 474400<br>163606.2 - 471050                                              | $\frac{28}{24}$                                           | 249.025770<br>249.026095                                   | -47.735458<br>-47.180821                                   | $0.62 \\ 0.87$                              | 1.9<br>3.6                                                      | 0.7<br>6.6                                | 9.3<br>6.8                                                      | $1.8 \\ 2.4$      | $\frac{2.2}{3.0}$                                               | 3.0                                      |                   |
| 435          | 163606.5-470141                                                                     | $\frac{24}{21}$                                           | 249.020095<br>249.027234                                   | -47.028315                                                 | 1.79                                        | $5.0 \\ 5.7$                                                    | 1.4                                       | $0.8 \\ 0.5$                                                    | $\frac{2.4}{1.2}$ | 12.6                                                            | 5.3                                      | e,nd              |
| $430 \\ 437$ | 163607.0-471434                                                                     | 21<br>27,23,24                                            | 249.027234<br>249.029282                                   | -47.028313<br>-47.242996                                   | 0.89                                        | 5.7<br>11.2;6.4;6.7                                             | $1.4 \\ 12.2$                             | $\frac{0.5}{7.1}$                                               | 1.2<br>10.2       | 12.0<br>16.8;6.4;6.7                                            | 16.8; 6.4; 6.7                           | id;id;id          |
| 401          | 163607.5 - 465637                                                                   | 21,23,24                                                  | 249.029282<br>249.031479                                   | -47.242990<br>-46.943764                                   | 1.82                                        | 6.0                                                             | 4.6                                       | 0.0                                                             | 4.9               | 10.8,0.4,0.7<br>5.8                                             | 5.8                                      | iu,iu,iu          |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB   | Sig.<br>HB | $\begin{array}{c} \text{Radius} \\ (\text{arcsec}) \end{array}$ | PSF (arcsec) | Flags       |  |
|-----|--------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------|------------------|--------------------|------------|--------------|------------|-----------------------------------------------------------------|--------------|-------------|--|
| 439 | 163607.6-474025    | 28                                                        | 249.031975                                                 | -47.673718    | 1.00             | 2.4                | 3.7        | 4.9          | 0.0        | 2.3                                                             | 2.3          |             |  |
| 440 | 163607.6-474028    | 28                                                        | 249.032037                                                 | -47.674533    | 0.68             | 2.4                | 0.0        | 0.0          | 0.0        | 21.8                                                            | 2.3          | e,s         |  |
| 441 | 163609.1-472628    | 26<br>26                                                  | 249.038162                                                 | -47.441162    | 0.86             | 2.6                | 4.1        | 0.0          | 4.4        | 2.4                                                             | 2.4          |             |  |
| 442 | 163609.3-470730    | 20<br>24                                                  | 249.038913                                                 | -47.125135    | 0.87             | 3.4                | 3.1        | 0.0          | 3.9        | 8.1                                                             | 2.8          | е           |  |
| 443 | 163610.8-471923    | 23                                                        | 249.045360                                                 | -47.323230    | 1.60             | 6.1                | 4.6        | 1.2          | 4.3        | 5.8                                                             | 5.8          | nd          |  |
| 444 | 163611.0-474136    | 28                                                        | 249.046009                                                 | -47.693544    | 0.72             | 2.1                | 5.6        | 5.8          | 1.9        | 2.2                                                             | 2.2          |             |  |
| 445 | 163611.2-473046    | 25                                                        | 249.046703                                                 | -47.512862    | 2.31             | 6.7                | 3.6        | 2.2          | 2.8        | 7.0                                                             | 7.0          | nd          |  |
| 446 | 163611.2-472042    | 26<br>26                                                  | 249.046836                                                 | -47.345126    | 2.04             | 5.5                | 2.7        | 0.8          | 2.5        | 15.6                                                            | 5.2          | e           |  |
| 447 | 163611.8-471509    | $\frac{20}{24}$                                           | 249.049434                                                 | -47.252720    | 7.52             | 7.6                | 1.4        | 0.0          | 1.6        | 8.0                                                             | 8.0          | nd          |  |
| 448 | 163611.9-470224    | 24,21                                                     | 249.049820                                                 | -47.040146    | 0.71             | 7.1;5.2            | 14.2       | 13.6         | 7.2        | 7.8;4.5                                                         | 7.8;4.5      | id;id       |  |
| 449 | 163612.1-465841    | 21,21                                                     | 249.050499                                                 | -46.978256    | 1.37             | 4.5                | 3.9        | 2.7          | 2.7        | 3.8                                                             | 3.8          |             |  |
| 450 | 163612.3-472611    | 26                                                        | 249.051363                                                 | -47.436593    | 0.80             | 3.0                | 6.4        | 2.7          | 5.7        | 2.5                                                             | 2.5          |             |  |
| 451 | 163613.1-464959    | 20<br>21                                                  | 249.054887                                                 | -46.833102    | 15.39            | 10.5               | 0.0        | 0.0          | 0.0        | 15.4                                                            | 15.4         |             |  |
| 452 | 163613.2-465749    | 21                                                        | 249.055263                                                 | -46.963646    | 1.18             | 4.6                | 5.7        | 0.0          | 6.0        | 3.9                                                             | 3.9          |             |  |
| 453 | 163613.5-473851    | 28                                                        | 249.056430                                                 | -47.647664    | 1.01             | 4.3                | 3.1        | 0.7          | 2.9        | 3.7                                                             | 3.7          | nd          |  |
| 454 | 163614.2-465222    | 20<br>21                                                  | 249.059258                                                 | -46.873031    | 1.97             | 8.3                | 6.3        | 1.1          | 6.3        | 10.1                                                            | 10.1         |             |  |
| 455 | 163614.3-465955    | 21                                                        | 249.059771                                                 | -46.998729    | 0.93             | 4.0                | 6.2        | 2.8          | 5.4        | 3.4                                                             | 3.4          |             |  |
| 456 | 163614.3-475129    | 28                                                        | 249.059879                                                 | -47.858321    | 4.60             | 9.4                | 2.9        | 3.7          | 0.8        | 11.7                                                            | 11.7         |             |  |
| 457 | 163614.6-473531    | 25,28                                                     | 249.061050                                                 | -47.592220    | 1.40             | 5.9;7.3            | 6.5        | 4.8          | 4.8        | 5.6;8.2                                                         | 5.6;8.2      | ;           |  |
| 458 | 163614.7-465821    | 20,20                                                     | 249.061330                                                 | -46.972505    | 1.31             | 4.2                | 5.0        | 5.2          | 1.7        | 3.5                                                             | 3.5          |             |  |
| 459 | 163614.8-470803    | 24                                                        | 249.061911                                                 | -47.134409    | 1.35             | 4.2                | 3.5        | 5.2          | 0.0        | 3.6                                                             | 3.6          | nd          |  |
| 460 | 163615.7-475154    | 28                                                        | 249.065456                                                 | -47.865226    | 2.18             | 9.9                | 7.6        | 8.9          | 1.6        | 12.6                                                            | 12.6         |             |  |
| 461 | 163616.5-473022    | 26                                                        | 249.068973                                                 | -47.506192    | 1.55             | 6.1                | 3.9        | 2.5          | 2.9        | 5.9                                                             | 5.9          | nd          |  |
| 462 | 163616.5-470509    | 21,24                                                     | 249.069122                                                 | -47.085850    | 1.57             | 6.6;5.6            | 4.6        | 5.1          | 1.1        | 6.5;5.3                                                         | 6.5;5.3      | ;           |  |
| 463 | 163616.9-475353    | 28                                                        | 249.070826                                                 | -47.898247    | 4.32             | 11.8               | 3.4        | 1.2          | 3.0        | 17.8                                                            | 17.8         |             |  |
| 464 | 163617.1-472428    | 26                                                        | 249.071510                                                 | -47.408041    | 0.97             | 3.9                | 5.1        | 5.6          | 1.7        | 3.3                                                             | 3.3          |             |  |
| 465 | 163617.1-471815    | 23                                                        | 249.071659                                                 | -47.304258    | 1.46             | 4.6                | 3.9        | 5.4          | 0.6        | 3.9                                                             | 3.9          | nd          |  |
| 466 | 163617.3-474425    | 28                                                        | 249.072132                                                 | -47.740499    | 0.97             | 3.6                | 5.4        | 6.2          | 1.4        | 3.0                                                             | 3.0          |             |  |
| 467 | 163617.6-473254    | 25,26                                                     | 249.073669                                                 | -47.548595    | 1.03             | 5.1;8.4            | 8.2        | 10.8         | 0.5        | 4.4;9.6                                                         | 4.4;9.6      | ;           |  |
| 468 | 163619.4-472103    | 26,23                                                     | 249.080948                                                 | -47.350876    | 0.85             | 6.0;6.0            | 10.6       | 4.5          | 9.7        | 6.0;5.6                                                         | 6.0;5.6      | ;           |  |
| 469 | 163619.7-471436    | 24,23                                                     | 249.082169                                                 | -47.243401    | 0.80             | 7.8;4.4            | 9.6        | 12.3         | 1.2        | 8.6;3.7                                                         | 8.6;3.7      | ;           |  |
| 470 | 163620.2-470808    | 24                                                        | 249.084355                                                 | -47.135662    | 1.63             | 5.1                | 5.6        | 6.4          | 1.1        | 4.4                                                             | 4.4          | id,m3,nd    |  |
| 471 | 163620.2-471324    | 23,24                                                     | 249.084564                                                 | -47.223553    | 2.02             | 5.0;7.1            | 5.2        | 6.3          | 1.4        | 4.3;7.3                                                         | 4.3;7.3      | ;           |  |
| 472 | 163620.4-470807    | 23,21                                                     | 249.085251                                                 | -47.135281    | 5.20             | 9.3;8.9            | 2.5        | 5.2          | 0.0        | 12.3;10.7                                                       | 12.3;10.7    | b,id;b,id   |  |
| 473 | 163620.5-470807    | 24                                                        | 249.085575                                                 | -47.135492    | 0.75             | 5.1                | 15.3       | 15.5         | 6.4        | 4.5                                                             | 4.5          | id,m3,vp,nd |  |
| 474 | 163620.6-465734    | 21                                                        | 249.086115                                                 | -46.959658    | 1.02             | 3.6                | 4.5        | 5.8          | 0.9        | 3.0                                                             | 3.0          | ····        |  |
| 475 | 163620.8-475342    | 28                                                        | 249.086842                                                 | -47.895230    | 12.44            | 11.8               | 1.2        | 0.0          | 1.4        | 17.8                                                            | 17.8         | m3          |  |
| 476 | 163621.1-471113    | 24,23                                                     | 249.087967                                                 | -47.187206    | 0.81             | 5.9;6.5            | 12.1       | 3.9          | 11.5       | 5.5;6.7                                                         | 5.5;6.7      | id;id       |  |
| 477 | 163621.2-470144    | 21                                                        | 249.088737                                                 | -47.029152    | 0.83             | 3.5                | 6.4        | 7.4          | 1.2        | 2.9                                                             | 2.9          |             |  |
| 478 | 163621.3-471433    | 24                                                        | 249.088977                                                 | -47.242657    | 4.35             | 8.0                | 2.9        | 4.8          | 0.0        | 8.9                                                             | 8.9          | id,nd       |  |
| 479 | 163621.8-471430    | 23                                                        | 249.090874                                                 | -47.241850    | 1.73             | 4.1                | 0.0        | $1.0 \\ 1.2$ | 0.0        | 10.6                                                            | 3.5          | e,id,nd     |  |
| 480 | 163621.8-474611    | 28                                                        | 249.091018                                                 | -47.769772    | 2.70             | 5.3                | 2.6        | 3.1          | 0.8        | 4.7                                                             | 4.7          |             |  |
| 481 | 163621.8-475325    | 28                                                        | 249.091110                                                 | -47.890331    | 11.78            | 11.6               | 2.6        | 0.1          | 2.8        | 17.2                                                            | 17.2         | <br>m3      |  |
| 482 | 163622.1-465654    | 20<br>21                                                  | 249.092393                                                 | -46.948527    | 1.43             | 3.8                | 3.9        | 4.9          | 0.9        | 3.2                                                             | 3.2          |             |  |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | $\begin{array}{c} \text{Dec.} \\ \text{(deg)} \end{array}$ | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF (arcsec) | Flags       |     |
|-----|--------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------|--------------------|------------|------------|------------|--------------------|--------------|-------------|-----|
| 483 | 163622.4-473730    | 25,28                                                     | 249.093369                                                 | -47.625271                                                 | 1.13             | 5.8;6.2            | 7.2        | 0.0        | 7.7        | 5.4;6.3            | 5.4;6.3      | ;           |     |
| 484 | 163623.4-474041    | 28                                                        | 249.097554                                                 | -47.678288                                                 | 1.33             | 4.3                | 4.2        | 2.8        | 3.1        | 3.7                | 3.7          | nd          |     |
| 485 | 163623.9-470135    | <b>2</b> 0<br>21                                          | 249.099888                                                 | -47.026447                                                 | 0.86             | 3.1                | 4.7        | 4.8        | 2.0        | 2.5                | 2.5          |             |     |
| 486 | 163624.2-464959    | 21                                                        | 249.101086                                                 | -46.833152                                                 | 5.39             | 9.9                | 1.9        | 0.0        | 2.5        | 13.7               | 13.7         |             |     |
| 487 | 163624.7-471727    | 23                                                        | 249.103265                                                 | -47.290868                                                 | 0.56             | 3.2                | 16.5       | 6.7        | 15.0       | 2.6                | 2.6          |             |     |
| 488 | 163625.6-474106    | 28                                                        | 249.106871                                                 | -47.685159                                                 | 0.96             | 4.6                | 7.5        | 4.4        | 6.0        | 3.9                | 3.9          | vp          |     |
| 489 | 163625.6-472805    | 25                                                        | 249.106995                                                 | -47.468085                                                 | 3.21             | 6.6                | 1.7        | 4.0        | 0.0        | 6.9                | 6.9          | nd          |     |
| 490 | 163625.9-473124    | 25,26                                                     | 249.107956                                                 | -47.523335                                                 | 0.87             | 4.2;7.9            | 8.1        | 10.2       | 1.0        | 3.6; 8.8           | 3.6; 8.8     | id;id       |     |
| 491 | 163626.2-474232    | 28                                                        | 249.109389                                                 | -47.709043                                                 | 1.29             | 4.5                | 0.4        | 0.0        | 0.6        | 10.8               | 3.8          | e,s,vp      |     |
| 492 | 163626.4 - 465523  | 18                                                        | 249.110229                                                 | -46.923274                                                 | 11.81            | 11.1               | 0.3        | 0.6        | 0.0        | 16.1               | 16.1         | m2,nd       |     |
| 493 | 163626.5-474229    | 28                                                        | 249.110554                                                 | -47.708314                                                 | 1.12             | 4.5                | 5.6        | 5.6        | 2.7        | 3.9                | 3.9          | vs          |     |
| 494 | 163627.2 - 465544  | 18                                                        | 249.113405                                                 | -46.928903                                                 | 15.33            | 11.1               | 0.8        | 0.2        | 0.7        | 16.1               | 16.1         | m2,nd       |     |
| 495 | 163627.2-472949    | 26,25                                                     | 249.113586                                                 | -47.496956                                                 | 1.01             | 7.0; 5.1           | 7.8        | 7.5        | 4.9        | 7.1;4.4            | 7.1;4.4      | ;vs         |     |
| 496 | 163628.0-465725    | 21                                                        | 249.116871                                                 | -46.957042                                                 | 0.91             | 2.8                | 4.6        | 5.4        | 0.5        | 2.4                | 2.4          |             |     |
| 497 | 163628.2-473733    | 28                                                        | 249.117586                                                 | -47.625840                                                 | 7.29             | 6.8                | 2.8        | 2.5        | 1.6        | 7.3                | 7.3          | m3,nd       |     |
| 498 | 163628.2-473745    | 28                                                        | 249.117796                                                 | -47.629253                                                 | 3.60             | 6.7                | 0.6        | 2.4        | 0.0        | 15.5               | 7.1          | e,m1,nd     |     |
| 499 | 163628.2-471051    | 23,24                                                     | 249.117798                                                 | -47.180847                                                 | 1.84             | 6.2; 6.9           | 4.4        | 5.6        | 1.2        | 6.4;7.0            | 6.4;7.0      | ;           |     |
| 500 | 163628.4 - 473536  | 25                                                        | 249.118369                                                 | -47.593406                                                 | 1.27             | 3.8                | 3.5        | 3.1        | 1.9        | 3.2                | 3.2          |             |     |
| 501 | 163628.5-474739    | 28                                                        | 249.119074                                                 | -47.794400                                                 | 4.17             | 7.1                | 2.4        | 3.4        | 0.4        | 7.4                | 7.4          |             |     |
| 502 | 163629.3 - 470001  | 21                                                        | 249.122350                                                 | -47.000413                                                 | 0.58             | 1.5                | 7.0        | 8.5        | 0.4        | 2.1                | 2.1          |             |     |
| 503 | 163629.4 - 465229  | 21                                                        | 249.122516                                                 | -46.874782                                                 | 1.70             | 7.3                | 6.6        | 0.6        | 6.7        | 8.1                | 8.1          |             |     |
| 504 | 163629.5 - 465640  | 18                                                        | 249.123172                                                 | -46.944484                                                 | 16.41            | 11.2               | 2.2        | 0.0        | 0.6        | 16.4               | 16.4         | nd          |     |
| 505 | 163629.8 - 474100  | 28,25                                                     | 249.124374                                                 | -47.683521                                                 | 0.92             | 5.3; 8.0           | 10.6       | 5.6        | 9.1        | 4.7; 8.9           | 4.7; 8.9     | ;           |     |
| 506 | 163629.9 - 465617  | 21                                                        | 249.124844                                                 | -46.938122                                                 | 0.85             | 3.6                | 6.0        | 7.4        | 0.0        | 3.0                | 3.0          | nd          |     |
| 507 | 163630.5 - 473228  | 25,26                                                     | 249.127136                                                 | -47.541134                                                 | 0.59             | 3.1; 9.2           | 12.5       | 13.7       | 4.0        | 2.5;11.4           | 2.5;11.4     | ;m1         |     |
| 508 | 163631.0-473208    | 26                                                        | 249.129248                                                 | -47.535741                                                 | 1.89             | 9.0                | 7.0        | 0.9        | 7.1        | 11.0               | 11.0         | $m_{1,nd}$  |     |
| 509 | 163631.3-473212    | 25                                                        | 249.130589                                                 | -47.536865                                                 | 0.63             | 3.0                | 11.8       | 1.2        | 11.8       | 2.5                | 2.5          | nd          |     |
| 510 | 163631.5 - 470929  | 24                                                        | 249.131328                                                 | -47.158137                                                 | 3.50             | 7.0                | 2.8        | 4.0        | 0.1        | 7.4                | 7.4          | nd          |     |
| 511 | 163631.8 - 472028  | 23                                                        | 249.132623                                                 | -47.341320                                                 | 1.06             | 4.3                | 2.9        | 0.0        | 3.0        | 9.8                | 3.6          | е           |     |
| 512 | 163632.3 - 474315  | 28                                                        | 249.134878                                                 | -47.721085                                                 | 1.64             | 5.6                | 3.0        | 2.1        | 2.2        | 14.0               | 5.1          | е           |     |
| 513 | 163632.7 - 470205  | 21                                                        | 249.136534                                                 | -47.034850                                                 | 0.77             | 2.6                | 6.0        | 2.6        | 5.3        | 2.4                | 2.4          |             |     |
| 514 | 163632.9 - 473245  | 25                                                        | 249.137320                                                 | -47.545932                                                 | 0.72             | 2.6                | 5.9        | 0.0        | 6.0        | 2.3                | 2.3          |             |     |
| 515 | 163633.7 - 472124  | 26                                                        | 249.140706                                                 | -47.356917                                                 | 4.62             | 7.7                | 2.2        | 4.0        | 0.0        | 8.7                | 8.7          | nd          |     |
| 516 | 163633.9 - 470239  | 21                                                        | 249.141474                                                 | -47.044344                                                 | 0.71             | 3.1                | 8.0        | 0.0        | 8.4        | 2.6                | 2.6          |             |     |
| 517 | 163634.7 - 465802  | 21                                                        | 249.144975                                                 | -46.967383                                                 | 0.76             | 1.7                | 3.7        | 3.5        | 1.7        | 2.0                | 2.0          |             |     |
| 518 | 163635.0-470808    | 23                                                        | 249.145948                                                 | -47.135794                                                 | 3.93             | 8.5                | 1.8        | 1.9        | 0.8        | 10.7               | 10.7         | nd          |     |
| 519 | 163635.6-472625    | 25,26                                                     | 249.148514                                                 | -47.440361                                                 | 1.10             | 7.4;6.9            | 9.4        | 13.0       | 0.4        | 8.2;7.2            | 8.2;7.2      | ;           |     |
| 520 | 163636.1 - 471801  | 23                                                        | 249.150650                                                 | -47.300402                                                 | 0.58             | 1.8                | 7.3        | 0.0        | 7.8        | 2.2                | 2.2          |             |     |
| 521 | 163636.3 - 470853  | $24,\!23$                                                 | 249.151398                                                 | -47.148270                                                 | 3.00             | 7.8;7.8            | 4.3        | 0.0        | 4.9        | 8.7; 9.0           | 8.7; 9.0     | ;           |     |
| 522 | 163636.6-471315    | 23                                                        | 249.152850                                                 | -47.220914                                                 | 1.66             | 3.5                | 2.5        | 0.0        | 2.7        | 2.9                | 2.9          |             |     |
| 523 | 163636.9-471314    | 23                                                        | 249.154058                                                 | -47.220778                                                 | 1.26             | 3.5                | 0.0        | 0.0        | 0.0        | 8.3                | 2.9          | e,s         |     |
| 524 | 163637.0-470253    | 21                                                        | 249.154225                                                 | -47.048259                                                 | 0.83             | 3.3                | 6.5        | 0.7        | 6.8        | 2.7                | 2.7          |             |     |
| 525 | 163637.7 - 465436  | 21                                                        | 249.157096                                                 | -46.910227                                                 | 2.67             | 5.0                | 1.8        | 3.0        | 0.0        | 4.4                | 4.4          | nd          | 218 |
| 526 | 163638.2 - 473510  | 25                                                        | 249.159476                                                 | -47.586190                                                 | 0.67             | 2.3                | 8.8        | 0.0        | 9.2        | 2.3                | 2.3          | $^{\rm vp}$ |     |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | $\begin{array}{c} \text{Dec.} \\ \text{(deg)} \end{array}$ | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags    |     |
|-----|--------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------|--------------------|------------|------------|------------|--------------------|-----------------|----------|-----|
| 527 | 163638.3-473958    | 28,25                                                     | 249.159592                                                 | -47.666115                                                 | 1.43             | 6.9; 6.6           | 6.9        | 0.3        | 7.2        | 7.4;6.5            | 7.4;6.5         | vp;      |     |
| 528 | 163638.6-470159    | 21                                                        | 249.160882                                                 | -47.033262                                                 | 0.70             | 2.4                | 5.7        | 6.6        | 0.5        | 2.3                | 2.3             |          |     |
| 529 | 163638.7-473922    | 28,25                                                     | 249.161514                                                 | -47.656219                                                 | 0.81             | 7.2;6.0            | 14.5       | 13.3       | 7.7        | 7.8;5.7            | 7.8;5.7         | vl;vs,vl |     |
| 530 | 163638.9-471957    | 23                                                        | 249.162438                                                 | -47.332702                                                 | 0.78             | 3.4                | 6.8        | 4.9        | 4.9        | 2.9                | 2.9             |          |     |
| 531 | 163639.8-473213    | 25                                                        | 249.166200                                                 | -47.537069                                                 | 0.65             | 1.9                | 7.6        | 0.0        | 8.0        | 2.1                | 2.1             |          |     |
| 532 | 163639.9-473709    | 25                                                        | 249.166657                                                 | -47.619349                                                 | 1.17             | 3.8                | 4.1        | 2.2        | 3.3        | 3.2                | 3.2             | $m^2$    |     |
| 533 | 163640.0-470051    | 21                                                        | 249.166718                                                 | -47.014178                                                 | 0.58             | 1.3                | 7.0        | 7.6        | 2.0        | 2.2                | 2.2             |          |     |
| 534 | 163640.3-473442    | 25                                                        | 249.167941                                                 | -47.578410                                                 | 0.65             | 1.7                | 5.9        | 5.3        | 3.3        | 2.2                | 2.2             | vp       |     |
| 535 | 163640.3-473718    | 25                                                        | 249.168249                                                 | -47.621908                                                 | 0.86             | 4.0                | 2.1        | 0.6        | 1.9        | 7.5                | 3.3             | e,m1,nd  |     |
| 536 | 163640.4 - 470151  | 21                                                        | 249.168583                                                 | -47.030938                                                 | 0.75             | 2.3                | 5.8        | 7.0        | 0.5        | 2.3                | 2.3             | ••••     |     |
| 537 | 163640.5-471221    | 23                                                        | 249.168751                                                 | -47.206049                                                 | 1.25             | 4.2                | 3.8        | 0.9        | 3.6        | 3.7                | 3.7             | nd       |     |
| 538 | 163640.8-472314    | 23,26                                                     | 249.170105                                                 | -47.387436                                                 | 1.55             | 6.7; 8.1           | 5.0        | 5.0        | 2.9        | 6.6; 9.5           | 6.6; 9.5        | ;        |     |
| 539 | 163641.0-465343    | 21                                                        | 249.171220                                                 | -46.895326                                                 | 3.29             | 6.0                | 2.0        | 4.3        | 0.0        | 5.9                | 5.9             | nd       |     |
| 540 | 163641.9 - 465008  | 18                                                        | 249.174910                                                 | -46.835794                                                 | 3.91             | 7.4                | 1.8        | 0.0        | 2.1        | 7.9                | 7.9             | vp       |     |
| 541 | 163643.6-473027    | 25                                                        | 249.182007                                                 | -47.507771                                                 | 1.01             | 3.1                | 3.9        | 1.1        | 3.6        | 2.6                | 2.6             |          |     |
| 542 | 163643.8 - 470359  | 21                                                        | 249.182758                                                 | -47.066428                                                 | 1.37             | 4.5                | 4.7        | 2.8        | 3.7        | 3.7                | 3.7             |          |     |
| 543 | 163644.5 - 474516  | 28                                                        | 249.185430                                                 | -47.754528                                                 | 3.13             | 8.1                | 4.1        | 3.0        | 2.8        | 9.2                | 9.2             | vp       |     |
| 544 | 163645.1 - 471932  | 23                                                        | 249.187966                                                 | -47.325666                                                 | 1.07             | 3.0                | 3.5        | 3.4        | 1.5        | 2.5                | 2.5             |          |     |
| 545 | 163645.6-471148    | 23,20                                                     | 249.190353                                                 | -47.196743                                                 | 1.11             | 4.8;8.6            | 6.6        | 8.7        | 0.9        | 4.2;10.1           | 4.2;10.1        | ;        |     |
| 546 | 163646.2 - 472903  | 25                                                        | 249.192863                                                 | -47.484220                                                 | 0.96             | 4.5                | 7.1        | 7.1        | 2.9        | 3.9                | 3.9             | nd       |     |
| 547 | 163646.5 - 473540  | 25                                                        | 249.193906                                                 | -47.594573                                                 | 1.40             | 2.1                | 4.9        | 2.6        | 4.0        | 2.3                | 2.3             |          |     |
| 548 | 163646.6 - 472815  | 25,22                                                     | 249.194183                                                 | -47.470863                                                 | 1.00             | 5.3; 9.0           | 8.8        | 4.5        | 7.2        | 4.8;11.0           | 4.8;11.0        | ;        |     |
| 549 | 163646.6 - 470506  | 24                                                        | 249.194509                                                 | -47.085094                                                 | 11.05            | 10.2               | 0.0        | 0.0        | 0.6        | 14.0               | 14.0            | m3,nd    |     |
| 550 | 163646.8 - 474101  | 28                                                        | 249.195165                                                 | -47.683744                                                 | 5.01             | 8.0                | 1.8        | 3.8        | 0.0        | 9.3                | 9.3             |          |     |
| 551 | 163647.4 - 471430  | 23                                                        | 249.197654                                                 | -47.241718                                                 | 0.70             | 2.2                | 2.0        | 2.0        | 1.1        | 7.9                | 2.2             | e        |     |
| 552 | 163647.4 - 465153  | $21,\!18$                                                 | 249.197906                                                 | -46.864754                                                 | 1.42             | 7.9; 6.5           | 6.3        | 9.0        | 0.0        | 9.3;6.6            | 9.3;6.6         | ;        |     |
| 553 | 163647.5 - 473427  | 25                                                        | 249.198264                                                 | -47.574342                                                 | 1.09             | 0.9                | 1.5        | 2.0        | 0.3        | 8.3                | 2.1             | e        |     |
| 554 | 163648.0-470746    | 24                                                        | 249.200298                                                 | -47.129608                                                 | 11.77            | 9.8                | 1.3        | 2.6        | 0.0        | 13.0               | 13.0            | nd       |     |
| 555 | 163648.1 - 470505  | 24                                                        | 249.200819                                                 | -47.084723                                                 | 14.67            | 10.4               | 0.3        | 0.0        | 0.8        | 14.7               | 14.7            | m3,nd    |     |
| 556 | 163648.2 - 473033  | 25                                                        | 249.201130                                                 | -47.509333                                                 | 0.72             | 3.0                | 7.0        | 0.0        | 7.3        | 2.5                | 2.5             |          |     |
| 557 | 163648.6 - 470551  | 21                                                        | 249.202893                                                 | -47.097613                                                 | 3.10             | 6.5                | 2.1        | 4.1        | 0.0        | 6.3                | 6.3             | nd       |     |
| 558 | 163649.0-470655    | 21                                                        | 249.204257                                                 | -47.115403                                                 | 5.18             | 7.5                | 2.2        | 4.2        | 0.0        | 7.8                | 7.8             | m1,nd    |     |
| 559 | 163649.1 - 471815  | 23                                                        | 249.204611                                                 | -47.304424                                                 | 1.08             | 2.0                | 2.4        | 3.5        | 0.0        | 2.2                | 2.2             |          |     |
| 560 | 163649.2 - 465531  | 21                                                        | 249.205179                                                 | -46.925382                                                 | 1.25             | 4.6                | 3.1        | 2.6        | 1.8        | 4.0                | 4.0             | nd       |     |
| 561 | 163649.2 - 465620  | 18                                                        | 249.205386                                                 | -46.939100                                                 | 2.80             | 8.3                | 3.0        | 0.0        | 3.2        | 9.6                | 9.6             |          |     |
| 562 | 163649.3 - 464559  | 18                                                        | 249.205598                                                 | -46.766601                                                 | 5.65             | 7.7                | 2.8        | 4.2        | 0.1        | 8.7                | 8.7             |          |     |
| 563 | 163650.1 - 474220  | 28                                                        | 249.208953                                                 | -47.705563                                                 | 4.25             | 8.5                | 2.0        | 0.1        | 2.1        | 10.2               | 10.2            |          |     |
| 564 | 163650.1 - 470705  | $20,\!24,\!21$                                            | 249.209137                                                 | -47.118073                                                 | 1.50             | 6.8;10.3;7.7       | 7.5        | 6.2        | 5.7        | 7.0;14.2;8.3       | 7.0;14.2;8.3    | ;;m1     |     |
| 565 | 163650.4 - 471840  | 23                                                        | 249.210360                                                 | -47.311352                                                 | 0.83             | 2.5                | 4.3        | 0.0        | 4.5        | 2.4                | 2.4             |          |     |
| 566 | 163650.5 - 472145  | 22                                                        | 249.210506                                                 | -47.362508                                                 | 4.22             | 8.1                | 2.1        | 0.8        | 1.9        | 9.4                | 9.4             | nd       |     |
| 567 | 163651.0-473606    | 25                                                        | 249.212682                                                 | -47.601834                                                 | 0.76             | 2.6                | 5.3        | 0.0        | 5.5        | 2.4                | 2.4             |          |     |
| 568 | 163651.0-474317    | $28,\!25$                                                 | 249.212830                                                 | -47.721653                                                 | 1.00             | 8.7;9.8            | 18.1       | 2.1        | 18.0       | 10.6; 12.4         | 10.6; 12.4      | vl;vp,vl |     |
| 569 | 163651.1 - 465231  | $21,\!18$                                                 | 249.213074                                                 | -46.875446                                                 | 0.63             | 7.5; 6.1           | 21.3       | 17.4       | 13.2       | 8.3;5.9            | 8.3;5.9         | vl;vl    | Р   |
| 570 | 163651.8 - 471734  | 23                                                        | 249.216019                                                 | -47.292793                                                 | 0.68             | 1.8                | 5.6        | 2.9        | 4.7        | 2.2                | 2.2             | vp       | 617 |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF (arcsec) | Flags       |     |
|-----|--------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|--------------|-------------|-----|
| 571 | 163652.4-471845    | 23                                                        | 249.218366                                                 | -47.312650    | 0.83             | 2.7                | 4.5        | 5.3        | 1.3        | 2.4                | 2.4          |             |     |
| 572 | 163653.7-465834    | 20<br>21                                                  | 249.210000<br>249.224115                                   | -46.976374    | 0.90             | 2.9                | 3.9        | 1.0        | 3.7        | 2.5                | 2.5          |             |     |
| 573 | 163653.8-464713    | 18                                                        | 249.224168                                                 | -46.787030    | 2.25             | 6.4                | 3.4        | 3.9        | 1.4        | 6.5                | 6.5          |             |     |
| 574 | 163654.6-473339    | 25                                                        | 249.227590                                                 | -47.560849    | 0.54             | 1.2                | 8.0        | 8.8        | 2.0        | 2.1                | 2.1          | vp          |     |
| 575 | 163654.9-470348    | 21,20                                                     | 249.229004                                                 | -47.063496    | 0.83             | 5.1;7.1            | 10.8       | 0.0        | 11.6       | 4.3;7.6            | 4.3;7.6      | ·p<br>;     |     |
| 576 | 163655.0-473803    | 25                                                        | 249.229421                                                 | -47.634264    | 1.59             | 4.7                | 1.0        | 0.0        | 1.0        | 9.2                | 3.9          | е           |     |
| 577 | 163655.3-473124    | 25                                                        | 249.230449                                                 | -47.523351    | 0.79             | 2.5                | 1.9        | 0.0        | 2.0        | 12.0               | 2.3          | e           |     |
| 578 | 163655.5-474232    | 28,25                                                     | 249.231506                                                 | -47.709042    | 0.86             | 9.4;9.1            | 25.1       | 23.3       | 12.9       | 12.0<br>12.1;11.1  | 12.1;11.1    | id,vl;id,vl |     |
| 579 | 163655.7-470101    | 20                                                        | 249.232172                                                 | -47.017178    | 6.00             | 8.9                | 0.6        | 0.0        | 1.0        | 11.3               | 11.3         | nd          |     |
| 580 | 163655.8-472710    | 23                                                        | 249.232836                                                 | -47.452968    | 8.59             | 10.8               | 3.2        | 0.0        | 2.4        | 15.0               | 15.0         | nd          |     |
| 581 | 163655.9-472817    | $25^{-5}$                                                 | 249.233147                                                 | -47.471543    | 1.49             | 5.4                | 0.9        | 1.1        | 0.3        | 17.1               | 5.1          | e,nd        |     |
| 582 | 163656.3-470225    | 21                                                        | 249.234786                                                 | -47.040387    | 1.65             | 4.2                | 3.9        | 4.2        | 1.4        | 3.5                | 3.5          | nd          |     |
| 583 | 163656.9-471613    | 23                                                        | 249.237315                                                 | -47.270424    | 0.75             | 2.4                | 3.3        | 0.0        | 3.5        | 6.9                | 2.3          | e           |     |
| 584 | 163657.0-471612    | 23                                                        | 249.237728                                                 | -47.270105    | 0.69             | 2.5                | 0.0        | 0.0        | 0.0        | 15.8               | 2.3          | e,s         |     |
| 585 | 163657.1-464903    | 18                                                        | 249.238205                                                 | -46.817655    | 2.13             | 5.0                | 3.7        | 0.0        | 4.2        | 4.4                | 4.4          | -,-         |     |
| 586 | 163658.5-472643    | 22                                                        | 249.244144                                                 | -47.445330    | 2.26             | 6.5                | 3.8        | 0.0        | 4.1        | 6.5                | 6.5          | nd          |     |
| 587 | 163658.7-473146    | $25^{}$                                                   | 249.244691                                                 | -47.529634    | 0.86             | 2.6                | 4.3        | 1.2        | 4.0        | 2.3                | 2.3          |             |     |
| 588 | 163658.8-471515    | 23                                                        | 249.245217                                                 | -47.254394    | 0.68             | 3.0                | 3.7        | 0.8        | 3.6        | 18.9               | 2.5          | е           |     |
| 589 | 163658.8-471826    | 22                                                        | 249.245234                                                 | -47.307425    | 7.40             | 8.7                | 1.7        | 0.9        | 1.2        | 11.0               | 11.0         |             |     |
| 590 | 163659.3-471451    | 23                                                        | 249.247267                                                 | -47.247702    | 0.93             | 3.3                | 5.3        | 7.1        | 0.0        | 2.8                | 2.8          | nd          |     |
| 591 | 163659.5 - 465753  | 21                                                        | 249.248068                                                 | -46.964894    | 1.29             | 4.1                | 3.7        | 5.8        | 0.0        | 3.5                | 3.5          | nd          |     |
| 592 | 163659.9 - 470914  | 20                                                        | 249.249783                                                 | -47.153889    | 1.67             | 5.4                | 2.4        | 4.0        | 0.1        | 12.6               | 4.8          | e,nd        |     |
| 593 | 163700.1-471102    | 23,20                                                     | 249.250763                                                 | -47.184090    | 1.23             | 6.3; 6.1           | 7.6        | 10.2       | 0.6        | 6.5; 5.8           | 6.5; 5.8     | vp;         |     |
| 594 | 163700.3-470546    | 20                                                        | 249.251289                                                 | -47.096265    | 3.18             | 5.4                | 2.5        | 3.7        | 0.0        | 4.9                | 4.9          |             |     |
| 595 | 163700.3-465705    | 18                                                        | 249.251648                                                 | -46.951609    | 2.85             | 7.7                | 3.2        | 5.5        | 0.0        | 8.2                | 8.2          |             |     |
| 596 | 163701.2-473413    | 25                                                        | 249.255123                                                 | -47.570413    | 0.75             | 2.4                | 6.1        | 2.7        | 5.3        | 2.3                | 2.3          |             |     |
| 597 | 163701.2-464141    | 18                                                        | 249.255154                                                 | -46.694767    | 3.74             | 9.9                | 2.8        | 0.4        | 2.6        | 13.6               | 13.6         | m3          |     |
| 598 | 163701.2-470854    | 20                                                        | 249.255274                                                 | -47.148432    | 1.34             | 5.1                | 5.2        | 3.9        | 3.8        | 4.3                | 4.3          | nd          |     |
| 599 | 163701.4-470338    | 21                                                        | 249.256191                                                 | -47.060599    | 1.73             | 5.7                | 4.0        | 4.5        | 1.6        | 5.2                | 5.2          | vp,nd       |     |
| 600 | 163702.0-473818    | 25                                                        | 249.258718                                                 | -47.638436    | 2.01             | 5.4                | 3.3        | 2.6        | 2.1        | 4.7                | 4.7          | • • •       |     |
| 601 | 163702.3-473149    | 25                                                        | 249.259876                                                 | -47.530493    | 0.98             | 3.0                | 4.0        | 4.2        | 1.5        | 2.5                | 2.5          | nd          |     |
| 602 | 163702.4-470223    | 20,21                                                     | 249.260071                                                 | -47.039917    | 1.30             | 7.1;5.0            | 5.5        | 0.0        | 5.9        | 7.7; 4.3           | 7.7;4.3      | m3;         |     |
| 603 | 163702.5 - 470052  | 20,21                                                     | 249.260635                                                 | -47.014465    | 1.92             | 8.3;4.4            | 4.6        | 6.2        | 0.8        | 10.1; 3.7          | 10.1; 3.7    | ;           |     |
| 604 | 163702.6-464145    | 18                                                        | 249.261055                                                 | -46.695998    | 4.80             | 9.7                | 1.8        | 0.0        | 2.6        | 13.3               | 13.3         | m3          |     |
| 605 | 163702.8 - 465222  | 18                                                        | 249.262062                                                 | -46.872998    | 1.16             | 4.2                | 5.3        | 3.6        | 3.9        | 3.5                | 3.5          |             |     |
| 606 | 163702.9 - 470223  | 20                                                        | 249.262304                                                 | -47.039964    | 3.38             | 7.0                | 1.3        | 0.0        | 1.6        | 7.6                | 7.6          | m3          |     |
| 607 | 163703.8 - 464940  | 18                                                        | 249.266087                                                 | -46.827939    | 0.93             | 3.8                | 5.4        | 6.4        | 0.9        | 3.2                | 3.2          |             |     |
| 608 | 163704.8 - 464332  | 18                                                        | 249.270109                                                 | -46.725586    | 3.24             | 7.9                | 3.1        | 4.0        | 0.8        | 9.4                | 9.4          |             |     |
| 609 | 163704.9 - 470757  | 20                                                        | 249.270467                                                 | -47.132746    | 0.84             | 4.3                | 8.2        | 9.9        | 1.3        | 3.6                | 3.6          | nd          |     |
| 610 | 163705.3-470759    | 21                                                        | 249.272096                                                 | -47.133165    | 2.73             | 9.6                | 5.0        | 3.7        | 2.5        | 12.0               | 12.0         | nd          |     |
| 611 | 163705.5 - 470753  | 20                                                        | 249.273284                                                 | -47.131414    | 1.66             | 4.2                | 2.8        | 4.2        | 0.0        | 3.5                | 3.5          | nd          |     |
| 612 | 163705.8 - 470158  | 20                                                        | 249.274194                                                 | -47.032976    | 3.09             | 7.1                | 3.2        | 5.1        | 0.0        | 7.6                | 7.6          | nd          |     |
| 613 | 163706.2 - 464725  | 18                                                        | 249.275880                                                 | -46.790475    | 1.88             | 4.6                | 2.8        | 4.3        | 0.0        | 3.9                | 3.9          |             | Þ   |
| 614 | 163706.4 - 470955  | 23                                                        | 249.276711                                                 | -47.165521    | 4.69             | 7.8                | 1.9        | 1.9        | 0.7        | 9.0                | 9.0          |             | 770 |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB        | Radius<br>(arcsec) | PSF (arcsec) | Flags      |     |
|-----|--------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------|------------------|--------------------|------------|------------|-------------------|--------------------|--------------|------------|-----|
| 615 | 163707.0-464622    | 18                                                        | 249.279497                                                 | -46.773041    | 1.63             | 5.3                | 3.6        | 2.8        | 2.3               | 4.8                | 4.8          |            |     |
| 616 | 163707.4-465109    | 18                                                        | 249.281157                                                 | -46.852734    | 0.88             | 3.1                | 4.6        | 0.0        | $\frac{2.9}{4.9}$ | 2.5                | 2.5          |            |     |
| 617 | 163708.0-473220    | 25                                                        | 249.283610                                                 | -47.539112    | 1.52             | 3.7                | 2.3        | 3.8        | 0.0               | 3.1                | 3.1          | nd         |     |
| 618 | 163708.4-472131    | 20                                                        | 249.285281                                                 | -47.358848    | 1.18             | 5.5                | 7.1        | 6.3        | 4.2               | 5.1                | 5.1          | nd         |     |
| 619 | 163709.2-465826    | 20                                                        | 249.288553                                                 | -46.974158    | 4.90             | 9.9                | 3.6        | 1.6        | 2.0               | 13.7               | 13.7         | nd         |     |
| 620 | 163709.7-473157    | $\frac{20}{25}$                                           | 249.290588                                                 | -47.532603    | 0.68             | 4.1                | 11.4       | 0.9        | 11.6              | 3.5                | 3.5          | nd         |     |
| 621 | 163709.8-473154    | 20                                                        | 249.290930                                                 | -47.531671    | 1.89             | 8.4                | 6.6        | 1.0        | 6.6               | 9.7                | 9.7          | nd         |     |
| 622 | 163710.5-470750    | 20                                                        | 249.2900000<br>249.293756                                  | -47.130579    | 0.55             | 3.3                | 24.2       | 25.8       | 5.4               | 2.8                | 2.8          |            |     |
| 623 | 163711.4-472455    | 20                                                        | 249.297893                                                 | -47.415455    | 0.55<br>0.75     | 4.0                | 9.9        | 2.0        | 9.7               | 3.4                | 3.4          | nd         |     |
| 624 | 163711.9-465248    | 18                                                        | 249.299979                                                 | -46.880242    | 1.26             | 3.1                | 2.8        | 0.0        | 3.1               | 2.6                | 2.6          |            |     |
| 625 | 163712.0-472343    | 22                                                        | 249.300385                                                 | -47.395506    | 1.54             | 4.0                | 3.3        | 4.0        | 0.9               | 3.4                | 3.4          | nd         |     |
| 626 | 163712.1-465501    | 18,21                                                     | 249.300781                                                 | -46.917007    | 1.54             | 4.9;7.5            | 5.3        | 0.0        | 5.4               | 4.1;8.2            | 4.1;8.2      | ;          |     |
| 627 | 163712.2-472442    | 23                                                        | 249.301090                                                 | -47.411867    | 11.99            | 9.5                | 2.1        | 0.0        | 2.7               | 12.0               | 12.0         | nd         |     |
| 628 | 163712.4-464834    | 18                                                        | 249.301687                                                 | -46.809717    | 0.65             | 3.0                | 9.8        | 2.2        | 9.7               | 2.5                | 2.5          | vs         |     |
| 629 | 163712.7-465627    | 18                                                        | 249.302976                                                 | -46.940838    | 1.89             | 6.2                | 3.1        | 0.0        | 3.5               | 5.9                | 5.9          | nd         |     |
| 630 | 163713.0-465627    | 18                                                        | 249.304481                                                 | -46.940868    | 1.05<br>1.25     | 6.1                | 1.0        | 0.5        | 1.0               | 18.5               | 5.8          | e,s,nd     |     |
| 631 | 163713.7-465506    | 18                                                        | 249.307342                                                 | -46.918371    | 2.61             | 4.8                | 1.4        | 3.5        | 0.0               | 4.1                | 4.1          | nd         |     |
| 632 | 163713.7-473358    | 25                                                        | 249.307394                                                 | -47.566145    | 1.14             | 4.4                | 5.3        | 0.9        | 5.2               | 3.8                | 3.8          |            |     |
| 633 | 163713.8-464619    | 18                                                        | 249.307869                                                 | -46.772086    | 1.63             | 4.8                | 3.4        | 1.6        | 2.9               | 4.1                | 4.1          | nd         |     |
| 634 | 163713.8-465801    | 18                                                        | 249.307915                                                 | -46.966977    | 3.47             | 7.6                | 2.0        | 1.4        | 1.4               | 8.0                | 8.0          | nd         |     |
| 635 | 163713.9-464532    | 18                                                        | 249.308280                                                 | -46.758922    | 2.40             | 5.5                | 2.3        | 3.7        | 0.0               | 5.2                | 5.2          |            |     |
| 636 | 163714.0-471407    | 22                                                        | 249.308220                                                 | -47.235369    | 17.11            | 11.1               | 1.0        | 0.9        | $0.0 \\ 0.5$      | 17.1               | 17.1         | $m_{2,nd}$ |     |
| 637 | 163714.1-465142    | 18                                                        | 249.309124                                                 | -46.861866    | 0.78             | 2.1                | 4.8        | 0.0        | 5.0               | 2.3                | 2.3          |            |     |
| 638 | 163714.3-471429    | 20,23,22                                                  | 249.309738                                                 | -47.241486    | 1.97             | 7.3;5.8;10.7       | 4.8        | 7.2        | 0.0               | 7.5; 5.5; 16.0     | 7.5;5.5;16.0 | ;;m2       |     |
| 639 | 163714.5-472924    | 20,20,22                                                  | 249.310738                                                 | -47.490110    | 2.48             | 5.9                | 1.6        | 4.2        | 0.0               | 5.5                | 5.5          | nd         |     |
| 640 | 163714.9-465444    | 21                                                        | 249.312311                                                 | -46.912273    | 5.27             | 8.0                | 0.9        | 0.0        | 1.0               | 9.4                | 9.4          | nd         |     |
| 641 | 163715.2-465157    | 18                                                        | 249.313617                                                 | -46.865945    | 0.77             | 2.1                | 4.3        | 2.6        | 3.2               | 2.3                | 2.3          |            |     |
| 642 | 163716.3-464606    | 18                                                        | 249.318267                                                 | -46.768400    | 2.12             | 4.8                | 2.8        | 2.4        | 1.5               | 4.2                | 4.2          | nd         |     |
| 643 | 163717.6-470337    | 17                                                        | 249.323705                                                 | -47.060458    | 16.73            | 11.3               | 0.9        | 0.0        | 1.1               | 16.7               | 16.7         | nd         |     |
| 644 | 163717.8-465759    | 20                                                        | 249.324281                                                 | -46.966619    | 7.67             | 9.9                | 0.0        | 0.0        | 0.6               | 13.7               | 13.7         | nd         |     |
| 645 | 163717.9-471131    | 23,20                                                     | 249.324814                                                 | -47.192127    | 1.39             | 7.8;4.4            | 5.5        | 0.6        | 5.6               | 9.0;3.6            | 9.0;3.6      | id,vp;id   |     |
| 646 | 163718.0-470031    | 21,20                                                     | 249.325363                                                 | -47.008713    | 1.95             | 6.9;7.5            | 4.9        | 6.5        | 1.0               | 7.2;8.4            | 7.2;8.4      | ;          |     |
| 647 | 163718.1-471330    | 21,20<br>20,23                                            | 249.325653                                                 | -47.225147    | 0.87             | 6.2;6.8            | 11.2       | 11.7       | 5.3               | 5.9;7.1            | 5.9;7.1      |            |     |
| 648 | 163718.1-472851    | 22                                                        | 249.325829                                                 | -47.480887    | 2.21             | 5.1                | 2.7        | 0.0        | 3.1               | 4.3                | 4.3          | nd         |     |
| 649 | 163718.8-471435    | 22                                                        | 249.328429                                                 | -47.243168    | 14.32            | 10.4               | 0.0        | 0.0        | 0.2               | 15.2               | 15.2         | nd         |     |
| 650 | 163718.9-464523    | 18                                                        | 249.329004                                                 | -46.756537    | 1.18             | 5.4                | 6.0        | 4.4        | 4.2               | 5.0                | 5.0          | nd         |     |
| 651 | 163720.0-471222    | 20                                                        | 249.333643                                                 | -47.206324    | 1.78             | 5.0                | 3.0        | 0.0        | 3.4               | 4.2                | 4.2          | nd         |     |
| 652 | 163720.1-472149    | $\frac{20}{22}$                                           | 249.333919                                                 | -47.363876    | 1.30             | 3.8                | 4.1        | 0.9        | 3.9               | 3.2                | 3.2          | nd         |     |
| 653 | 163720.5-472150    | 22                                                        | 249.335667                                                 | -47.363922    | 0.95             | 3.8                | 0.0        | 0.0        | 0.3               | 13.5               | 3.2          | e,s,vp,nd  |     |
| 654 | 163720.5-471027    | 20                                                        | 249.335738                                                 | -47.174374    | 0.72             | 3.2                | 7.9        | 8.3        | 2.8               | 2.7                | 2.7          |            |     |
| 655 | 163720.8-464435    | 15,18                                                     | 249.336838                                                 | -46.743080    | 1.09             | 9.2;6.1            | 10.8       | 11.6       | 4.0               | 11.6;6.2           | 11.6;6.2     | vs,vl;vl   |     |
| 656 | 163721.2-472704    | 22                                                        | 249.338562                                                 | -47.451140    | 1.02             | 3.4                | 4.3        | 3.3        | 2.8               | 2.8                | 2.8          |            |     |
| 657 | 163721.3-470657    | 20                                                        | 249.339084                                                 | -47.116085    | 0.67             | 1.7                | 2.2        | 0.0        | 2.8               | 5.8                | 2.0          | е          | г   |
| 658 | 163722.0-472137    | 20<br>22                                                  | 249.341687                                                 | -47.360533    | 1.01             | 3.8                | 5.4        | 0.0        | 5.9               | 3.2                | 3.2          | nd         | 777 |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF (arcsec) | Flags         |   |
|-----|--------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|--------------|---------------|---|
| 659 | 163722.0-464551    | 15,18                                                     | 249.342056                                                 | -46.764397    | 0.60             | 9.5;4.8            | 23.9       | 23.3       | 9.2        | 12.1;4.2           | 12.1;4.2     | vl;vp,vl      |   |
| 660 | 163722.4-473517    | 25                                                        | 249.343377                                                 | -47.588176    | 2.62             | 6.1                | 2.8        | 3.4        | 0.7        | 6.0                | 6.0          |               |   |
| 661 | 163722.4-471539    | 23                                                        | 249.343701                                                 | -47.260964    | 1.92             | 6.8                | 5.1        | 5.7        | 1.9        | 7.1                | 7.1          | nd            |   |
| 662 | 163722.8-472712    | $\frac{1}{22}$                                            | 249.345355                                                 | -47.453543    | 0.76             | 3.3                | 7.2        | 8.1        | 2.0        | 2.8                | 2.8          |               |   |
| 663 | 163723.4-472436    | $\frac{-}{22}$                                            | 249.347791                                                 | -47.410097    | 0.64             | 2.0                | 2.3        | 0.8        | 2.1        | 9.5                | 2.2          | e             |   |
| 664 | 163723.5-470616    | 20                                                        | 249.348035                                                 | -47.104536    | 0.64             | 1.8                | 3.2        | 0.0        | 3.6        | 4.6                | 2.1          | e             |   |
| 665 | 163723.6-472903    | 22                                                        | 249.348362                                                 | -47.484394    | 1.19             | 4.8                | 7.2        | 1.2        | 7.1        | 4.1                | 4.1          |               |   |
| 666 | 163724.5-470859    | 20                                                        | 249.352437                                                 | -47.149762    | 0.63             | 1.6                | 6.5        | 7.0        | 1.7        | 2.2                | 2.2          |               |   |
| 667 | 163724.8-465323    | 18                                                        | 249.353597                                                 | -46.889725    | 0.74             | 2.7                | 6.0        | 8.0        | 0.0        | 2.4                | 2.4          | vp            |   |
| 668 | 163725.7-465917    | 17                                                        | 249.357183                                                 | -46.988227    | 5.75             | 8.8                | 1.5        | 0.0        | 2.3        | 10.9               | 10.9         | nd            |   |
| 669 | 163725.9-471733    | 22,19                                                     | 249.358200                                                 | -47.292648    | 2.71             | 7.3;9.8            | 3.7        | 6.0        | 0.0        | 8.0;12.7           | 8.0;12.7     | ;             |   |
| 670 | 163726.1-465316    | 18                                                        | 249.358856                                                 | -46.887780    | 0.82             | 2.6                | 5.0        | 0.0        | 5.3        | 2.4                | 2.4          |               |   |
| 671 | 163726.1-464022    | 15                                                        | 249.358884                                                 | -46.673027    | 1.96             | 8.0                | 5.5        | 2.4        | 4.8        | 9.2                | 9.2          |               |   |
| 672 | 163726.2-470505    | 20                                                        | 249.359497                                                 | -47.084772    | 1.09             | 2.7                | 3.7        | 4.5        | 0.5        | 2.3                | 2.3          | nd            |   |
| 673 | 163726.4 - 465525  | 18                                                        | 249.360090                                                 | -46.923873    | 1.14             | 4.8                | 5.6        | 4.3        | 3.9        | 4.0                | 4.0          |               |   |
| 674 | 163726.6-471816    | 19,22,23                                                  | 249.361237                                                 | -47.304527    | 2.07             | 9.8; 6.5; 7.7      | 5.5        | 8.7        | 0.0        | 12.8;6.9;8.4       | 12.8;6.9;8.4 | ;;            |   |
| 675 | 163726.8-471135    | 20                                                        | 249.362032                                                 | -47.193065    | 0.67             | 3.9                | 12.6       | 12.9       | 5.0        | 3.3                | 3.3          | vp            |   |
| 676 | 163727.3-472236    | 22                                                        | 249.363808                                                 | -47.376944    | 0.75             | 2.4                | 5.2        | 6.6        | 0.3        | 2.3                | 2.3          |               |   |
| 677 | 163728.0-472143    | 22                                                        | 249.366979                                                 | -47.362012    | 0.97             | 3.2                | 4.3        | 5.4        | 0.2        | 2.6                | 2.6          |               |   |
| 678 | 163729.3-464713    | 18, 15                                                    | 249.372177                                                 | -46.787117    | 0.73             | 3.5; 9.1           | 9.4        | 9.0        | 4.3        | 3.0;11.2           | 3.0;11.2     | ;             |   |
| 679 | 163729.3 - 465446  | 18                                                        | 249.372432                                                 | -46.913020    | 0.94             | 4.2                | 6.9        | 2.8        | 6.2        | 3.5                | 3.5          | vs            |   |
| 680 | 163729.7 - 463750  | 15                                                        | 249.373991                                                 | -46.630674    | 2.00             | 8.2                | 5.5        | 5.5        | 2.6        | 9.8                | 9.8          | VS            |   |
| 681 | 163729.8 - 464518  | $18,\!15$                                                 | 249.374344                                                 | -46.755085    | 0.91             | 5.4; 8.0           | 10.1       | 10.9       | 3.7        | 5.1; 9.1           | 5.1; 9.1     | ;             |   |
| 682 | 163730.2 - 464338  | 18                                                        | 249.376054                                                 | -46.727378    | 3.56             | 7.1                | 0.6        | 0.4        | 0.3        | 7.7                | 7.7          | m3,vp,nd      |   |
| 683 | 163730.5 - 465038  | 18                                                        | 249.377233                                                 | -46.844040    | 0.73             | 0.9                | 3.1        | 4.8        | 0.0        | 2.1                | 2.1          |               |   |
| 684 | 163730.6 - 464336  | 18                                                        | 249.377815                                                 | -46.726884    | 2.19             | 7.1                | 4.3        | 3.1        | 3.4        | 7.8                | 7.8          | m3,nd         |   |
| 685 | 163730.8 - 472640  | 22                                                        | 249.378661                                                 | -47.444469    | 0.76             | 2.2                | 3.1        | 1.8        | 2.4        | 7.3                | 2.3          | е             |   |
| 686 | 163731.0-472329    | 22                                                        | 249.379335                                                 | -47.391478    | 0.60             | 1.4                | 6.7        | 7.0        | 2.7        | 2.0                | 2.0          |               |   |
| 687 | 163731.0-470940    | 20                                                        | 249.379451                                                 | -47.161335    | 0.82             | 2.0                | 3.4        | 4.2        | 1.0        | 4.6                | 2.2          | е             |   |
| 688 | 163731.2 - 472102  | 22                                                        | 249.380148                                                 | -47.350600    | 1.12             | 3.7                | 4.0        | 0.0        | 4.3        | 3.1                | 3.1          | nd            |   |
| 689 | 163731.5 - 471639  | 19,22                                                     | 249.381378                                                 | -47.277538    | 2.34             | 8.8; 8.0           | 5.3        | 6.9        | 1.4        | 10.6; 9.5          | 10.6; 9.5    | ;vp           |   |
| 690 | 163731.8 - 470021  | 17                                                        | 249.382531                                                 | -47.005860    | 3.37             | 7.9                | 1.7        | 0.4        | 1.6        | 21.1               | 9.0          | e,nd          |   |
| 691 | 163733.2 - 472746  | 22                                                        | 249.388689                                                 | -47.462947    | 1.01             | 3.1                | 6.0        | 5.7        | 2.6        | 2.6                | 2.6          |               |   |
| 692 | 163733.7 - 465956  | 17                                                        | 249.390762                                                 | -46.999130    | 7.80             | 7.5                | 3.3        | 4.9        | 0.4        | 8.1                | 8.1          | nd            |   |
| 693 | 163733.8-472013    | 22                                                        | 249.391094                                                 | -47.337213    | 1.04             | 4.4                | 6.0        | 1.9        | 5.6        | 3.8                | 3.8          | nd            |   |
| 694 | 163734.1 - 464630  | $18,\!15$                                                 | 249.392120                                                 | -46.775036    | 0.72             | 4.4;8.0            | 15.0       | 14.6       | 6.5        | 3.9;9.0            | 3.9;9.0      | ;vp           |   |
| 695 | 163734.1 - 464050  | 15                                                        | 249.392419                                                 | -46.680763    | 2.31             | 6.6                | 3.0        | 4.4        | 0.0        | 6.7                | 6.7          | vp            |   |
| 696 | 163735.3-465549    | 18                                                        | 249.397298                                                 | -46.930379    | 1.59             | 5.4                | 4.6        | 5.2        | 1.4        | 4.8                | 4.8          | nd            |   |
| 697 | 163735.4 - 465516  | $17,\!18$                                                 | 249.397568                                                 | -46.921337    | 1.52             | 7.9;4.9            | 4.6        | 6.1        | 0.0        | 9.2;4.1            | 9.2;4.1      | ;             |   |
| 698 | 163735.7 - 472043  | 22                                                        | 249.398854                                                 | -47.345279    | 1.52             | 3.9                | 2.7        | 4.2        | 0.0        | 3.4                | 3.4          | nd            |   |
| 699 | 163735.7-470621    | 20                                                        | 249.398921                                                 | -47.106001    | 0.75             | 1.6                | 4.4        | 6.2        | 0.0        | 2.1                | 2.1          |               |   |
| 700 | 163735.7-465642    | 21                                                        | 249.399089                                                 | -46.945176    | 14.35            | 10.3               | 0.0        | 0.0        | 0.0        | 14.4               | 14.4         | $_{ m m1,nd}$ |   |
| 701 | 163735.8-470226    | $20,\!17$                                                 | 249.399246                                                 | -47.040810    | 1.14             | 5.3; 8.0           | 7.9        | 10.1       | 1.3        | 4.9;9.0            | 4.9;9.0      | ;             |   |
| 702 | 163736.4 - 465618  | 21                                                        | 249.401942                                                 | -46.938389    | 13.82            | 10.5               | 0.0        | 0.0        | 0.2        | 15.0               | 15.0         | $_{ m m1,nd}$ | 1 |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | R.A.<br>(deg) | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags          |        |
|-----|--------------------|-----------------------------------------------------------|---------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|-----------------|----------------|--------|
| 703 | 163736.9-472951    | 25,22                                                     | 249.403824    | -47.497723    | 0.92             | 9.1;5.2            | 10.5       | 13.8       | 0.0        | 11.7;4.5           | 11.7; 4.5       | ;              |        |
| 704 | 163737.0-470349    | 20                                                        | 249.404385    | -47.063772    | 1.86             | 4.0                | 3.0        | 3.6        | 0.8        | 3.5                | 3.5             | nd             |        |
| 705 | 163737.6-463347    | 15                                                        | 249.406771    | -46.563165    | 6.69             | 9.9                | 3.5        | 0.8        | 3.4        | 13.7               | 13.7            |                |        |
| 706 | 163738.2-470033    | 17                                                        | 249.409513    | -47.009175    | 2.52             | 6.9                | 3.0        | 0.0        | 3.5        | 7.1                | 7.1             | nd             |        |
| 707 | 163738.5 - 465630  | 21                                                        | 249.410607    | -46.941761    | 4.38             | 10.8               | 3.4        | 1.9        | 2.7        | 15.8               | 15.8            | m1,nd          |        |
| 708 | 163739.2-464937    | 18                                                        | 249.413632    | -46.827112    | 0.83             | 2.6                | 4.6        | 2.4        | 3.8        | 2.4                | 2.4             |                |        |
| 709 | 163739.3 - 464551  | 18                                                        | 249.414119    | -46.764418    | 2.20             | 5.4                | 2.0        | 0.0        | 2.5        | 5.0                | 5.0             | nd             |        |
| 710 | 163739.4 - 465101  | 18                                                        | 249.414300    | -46.850540    | 1.19             | 2.5                | 2.4        | 3.5        | 0.0        | 2.4                | 2.4             |                |        |
| 711 | 163739.6-465722    | 21                                                        | 249.415308    | -46.956375    | 15.21            | 10.8               | 0.3        | 0.0        | 0.3        | 15.6               | 15.6            | nd             |        |
| 712 | 163740.0-465029    | 18                                                        | 249.416724    | -46.841390    | 0.58             | 2.6                | 12.1       | 11.1       | 6.1        | 2.4                | 2.4             |                |        |
| 713 | 163740.9 - 473421  | 25                                                        | 249.420720    | -47.572752    | 2.81             | 9.0                | 3.5        | 0.0        | 4.0        | 11.3               | 11.3            | nd             |        |
| 714 | 163741.0-472756    | 22                                                        | 249.421226    | -47.465631    | 1.22             | 3.4                | 3.3        | 4.8        | 0.0        | 2.9                | 2.9             |                |        |
| 715 | 163741.4 - 470104  | 18                                                        | 249.422705    | -47.017842    | 14.46            | 10.8               | 0.7        | 0.0        | 1.1        | 14.9               | 14.9            | nd             |        |
| 716 | 163741.5 - 473424  | 22                                                        | 249.423284    | -47.573524    | 3.89             | 9.8                | 4.7        | 0.7        | 3.9        | 12.5               | 12.5            |                |        |
| 717 | 163742.2 - 465304  | $17,\!18$                                                 | 249.425873    | -46.884514    | 1.07             | 8.3;3.8            | 5.8        | 5.1        | 3.5        | 10.0; 3.2          | 10.0; 3.2       | ;vp            |        |
| 718 | 163742.5 - 463823  | 15                                                        | 249.427087    | -46.639750    | 2.70             | 6.1                | 2.5        | 3.3        | 0.4        | 6.0                | 6.0             |                |        |
| 719 | 163742.5 - 470241  | $20,\!17$                                                 | 249.427231    | -47.044861    | 1.27             | 5.4;7.1            | 6.4        | 9.4        | 0.0        | 5.1;7.4            | 5.1;7.4         | id;id,vp       |        |
| 720 | 163743.1 - 463716  | 15                                                        | 249.429734    | -46.621225    | 2.74             | 6.7                | 4.5        | 0.6        | 4.6        | 7.0                | 7.0             |                |        |
| 721 | 163743.1 - 465148  | 18                                                        | 249.429737    | -46.863536    | 1.08             | 3.3                | 4.1        | 5.2        | 0.1        | 2.8                | 2.8             | nd             |        |
| 722 | 163743.5 - 472556  | 22                                                        | 249.431570    | -47.432367    | 0.89             | 1.9                | 2.5        | 3.6        | 0.0        | 5.1                | 2.2             | е              |        |
| 723 | 163743.6-464515    | 15                                                        | 249.431793    | -46.754327    | 1.79             | 6.0                | 5.1        | 3.1        | 3.9        | 5.7                | 5.7             | vs,nd          |        |
| 724 | 163743.9 - 472417  | 22                                                        | 249.433015    | -47.404786    | 0.59             | 1.5                | 7.8        | 4.7        | 6.2        | 2.1                | 2.1             |                |        |
| 725 | 163744.0-464128    | 15                                                        | 249.433669    | -46.691176    | 1.11             | 4.8                | 6.0        | 6.7        | 1.4        | 4.1                | 4.1             |                |        |
| 726 | 163744.2 - 472022  | 22                                                        | 249.434274    | -47.339520    | 1.31             | 4.5                | 3.9        | 0.5        | 3.9        | 4.0                | 4.0             | nd             |        |
| 727 | 163744.2 - 472159  | 19                                                        | 249.434458    | -47.366411    | 4.12             | 9.0                | 1.9        | 3.3        | 0.2        | 11.0               | 11.0            |                |        |
| 728 | 163744.3 - 470324  | 17,20                                                     | 249.434647    | -47.056927    | 2.16             | 7.3;4.9            | 4.0        | 4.5        | 1.6        | 7.7;4.3            | 7.7;4.3         | m3;            |        |
| 729 | 163744.3 - 464922  | 18                                                        | 249.434879    | -46.822779    | 1.28             | 3.5                | 3.4        | 4.4        | 0.1        | 3.0                | 3.0             | vp,nd          |        |
| 730 | 163744.6 - 470331  | 17                                                        | 249.436239    | -47.058720    | 3.87             | 7.4                | 2.7        | 4.9        | 0.0        | 7.7                | 7.7             | $m_{3}$        |        |
| 731 | 163744.9 - 471833  | 20                                                        | 249.437133    | -47.309435    | 15.89            | 11.2               | 0.0        | 0.0        | 0.0        | 15.9               | 15.9            | nd             |        |
| 732 | 163745.0-465027    | 17                                                        | 249.437819    | -46.840933    | 9.04             | 9.9                | 0.9        | 3.5        | 0.0        | 13.7               | 13.7            | nd             |        |
| 733 | 163745.3 - 465832  | 17                                                        | 249.439124    | -46.975801    | 2.35             | 5.5                | 2.8        | 1.7        | 2.0        | 5.0                | 5.0             | nd             |        |
| 734 | 163745.4 - 463652  | 15                                                        | 249.439572    | -46.614596    | 1.73             | 6.7                | 5.4        | 5.7        | 2.2        | 7.0                | 7.0             |                |        |
| 735 | 163745.8 - 470125  | 17                                                        | 249.441206    | -47.023684    | 4.16             | 6.0                | 2.8        | 4.0        | 0.0        | 5.8                | 5.8             | nd             |        |
| 736 | 163746.4 - 463824  | 15                                                        | 249.443443    | -46.640096    | 1.22             | 5.5                | 6.8        | 4.2        | 5.3        | 5.2                | 5.2             |                |        |
| 737 | 163746.6 - 464514  | 18                                                        | 249.444310    | -46.753991    | 2.55             | 6.6                | 2.3        | 0.0        | 2.8        | 6.9                | 6.9             | nd             |        |
| 738 | 163746.6 - 465404  | $18,\!17$                                                 | 249.444366    | -46.901249    | 0.83             | 5.0;7.0            | 11.3       | 5.5        | 9.9        | 4.2;7.5            | 4.2;7.5         | ;              |        |
| 739 | 163746.9 - 465721  | 17                                                        | 249.445668    | -46.956097    | 2.14             | 5.4                | 5.3        | 1.5        | 5.1        | 4.8                | 4.8             | nd             |        |
| 740 | 163747.3-463648    | 15                                                        | 249.447428    | -46.613420    | 3.60             | 6.5                | 1.7        | 3.5        | 0.0        | 6.8                | 6.8             |                |        |
| 741 | 163747.5 - 465616  | 18                                                        | 249.448220    | -46.937864    | 3.95             | 6.8                | 2.4        | 3.7        | 0.0        | 6.8                | 6.8             | nd             |        |
| 742 | 163747.9 - 464053  | 15                                                        | 249.449674    | -46.681503    | 1.36             | 4.2                | 4.5        | 3.5        | 2.9        | 3.6                | 3.6             |                |        |
| 743 | 163748.1 - 464813  | $18,\!15$                                                 | 249.450699    | -46.803856    | 1.48             | 4.6;7.6            | 5.3        | 5.7        | 1.0        | 4.0; 8.1           | 4.0; 8.1        | ;vp            |        |
| 744 | 163748.2 - 472220  | 19,22                                                     | 249.451202    | -47.372253    | 0.46             | 8.8;3.2            | 42.4       | 28.2       | 33.2       | 10.5; 2.7          | 10.5; 2.7       | vl;vl          |        |
| 745 | 163748.3 - 465859  | 17                                                        | 249.451403    | -46.983181    | 1.49             | 5.0                | 4.2        | 0.0        | 4.5        | 4.2                | 4.2             | $_{\rm vp,nd}$ | 677    |
| 746 | 163748.4 - 470646  | 20                                                        | 249.451981    | -47.112904    | 1.07             | 3.2                | 3.7        | 5.1        | 0.1        | 2.7                | 2.7             |                | L<br>L |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | R.A.<br>(deg) | $\begin{array}{c} \text{Dec.} \\ (\text{deg}) \end{array}$ | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | $\begin{array}{c} \text{Radius} \\ (\text{arcsec}) \end{array}$ | PSF (arcsec) | Flags         |          |
|-----|--------------------|-----------------------------------------------------------|---------------|------------------------------------------------------------|------------------|--------------------|------------|------------|------------|-----------------------------------------------------------------|--------------|---------------|----------|
| 747 | 163748.9-471429    | 19                                                        | 249.453801    | -47.241458                                                 | 2.76             | 5.9                | 2.1        | 4.0        | 0.0        | 5.6                                                             | 5.6          | nd            |          |
| 748 | 163750.1-472046    | 22                                                        | 249.459031    | -47.346233                                                 | 1.51             | 4.6                | 3.0        | 0.1        | 3.1        | 9.0                                                             | 4.0          | e,nd          |          |
| 749 | 163750.2-464430    | 15                                                        | 249.459475    | -46.741821                                                 | 1.76             | 4.6                | 3.3        | 5.0        | 0.0        | 3.9                                                             | 3.9          | nd            |          |
| 750 | 163750.8-465545    | 18,17                                                     | 249.461761    | -46.929237                                                 | 0.44             | 6.7;5.4            | 53.1       | 53.1       | 53.1       | 6.7;5.0                                                         | 6.7;5.0      | vs,vl;vs,vl   |          |
| 751 | 163751.6-472538    | 22                                                        | 249.465083    | -47.427435                                                 | 1.43             | 2.9                | 2.2        | 3.7        | 0.0        | 2.5                                                             | 2.5          |               |          |
| 752 | 163751.6-464735    | 18                                                        | 249.465101    | -46.793178                                                 | 2.39             | 5.5                | 3.1        | 3.7        | 0.7        | 5.1                                                             | 5.1          | nd            |          |
| 753 | 163751.8-464029    | 15                                                        | 249.465949    | -46.674955                                                 | 1.05             | 3.7                | 4.3        | 5.3        | 0.9        | 3.1                                                             | 3.1          |               |          |
| 754 | 163752.7-473115    | 22                                                        | 249.469893    | -47.520855                                                 | 1.67             | 7.2                | 6.3        | 2.9        | 5.5        | 7.5                                                             | 7.5          |               |          |
| 755 | 163753.6-470102    | 20                                                        | 249.473380    | -47.017499                                                 | 4.69             | 7.8                | 1.9        | 0.0        | 2.0        | 8.9                                                             | 8.9          | nd            |          |
| 756 | 163753.7-464950    | 18                                                        | 249.473833    | -46.830748                                                 | 1.55             | 5.0                | 3.8        | 3.5        | 2.0        | 4.3                                                             | 4.3          | nd            |          |
| 757 | 163754.8-465504    | 17                                                        | 249.478491    | -46.917946                                                 | 2.77             | 5.3                | 2.2        | 3.2        | 0.1        | 4.8                                                             | 4.8          | nd            |          |
| 758 | 163754.9-465012    | 15                                                        | 249.478952    | -46.836735                                                 | 2.26             | 8.9                | 5.8        | 6.4        | 2.4        | 10.7                                                            | 10.7         | vs,nd         |          |
| 759 | 163755.0-471109    | 19                                                        | 249.479291    | -47.185955                                                 | 2.05             | 6.5                | 4.0        | 3.4        | 2.5        | 6.8                                                             | 6.8          | nd            |          |
| 760 | 163755.4-464832    | 18                                                        | 249.480872    | -46.808899                                                 | 2.49             | 5.6                | 2.6        | 4.1        | 0.0        | 5.3                                                             | 5.3          | nd            |          |
| 761 | 163755.6-464106    | 15                                                        | 249.481943    | -46.685029                                                 | 0.71             | 2.9                | 7.6        | 8.9        | 1.4        | 2.4                                                             | 2.4          | vp            |          |
| 762 | 163755.6-464558    | 18,15                                                     | 249.481964    | -46.766232                                                 | 1.22             | 7.0;5.1            | 6.3        | 7.5        | 1.3        | 7.5;4.3                                                         | 7.5;4.3      | · F<br>;      |          |
| 763 | 163756.0-470457    | 20,17                                                     | 249.483704    | -47.082569                                                 | 0.79             | 5.2;7.2            | 11.7       | 1.2        | 11.8       | 4.6;7.4                                                         | 4.6;7.4      | ;             |          |
| 764 | 163756.4-471949    | 19,22                                                     | 249.485321    | -47.330547                                                 | 0.54             | 6.0;6.0            | 26.7       | 29.1       | 6.0        | 5.7;6.0                                                         | 5.7;6.0      | vs;           |          |
| 765 | 163756.5-473224    | 22                                                        | 249.485733    | -47.540121                                                 | 2.87             | 8.6                | 3.3        | 3.9        | 1.1        | 10.0                                                            | 10.0         |               |          |
| 766 | 163757.1-473419    | $\frac{-}{22}$                                            | 249.488101    | -47.572015                                                 | 2.79             | 10.4               | 5.6        | 2.7        | 4.9        | 13.8                                                            | 13.8         |               |          |
| 767 | 163757.2-471336    | 19                                                        | 249.488411    | -47.226784                                                 | 1.56             | 4.8                | 4.0        | 0.0        | 4.4        | 4.1                                                             | 4.1          | nd            |          |
| 768 | 163757.9-463519    | 12                                                        | 249.491271    | -46.588877                                                 | 11.05            | 10.7               | 2.6        | 3.8        | 0.1        | 14.9                                                            | 14.9         | nd            |          |
| 769 | 163758.0-470122    | 20                                                        | 249.491850    | -47.022954                                                 | 4.83             | 7.9                | 1.7        | 1.1        | 1.2        | 9.2                                                             | 9.2          | nd            |          |
| 770 | 163758.1-463405    | 15                                                        | 249.492252    | -46.568078                                                 | 2.77             | 8.0                | 3.4        | 1.6        | 2.8        | 9.6                                                             | 9.6          | vs,nd         |          |
| 771 | 163758.8-472052    | 22                                                        | 249.495112    | -47.347803                                                 | 0.98             | 5.5                | 9.4        | 9.4        | 4.3        | 5.2                                                             | 5.2          | vp,nd         |          |
| 772 | 163758.8-463902    | 15                                                        | 249.495151    | -46.650558                                                 | 0.90             | 3.5                | 6.0        | 5.8        | 2.7        | 3.0                                                             | 3.0          |               |          |
| 773 | 163759.2-471232    | 19                                                        | 249.496948    | -47.208970                                                 | 2.98             | 5.1                | 1.7        | 2.9        | 0.0        | 4.4                                                             | 4.4          | nd            |          |
| 774 | 163759.2-464338    | 15                                                        | 249.497026    | -46.727343                                                 | 0.72             | 2.9                | 7.9        | 4.3        | 6.5        | 2.5                                                             | 2.5          | vp            |          |
| 775 | 163759.3-465824    | 18,17                                                     | 249.497223    | -46.973362                                                 | 1.27             | 9.7;3.1            | 6.0        | 7.5        | 0.6        | 12.3;2.5                                                        | 12.3;2.5     | · F<br>;      |          |
| 776 | 163800.2-470210    | 17,20                                                     | 249.501068    | -47.036343                                                 | 1.08             | 4.5;7.5            | 7.8        | 9.7        | 1.8        | 3.8; 8.4                                                        | 3.8; 8.4     | ;             |          |
| 777 | 163800.3-464228    | 15                                                        | 249.501555    | -46.708035                                                 | 0.74             | 2.1                | 5.1        | 4.3        | 2.8        | 2.2                                                             | 2.2          |               |          |
| 778 | 163800.8-464012    | 15                                                        | 249.503678    | -46.670149                                                 | 0.51             | 2.5                | 29.1       | 3.4        | 29.1       | 2.3                                                             | 2.3          |               |          |
| 779 | 163800.9-464956    | 18                                                        | 249.504165    | -46.832466                                                 | 4.43             | 6.2                | 2.0        | 3.5        | 0.0        | 6.1                                                             | 6.1          | nd            |          |
| 780 | 163801.0-470301    | 17                                                        | 249.504473    | -47.050522                                                 | 2.30             | 5.1                | 1.5        | 4.1        | 0.0        | 11.3                                                            | 4.4          | e,nd          |          |
| 781 | 163801.1-465347    | 17                                                        | 249.504729    | -46.896437                                                 | 2.27             | 5.6                | 3.0        | 5.4        | 0.0        | 5.4                                                             | 5.4          | $\mathbf{vp}$ |          |
| 782 | 163801.7-464605    | 15                                                        | 249.507216    | -46.768123                                                 | 1.95             | 4.7                | 2.1        | 3.9        | 0.0        | 3.9                                                             | 3.9          | nd            |          |
| 783 | 163802.4-463657    | 15                                                        | 249.510330    | -46.615921                                                 | 1.91             | 5.1                | 3.0        | 0.0        | 3.6        | 4.5                                                             | 4.5          |               |          |
| 784 | 163802.6-471356    | 20                                                        | 249.511021    | -47.232454                                                 | 1.13             | 8.3                | 15.4       | 0.0        | 15.8       | 9.6                                                             | 9.6          | b,id,nd       |          |
| 785 | 163802.6-465805    | $17^{-5}$                                                 | 249.511107    | -46.968087                                                 | 1.15             | 2.6                | 2.8        | 4.0        | 0.0        | 2.3                                                             | 2.3          | nd            |          |
| 786 | 163802.6-471358    | 19                                                        | 249.511123    | -47.232890                                                 | 0.59             | 3.8                | 21.6       | 1.1        | 21.9       | 3.2                                                             | 3.2          | id,nd         |          |
| 787 | 163802.6-471345    | 19                                                        | 249.511135    | -47.229360                                                 |                  | 3.9                | 8.8        | 0.4        | 9.1        | 9.3                                                             | 3.3          | c,e,nd        |          |
| 788 | 163802.9-472716    | 22                                                        | 249.512265    | -47.454496                                                 | 1.79             | 5.4                | 3.5        | 3.7        | 1.4        | 4.8                                                             | 4.8          | -,-,          |          |
| 789 | 163803.2-463859    | 15                                                        | 249.513454    | -46.649807                                                 | 0.67             | 3.2                | 9.4        | 8.5        | 4.8        | 2.6                                                             | 2.6          |               | 1        |
| 790 | 163803.2-464055    | 15                                                        | 249.513529    | -46.682163                                                 | 0.72             | 1.7                | 4.6        | 5.3        | 0.5        | 2.1                                                             | 2.1          |               | 577<br>7 |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | $\begin{array}{c} \text{Dec.} \\ (\text{deg}) \end{array}$ | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF (arcsec) | Flags   |     |
|-----|--------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------|--------------------|------------|------------|------------|--------------------|--------------|---------|-----|
| 791 | 163803.9-464002    | 15                                                        | 249.516541                                                 | -46.667486                                                 | 0.72             | 2.2                | 5.3        | 6.8        | 0.0        | 2.2                | 2.2          |         |     |
| 792 | 163804.4-471002    | 19                                                        | 249.518437                                                 | -47.167295                                                 | 1.96             | 6.5                | 4.0        | 3.9        | 2.1        | 6.7                | 6.7          | vp,nd   |     |
| 793 | 163804.4-471657    | 19                                                        | 249.518440                                                 | -47.282618                                                 | 1.11             | 3.3                | 3.9        | 3.5        | 2.1        | 2.8                | 2.8          | · p,na  |     |
| 794 | 163804.8-465117    | 17,18                                                     | 249.520172                                                 | -46.854900                                                 | 1.58             | 7.7;6.8            | 6.4        | 9.1        | 0.0        | 8.9;7.0            | 8.9;7.0      | <br>vp; |     |
| 795 | 163805.1-464328    | 15                                                        | 249.521357                                                 | -46.724502                                                 | 0.83             | 2.1                | 4.7        | 4.2        | 2.4        | 2.3                | 2.3          | · p,    |     |
| 796 | 163805.6-470202    | 20                                                        | 249.523499                                                 | -47.034056                                                 | 6.99             | 8.3                | 2.2        | 0.0        | 2.7 2.7    | 10.0               | 10.0         |         |     |
| 797 | 163806.5-471255    | 19                                                        | 249.527194                                                 | -47.215367                                                 | 1.22             | 3.9                | 4.1        | 3.8        | 2.0        | 3.3                | 3.3          | vs,nd   |     |
| 798 | 163807.4-465729    | 17                                                        | 249.530972                                                 | -46.958205                                                 | 0.87             | 2.1                | 4.3        | 4.4        | 1.6        | 2.2                | 2.2          |         |     |
| 799 | 163807.7-463716    | 15                                                        | 249.532190                                                 | -46.621136                                                 | 1.94             | 4.6                | 4.7        | 1.6        | 4.2        | 4.0                | 4.0          |         |     |
| 800 | 163807.9-470555    | 19                                                        | 249.533294                                                 | -47.098821                                                 | 14.19            | 10.1               | 1.1        | 0.7        | 0.8        | 14.2               | 14.2         | nd      |     |
| 801 | 163808.3-471853    | 19                                                        | 249.534759                                                 | -47.314779                                                 | 1.15             | 4.0                | 4.3        | 5.7        | 0.0        | 3.3                | 3.3          |         |     |
| 802 | 163808.3-471208    | 19,16                                                     | 249.534988                                                 | -47.202267                                                 | 0.90             | 4.3;11.7           | 3.0        | 2.0        | 2.4        | 17.2;17.9          | 3.7;17.9     | e,id;id |     |
| 803 | 163808.6-473029    | 22                                                        | 249.536076                                                 | -47.508332                                                 | 2.82             | 8.1                | 3.9        | 0.0        | 4.2        | 9.2                | 9.2          |         |     |
| 804 | 163808.8-465532    | $17^{}$                                                   | 249.536793                                                 | -46.925657                                                 | 0.96             | 3.5                | 3.8        | 0.0        | 4.0        | 2.9                | 2.9          | nd      |     |
| 805 | 163808.9-471022    | 20,19                                                     | 249.537125                                                 | -47.173023                                                 | 2.21             | 7.1;5.8            | 4.2        | 5.8        | 0.0        | 7.4;5.7            | 7.4;5.7      | ;       |     |
| 806 | 163808.9-471755    | 19                                                        | 249.537469                                                 | -47.298804                                                 | 0.98             | 3.2                | 4.6        | 3.5        | 3.0        | 2.7                | 2.7          | vp      |     |
| 807 | 163809.0-470102    | 17                                                        | 249.537835                                                 | -47.017357                                                 | 0.71             | 2.7                | 14.2       | 14.3       | 5.1        | 2.4                | 2.4          | · F     |     |
| 808 | 163809.4-463838    | 15                                                        | 249.539415                                                 | -46.643905                                                 | 0.75             | 3.2                | 7.2        | 2.2        | 6.8        | 2.6                | 2.6          |         |     |
| 809 | 163809.5-472823    | 22                                                        | 249.539797                                                 | -47.473067                                                 | 2.31             | 6.9                | 2.2        | 0.6        | 2.0        | 22.4               | 7.1          | е       |     |
| 810 | 163809.5-472921    | 22                                                        | 249.539872                                                 | -47.489268                                                 | 0.91             | 7.5                | 19.9       | 9.8        | 17.3       | 7.9                | 7.9          | vp      |     |
| 811 | 163809.9-471857    | 22,19                                                     | 249.541656                                                 | -47.315968                                                 | 0.67             | 8.2;3.9            | 13.2       | 12.5       | 7.2        | 9.8;3.2            | 9.8;3.2      | ;       |     |
| 812 | 163810.3-472202    | 19                                                        | 249.543246                                                 | -47.367426                                                 | 2.31             | 6.7                | 3.7        | 0.0        | 4.1        | 6.6                | 6.6          | nd      |     |
| 813 | 163810.5-464353    | 15                                                        | 249.543865                                                 | -46.731537                                                 | 0.74             | 2.1                | 4.6        | 1.0        | 4.5        | 2.3                | 2.3          |         |     |
| 814 | 163810.5-470108    | 17                                                        | 249.544092                                                 | -47.019059                                                 | 1.00             | 2.7                | 3.9        | 5.3        | 0.0        | 2.4                | 2.4          |         |     |
| 815 | 163810.6-470847    | 20,19                                                     | 249.544434                                                 | -47.146526                                                 | 1.49             | 7.0;7.2            | 6.7        | 3.8        | 5.8        | 7.3;8.0            | 7.3;8.0      | ;       |     |
| 816 | 163811.0-463544    | 15,12                                                     | 249.545868                                                 | -46.595810                                                 | 0.98             | 6.0; 8.6           | 10.3       | 7.3        | 7.2        | 6.0;10.1           | 6.0;10.1     | ;       |     |
| 817 | 163811.0-463443    | 15                                                        | 249.546047                                                 | -46.578880                                                 | 2.51             | 7.0                | 3.4        | 2.1        | 2.5        | 7.7                | 7.7          | nd      |     |
| 818 | 163811.0-464823    | 18,15                                                     | 249.546112                                                 | -46.806614                                                 | 1.32             | 8.2; 6.6           | 7.7        | 10.4       | 0.4        | 9.6; 6.6           | 9.6; 6.6     | ;       |     |
| 819 | 163811.6-472400    | 22                                                        | 249.548374                                                 | -47.400111                                                 | 2.43             | 6.2                | 2.9        | 0.0        | 3.4        | 6.1                | 6.1          | nd      |     |
| 820 | 163812.2-464115    | 15                                                        | 249.550891                                                 | -46.687768                                                 | 0.63             | 0.5                | 4.6        | 0.0        | 5.0        | 2.0                | 2.0          |         |     |
| 821 | 163812.4 - 464527  | 15                                                        | 249.551989                                                 | -46.757510                                                 | 0.76             | 3.7                | 8.5        | 10.0       | 1.7        | 3.1                | 3.1          | nd      |     |
| 822 | 163813.9-470432    | 17,20                                                     | 249.558151                                                 | -47.075821                                                 | 2.61             | 5.9; 8.1           | 3.7        | 5.6        | 0.2        | 5.5; 9.5           | 5.5; 9.5     | ;       |     |
| 823 | 163814.7 - 471633  | 19                                                        | 249.561296                                                 | -47.276077                                                 | 0.74             | 1.6                | 1.9        | 3.5        | 0.0        | 6.8                | 2.2          | e       |     |
| 824 | 163814.7 - 465554  | 17                                                        | 249.561329                                                 | -46.931789                                                 | 1.10             | 2.8                | 2.6        | 4.3        | 0.0        | 6.2                | 2.4          | e,nd    |     |
| 825 | 163814.9 - 465129  | $18,\!14$                                                 | 249.562332                                                 | -46.858173                                                 | 1.87             | 8.5; 8.6           | 6.9        | 0.7        | 6.6        | 10.2;10.3          | 10.2;10.3    | ;       |     |
| 826 | 163815.6-465413    | 17                                                        | 249.565105                                                 | -46.903648                                                 | 1.17             | 4.5                | 6.0        | 6.2        | 2.2        | 3.9                | 3.9          | vs,nd   |     |
| 827 | 163816.0-471710    | 19                                                        | 249.566975                                                 | -47.286171                                                 | 0.70             | 1.8                | 4.7        | 4.2        | 2.5        | 2.2                | 2.2          |         |     |
| 828 | 163816.3-470241    | 17                                                        | 249.568293                                                 | -47.044944                                                 | 1.11             | 4.0                | 5.1        | 0.0        | 5.5        | 3.4                | 3.4          |         |     |
| 829 | 163816.8 - 472404  | 22                                                        | 249.570090                                                 | -47.401372                                                 | 2.65             | 7.1                | 3.5        | 3.3        | 1.7        | 7.5                | 7.5          |         |     |
| 830 | 163817.2-462900    | 12                                                        | 249.571959                                                 | -46.483564                                                 | 4.04             | 8.1                | 2.0        | 0.1        | 2.1        | 9.5                | 9.5          |         |     |
| 831 | 163817.5 - 472120  | $19,\!22$                                                 | 249.572937                                                 | -47.355598                                                 | 1.72             | 5.7;7.9            | 4.8        | 7.8        | 0.0        | 5.2; 9.1           | 5.2; 9.1     | ;       |     |
| 832 | 163817.5 - 464529  | 15                                                        | 249.572990                                                 | -46.758267                                                 | 1.04             | 3.9                | 5.0        | 0.0        | 5.5        | 3.2                | 3.2          | nd      |     |
| 833 | 163817.5 - 464124  | 15                                                        | 249.573070                                                 | -46.690004                                                 | 0.66             | 1.0                | 3.5        | 4.6        | 0.0        | 2.0                | 2.0          |         | N   |
| 834 | 163817.8-464540    | 18                                                        | 249.574564                                                 | -46.761245                                                 | 10.09            | 10.3               | 3.2        | 1.6        | 2.7        | 14.5               | 14.5         | nd      | CZZ |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags    |  |
|-----|--------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|-----------------|----------|--|
| 835 | 163817.9-471846    | 19                                                        | 249.574604                                                 | -47.312896    | 0.90             | 3.2                | 5.3        | 6.4        | 1.2        | 2.6                | 2.6             |          |  |
| 836 | 163818.2-463228    | 12                                                        | 249.575902                                                 | -46.541150    | 2.97             | 6.9                | 0.5        | 2.3        | 0.0        | 19.1               | 7.2             | e,m1     |  |
| 837 | 163818.3-463556    | 12                                                        | 249.576267                                                 | -46.599143    | 1.07             | 7.5                | 14.6       | 9.9        | 10.5       | 7.9                | 7.9             | nd       |  |
| 838 | 163818.3-465602    | 17,14                                                     | 249.576553                                                 | -46.933941    | 0.82             | 2.7;10.0           | 7.8        | 9.4        | 0.0        | 2.3;13.0           | 2.3;13.0        | ;vp      |  |
| 839 | 163818.6-471809    | 19                                                        | 249.577708                                                 | -47.302576    | 1.03             | 2.5                | 3.6        | 4.6        | 0.4        | 2.4                | 2.4             |          |  |
| 840 | 163818.8 - 465515  | 14                                                        | 249.578629                                                 | -46.921024    | 3.98             | 9.5                | 2.6        | 2.1        | 1.8        | 12.0               | 12.0            | nd       |  |
| 841 | 163819.5-470837    | 20,19                                                     | 249.581436                                                 | -47.143707    | 2.07             | 8.4;7.1            | 4.3        | 6.1        | 0.4        | 10.0;7.8           | 10.0;7.8        | ;        |  |
| 842 | 163820.0-462740    | 12                                                        | 249.583446                                                 | -46.461281    | 9.79             | 8.5                | 1.6        | 0.8        | 1.1        | 10.3               | 10.3            |          |  |
| 843 | 163820.4-471733    | 19                                                        | 249.585067                                                 | -47.292530    | 0.88             | 1.9                | 3.2        | 3.8        | 0.7        | 2.2                | 2.2             |          |  |
| 844 | 163820.5-463225    | 12                                                        | 249.585702                                                 | -46.540518    | 3.72             | 6.5                | 3.2        | 3.3        | 1.3        | 6.6                | 6.6             | $m^2$    |  |
| 845 | 163820.6-463851    | 15,12                                                     | 249.585938                                                 | -46.647743    | 0.82             | 3.3; 8.7           | 6.5        | 0.0        | 7.4        | 2.7;10.3           | 2.7;10.3        | ;        |  |
| 846 | 163820.7-471327    | 19                                                        | 249.586362                                                 | -47.224281    | 0.58             | 2.3                | 11.8       | 12.1       | 3.9        | 2.2                | 2.2             | vs,nd    |  |
| 847 | 163821.3-465140    | 14                                                        | 249.589086                                                 | -46.861263    | 4.02             | 7.6                | 2.9        | 4.4        | 0.0        | 8.2                | 8.2             | nd       |  |
| 848 | 163821.7-464013    | 15                                                        | 249.590652                                                 | -46.670301    | 0.60             | 2.3                | 9.3        | 1.3        | 9.4        | 2.3                | 2.3             |          |  |
| 849 | 163822.0-471643    | 19                                                        | 249.591668                                                 | -47.278861    | 0.75             | 1.0                | 4.2        | 3.0        | 2.9        | 2.1                | 2.1             |          |  |
| 850 | 163822.0-464902    | 15                                                        | 249.591705                                                 | -46.817309    | 2.99             | 7.5                | 5.1        | 4.6        | 2.9        | 7.8                | 7.8             | nd       |  |
| 851 | 163822.3-465420    | 17,14                                                     | 249.593292                                                 | -46.905781    | 0.93             | 4.4; 8.5           | 8.8        | 0.0        | 9.1        | 3.9; 9.9           | 3.9; 9.9        | ;        |  |
| 852 | 163822.6-464502    | 15                                                        | 249.594403                                                 | -46.750817    | 1.38             | 3.8                | 2.9        | 4.6        | 0.0        | 3.2                | 3.2             | nd       |  |
| 853 | 163823.0-464701    | 18                                                        | 249.596142                                                 | -46.783883    | 5.56             | 10.6               | 0.5        | 1.9        | 0.0        | 15.1               | 15.1            | nd       |  |
| 854 | 163823.2-464133    | 15                                                        | 249.596807                                                 | -46.692746    | 0.54             | 1.9                | 13.4       | 1.2        | 13.7       | 2.2                | 2.2             |          |  |
| 855 | 163823.2-465339    | 17,14                                                     | 249.597031                                                 | -46.894257    | 1.00             | 5.1; 8.0           | 8.9        | 10.8       | 1.9        | 4.6; 8.9           | 4.6; 8.9        | vp;      |  |
| 856 | 163823.5 - 465146  | 14                                                        | 249.598236                                                 | -46.862958    | 3.16             | 7.2                | 2.8        | 1.6        | 2.2        | 7.6                | 7.6             | nd       |  |
| 857 | 163824.0-463411    | 15                                                        | 249.600096                                                 | -46.569839    | 2.35             | 7.8                | 1.3        | 0.0        | 1.3        | 9.2                | 9.2             | $m_{3}$  |  |
| 858 | 163824.0-463422    | 15                                                        | 249.600231                                                 | -46.573026    | 4.27             | 7.7                | 2.8        | 1.4        | 2.2        | 8.8                | 8.8             | m3,nd    |  |
| 859 | 163824.3 - 463917  | 15                                                        | 249.601315                                                 | -46.654831    | 0.77             | 3.3                | 7.3        | 4.0        | 6.0        | 2.7                | 2.7             |          |  |
| 860 | 163824.4 - 463621  | 15                                                        | 249.601670                                                 | -46.606067    | 2.32             | 5.8                | 2.8        | 4.2        | 0.0        | 5.7                | 5.7             | m3,nd    |  |
| 861 | 163824.6-462826    | 12                                                        | 249.602690                                                 | -46.474087    | 3.91             | 7.4                | 3.4        | 3.9        | 1.1        | 8.0                | 8.0             | vp       |  |
| 862 | 163824.6 - 465917  | 17                                                        | 249.602733                                                 | -46.988083    | 0.83             | 1.4                | 4.5        | 6.0        | 0.0        | 2.2                | 2.2             |          |  |
| 863 | 163824.8 - 463623  | 15                                                        | 249.603559                                                 | -46.606544    | 4.08             | 5.8                | 1.5        | 0.0        | 1.5        | 5.7                | 5.7             | m3,nd    |  |
| 864 | 163824.8 - 463809  | 15,12                                                     | 249.603653                                                 | -46.636051    | 1.19             | 4.2;7.7            | 6.0        | 7.2        | 1.2        | 3.6; 8.3           | 3.6; 8.3        | ;        |  |
| 865 | 163825.2 - 470134  | 17                                                        | 249.605036                                                 | -47.026142    | 0.87             | 3.2                | 7.5        | 6.1        | 4.6        | 2.7                | 2.7             |          |  |
| 866 | 163825.9 - 470245  | 17                                                        | 249.608061                                                 | -47.046040    | 1.36             | 4.3                | 4.0        | 0.7        | 3.9        | 3.6                | 3.6             |          |  |
| 867 | 163825.9 - 463030  | 12                                                        | 249.608223                                                 | -46.508423    | 1.56             | 6.1                | 5.4        | 0.0        | 5.8        | 6.0                | 6.0             |          |  |
| 868 | 163826.2 - 465300  | 14                                                        | 249.609215                                                 | -46.883581    | 2.63             | 7.3                | 3.2        | 3.2        | 1.6        | 7.6                | 7.6             | nd       |  |
| 869 | 163826.2 - 472349  | 22,19                                                     | 249.609375                                                 | -47.397045    | 2.42             | 8.6; 8.1           | 5.5        | 6.7        | 1.9        | 10.5; 9.1          | 10.5; 9.1       | ;        |  |
| 870 | 163826.6 - 464049  | 15                                                        | 249.611214                                                 | -46.680331    | 0.89             | 2.7                | 4.0        | 0.0        | 4.4        | 2.4                | 2.4             |          |  |
| 871 | 163826.7-470403    | 20                                                        | 249.611640                                                 | -47.067501    | 13.54            | 10.3               | 0.0        | 0.4        | 0.0        | 14.4               | 14.4            | nd       |  |
| 872 | 163826.8 - 465754  | 17                                                        | 249.612054                                                 | -46.965013    | 0.76             | 1.8                | 6.3        | 7.8        | 0.5        | 2.2                | 2.2             |          |  |
| 873 | 163827.0-471839    | 19                                                        | 249.612640                                                 | -47.311090    | 0.92             | 3.0                | 4.4        | 5.6        | 0.2        | 2.5                | 2.5             |          |  |
| 874 | 163827.3 - 464741  | 14                                                        | 249.613990                                                 | -46.794787    | 1.58             | 6.6                | 6.2        | 5.7        | 3.2        | 6.8                | 6.8             | m2,vp,nd |  |
| 875 | 163827.4 - 463808  | 15                                                        | 249.614379                                                 | -46.635597    | 1.46             | 4.5                | 3.2        | 1.5        | 2.6        | 3.9                | 3.9             | vp,nd    |  |
| 876 | 163828.3 - 464756  | 14                                                        | 249.618223                                                 | -46.799157    | 2.58             | 6.4                | 1.6        | 0.3        | 1.2        | 13.5               | 6.5             | e,m1,nd  |  |
| 877 | 163829.1 - 472025  | 19                                                        | 249.621267                                                 | -47.340516    | 1.72             | 4.8                | 3.0        | 4.4        | 0.0        | 4.1                | 4.1             |          |  |
| 878 | 163829.1-465431    | 17                                                        | 249.621298                                                 | -46.908782    | 1.64             | 4.6                | 4.0        | 1.8        | 3.4        | 4.0                | 4.0             | nd       |  |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB        | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF (arcsec) | Flags |              |
|-----|--------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------|------------------|--------------------|-------------------|------------|------------|--------------------|--------------|-------|--------------|
| 879 | 163830.5-471239    | 19                                                        | 249.627499                                                 | -47.211084    | 0.91             | 3.3                | 4.0               | 0.0        | 4.3        | 2.8                | 2.8          | nd    |              |
| 880 | 163831.6-470310    | 16                                                        | 249.631865                                                 | -47.052879    | 5.91             | 7.4                | $\frac{4.0}{2.4}$ | 3.5        | 4.5<br>0.0 | 8.1                | 8.1          | nd    |              |
| 881 | 163832.2-470339    | 17,16                                                     | 249.634186                                                 | -47.060890    | 0.58             | 5.6;7.1            | 30.4              | 14.6       | 26.6       | 5.0;7.6            | 5.0;7.6      | ;     |              |
| 882 | 163832.5-470651    | 17,10                                                     | 249.635830                                                 | -47.114199    | 3.69             | 8.6                | 3.6               | 2.5        | 2.6        | 10.0               | 10.0         | nd    |              |
| 883 | 163833.2-464406    | 15                                                        | 249.638711                                                 | -46.735266    | 1.56             | 4.3                | 3.0               | 4.1        | 0.0        | 3.7                | 3.7          | nd    |              |
| 884 | 163833.7-462934    | 12                                                        | 249.640720                                                 | -46.492781    | 1.76             | 5.5                | 4.1               | 5.4        | 0.1        | 5.0                | 5.0          |       |              |
| 885 | 163833.8-464020    | 12,15,14                                                  | 249.641037                                                 | -46.672382    | 0.84             | 8.5;4.0;10.8       | 9.2               | 4.7        | 8.2        | 9.8;3.4;16.0       | 9.8;3.4;16.0 | ;;m3  |              |
| 886 | 163834.3-463933    | 12,10,11                                                  | 249.643184                                                 | -46.659252    | 3.21             | 7.7                | 2.8               | 2.4        | 1.6        | 8.3                | 8.3          | nd    |              |
| 887 | 163834.6-464003    | 14                                                        | 249.644517                                                 | -46.667653    | 12.01            | 10.9               | 0.0               | 0.0        | 0.0        | 16.6               | 16.6         | m3,nd |              |
| 888 | 163835.1-464104    | 12,15                                                     | 249.646637                                                 | -46.684662    | 0.77             | 9.0;4.0            | 9.8               | 6.2        | 7.6        | 10.8;3.4           | 10.8;3.4     | ;vp   |              |
| 889 | 163835.2-463731    | 15                                                        | 249.646813                                                 | -46.625448    | 2.57             | 5.8                | 1.6               | 2.4        | 0.0        | 5.7                | 5.7          | ,     |              |
| 890 | 163835.4-464116    | 15                                                        | 249.647816                                                 | -46.687802    | 0.94             | 4.1                | 6.3               | 5.3        | 3.7        | 3.5                | 3.5          | nd    |              |
| 891 | 163835.6-464302    | 15.14                                                     | 249.648407                                                 | -46.717327    | 1.54             | 4.2;8.3            | 4.0               | 4.4        | 1.3        | 3.6;10.1           | 3.6;10.1     | ;     |              |
| 892 | 163835.8-470617    | 16                                                        | 249.649248                                                 | -47.104886    | 2.18             | 5.8                | 3.7               | 0.4        | 3.7        | 5.5                | 5.5          | nd    |              |
| 893 | 163835.8-472145    | 22,19                                                     | 249.649567                                                 | -47.362682    | 0.70             | 10.7;6.4           | 25.5              | 1.7        | 26.0       | 15.4;6.3           | 15.4;6.3     | ;m1   |              |
| 894 | 163836.6-471542    | 19                                                        | 249.652538                                                 | -47.261853    | 0.68             | 2.4                | 7.3               | 5.8        | 4.8        | 2.3                | 2.3          |       |              |
| 895 | 163836.6-464142    | 12                                                        | 249.652594                                                 | -46.695249    | 8.69             | 9.5                | 2.0               | 0.9        | 1.6        | 11.8               | 11.8         | nd    |              |
| 896 | 163836.9-472140    | 19                                                        | 249.654070                                                 | -47.361362    | 3.49             | 6.4                | 2.5               | 3.6        | 0.1        | 6.3                | 6.3          | m1,nd |              |
| 897 | 163837.0-470938    | 16                                                        | 249.654437                                                 | -47.160659    | 3.03             | 6.3                | 1.6               | 3.1        | 0.0        | 6.2                | 6.2          | nd    |              |
| 898 | 163837.4-464114    | 15                                                        | 249.656143                                                 | -46.687296    | 1.09             | 4.4                | 0.9               | 0.0        | 1.6        | 14.0               | 3.8          | e,nd  |              |
| 899 | 163837.6-464726    | $15,\!14$                                                 | 249.656998                                                 | -46.790703    | 0.60             | 7.2;5.1            | 20.9              | 2.2        | 21.3       | 7.4;4.5            | 7.4;4.5      | ;     |              |
| 900 | 163837.7-463400    | 12                                                        | 249.657107                                                 | -46.566775    | 1.14             | 3.7                | 5.3               | 0.6        | 5.6        | 3.1                | 3.1          |       |              |
| 901 | 163837.9-465213    | 15                                                        | 249.658160                                                 | -46.870286    | 15.02            | 11.4               | 0.0               | 0.0        | 0.8        | 16.5               | 16.5         | nd    |              |
| 902 | 163838.1-465830    | 17.16                                                     | 249.658768                                                 | -46.975040    | 0.81             | 3.5;9.8            | 9.9               | 12.3       | 0.4        | 3.0;13.5           | 3.0;13.5     | id;id |              |
| 903 | 163838.4-470649    | 17,16                                                     | 249.660156                                                 | -47.113831    | 1.19             | 8.9;5.3            | 6.6               | 0.0        | 7.0        | 10.6; 4.8          | 10.6; 4.8    | ;     |              |
| 904 | 163838.6-472623    | 19                                                        | 249.661140                                                 | -47.439728    | 15.52            | 11.0               | 0.0               | 0.0        | 0.3        | 15.5               | 15.5         |       |              |
| 905 | 163838.7 - 465447  | 14                                                        | 249.661398                                                 | -46.913102    | 3.33             | 6.6                | 1.6               | 3.9        | 0.0        | 6.6                | 6.6          | nd    |              |
| 906 | 163839.2-470617    | 16, 17                                                    | 249.663422                                                 | -47.104843    | 0.71             | 5.2; 8.4           | 16.2              | 13.7       | 9.7        | 4.6; 9.7           | 4.6; 9.7     | ;     |              |
| 907 | 163839.6-470341    | 17,16                                                     | 249.665070                                                 | -47.061657    | 1.46             | 6.3; 6.0           | 3.7               | 6.2        | 0.0        | 6.1; 5.8           | 6.1; 5.8     | vp;   |              |
| 908 | 163840.5 - 465253  | 14                                                        | 249.668868                                                 | -46.881625    | 1.39             | 5.1                | 1.1               | 0.7        | 0.7        | 12.5               | 4.4          | e,nd  |              |
| 909 | 163840.7 - 464352  | 14                                                        | 249.669609                                                 | -46.731169    | 2.48             | 7.1                | 3.0               | 0.0        | 3.6        | 7.8                | 7.8          |       |              |
| 910 | 163840.9-471952    | 19                                                        | 249.670821                                                 | -47.331357    | 0.87             | 5.2                | 10.9              | 11.4       | 3.7        | 4.5                | 4.5          | vs    |              |
| 911 | 163842.2-463903    | 12                                                        | 249.676023                                                 | -46.650988    | 2.87             | 6.6                | 3.0               | 2.8        | 0.1        | 14.7               | 6.6          | e,nd  |              |
| 912 | 163842.3 - 465341  | $14,\!17$                                                 | 249.676254                                                 | -46.894829    | 1.71             | 5.4;6.6            | 4.4               | 6.0        | 0.2        | 4.8;6.9            | 4.8;6.9      | ;     |              |
| 913 | 163842.3 - 465159  | 17                                                        | 249.676506                                                 | -46.866537    | 4.26             | 8.0                | 2.0               | 0.0        | 2.4        | 9.4                | 9.4          | nd    |              |
| 914 | 163842.4 - 470429  | 16                                                        | 249.676954                                                 | -47.074919    | 1.85             | 5.2                | 4.4               | 1.3        | 4.2        | 4.6                | 4.6          | nd    |              |
| 915 | 163843.0-465400    | $17,\!14$                                                 | 249.679459                                                 | -46.900192    | 0.82             | 6.4;5.6            | 11.9              | 13.4       | 3.9        | 6.6; 5.0           | 6.6; 5.0     | ;     |              |
| 916 | 163843.5 - 465703  | 17                                                        | 249.681487                                                 | -46.951098    | 1.47             | 4.8                | 4.5               | 5.6        | 1.1        | 4.1                | 4.1          | nd    |              |
| 917 | 163843.6-472023    | 19                                                        | 249.681983                                                 | -47.339998    | 5.52             | 5.9                | 4.7               | 1.5        | 4.3        | 5.5                | 5.5          |       |              |
| 918 | 163844.0-470915    | 17                                                        | 249.683580                                                 | -47.154174    | 6.48             | 11.5               | 1.9               | 0.0        | 3.3        | 16.9               | 16.9         | nd    |              |
| 919 | 163844.2 - 463310  | 12                                                        | 249.684191                                                 | -46.552920    | 0.92             | 2.5                | 4.7               | 6.5        | 0.0        | 2.3                | 2.3          |       |              |
| 920 | 163844.2 - 465838  | 17                                                        | 249.684340                                                 | -46.977324    | 1.20             | 4.6                | 1.2               | 1.5        | 0.5        | 17.5               | 3.9          | e,nd  |              |
| 921 | 163845.2 - 472004  | 19                                                        | 249.688462                                                 | -47.334456    | 2.70             | 5.8                | 4.0               | 4.0        | 2.0        | 5.4                | 5.4          |       | $\mathbb{N}$ |
| 922 | 163845.3 - 470652  | 16                                                        | 249.688861                                                 | -47.114603    | 1.00             | 4.2                | 6.2               | 0.0        | 6.5        | 3.5                | 3.5          | nd    | 227          |

Chandra Catalog: Detection and Localization (continued)

| No. | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | R.A.<br>(deg) | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags       |              |
|-----|--------------------|-----------------------------------------------------------|---------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|-----------------|-------------|--------------|
| 923 | 163845.3-464027    | 12                                                        | 249.689089    | -46.674336    | 2.13             | 7.8                | 3.7        | 1.7        | 2.0        | 18.3               | 8.3             | e,nd        |              |
| 924 | 163845.4-464735    | $15,\!14$                                                 | 249.689270    | -46.793320    | 0.78             | 8.2;3.9            | 8.9        | 7.1        | 5.8        | 9.2;3.3            | 9.2;3.3         | ;           |              |
| 925 | 163845.6-463100    | 12                                                        | 249.690358    | -46.516935    | 0.98             | 3.0                | 4.7        | 5.5        | 0.5        | 2.5                | 2.5             | vp          |              |
| 926 | 163845.7-465248    | 17                                                        | 249.690523    | -46.880056    | 3.12             | 7.6                | 0.2        | 0.0        | 0.5        | 18.2               | 8.6             | e,m1,nd     |              |
| 927 | 163846.1 - 465337  | 14                                                        | 249.692469    | -46.893658    | 1.80             | 4.9                | 3.9        | 2.4        | 2.9        | 9.8                | 4.2             | e,nd        |              |
| 928 | 163846.2-472042    | 19                                                        | 249.692807    | -47.345191    | 1.71             | 6.4                | 4.9        | 5.5        | 1.9        | 6.3                | 6.3             |             |              |
| 929 | 163846.7-464825    | 15                                                        | 249.694713    | -46.807061    | 3.52             | 8.9                | 3.0        | 2.9        | 1.8        | 10.8               | 10.8            | m1,nd       |              |
| 930 | 163847.0-464842    | 15                                                        | 249.695874    | -46.811732    | 4.21             | 9.2                | 3.2        | 3.3        | 2.1        | 11.3               | 11.3            | m1,nd       |              |
| 931 | 163847.4-463714    | 12                                                        | 249.697582    | -46.620671    | 2.32             | 4.6                | 3.9        | 3.2        | 2.2        | 3.9                | 3.9             | nd          |              |
| 932 | 163847.7-470812    | 16                                                        | 249.698838    | -47.136707    | 1.53             | 4.0                | 3.1        | 4.6        | 0.0        | 3.4                | 3.4             | nd          |              |
| 933 | 163847.7-465001    | 14                                                        | 249.699060    | -46.833851    | 0.88             | 2.8                | 5.4        | 0.0        | 5.7        | 2.4                | 2.4             | nd          |              |
| 934 | 163848.2-465243    | 17                                                        | 249.701026    | -46.878875    | 5.62             | 8.0                | 1.0        | 2.4        | 0.0        | 9.3                | 9.3             | m2,nd       |              |
| 935 | 163849.6-471759    | 19                                                        | 249.706767    | -47.299945    | 1.97             | 5.1                | 5.7        | 0.0        | 6.1        | 4.4                | 4.4             | vp          |              |
| 936 | 163849.8-465545    | 17                                                        | 249.707877    | -46.929341    | 1.77             | 6.3                | 4.7        | 3.4        | 3.3        | 6.3                | 6.3             | vp,nd       |              |
| 937 | 163850.0-465801    | 13                                                        | 249.708433    | -46.967174    | 6.79             | 11.3               | 1.4        | 0.5        | 1.3        | 16.7               | 16.7            | vp,nd       |              |
| 938 | 163850.2-464639    | 14                                                        | 249.709317    | -46.777565    | 1.05             | 3.9                | 4.8        | 0.7        | 4.8        | 3.3                | 3.3             | nd          |              |
| 939 | 163850.3-462627    | 12                                                        | 249.709827    | -46.441052    | 3.48             | 6.7                | 2.0        | 3.4        | 0.0        | 7.1                | 7.1             |             |              |
| 940 | 163850.5-471125    | 16                                                        | 249.710691    | -47.190381    | 2.63             | 5.7                | 1.9        | 3.7        | 0.0        | 5.3                | 5.3             | nd          |              |
| 941 | 163850.9-463110    | 12                                                        | 249.712359    | -46.519653    | 0.97             | 2.3                | 4.5        | 4.4        | 1.8        | 2.2                | 2.2             |             |              |
| 942 | 163851.0-463055    | 12                                                        | 249.712792    | -46.515441    | 0.86             | 2.5                | 4.3        | 5.5        | 0.0        | 2.3                | 2.3             |             |              |
| 943 | 163851.2-463617    | 12                                                        | 249.713702    | -46.604830    | 2.94             | 3.5                | 0.0        | 1.1        | 0.0        | 2.9                | 2.9             | nd          |              |
| 944 | 163851.4 - 465543  | 14                                                        | 249.714327    | -46.928710    | 1.52             | 6.3                | 5.4        | 7.1        | 0.6        | 6.1                | 6.1             | vs,nd       |              |
| 945 | 163851.7 - 464428  | 14                                                        | 249.715776    | -46.741332    | 1.54             | 5.7                | 4.7        | 5.2        | 1.7        | 5.5                | 5.5             | vp,nd       |              |
| 946 | 163852.4-471102    | 19                                                        | 249.718422    | -47.183977    | 2.46             | 6.9                | 3.8        | 4.5        | 1.2        | 7.4                | 7.4             | nd          |              |
| 947 | 163852.5-470141    | 17                                                        | 249.718848    | -47.028113    | 2.86             | 6.7                | 3.3        | 1.0        | 3.0        | 6.8                | 6.8             | nd          |              |
| 948 | 163852.9 - 471145  | 19                                                        | 249.720492    | -47.195941    | 3.04             | 6.5                | 1.9        | 1.9        | 1.0        | 6.7                | 6.7             | nd          |              |
| 949 | 163853.0-465903    | 17,16                                                     | 249.721207    | -46.984402    | 1.10             | 6.1; 8.1           | 9.7        | 6.2        | 7.3        | 6.0; 9.8           | 6.0; 9.8        | ;           |              |
| 950 | 163853.1 - 471935  | 19                                                        | 249.721420    | -47.326504    | 2.71             | 6.5                | 3.8        | 3.1        | 2.0        | 6.4                | 6.4             | m1          |              |
| 951 | 163853.5 - 471945  | 19                                                        | 249.723255    | -47.329249    | 2.25             | 6.6                | 4.0        | 0.0        | 4.5        | 6.6                | 6.6             | m1          |              |
| 952 | 163853.8-462843    | 12                                                        | 249.724504    | -46.478618    | 1.75             | 4.4                | 2.9        | 4.0        | 0.0        | 3.8                | 3.8             | nd          |              |
| 953 | 163854.2 - 465241  | 17                                                        | 249.726218    | -46.878209    | 3.60             | 8.7                | 3.5        | 0.7        | 3.4        | 10.9               | 10.9            |             |              |
| 954 | 163854.3-464844    | 14                                                        | 249.726336    | -46.812483    | 0.72             | 2.0                | 4.8        | 5.5        | 0.6        | 2.2                | 2.2             |             |              |
| 955 | 163854.4 - 465824  | 13                                                        | 249.726740    | -46.973337    | 7.36             | 10.6               | 3.0        | 0.0        | 2.1        | 14.7               | 14.7            | m3,nd       |              |
| 956 | 163854.7 - 471526  | 19                                                        | 249.728152    | -47.257243    | 1.52             | 5.5                | 4.9        | 5.7        | 2.0        | 5.0                | 5.0             |             |              |
| 957 | 163854.8 - 465405  | 14                                                        | 249.728468    | -46.901467    | 0.98             | 4.6                | 7.3        | 7.3        | 3.5        | 3.9                | 3.9             | nd          |              |
| 958 | 163854.8 - 463259  | 12                                                        | 249.728630    | -46.549779    | 0.65             | 0.6                | 4.6        | 6.2        | 0.0        | 2.0                | 2.0             |             |              |
| 959 | 163855.0-464622    | 14                                                        | 249.729426    | -46.772881    | 0.83             | 3.7                | 7.0        | 7.9        | 1.7        | 3.2                | 3.2             | nd          |              |
| 960 | 163855.0-462856    | 12                                                        | 249.729575    | -46.482293    | 1.47             | 4.1                | 3.0        | 5.0        | 0.0        | 3.5                | 3.5             | nd          |              |
| 961 | 163855.1 - 470145  | $17,\!16$                                                 | 249.729706    | -47.029339    | 0.58             | 7.1; 5.5           | 27.0       | 22.5       | 16.4       | 7.4;5.2            | 7.4;5.2         | vp,vl;vp,vl |              |
| 962 | 163855.5 - 464517  | 14                                                        | 249.731306    | -46.754792    | 1.16             | 4.7                | 5.5        | 2.4        | 4.8        | 4.1                | 4.1             | nd          |              |
| 963 | 163855.6-464411    | 15, 14, 11                                                | 249.731674    | -46.736485    | 0.98             | 7.8; 5.8; 10.0     | 9.7        | 7.8        | 6.6        | 8.7; 5.6; 13.1     | 8.7;5.6;13.1    | id;id;id    |              |
| 964 | 163855.9 - 465829  | 13                                                        | 249.733261    | -46.974797    | 4.88             | 10.3               | 3.4        | 1.4        | 1.4        | 14.0               | 14.0            | m3,nd       |              |
| 965 | 163856.1 - 463217  | 12                                                        | 249.733863    | -46.538258    | 0.66             | 0.8                | 5.0        | 1.2        | 4.9        | 2.0                | 2.0             |             | 1            |
| 966 | 163856.3-463522    | 12                                                        | 249.734782    | -46.589447    | 0.61             | 2.4                | 2.2        | 0.0        | 2.5        | 17.9               | 2.3             | е           | 5 <u>7</u> 7 |

Chandra Catalog: Detection and Localization (continued)

| No.  | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | R.A.<br>(deg) | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags                      |
|------|--------------------|-----------------------------------------------------------|---------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|-----------------|----------------------------|
| 967  | 163856.5-464821    | 14                                                        | 249.735571    | -46.805985    | 0.68             | 1.9                | 5.7        | 6.1        | 1.6        | 2.1                | 2.1             |                            |
| 968  | 163856.5-465800    | 13                                                        | 249.735804    | -46.966770    | 6.84             | 10.2               | 1.2        | 0.0        | 1.4        | 13.7               | 13.7            | nd                         |
| 969  | 163857.1-465649    | 13                                                        | 249.737969    | -46.947204    | 5.32             | 10.2               | 2.3        | 0.5        | 2.2        | 13.7               | 13.7            | nd                         |
| 970  | 163857.3-463948    | 12                                                        | 249.738910    | -46.663467    | 2.94             | 6.8                | 4.6        | 4.3        | 1.5        | 6.8                | 6.8             | vp,nd                      |
| 971  | 163858.2-463840    | 15                                                        | 249.742516    | -46.644674    | 3.81             | 8.5                | 2.2        | 3.6        | 0.0        | 10.3               | 10.3            | nd                         |
| 972  | 163859.1-470538    | 16                                                        | 249.746596    | -47.094029    | 0.73             | 2.1                | 5.6        | 0.0        | 5.9        | 2.2                | 2.2             |                            |
| 973  | 163859.6-463538    | 12                                                        | 249.748548    | -46.594110    | 1.07             | 2.6                | 3.4        | 5.0        | 0.0        | 2.4                | 2.4             |                            |
| 974  | 163859.9-471239    | 19                                                        | 249.749717    | -47.210911    | 2.69             | 7.0                | 4.0        | 0.0        | 4.5        | 7.5                | 7.5             |                            |
| 975  | 163859.9-471541    | 19                                                        | 249.749999    | -47.261510    | 1.79             | 6.3                | 4.7        | 5.7        | 1.4        | 6.3                | 6.3             |                            |
| 976  | 163900.0-470321    | 17                                                        | 249.750380    | -47.055883    | 10.30            | 8.6                | 0.7        | 2.8        | 0.0        | 10.3               | 10.3            | vp,nd                      |
| 977  | 163900.0-462049    | 09                                                        | 249.750415    | -46.347082    | 7.56             | 8.3                | 2.8        | 2.7        | 1.4        | 10.0               | 10.0            |                            |
| 978  | 163900.3-471358    | 16                                                        | 249.751414    | -47.232813    | 5.94             | 7.4                | 2.7        | 4.0        | 0.2        | 7.7                | 7.7             | nd                         |
| 979  | 163900.5-464713    | 14                                                        | 249.752484    | -46.787179    | 0.65             | 2.6                | 9.4        | 11.0       | 0.4        | 2.3                | 2.3             |                            |
| 980  | 163900.9-463754    | 15                                                        | 249.754066    | -46.631869    | 7.45             | 9.2                | 3.2        | 1.0        | 3.0        | 11.9               | 11.9            | m2,nd                      |
| 981  | 163901.2-471503    | 19                                                        | 249.755188    | -47.251068    | 3.21             | 6.6                | 3.3        | 2.9        | 2.1        | 6.7                | 6.7             |                            |
| 982  | 163901.6-463804    | 12,15                                                     | 249.756699    | -46.634525    | 2.11             | 5.1; 9.3           | 7.1        | 1.7        | 6.9        | 4.3;12.0           | 4.3;12.0        | id;id,m2                   |
| 983  | 163901.7-464253    | 14                                                        | 249.757311    | -46.714747    | 2.30             | 6.9                | 0.5        | 4.6        | 0.0        | 7.4                | 7.4             | nd                         |
| 984  | 163901.7-464739    | 14                                                        | 249.757410    | -46.794173    | 0.76             | 2.2                | 4.7        | 0.0        | 5.0        | 2.2                | 2.2             |                            |
| 985  | 163902.2-470811    | 16                                                        | 249.759437    | -47.136494    | 0.71             | 2.0                | 4.4        | 5.5        | 0.6        | 2.2                | 2.2             |                            |
| 986  | 163902.5-471135    | 19,16                                                     | 249.760803    | -47.193127    | 1.36             | 7.9;5.0            | 6.8        | 7.3        | 2.8        | 9.2;4.2            | 9.2;4.2         | vp;                        |
| 987  | 163902.6-462341    | 09                                                        | 249.760910    | -46.394936    | 5.72             | 7.3                | 2.5        | 4.6        | 0.0        | 7.8                | 7.8             | nd                         |
| 988  | 163902.7-464213    | 15                                                        | 249.761338    | -46.703759    | 4.14             | 8.7                | 7.0        | 0.1        | 7.7        | 10.4               | 10.6            | nb,nd                      |
| 989  | 163903.0-462254    | 09                                                        | 249.762841    | -46.381903    | 4.75             | 7.3                | 3.2        | 4.0        | 1.2        | 7.8                | 7.8             |                            |
| 990  | 163903.3-463015    | 12                                                        | 249.764042    | -46.504374    | 0.90             | 2.9                | 5.2        | 0.0        | 5.6        | 2.4                | 2.4             | nd                         |
| 991  | 163903.6-463116    | 12                                                        | 249.765304    | -46.521251    | 0.58             | 2.0                | 11.4       | 12.7       | 0.7        | 2.1                | 2.1             |                            |
| 992  | 163904.1 - 471542  | 16                                                        | 249.767127    | -47.261804    | 4.52             | 9.1                | 1.8        | 1.4        | 1.2        | 11.0               | 11.0            | nd                         |
| 993  | 163904.5 - 470647  | 16                                                        | 249.769111    | -47.113235    | 0.65             | 0.9                | 5.2        | 0.0        | 5.3        | 2.1                | 2.1             |                            |
| 994  | 163904.7-463720    | 12                                                        | 249.769784    | -46.622262    | 2.21             | 4.4                | 3.1        | 3.6        | 0.7        | 3.7                | 3.7             | nd                         |
| 995  | 163904.8 - 471556  | 19                                                        | 249.770229    | -47.265631    | 3.39             | 7.2                | 3.4        | 4.5        | 0.7        | 7.6                | 7.6             |                            |
| 996  | 163905.0-464031    | 15                                                        | 249.771097    | -46.675512    | 4.55             | 9.2                | 1.7        | 0.8        | 1.4        | 11.7               | 11.7            | m3,nd                      |
| 997  | 163905.2 - 470839  | 16                                                        | 249.771713    | -47.144280    | 0.74             | 2.1                | 4.9        | 2.7        | 4.0        | 2.3                | 2.3             |                            |
| 998  | 163905.3 - 465021  | 14                                                        | 249.772174    | -46.839431    | 0.69             | 0.6                | 4.4        | 0.0        | 4.6        | 2.1                | 2.1             |                            |
| 999  | 163905.4 - 464212  | 14, 12, 11                                                | 249.772842    | -46.703495    | 0.34             | 7.6; 9.3; 7.9      | 120.7      | 9.9        | 120.6      | 8.5;11.4;8.8       | 8.5;11.4;8.8    | id,vs,vl;id,vs,vl;id,vs,vl |
| 1000 | 163905.8 - 465646  | 17                                                        | 249.774378    | -46.946118    | 4.63             | 8.5                | 2.1        | 0.0        | 2.6        | 10.3               | 10.3            | nd                         |
| 1001 | 163905.8 - 464356  | 12                                                        | 249.774522    | -46.732491    | 4.30             | 11.0               | 2.1        | 0.4        | 2.0        | 15.5               | 15.5            | nd                         |
| 1002 | 163906.0-464404    | $14,\!11$                                                 | 249.775162    | -46.734467    | 0.80             | 5.7; 8.3           | 13.0       | 4.2        | 12.4       | 5.5; 9.6           | 5.5; 9.6        | vp;                        |
| 1003 | 163906.2 - 462341  | 09                                                        | 249.775943    | -46.394820    | 1.85             | 6.7                | 4.6        | 3.0        | 3.5        | 6.9                | 6.9             |                            |
| 1004 | 163906.6 - 464034  | $15,\!11,\!12$                                            | 249.777802    | -46.676353    | 1.03             | 9.4;7.6;7.7        | 12.7       | 16.7       | 0.7        | 12.2; 8.2; 8.2     | 12.2; 8.2; 8.2  | m2;;                       |
| 1005 | 163906.8 - 465739  | 17                                                        | 249.778612    | -46.961006    | 10.28            | 8.5                | 3.2        | 0.0        | 3.7        | 10.3               | 10.3            | m3,nd                      |
| 1006 | 163907.2 - 465015  | 14                                                        | 249.780278    | -46.837708    | 0.70             | 0.7                | 1.2        | 2.0        | 0.0        | 11.2               | 2.1             | e                          |
| 1007 | 163907.3 - 464959  | 14                                                        | 249.780522    | -46.833285    | 0.63             | 0.6                | 6.0        | 3.3        | 4.9        | 2.1                | 2.1             | $^{\rm vp}$                |
| 1008 | 163907.5 - 462751  | 12                                                        | 249.781429    | -46.464415    | 1.30             | 5.4                | 5.7        | 7.3        | 0.6        | 5.0                | 5.0             | nd                         |
| 1009 | 163907.6-465741    | 17                                                        | 249.781845    | -46.961432    | 7.25             | 8.6                | 4.6        | 1.6        | 4.3        | 10.5               | 10.5            | m3,nd<br>vp                |
| 1010 | 163908.0-463643    | 15                                                        | 249.783591    | -46.612044    | 15.97            | 10.9               | 0.0        | 0.1        | 0.0        | 16.0               | 16.0            | vp                         |

Chandra Catalog: Detection and Localization (continued)

| No.  | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | $\begin{array}{c} \text{Radius} \\ (\text{arcsec}) \end{array}$ | PSF (arcsec) | Flags   |              |
|------|--------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------|------------------|--------------------|------------|------------|------------|-----------------------------------------------------------------|--------------|---------|--------------|
| 1011 | 163908.1-463613    | 12                                                        | 249.783959                                                 | -46.603870    | 1.18             | 3.6                | 3.6        | 4.8        | 0.0        | 3.0                                                             | 3.0          | vp      |              |
| 1012 | 163909.2-463223    | 12                                                        | 249.788347                                                 | -46.539798    | 0.77             | 2.0                | 4.2        | 3.2        | 2.5        | 2.2                                                             | 2.2          | · P<br> |              |
| 1013 | 163909.3-464333    | 11                                                        | 249.788916                                                 | -46.726004    | 6.57             | 7.6                | 0.9        | 1.8        | 0.0        | 8.1                                                             | 8.1          | nd      |              |
| 1014 | 163910.1-461917    | 09                                                        | 249.792495                                                 | -46.321573    | 4.94             | 7.6                | 1.0        | 2.0        | 0.0        | 8.4                                                             | 8.4          |         |              |
| 1015 | 163910.7-470552    | 16                                                        | 249.794732                                                 | -47.098053    | 0.65             | 0.8                | 4.2        | 3.0        | 2.9        | 2.0                                                             | 2.0          |         |              |
| 1016 | 163910.9-462946    | 09,12                                                     | 249.795746                                                 | -46.496181    | 1.22             | 8.3;3.9            | 6.5        | 0.0        | 6.4        | 9.6;3.3                                                         | 9.6;3.3      | ;       |              |
| 1017 | 163911.2-464659    | 14                                                        | 249.796961                                                 | -46.783139    | 0.95             | 3.0                | 3.3        | 0.0        | 3.7        | 14.4                                                            | 2.5          | e,nd    |              |
| 1018 | 163911.5-462640    | 12                                                        | 249.797926                                                 | -46.444707    | 1.31             | 6.7                | 7.2        | 0.0        | 8.1        | 7.2                                                             | 7.2          | nd      |              |
| 1019 | 163911.5-464235    | 11                                                        | 249.798170                                                 | -46.709851    | 2.14             | 6.9                | 1.6        | 5.2        | 0.0        | 7.1                                                             | 7.1          | nd      |              |
| 1020 | 163911.6-462349    | 09                                                        | 249.798517                                                 | -46.397137    | 1.42             | 5.8                | 5.5        | 6.3        | 1.3        | 5.4                                                             | 5.4          |         |              |
| 1021 | 163911.7-463539    | 11                                                        | 249.799126                                                 | -46.594342    | 7.83             | 8.5                | 1.0        | 0.6        | 0.6        | 10.4                                                            | 10.4         |         |              |
| 1022 | 163912.1-462608    | 12,09                                                     | 249.800629                                                 | -46.435822    | 1.24             | 7.3;6.1            | 6.7        | 1.7        | 6.7        | 8.0;5.9                                                         | 8.0;5.9      | id;id   |              |
| 1023 | 163912.1-471031    | 16                                                        | 249.800754                                                 | -47.175529    | 0.73             | 3.8                | 9.9        | 5.0        | 8.4        | 3.2                                                             | 3.2          | •••     |              |
| 1024 | 163912.9-462357    | 09                                                        | 249.803930                                                 | -46.399252    | 0.66             | 5.5                | 32.0       | 5.7        | 32.1       | 5.1                                                             | 5.1          |         |              |
| 1025 | 163913.3-463212    | 12                                                        | 249.805589                                                 | -46.536819    | 0.72             | 2.7                | 6.8        | 0.0        | 7.3        | 2.4                                                             | 2.4          |         |              |
| 1026 | 163914.4-470021    | 13,16                                                     | 249.810333                                                 | -47.005848    | 0.82             | 7.6;6.4            | 16.0       | 18.1       | 3.7        | 8.0; 6.7                                                        | 8.0; 6.7     | vl;vl   |              |
| 1027 | 163914.6-470154    | 13                                                        | 249.811122                                                 | -47.031749    | 3.93             | 8.1                | 1.6        | 3.6        | 0.0        | 9.2                                                             | 9.2          | nd      |              |
| 1028 | 163914.7-471307    | 16                                                        | 249.811432                                                 | -47.218855    | 2.90             | 6.5                | 2.2        | 0.0        | 2.4        | 6.3                                                             | 6.3          | nd      |              |
| 1029 | 163914.7-464254    | 11                                                        | 249.811535                                                 | -46.715084    | 2.37             | 6.5                | 2.8        | 0.0        | 3.3        | 6.5                                                             | 6.5          | nd      |              |
| 1030 | 163914.9-464940    | 14                                                        | 249.812215                                                 | -46.828015    | 0.76             | 1.8                | 1.7        | 2.9        | 0.0        | 8.9                                                             | 2.2          | е       |              |
| 1031 | 163915.0-462806    | 12                                                        | 249.812684                                                 | -46.468385    | 2.59             | 5.7                | 2.7        | 4.5        | 0.0        | 5.5                                                             | 5.5          | nd      |              |
| 1032 | 163915.2-461447    | 09                                                        | 249.813669                                                 | -46.246481    | 3.03             | 10.4               | 5.6        | 7.0        | 0.4        | 15.1                                                            | 15.1         |         |              |
| 1033 | 163915.3-462906    | 09,12                                                     | 249.814011                                                 | -46.485050    | 1.28             | 7.3;4.9            | 6.1        | 7.0        | 1.9        | 7.6; 4.3                                                        | 7.6; 4.3     | m3;     |              |
| 1034 | 163915.9-462910    | 09                                                        | 249.816305                                                 | -46.486157    | 3.56             | 7.3                | 2.2        | 1.8        | 1.3        | 7.6                                                             | 7.6          | m3,nd   |              |
| 1035 | 163916.2-463238    | 12                                                        | 249.817890                                                 | -46.544048    | 0.70             | 3.1                | 8.8        | 8.8        | 3.0        | 2.6                                                             | 2.6          | vp      |              |
| 1036 | 163916.4 - 465512  | 13                                                        | 249.818377                                                 | -46.920137    | 5.73             | 7.4                | 2.1        | 2.6        | 0.6        | 7.9                                                             | 7.9          | nd      |              |
| 1037 | 163916.5 - 463810  | 12                                                        | 249.819133                                                 | -46.636229    | 4.36             | 6.0                | 1.1        | 2.7        | 0.0        | 5.7                                                             | 5.7          | nd      |              |
| 1038 | 163916.8-463027    | 09                                                        | 249.820282                                                 | -46.507652    | 3.14             | 8.2                | 3.9        | 0.5        | 4.0        | 9.3                                                             | 9.3          |         |              |
| 1039 | 163920.4-465006    | 14                                                        | 249.835116                                                 | -46.835169    | 0.61             | 2.8                | 13.8       | 1.4        | 13.8       | 2.5                                                             | 2.5          |         |              |
| 1040 | 163920.5-470526    | 16                                                        | 249.835617                                                 | -47.090596    | 0.73             | 2.2                | 3.6        | 4.7        | 0.4        | 2.3                                                             | 2.3          |         |              |
| 1041 | 163920.5 - 465436  | 14                                                        | 249.835648                                                 | -46.910106    | 2.85             | 5.6                | 2.6        | 3.7        | 0.1        | 5.0                                                             | 5.0          | nd      |              |
| 1042 | 163921.2-462230    | 09                                                        | 249.838538                                                 | -46.375242    | 1.17             | 4.3                | 5.3        | 7.0        | 0.0        | 3.7                                                             | 3.7          |         |              |
| 1043 | 163921.3-465046    | 14                                                        | 249.839124                                                 | -46.846161    | 1.14             | 3.1                | 3.1        | 0.0        | 3.3        | 6.0                                                             | 2.6          | е       |              |
| 1044 | 163921.4 - 465758  | 14,13                                                     | 249.839340                                                 | -46.966263    | 1.07             | 8.7; 6.0           | 11.1       | 13.3       | 2.4        | 10.3; 5.7                                                       | 10.3; 5.7    | ;       |              |
| 1045 | 163921.7 - 464332  | 14,11                                                     | 249.840775                                                 | -46.725582    | 0.59             | 6.9; 5.6           | 24.6       | 18.4       | 16.7       | 7.4;5.2                                                         | 7.4;5.2      | vl;vl   |              |
| 1046 | 163921.8-461709    | 09                                                        | 249.840928                                                 | -46.285836    | 3.57             | 7.8                | 1.9        | 3.9        | 0.0        | 9.1                                                             | 9.1          |         |              |
| 1047 | 163922.0-471007    | 16                                                        | 249.841751                                                 | -47.168885    | 1.79             | 4.0                | 2.6        | 3.8        | 0.0        | 3.4                                                             | 3.4          |         |              |
| 1048 | 163922.2 - 470400  | 13                                                        | 249.842539                                                 | -47.066902    | 3.50             | 8.4                | 3.5        | 3.0        | 2.2        | 9.7                                                             | 9.7          | nd      |              |
| 1049 | 163922.3-464911    | 14                                                        | 249.843324                                                 | -46.819874    | 0.84             | 3.2                | 5.9        | 6.5        | 1.4        | 2.7                                                             | 2.7          |         |              |
| 1050 | 163922.5 - 470534  | 16                                                        | 249.843852                                                 | -47.092987    | 0.84             | 2.4                | 4.1        | 5.7        | 0.0        | 2.3                                                             | 2.3          |         |              |
| 1051 | 163922.6-470827    | 16                                                        | 249.844205                                                 | -47.140894    | 0.86             | 2.8                | 5.7        | 6.2        | 1.6        | 2.5                                                             | 2.5          |         |              |
| 1052 | 163923.3-465227    | 14                                                        | 249.847159                                                 | -46.874223    | 1.52             | 4.2                | 3.4        | 0.0        | 3.6        | 3.6                                                             | 3.6          | nd      |              |
| 1053 | 163923.4 - 463228  | $12,\!11$                                                 | 249.847794                                                 | -46.541351    | 1.10             | 4.3; 9.6           | 6.3        | 4.8        | 4.6        | 3.7;13.0                                                        | 3.7;13.0     | ;       | $\mathbb{N}$ |
| 1054 | 163923.7-464830    | 14                                                        | 249.849102                                                 | -46.808497    | 1.10             | 3.6                | 4.4        | 2.1        | 3.8        | 3.0                                                             | 3.0          | nd      | 230          |

Chandra Catalog: Detection and Localization (continued)

| No.            | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB   | Sig.<br>HB                                | Radius<br>(arcsec) | PSF (arcsec) | Flags          |
|----------------|--------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------|------------------|--------------------|------------|--------------|-------------------------------------------|--------------------|--------------|----------------|
| 1055           | 100004.1 400500    | 0.0                                                       | 0.40.050550                                                | 40.415500     | 1.00             |                    |            | 4 -          | 0.0                                       | 2.2                | 2.2          |                |
| 1055           | 163924.1-462503    | 09                                                        | 249.850572                                                 | -46.417738    | 1.62             | 3.8                | 3.0        | 4.5          | 0.0                                       | 3.2                | 3.2          |                |
| 1056           | 163924.3-464237    | 11                                                        | 249.851493                                                 | -46.710294    | 1.48             | 4.8                | 3.8        | 0.5          | 3.8                                       | 4.1                | 4.1          |                |
| 1057           | 163925.4-462859    | 09                                                        | 249.856223                                                 | -46.483131    | 4.43             | 6.1                | 2.4        | 3.8          | 0.0                                       | 5.9                | 5.9          | nd             |
| 1058           | 163925.5-471413    | 16                                                        | 249.856531                                                 | -47.237023    | 2.94             | 8.0                | 3.3        | 0.0          | 4.0                                       | 8.8                | 8.8          |                |
| 1059           | 163925.7-465303    | 13,14                                                     | 249.857193                                                 | -46.884331    | 0.52             | 7.2;4.9            | 30.5       | 34.3         | 3.1                                       | 7.7;4.2            | 7.7;4.2      | vp;vp          |
| 1060           | 163925.8-462832    | 09,12                                                     | 249.857727                                                 | -46.475769    | 1.45             | 5.7;6.5            | 6.2        | 3.9          | 5.2                                       | 5.3;6.8            | 5.3;6.8      | ;              |
| 1061           | 163926.4-470012    | 14,13                                                     | 249.860077                                                 | -47.003525    | 1.93             | 11.1;5.6           | 5.2        | 4.5          | 3.5                                       | 15.8;5.1           | 15.8;5.1     | m1;            |
| 1062           | 163926.9-463403    | 12                                                        | 249.862470                                                 | -46.567672    | 1.33             | 5.0                | 5.2        | 3.4          | 3.9                                       | 4.3                | 4.3          | nd             |
| 1063           | 163927.0-463517    | 12                                                        | 249.862613                                                 | -46.588115    | 2.18             | 5.4                | 3.1        | 0.9          | 3.0                                       | 4.9                | 4.9          | nd             |
| 1064           | 163927.4-464751    | 14                                                        | 249.864495                                                 | -46.797763    | 0.91             | 4.4                | 7.9        | 4.9          | 6.1                                       | 3.8                | 3.8          | nd             |
| 1065           | 163927.9-462316    | 09                                                        | 249.866271                                                 | -46.387890    | 1.01             | 3.0                | 4.1        | 5.8          | 0.0                                       | 2.5                | 2.5          |                |
| 1066           | 163928.1-464821    | 14                                                        | 249.867285                                                 | -46.805895    | 1.44             | 4.3                | 3.0        | 0.0          | 3.5                                       | 3.7                | 3.7          | nd             |
| 1067           | 163928.3-464823    | 14                                                        | 249.868327                                                 | -46.806500    | 1.12             | 4.4                | 0.8        | 0.6          | 0.5                                       | 13.3               | 3.7          | e,s,nd         |
| 1068           | 163928.5-471405    | 16                                                        | 249.869071                                                 | -47.234978    | 5.07             | 8.0                | 1.7        | 3.2          | 0.0                                       | 8.9                | 8.9          |                |
| 1069           | 163928.7-465336    | 13                                                        | 249.869680                                                 | -46.893570    | 1.60             | 6.4                | 3.4        | 3.5          | 1.6                                       | 6.5                | 6.5          | nd             |
| 1070           | 163928.7-470019    | 16,13,14                                                  | 249.869705                                                 | -47.005314    | 0.74             | 7.2;5.3;11.4       | 15.4       | 15.7         | 6.4                                       | 7.9;4.6;16.6       | 7.9;4.6;16.6 | vl;vs,vl;m1,vl |
| 1071           | 163929.4-463859    | 11                                                        | 249.872584                                                 | -46.649824    | 0.97             | 4.1                | 3.0        | 2.5          | 1.8                                       | 13.8               | 3.5          | е              |
| 1072           | 163929.5-465151    | 13                                                        | 249.873001                                                 | -46.864377    | 3.05             | 7.6                | 3.2        | 1.1          | 3.0                                       | 8.5                | 8.5          |                |
| 1073           | 163929.7-463838    | 11,12                                                     | 249.873825                                                 | -46.644157    | 0.68             | 4.2;7.8            | 13.7       | 14.1         | 6.1                                       | 3.6;8.5            | 3.6;8.5      | ;              |
| 1074           | 163929.8-465911    | 14                                                        | 249.874335                                                 | -46.986433    | 3.40             | 10.4               | 4.9        | 4.8          | 1.7                                       | 13.9               | 13.9         | nd             |
| 1075           | 163929.9-464448    | 14,11                                                     | 249.874908                                                 | -46.746777    | 1.10             | 6.6;5.3            | 7.5        | 0.0          | 8.1                                       | 6.9;4.6            | 6.9;4.6      | ;              |
| 1076           | 163930.7-464427    | 11                                                        | 249.878013                                                 | -46.741096    | 1.31             | 5.0                | 4.6        | 2.2          | 3.9                                       | 4.2                | 4.2          | vp,nd          |
| 1077           | 163930.8-470852    | 16                                                        | 249.878608                                                 | -47.147820    | 0.88             | 4.2                | 8.2        | 0.0          | 8.5                                       | 3.5                | 3.5          | •••            |
| 1078           | 163930.9-464350    | 14                                                        | 249.879111                                                 | -46.730824    | 4.54             | 7.5                | 2.3        | 3.3          | 0.2                                       | 8.3                | 8.3          | •••            |
| 1079           | 163931.3-470736    | 16                                                        | 249.880657                                                 | -47.126861    | 1.60             | 3.8                | 2.5        | 4.3          | 0.0                                       | 3.2                | 3.2          |                |
| 1080           | 163931.6-464232    | 11                                                        | 249.881801                                                 | -46.709057    | 1.14             | 3.7                | 3.7        | 0.0          | 4.2                                       | 3.1                | 3.1          | 1              |
| 1081           | 163931.7-463631    | 11                                                        | 249.882113                                                 | -46.608758    | 1.88             | 5.5                | 3.2        | 1.6          | 2.6                                       | 5.1                | 5.1          | vp,nd          |
| 1082           | 163931.7-464633    | 14                                                        | 249.882366                                                 | -46.775852    | 2.18             | 5.7                | 2.4        | 1.9          | 1.5                                       | 5.5                | 5.5          | nd             |
| 1083           | 163931.9-463154    | 11                                                        | 249.883040                                                 | -46.531769    | 2.65             | 9.5                | 3.9        | 5.7          | 0.2                                       | 12.9               | 12.9         | vp,nd          |
| 1084           | 163931.9-470059    | 13                                                        | 249.883138                                                 | -47.016418    | 1.49             | 5.2                | 0.4        | 0.1          | 0.3                                       | 11.3               | 4.4          | e,nd           |
| 1085           | 163932.1-464859    | 14                                                        | 249.884150                                                 | -46.816480    | 1.60             | 4.8                | 3.6        | 4.6          | 0.3                                       | 4.2                | $4.2 \\ 3.9$ | $\mathbf{nd}$  |
| 1086           | 163932.4-470911    | 16                                                        | 249.885088                                                 | -47.153201    | 1.02             | 4.6                | 4.8        | 5.7          | $1.0 \\ 3.2$                              | 3.9                |              |                |
| 1087           | 163932.7-463625    | $11 \\ 09$                                                | 249.886657                                                 | -46.606989    | 2.04             | 5.4                | 3.8        | 1.9          |                                           | 5.0                | 5.0<br>4.9   | nd             |
| 1088           | 163932.8-461859    |                                                           | 249.886671                                                 | -46.316635    | 1.54             | 5.3<br>E 4.6 E     | 4.9        | 1.7          | 4.5                                       | 4.9                |              |                |
| 1089           | 163932.9-470303    | 16,13                                                     | 249.887222                                                 | -47.050884    | 0.71             | 5.4;6.5            | 14.0       | 1.6          | 14.2                                      | 4.9;6.3            | 4.9;6.3      | ;              |
| 1090           | 163933.2-465530    | 14,13                                                     | 249.888428                                                 | -46.925037    | 1.21             | 7.6;4.7            | 8.0        | 2.2          | 7.7                                       | 8.0;4.0            | 8.0;4.0      | ;              |
| 1091           | 163933.2-464121    | 11                                                        | 249.888484                                                 | -46.689393    | 0.81             | 3.0                | 6.4        | 3.1          | 5.5                                       | 2.5                | 2.5          | •••            |
| $1092 \\ 1093$ | 163933.9-463649    | $11,12 \\ 09$                                             | 249.891342                                                 | -46.613754    | 1.71             | 5.0;7.2            | 4.3        | $6.5 \\ 5.2$ | $\begin{array}{c} 0.0 \\ 0.6 \end{array}$ | 4.3;7.6            | 4.3;7.6      | ;              |
|                | 163934.7-462126    |                                                           | 249.894823                                                 | -46.357248    | 1.01             | 3.0                | 4.3        |              |                                           | 2.5                | 2.5          |                |
| 1094           | 163935.1-470913    | 16                                                        | 249.896426                                                 | -47.153687    | 1.77             | 5.0                | 3.2        | 0.0          | 3.5                                       | 4.2                | 4.2          | <br>d          |
| 1095           | 163935.3-464547    | 14                                                        | 249.897213                                                 | -46.763232    | 1.80             | 6.6<br>5.7         | 3.7        | 2.9          | 2.4                                       | 6.9                | 6.9<br>5 4   | nd             |
| 1096           | 163935.8-464756    | 14                                                        | 249.899562                                                 | -46.799019    | 2.30             | 5.7<br>5.7         | 2.6        | $1.3 \\ 0.2$ | 2.2                                       | 5.4                | 5.4<br>5.2   | nd             |
| 1097           | 163936.4-462924    | 09                                                        | 249.901864                                                 | -46.490101    | 2.01             | 5.7                | 4.0        |              | 4.2                                       | 5.2                | 5.2          | vp             |
| 1098           | 163936.8 - 462551  | 09                                                        | 249.903390                                                 | -46.430953    | 1.04             | 2.4                | 4.1        | 4.8          | 0.5                                       | 2.3                | 2.3          |                |

Chandra Catalog: Detection and Localization (continued)

| No.            | Source<br>(CXOU J)                                                                  | $ObsID (125^{**})$ | R.A.<br>(deg)            | Dec.<br>(deg)            | Unc.<br>(arcsec) | Offset<br>(arcmin)                      | Sig.<br>FB        | Sig.<br>SB        | Sig.<br>HB        | Radius<br>(arcsec) | PSF<br>(arcsec)   | Flags   |        |
|----------------|-------------------------------------------------------------------------------------|--------------------|--------------------------|--------------------------|------------------|-----------------------------------------|-------------------|-------------------|-------------------|--------------------|-------------------|---------|--------|
|                | (01000)                                                                             | (120)              | (408)                    | (408)                    | (410000)         | ((((((((((((((((((((((((((((((((((((((( | 15                | 55                | 112               | (410500)           | (410000)          |         |        |
| 1099           | 163936.8-463058                                                                     | 11                 | 249.903741               | -46.516247               | 6.90             | 10.2                                    | 2.3               | 2.1               | 1.4               | 14.5               | 14.5              | nd      |        |
| 1100           | 163937.0-465204                                                                     | 13                 | 249.904545               | -46.867788               | 3.52             | 6.8                                     | 3.9               | 0.0               | 4.2               | 7.1                | 7.1               | nd      |        |
| 1101           | 163937.2 - 465650                                                                   | 13                 | 249.905367               | -46.947320               | 1.25             | 3.5                                     | 3.4               | 2.5               | 2.2               | 2.9                | 2.9               | nd      |        |
| 1102           | 163938.2 - 465438                                                                   | 13                 | 249.909335               | -46.910558               | 1.42             | 4.5                                     | 4.4               | 2.6               | 3.4               | 3.9                | 3.9               | nd      |        |
| 1103           | 163938.3-461914                                                                     | 09                 | 249.909732               | -46.320615               | 1.09             | 4.8                                     | 6.2               | 8.2               | 0.0               | 4.2                | 4.2               |         |        |
| 1104           | 163938.4 - 463507                                                                   | 12                 | 249.910042               | -46.585392               | 2.61             | 7.2                                     | 2.3               | 0.0               | 3.2               | 7.6                | 7.6               | nd      |        |
| 1105           | 163939.0-463922                                                                     | 11                 | 249.912501               | -46.656162               | 0.83             | 2.5                                     | 5.4               | 5.4               | 2.2               | 2.3                | 2.3               |         |        |
| 1106           | 163939.1 - 463451                                                                   | 11                 | 249.913186               | -46.581043               | 1.64             | 6.3                                     | 4.7               | 5.4               | 1.3               | 6.6                | 6.6               | nd      |        |
| 1107           | 163939.1-464727                                                                     | 11                 | 249.913322               | -46.791014               | 2.53             | 6.9                                     | 3.5               | 5.8               | 0.0               | 6.9                | 6.9               |         |        |
| 1108           | 163939.4-462918                                                                     | 12                 | 249.914168               | -46.488588               | 3.38             | 8.0                                     | 3.3               | 0.0               | 4.0               | 9.3                | 9.3               | nd      |        |
| 1109           | 163939.7-470747                                                                     | 16                 | 249.915665               | -47.129840               | 1.06             | 5.2                                     | 8.2               | 0.6               | 8.4               | 4.6                | 4.6               |         |        |
| 1110           | 163940.5-463701                                                                     | 12                 | 249.918951               | -46.616987               | 2.26             | 8.3                                     | 4.6               | 4.5               | 2.2               | 9.6                | 9.6               | nd      |        |
| 1111           | 163940.8-471726                                                                     | 16                 | 249.920131               | -47.290731               | 7.62             | 12.0                                    | $1.6 \\ 0.2$      | 0.1               | 1.6               | 18.1               | 18.1              |         |        |
| 1112           | 163941.2-462018                                                                     | 09                 | 249.921784               | -46.338603               | 1.01             | 3.6                                     |                   | 2.7               | 0.0               | 18.5               | 3.1               | е       |        |
| $1113 \\ 1114$ | $\begin{array}{c} 163941.2 \hbox{-} 464746 \\ 163941.3 \hbox{-} 471309 \end{array}$ | $\frac{11}{16}$    | 249.922016<br>249.922360 | -46.796175<br>-47.219359 | $1.96 \\ 9.67$   | $7.1 \\ 8.4$                            | $0.8 \\ 2.4$      | $1.7 \\ 1.4$      | $0.0 \\ 1.9$      | $20.8 \\ 9.7$      | $7.2 \\ 9.7$      | е       |        |
| $1114 \\ 1115$ | 163941.3-471309<br>163941.3-471122                                                  | 16<br>16           | 249.922380<br>249.922383 | -47.219559<br>-47.189558 | 9.07<br>2.02     | 7.1                                     | 2.4<br>4.8        | $1.4 \\ 2.6$      | $1.9 \\ 3.9$      | 9.7<br>7.3         | 9.7<br>7.3        |         |        |
| 1115           | 163941.5-463816                                                                     | 11,08              | 249.922303               | -46.637871               | 0.88             | 3.1;11.5                                | $\frac{4.8}{3.6}$ | $\frac{2.0}{3.0}$ | $\frac{3.9}{2.5}$ | 11.6;17.0          | 2.5;17.0          | e,id;id |        |
| 1110           | 163941.8 - 461907                                                                   | 09                 | 249.923203<br>249.924236 | -46.318846               | 2.39             | 4.8                                     | 0.9               | 3.8               | 0.0               | 8.5                | 4.2               | e,m1    |        |
| 1117           | 163941.8-464556                                                                     | 11                 | 249.924289               | -46.765657               | 1.54             | 5.3                                     | 4.3               | 4.0               | 2.3               | 4.6                | 4.6               | nd      |        |
| 1110           | 163942.2-470543                                                                     | 16                 | 249.926080               | -47.095356               | 2.48             | 5.6                                     | 3.0               | 3.9               | 0.5               | 5.2                | 5.2               | nd      |        |
| 1120           | 163942.3-471257                                                                     | 16                 | 249.926453               | -47.216077               |                  | 8.3                                     | 3.1               | 1.9               | 2.0               | 44.0               | 9.6               | c,e,s   |        |
| 1121           | 163942.4-470711                                                                     | 13                 | 249.926792               | -47.119836               | 11.91            | 9.5                                     | 1.5               | 3.0               | 0.0               | 11.9               | 11.9              | vp      |        |
| 1122           | 163942.6-463346                                                                     | 12,08,11           | 249.927811               | -46.563030               | 1.29             | 7.6;9.6;7.2                             | 8.3               | 4.7               | 7.0               | 8.5;12.4;8.0       | 8.5;12.4;8.0      | ;;      |        |
| 1123           | 163942.7-461902                                                                     | 09                 | 249.928315               | -46.317390               | 1.47             | 4.8                                     | 3.8               | 3.4               | 2.5               | 4.2                | 4.2               | $m^2$   |        |
| 1124           | 163943.4 - 471249                                                                   | 16                 | 249.931150               | -47.213612               | 2.80             | 8.4                                     | 3.9               | 1.0               | 3.8               | 9.6                | 9.6               |         |        |
| 1125           | 163943.7 - 464855                                                                   | $11,\!13$          | 249.932495               | -46.815498               | 4.56             | 8.1; 9.3                                | 5.0               | 4.9               | 0.8               | 9.1;12.2           | 9.1;12.2          | ;       |        |
| 1126           | 163944.1 - 463357                                                                   | 11                 | 249.933823               | -46.565870               | 2.35             | 7.0                                     | 3.5               | 2.4               | 2.5               | 7.7                | 7.7               | nd      |        |
| 1127           | 163944.3 - 465714                                                                   | 13                 | 249.934680               | -46.953916               | 0.75             | 2.2                                     | 5.7               | 6.5               | 1.0               | 2.2                | 2.2               |         |        |
| 1128           | 163944.3 - 465614                                                                   | 13                 | 249.934965               | -46.937460               | 0.50             | 2.7                                     | 37.5              | 24.5              | 30.9              | 2.4                | 2.4               |         |        |
| 1129           | 163944.7 - 465005                                                                   | $14,\!13,\!11$     | 249.936386               | -46.834827               | 1.72             | 6.9; 8.1; 9.3                           | 6.7               | 6.6               | 4.0               | 7.2; 9.7; 11.5     | 7.2; 9.7; 11.5    | ;;      |        |
| 1130           | 163944.9-463317                                                                     | 09                 | 249.937091               | -46.554797               | 2.57             | 9.4                                     | 4.8               | 2.0               | 4.3               | 11.7               | 11.7              | vp,nd   |        |
| 1131           | 163944.9-465151                                                                     | 13,14              | 249.937149               | -46.864235               | 1.37             | 6.4;7.3                                 | 4.2               | 5.2               | 1.1               | 6.6;7.6            | 6.6;7.6           | ;       |        |
| 1132           | 163944.9-464213                                                                     | 11                 | 249.937387               | -46.703614               | 0.78             | 1.7                                     | 3.6               | 1.1               | 3.3               | 2.2                | 2.2               |         |        |
| 1133           | 163945.3-463100                                                                     | 12                 | 249.939137               | -46.516817               | 4.08             | 8.3                                     | 2.8               | 2.5               | 1.6               | 10.0               | 10.0              | nd      |        |
| 1134           | 163945.4-470259                                                                     | 13                 | 249.939191               | -47.049747               | 1.95             | 5.4                                     | 3.3               | 4.8               | 0.0               | 4.7                | 4.7               | nd      |        |
| $1135 \\ 1136$ | 163945.6-464103<br>163045 8 461023                                                  | 11                 | 249.940215<br>249.940956 | -46.684416<br>-46.323191 | $0.54 \\ 1.31$   | 0.9                                     | $12.7 \\ 4.0$     | $12.7 \\ 0.0$     | $4.6 \\ 4.4$      | $2.1 \\ 3.9$       | $2.1 \\ 3.9$      |         |        |
| $1130 \\ 1137$ | 163945.8-461923<br>163946.1-462359                                                  | 09<br>09           | 249.940956<br>249.942130 | -46.323191<br>-46.399965 | $1.31 \\ 0.59$   | $4.5 \\ 0.2$                            | $4.0 \\ 9.5$      | $0.0 \\ 0.0$      | $\frac{4.4}{9.8}$ | $\frac{3.9}{2.0}$  | $\frac{3.9}{2.0}$ |         |        |
| 1137           | 163946.2-464726                                                                     | 13                 | 249.942130<br>249.942542 | -46.790707               | 10.93            | 10.2                                    | $9.3 \\ 0.0$      | 0.0               | 9.8<br>0.0        | 15.7               | 15.7              | nd      |        |
| 1138<br>1139   | 163947.0-470132                                                                     | $13 \\ 13,16$      | 249.942342<br>249.945862 | -47.025616               | 0.89             | 3.9;8.2                                 | 6.8               | 9.4               | 0.0               | 3.3;9.8            | 3.3;9.8           | ;       |        |
| 1139           | 163947.7-463504                                                                     | 13,10<br>12        | 249.945802<br>249.948757 | -46.584637               | 2.41             | 8.7                                     | 4.7               | $\frac{9.4}{4.1}$ | 2.6               | 10.7               | 10.7              | ,<br>nd |        |
| 1140           | 163947.8-465325                                                                     | 13                 | 249.949137               | -46.890465               | 1.41             | 4.8                                     | 4.4               | 0.0               | 5.0               | 4.1                | 4.1               | nd      | 5      |
| 1141           | 163947.9-464114                                                                     | 10                 | 249.949739               | -46.687226               | 0.54             | 0.6                                     | 12.1              | 10.8              | 6.2               | 2.1                | 2.1               |         | 232    |
| 1174           | 1000-10-10-10-11-1                                                                  | 11                 | 210.010100               | 10.001220                | 0.01             | 0.0                                     | 14.1              | 10.0              | 0.2               | 4.1                | 4.1               |         | $\sim$ |

Chandra Catalog: Detection and Localization (continued)

| No.  | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | R.A.<br>(deg) | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags    |     |
|------|--------------------|-----------------------------------------------------------|---------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|-----------------|----------|-----|
|      | ()                 | ( - )                                                     | (110)         | (             | (1.1.1.1)        |                    |            |            |            | (1 111)            | (*****)         |          |     |
| 1143 | 163948.2 - 465941  | 13                                                        | 249.950934    | -46.994825    | 0.72             | 2.2                | 1.1        | 0.3        | 0.9        | 17.0               | 2.3             | е        |     |
| 1144 | 163948.2 - 463214  | 11                                                        | 249.950990    | -46.537406    | 4.58             | 8.7                | 2.4        | 0.0        | 2.7        | 11.0               | 11.0            | nd       |     |
| 1145 | 163948.2 - 470551  | 16                                                        | 249.951008    | -47.097749    | 1.05             | 6.6                | 11.2       | 8.2        | 7.8        | 6.7                | 6.7             | vs,nd    |     |
| 1146 | 163948.5 - 462737  | 09                                                        | 249.952357    | -46.460387    | 1.20             | 3.8                | 4.8        | 5.5        | 1.0        | 3.2                | 3.2             |          |     |
| 1147 | 163948.6-470325    | 16                                                        | 249.952915    | -47.056986    | 4.36             | 7.4                | 3.0        | 2.1        | 2.0        | 8.0                | 8.0             | nd       |     |
| 1148 | 163948.9 - 463048  | 08                                                        | 249.953804    | -46.513434    | 3.84             | 8.4                | 2.6        | 1.1        | 2.2        | 10.0               | 10.0            | nd       |     |
| 1149 | 163949.7-470413    | 16, 13                                                    | 249.957138    | -47.070385    | 1.54             | 7.2;6.4            | 6.7        | 8.0        | 2.3        | 7.7;6.2            | 7.7;6.2         | ;        |     |
| 1150 | 163949.9 - 462332  | 09                                                        | 249.958035    | -46.392416    | 0.59             | 0.9                | 9.5        | 10.8       | 1.7        | 2.0                | 2.0             |          |     |
| 1151 | 163950.0-462526    | 09                                                        | 249.958678    | -46.423931    | 0.66             | 1.8                | 6.9        | 7.6        | 1.7        | 2.2                | 2.2             |          |     |
| 1152 | 163950.0-465238    | 13,10,14                                                  | 249.958710    | -46.877403    | 0.82             | 5.4; 9.9; 8.4      | 13.0       | 12.4       | 6.5        | 5.0;12.9;9.8       | 5.0;12.9;9.8    | ;;vp     |     |
| 1153 | 163950.1 - 465446  | 10                                                        | 249.958857    | -46.912940    | 5.13             | 10.9               | 3.1        | 0.0        | 4.5        | 15.5               | 15.5            | nd       |     |
| 1154 | 163950.2 - 465211  | 13                                                        | 249.959468    | -46.869933    | 3.20             | 5.9                | 1.9        | 3.5        | 0.0        | 5.7                | 5.7             | nd       |     |
| 1155 | 163950.8 - 463822  | 11                                                        | 249.961815    | -46.639479    | 0.76             | 2.5                | 5.6        | 0.0        | 6.0        | 2.3                | 2.3             | nd       |     |
| 1156 | 163951.4 - 462014  | 09                                                        | 249.964412    | -46.337438    | 1.29             | 3.8                | 3.8        | 2.4        | 2.8        | 3.2                | 3.2             |          |     |
| 1157 | 163951.5 - 463037  | 09,08                                                     | 249.964584    | -46.510479    | 1.12             | 6.9;7.9            | 9.7        | 11.6       | 2.3        | 6.9; 9.1           | 6.9; 9.1        | ;        |     |
| 1158 | 163951.6-470022    | 13                                                        | 249.965398    | -47.006269    | 0.72             | 2.6                | 6.1        | 7.8        | 0.0        | 2.4                | 2.4             |          |     |
| 1159 | 163951.8 - 470133  | 16                                                        | 249.966045    | -47.025927    | 6.47             | 8.8                | 1.1        | 3.1        | 0.0        | 11.1               | 11.1            | nd       |     |
| 1160 | 163952.5 - 462236  | 09                                                        | 249.969119    | -46.376930    | 0.73             | 1.8                | 0.4        | 1.9        | 0.0        | 13.6               | 2.1             | е        |     |
| 1161 | 163952.6 - 463937  | 11                                                        | 249.969441    | -46.660454    | 0.70             | 1.3                | 2.2        | 0.0        | 2.4        | 5.3                | 2.0             | е        |     |
| 1162 | 163953.3-465912    | 13                                                        | 249.972171    | -46.986693    | 0.57             | 1.4                | 8.5        | 9.3        | 1.9        | 2.2                | 2.2             |          |     |
| 1163 | 163953.9-465152    | 13                                                        | 249.974984    | -46.864454    | 1.98             | 6.1                | 3.5        | 4.0        | 1.3        | 6.1                | 6.1             | nd       |     |
| 1164 | 163954.2 - 464834  | 13, 14, 11                                                | 249.975891    | -46.809639    | 2.04             | 9.4; 8.6; 7.7      | 6.0        | 6.3        | 2.0        | 12.6; 10.5; 8.3    | 12.6; 10.5; 8.3 | id;id;id |     |
| 1165 | 163954.5 - 462341  | 09                                                        | 249.977240    | -46.394724    | 0.67             | 1.6                | 7.2        | 7.6        | 2.5        | 2.2                | 2.2             |          |     |
| 1166 | 163954.5 - 464718  | 13                                                        | 249.977321    | -46.788600    | 11.49            | 10.6               | 0.0        | 0.0        | 0.0        | 15.7               | 15.7            | vp,nd    |     |
| 1167 | 163954.7 - 465431  | 13                                                        | 249.978144    | -46.908634    | 1.45             | 3.4                | 3.3        | 4.4        | 0.2        | 2.9                | 2.9             | nd       |     |
| 1168 | 163955.2 - 463145  | 08,09                                                     | 249.980194    | -46.529377    | 0.61             | 7.2; 8.1           | 29.9       | 27.0       | 15.4       | 7.7;9.0            | 7.7;9.0         | vp,vl;vl |     |
| 1169 | 163955.2 - 462450  | 09                                                        | 249.980207    | -46.414155    | 0.85             | 2.0                | 4.5        | 2.6        | 3.4        | 2.2                | 2.2             |          |     |
| 1170 | 163955.6-464418    | 11                                                        | 249.981961    | -46.738352    | 1.09             | 3.5                | 3.8        | 5.6        | 0.0        | 3.0                | 3.0             |          |     |
| 1171 | 163955.9 - 465234  | 10,13                                                     | 249.982956    | -46.876312    | 1.08             | 9.0;5.4            | 8.3        | 7.4        | 4.2        | 11.0; 5.0          | 11.0; 5.0       | ;vs      |     |
| 1172 | 163955.9 - 465642  | 13                                                        | 249.983080    | -46.945260    | 0.67             | 1.2                | 4.6        | 0.0        | 4.8        | 2.0                | 2.0             | VS       |     |
| 1173 | 163955.9-462921    | 09,08                                                     | 249.983124    | -46.489189    | 0.98             | 5.8;7.5            | 11.1       | 11.8       | 4.6        | 5.3; 8.2           | 5.3; 8.2        | ;        |     |
| 1174 | 163956.2 - 470250  | 13                                                        | 249.984448    | -47.047294    | 1.77             | 4.9                | 3.1        | 2.5        | 2.1        | 8.3                | 4.1             | e,nd     |     |
| 1175 | 163956.3-470025    | 13                                                        | 249.984950    | -47.007000    | 0.86             | 2.5                | 4.2        | 0.0        | 4.5        | 2.4                | 2.4             |          |     |
| 1176 | 163956.8 - 465918  | 13                                                        | 249.986827    | -46.988357    | 0.62             | 1.3                | 0.0        | 0.0        | 0.0        | 15.4               | 2.2             | e,s      |     |
| 1177 | 163956.8 - 463155  | 12                                                        | 249.987028    | -46.532172    | 12.17            | 10.1               | 1.4        | 1.3        | 0.7        | 13.9               | 13.9            | m1,nd    |     |
| 1178 | 163956.8 - 465915  | 13                                                        | 249.987055    | -46.987719    | 0.68             | 1.3                | 7.3        | 7.5        | 2.3        | 2.2                | 2.2             |          |     |
| 1179 | 163957.0-465923    | 13                                                        | 249.987756    | -46.989930    | 0.80             | 1.4                | 3.4        | 0.0        | 3.7        | 2.2                | 2.2             |          |     |
| 1180 | 163957.2 - 465126  | 10, 13, 11                                                | 249.988724    | -46.857368    | 0.56             | 8.3; 6.5; 10.6     | 32.8       | 0.8        | 33.8       | 9.7; 6.8; 14.4     | 9.7; 6.8; 14.4  | id;id;id |     |
| 1181 | 163957.8 - 462549  | 09,08                                                     | 249.991119    | -46.430534    | 0.62             | 3.0; 9.0           | 15.8       | 0.0        | 16.4       | 2.5;11.6           | 2.5;11.6        | ;        |     |
| 1182 | 163958.1 - 464505  | 14                                                        | 249.992392    | -46.751500    | 12.36            | 10.4               | 0.4        | 0.0        | 0.0        | 14.5               | 14.5            | nd       |     |
| 1183 | 163958.3 - 463229  | 08,12                                                     | 249.993301    | -46.541462    | 2.24             | 6.7;10.5           | 4.5        | 1.3        | 4.4        | 6.9;14.9           | 6.9;14.9        | id;id,m3 |     |
| 1184 | 163958.5 - 462435  | 09                                                        | 249.993880    | -46.409877    | 1.21             | 2.4                | 4.9        | 6.0        | 0.3        | 2.4                | 2.4             |          |     |
| 1185 | 163958.6-462113    | 09                                                        | 249.994399    | -46.353746    | 0.87             | 3.5                | 6.5        | 7.7        | 1.2        | 3.0                | 3.0             |          | 100 |
| 1186 | 163958.7 - 463931  | 11                                                        | 249.994982    | -46.658770    | 0.82             | 1.9                | 6.4        | 4.3        | 4.6        | 2.1                | 2.1             |          | ç   |

Chandra Catalog: Detection and Localization (continued)

| No.  | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | $\begin{array}{c} \text{Dec.} \\ \text{(deg)} \end{array}$ | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF (arcsec) | Flags    |  |
|------|--------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------|--------------------|------------|------------|------------|--------------------|--------------|----------|--|
| 1187 | 163958.7-463311    | 08                                                        | 249.994991                                                 | -46.553086                                                 | 3.69             | 6.7                | 1.9        | 2.8        | 0.0        | 6.9                | 6.9          | nd       |  |
| 1188 | 163958.9-463213    | 12                                                        | 249.995611                                                 | -46.537071                                                 | 14.79            | 10.4               | 1.6        | 1.0        | 1.1        | 14.8               | 14.8         | id,m3,nd |  |
| 1189 | 163959.0-470112    | 16                                                        | 249.995919                                                 | -47.020161                                                 | 13.67            | 10.0               | 2.2        | 1.5        | 1.4        | 13.7               | 13.7         |          |  |
| 1190 | 163959.0-462415    | 09                                                        | 249.996021                                                 | -46.404227                                                 | 0.87             | 2.4                | 4.7        | 1.2        | 4.4        | 2.4                | 2.4          |          |  |
| 1191 | 163959.3-465038    | 13,10                                                     | 249.997375                                                 | -46.844006                                                 | 1.62             | 7.3;7.7            | 6.2        | 0.0        | 7.1        | 8.1;8.5            | 8.1;8.5      | ;        |  |
| 1192 | 163959.3-462755    | 09                                                        | 249.997458                                                 | -46.465499                                                 | 1.55             | 4.8                | 4.5        | 2.5        | 3.7        | 4.0                | 4.0          | nd       |  |
| 1193 | 163959.7-463435    | 08                                                        | 249.998779                                                 | -46.576614                                                 | 3.50             | 7.0                | 1.5        | 3.2        | 0.0        | 7.2                | 7.2          | vp,nd    |  |
| 1194 | 164000.1-470142    | 16                                                        | 250.000439                                                 | -47.028458                                                 | 5.91             | 9.9                | 2.1        | 1.5        | 1.4        | 13.4               | 13.4         | nd       |  |
| 1195 | 164000.1-465152    | 13                                                        | 250.000500                                                 | -46.864508                                                 | 1.62             | 6.1                | 5.1        | 1.0        | 5.1        | 6.2                | 6.2          | nd       |  |
| 1196 | 164000.3-463917    | 11                                                        | 250.001471                                                 | -46.654833                                                 | 0.66             | 2.3                | 7.5        | 6.8        | 3.9        | 2.2                | 2.2          |          |  |
| 1197 | 164000.5-463233    | 12                                                        | 250.002258                                                 | -46.542703                                                 | 15.47            | 10.7               | 0.0        | 0.0        | 0.0        | 15.5               | 15.5         | m3,nd    |  |
| 1198 | 164000.8-465922    | 13                                                        | 250.003533                                                 | -46.989545                                                 | 0.75             | 1.6                | 4.2        | 3.9        | 2.0        | 2.2                | 2.2          |          |  |
| 1199 | 164000.9-464633    | 10                                                        | 250.003758                                                 | -46.775863                                                 | 4.27             | 7.6                | 3.0        | 3.8        | 0.9        | 8.4                | 8.4          | vp,nd    |  |
| 1200 | 164001.7-470154    | 13                                                        | 250.007477                                                 | -47.031859                                                 | 1.30             | 4.1                | 4.3        | 5.9        | 0.0        | 3.4                | 3.4          | nd       |  |
| 1201 | 164002.1-462826    | 09                                                        | 250.008806                                                 | -46.473891                                                 | 1.22             | 5.4                | 6.3        | 6.1        | 3.0        | 4.8                | 4.8          | nd       |  |
| 1202 | 164002.3-462121    | 09                                                        | 250.009922                                                 | -46.356103                                                 | 1.22             | 3.9                | 3.5        | 0.5        | 3.5        | 11.1               | 3.3          | е        |  |
| 1203 | 164002.4-463200    | 08,09                                                     | 250.010117                                                 | -46.533497                                                 | 0.53             | 6.0; 8.7           | 32.5       | 27.5       | 18.3       | 5.8;10.2           | 5.8;10.2     | ;        |  |
| 1204 | 164003.5-463850    | 11                                                        | 250.014900                                                 | -46.647307                                                 | 0.74             | 3.0                | 7.0        | 7.4        | 2.8        | 2.5                | 2.5          | nd       |  |
| 1205 | 164003.6-465939    | 13                                                        | 250.015023                                                 | -46.994438                                                 | 0.92             | 2.1                | 4.5        | 5.2        | 0.7        | 2.3                | 2.3          |          |  |
| 1206 | 164003.6-462442    | 09                                                        | 250.015117                                                 | -46.411869                                                 | 1.03             | 3.3                | 4.3        | 2.3        | 3.5        | 2.8                | 2.8          | nd       |  |
| 1207 | 164003.6-463844    | 11                                                        | 250.015401                                                 | -46.645695                                                 | 1.12             | 3.1                | 3.3        | 5.1        | 0.0        | 2.6                | 2.6          | nd       |  |
| 1208 | 164003.7-470401    | 16                                                        | 250.015616                                                 | -47.067064                                                 | 5.07             | 9.6                | 2.9        | 0.6        | 2.9        | 12.5               | 12.5         | m2,nd    |  |
| 1209 | 164004.0-463501    | 11                                                        | 250.016718                                                 | -46.583867                                                 | 1.73             | 6.3                | 4.6        | 1.3        | 3.6        | 6.5                | 6.5          | nd       |  |
| 1210 | 164004.1-470418    | 13,16                                                     | 250.017487                                                 | -47.071884                                                 | 0.82             | 6.5; 9.6           | 17.0       | 19.6       | 3.6        | 6.4;12.5           | 6.4;12.5     | ;m2      |  |
| 1211 | 164005.5-464950    | 13,10                                                     | 250.023132                                                 | -46.830795                                                 | 1.74             | 8.3; 6.5           | 5.2        | 3.0        | 4.3        | 10.1; 6.6          | 10.1; 6.6    | ;        |  |
| 1212 | 164005.8 - 462238  | 08                                                        | 250.024309                                                 | -46.377410                                                 | 3.97             | 10.7               | 2.5        | 0.0        | 3.2        | 15.8               | 15.8         | m3,nd    |  |
| 1213 | 164006.1 - 462224  | 08                                                        | 250.025598                                                 | -46.373379                                                 | 10.51            | 10.9               | 0.0        | 0.3        | 0.0        | 16.3               | 16.3         | m3,nd    |  |
| 1214 | 164006.3-462203    | 09                                                        | 250.026306                                                 | -46.367616                                                 | 1.15             | 4.1                | 3.6        | 0.0        | 3.9        | 3.5                | 3.5          | nd       |  |
| 1215 | 164006.6 - 462239  | 09                                                        | 250.027816                                                 | -46.377536                                                 | 1.38             | 3.9                | 4.0        | 1.0        | 3.7        | 3.4                | 3.4          | nd       |  |
| 1216 | 164006.8 - 462913  | 09,08                                                     | 250.028717                                                 | -46.487190                                                 | 0.92             | 6.5; 5.8           | 13.1       | 0.7        | 13.6       | 6.5; 5.6           | 6.5; 5.6     | vl;vp,vl |  |
| 1217 | 164007.3 - 464036  | 10                                                        | 250.030485                                                 | -46.676835                                                 | 14.48            | 10.2               | 0.1        | 1.6        | 0.0        | 14.5               | 14.5         |          |  |
| 1218 | 164008.0-462714    | 09,08                                                     | 250.033630                                                 | -46.454159                                                 | 0.70             | 5.2;6.8            | 14.4       | 15.1       | 5.3        | 4.5;7.2            | 4.5;7.2      | ;        |  |
| 1219 | 164008.3 - 461704  | 09                                                        | 250.034821                                                 | -46.284451                                                 | 4.06             | 7.9                | 2.6        | 0.0        | 2.8        | 9.2                | 9.2          |          |  |
| 1220 | 164009.1 - 462946  | 08,09                                                     | 250.038086                                                 | -46.496372                                                 | 0.93             | 5.3;7.2            | 8.3        | 9.3        | 2.7        | 4.7;7.4            | 4.7;7.4      | ;vp      |  |
| 1221 | 164009.8 - 462637  | 08                                                        | 250.041006                                                 | -46.443730                                                 | 4.69             | 7.0                | 1.6        | 2.5        | 0.0        | 7.6                | 7.6          |          |  |
| 1222 | 164010.0-462426    | 08                                                        | 250.041773                                                 | -46.407334                                                 | 2.70             | 8.8                | 4.7        | 2.2        | 3.2        | 11.1               | 11.1         | nd       |  |
| 1223 | 164010.0-464348    | 11                                                        | 250.042065                                                 | -46.730277                                                 | 1.33             | 4.4                | 4.1        | 5.0        | 1.2        | 3.7                | 3.7          | nd       |  |
| 1224 | 164010.6 - 465220  | $13,\!10$                                                 | 250.044479                                                 | -46.872303                                                 | 2.05             | 6.1; 6.6           | 4.0        | 6.5        | 0.0        | 6.2; 6.6           | 6.2; 6.6     | ;        |  |
| 1225 | 164010.9 - 462901  | 09                                                        | 250.045700                                                 | -46.483868                                                 | 3.51             | 6.8                | 2.6        | 1.8        | 1.9        | 6.9                | 6.9          | nd       |  |
| 1226 | 164011.0-464247    | 11                                                        | 250.046217                                                 | -46.713308                                                 | 1.03             | 4.0                | 5.7        | 4.6        | 3.4        | 3.4                | 3.4          | nd       |  |
| 1227 | 164011.1 - 465706  | 13                                                        | 250.046340                                                 | -46.951931                                                 | 0.56             | 2.6                | 16.7       | 18.5       | 0.6        | 2.4                | 2.4          |          |  |
| 1228 | 164011.8 - 463601  | 11                                                        | 250.049213                                                 | -46.600349                                                 | 1.28             | 6.1                | 2.7        | 0.0        | 1.6        | 22.8               | 6.1          | e,nd     |  |
| 1229 | 164012.0-461945    | 09                                                        | 250.050136                                                 | -46.329431                                                 | 2.36             | 6.2                | 3.0        | 1.9        | 2.3        | 6.3                | 6.3          |          |  |
| 1230 | 164012.0-463507    | 08                                                        | 250.050227                                                 | -46.585449                                                 | 1.49             | 5.4                | 4.6        | 3.1        | 3.3        | 4.9                | 4.9          | nd       |  |

Chandra Catalog: Detection and Localization (continued)

| No.          | Source<br>(CXOU J)                    | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | R.A.<br>(deg) | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags         |     |
|--------------|---------------------------------------|-----------------------------------------------------------|---------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|-----------------|---------------|-----|
|              | · · · · · · · · · · · · · · · · · · · |                                                           |               |               |                  |                    |            |            |            |                    |                 | _             |     |
| 1231         | 164012.4-464138                       | 11                                                        | 250.051750    | -46.694009    | 1.31             | 3.8                | 0.0        | 1.6        | 0.0        | 10.2               | 3.2             | e,nd          |     |
| 1232         | 164012.4-463505                       | 08                                                        | 250.051805    | -46.584980    | 1.21             | 5.4                | 0.0        | 0.0        | 0.2        | 23.3               | 4.8             | e,s,nd        |     |
| 1233         | 164012.6-463901                       | 11,08,10                                                  | 250.052719    | -46.650379    | 0.82             | 4.2;8.3;11.0       | 9.8        | 10.4       | 3.2        | 3.6;9.5;16.8       | 3.6;9.5;16.8    | ;;            |     |
| 1234         | 164013.1-462657                       | 09                                                        | 250.054889    | -46.449388    | 1.47             | 5.7                | 4.8        | 2.9        | 3.8        | 5.3                | 5.3             | nd            |     |
| 1235         | 164013.2-462654                       | 08                                                        | 250.055364    | -46.448432    | 1.61             | 6.4                | 3.7        | 3.9        | 1.5        | 6.6                | 6.6             | nd            |     |
| 1236         | 164014.1-462949                       | 09                                                        | 250.058877    | -46.497171    | 1.79             | 7.8                | 6.0        | 7.3        | 1.3        | 8.4                | 8.4             | $\mathbf{nd}$ |     |
| 1237         | 164014.4-464850                       | 10,11                                                     | 250.060120    | -46.814041    | 1.16             | 4.9;8.9            | 6.8        | 8.4        | 0.0        | 4.2;10.8           | 4.2;10.8        | ;             |     |
| 1238         | 164014.6-470241                       | 13                                                        | 250.061086    | -47.044999    | 3.09             | 5.7                | 3.4        | 4.0        | 1.0        | 5.2                | 5.2             | •••           |     |
| 1239         | 164014.7-470237                       | 13                                                        | 250.061259    | -47.043875    | 1.27             | 5.6                | 0.0        | 0.0        | 0.0        | 20.2               | 5.1             | $_{\rm e,s}$  |     |
| 1240         | 164014.8-470600                       | 13                                                        | 250.062010    | -47.100082    | 2.31             | 8.6                | 6.2        | 1.2        | 6.2        | 10.2               | 10.2            |               |     |
| 1241         | 164015.8-465258                       | 13                                                        | 250.065871    | -46.882798    | 1.91             | 6.0                | 3.4        | 0.0        | 4.1        | 6.0                | 6.0             | nd            |     |
| 1242         | 164015.8-463453                       | 08                                                        | 250.066219    | -46.581596    | 1.29             | 4.8                | 4.7        | 2.4        | 4.0        | 4.0                | 4.0             | nd            |     |
| 1243         | 164016.2-465719                       | 13                                                        | 250.067690    | -46.955509    | 1.52             | 3.4                | 3.9        | 3.8        | 1.8        | 2.9                | 2.9             | •••           |     |
| 1244         | 164016.2-470200                       | 13                                                        | 250.067811    | -47.033453    | 3.05             | 5.3                | 1.6        | 2.3        | 0.1        | 9.8                | 4.7             | е             |     |
| 1245         | 164016.4-464520                       | 10                                                        | 250.068399    | -46.755614    | 2.59             | 5.7                | 2.1        | 0.0        | 2.5        | 5.5                | 5.5             | nd            |     |
| 1246         | 164016.4-464236                       | 11                                                        | 250.068708    | -46.710176    | 1.81             | 4.7                | 3.2        | 3.6        | 0.9        | 4.0                | 4.0             | nd            |     |
| 1247         | 164016.6-463629                       | 11                                                        | 250.069485    | -46.608069    | 2.33             | 6.3                | 2.5        | 3.8        | 0.0        | 6.4                | 6.4             | $\mathbf{nd}$ |     |
| 1248         | 164016.7-465621                       | 13,10                                                     | 250.069809    | -46.939247    | 0.83             | 3.8;8.8            | 8.6        | 5.2        | 6.6        | 3.3;10.5           | 3.3;10.5        | ;             |     |
| 1249         | 164016.8-464817                       | 10                                                        | 250.070192    | -46.804874    | 1.52             | 4.6                | 3.4        | 4.0        | 0.7        | 3.9                | 3.9             |               |     |
| 1250         | 164017.3-462514                       | 09                                                        | 250.072127    | -46.420774    | 1.33             | 5.7                | 6.5        | 4.3        | 4.8        | 5.4                | 5.4             | $\mathbf{nd}$ |     |
| 1251         | 164017.7-464133                       | 11,10                                                     | 250.073761    | -46.692551    | 0.87             | 4.7;8.4            | 8.9        | 11.5       | 0.0        | 4.0;10.4           | 4.0;10.4        | ;             |     |
| 1252         | 164017.9-462406                       | 09                                                        | 250.074755    | -46.401689    | 1.70             | 5.7                | 3.5        | 1.8        | 2.9        | 5.3                | 5.3             | $\mathbf{nd}$ |     |
| 1253         | 164018.1-463506                       | 08                                                        | 250.075741    | -46.585173    | 0.65             | 4.6                | 14.3       | 11.2       | 9.3        | 3.9                | 3.9             |               |     |
| 1254         | 164018.2-462409                       | 08                                                        | 250.075882    | -46.402525    | 2.20             | 8.4                | 2.3        | 0.8        | 0.1        | 21.5               | 10.3            | e,m1,nd       |     |
| 1255         | 164018.3-462507                       | 09                                                        | 250.076585    | -46.418755    | 1.88             | 5.9                | 5.4        | 4.8        | 3.0        | 5.6                | 5.6             | $\mathbf{nd}$ |     |
| 1256         | 164018.5-463345                       | 09                                                        | 250.077378    | -46.562527    | 7.23             | 11.4               | 2.8        | 1.9        | 2.0        | 16.7               | 16.7            |               |     |
| 1257         | 164018.9-463105                       | 08                                                        | 250.078943    | -46.518298    | 1.02             | 3.2                | 3.9        | 4.9        | 0.3        | 2.7                | 2.7             | nd            |     |
| 1258         | 164019.4-465537                       | 13                                                        | 250.081075    | -46.927072    | 0.98             | 4.6                | 6.7        | 7.2        | 2.4        | 4.0                | 4.0             | vs,nd         |     |
| 1259         | 164019.6-462350                       | 08,09                                                     | 250.081711    | -46.397446    | 1.07             | 8.6;6.0            | 8.7        | 3.4        | 8.2        | 10.7;5.8           | 10.7;5.8        | id,m3;id      |     |
| 1260         | 164019.9-463438                       | 11                                                        | 250.083112    | -46.577370    | 9.47             | 8.0                | 1.3        | 0.0        | 1.2        | 9.5                | 9.5             |               |     |
| 1261         | 164020.5-464000                       | 11,10                                                     | 250.085556    | -46.666794    | 1.75             | 5.2;9.6            | 3.1        | 4.0        | 0.7        | 13.0;13.0          | 4.6;13.0        | e,id;id       |     |
| 1262         | 164022.1-463013                       | 08                                                        | 250.092197    | -46.503672    | 1.07             | 3.1                | 4.2        | 5.0        | 0.5        | 2.5                | 2.5             | nd            |     |
| 1263         | 164022.2-464131                       | 11                                                        | 250.092853    | -46.692117    | 1.37             | 5.4                | 4.9        | 0.1        | 5.1        | 5.0                | 5.0             | nd            |     |
| 1264         | 164022.6-462836                       | 08,09                                                     | 250.094360    | -46.476719    | 0.60             | 4.1;8.0            | 13.9       | 8.9<br>5.6 | 10.9       | 3.5;9.0            | 3.5;9.0         | id;id         |     |
| 1265         | 164022.7-463046                       | 08                                                        | 250.094584    | -46.512950    | 0.84             | 2.7                | 4.1        | 5.6        | 0.0        | 2.4                | 2.4             | nd            |     |
| 1266         | 164022.9-465351                       | 13                                                        | 250.095485    | -46.897596    | 2.16             | 6.1                | 1.7        | 2.6        | 0.0        | 6.1                | 6.1             | m1,nd         |     |
| 1267         | 164023.1-465341                       | 13                                                        | 250.096279    | -46.894724    | 2.19             | 6.2                | 2.4        | 0.0        | 2.7        | 6.4                | 6.4             | m1,nd         |     |
| 1268         | 164024.3-465715                       | 10                                                        | 250.101453    | -46.954337    | 3.81             | 9.1                | 2.7        | 0.3        | 2.7        | 11.0               | 11.0            |               |     |
| 1269         | 164024.4-465842                       | 13                                                        | 250.101832    | -46.978589    | 1.83             | 4.8                | 3.0        | 4.9        | 0.0        | 4.2                | 4.2             |               |     |
| 1270         | 164024.8-463236                       | 08                                                        | 250.103366    | -46.543430    | 0.67             | 2.3                | 0.9        | 0.0        | 1.7        | 11.6               | 2.3             | е             |     |
| 1271<br>1272 | 164024.9-462322                       | 09,08                                                     | 250.103897    | -46.389450    | 1.52             | 6.9;8.7            | 5.5        | 7.5        | 1.3        | 7.1;11.1           | 7.1;11.1        | ;<br>d        |     |
| 1272         | 164026.8-465535                       | 13                                                        | 250.111837    | -46.926533    | 1.90             | 5.7                | 4.5        | 0.0        | 5.1        | 5.5                | 5.5             | nd            |     |
| 1273         | 164027.6-464814                       | 10                                                        | 250.115249    | -46.804054    | 0.54             | 2.7                | 16.4       | 0.9        | 17.0       | 2.4                | 2.4             |               | 235 |
| 1274         | 164027.7 - 462851                     | 09                                                        | 250.115505    | -46.480957    | 4.06             | 8.9                | 0.8        | 0.0        | 1.0        | 29.0               | 10.7            | e,nd          | č   |

Chandra Catalog: Detection and Localization (continued)

| No.  | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | R.A.<br>(deg) | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags   |     |
|------|--------------------|-----------------------------------------------------------|---------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|-----------------|---------|-----|
| 1275 | 164027.7-465522    | 13                                                        | 250.115692    | -46.922864    | 1.73             | 5.9                | 3.0        | 0.0        | 3.5        | 5.8                | 5.8             | m3,nd   |     |
| 1276 | 164027.8-462513    | 09,08                                                     | 250.115845    | -46.420464    | 0.84             | 7.5;6.8            | 13.5       | 0.0        | 14.2       | 8.0;7.3            | 8.0;7.3         | ;       |     |
| 1277 | 164028.1-465522    | 13                                                        | 250.117180    | -46.922956    | 1.68             | 6.0                | 1.9        | 1.1        | 1.4        | 5.9                | 5.9             | m3,nd   |     |
| 1278 | 164029.4-462328    | 09                                                        | 250.122642    | -46.391346    | 0.80             | 7.7                | 26.6       | 0.2        | 27.6       | 8.4                | 8.4             | b,id,nd |     |
| 1279 | 164029.5-462329    | 08                                                        | 250.123115    | -46.391536    | 0.81             | 8.5                | 21.8       | 3.2        | 21.8       | 10.5               | 10.5            | b,id,nd |     |
| 1280 | 164029.8-463027    | 08                                                        | 250.124562    | -46.507514    | 0.65             | 1.9                | 1.9        | 1.5        | 1.2        | 5.4                | 2.1             | e       |     |
| 1281 | 164030.0-463436    | 08                                                        | 250.125193    | -46.576680    | 0.73             | 3.0                | 0.3        | 0.3        | 0.1        | 12.0               | 2.5             | е       |     |
| 1282 | 164030.1-463804    | 11                                                        | 250.125433    | -46.634689    | 3.17             | 7.3                | 4.2        | 4.3        | 2.2        | 7.9                | 7.9             | nd      |     |
| 1283 | 164030.1-465726    | 10                                                        | 250.125778    | -46.957263    | 5.89             | 8.9                | 2.6        | 0.0        | 2.9        | 10.7               | 10.7            | nd      |     |
| 1284 | 164030.2-464107    | 10                                                        | 250.126108    | -46.685331    | 2.33             | 8.0                | 3.3        | 4.8        | 0.6        | 9.4                | 9.4             | nd      |     |
| 1285 | 164030.3-464617    | 10                                                        | 250.126392    | -46.771540    | 0.82             | 3.3                | 6.2        | 7.2        | 1.3        | 2.8                | 2.8             | nd      |     |
| 1286 | 164030.3-465058    | 10                                                        | 250.126498    | -46.849673    | 0.93             | 3.1                | 4.4        | 3.3        | 2.9        | 2.6                | 2.6             |         |     |
| 1287 | 164030.7-464001    | 08                                                        | 250.128093    | -46.667164    | 9.02             | 8.3                | 2.3        | 0.0        | 2.7        | 9.3                | 9.3             | nd      |     |
| 1288 | 164030.7-464520    | 07                                                        | 250.128150    | -46.755740    | 8.60             | 11.5               | 3.2        | 3.2        | 0.3        | 17.2               | 17.2            | nd      |     |
| 1289 | 164030.8-470117    | 13                                                        | 250.128560    | -47.021613    | 1.71             | 6.8                | 5.5        | 7.4        | 0.4        | 6.9                | 6.9             |         |     |
| 1290 | 164031.0-462023    | 09                                                        | 250.129182    | -46.339855    | 4.37             | 8.7                | 1.9        | 3.8        | 0.0        | 10.7               | 10.7            |         |     |
| 1291 | 164031.0-464845    | 10                                                        | 250.129396    | -46.812666    | 0.61             | 2.1                | 8.5        | 0.0        | 8.8        | 2.2                | 2.2             |         |     |
| 1292 | 164031.5-462501    | 08                                                        | 250.131358    | -46.417002    | 2.63             | 6.9                | 4.2        | 3.6        | 2.5        | 7.4                | 7.4             | nd      |     |
| 1293 | 164032.1-465518    | 13                                                        | 250.134109    | -46.921685    | 2.56             | 6.7                | 1.0        | 0.7        | 0.7        | 19.5               | 7.0             | е       |     |
| 1294 | 164032.2-465343    | 13                                                        | 250.134308    | -46.895547    | 2.03             | 7.4                | 1.4        | 1.0        | 0.9        | 20.6               | 8.2             | e,nd    |     |
| 1295 | 164032.8-463836    | 08                                                        | 250.137047    | -46.643490    | 3.24             | 6.8                | 2.4        | 3.6        | 0.0        | 6.8                | 6.8             | nd      |     |
| 1296 | 164033.2-464359    | 07                                                        | 250.138346    | -46.733132    | 10.28            | 10.5               | 2.5        | 2.4        | 1.4        | 14.6               | 14.6            | vp,nd   |     |
| 1297 | 164033.3-462700    | 08                                                        | 250.138872    | -46.450174    | 1.11             | 4.9                | 5.7        | 1.4        | 5.5        | 4.3                | 4.3             |         |     |
| 1298 | 164033.4-462026    | 09                                                        | 250.139397    | -46.340639    | 1.53             | 9.0                | 9.7        | 5.3        | 7.6        | 11.4               | 11.4            |         |     |
| 1299 | 164034.1 - 465728  | 13                                                        | 250.142309    | -46.957804    | 1.98             | 6.5                | 4.2        | 0.0        | 4.6        | 6.6                | 6.6             | nd      |     |
| 1300 | 164034.3 - 464044  | 10                                                        | 250.143296    | -46.679099    | 3.15             | 8.2                | 3.0        | 1.5        | 2.4        | 9.9                | 9.9             | vp,nd   |     |
| 1301 | 164035.5 - 462951  | 08                                                        | 250.148144    | -46.497512    | 0.54             | 2.0                | 7.5        | 1.2        | 7.5        | 2.1                | 2.1             |         |     |
| 1302 | 164035.6-470251    | 13                                                        | 250.148673    | -47.047700    | 2.55             | 8.3                | 3.8        | 5.4        | 0.7        | 9.6                | 9.6             |         |     |
| 1303 | 164035.7 - 464431  | 11                                                        | 250.148924    | -46.741976    | 7.38             | 8.5                | 2.4        | 0.9        | 2.1        | 10.1               | 10.1            | nd      |     |
| 1304 | 164035.7 - 463520  | 08                                                        | 250.149014    | -46.589098    | 0.85             | 3.5                | 6.2        | 0.0        | 6.7        | 2.9                | 2.9             |         |     |
| 1305 | 164036.0-463021    | 08                                                        | 250.150102    | -46.506061    | 0.45             | 1.5                | 10.1       | 11.8       | 1.5        | 2.0                | 2.0             |         |     |
| 1306 | 164037.3 - 464636  | 10                                                        | 250.155501    | -46.776737    | 0.77             | 2.4                | 4.8        | 0.0        | 5.1        | 2.2                | 2.2             |         |     |
| 1307 | 164037.6 - 463716  | 08                                                        | 250.156934    | -46.621268    | 1.78             | 5.4                | 3.8        | 4.6        | 0.4        | 4.8                | 4.8             | nd      |     |
| 1308 | 164038.0-464249    | 10                                                        | 250.158570    | -46.713696    | 1.90             | 6.0                | 2.4        | 3.3        | 0.3        | 6.0                | 6.0             | vp,nd   |     |
| 1309 | 164038.7 - 463147  | 08                                                        | 250.161386    | -46.529904    |                  | 0.3                | 9.5        | 0.5        | 10.5       | 102.0              | 2.0             | c,e,s   |     |
| 1310 | 164038.8 - 464729  | 10                                                        | 250.161757    | -46.791485    | 0.55             | 1.5                | 8.3        | 8.3        | 3.2        | 2.0                | 2.0             |         |     |
| 1311 | 164038.8 - 462526  | 08                                                        | 250.161969    | -46.423976    | 1.53             | 6.4                | 5.4        | 3.8        | 3.8        | 6.6                | 6.6             |         |     |
| 1312 | 164038.9 - 463128  | 08                                                        | 250.162319    | -46.524682    | 0.58             | 0.5                | 4.3        | 1.7        | 3.8        | 2.0                | 2.0             |         |     |
| 1313 | 164039.0-464833    | 10                                                        | 250.162716    | -46.809256    | 0.58             | 0.8                | 5.4        | 6.2        | 0.6        | 2.0                | 2.0             |         |     |
| 1314 | 164040.0-464615    | 10                                                        | 250.166783    | -46.771109    | 0.62             | 2.6                | 9.6        | 8.5        | 5.2        | 2.3                | 2.3             | nd      |     |
| 1315 | 164040.4 - 463929  | $11,\!07,\!08$                                            | 250.168671    | -46.658108    | 1.46             | 8.6; 8.4; 7.7      | 8.2        | 0.0        | 8.5        | 10.5; 10.1; 8.1    | 10.5; 10.1; 8.1 | ;;      |     |
| 1316 | 164040.8 - 465539  | 10                                                        | 250.170258    | -46.927698    | 3.45             | 6.9                | 1.8        | 2.8        | 0.2        | 16.3               | 6.9             | e,nd    |     |
| 1317 | 164042.6-465238    | 10                                                        | 250.177645    | -46.877327    | 1.44             | 3.9                | 3.5        | 4.1        | 0.8        | 3.2                | 3.2             |         | 236 |
| 1318 | 164043.0-463407    | 08                                                        | 250.179195    | -46.568882    | 0.87             | 2.5                | 4.4        | 6.0        | 0.0        | 2.4                | 2.4             |         | ಜ   |

Chandra Catalog: Detection and Localization (continued)

| No.  | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | $\begin{array}{c} \text{Dec.} \\ \text{(deg)} \end{array}$ | Unc.<br>(arcsec) | $\begin{array}{c} \text{Offset} \\ (\text{arcmin}) \end{array}$ | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | $\begin{array}{c} \text{Radius} \\ (\text{arcsec}) \end{array}$ | PSF (arcsec) | Flags         |               |
|------|--------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------|-----------------------------------------------------------------|------------|------------|------------|-----------------------------------------------------------------|--------------|---------------|---------------|
| 1319 | 164043.2-464943    | 10                                                        | 250.180244                                                 | -46.828780                                                 | 0.56             | 1.0                                                             | 8.7        | 9.4        | 2.2        | 2.1                                                             | 2.1          |               |               |
| 1320 | 164043.3-461859    | 09                                                        | 250.180817                                                 | -46.316512                                                 | 7.41             | 11.2                                                            | 0.6        | 0.0        | 0.8        | 16.8                                                            | 16.8         |               |               |
| 1321 | 164043.5-463135    | 08                                                        | 250.181317                                                 | -46.526572                                                 | 0.38             | 1.1                                                             | 19.4       | 0.0        | 19.9       | 2.1                                                             | 2.1          |               |               |
| 1322 | 164044.0-462838    | 08                                                        | 250.183364                                                 | -46.477444                                                 | 0.90             | 3.4                                                             | 5.9        | 3.7        | 4.5        | 2.9                                                             | 2.9          |               |               |
| 1323 | 164044.4-464502    | 10                                                        | 250.185046                                                 | -46.750708                                                 | 1.05             | 3.7                                                             | 4.7        | 1.0        | 4.6        | 3.2                                                             | 3.2          | nd            |               |
| 1324 | 164044.8-463509    | 08                                                        | 250.187083                                                 | -46.586085                                                 | 0.72             | 3.6                                                             | 7.4        | 3.0        | 6.7        | 3.0                                                             | 3.0          |               |               |
| 1325 | 164045.5-465116    | 10                                                        | 250.189736                                                 | -46.854630                                                 | 0.69             | 2.5                                                             | 3.3        | 1.0        | 3.1        | 8.5                                                             | 2.4          | е             |               |
| 1326 | 164045.5-464607    | 10                                                        | 250.189760                                                 | -46.768642                                                 | 0.58             | 2.7                                                             | 11.8       | 0.0        | 12.4       | 2.4                                                             | 2.4          | vs,nd         |               |
| 1327 | 164045.6-462450    | 08                                                        | 250.190274                                                 | -46.414127                                                 | 3.51             | 7.1                                                             | 3.0        | 0.0        | 3.5        | 7.8                                                             | 7.8          |               |               |
| 1328 | 164045.9-463723    | 08                                                        | 250.191356                                                 | -46.623061                                                 | 2.21             | 5.7                                                             | 3.5        | 0.0        | 4.1        | 5.3                                                             | 5.3          | nd            |               |
| 1329 | 164046.3-465508    | 10                                                        | 250.193287                                                 | -46.918892                                                 | 4.90             | 6.4                                                             | 1.8        | 3.9        | 0.0        | 6.2                                                             | 6.2          |               |               |
| 1330 | 164046.6-464436    | 10,07                                                     | 250.194504                                                 | -46.743538                                                 | 0.63             | 4.2;8.8                                                         | 16.7       | 19.4       | 2.4        | 3.6;10.6                                                        | 3.6;10.6     | vl;vp,vl      |               |
| 1331 | 164046.8-465049    | 10                                                        | 250.195248                                                 | -46.847116                                                 | 0.83             | 2.1                                                             | 5.0        | 1.2        | 4.7        | 2.3                                                             | 2.3          |               |               |
| 1332 | 164047.1-464134    | 10                                                        | 250.196299                                                 | -46.692945                                                 | 3.27             | 7.2                                                             | 3.0        | 4.9        | 0.0        | 8.0                                                             | 8.0          | nd            |               |
| 1333 | 164047.5-463545    | 07                                                        | 250.198182                                                 | -46.596052                                                 | 3.33             | 8.3                                                             | 1.8        | 0.0        | 2.5        | 9.9                                                             | 9.9          | nd            |               |
| 1334 | 164048.4-462458    | 08                                                        | 250.201682                                                 | -46.416151                                                 | 2.47             | 7.1                                                             | 2.9        | 0.8        | 2.7        | 7.8                                                             | 7.8          |               |               |
| 1335 | 164048.5-463500    | 08                                                        | 250.202238                                                 | -46.583608                                                 | 0.77             | 3.7                                                             | 6.6        | 0.7        | 6.7        | 3.1                                                             | 3.1          | vp,nd         |               |
| 1336 | 164049.4-465159    | 10                                                        | 250.205965                                                 | -46.866421                                                 | 0.95             | 3.4                                                             | 4.9        | 5.4        | 1.1        | 2.8                                                             | 2.8          |               |               |
| 1337 | 164050.5-464055    | 10,07                                                     | 250.210724                                                 | -46.681950                                                 | 1.96             | 7.9;6.8                                                         | 6.5        | 4.9        | 4.8        | 9.3;7.0                                                         | 9.3;7.0      | ;             |               |
| 1338 | 164050.9-462806    | 08                                                        | 250.212495                                                 | -46.468433                                                 | 1.08             | 4.4                                                             | 6.0        | 5.8        | 3.0        | 3.8                                                             | 3.8          |               |               |
| 1339 | 164051.6-465222    | 10                                                        | 250.215362                                                 | -46.872784                                                 | 0.94             | 3.9                                                             | 5.7        | 0.0        | 6.1        | 3.2                                                             | 3.2          |               |               |
| 1340 | 164052.5 - 465606  | 10                                                        | 250.219114                                                 | -46.935065                                                 | 1.75             | 7.5                                                             | 5.6        | 6.8        | 1.6        | 7.8                                                             | 7.8          | vp            |               |
| 1341 | 164053.4 - 465408  | 10                                                        | 250.222802                                                 | -46.902255                                                 | 1.21             | 5.6                                                             | 7.0        | 2.8        | 6.3        | 5.1                                                             | 5.1          |               |               |
| 1342 | 164053.8 - 463825  | 07                                                        | 250.224357                                                 | -46.640533                                                 | 2.82             | 6.3                                                             | 2.6        | 4.4        | 0.0        | 6.3                                                             | 6.3          | nd            |               |
| 1343 | 164054.6-464422    | 10                                                        | 250.227547                                                 | -46.739632                                                 | 1.26             | 4.8                                                             | 4.6        | 6.2        | 0.3        | 4.2                                                             | 4.2          | nd            |               |
| 1344 | 164055.5 - 465257  | 10                                                        | 250.231561                                                 | -46.882638                                                 | 1.50             | 4.7                                                             | 3.5        | 0.0        | 4.0        | 3.9                                                             | 3.9          |               |               |
| 1345 | 164058.0-463843    | 08                                                        | 250.241701                                                 | -46.645305                                                 | 2.27             | 7.7                                                             | 3.8        | 0.4        | 3.9        | 8.3                                                             | 8.3          |               |               |
| 1346 | 164100.2-465123    | 10                                                        | 250.251218                                                 | -46.856564                                                 | 1.73             | 3.9                                                             | 3.5        | 3.7        | 1.1        | 3.3                                                             | 3.3          |               |               |
| 1347 | 164100.5 - 464028  | 07                                                        | 250.252410                                                 | -46.674721                                                 | 2.01             | 5.0                                                             | 2.2        | 1.7        | 1.4        | 11.4                                                            | 4.3          | e,nd          |               |
| 1348 | 164100.9 - 465205  | 10                                                        | 250.254132                                                 | -46.868313                                                 | 1.39             | 4.5                                                             | 3.8        | 0.0        | 4.2        | 3.8                                                             | 3.8          |               |               |
| 1349 | 164101.0-463751    | 07                                                        | 250.254456                                                 | -46.631101                                                 | 3.77             | 5.3                                                             | 4.0        | 5.1        | 0.7        | 4.7                                                             | 4.7          | nd            |               |
| 1350 | 164101.4 - 462517  | 08                                                        | 250.256227                                                 | -46.421495                                                 | 2.69             | 7.8                                                             | 0.3        | 0.5        | 0.0        | 20.9                                                            | 8.9          | $_{\rm e,vp}$ |               |
| 1351 | 164101.6 - 462618  | 08                                                        | 250.256808                                                 | -46.438375                                                 | 1.59             | 7.0                                                             | 5.8        | 4.3        | 3.9        | 7.5                                                             | 7.5          |               |               |
| 1352 | 164102.5 - 462937  | 08                                                        | 250.260473                                                 | -46.493876                                                 | 2.10             | 4.9                                                             | 2.4        | 4.1        | 0.0        | 4.2                                                             | 4.2          |               |               |
| 1353 | 164102.7 - 463609  | 07                                                        | 250.261283                                                 | -46.602527                                                 | 1.81             | 5.9                                                             | 4.6        | 3.3        | 3.2        | 5.7                                                             | 5.7          | vs,nd         |               |
| 1354 | 164103.3 - 465416  | 10                                                        | 250.263919                                                 | -46.904563                                                 | 2.17             | 6.5                                                             | 3.2        | 3.3        | 1.5        | 6.3                                                             | 6.3          |               |               |
| 1355 | 164104.5 - 463900  | 07,08                                                     | 250.268784                                                 | -46.650131                                                 | 1.41             | 4.4; 8.6                                                        | 5.8        | 3.0        | 5.1        | 3.7;10.0                                                        | 3.7;10.0     | ;             |               |
| 1356 | 164104.9 - 463156  | 08                                                        | 250.270737                                                 | -46.532492                                                 | 0.96             | 4.8                                                             | 6.9        | 4.0        | 5.5        | 4.1                                                             | 4.1          | vp,nd         |               |
| 1357 | 164105.1 - 464027  | 07                                                        | 250.271627                                                 | -46.674267                                                 | 1.20             | 4.2                                                             | 4.5        | 3.0        | 3.3        | 3.6                                                             | 3.6          | nd            |               |
| 1358 | 164105.5 - 465108  | 10                                                        | 250.273101                                                 | -46.852330                                                 | 0.56             | 4.5                                                             | 28.4       | 25.1       | 14.4       | 3.8                                                             | 3.8          |               |               |
| 1359 | 164106.2 - 464259  | 10,07                                                     | 250.275955                                                 | -46.716393                                                 | 1.52             | 7.0; 5.1                                                        | 5.1        | 7.0        | 0.0        | 7.5;4.4                                                         | 7.5;4.4      | ;             |               |
| 1360 | 164107.1 - 464129  | 07                                                        | 250.279865                                                 | -46.691612                                                 | 1.53             | 4.2                                                             | 3.0        | 3.3        | 0.8        | 3.5                                                             | 3.5          | nd            |               |
| 1361 | 164107.8 - 463638  | 07                                                        | 250.282856                                                 | -46.610645                                                 | 2.13             | 4.9                                                             | 2.6        | 0.5        | 2.5        | 4.2                                                             | 4.2          | nd            | $\mathcal{N}$ |
| 1362 | 164109.9 - 465454  | 10                                                        | 250.291489                                                 | -46.915232                                                 | 3.57             | 7.6                                                             | 3.5        | 0.7        | 2.3        | 19.5                                                            | 8.1          | е             | 237           |

Chandra Catalog: Detection and Localization (continued)

| No.  | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | R.A.<br>(deg) | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF<br>(arcsec) | Flags    |              |
|------|--------------------|-----------------------------------------------------------|---------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|-----------------|----------|--------------|
| 1363 | 164114.9-463133    | 08,07                                                     | 250.312134    | -46.526009    | 0.81             | 6.5; 8.6           | 15.0       | 17.8       | 2.6        | 6.5;10.8           | 6.5;10.8        | vs;      |              |
| 1364 | 164114.9-463256    | 07                                                        | 250.312448    | -46.549069    | 3.39             | 7.3                | 1.9        | 0.8        | 1.6        | 8.0                | 8.0             |          |              |
| 1365 | 164116.1-463231    | 07                                                        | 250.317302    | -46.542007    | 2.44             | 7.6                | 4.2        | 4.0        | 2.4        | 8.7                | 8.7             | nd       |              |
| 1366 | 164116.7-465113    | 10                                                        | 250.319661    | -46.853873    | 1.66             | 6.2                | 5.8        | 1.4        | 5.5        | 6.1                | 6.1             | •••      |              |
| 1367 | 164117.4-463326    | 07,08                                                     | 250.322678    | -46.557274    | 1.08             | 6.7;7.1            | 10.8       | 12.1       | 4.2        | 7.1;7.4            | 7.1;7.4         | ;        |              |
| 1368 | 164117.6-464320    | 10,07                                                     | 250.323639    | -46.722279    | 0.71             | 8.0; 4.1           | 12.3       | 15.6       | 0.0        | 9.4;3.4            | 9.4;3.4         | ;        |              |
| 1369 | 164118.1-465449    | 10                                                        | 250.325621    | -46.913805    | 1.67             | 8.5                | 8.3        | 10.3       | 1.4        | 9.9                | 9.9             |          |              |
| 1370 | 164118.7-462855    | 08                                                        | 250.328178    | -46.482114    | 6.60             | 7.7                | 0.7        | 2.0        | 0.0        | 8.6                | 8.6             |          |              |
| 1371 | 164119.4-464511    | 07                                                        | 250.331166    | -46.753109    | 2.74             | 5.7                | 4.0        | 0.0        | 4.4        | 5.2                | 5.2             |          |              |
| 1372 | 164122.7-463839    | 07                                                        | 250.344617    | -46.644439    | 0.56             | 1.6                | 13.2       | 12.7       | 5.4        | 2.1                | 2.1             |          |              |
| 1373 | 164122.8-464116    | 07                                                        | 250.345066    | -46.688024    | 0.76             | 1.9                | 4.3        | 0.0        | 4.5        | 2.2                | 2.2             |          |              |
| 1374 | 164122.8-464529    | 10,07                                                     | 250.345276    | -46.758179    | 0.65             | 7.5;5.8            | 35.4       | 28.5       | 22.5       | 8.3;5.4            | 8.3;5.4         | vs,vl;vl |              |
| 1375 | 164124.0-463144    | 07                                                        | 250.350050    | -46.529007    | 4.49             | 8.1                | 1.5        | 0.2        | 1.4        | 9.7                | 9.7             | nd       |              |
| 1376 | 164124.1-464636    | 10                                                        | 250.350723    | -46.776759    | 1.28             | 7.3                | 8.7        | 9.8        | 2.4        | 7.9                | 7.9             | vs       |              |
| 1377 | 164124.8-463125    | 08                                                        | 250.353549    | -46.523837    | 5.04             | 8.2                | 1.8        | 2.7        | 0.0        | 9.5                | 9.5             |          |              |
| 1378 | 164125.3-463943    | 07                                                        | 250.355769    | -46.662014    | 0.62             | 0.7                | 5.4        | 6.6        | 0.5        | 2.0                | 2.0             |          |              |
| 1379 | 164130.8-463048    | 08                                                        | 250.378682    | -46.513559    | 0.91             | 9.3                | 30.4       | 27.9       | 13.7       | 11.8               | 11.8            |          |              |
| 1380 | 164131.4 - 463935  | 07                                                        | 250.380840    | -46.659726    | 0.61             | 0.4                | 6.9        | 8.3        | 0.0        | 2.0                | 2.0             |          |              |
| 1381 | 164133.3-464815    | 07                                                        | 250.389093    | -46.804331    | 3.57             | 8.5                | 2.5        | 0.0        | 2.8        | 9.8                | 9.8             | nd       |              |
| 1382 | 164133.7-463906    | 07                                                        | 250.390633    | -46.651880    | 0.56             | 1.0                | 9.6        | 10.8       | 1.8        | 2.0                | 2.0             | vp       |              |
| 1383 | 164133.9-463452    | 07                                                        | 250.391633    | -46.581381    | 1.43             | 5.0                | 4.7        | 1.4        | 4.4        | 4.4                | 4.4             |          |              |
| 1384 | 164134.8 - 464024  | 07                                                        | 250.395031    | -46.673595    | 0.74             | 1.1                | 1.1        | 2.3        | 0.0        | 6.7                | 2.1             | е        |              |
| 1385 | 164134.8-464003    | 07                                                        | 250.395059    | -46.667532    | 0.63             | 0.9                | 5.6        | 4.2        | 3.5        | 2.1                | 2.1             |          |              |
| 1386 | 164135.0-463935    | 07                                                        | 250.396141    | -46.659925    | 0.62             | 1.0                | 2.0        | 2.4        | 0.8        | 19.0               | 2.1             | е        |              |
| 1387 | 164135.9 - 464502  | 10                                                        | 250.399620    | -46.750735    | 11.20            | 9.7                | 1.7        | 1.5        | 0.9        | 13.0               | 13.0            | nd       |              |
| 1388 | 164137.1 - 463346  | 07                                                        | 250.404679    | -46.562828    | 1.08             | 6.1                | 9.0        | 10.8       | 1.2        | 6.2                | 6.2             |          |              |
| 1389 | 164137.4 - 463359  | 07                                                        | 250.405994    | -46.566409    | 1.90             | 6.0                | 3.9        | 4.6        | 1.0        | 5.9                | 5.9             |          |              |
| 1390 | 164137.4 - 463724  | 07                                                        | 250.406237    | -46.623343    | 1.14             | 2.7                | 2.6        | 3.9        | 0.0        | 2.4                | 2.4             |          |              |
| 1391 | 164137.6-464538    | 07,10                                                     | 250.407043    | -46.760651    | 1.31             | 6.0; 9.8           | 7.1        | 0.0        | 7.8        | 5.7;13.1           | 5.7;13.1        | ;        |              |
| 1392 | 164140.0-464013    | 07                                                        | 250.416784    | -46.670363    | 0.84             | 1.8                | 3.2        | 4.4        | 0.0        | 2.2                | 2.2             |          |              |
| 1393 | 164140.3 - 464134  | 07                                                        | 250.418077    | -46.692890    | 0.97             | 2.6                | 1.7        | 3.0        | 0.0        | 6.2                | 2.4             | e,m2     |              |
| 1394 | 164140.4 - 464901  | 07                                                        | 250.418474    | -46.817172    | 11.14            | 9.4                | 0.0        | 2.6        | 0.0        | 11.7               | 11.7            |          |              |
| 1395 | 164140.4 - 464128  | 07                                                        | 250.418634    | -46.691140    | 1.10             | 2.5                | 2.4        | 2.6        | 0.9        | 5.1                | 2.4             | e,m3     |              |
| 1396 | 164145.4 - 464053  | 07                                                        | 250.439547    | -46.681424    | 2.53             | 2.9                | 0.4        | 0.0        | 0.5        | 2.5                | 2.5             | ••••     |              |
| 1397 | 164145.9 - 464050  | 07                                                        | 250.441578    | -46.680794    | 1.20             | 3.0                | 3.7        | 3.6        | 2.0        | 14.7               | 2.5             | e,s      |              |
| 1398 | 164146.7 - 464021  | 07                                                        | 250.444715    | -46.672536    | 1.23             | 3.0                | 3.2        | 4.6        | 0.0        | 2.5                | 2.5             |          |              |
| 1399 | 164147.6 - 464549  | 07                                                        | 250.448379    | -46.763846    | 2.51             | 6.8                | 3.7        | 5.0        | 0.3        | 6.8                | 6.8             |          |              |
| 1400 | 164150.5 - 463523  | 07                                                        | 250.460798    | -46.589851    | 3.46             | 5.7                | 2.5        | 0.2        | 2.5        | 5.4                | 5.4             |          |              |
| 1401 | 164154.0-464147    | 07                                                        | 250.475362    | -46.696503    | 1.34             | 4.7                | 5.6        | 7.6        | 0.0        | 4.0                | 4.0             |          |              |
| 1402 | 164155.7 - 464652  | 07                                                        | 250.482121    | -46.781225    | 4.50             | 8.4                | 2.3        | 2.7        | 0.7        | 9.6                | 9.6             |          |              |
| 1403 | 164156.1 - 463515  | 07                                                        | 250.483920    | -46.587708    | 3.46             | 6.4                | 3.6        | 4.9        | 0.2        | 6.6                | 6.6             |          |              |
| 1404 | 164201.4 - 463625  | 07                                                        | 250.505872    | -46.607008    | 1.70             | 6.4                | 5.1        | 1.6        | 4.8        | 6.5                | 6.5             |          |              |
| 1405 | 164202.6-464534    | 07                                                        | 250.510885    | -46.759611    | 1.44             | 8.1                | 10.2       | 4.6        | 9.0        | 9.1                | 9.1             |          | $\mathbb{N}$ |
| 1406 | 164203.0-463544    | 07                                                        | 250.512791    | -46.595728    | 1.84             | 7.0                | 2.3        | 0.0        | 0.5        | 25.8               | 7.5             | е        | 238          |

Chandra Catalog: Detection and Localization (continued)

| No.  | Source<br>(CXOU J) | $\begin{array}{c} \text{ObsID} \\ (125^{**}) \end{array}$ | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | Dec.<br>(deg) | Unc.<br>(arcsec) | Offset<br>(arcmin) | Sig.<br>FB | Sig.<br>SB | Sig.<br>HB | Radius<br>(arcsec) | PSF (arcsec) | Flags |
|------|--------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------|------------------|--------------------|------------|------------|------------|--------------------|--------------|-------|
| 1407 | 164203.4-464427    | 07                                                        | 250.514284                                                 | -46.740924    | 1.06             | 7.5                | 14.5       | 13.6       | 6.6        | 7.8                | 7.8          |       |
| 1408 | 164204.5-464341    | 07                                                        | 250.519111                                                 | -46.728140    | 1.05             | 7.2                | 12.9       | 2.9        | 12.7       | 7.4                | 7.4          |       |
| 1409 | 164206.8-464420    | 07                                                        | 250.528699                                                 | -46.739107    | 2.43             | 7.9                | 3.7        | 1.7        | 3.2        | 8.6                | 8.6          |       |
| 1410 | 164207.8-464505    | 07                                                        | 250.532892                                                 | -46.751639    | 5.39             | 8.5                | 3.1        | 3.1        | 1.5        | 9.8                | 9.8          |       |
| 1411 | 164216.6 - 464150  | 07                                                        | 250.569399                                                 | -46.697474    | 4.16             | 8.3                | 3.4        | 5.3        | 0.0        | 9.7                | 9.7          |       |
| 1412 | 164218.9 - 463543  | 07                                                        | 250.578793                                                 | -46.595525    | 3.47             | 9.4                | 3.5        | 3.4        | 1.7        | 12.2               | 12.2         | vs    |
| 1413 | 164220.2-463850    | 07                                                        | 250.584341                                                 | -46.647449    | 3.46             | 8.7                | 3.3        | 4.5        | 0.4        | 10.7               | 10.7         |       |
| 1414 | 164221.0-463655    | 07                                                        | 250.587592                                                 | -46.615401    | 11.94            | 9.3                | 0.0        | 0.0        | 0.0        | 11.9               | 11.9         | m1    |
| 1415 | 164222.7-463709    | 07                                                        | 250.594905                                                 | -46.619428    | 7.56             | 9.5                | 1.6        | 2.7        | 0.1        | 12.4               | 12.4         | m1    |

Chandra Catalog: Detection and Localization (continued)

## A.2 Photometry Table

(1) NARCS catalog source number.

(2-4) Net source counts in the full 0.5–10 keV band and corresponding  $1\sigma$  errors, calculated as described in §2.2.4. For cases in which the estimated background counts in a source aperture region were determined to be greater than or equal to the total number of counts in the source region, then the catalog presents the 90% upper confidence limit to the net source counts based on the method described in Kraft et al. (1991); in such cases, the error columns are left blank. For sources detected in multiple observations, net counts from different observations were added together and errors combined in quadrature.

(5–7) Net source counts in soft 0.5–2 keV band. Same details as discussed for Columns 2–4 apply.

(8-10) Net source counts in hard 2–10 keV band. Same details as discussed for Columns 2–4 apply.

(11–13) Photon flux in the full 0.5–10 keV band and corresponding  $1\sigma$  errors. The photon flux was calculated by dividing the net counts by the exposure time and the mean effective area within the source region. For sources with zero or negative net counts, the catalog provides the 90% upper limit on the photon flux and leaves the error columns blank. For sources detected in multiple observations, the average photon fluxes are reported; if a source was found to be variable between observations (flagged as "vl") then its photon fluxes from individual observations were simply averaged, but otherwise its photon fluxes were weight-averaged.

(14–16) Photon flux in the soft 0.5–10 keV band. Same details as discussed for Columns 11–13 apply.

(17–19) Photon flux in the hard 2–10 keV band. Same details as discussed for Columns 11–13 apply.

(20–21) The median energy of the source and corresponding  $1\sigma$  error. It is determined from the total counts (not background corrected) in the source region. For sources detected in multiple observations, the simple average of the energies from individual observations is reported if a source is found to be variable between observations or the weighted-average is reported otherwise.

(22–23) The energy below which 25% of the total source counts reside and corresponding  $1\sigma$  error. Same details as discussed for Columns 20–21 apply.

(24–25) The energy below which 75% of the total source counts reside and corresponding  $1\sigma$  error. Same details as discussed for Columns 20–21 apply.

(26–28) The energy flux in the full 0.5–10 keV band and corresponding  $1\sigma$  errors. This estimate of the energy flux is calculated by multiplying the full band photon flux and the median energy of the source provided in the catalog. In cases where only an upper limit to the photon flux is available, the 90% upper limit to the energy flux is reported and the error columns are left blank.

(29) Photometric flags. If the photometric values provided for a source are 90% upper limits in the full, soft, or hard energy bands, this column displays an F, S, or H, respectively.

(30) The spectral group defined using quantile diagrams to which the source belongs. See

§2.2.8 for details about quantile analysis and the spectral groups defined in this work.

Table A.2: Chandra Catalog of Point and Extended Sources: Photometry

| No. | $C_{net}$                        | $C_{net}$                      | $C_{net}$                             | $f_{\rm ph} {\rm FB}(10^{-6}$                                                 | $f_{\rm ph} {\rm SB}(10^{-6}$                                                                              | $f_{\rm ph} {\rm HB}(10^{-6}$                                                                    | $E_{50}$        | $E_{25}$        | $E_{75}$        | $f_X(10^{-14}{ m erg}$                                                                  | Phot. | Quantile     |
|-----|----------------------------------|--------------------------------|---------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------------------------------------------------------------------------------|-------|--------------|
|     | $\mathbf{FB}$                    | SB                             | HB                                    | $cm^{-2} s^{-1}$ )                                                            | $cm^{-2} s^{-1}$ )                                                                                         | ${\rm cm}^{-2} {\rm s}^{-1}$ )                                                                   | (keV)           | (keV)           | (keV)           | $cm^{-2} s^{-1})$                                                                       | Flag  | Group        |
| (1) | (2-4)                            | (5-7)                          | (8-10)                                | (11-13)                                                                       | (14-16)                                                                                                    | (17-19)                                                                                          | (20-21)         | (22-23)         | (24-25)         | (26-28)                                                                                 | (29)  | (30)         |
| 1   | $16^{+7}_{-6}$                   | $6^{+4}_{-3}$                  | $10^{+6}_{-5}$                        | $3.76^{+1.57}_{-1.32}$                                                        | $0.76_{-0.40}^{+0.55}$                                                                                     | $2.47^{+1.39}_{-1.13}$                                                                           | $2.9{\pm}1.8$   | $1.6{\pm}0.8$   | $5.6 {\pm} 2.4$ | $1.75^{+1.31}_{-1.25}$                                                                  |       | $\mathbf{C}$ |
| 2   | $47^{+9}_{-8}$                   | $37^{+7}_{-6}$                 | $10^{+6}_{-5}$                        | $10.55^{+1.99}_{-1.76}$                                                       | $4.68_{-0.80}^{+0.93}$                                                                                     | $2.28^{+1.31}_{-1.07}$                                                                           | $1.4{\pm}0.1$   | $1.0{\pm}0.1$   | $1.8{\pm}0.5$   | $2.35^{+0.49}_{-0.44}$                                                                  |       | А            |
| 3   | $9^{+5}_{-4}$                    | 3                              | $9^{+5}_{-4}$                         | $3.48^{+2.15}$                                                                | 0.69                                                                                                       | $3.88^{+2.14}_{-1.69}$                                                                           | $5.4{\pm}0.9$   | $4.5 {\pm} 1.3$ | $6.1{\pm}0.9$   | $3.03^{+1.93}$                                                                          | - S - | D            |
| 4   | $36^{+8}_{-7}$                   | $2^{+3}_{-2}$                  | $34_{-6}^{+7}$                        | $\pi \circ r + 1.69$                                                          | $0.28^{+0.40}_{-0.24}$                                                                                     | $7.60^{+1.66}_{-1.42}$                                                                           | $4.6{\pm}0.3$   | $3.7{\pm}0.3$   | $5.2{\pm}0.5$   |                                                                                         |       | D            |
| 5   | $13^{+6}_{-5}$                   | $13_{-4}^{-2}$                 | 6                                     | $2.85^{+1.36}_{-1.12}$                                                        | $1.70 \pm 0.65$                                                                                            | 1.32                                                                                             | $1.0{\pm}0.1$   | $0.9{\pm}0.2$   | $1.1{\pm}0.1$   | $5.90^{+1.33}_{-1.17}$<br>$0.44^{+0.21}_{-0.18}$                                        | H     | А            |
| 6   | $22_{-6}^{-9}$                   | $4^{+4}_{-2}$                  | $19^{+6}_{-5}$                        | $6.00^{+1.82}_{-1.53}$                                                        | $0.59^{+0.55}_{-0.36}$                                                                                     | $5.07^{+1.71}_{-1.41}$                                                                           | $3.0{\pm}0.7$   | $2.2{\pm}0.4$   | $5.7 {\pm} 1.2$ | $2.90^{+1.10}_{-0.99}$                                                                  |       | $\mathbf{C}$ |
| 7   | $20^{+6}_{-5}$                   | $12^{+5}_{-3}$                 | $9^{+4}_{-3}$                         | $4.70^{+1.35}_{-1.10}$                                                        | $1.53^{+0.60}_{-0.46}$                                                                                     | $2.08^{+1.04}_{-0.78}$                                                                           | $1.8{\pm}0.6$   | $1.5{\pm}0.1$   | $3.5{\pm}0.5$   | $1.37^{+0.57}_{-0.53}$                                                                  |       | В            |
| 8   | $8^{+5}_{-4}$                    | $7^{+4}_{-3}$                  | $1^{+3}_{-1}$                         | $1.82^{+1.17}_{-0.92}$                                                        | $0.85^{+0.51}_{-0.37}$                                                                                     | $0.33_{-0.33}^{+0.93}$                                                                           | $1.6{\pm}0.9$   | $1.4{\pm}0.3$   | $1.8{\pm}3.8$   | $0.47^{+0.40}_{-0.35}$                                                                  |       | А            |
| 9   | 7                                | $2^{+3}_{-2}$                  | 5                                     | 1.74                                                                          | $0.27^{+0.48}_{-0.27}$<br>$0.08^{+0.26}_{-0.08}$                                                           | 1.23                                                                                             | $5.2 {\pm} 4.8$ | $2.9{\pm}7.1$   | $7.6{\pm}7.1$   | 1.46                                                                                    | F - H | $\mathbf{C}$ |
| 10  | $6^{+4}_{-3}$                    | $1^{+2}_{-1}$                  | $\substack{5^{+4}_{-2}\\6^{+5}_{-4}}$ | ${\begin{array}{c}{1.11}{+0.74}\\{-0.50}\\{2.25}{+1.32}\\{-1.06}\end{array}}$ | $0.08\substack{+0.26 \\ -0.08}$                                                                            | $0.98^{+0.72}_{-0.47}$                                                                           | $5.1{\pm}0.8$   | $4.4{\pm}1.4$   | $5.4{\pm}0.3$   | $0.91_{-0.44}^{+0.62}$                                                                  |       | $\mathbf{E}$ |
| 11  | $9^{+5}_{-4}$                    | $3^{+3}_{-2}$                  | $6^{+5}_{-4}$                         | $2.25^{+1.32}_{-1.06}$                                                        | $\begin{array}{c} 0.08 \substack{+0.26 \\ -0.08 \\ 0.39 \substack{+0.47 \\ -0.30 \\ -0.30 \end{array}}$    | $1.58^{+1.19}_{-0.92}$                                                                           | $2.3{\pm}0.3$   | $1.9{\pm}0.8$   | $2.5\pm1.2$     | $0.82^{+0.50}_{-0.41}$                                                                  |       | $\mathbf{E}$ |
| 12  | $182^{+15}_{-14}$                | $68^{+\overline{1}0}_{-9}$     | $114_{-12}^{+13}$                     | $22.55^{+1.83}$                                                               | $5.84^{+0.70}$                                                                                             | $14.31^{+1.62}_{-1.44}$                                                                          | $2.7{\pm}0.2$   | $1.7{\pm}0.1$   | $3.9{\pm}0.2$   | $9.59^{+1.11}$                                                                          |       | $\mathbf{C}$ |
| 13  | $9^{+4}_{-3}$                    | $2^{+3}_{-1}$                  | $7^{+4}_{-3}$                         | $1.77^{+0.82}_{-0.61}_{-0.61}$                                                | $0.21^{+0.30}_{-0.14}$                                                                                     | $1.44^{+0.77}$                                                                                   | $3.2{\pm}0.3$   | $3.0{\pm}0.7$   | $3.6{\pm}0.3$   | $0.91^{+0.43}_{-0.22}$                                                                  |       | $\mathbf{E}$ |
| 14  | $9^{-3}_{-4}$                    | $3^{+3}_{-2}$                  | $6^{+5}_{-4}$                         | $1.87^{+1.14}_{-0.92}$<br>$1.08^{+0.73}_{-0.48}$                              | $a a a \pm 0.42$                                                                                           | $1.99 \pm 1.03$                                                                                  | $7.7{\pm}3.9$   | $1.8{\pm}2.2$   | $9.3 {\pm} 1.6$ | $2.29_{-1.62}^{+0.32}$                                                                  |       | $\mathbf{C}$ |
| 15  | $5^{+4}_{-2}$                    | $2^{+3}_{-1}$                  | $3^{+3}_{-2}$                         | $1.08^{+0.73}_{-0.48}$                                                        | $\begin{array}{c} 0.36\substack{+0.12\\-0.27}\\ 0.22\substack{+0.31\\-0.15}\end{array}$                    | $0.72^{+0.66}_{-0.40}$                                                                           | $2.4{\pm}0.6$   | $1.9{\pm}0.3$   | $3.2{\pm}0.5$   | $0.42^{+0.30}_{-0.21}$                                                                  |       | $\mathbf{E}$ |
| 16  | $8^{-2}_{-3}$                    | 3                              | $8^{+4}_{-3}$                         | $1.08_{-0.48}$<br>$1.85_{-0.71}^{+0.97}$                                      | 0.35                                                                                                       | $1.92^{+0.99}_{-0.72}$                                                                           | $4.9{\pm}0.5$   | $4.5{\pm}0.6$   | $5.8{\pm}0.4$   | $\begin{array}{c} 0.42_{-0.21} \\ 1.46_{-0.58}^{+0.78} \end{array}$                     | - S - | $\mathbf{E}$ |
| 17  | $8^{+\tilde{4}}_{-3}$            | 3                              | $8^{+\bar{4}}_{-3}$                   | $1.59^{+0.78}_{-0.57}$                                                        | 0.29                                                                                                       | $1.65_{-0.58}^{+0.80}$                                                                           | $3.3 \pm 0.3$   | $3.1 {\pm} 0.4$ | $3.6{\pm}0.6$   | $0.84^{+0.42}_{-0.31}$                                                                  | - S - | $\mathbf{E}$ |
| 18  | 12                               | 4                              | 11                                    | 2.77                                                                          | 0.56                                                                                                       | 2.54                                                                                             | $5.2 \pm 4.8$   | $2.9{\pm}7.1$   | $7.6 \pm 7.1$   | 2.33                                                                                    | F S H | $\mathbf{C}$ |
| 19  | $12^{+5}_{-4}$                   | $8^{+4}_{-3}$                  | $5^{+3}_{-2}$                         | $2.33^{+0.88}_{-0.67}$                                                        | $0.86^{+0.43}_{-0.31}$                                                                                     | $0.86^{+0.65}_{-0.41}$                                                                           | $1.8 {\pm} 0.3$ | $1.1 \pm 0.2$   | $2.1 \pm 0.4$   | $0.68^{+0.28}_{-0.23}$                                                                  |       | В            |
| 20  | $22^{+8}_{-6}$                   | $17^{+6}_{-5}$                 | $5^{+6}_{-3}$                         | $2.90^{+0.95}_{-0.75}$                                                        | $1.89^{+0.45}_{-0.33}$                                                                                     | $0.54_{-0.34}^{+0.61}$                                                                           | $1.3 \pm 0.2$   | $1.0 {\pm} 0.1$ | $1.8 \pm 0.4$   | $0.59^{+0.21}_{-0.18}$                                                                  |       | В            |
| 21  | $58_{-8}^{+9}$                   | $55^{+8}_{-7}$                 | $3^{+3}_{-2}$                         | ${}^{+1.78}_{11.69}{}^{+1.78}_{-1.57}_{1.10}{}^{+0.72}_{-0.47}$               | $6.35\substack{+0.98\\-0.86}$                                                                              | $\begin{array}{c} 0.63\substack{+0.71\\-0.45\\1.14\substack{+0.73\\-0.48\end{array}}\end{array}$ | $1.2 \pm 0.1$   | $1.0 \pm 0.1$   | $1.5 \pm 0.1$   | $2.25^{+0.38}_{-0.34}$<br>$0.90^{+0.61}_{-0.42}$                                        |       | А            |
| 22  | $6^{+4}_{-2}$                    | 3                              | $6^{+4}_{-2}$                         | $1.10^{+0.72}_{-0.47}$                                                        | 0.30                                                                                                       | $1.14^{+0.73}_{-0.48}$                                                                           | $5.1 \pm 0.9$   | $4.9 {\pm} 0.7$ | $7.0 {\pm} 0.7$ | $0.90^{+0.01}_{-0.42}$                                                                  | - S - | D            |
| 23  | $7^{+4}_{-3}$                    | 3                              | $7^{+\bar{4}}_{-3}$                   | $1.48^{+0.85}_{-0.58}$                                                        | 0.35                                                                                                       | $1.14_{-0.48}$<br>$1.53_{-0.59}^{+0.87}$                                                         | $4.8 {\pm} 0.5$ | $4.5 \pm 0.3$   | $5.6 {\pm} 0.6$ | $1.15_{-0.46}^{+0.67}$                                                                  | - S - | E            |
| 24  | $4^{+3}_{-2}$                    | $4^{+3}_{-2}$                  | 3                                     | $1.13_{-0.58}^{+0.97}$                                                        | $0.70^{+0.56}_{-0.34}$                                                                                     | 0.78                                                                                             | $1.2 \pm 0.2$   | $1.0 \pm 0.1$   | $1.4 \pm 0.1$   | $0.22_{-0.12}^{+0.19}$                                                                  | H     | А            |
| 25  | $7^{+\bar{4}}_{-\bar{2}}$        | $8^{+4}_{-3}_{-4}$             | 2                                     | $1.49^{+0.84}_{-0.60}$                                                        | $0.96^{+0.49}_{-0.35}$                                                                                     | 0.50                                                                                             | $1.0 \pm 0.1$   | $0.8{\pm}0.1$   | $1.1 \pm 0.1$   | $0.25_{-0.11}^{+0.14}$                                                                  | H     | А            |
| 26  | $3^{+5}_{-3}$<br>$9^{+6}_{-4}$   | 5 5                            | 4                                     | $0.60^{+1.03}_{-0.60}$<br>$2.32^{+1.36}_{-1.09}$                              | $0.63\substack{+0.48\-0.33}$<br>$0.96\substack{+0.58\-0.42}$                                               | 0.97                                                                                             | $1.1 \pm 0.3$   | $0.9{\pm}0.2$   | $1.3 \pm 0.1$   | $0.11\substack{+0.11\\-0.11\\0.56\substack{+0.34\\-0.28}$                               | H     | A            |
| 27  | $9^{+0}_{-4} \\ 9^{+4}_{-3}$     | $7^{+4}_{-3}$                  | $2^{+4}_{-2}_{-4}$                    | $2.32^{+1.36}_{-1.09}\\1.79^{+0.83}_{-0.62}$                                  | $\begin{array}{c} 0.96\substack{+0.38\\-0.42}\\ 0.43\substack{+0.36\\-0.21}\end{array}$                    | $\begin{array}{c} 0.63\substack{+1.09\\-0.63}\\ 1.06\substack{+0.71\\-0.47}\end{array}$          | $1.5 \pm 0.2$   | $1.3 \pm 0.2$   | $1.7 \pm 0.5$   | $\begin{array}{c} 0.56\substack{+0.34\\-0.28}\\ 0.61\substack{+0.43\\-0.39}\end{array}$ |       | A            |
| 28  | $9^{+4}_{-3}_{-3}_{-3}$          | $4^{+3}_{-2}$                  | $5^{+4}_{-2}$                         | $1.79^{+0.65}_{-0.62}$                                                        | $0.43^{+0.30}_{-0.21}$                                                                                     | $1.06^{+0.11}_{-0.47}$                                                                           | $2.1 \pm 1.1$   | $1.9 \pm 0.2$   | $5.7 \pm 1.6$   | $0.61^{+0.43}_{-0.39}$                                                                  |       | В            |
| 29  | $46^{+8}_{-7}$                   | $42^{+8}_{-6}$                 | $4^{+\bar{3}}_{-2}$                   | $9.01^{+1.55}_{-1.34}$                                                        | $4.72_{-0.73}^{+0.85}$                                                                                     | $0.85_{-0.43}^{+0.68}$                                                                           | $1.1 \pm 0.1$   | $0.9 \pm 0.1$   | $1.3 \pm 0.1$   | $1.54^{+0.28}_{-0.24}$                                                                  |       | A            |
| 30  | $6^{+5}_{-4}_{7^{+4}_{2}}$       | $3^{+3}_{-2}_{-4}$             | $3^{+\bar{4}}_{-3}$                   | $1.60^{+1.33}_{-1.03}$                                                        | $0.39^{+0.50}_{-0.31}$                                                                                     | $0.92^{+1.19}_{-0.88}$                                                                           | $5.8 \pm 2.6$   | $1.7 \pm 2.1$   | $6.0 \pm 1.7$   | $1.49^{+1.40}_{-1.16}$                                                                  |       | С            |
| 31  | $7^{+4}_{-3}_{-3}_{6^{+4}_{-2}}$ | $6^{+4}_{-2}$<br>$1^{+2}_{-1}$ | $2^{+3}_{-1}_{-+4}$                   | $1.40^{+0.75}_{-0.54}$<br>$1.24^{+0.75}_{-0.51}$                              | $\begin{array}{c} -0.31\\ 0.65 \substack{+0.40\\ -0.26}\\ 0.09 \substack{+0.27\\ -0.09} \end{array}$       | $ \overset{-0.051}{0.30\substack{+0.51\\-0.25}\\ 1.10\substack{+0.73\\-0.48} \end{aligned} $     | $1.4{\pm}0.4$   | $1.2 \pm 0.3$   | $1.7 \pm 0.8$   | $0.30^{+0.19}_{-0.15}$<br>$0.59^{+0.59}_{-0.52}$                                        |       | A            |
| 32  |                                  | $1^{+2}_{-1}_{-1}_{-1}$        | $5^{+\hat{4}}_{-2}$                   | $1.24_{-0.51}$                                                                | $0.09^{+0.21}_{-0.09}$                                                                                     | $1.10^{+0.16}_{-0.48}$                                                                           | $3.0{\pm}2.3$   | $2.2 \pm 0.8$   | $7.7 \pm 2.4$   | $0.59^{+0.05}_{-0.52}$<br>$9.69^{+1.99}_{-1.82}$                                        |       | С            |
| 33  | $52^{+9}_{-8}$                   | $12^{+5}_{-4}$                 | $40^{+8}_{-7}$                        | $17.88^{+3.15}_{-2.79}$                                                       | $2.24_{-0.73}^{+0.94}$                                                                                     | $14.20^{+2.89}_{-2.52}$ $1.99^{+1.67}_{-1.30}$                                                   | $3.4 \pm 0.4$   | $2.4 \pm 0.4$   | $5.0 \pm 0.3$   | $9.69^{+1.00}_{-1.82}$                                                                  |       | C            |
| 34  | $10^{+6}_{-5}$<br>$6^{+5}_{-4}$  | $4^{+4}_{-2}$<br>$4^{+4}_{-2}$ | $6^{+5}_{-4}$<br>$2^{+4}_{-2}$        | $3.35^{+1.87}_{-1.52}$                                                        | $0.79^{+0.67}_{-0.45}$                                                                                     | $1.99^{+1.07}_{-1.30}$                                                                           | $2.1 \pm 0.9$   | $1.8 \pm 0.6$   | $4.0 \pm 1.0$   | $\begin{array}{c}1.13\substack{+0.80\\-0.71}\\0.32\substack{+0.29\\-0.24}\end{array}$   |       | В            |
| 35  | $6^{+3}_{-4}$                    | -                              |                                       | $1.16^{+1.02}_{-0.81}$                                                        | $0.48^{+0.41}_{-0.27}$                                                                                     | $0.33^{+0.88}_{-0.33}$                                                                           | $1.7 \pm 0.5$   | $1.7 \pm 0.3$   | $2.4 \pm 0.5$   | $0.32^{+0.29}_{-0.24}$                                                                  |       | A            |
| 36  | $6^{-4}_{-2}_{-4}_{-4}$          | $3 2^{+3}_{-1}$                | $6^{+4}_{-2}$                         | $1.07\substack{+0.89\\-0.46}{1.52\substack{+0.84\\-0.61}}$                    | 0.30                                                                                                       | $1.10^{+0.71}_{-0.47}$<br>$1.20^{+0.79}_{-0.54}$                                                 | $4.4 \pm 1.6$   | $3.9 \pm 0.8$   | $7.0\pm 2.0$    | $0.76^{+0.26}_{-0.42}\ 0.78^{+0.46}_{-0.35}$                                            | - S - | D            |
| 37  | (-3)                             |                                | $6_{-3}^{+11}$                        | $1.52_{-0.61}$                                                                | $\begin{array}{c} 0.20 \substack{+0.31 \\ -0.15 \\ 0.22 \substack{+0.31 \\ -0.15 \end{array}} \end{array}$ | $1.20_{-0.54}$                                                                                   | $3.2 \pm 0.6$   | $2.7 \pm 0.6$   | $3.7 \pm 0.8$   | $0.78^{+0.40}_{-0.35}$                                                                  |       | E            |
| 38  | $122_{-11}^{+11}$                | $2^{+3}_{-1}$                  | $120^{+11}_{-11}$                     | $24.35_{-2.21}^{+2.21}$                                                       | $0.22_{-0.15}^{+0.01}$                                                                                     | $24.45_{-2.24}^{+2.24}$                                                                          | $4.4 \pm 0.1$   | $3.5 \pm 0.1$   | $5.4 \pm 0.2$   | $17.20^{+1.63}_{-1.63}$                                                                 |       | D            |

| No. | $C_{net}$ FB                   | $C_{net}$ SB        | $C_{net}$ HB                                                 | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                          | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                           | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $\begin{array}{c} f_X(10^{-14} {\rm erg} \\ {\rm cm}^{-2} {\rm \ s}^{-1}) \end{array}$ | Phot.<br>Flag | Quantile<br>Group |
|-----|--------------------------------|---------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|----------------------------------------------------------------------------------------|---------------|-------------------|
| 39  | $14^{+5}_{-4}$                 | $3^{+3}_{-2}$       | $12^{+5}_{-3}$                                               | $\begin{array}{r} 2.75\substack{+0.95\\-0.74}\\ 30.72\substack{+2.67\\-2.67}\\ 1.91\substack{+1.06\\-0.82\\3.49\substack{+1.43\\-1.19}\end{array}$ | $0.32\substack{+0.33\\-0.18}$                                                                                            | $2.24_{-0.67}^{+0.89}$                                                                                                                                                                                              | $2.1{\pm}0.4$   | $2.1{\pm}0.2$   | $3.5 {\pm} 0.7$ | $0.93\substack{+0.37\\-0.31}$                                                          |               | А                 |
| 40  | $138^{+12}_{-12}$              | $31_{-6}^{-2}$      | $108_{-11}^{-3}$                                             | $30.72^{+2.67}_{-2.67}$                                                                                                                            | $3.89^{+0.19}_{-0.72}$                                                                                                   | $24 \ 40^{+2.40}$                                                                                                                                                                                                   | $3.4{\pm}0.2$   | $2.1 {\pm} 0.2$ | $4.3 {\pm} 0.2$ | $16.77^{+1.75}_{-1.75}$                                                                |               | $\mathbf{C}$      |
| 41  | $9^{+5}$                       | $8^{+4}_{-3}$       | $1^{+4}_{-1}$                                                | $1.91^{+1.06}_{-0.82}$                                                                                                                             | $ \overset{-0.18}{3.89 \substack{+0.85 \\ -0.72 \\ 0.95 \substack{+0.50 \\ -0.36 } } } $                                 | $\begin{array}{c} 0.25\substack{+0.78\\-0.25}\\ 4.07\substack{+1.46\\-1.22}\end{array}$                                                                                                                             | $1.5 {\pm} 0.3$ | $1.3 {\pm} 0.2$ | $1.7 {\pm} 1.1$ | $0.45_{-0.21}^{+0.26}$ $2.96_{-1.06}^{+1.25}$                                          |               | А                 |
| 42  | $16^{+6}_{-5}$                 | 2                   | $18^{+6}_{-5}$                                               | $3.49^{+1.43}_{-1.19}$                                                                                                                             | 0.29                                                                                                                     | $4.07^{+1.46}_{-1.22}$                                                                                                                                                                                              | $5.3{\pm}0.6$   | $4.3{\pm}0.6$   | $6.1 {\pm} 0.5$ | $2.96^{+1.25}_{-1.06}$                                                                 | - S -         | D                 |
| 43  | $16^{+5}_{-4}$                 | 3                   | $17^{+5}_{-4}$                                               | $3.27^{+1.04}_{-0.82}$                                                                                                                             | 0.29                                                                                                                     | $3.37^{+1.06}_{-0.84}$                                                                                                                                                                                              | $4.5{\pm}0.5$   | $4.1{\pm}0.2$   | $6.3{\pm}0.9$   | $2.96^{+0.06}_{-1.06}_{2.34^{+0.79}_{-0.64}}$                                          | - S -         | D                 |
| 44  | $6^{+4}_{-3}$                  | $4^{+3}_{-2}$       | $2^{+3}_{-2}$                                                | $2.47^{+1.73}_{-1.25}$<br>$4.89^{+2.42}_{-1.81}$                                                                                                   | $0.87\substack{+0.79\\-0.47}$                                                                                            | $0.97^{+1.43}_{-0.88}$                                                                                                                                                                                              | $1.6{\pm}0.5$   | $1.4{\pm}0.3$   | $2.3 \pm 0.5$   | $0.63^{+0.48}_{-0.37}$                                                                 |               | А                 |
| 45  | $9^{+3}_{-3}$                  | $5^{+2}_{-2}$       | $3^{+3}_{-2}$                                                | $4.89^{+2.42}_{-1.81}$                                                                                                                             | $1.73^{+1.13}_{-0.74}$                                                                                                   | $1.91^{+1.90}_{-1.20}$                                                                                                                                                                                              | $1.9{\pm}0.7$   | $1.6{\pm}0.3$   | $2.1 \pm 1.5$   | $1.52^{+0.94}_{-0.80}$                                                                 |               | А                 |
| 46  | $22^{+6}_{-5}$                 | $5^{+2}_{-2}$       | $17^{+5}_{-4}\\29^{+7}_{-6}$                                 | ${}^{4.89}_{-1.81}_{4.32}_{-0.93}^{+1.14}$                                                                                                         | $0.55^{+0.38}_{-0.24}$<br>$5.52^{+1.06}_{-0.91}$                                                                         | $3.44^{+1.05}_{-0.84}$<br>$7.48^{+1.78}_{-1.50}$                                                                                                                                                                    | $3.4{\pm}0.4$   | $2.6{\pm}0.5$   | $4.4{\pm}1.2$   | $2.34_{-0.59}^{+0.69}$<br>$4.98_{-0.73}^{+0.80}$                                       |               | E                 |
| 47  | $67^{+10}_{-8}$                | $38_{-6}^{-27}$     | $29^{+7}_{-6}$                                               | $4.32_{-0.93}^{+0.93}$<br>$17.03_{-2.17}^{+2.43}$                                                                                                  | $5.52^{+1.06}_{-0.91}$                                                                                                   | $7.48^{+1.78}_{-1.50}$                                                                                                                                                                                              | $1.8{\pm}0.1$   | $1.4{\pm}0.1$   | $3.0{\pm}0.5$   | $4.98^{+0.80}_{-0.73}$                                                                 |               | В                 |
| 48  | $17^{+7}_{-6}$                 | $9^{+5}_{-4}$       | 8+6                                                          | $5.37^{+2.23}_{-1.90}$                                                                                                                             | $1.67_{-0.65}^{+0.84}$                                                                                                   | $7.48^{+1.76}_{-1.50}$<br>$2.44^{+1.88}_{-1.54}$                                                                                                                                                                    | $1.9{\pm}0.6$   | $1.5{\pm}0.2$   | $3.2{\pm}1.1$   | $4.98_{-0.73}_{-0.73}$<br>$1.61_{-0.76}^{+0.84}$                                       |               | В                 |
| 49  | $18^{+6}_{-5}$                 | $14^{+5}_{-4}$      | $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $ | $3.86^{+1.27}_{-1.04}$                                                                                                                             |                                                                                                                          | $0.85^{+0.88}$                                                                                                                                                                                                      | $1.3 {\pm} 0.3$ | $1.1{\pm}0.1$   | $1.9{\pm}0.9$   | $0.82^{+0.32}_{-0.28}$                                                                 |               | А                 |
| 50  | $5^{+4}_{-2}$                  | $1^{+2}_{-1}$       | $5^{+3}_{-2}$                                                | $1.04^{+0.68}_{-0.45}$<br>$1.38^{+1.11}_{-0.88}$                                                                                                   | $a_{10}\pm 0.26$                                                                                                         | $\begin{array}{c} 0.53 - 0.63 \\ 0.89 + 0.66 \\ 0.52 + 0.96 \\ 0.52 - 0.52 \\ 7.51 + 1.64 \\ -1.39 \end{array}$                                                                                                     | $5.5 {\pm} 1.9$ | $2.1{\pm}1.3$   | $6.0 {\pm} 1.7$ | $0.93^{+0.69}$                                                                         |               | $\mathbf{C}$      |
| 51  | $7^{+5}_{-4}$                  | $4^{+4}_{-2}$       | $2^{+4}_{-2}$                                                | $1.38^{+1.11}_{-0.88}$                                                                                                                             |                                                                                                                          | $0.52^{+0.96}_{-0.52}$                                                                                                                                                                                              | $7.5 \pm 5.2$   | $0.7 \pm 3.1$   | $8.6{\pm}2.0$   |                                                                                        |               | $\mathbf{C}$      |
| 52  | $42^{+8}_{-7}$                 | $10^{+4}_{-3}$      | $32^{+7}_{-6}$                                               | $\begin{array}{c}1.38\substack{+1.11\\-0.88}\\9.71\substack{+1.81\\-1.57\end{array}$                                                               | $0.50^{+0.44}_{-0.30}$<br>$1.35^{+0.59}_{-0.44}$                                                                         | $7.51^{+1.64}_{-1.39}$                                                                                                                                                                                              | $2.9{\pm}0.2$   | $2.0{\pm}0.2$   | $3.5{\pm}0.3$   | $1.67^{+1.76}_{-1.56}$ $4.47^{+0.91}_{-0.81}$                                          |               | E                 |
| 53  | $16^{+6}_{-5}$                 | $10^{+5}_{-3}$      | $6^{+5}_{-4}$                                                | $3.44^{\pm 1.37}$                                                                                                                                  | $1.35_{-0.44}^{+0.56}$<br>$1.24_{-0.43}^{+0.33}$<br>$0.32_{-0.18}^{+0.33}$                                               | $1.27^{+1.12}_{-0.88}$<br>$2.11^{+0.88}_{-0.66}$                                                                                                                                                                    | $1.9{\pm}0.4$   | $1.7{\pm}0.3$   | $3.1{\pm}0.7$   | $1.03^{+0.46}$                                                                         |               | А                 |
| 54  | $13^{+5}_{-4}$                 | $3^{+3}_{-2}$       | $11^{+4}_{-3}$                                               | $2.63^{+0.95}_{-0.73}$                                                                                                                             | $0.32^{+0.33}_{-0.18}$                                                                                                   | $2.11^{+0.88}_{-0.66}$                                                                                                                                                                                              | $2.8{\pm}0.3$   | $2.2 {\pm} 0.4$ | $3.3 \pm 1.1$   | $1.16^{+0.40}_{-0.35}$                                                                 |               | E                 |
| 55  | $8^{+5}_{-4}$                  | $7^{+4}_{-3}$       | $1^{+4}_{-1}$                                                | $2.63_{-0.73}_{-0.73}$<br>$1.86_{-0.95}^{+1.20}$                                                                                                   | $0.93^{+0.134}_{-0.39}$                                                                                                  | $\begin{array}{c} 2.11 \substack{+0.00\\-0.66}\\ 0.24 \substack{+0.93\\-0.24} \end{array}$                                                                                                                          | $1.1 \pm 1.3$   | $1.0{\pm}0.3$   | $1.3 {\pm} 4.2$ | $0.31^{+0.45}$                                                                         |               | А                 |
| 56  | $7^{+5}_{-4}$                  | $3^{+3}_{-2}$       | $5^{+5}_{-4}$                                                | $1.69^{+1.26}_{-1.00}$                                                                                                                             | $0.34^{+0.43}_{-0.26}$                                                                                                   | $ \begin{array}{c} -0.24\\ -0.20\\ 1.11 \\ -0.90\\ 4.22 \\ +1.42\\ -1.19 \end{array} $                                                                                                                              | $3.7 \pm 2.4$   | $1.7 \pm 1.1$   | $5.8 {\pm} 3.8$ | $0.99_{-0.88}^{+0.99}$                                                                 |               | $\mathbf{C}$      |
| 57  | $22_{-6}^{+7}$                 | $3^{+\bar{3}}_{-2}$ | $19^{+6}_{-5}\\12^{+5}_{-4}$                                 | $\begin{array}{c} 1.60 \pm 0.95 \\ 1.69 \pm 1.26 \\ -1.00 \\ 4.75 \pm 1.49 \\ 2.77 \pm 1.26 \\ 2.77 \pm 0.93 \\ -0.93 \end{array}$                 | $\begin{array}{c} 0.34\substack{+0.43\\-0.26}\\ 0.35\substack{+0.42\\-0.27}\end{array}$                                  | $4.22^{+1.42}_{-1.19}$                                                                                                                                                                                              | $3.1 {\pm} 0.4$ | $2.4{\pm}0.4$   | $4.2 {\pm} 0.4$ | $0.99^{+0.99}_{-0.88}$<br>$2.34^{+0.81}_{-0.71}$                                       |               | E                 |
| 58  | $12^{+5}_{-4}$                 | 3                   | $12^{+5}_{-4}$                                               | $2.77^{+1.17}_{-0.93}$                                                                                                                             | 0.43                                                                                                                     | $4.22_{-1.19}$<br>$2.82_{-0.92}^{+1.17}$                                                                                                                                                                            | $5.6{\pm}0.7$   | $4.3{\pm}0.9$   | $6.5 \pm 1.5$   | $2.50^{+1.11}$                                                                         | - S -         | D                 |
| 59  | $22^{+6}_{-5}$                 | 3                   | $23^{+6}_{-5}$                                               | $4 41 \pm 1.10$                                                                                                                                    | 0.29                                                                                                                     | $453^{+1.18}$                                                                                                                                                                                                       | $3.9{\pm}0.5$   | $3.1{\pm}0.3$   | $5.3 {\pm} 0.5$ | $2.76_{-0.70}^{+0.81}$                                                                 | - S -         | D                 |
| 60  | $5^{+4}_{-3}$                  | 2                   | $6^{+4}_{-3}$                                                | $1.41^{\pm 1.02}$                                                                                                                                  | 0.36                                                                                                                     | $\begin{array}{c} 1.03 \_ 0.96 \\ 1.54 \_ 0.71 \\ 1.73 \_ 0.70 \\ 2.19 \_ 1.06 \\ 0.34 \_ 0.28 \\ 0.34 \_ 0.28 \\ \end{array}$                                                                                      | $4.1 \pm 1.3$   | $3.8{\pm}0.5$   | $6.0{\pm}1.3$   | $2.76^{+0.81}_{-0.70}\\0.93^{+0.74}_{-0.55}$                                           | - S -         | D                 |
| 61  | $7^{+4}_{-3}$                  | 2                   | $8^{+4}_{-3}$                                                | $1.49^{+0.69}_{-0.69}$                                                                                                                             | 0.27                                                                                                                     | $1.73^{+0.93}_{-0.70}$                                                                                                                                                                                              | $4.9 {\pm} 1.1$ | $2.7{\pm}0.9$   | $5.2 {\pm} 0.7$ | $1.16^{+0.76}_{-0.60}$                                                                 | - S -         | $\mathbf{C}$      |
| 62  | $12^{+5}_{-4}$                 | $2^{+3}_{-2}$       | $10^{+5}_{-4}$                                               | $ \begin{array}{c} 1.49 \substack{+0.91 \\ -0.69 \\ 2.62 \substack{+1.12 \\ -0.88 \end{array} } \end{array} $                                      | $0.27^{+0.37}_{-0.20}\\0.48^{+0.39}_{-0.24}$                                                                             | $2.19^{+1.06}_{-0.81}$                                                                                                                                                                                              | $3.2{\pm}0.9$   | $2.1{\pm}0.9$   | $5.2 \pm 2.2$   | $1.33^{+0.69}_{-0.59}$                                                                 |               | $\mathbf{C}$      |
| 63  | $5^{+4}_{-2}$                  | $4^{+3}_{-2}$       | $2^{+3}_{-1}$                                                | $2.62^{+1.12}_{-0.88}$ $1.16^{+0.77}_{-0.51}$ $1.06^{+0.72}_{-0.48}$ $1.06^{+0.72}_{-0.48}$ $1.06^{+0.72}_{-0.48}$                                 | $0.48^{+0.39}_{-0.24}$                                                                                                   | $0.34_{-0.28}^{+0.58}$                                                                                                                                                                                              | $1.5 {\pm} 1.2$ | $0.9{\pm}0.4$   | $3.3{\pm}1.4$   | $0.29^{+0.30}_{-0.26}$                                                                 |               | В                 |
| 64  | $5^{+\bar{4}}_{-2}$            | $5^{+3}_{-2}$       | 4                                                            | $1.06^{+0.72}_{-0.48}$                                                                                                                             | $0.56^{+0.39}_{-0.25}$<br>$0.56^{+0.39}_{-0.25}$                                                                         | 0.78                                                                                                                                                                                                                | $1.7 {\pm} 0.3$ | $1.5\pm0.4$     | $1.9{\pm}0.2$   | $0.28^{+0.20}_{-0.14}$                                                                 | H             | А                 |
| 65  | $5^{+\bar{4}}_{-2}$            | $5^{+3}_{-2}$       | 4                                                            | $1.06^{+0.72}_{-0.48}$                                                                                                                             | $0.56\substack{+0.39\\-0.25}$                                                                                            | 0.78                                                                                                                                                                                                                | $1.1{\pm}0.2$   | $1.0{\pm}0.1$   | $1.3 {\pm} 0.3$ | $0.19_{-0.09}^{+0.13}$                                                                 | H             | А                 |
| 66  | $3^{+\bar{7}}_{-3}$            | $1^{+\bar{4}}_{-1}$ | ${\begin{array}{c}1+6\\5+4\\5-3\\9+5\\9-4\end{array}}$       | $\begin{array}{c} 0.76\substack{+0.97\\-0.76}\\ 0.93\substack{+0.77\\-0.52}\\ 4.54\substack{+1.40\\-1.17}\end{array}$                              | $0.22_{-0.22}^{+0.61}$                                                                                                   | $\begin{array}{c} 0.37^{+1.83}_{-0.37}\\ 0.37^{+0.78}_{-0.53}\\ 1.04^{+0.78}_{-0.53}\\ 1.97^{+1.11}_{-0.88}\\ 0.26^{+0.61}_{-0.26}\\ 1.16^{+1.28}_{-1.26}\\ 1.16^{+1.28}_{-1.27}\\ 4.57^{+2.57}_{-2.57}\end{array}$ | $1.0{\pm}9.0$   | $0.8 {\pm} 4.2$ | $9.6{\pm}8.2$   | $0.12^{+1.14}_{-1.11}$                                                                 |               | В                 |
| 67  | $5^{-3}_{-3}$<br>$5^{+4}_{-3}$ | 2                   | $5^{+4}_{-3}$                                                | $0.93^{+0.77}_{-0.52}$                                                                                                                             | 0.27                                                                                                                     | $1.04^{+0.78}_{-0.53}$                                                                                                                                                                                              | $3.7 \pm 1.7$   | $3.1{\pm}0.6$   | $6.2 \pm 2.1$   | $\begin{array}{c} 0.12 \\ -1.11 \\ 0.55 \\ -0.40 \\ -0.40 \end{array}$                 | - S -         | $\mathbf{C}$      |
| 68  | $21^{+7}_{-6}$                 | $12^{+5}_{-4}$      | $9^{+5}_{-4}$                                                | $4.54^{+1.40}_{-1.17}$                                                                                                                             | $1.48^{+0.59}_{-0.45}$                                                                                                   | $1.97^{+1.11}_{-0.88}$                                                                                                                                                                                              | $1.6{\pm}0.8$   | $1.3 {\pm} 0.1$ | $4.7 \pm 3.1$   |                                                                                        |               | В                 |
| 69  | $9^{+4}_{-3}$                  | $7^{+4}_{-3}$       | $1^{+3}_{-1}$                                                | $4.54_{-1.17}$<br>$1.76_{-0.68}^{+0.90}$                                                                                                           | $0.87^{\pm0.46}$                                                                                                         | $0.26\substack{+0.61\\-0.26}$                                                                                                                                                                                       | $1.6{\pm}0.3$   | $1.3 {\pm} 0.2$ | $1.8{\pm}0.8$   | $1.20^{+0.64}_{-0.64}$<br>$0.45^{+0.25}_{-0.20}$                                       |               | А                 |
| 70  | $17^{+7}_{-6}$                 | $12^{+5}_{-4}$      | $6^{+6}_{-5}$                                                | $3.53^{+1.53}_{-1.22}$                                                                                                                             | $1.37^{+0.60}$                                                                                                           | $1.16^{+1.28}_{-1.07}$                                                                                                                                                                                              | $1.7 {\pm} 0.5$ | $1.1{\pm}0.4$   | $2.1{\pm}4.0$   | $0.95\substack{+0.20\\-0.49}{-0.44}$                                                   |               | В                 |
| 71  | $13^{+7}_{-6}$                 | $1^{+3}_{-1}$       | $11^{+6}_{-5}$                                               | $\begin{array}{r} -1.32\\ 4.97 \substack{+2.68\\-2.26}\\ 35.95 \substack{+2.83\\-2.83\\-2.83\end{array}$                                           |                                                                                                                          | $ \begin{array}{r} -1.57\\ 4.57^{+2.57}_{-2.13}\\ 36.23^{+2.86}_{-2.86} \end{array} $                                                                                                                               | $4.8{\pm}1.0$   | $3.5 {\pm} 1.4$ | $6.2 {\pm} 2.0$ | $3.79^{+2.20}_{-1.90}$                                                                 |               | D                 |
| 72  | $165^{+13}_{-13}$              | $2^{+3}_{-2}$       | $163^{+13}_{-13}$                                            | $35.95^{+2.83}_{-2.83}$                                                                                                                            | $\begin{array}{c} 0.28 \substack{+0.18\\-0.28}\\ 0.26 \substack{+0.37\\-0.20}\\ 2.58 \substack{+0.74\\-0.60}\end{array}$ | $36.23^{+2.86}_{-2.86}$                                                                                                                                                                                             | $4.2{\pm}0.1$   | $3.4{\pm}0.1$   | $5.2{\pm}0.2$   | $24.25^{+2.06}_{-2.06}$                                                                |               | D                 |
| 73  | $19^{+7}_{-5}$                 | $20^{+6}_{-5}$      | 5                                                            | $4.25^{+1.48}_{-1.24}$                                                                                                                             | $2.58^{+0.74}_{-0.60}$                                                                                                   | 1.21                                                                                                                                                                                                                | $0.9{\pm}0.1$   | $0.8{\pm}0.1$   | $1.3{\pm}0.2$   | $0.63^{+0.23}_{-0.20}$                                                                 | H             | А                 |
| 74  | $7^{+6}_{-5}$                  | 4                   | $7^{+6}_{-5}$                                                | $2.54_{-1.96}^{+2.38}$                                                                                                                             | 0.92                                                                                                                     | $2.71^{+2.29}_{-1.86}$                                                                                                                                                                                              | $9.7 {\pm} 2.3$ | $6.6{\pm}4.2$   | $9.7{\pm}0.4$   | $3.93^{+3.79}_{-3.17}$                                                                 | - S -         | D                 |
| 75  | $8^{+4}_{-3}$                  | $5^{+3}_{-2}$       | $3^{+3}_{-2}$                                                | $1.82^{+1.00}_{-0.73}$                                                                                                                             | $0.64\substack{+0.47\\-0.30}$                                                                                            | $0.72^{+0.79}_{-0.47}$                                                                                                                                                                                              | $1.9{\pm}1.6$   | $1.6{\pm}0.3$   | $5.7 \pm 2.6$   | $0.55_{-0.51}^{+0.55}$                                                                 |               | В                 |
| 76  | $10^{+5}_{-4}$                 | 2                   | $11^{+5}_{-4}$                                               | $2.43^{+1.26}_{-0.99}$                                                                                                                             | 0.32                                                                                                                     | $2.82^{+1.28}_{-1.01}$                                                                                                                                                                                              | $4.9{\pm}1.0$   | $3.4{\pm}0.6$   | $5.7 \pm 1.3$   | $1.91^{+1.06}_{-0.87}$                                                                 | - S -         | D                 |

Chandra Catalog: Photometry (continued)

| No.              | $C_{net}$ FB                          | $C_{net}$ SB                                     | $C_{net}$ HB                                                             | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                         | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                   | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                              | $E_{50}$ (keV)                 | $E_{25}$ (keV)                 | $E_{75}$ (keV)                 | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{ s}^{-1})$                                        | Phot.<br>Flag  | Quantile<br>Group |
|------------------|---------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------|----------------|-------------------|
| 77               | $13^{+7}_{6}$                         | $13^{+6}_{-4}$                                   | 1+5                                                                      | $1.2c \pm 0.73$                                                                                                                                   | 1 47+0.37                                                                                                                                   | $0.20^{\pm 1.22}$                                                                                                      | 0.0   0.1                      | 0.0   0.1                      | 11101                          | $0.20 \pm 0.11$                                                                                 |                | ٨                 |
| 77<br>78         | $529^{+23}_{-23}$                     | $13_{-4} \\ 68_{-8}^{+10}$                       | $1^{+5}_{-1} \\ 462^{+22}_{-22}$                                         | $1.36^{+0.73}_{-0.52}$                                                                                                                            | ${\begin{array}{c} 1.47\substack{+0.37\\-0.26}\\ 6.80\substack{+0.80\\-0.68 \end{array}}$                                                   | $\begin{array}{r} 0.30\substack{+1.22\\-0.30}\\67.51\substack{+3.16\\-3.16}\end{array}$                                | $0.9 \pm 0.1$<br>$3.8 \pm 0.1$ | $0.9 \pm 0.1$<br>$2.8 \pm 0.1$ | $1.1 \pm 0.1$<br>$4.9 \pm 0.1$ | $\begin{array}{c} 0.20\substack{+0.11\\-0.08}\\ 46.21\substack{+2.22\\-2.22} \end{array}$       |                | A<br>D            |
| 78<br>79         | $11^{+7}_{-6}$                        | 2+4                                              | $0^{+6}$                                                                 | $75.82^{+3.31}_{-3.31}$<br>$2.24^{+1.35}_{-1.14}$                                                                                                 | $a_{a}a \pm 0.43$                                                                                                                           | $07.31_{-3.16}$<br>1 70 $^{+1.26}$                                                                                     | $5.8 \pm 0.1$<br>$5.1 \pm 2.7$ | $2.8 \pm 0.1$<br>$2.3 \pm 1.0$ | $4.9 \pm 0.1$<br>$7.7 \pm 2.3$ | $^{40.21}_{-2.22}$<br>$1.82^{+1.48}_{-1.35}$                                                    |                | D<br>C            |
| 7 <i>9</i><br>80 | ×+4                                   | $2^{-3}$                                         | $6^{+4}_{-3}$                                                            | $2.24^{+1.35}_{-1.14}$ $1.77^{+0.89}_{-0.65}$ $28.26^{+2.40}_{-2.27}$                                                                             | $\begin{array}{c} 0.29 \substack{+0.29 \\ -0.29 \\ 0.23 \substack{+0.33 \\ -0.16 \\ 0.76 \substack{+0.38 \\ -0.20 \end{array}} \end{array}$ | $\begin{array}{c} 1.79\substack{+1.26\\-1.04}\\ 1.39\substack{+0.84\\-0.57}\\ 28.17\substack{+2.41\\-2.28}\end{array}$ | $3.1\pm2.7$<br>$3.1\pm0.7$     | $2.3\pm1.0$<br>$2.0\pm0.5$     | $3.8 \pm 0.5$                  | $0.87^{\pm 0.48}$                                                                               |                | D                 |
| 80<br>81         | $161^{+14}_{-13}$                     | $\overset{2}{\overset{-1}{\overset{+4}{_{-2}}}}$ | $157^{+13}_{-13}$                                                        | $28.26^{+2.40}$                                                                                                                                   | $0.23_{-0.16}$<br>$0.76^{+0.38}$                                                                                                            | $1.59_{-0.57}$<br>28 17 <sup>+2.41</sup>                                                                               | $3.1\pm0.7$<br>$3.9\pm0.1$     | $3.4 \pm 0.1$                  | $4.7 \pm 0.2$                  | $0.87_{-0.38}^{+1.52}$ $17.50_{-1.44}^{+1.52}$                                                  |                | E                 |
| 82               | $6^{+4}_{-3}$                         | $7^{+2}_{-3}$                                    | $2^{107-13}$                                                             | $1.24^{+0.72}_{-0.49}$                                                                                                                            | $0.70_{-0.20}$<br>$0.77_{-0.29}^{+0.42}$                                                                                                    | 0.44                                                                                                                   | $1.0\pm0.1$                    | $0.9\pm0.1$                    | $4.1 \pm 0.2$<br>$1.1 \pm 0.1$ | $0.21^{+0.12}_{-0.08}$                                                                          | H              | A                 |
| 83               | $11^{+7}$                             | $^{-3}_{3}$                                      | $13^{+6}_{-5}$                                                           | $2.60^{+1.56}$                                                                                                                                    | $0.11_{-0.29}$<br>0.44                                                                                                                      | $3.15^{+1.54}$                                                                                                         | $5.2 \pm 3.8$                  | $2.7 \pm 1.4$                  | $8.6 \pm 1.8$                  | $9.17 \pm 2.05$                                                                                 | - S -          | C                 |
| 84               | $11_{-6}^{-6}$<br>$11_{-4}^{+5}$      | 4                                                | $10^{+5}_{-4}$                                                           | 1 1 10                                                                                                                                            | 0.48                                                                                                                                        | $3.15^{+1.54}_{-1.29} \\ 2.47^{+1.13}_{-0.86} \\ 2.28^{+1.39}_{-1.06}$                                                 | $5.0\pm0.9$                    | $4.5 \pm 1.0$                  | $6.8 \pm 0.8$                  | $2.17 - 1.93 \\ 1.98 + 0.98 \\ -0.79$                                                           | - S -          | D                 |
| 85               | 8 <sup>+5</sup>                       | $1^{+3}_{-1}$                                    | $8^{+5}_{-4}$                                                            | $a_{40}+1.44$                                                                                                                                     | $0.11_{-0.11}^{+0.44}$                                                                                                                      | $2.28^{\pm 1.39}$                                                                                                      | $7.5 \pm 2.5$                  | $2.5 \pm 2.0$                  | $7.7 \pm 1.7$                  | $0.00 \pm 1.98$                                                                                 |                | C                 |
| 86               | $11^{+5}_{-3}$                        | $1 \\ 3$                                         | $11^{+5}_{-3}$                                                           | $2.42_{-1.12}$<br>$2.23_{-0.69}^{+0.91}$                                                                                                          | 0.30                                                                                                                                        | $2.28_{-1.06} \\ 2.30_{-0.70}^{+0.93}$                                                                                 | $3.3 \pm 0.4$                  | $3.0\pm0.4$                    | $4.2 \pm 1.5$                  | $2.90_{-1.66}$<br>$1.16_{-0.39}^{+0.50}$                                                        | - S -          | Ē                 |
| 87               | $10^{+5}_{-4}$                        | 4                                                | $10^{+5}_{-4}$                                                           | $0.00 \pm 1.17$                                                                                                                                   | 0.51                                                                                                                                        | $2.23^{+1.14}_{-0.00}$                                                                                                 | $5.7 \pm 1.5$                  | $3.4{\pm}1.3$                  | $6.4 \pm 1.8$                  | $2.03^{+1.19}_{-1.00}$                                                                          | - S -          | D                 |
| 88               | $33^{+9}_{-8}$                        | $25^{+7}_{-6}$                                   | $8^{+6}_{-3}$                                                            | $2.33^{+0.70}$                                                                                                                                    | $\begin{array}{c} 1.40\substack{+0.32\\-0.23}\\ 0.65\substack{+0.46\\-0.29}\\ 0.65\substack{+0.39\\-0.26}\end{array}$                       | ${}^{+0.90}_{-0.32}$<br>${}^{+0.82}_{-0.35}$<br>${}^{-0.48}_{-0.39}$                                                   | $1.1 {\pm} 0.2$                | $1.0{\pm}0.1$                  | $1.4{\pm}0.5$                  | $0.42^{+0.14}_{-0.12}$                                                                          |                | В                 |
| 89               |                                       | $5^{+3}_{-2}$                                    | $2^{+3}_{-2}$                                                            | $1 co \pm 0.94$                                                                                                                                   | $0.65^{+0.46}_{-0.29}$                                                                                                                      | $0.48^{+0.71}_{-0.39}$                                                                                                 | $1.2 {\pm} 0.9$                | $1.0{\pm}0.2$                  | $2.7 \pm 1.8$                  | $0.00\pm0.30$                                                                                   |                | В                 |
| 90               | $7^{+4}_{-3}$<br>$6^{+4}_{-3}$        | $6^{+4}_{-2}$                                    | $\frac{-2}{4}$                                                           | $1.60^{+0.67}_{-0.67}$<br>$1.20^{+0.71}_{-0.49}$                                                                                                  | $0.65^{+0.39}_{-0.26}$                                                                                                                      | $0.74^{-0.33}$                                                                                                         | $1.7 {\pm} 0.3$                | $1.3 {\pm} 0.3$                | $1.8 {\pm} 0.3$                | $\begin{array}{c} 0.30\substack{+0.27\\-0.27}\\ 0.32\substack{+0.20\\-0.14}\end{array}$         | H              | А                 |
| 91               | 8                                     | $3^{-2}$                                         | 8                                                                        | 2.04                                                                                                                                              | $0.42^{-0.20}$                                                                                                                              | 2.10                                                                                                                   | $5.2 {\pm} 4.8$                | $2.9{\pm}7.1$                  | $7.6 {\pm} 7.1$                | 1 72                                                                                            | F S H          | $\mathbf{C}$      |
| 92               | $\substack{7^{+4}_{-3}\\5^{+4}_{-2}}$ | 2                                                | $\substack{8^{+4}_{-3}\\5^{+4}_{-2}}$                                    | ${}^{1.55+0.92}_{-0.69}\\ 1.02{}^{+0.68}_{-0.45}$                                                                                                 | 0.28                                                                                                                                        | $1.77_{-0.70}^{+0.94}$ $1.06_{-0.46}^{+0.70}$                                                                          | $4.6{\pm}1.6$                  | $3.1{\pm}0.8$                  | $6.2 {\pm} 1.5$                | $1.15^{+0.79}_{-0.64}$                                                                          | - S -          | $\mathbf{C}$      |
| 93               | $5^{+4}_{-2}$                         | 3                                                | $5^{+4}_{-2}$                                                            | $1.02^{+0.68}_{-0.45}$                                                                                                                            | 0.29                                                                                                                                        | $1.06\substack{+0.70\\-0.46}$                                                                                          | $3.8{\pm}1.0$                  | $2.8{\pm}0.7$                  | $4.3 {\pm} 1.0$                | $0.63\substack{+0.45 \\ -0.32}$                                                                 | - S -          | D                 |
| 94               | $81^{+15}_{-13}$                      | $12^{+7}_{-4}$                                   | $70^{+\bar{1}3}_{-12}$                                                   | $6.12^{+1.01}_{-0.86}$                                                                                                                            | $1.07^{+0.29}_{-0.13}\\1.46^{+0.58}_{-0.44}$                                                                                                | $5.28^{+0.95}_{-0.80}$<br>$0.15^{+0.60}_{-0.15}$                                                                       | $3.1{\pm}0.2$                  | $2.2{\pm}0.2$                  | $4.2{\pm}0.3$                  | $3.03^{+0.54}_{-0.47}$                                                                          |                | $\mathbf{C}$      |
| 95               | $12^{+5}_{-4}$                        | $12^{+5}_{-3}$                                   | $1^{+3}_{-1}$                                                            | $2.68^{+1.07}_{-0.83}$                                                                                                                            | $1.46^{+0.58}_{-0.44}$                                                                                                                      | $0.15\substack{+0.60\\-0.15}$                                                                                          | $1.2{\pm}0.2$                  | $1.1{\pm}0.1$                  | $1.5 {\pm} 0.7$                | $0.52_{-0.17}^{+0.22}$                                                                          |                | А                 |
| 96               | $11^{+5}_{-4}$                        | $13^{-3}_{-4}$                                   | 4                                                                        | $2.68^{+1.07}_{-0.83}$ $2.55^{+1.22}_{-0.98}$                                                                                                     | $\begin{array}{c} 1.72 \substack{+0.64 \\ -0.50 \\ 0.20 \substack{+0.37 \\ -0.20 \end{array}} \end{array}$                                  | 0.85                                                                                                                   | $1.2 {\pm} 0.1$                | $1.0{\pm}0.2$                  | $1.4 {\pm} 0.1$                | $0.49_{-0.20}^{+0.24}$                                                                          | H              | А                 |
| 97               | $11^{+5}_{-4}$                        | $2^{+3}_{-2}$                                    | ${ 10^{+5}_{-4} \atop 28^{+6}_{-5} }$                                    | $2.55_{-0.98}$<br>$2.56_{-0.95}^{+1.20}$                                                                                                          | $0.20^{+0.37}_{-0.20}$                                                                                                                      | $2.24^{+1.14}_{-0.89}$                                                                                                 | $3.5 {\pm} 0.6$                | $2.3 \pm 0.5$                  | $3.6{\pm}1.0$                  |                                                                                                 |                | $\mathbf{E}$      |
| 98               | $32^{+7}_{-6}$                        | $4^{+3}_{-2}$                                    | $28^{+6}_{-5}$                                                           | $11.88^{+2.51}_{-2.11}$                                                                                                                           | $\begin{array}{c} 0.20 \substack{+0.20 \\ -0.20} \\ 0.86 \substack{+0.69 \\ -0.42} \end{array}$                                             | $10.61^{+2.42}_{-2.02}$                                                                                                | $3.1 {\pm} 0.3$                | $2.4{\pm}0.2$                  | $4.1 {\pm} 0.6$                | $1.42_{-0.59}$<br>$5.92_{-1.19}^{+1.37}$                                                        |                | D                 |
| 99               | $7^{+4}_{-3}$                         | $6^{+\bar{4}}_{-2}$                              | $1^{+2}_{-1}$                                                            | $3.24^{+1.79}_{-1.22}$                                                                                                                            | $1.64^{+0.99}_{-0.65}$                                                                                                                      | $\begin{array}{c} 0.42\substack{+1.12\\-0.40}\\ 1.21\substack{+1.09\\-0.80}\\ \end{array}$                             | $1.5 \pm 0.8$                  | $1.0 {\pm} 0.2$                | $1.8 \pm 1.5$                  | $0.79^{+0.59}_{-0.50}$                                                                          |                | А                 |
| 100              | $14^{+6}_{-5}$                        | $10^{+4}_{-3}$                                   | $5^{+\bar{4}}_{-3}$                                                      | $3.69^{+1.44}_{-1.16}$                                                                                                                            | $1.43_{-0.49}^{+0.65}$                                                                                                                      | $1.21^{+1.09}_{-0.80}$                                                                                                 | $1.6 \pm 0.5$                  | $1.3 \pm 0.2$                  | $2.1 \pm 1.8$                  | $0.93\substack{+0.45\\-0.40}$                                                                   |                | A                 |
| 101              | $114^{+11}_{-11}$                     | $5^{+4}_{-2}$                                    | $108^{+11}_{-11}$                                                        | $3.24_{-1.22}$<br>$3.69_{-1.16}^{+1.44}$<br>$23.36_{-2.22}^{+2.22}$<br>$2.58_{-1.33}^{+1.76}$<br>$5.23_{-1.21}^{+1.22}$<br>$5.23_{-1.01}^{+1.22}$ | $\begin{array}{r} 1.43_{-0.49}\\ 0.62_{-0.28}^{+0.42}\\ 0.43_{-0.37}^{+0.66}\\ 1.87_{-0.46}^{+0.58}\end{array}$                             | $22.75^{+2.21}_{-2.21}$                                                                                                | $4.1 \pm 0.2$                  | $3.2 \pm 0.2$                  | $5.3 \pm 0.2$                  | $15.45^{+1.74}_{-1.74}$                                                                         |                | D                 |
| 102              | $7^{+4^{-1}}_{-3}_{+6}$               | $2^{+3}_{-2}$                                    | $5^{+4^{11}}_{-3}$                                                       | $2.58^{+1.70}_{-1.33}_{+1.22}$                                                                                                                    | $0.43^{+0.00}_{-0.37}$                                                                                                                      | $\begin{array}{c} 1.85\substack{+1.61\\-1.16\\2.05\substack{+0.86\\-0.65}\end{array}$                                  | $4.0 \pm 2.5$                  | $1.6 \pm 1.2$                  | $6.1 \pm 2.0$                  | $1.67^{+1.54}_{-1.34}$                                                                          |                | С                 |
| 103              | $27^{+6}_{-5}$                        | $17^{+5}_{-4}$                                   | $10^{+4}_{-3}$                                                           | $5.23^{+1.22}_{-1.01}$                                                                                                                            | $1.87^{+0.56}_{-0.46}$                                                                                                                      | $2.05^{+0.00}_{-0.65}$                                                                                                 | $1.7 \pm 0.2$                  | $1.3 \pm 0.1$                  | $2.6 \pm 0.4$                  | $1.39^{+0.38}_{-0.34}$                                                                          |                | В                 |
| 104              | $6^{+4}_{-3}_{-3}_{12+6}$             | $6^{+4}_{-2}$                                    | 4                                                                        | $1.40^{+0.97}_{-0.69}$<br>$2.86^{+1.31}_{-1.07}$                                                                                                  | $0.79^{+0.50}_{-0.33}$                                                                                                                      | 0.98                                                                                                                   | $1.2 \pm 0.2$                  | $0.9 \pm 0.2$                  | $1.4 \pm 0.2$                  | $0.28^{+0.20}_{-0.15}$                                                                          | H              | A                 |
| 105              | $13^{+6}_{-5}_{+4}$                   | $6^{+\bar{4}}_{-3}_{c^{\pm 4}}$                  | $7^{+5}_{-4}$                                                            | $2.86^{+1.01}_{-1.07}$                                                                                                                            | $0.74^{+0.49}_{-0.35}$                                                                                                                      | $1.58^{+1.13}_{-0.89}$                                                                                                 | $2.1 \pm 0.6$                  | $1.0\pm0.6$                    | $2.5 \pm 1.6$                  | $0.95^{+0.50}_{-0.44}$                                                                          |                | B                 |
| 106              | $\substack{4^{+4}_{-3}\\6^{+4}_{-2}}$ | $6^{+4}_{-3}$                                    | $2 \\ c^{+4}$                                                            | $\begin{array}{c} 0.89\substack{+0.81\\-0.56}\\ 1.31\substack{+0.84\\-0.56}\\ 0.77\substack{+0.76\\-0.55\\0.92\substack{+0.86\\-0.63}\end{array}$ | $0.79_{-0.32}^{+0.46}$                                                                                                                      | 0.50                                                                                                                   | $1.0\pm0.3$                    | $0.7 \pm 0.2$                  | $1.2 \pm 0.1$                  | $\begin{array}{c} 0.14\substack{+0.14\\-0.10}\\ 0.67\substack{+0.45\\-0.31}\end{array}$         | H<br>- S -     | B<br>E            |
| 107              | $4^{+2}_{-3}$                         | 3                                                | $\substack{ 6^{+4}_{-2} \\ 4^{+4}_{-3} }$                                | $1.31_{-0.56}$                                                                                                                                    | 0.36                                                                                                                                        | $\begin{array}{c} 1.35\substack{+0.86\\-0.57\\0.69\substack{+0.74\\-0.51}\end{array}$                                  | $3.2 \pm 0.6$                  | $2.4\pm0.4$                    | $3.7 \pm 0.7$                  | $\begin{array}{c} 0.67 \substack{+0.31 \\ -0.31} \\ 0.33 \substack{+0.37 \\ -0.30} \end{array}$ | - S -<br>- S - | E<br>C            |
| $108 \\ 109$     | $4^{-3}_{-3}$<br>$4^{+4}_{-3}$        | $4 \\ 5^{+4}_{-2}$                               | $4^{+}_{-3}$                                                             | $0.11_{-0.55}$<br>0.02 $+0.86$                                                                                                                    | $0.43 \\ 0.62^{+0.43}_{-0.28}$                                                                                                              | $0.69_{-0.51}$<br>0.86                                                                                                 | $2.6 \pm 1.6$<br>$0.8 \pm 0.2$ | $1.3 \pm 0.8$<br>$0.7 \pm 0.1$ | $4.7 \pm 1.3$<br>$1.0 \pm 0.2$ | $0.33_{-0.30}$<br>$0.11_{-0.08}^{+0.11}$                                                        | - S -<br>H     | A                 |
| 109<br>110       | $^{4^{-3}_{-3}}_{6^{+4}_{-2}}$        | $\frac{3}{2}$                                    | $6^{+4}_{-2}$                                                            | $1.17 \pm 0.76$                                                                                                                                   | $0.62_{-0.28}$<br>0.32                                                                                                                      | 0.86<br>$1.22^{+0.77}_{-0.51}$                                                                                         | $0.8 \pm 0.2$<br>5.1 \pm 1.9   | $0.7 \pm 0.1$<br>$3.3 \pm 0.9$ | $1.0\pm0.2$<br>$8.2\pm1.3$     | $0.11_{-0.08}^{+0.08}$<br>$0.95_{-0.54}^{+0.71}$                                                | н<br>-S-       | A<br>C            |
| 110              | $\alpha^{\pm \overline{4}}$           | 5 <sup>+3</sup>                                  | $^{0}_{4+3}$                                                             |                                                                                                                                                   | 0.52<br>0.57 $\pm 0.40$                                                                                                                     | $^{1.22}_{0.74^{\pm 0.65}}$                                                                                            | $5.1 \pm 1.9$<br>$1.8 \pm 0.7$ | $3.3 \pm 0.9$<br>$1.1 \pm 0.3$ | $8.2 \pm 1.3$<br>$2.9 \pm 1.3$ |                                                                                                 | - 6 -          | В                 |
| $111 \\ 112$     | $6^{+4}_{-3}$                         | $2^{+3}$                                         | $\begin{array}{c} 4^{+3}_{-2} \\ 5^{+3}_{-2} \\ 4^{+3}_{-2} \end{array}$ | $1.71^{+0.60}_{-0.61}$ $1.36^{+0.80}_{-0.54}$ $2.73^{+0.93}_{-0.73}$                                                                              | $\begin{array}{c} 0.57^{+0.40}_{-0.25} \\ 0.57^{+0.33}_{-0.16} \\ 1.19^{+0.48}_{-0.36} \end{array}$                                         | $\begin{array}{c} 0.74\substack{+0.65\\-0.39}\\ 0.98\substack{+0.73\\-0.46}\\ 0.69\substack{+0.61\\-0.37}\end{array}$  | $1.8 \pm 0.7$<br>$3.2 \pm 0.5$ | $1.1\pm0.3$<br>$2.1\pm0.5$     | $2.9 \pm 1.3$<br>$3.4 \pm 0.5$ | $0.co \pm 0.42$                                                                                 |                | Б<br>Е            |
| 112              | $15^{+5}_{-4}$                        | 11 + 4                                           | $^{0-2}_{4^{+3}}$                                                        | $273^{+0.54}$                                                                                                                                     | $0.23_{-0.16}$<br>1 19 <sup>+0.48</sup>                                                                                                     | 0.93 - 0.46<br>$0.69^{+0.61}$                                                                                          | $3.2 \pm 0.3$<br>$1.3 \pm 0.4$ | $2.1\pm0.3$<br>$1.0\pm0.1$     | $3.4 \pm 0.3$<br>$2.5 \pm 1.0$ | $0.69^{+0.30}_{-0.30}$<br>$0.58^{+0.25}_{-0.22}$                                                |                | B                 |
| 113<br>114       | $10_{-4}^{10}$<br>$10_{-4}^{+5}$      | $11_{-3} \\ 1_{-1}^{+3}$                         | $9^{+2}_{-4}$                                                            | $2.00^{\pm 1.04}$                                                                                                                                 | $1.19_{-0.36}$<br>$0.07_{-0.07}^{+0.32}$                                                                                                    | $0.09_{-0.37}$<br>$1.91_{-0.77}^{+1.00}$                                                                               | $1.3 \pm 0.4$<br>$2.9 \pm 0.5$ | $1.0\pm0.1$<br>$2.3\pm0.4$     | $2.5 \pm 1.0$<br>$3.6 \pm 0.7$ | $0.92^{\pm 0.50}$                                                                               |                | E                 |
| 114              | $10_{-4} \\ 13_{-5}^{+6}$             | $4^{-1}_{-2}$                                    | $\alpha^{+5}$                                                            | $4.00^{+1.89}_{-1.56}$                                                                                                                            | $0.07_{-0.07}$<br>$0.67_{-0.43}^{+0.65}$                                                                                                    | $2.86^{+1.72}_{-1.37}$                                                                                                 | $2.3\pm0.5$<br>$2.4\pm1.6$     | $1.6 \pm 0.5$                  | $4.7 \pm 3.8$                  | $1.56^{+1.26}_{-1.19}$                                                                          |                | C                 |
| 110              | 10-5                                  | <b>-</b> -2                                      | $^{-4}$                                                                  | 4.00-1.56                                                                                                                                         | -0.43                                                                                                                                       | 2.00 - 1.37                                                                                                            | 2.711.0                        | 1.0-0.0                        | 1.1 ±0.0                       | 1.00 - 1.19                                                                                     |                | C                 |

Chandra Catalog: Photometry (continued)

| No. | $C_{net}$ FB       | $C_{net}$ SB                                         | $C_{net}$ HB                                                                                            | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                    | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                          | $\begin{array}{c} f_{\rm ph} {\rm HB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $E_{50}$ (keV)  | $E_{25}$ (keV) | $E_{75}$ (keV)  | $\frac{f_X(10^{-14} \text{erg}}{\text{cm}^{-2} \text{ s}^{-1}})$                                                                                        | Phot.<br>Flag | Quantile<br>Group |
|-----|--------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 116 | $15^{+5}_{-4}$     | $7^{+4}_{-3}$                                        | $8^{+4}_{-3}$                                                                                           | $\begin{array}{r} 3.13 \substack{+1.13 \\ -0.90 \\ 1.36 \substack{+0.90 \\ -0.66 \\ 3.76 \substack{+0.99 \\ -0.80 \\ 2.48 \substack{+0.77 \\ -0.60 \end{array}} \end{array}$                 | $\begin{array}{c} 0.87\substack{+0.47\\-0.33}\\ 0.10\substack{+0.30\\-0.10}\\ 1.29\substack{+0.37\\-0.25}\end{array}$                                                                | $\begin{array}{c} 1.65 \substack{+0.93 \\ -0.69 \\ 1.20 \substack{+0.87 \\ -0.63 \\ 2.50 \substack{+0.87 \\ -0.67 \\ 2.31 \substack{+0.76 \\ -0.58 \end{array}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.1 {\pm} 0.7$ | $1.7{\pm}0.4$  | $3.9{\pm}1.0$   | $1.04^{+0.52}_{-0.46}$<br>$1.03^{+0.71}_{-0.54}$                                                                                                        |               | В                 |
| 117 | $6^{+4}_{-3}$      | $1^{+2}_{-1}$                                        | $6^{+4}_{-3}$                                                                                           | $1.36^{+0.90}_{-0.66}$                                                                                                                                                                       | $0.10^{+0.30}_{-0.10}$                                                                                                                                                               | $1.20^{+0.87}_{-0.63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $4.8{\pm}0.8$   | $3.5{\pm}0.7$  | $5.1 {\pm} 0.6$ | $1.03_{-0.54}^{+0.71}$                                                                                                                                  |               | D                 |
| 118 | 40 + 9             | 11 + 6                                               | $30^{+8}_{-7}$                                                                                          | $3.76^{+0.99}_{-0.80}$                                                                                                                                                                       | $1.29^{+0.37}_{-0.25}$                                                                                                                                                               | $2.50^{+0.87}_{-0.67}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3.7 {\pm} 0.5$ | $2.0{\pm}0.3$  | $5.4 \pm 1.2$   | + 66                                                                                                                                                    |               | $\mathbf{C}$      |
| 119 | $24^{+7}$          | 0+4                                                  | $21^{+7}_{-5}$                                                                                          | $2.48^{+0.77}_{-0.60}$                                                                                                                                                                       | 10.22                                                                                                                                                                                | $2.31^{+0.76}_{-0.58}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3.9{\pm}0.4$   | $2.9{\pm}0.6$  | $4.6 {\pm} 0.4$ | $\begin{array}{c} 2.21 \substack{+0.56\\-0.56}\\ 1.57 \substack{+0.52\\-0.42}\\ 0.04 \substack{+0.10\\-0.67}\\ 0.76 \substack{+0.71\\-0.67}\end{array}$ |               | D                 |
| 120 | $2^{+4}_{-2}$      | $\begin{array}{c} 2_{-2} \\ 4_{-2}^{+3} \end{array}$ | 3                                                                                                       | $\begin{array}{c} 2.48 \substack{+0.74 \\ -0.60 \\ 0.37 \substack{+0.82 \\ -0.37 \\ 2.78 \substack{+1.33 \\ -1.05 \\ 0.91 \substack{+0.67 \\ -0.43 \\ 0.97 \end{array}}$                     | $\begin{array}{c} 0.29\substack{+0.22\\-0.07}\\ 0.50\substack{+0.44\\-0.28}\\ 0.95\substack{+0.57\\-0.41}\\ 0.22\substack{+0.30\\-0.15}\\ 0.21\substack{+0.44\\-0.15}\end{array}$    | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.8{\pm}0.1$   | $0.7 \pm 9.3$  | $0.8 {\pm} 9.2$ | $0.04^{+0.10}_{-0.05}$                                                                                                                                  | H             | А                 |
| 121 | $11_{-4}^{+5}$     | $7^{+\bar{4}}_{-3}$                                  | $\begin{array}{c} 4^{+4}_{-3} \\ 3^{+3}_{-2} \\ 2^{+2}_{-2} \\ 2^{+3}_{-1} \\ 14^{+5}_{-4} \end{array}$ | $2.78^{+1.33}_{-1.05}$                                                                                                                                                                       | $0.95_{-0.41}^{+0.57}$                                                                                                                                                               | $\begin{array}{c} 0.03\\ 1.13^{+}_{-0.79}\\ 0.54^{-}_{-0.33}\\ 0.51^{+}_{-0.51}\\ 0.42^{+}_{-0.66}\\ 0.42^{+}_{-0.66}\\ 2.94^{+}_{-0.09}\\ 1.73^{+}_{-0.74}\\ 1.39^{+}_{-1.06}\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\$ | $1.7{\pm}1.4$   | $1.4{\pm}0.4$  | $4.0{\pm}3.1$   | $0.76^{+0.71}_{-0.67}$                                                                                                                                  |               | В                 |
| 122 | $5^{+3}_{-2}$      | $2^{+3}_{-1}$                                        | $3^{+3}_{-2}$                                                                                           | $0.91^{+0.67}_{-0.43}$                                                                                                                                                                       | $0.22^{+0.30}_{-0.15}$                                                                                                                                                               | $0.54_{-0.33}^{+0.59}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3.5 {\pm} 1.5$ | $1.6{\pm}0.8$  | $5.1 \pm 1.1$   | 10.44                                                                                                                                                   |               | $\mathbf{C}$      |
| 123 | $8^{+5}_{-3}$      | $5^{+\bar{4}}_{-2}$                                  | $2^{+\bar{4}}_{-2}$                                                                                     | $\begin{array}{c} 0.01 \pm 0.43 \\ 1.61 \pm 0.97 \\ 1.36 \pm 0.87 \\ 0.58 \\ 6.70 \pm 1.46 \\ 6.70 \pm 1.11 \end{array}$                                                                     | $\begin{array}{c} 0.22 \_ 0.15 \\ 0.64 \_ 0.29 \\ 0.55 \_ 0.27 \\ 2.19 \_ 0.52 \\ 0.42 \_ 0.25 \\ 0.42 \_ 0.25 \\ \end{array}$                                                       | $0.51_{-0.51}^{+0.78}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.6{\pm}0.4$   | $1.1{\pm}0.4$  | $2.3 {\pm} 0.4$ |                                                                                                                                                         |               | В                 |
| 124 | $6^{-3}_{-2}$      | $4^{+3}_{-2}$                                        | $2^{+\bar{3}}_{-1}$                                                                                     | $1.36^{+0.87}_{-0.58}$                                                                                                                                                                       | $0.55_{-0.27}^{+0.45}$                                                                                                                                                               | $0.42^{+0.66}_{-0.32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.2 \pm 1.4$   | $1.0{\pm}0.3$  | $3.6{\pm}1.9$   | $\begin{array}{c} 0.41\substack{+0.21\\-0.22}\\ 0.27\substack{+0.34\\-0.32}\\ 2.00\substack{+0.51\\-0.46}\\ \end{array}$                                |               | В                 |
| 125 | $32_{-6}^{+7}$     | $18^{+5}_{-4}$                                       | $14_{-4}^{+5}$                                                                                          | $6.70^{+1.46}_{-1.24}$                                                                                                                                                                       | $2.19_{-0.52}^{+0.65}$                                                                                                                                                               | $2.94^{+1.09}_{-0.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.9{\pm}0.3$   | $1.2{\pm}0.2$  | $2.6{\pm}0.2$   | $2.00^{+0.51}_{-0.46}$                                                                                                                                  |               | В                 |
| 126 | $11^{+5}_{-4}$     | $3^{+3}_{-2}$                                        | $7^{+4}_{-3}$                                                                                           | $2.43^{+1.11}_{-0.86}$                                                                                                                                                                       | $0.42^{+0.42}_{-0.25}$                                                                                                                                                               | $1.73^{+1.00}_{-0.74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2.9{\pm}0.8$   | $1.8{\pm}0.6$  | $4.6 {\pm} 1.3$ | $1.14^{+0.00}_{-0.51}$                                                                                                                                  |               | $\mathbf{C}$      |
| 127 | $19^{+6}_{-5}$     | 4                                                    | $19_{-5}^{+6}$                                                                                          | $\begin{array}{c} 2.43 \substack{+1.24 \\ 2.43 \substack{+1.31 \\ -0.86 \\ 4.40 \substack{+1.31 \\ -1.07 \\ 1.07 \substack{+0.76 \\ -0.52 \\ 1.22 \substack{+0.92 \\ -0.61 \\ \end{array}}}$ | 0.50                                                                                                                                                                                 | $4.39^{+1.31}_{-1.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3.8{\pm}0.3$   | $2.8{\pm}0.4$  | $4.2 {\pm} 0.2$ | $2.68^{+0.83}$                                                                                                                                          | - S -         | $\mathbf{E}$      |
| 128 | $5^{+4}_{-3}$      | $6^{+4}_{-2}$                                        | 3                                                                                                       | $1.07^{+0.76}_{-0.52}$                                                                                                                                                                       | $\begin{array}{c} 0.65 \substack{+0.42 \\ -0.27 \\ 0.11 \substack{+0.34 \\ -0.11 \\ 0.26 \substack{+0.37 \\ -0.21 \end{array}}}$                                                     | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.4{\pm}0.2$   | $1.3{\pm}0.1$  | $1.5 {\pm} 0.2$ | $0.23^{+0.17}_{-0.12}$                                                                                                                                  | H             | А                 |
| 129 | $5^{+3}_{-3}_{-2}$ | $1^{+2}_{-1}$                                        | $4^{+3}_{-2}$                                                                                           | $1.22^{+0.92}_{-0.61}$                                                                                                                                                                       | $0.11_{-0.11}^{+0.34}$                                                                                                                                                               | $1.04^{+0.89}_{-0.56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2.9{\pm}0.5$   | $2.5{\pm}0.6$  | $3.2{\pm}0.2$   | $a = a \pm 0.44$                                                                                                                                        |               | $\mathbf{E}$      |
| 130 | $24_{-5}^{+6}$     | $2^{+1}_{-2}$                                        | $22^{+6}_{-5}$                                                                                          | $5.36^{+1.41}$                                                                                                                                                                               | $0.26_{-0.21}^{+0.37}$                                                                                                                                                               | $5.01^{+1.37}_{-1.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $4.6{\pm}0.4$   | $3.6{\pm}0.5$  | $5.4{\pm}0.5$   | $3.96^{+1.08}_{-0.92}$                                                                                                                                  |               | D                 |
| 131 | $11^{+5}_{-4}$     | 4                                                    | $10^{+5}_{-3}$                                                                                          | $2.42^{\pm 1.06}$                                                                                                                                                                            | 0.50                                                                                                                                                                                 | $1.04^{+0.89}_{-0.56}\\5.01^{+1.37}_{-1.13}\\2.36^{+1.05}_{-0.80}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $4.0{\pm}1.0$   | $2.5{\pm}0.6$  | $5.2 \pm 1.4$   | $\begin{array}{c} 0.56\substack{+0.30\\-0.30}\\ 3.96\substack{+1.08\\-0.92}\\ 1.55\substack{+0.77\\-0.64}\\ \end{array}$                                | - S -         | $\mathbf{C}$      |
| 132 | $37^{+8}_{-7}$     | $6^{+3}_{-2}$                                        | $34^{+8}_{-6}$                                                                                          | $4.65^{\pm1.04}$                                                                                                                                                                             | $1.33^{+0.46}_{-0.26}$                                                                                                                                                               | 1 15 - 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.8{\pm}0.5$   | $3.2{\pm}0.3$  | $5.6{\pm}0.4$   | $2.86^{+0.73}_{-0.63}$                                                                                                                                  |               | D                 |
| 133 | $11^{+6}_{-4}$     | $12^{+5}_{-4}$                                       | $5^{+3}_{-1}$                                                                                           |                                                                                                                                                                                              | $1.13^{+0.31}_{-0.21}$                                                                                                                                                               | $0.25\substack{+0.65\\-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.4{\pm}0.4$   | $0.9{\pm}0.2$  | $1.7{\pm}0.3$   | $0.26^{+0.15}_{-0.12}$                                                                                                                                  |               | В                 |
| 134 | $12_{-4}^{-4}$     | $5^{+3}_{-2}$                                        | $5^{+3}_{-1}$<br>$8^{+4}_{-3}$<br>$9^{+6}_{-5}$                                                         | $1.19^{+0.02}_{-0.45}$ $2.89^{+1.10}_{-0.84}$ $3.14^{+2.01}_{-1.70}$                                                                                                                         | $\begin{array}{c} 1.33 \_ 0.26 \\ 1.13 \_ 0.21 \\ 0.65 \_ 0.29 \\ 0.20 \_ 0.20 \\ 0.57 \_ 0.08 \\ \end{array}$                                                                       | $\begin{array}{c} 4.40 \\ -0.82 \\ 0.25 \\ +0.65 \\ -0.25 \\ 1.80 \\ -0.67 \\ 2.85 \\ -1.55 \\ 1.15 \\ -0.43 \\ 2.16 \\ +1.02 \\ 2.16 \\ -0.77 \\ -0.77 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.0{\pm}0.4$   | $1.1{\pm}0.3$  | $2.9{\pm}0.8$   | $0.93^{+0.40}_{-0.33}$<br>$1.40^{+1.03}_{-0.91}$                                                                                                        |               | В                 |
| 135 | $10^{+7}_{-6}$     | $1^{+4}_{-1}$                                        | $9^{+6}_{-5}$                                                                                           | $3.14^{+2.01}_{-1.70}$                                                                                                                                                                       | $0.20^{+0.62}_{-0.20}$                                                                                                                                                               | $2.85^{+1.87}_{-1.55}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2.8{\pm}1.0$   | $2.2{\pm}0.4$  | $4.1 {\pm} 1.6$ | $1.40^{+1.03}_{-0.91}$                                                                                                                                  |               | $\mathbf{E}$      |
| 136 | $13^{+6}_{-5}$     | $2^{+\bar{4}}_{-1}$                                  | $11^{+6}_{-4}$                                                                                          | $1.31^{+0.64}_{-0.46}$                                                                                                                                                                       | $0.57^{+0.22}_{-0.08}$                                                                                                                                                               | $1.15^{+0.62}_{-0.43}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2.6{\pm}0.3$   | $2.1{\pm}0.2$  | $2.8{\pm}0.2$   | $0.54_{-0.20}^{+0.27}$                                                                                                                                  |               | $\mathbf{E}$      |
| 137 | $9^{+5}_{-3}$      | 2                                                    | $10^{+5}_{-3}$                                                                                          | $1.97^{+1.00}_{-5.50}$                                                                                                                                                                       | 0.28                                                                                                                                                                                 | $2.16^{+1.02}_{-0.77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $4.2{\pm}0.6$   | $4.0{\pm}0.3$  | $5.6 {\pm} 1.1$ | $1.34^{+0.71}_{-0.55}$                                                                                                                                  | - S -         | $\mathbf{E}$      |
| 138 | $4^{+4}_{-3}$      | $5^{+4}_{-2}$                                        | 3                                                                                                       | $\begin{array}{c} 1.00 \substack{+0.94 \\ -0.68 \\ 7.66 \substack{+1.49 \\ -1.27 \\ 2.84 \substack{+2.33 \\ -1.96 \\ \end{array}}$                                                           | $0.72\substack{+0.49 \\ -0.32}$                                                                                                                                                      | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.3{\pm}0.3$   | $1.1{\pm}0.2$  | $1.6{\pm}0.1$   |                                                                                                                                                         | H             | А                 |
| 139 | $38_{-6}^{+7}$     | 2                                                    | $38^{+7}_{-6}$                                                                                          | $7.66^{+1.49}_{-1.27}$                                                                                                                                                                       | 0.28                                                                                                                                                                                 | $7.88^{+1.52}_{-1.30}\\1.75^{+2.08}_{-1.70}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $5.2{\pm}0.4$   | $4.1{\pm}0.1$  | $5.8{\pm}0.3$   | $\begin{array}{c} 0.20\substack{+0.20\\-0.15}\\ 6.32\substack{+1.31\\-1.14}\\ \end{array}$                                                              | - S -         | D                 |
| 140 | $8^{+7}_{-6}$      | $3^{+4}_{-3}$                                        | $5^{+6}_{-5}$                                                                                           | $2.84^{+2.33}_{-1.96}$                                                                                                                                                                       | $0.63\substack{+0.81\\-0.58}$                                                                                                                                                        | $1.75^{+2.08}_{-1.70}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3.9{\pm}4.2$   | $1.3{\pm}2.0$  | $8.1 \pm 3.3$   | $1.78^{+2.42}_{-2.28}$                                                                                                                                  |               | $\mathbf{C}$      |
| 141 | $7^{+4}_{-3}$      | $4^{+3}_{-2}$                                        | $3^{+3}_{-2}$                                                                                           | $1.37^{+0.80}_{-0.57}$                                                                                                                                                                       | $0.45^{+0.37}_{-0.22}$                                                                                                                                                               | $0.61^{+0.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.5 {\pm} 0.5$ | $1.0{\pm}0.2$  | $2.3\pm0.3$     | $0.32_{-0.17}^{+0.22}$                                                                                                                                  |               | В                 |
| 142 | $13^{+5}_{-4}$     | $1_{-1}^{-2}$                                        | $12^{+5}_{-4}$                                                                                          | $3.20^{+1.32}_{-1.05}$                                                                                                                                                                       | $0.16^{+0.41}_{-0.16}$                                                                                                                                                               | $2.98^{+1.26}_{-0.98}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $4.2{\pm}0.6$   | $3.2{\pm}0.8$  | $4.8{\pm}0.5$   | $2.17^{+0.95}_{-0.78}$                                                                                                                                  |               | D                 |
| 143 | $8^{+5}_{-3}$      | $1^{+1}_{-1}$                                        | $\begin{array}{c} & {}^{-2} \\ 12^{+5} \\ -4 \\ 7^{+4} \\ -3 \\ 17^{+6} \\ -5 \end{array}$              | $\begin{array}{c} 3.20 \substack{+1.32 \\ -1.05 \\ 1.62 \substack{+0.94 \\ -0.71 \\ 4.57 \substack{+1.49 \\ -1.26 \end{array}} \end{array}$                                                  | $0.15^{+0.31}_{-0.15}$<br>$0.41^{+0.44}_{-0.28}$                                                                                                                                     | $\begin{array}{c} 2.98 \substack{+1.26 \\ -0.98 \\ -0.98 \\ 1.40 \substack{+0.90 \\ -0.66 \\ 3.93 \substack{+1.42 \\ -1.17 \end{array}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $3.8{\pm}1.8$   | $3.1{\pm}1.0$  | $5.5 {\pm} 2.5$ | $0.98 \substack{+0.73 \\ -0.63 \\ 2.89 \substack{+1.08 \\ -0.95 \ }$                                                                                    |               | D                 |
| 144 | $20^{+7}_{6}$      | $3^{+3}_{-2}$                                        | $17^{+6}_{-5}$                                                                                          | $4.57^{+1.49}_{-1.26}$                                                                                                                                                                       | $0.41^{+0.44}_{-0.28}$                                                                                                                                                               | $3.93^{+1.42}_{-1.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3.9{\pm}0.7$   | $2.3{\pm}0.7$  | $4.9{\pm}1.6$   | $2.89^{+1.08}_{-0.95}$                                                                                                                                  |               | $\mathbf{C}$      |
| 145 | $22^{+6}_{-5}$     | $22^{+6}_{-5}$                                       | 4                                                                                                       | $4.57^{-1.26}_{-1.33}$<br>$4.98^{+1.33}_{-1.08}$                                                                                                                                             | $0.41_{-0.28}$<br>$2.84_{-0.61}^{+0.75}$                                                                                                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.1{\pm}0.1$   | $1.0{\pm}0.1$  | $1.4 {\pm} 0.1$ | $2.89_{-0.95}$<br>$0.87_{-0.21}^{+0.25}$                                                                                                                | H             | А                 |
| 146 | $42^{+8}_{-7}$     | $26^{+7}_{-5}$                                       | $16^{+6}_{-5}$                                                                                          | $4.19^{+0.89}_{-0.72}$                                                                                                                                                                       | $1.98^{+0.39}_{-0.28}$                                                                                                                                                               | $1.76^{+0.68}_{-0.50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.3{\pm}0.2$   | $1.1{\pm}0.1$  | $2.4{\pm}0.4$   | $0.90^{+0.24}_{-0.22}$                                                                                                                                  |               | В                 |
| 147 | $16^{-7}_{-4}$     | $7^{+4}_{-3}$                                        | $8^{+4}_{-3}$                                                                                           | $3.50^{+1.20}_{-0.96}$                                                                                                                                                                       | $\begin{array}{c} 1.98 \substack{+0.39 \\ -0.28} \\ 0.95 \substack{+0.51 \\ -0.37} \\ 0.18 \substack{+0.32 \\ -0.16} \end{array}$                                                    | $1.89^{+0.98}_{-0.73}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2.2{\pm}0.6$   | $1.4{\pm}0.3$  | $3.5{\pm}0.7$   | $1.23_{-0.48}^{+0.55}$                                                                                                                                  |               | В                 |
| 148 | $3^{+3}_{-2}$      | $2^{+3}$                                             | $8^{+4}_{-3}$<br>$2^{+3}_{-2}$                                                                          | $0.69^{+0.72}_{-0.46}$                                                                                                                                                                       | $0.18^{+0.32}_{-0.16}$                                                                                                                                                               | $0.37\substack{+0.63\\-0.35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.2{\pm}0.7$   | $1.7{\pm}0.3$  | $2.9{\pm}0.4$   | $0.24^{+0.26}_{-0.18}$<br>$0.89^{+0.50}_{-0.44}$                                                                                                        |               | А                 |
| 149 | $13_{-6}^{+7}$     | $2^{-1}_{-2}$                                        | $11^{+6}_{-5}$                                                                                          | $\begin{array}{c} 4.19 + 0.89 \\ 4.19 + 0.89 \\ 3.50 + 1.20 \\ 0.69 + 0.72 \\ 0.69 + 0.72 \\ 2.57 + 1.36 \\ 1.13 + 0.80 \\ 1.13 + 0.53 \\ 5.55 + 0.22 \end{array}$                           | $0.18_{-0.16}^{+0.40}$<br>$0.22_{-0.22}^{+0.40}$                                                                                                                                     | $2.24^{+1.29}_{-1.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2.2{\pm}0.4$   | $2.1{\pm}0.2$  | $2.5 {\pm} 1.7$ | $0.89^{+0.50}_{-0.44}$                                                                                                                                  |               | А                 |
| 150 | $5^{+4}_{-2}$      | $4^{+\bar{3}}_{-2}$                                  | $1^{+3}_{-1}$                                                                                           | $1.13^{+0.80}_{-0.53}$                                                                                                                                                                       | $0.48^{+0.40}_{-0.24}$                                                                                                                                                               | $0.29^{+0.60}_{-0.29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.9{\pm}0.7$   | $0.9{\pm}0.2$  | $2.1{\pm}0.9$   | $0.89_{-0.44}$<br>$0.17_{-0.14}^{+0.17}$                                                                                                                |               | В                 |
| 151 | $46^{+9}_{-8}$     | $9^{+\overline{5}}_{-3}$                             | $37^{+8}_{-7}$                                                                                          | $5.22^{+1.02}_{-0.85}$                                                                                                                                                                       | $0.88^{+0.32}_{-0.21}$                                                                                                                                                               | $4.30^{+0.96}_{-0.78}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3.0{\pm}0.2$   | $2.1{\pm}0.3$  | $4.3{\pm}0.4$   | $2.50^{\pm 0.52}$                                                                                                                                       |               | $\mathbf{C}$      |
| 152 | $31^{+7}_{-6}$     | $27^{+6}_{-5}$                                       | $37^{+8}_{-7}$<br>$4^{+3}_{-2}$                                                                         | $5.22_{-0.85}^{+1.02}$ $6.17_{-1.13}^{+1.35}$                                                                                                                                                | $3.07\substack{+0.72 \\ -0.60}$                                                                                                                                                      | $0.83\substack{+0.70\\-0.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.1{\pm}0.1$   | $0.9{\pm}0.1$  | $1.4{\pm}0.3$   | $1 10 \pm 0.26$                                                                                                                                         |               | А                 |
| 153 | $31^{+8}_{-6}$     | $2^{+4}_{-2}$                                        | $28^{+7}_{-6}$                                                                                          | $3.40^{+0.88}_{-0.70}$                                                                                                                                                                       | $\begin{array}{c} 0.22 \substack{+0.40\\-0.22}\\ 0.48 \substack{+0.40\\-0.24}\\ 0.88 \substack{+0.21\\-0.21}\\ 3.07 \substack{+0.72\\-0.60\\0.35 \substack{+0.24\\-0.09}\end{array}$ | $\begin{array}{c} 0.83\\ 1.76\substack{+0.68\\-0.50}\\ 1.89\substack{-0.93\\-0.73}\\ 0.37\substack{+0.63\\-0.35}\\ 2.24\substack{+1.29\\-1.08}\\ 0.29\substack{+0.60\\-0.29\\-0.29\\-0.29\\ 4.30\substack{+0.96\\-0.70\\-0.48\\+0.87\\-0.68\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $3.6{\pm}0.3$   | $3.0{\pm}0.3$  | $4.4{\pm}0.4$   | $1.10^{+0.23}_{-0.23}$<br>$1.96^{+0.53}_{-0.43}$                                                                                                        |               | $\mathbf{E}$      |

Chandra Catalog: Photometry (continued)

| No. | $\begin{array}{c} C_{net} \\ \mathrm{FB} \end{array}$ | $C_{net}$ SB   | $C_{net}$ HB                                                                                           | $\frac{f_{\rm ph} FB(10^{-6})}{\rm cm^{-2} \ s^{-1}}$                                                                                       | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                                                                                           | $\begin{array}{c} f_{\rm ph} {\rm HB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                                            | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                                             | Phot.<br>Flag | Quantile<br>Group |
|-----|-------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 154 | $7^{+4}_{-3}$                                         | 2              | $7^{+4}_{-3}$                                                                                          | $1.36\substack{+0.80\\-0.57}$                                                                                                               | 0.29                                                                                                                                                                                                                                                  | $1.43_{-0.58}^{+0.81}$                                                                                                                                                                                 | $5.1 \pm 1.2$   | $4.3 {\pm} 0.9$ | $6.8 {\pm} 1.8$ | $1.11^{+0.70}_{-0.53}$                                                                                                              | - S -         | D                 |
| 155 | $10^{+4}_{-3}$                                        | $10^{+4}_{-3}$ | $^{-3}_{4}$                                                                                            | $2.15^{+0.93}_{-0.70}$                                                                                                                      | $1.21\substack{+0.52\\-0.39}$                                                                                                                                                                                                                         | 0.80                                                                                                                                                                                                   | $1.1 {\pm} 0.2$ | $0.9{\pm}0.1$   | $1.5 {\pm} 0.3$ | $1.11^{+0.70}_{-0.53}\ 0.39^{+0.18}_{-0.14}$                                                                                        | H             | А                 |
| 156 | $7^{+5}$                                              | 3              | $8^{+5}_{-3}$                                                                                          | $1.56^{+0.79}_{-0.76}$<br>$1.16^{+0.77}_{-0.52}$                                                                                            | 0.37                                                                                                                                                                                                                                                  | $1.68^{+0.98}_{-0.75}$<br>$0.41^{+0.61}_{-0.34}$                                                                                                                                                       | $5.7 {\pm} 2.0$ | $3.4{\pm}1.4$   | $8.2 {\pm} 2.0$ | 1 1 0 2                                                                                                                             | - S -         | $\mathbf{C}$      |
| 157 | $6^{+4}$                                              | $4^{+3}_{-2}$  | $\substack{8^{+5}_{-3}\\2^{+3}_{-2}}$                                                                  | $1.16_{-0.52}^{+0.77}$                                                                                                                      | $\begin{array}{c} 0.43\substack{+0.37\\-0.22}\\ 0.99\substack{+0.34\\-0.23}\\-0.83\end{array}$                                                                                                                                                        | $0.41^{+0.61}_{-0.34}$                                                                                                                                                                                 | $1.1{\pm}0.6$   | $0.9{\pm}0.2$   | $2.1{\pm}0.8$   |                                                                                                                                     |               | В                 |
| 158 | $56^{+10}_{-8}$                                       | $12^{+5}_{-4}$ | $44^{+9}_{-7}$                                                                                         | $5.76^{+1.04}$                                                                                                                              | $0.99^{+0.34}_{-0.23}$                                                                                                                                                                                                                                | $\begin{array}{c} 0.41_{-0.34} \\ 4.19_{-0.74}^{+0.92} \end{array}$                                                                                                                                    | $3.1{\pm}0.4$   | $2.3{\pm}0.2$   | $4.6{\pm}0.5$   | $2.87^{+0.64}_{-0.57}$                                                                                                              |               | $\mathbf{C}$      |
| 159 | $35^{+8}_{-7}$                                        | $29^{+7}_{-6}$ | $6^{+4}_{-3}$                                                                                          | $\begin{array}{c} 7.77^{+1.66}_{-1.43} \\ 7.55^{+1.27}_{-1.08} \\ 2.65^{+1.15}_{-0.91} \end{array}$                                         | $3.64^{+0.83}_{-0.70}$<br>$1.92^{+0.47}_{-0.35}$                                                                                                                                                                                                      | $4.19_{-0.74}$<br>$1.39_{-0.75}^{+1.00}$                                                                                                                                                               | $1.1{\pm}0.1$   | $0.9{\pm}0.1$   | $1.5{\pm}0.5$   | $1.39^{+0.34}_{-0.30}$                                                                                                              |               | А                 |
| 160 | $57_{-8}^{+10}$                                       | $19^{+6}_{-5}$ | $38^{+8}_{-7}$                                                                                         | $7.55^{+1.27}_{-1.08}$                                                                                                                      | $1.92_{-0.35}^{+0.47}$                                                                                                                                                                                                                                |                                                                                                                                                                                                        | $2.7{\pm}0.4$   | $1.8{\pm}0.2$   | $4.0{\pm}0.4$   | ${}^{1.39\substack{+0.34\\-0.30}}_{3.24\substack{+0.70\\-0.63}}$                                                                    |               | $\mathbf{C}$      |
| 161 | $12^{+5}$                                             | $2^{+3}_{-2}$  | $10^{-1}_{-4}$                                                                                         | $2.65^{+1.15}_{-0.91}$                                                                                                                      | $\begin{array}{c} 1.92\substack{+0.47\\-0.35}\\ 0.22\substack{+0.37\\-0.21}\end{array}$                                                                                                                                                               |                                                                                                                                                                                                        | $2.5{\pm}0.6$   | $2.2{\pm}0.3$   | $3.8{\pm}1.4$   |                                                                                                                                     |               | E                 |
| 162 | $8^{+2}_{-3}$                                         | $5^{-2}_{-2}$  | $3^{+3}_{-2} \\ 5^{+4}_{-2}$                                                                           | $2.03_{-0.91}^{-0.91}$<br>$1.73_{-0.67}^{+0.92}$                                                                                            | $\begin{array}{c} 0.22 \substack{+0.21 \\ -0.28 \\ 0.61 \substack{+0.44 \\ -0.28 \\ 0.21 \substack{+0.33 \\ -0.16 \\ -0.46 \end{array}}$                                                                                                              | $0.70 \pm 0.73$                                                                                                                                                                                        | $1.8 {\pm} 1.4$ | $1.4{\pm}0.5$   | $5.2 \pm 1.4$   | $0 = 1 \pm 0.46$                                                                                                                    |               | В                 |
| 163 | $7^{-3}_{-3}$                                         | $2^{+3}_{-1}$  | $5^{+4}_{-2}$                                                                                          | $1.41^{+0.85}$                                                                                                                              | $0.21^{+0.33}_{-0.16}$                                                                                                                                                                                                                                | $1.06^{+0.79}$                                                                                                                                                                                         | $2.9{\pm}0.9$   | $1.5{\pm}0.7$   | $4.2{\pm}1.1$   | $0.65^{+0.44}_{-0.34}$                                                                                                              |               | $\mathbf{C}$      |
| 164 | $26^{+7}_{-6}$                                        | $5^{+3}_{-2}$  | $24^{+7}_{c}$                                                                                          | $3.10^{+0.88}_{-0.69}$                                                                                                                      | $0.98^{+0.46}_{-0.28}$                                                                                                                                                                                                                                |                                                                                                                                                                                                        | $4.2 {\pm} 0.3$ | $3.3 {\pm} 0.4$ | $5.1{\pm}0.8$   | $2.07^{+0.61}_{-0.49}$<br>$0.56^{+0.34}_{-0.30}$                                                                                    |               | D                 |
| 165 | $10^{+5}_{-4}$                                        | $7^{+4}_{-3}$  | ${\begin{array}{c}{}^{-6}_{-5}\\3^{+3}_{-2}\\2^{+3}_{-1}\\9^{+5}_{-4}\\7^{+4}_{-3}\end{array}}$        | $2.05^{+0.98}_{-0.75}$<br>$3.54^{+1.32}_{-1.01}$                                                                                            | $\begin{array}{c} 0.98 \substack{+0.46\\-0.28}\\ 0.86 \substack{+0.47\\-0.34}\\ 1.77 \substack{+0.72\\-0.54}\\ 1.71 \substack{+0.38\\-0.27\\-0.21 \substack{+0.36\\-0.17}\\-0.21 \substack{+0.47\\-0.47}\end{array}$                                  | $2.89^{+0.67}_{-0.67}$<br>$0.56^{+0.72}_{-0.46}$<br>$0.50^{+0.76}_{-0.37}$                                                                                                                             | $1.7{\pm}0.6$   | $0.9{\pm}0.2$   | $2.3 \pm 1.8$   | $0.56\substack{+0.34\\-0.30}$                                                                                                       |               | В                 |
| 166 | $13^{+5}_{-4}$                                        | $11^{+4}_{-3}$ | $2^{+3}_{-1}$                                                                                          | $3.54^{+1.32}_{-1.01}$                                                                                                                      | $1.77^{+0.72}_{-0.54}$                                                                                                                                                                                                                                | $0.50^{+0.76}_{-0.37}$                                                                                                                                                                                 | $1.4{\pm}0.2$   | $1.0{\pm}0.2$   | $1.6{\pm}2.0$   | $0.77^{+0.31}_{-0.25}$<br>$0.73^{+0.22}_{-0.18}$                                                                                    |               | А                 |
| 167 | $31_{-6}^{-4}$                                        | $21^{+6}_{-5}$ | $9^{+5}_{-4}$                                                                                          | $\begin{array}{c} 3.23 \substack{+0.82 \\ -0.65 \\ 2.03 \substack{-0.75 \\ -0.75 \\ 1.66 \substack{+0.84 \\ -0.62 \end{array}} \end{array}$ | $1.71^{+0.38}_{-0.27}$                                                                                                                                                                                                                                | $\begin{array}{c} 0.50 \substack{+0.37 \\ -0.42 \\ 1.04 \substack{+0.61 \\ -0.42 \\ 1.70 \substack{+0.96 \\ -0.69 \end{array}} \end{array}$                                                            | $1.4{\pm}0.2$   | $1.0{\pm}0.1$   | $2.0{\pm}0.5$   | $0.73^{+0.22}_{-0.18}$                                                                                                              |               | В                 |
| 168 | $9^{+4}_{-3}$                                         | $2^{+3}_{-1}$  | $7^{+4}_{-3}$                                                                                          | $2.03^{+1.02}_{-0.75}$                                                                                                                      | $0.21^{+0.36}_{-0.17}$                                                                                                                                                                                                                                | $1.70^{+0.96}_{-0.69}$                                                                                                                                                                                 | $3.4{\pm}1.0$   | $2.3 \pm 0.8$   | $5.3{\pm}0.9$   | $1.10^{+0.64}_{-0.52}$                                                                                                              |               | $\mathbf{C}$      |
| 169 | $8^{+3}_{-3}$                                         | $9^{+4}_{-3}$  | 3                                                                                                      | $1.66^{+0.84}_{-0.62}$                                                                                                                      | $0.97^{+0.47}_{-0.34}$                                                                                                                                                                                                                                | 0.65                                                                                                                                                                                                   | $0.9{\pm}0.2$   | $0.9{\pm}0.0$   | $1.3 {\pm} 0.3$ | $0.24_{-0.10}^{+0.13}$                                                                                                              | H             | А                 |
| 170 | $17^{+6}_{-5}$                                        | $5^{+4}_{-3}$  | $11^{+5}_{-4}$                                                                                         | $\begin{array}{c} 1.66\substack{+0.84\\-0.62}\\ 3.98\substack{+1.50\\-1.24}\end{array}$                                                     | $0.97^{+0.47}_{-0.34}\\0.73^{+0.54}_{-0.39}$                                                                                                                                                                                                          | $2.75^{+1.32}_{-1.06}$                                                                                                                                                                                 | $2.6{\pm}0.5$   | $1.5\pm0.5$     | $3.3 {\pm} 0.7$ | $1.63^{+0.68}_{-0.59}$                                                                                                              |               | $\mathbf{C}$      |
| 171 | $9^{+5}_{-4}$                                         | $1^{+3}_{-1}$  | $8^{+5}_{-4}$                                                                                          | $1.97^{+1.11}_{-0.87}$<br>$5.72^{+1.46}_{-1.26}$                                                                                            | $0.10^{+0.34}_{-0.10}$                                                                                                                                                                                                                                | $1.82^{+1.07}_{-0.82}$                                                                                                                                                                                 | $5.9 {\pm} 1.8$ | $4.3 \pm 1.9$   | $8.0 {\pm} 1.6$ | $1.84^{+1.19}_{-1.00}$                                                                                                              |               | D                 |
| 172 | $29^{+7}_{-6}$                                        | $2^{+3}_{-2}$  | $27^{+7}_{-6}$                                                                                         | $5.72^{+1.46}_{-1.26}$<br>$1.01^{+0.71}_{-0.47}$                                                                                            | $\begin{array}{c} 0.10 \begin{array}{c} -0.39 \\ 0.10 \begin{array}{c} +0.34 \\ -0.10 \end{array} \\ 0.18 \begin{array}{c} +0.36 \\ 0.15 \begin{array}{c} -0.18 \\ -0.12 \end{array} \\ 0.70 \begin{array}{c} +0.29 \\ -0.12 \end{array} \end{array}$ | $\begin{array}{c} 2.13 \pm 1.06 \\ 1.82 \pm 1.07 \\ -0.82 \\ 5.52 \pm 1.43 \\ 5.52 \pm 1.22 \\ 0.76 \pm 0.66 \\ 0.76 \pm 0.60 \\ 1.34 \pm 0.60 \\ -0.39 \\ 0.40 \pm 0.91 \\ 0.40 \pm 0.40 \end{array}$ | $3.5{\pm}0.5$   | $2.8{\pm}0.3$   | $4.8 {\pm} 0.5$ | $ \begin{array}{c} 1.84\substack{+1.19\\-1.00}\\ 3.19\substack{+0.92\\-0.82} \end{array} $                                          |               | D                 |
| 173 | $5^{+4}_{-2}$                                         | $1^{+3}_{-1}$  | $4^{+3}_{-2}$                                                                                          | $1.01^{+0.71}_{-0.47}$                                                                                                                      | $0.15^{+0.29}_{-0.12}$                                                                                                                                                                                                                                | $0.76^{+0.66}_{-0.41}$                                                                                                                                                                                 | $3.6{\pm}1.3$   | $1.5\pm0.8$     | $4.6{\pm}0.9$   | $3.19_{-0.82}_{-0.82}$<br>$0.58_{-0.35}_{-0.35}$<br>$0.88_{-0.28}^{+0.37}$                                                          |               | $\mathbf{C}$      |
| 174 | $25^{+7}_{-6}$                                        | $5^{+4}_{-3}$  | $20^{+7}_{-5}$                                                                                         |                                                                                                                                             | $0.70^{+0.24}_{-0.12}$                                                                                                                                                                                                                                | $1.34^{+0.60}_{-0.39}$                                                                                                                                                                                 | $3.2 {\pm} 0.6$ | $2.6{\pm}0.4$   | $3.8{\pm}0.3$   | $0.88^{+0.37}_{-0.28}$                                                                                                              |               | D                 |
| 175 | $14^{+6}_{-5}$                                        | $13^{+5}_{-4}$ | $5^{+4}_{-2}$                                                                                          | $1.69_{-0.44}$<br>$1.36_{-0.45}^{+0.64}$                                                                                                    | $\begin{array}{c} 0.70\substack{+0.24\\-0.12}\\ 1.09\substack{+0.33\\-0.22}\end{array}$                                                                                                                                                               |                                                                                                                                                                                                        | $1.0{\pm}0.1$   | $0.8{\pm}0.1$   | $1.2 {\pm} 0.1$ | $0.22_{-0.08}^{+0.11}$                                                                                                              |               | А                 |
| 176 | $32^{+8}_{-7}$                                        | $14_{-4}^{-4}$ | $18^{+7}_{-5}$                                                                                         | $3.00^{+0.79}_{-0.62}$                                                                                                                      | $\begin{array}{c} 1.09 \substack{+0.32 \\ -0.22 \\ 1.37 \substack{+0.33 \\ -0.23 \\ 4.41 \substack{+0.89 \\ -0.75 \end{array}}$                                                                                                                       | $0.40^{+0.91}_{-0.40}$<br>$1.64^{+0.65}_{-0.46}$                                                                                                                                                       | $2.5 {\pm} 0.4$ | $1.8{\pm}0.1$   | $3.8{\pm}0.6$   | $1.18^{+0.36}_{-0.31}$                                                                                                              |               | $\mathbf{C}$      |
| 177 | $71^{+10}_{-9}$                                       | $35^{+7}_{-6}$ | $36^{+7}_{-6}$                                                                                         | $15.78^{+2.13}_{-1.90}$                                                                                                                     | $4.41^{+0.89}_{-0.75}$                                                                                                                                                                                                                                | $8.25^{+1.64}_{-1.40}$                                                                                                                                                                                 | $2.2{\pm}0.3$   | $1.6{\pm}0.1$   | $3.3 {\pm} 0.4$ | $\begin{array}{c} 1.18 \substack{+0.031 \\ -0.031} \\ 5.56 \substack{+1.02 \\ -0.96} \\ 1.08 \substack{+0.79 \\ -0.69} \end{array}$ |               | В                 |
| 178 | $8^{+5}_{-3}$                                         | $2^{+3}_{-2}$  | $6^{+4}_{-3}$                                                                                          | $1.69^{+0.93}_{-0.71}$                                                                                                                      | $\begin{array}{c}4.41\substack{+0.89\\-0.75\\0.22\substack{+0.35\\-0.19\end{array}}$                                                                                                                                                                  | $1.34^{+0.86}_{-0.62}$                                                                                                                                                                                 | $4.0{\pm}1.9$   | $1.9{\pm}1.3$   | $6.3 \pm 2.1$   | $1.08\substack{+0.79\\-0.69}$                                                                                                       |               | $\mathbf{C}$      |
| 179 | $11^{+7}_{-6}$                                        | $5^{+4}_{-3}$  | $6^{+4}_{-3}$<br>$5^{+6}_{-5}$<br>$6^{+4}_{-3}$                                                        | $2.98^{+2.00}_{-1.69}$                                                                                                                      | $0.85^{+0.66}_{-0.47}$                                                                                                                                                                                                                                | $\begin{array}{c} 1.64\substack{+0.65\\-0.46}\\ 8.25\substack{+1.64\\-1.40}\\ 1.34\substack{+0.86\\-0.62}\\ 1.51\substack{+1.82\\-1.50\\-0.65}\\ 1.26\substack{+0.89\\-0.65\\-0.54\\-0.54\end{array}$  | $1.6{\pm}2.0$   | $1.3 {\pm} 0.4$ | $4.6 {\pm} 3.4$ | $0.75^{+1.08}_{-1.04}$                                                                                                              |               | В                 |
| 180 | $11^{+5}_{-4}$                                        | $5^{-3}_{-2}$  | $6^{+4}_{-3}$                                                                                          | $2.35^{+1.05}_{-0.82}$                                                                                                                      | $0.64_{-0.29}^{+0.47}$                                                                                                                                                                                                                                | $1.26^{+0.89}_{-0.65}$                                                                                                                                                                                 | $2.4{\pm}0.9$   | $1.1 \pm 0.4$   | $3.4{\pm}1.8$   | $0.91^{+0.53}_{-0.46}$                                                                                                              |               | $\mathbf{C}$      |
| 181 | $9^{+5}_{-4}$                                         | $6^{+2}_{-3}$  | $2^{+4}_{-2}$                                                                                          | $1.93^{+1.08}_{-0.83}$<br>$1.44^{+0.82}_{-0.59}$                                                                                            | $0.80^{+0.48}_{-0.32}$                                                                                                                                                                                                                                | $0.54^{+0.86}_{-0.54}$                                                                                                                                                                                 | $1.5\pm0.8$     | $1.1 {\pm} 0.2$ | $3.2{\pm}2.1$   | $0.48 \substack{+0.36 \\ -0.32 \\ 0.19 \substack{+0.12 \\ -0.99 \ }$                                                                |               | В                 |
| 182 | $7^{+4}_{-3}$                                         | $8^{+4}_{-3}$  | 2                                                                                                      | $\begin{array}{c} 1.44\substack{+0.82\\-0.59}\\5.14\substack{+0.93\\-0.78}\\1.02\end{array}$                                                | $\begin{array}{c} 0.80 \substack{+0.40 \\ -0.32 \\ 0.93 \substack{+0.47 \\ -0.34 \\ 0.82 \substack{+0.28 \\ -0.17 \end{array}} \end{array}$                                                                                                           | 0.48                                                                                                                                                                                                   | $0.8{\pm}0.2$   | $0.8 {\pm} 0.1$ | $1.3 \pm 0.2$   | $\begin{array}{c} 0.19\substack{+0.12\\-0.09}\\ 3.02\substack{+0.60\\-0.51}\end{array}$                                             | H             | А                 |
| 183 | $50^{+9}_{-8}$                                        | $7^{+5}_{-3}$  | $43^{+9}_{-7}$                                                                                         | $5.14^{+0.93}_{-0.78}$                                                                                                                      | $\begin{array}{c} 0.82\substack{+0.28\\-0.17}\\ 1.02\substack{+0.52\\-0.37}\end{array}$                                                                                                                                                               | $\begin{array}{c} 4.45\substack{+0.88\\-0.72}\\ 0.75\substack{+0.73\\-0.44}\end{array}$                                                                                                                | $3.7 {\pm} 0.3$ | $2.6{\pm}0.3$   | $4.5 {\pm} 0.2$ | $3.02^{+0.60}_{-0.51}$<br>$0.62^{+0.27}_{-0.21}$                                                                                    |               | D                 |
| 184 | $11^{+5}_{-3}$                                        | $8^{+4}_{-2}$  | $3^{+3}_{-2}$                                                                                          | $5.14_{-0.78}^{+0.08}$<br>$2.50_{-0.78}^{+1.03}$<br>$3.40_{-1.04}^{+1.28}$                                                                  | $1.02^{+0.52}_{-0.37}$                                                                                                                                                                                                                                | $0.75^{+0.73}_{-0.44}$                                                                                                                                                                                 | $1.6 \pm 0.2$   | $1.4{\pm}0.2$   | $2.0 \pm 0.4$   | $0.62^{+0.27}_{-0.21}$                                                                                                              |               | А                 |
| 185 | $15^{+6}_{-5}$                                        | $6^{-3}_{-3}$  | $9^{+5}_{-4}$                                                                                          | $3.40^{+1.28}_{-1.04}$                                                                                                                      | $0.80^{+0.51}_{-0.36}$                                                                                                                                                                                                                                | $2.03^{+1.09}_{-0.84} \\ 0.71^{+0.92}_{-0.61}$                                                                                                                                                         | $2.4 {\pm} 0.8$ | $1.8 {\pm} 0.2$ | $4.9 {\pm} 2.5$ | $1.30^{+0.65}_{-0.59}$                                                                                                              |               | $\mathbf{C}$      |
| 186 | $11^{+5}_{-4}$                                        | $8^{+4}_{-3}$  | $\begin{array}{c} 2\\ 43^{+9}_{-7}\\ 3^{+3}_{-2}\\ 9^{+5}_{-4}\\ 3^{+4}_{-2}\\ 6^{+4}_{-3}\end{array}$ | $2.73^{+1.23}_{-0.26}$                                                                                                                      | $1.16^{+0.36}_{-0.42}$                                                                                                                                                                                                                                | $0.71^{+0.92}_{-0.61}$                                                                                                                                                                                 | $1.1 {\pm} 0.5$ | $0.9{\pm}0.1$   | $2.0{\pm}3.0$   | $0.50^{+0.31}_{-0.27}$                                                                                                              |               | В                 |
| 187 | $7^{+5}_{-4}$                                         | $1^{+3}_{-1}$  | $6^{+4}_{-3}$                                                                                          | $\begin{array}{c} 2.52 \substack{+1.71 \\ -1.30 \\ 2.29 \substack{+0.80 \\ -0.61 \\ -0.61 \end{array}}$                                     |                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.71 \substack{+0.61 \\ -0.61} \\ 2.12 \substack{+1.64 \\ -1.22} \end{array}$                                                                                                        | $7.2 \pm 2.4$   | $6.3 {\pm} 2.9$ | $9.3 \pm 1.1$   | $2.92_{-1.78}^{+2.20}$                                                                                                              |               | D                 |
| 188 | $20^{+7}_{-5}$                                        | $20^{+6}_{-5}$ | 6                                                                                                      | $2.29^{+0.80}_{-0.61}\\3.20^{+1.23}_{-0.98}$                                                                                                | $1.81^{+0.43}_{-0.32}$                                                                                                                                                                                                                                | 0.75                                                                                                                                                                                                   | $1.0{\pm}0.1$   | $0.8{\pm}0.1$   | $1.2{\pm}0.1$   | $2.92^{+2.20}_{-1.78}\\0.35^{+0.13}_{-0.10}$                                                                                        | H             | А                 |
| 189 | $14^{+5}_{-4}$                                        | $9^{+4}_{-3}$  | $5^{+4}_{-3}$                                                                                          | $3.20^{+1.23}_{-0.98}$<br>$2.26^{+1.14}_{-0.87}$                                                                                            | $1.17^{+0.56}_{-0.41}$                                                                                                                                                                                                                                | ${}^{1.16\substack{+0.94\\-0.67}}_{1.28\substack{+0.98\\-0.70}}$                                                                                                                                       | $1.3 {\pm} 0.5$ | $0.9{\pm}0.2$   | $2.5\pm0.8$     | $0.65^{+0.35}_{-0.31}$                                                                                                              |               | В                 |
| 190 | $9^{+5}_{-4}$                                         | $4^{+3}_{-2}$  | $5^{+4}_{-3} \\ 5^{+4}_{-3} \\ 7^{+4}_{-3}$                                                            | $2.26^{+1.14}_{-0.87}$                                                                                                                      | $0.57^{+0.46}_{-0.29}$                                                                                                                                                                                                                                | $1.28^{+0.98}_{-0.70}$                                                                                                                                                                                 | $3.0{\pm}1.7$   | $1.6{\pm}0.6$   | $6.2 \pm 1.5$   | $1.09^{+0.81}_{-0.73}$                                                                                                              |               | $\mathbf{C}$      |
| 191 | $7^{+4}_{-3}$                                         | 3              | $7^{+4}_{-3}$                                                                                          | $1.53_{-0.59}^{+0.83}$                                                                                                                      | 0.31                                                                                                                                                                                                                                                  | $1.60_{-0.61}^{+0.85}$                                                                                                                                                                                 | $4.4{\pm}1.6$   | $2.7 {\pm} 0.7$ | $6.7 \pm 1.9$   | $1.08_{-0.58}^{+0.71}$                                                                                                              | - S -         | $\mathbf{C}$      |

Chandra Catalog: Photometry (continued)

| No. | $C_{net}$ FB          | $C_{net}$ SB        | $\begin{array}{c} C_{net} \\ \mathrm{HB} \end{array}$                                                     | $\frac{f_{\rm ph} FB(10^{-6})}{\rm cm^{-2} \ s^{-1}}$                                                                 | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                         | $\begin{array}{c} f_{\rm ph} {\rm HB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                | $E_{50}$ (keV)  | $E_{25}$ (keV) | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                | Phot.<br>Flag | Quantile<br>Group |
|-----|-----------------------|---------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-----------------|------------------------------------------------------------------------|---------------|-------------------|
| 192 | $1^{+3}_{-1}$         | 2                   | $1^{+3}_{-1}$                                                                                             | $0.22^{+1.05}_{-0.22}$                                                                                                | 0.43                                                                                                                                                | $0.48^{+1.07}_{-0.48}$                                                                                                                                                     | $8.9 \pm 8.4$   | $5.4{\pm}4.9$  | $9.9 {\pm} 9.4$ | $0.31^{+1.51}_{-0.42}$                                                 | - S -         | D                 |
| 193 | $5^{+4}_{-3}$         | $6^{+4}_{-2}$       | 3                                                                                                         | 10.00                                                                                                                 | $0.75_{-0.32}^{+0.48}$                                                                                                                              | 0.75                                                                                                                                                                       | $1.2 {\pm} 0.3$ | $1.1{\pm}0.3$  | $1.4{\pm}0.2$   | 10.10                                                                  | H             | А                 |
| 194 | $11^{+5}_{-3}$        | 3                   | $12^{+5}_{-3}$                                                                                            |                                                                                                                       | 0.29                                                                                                                                                | $2.28^{+0.90}_{-0.68}$                                                                                                                                                     | $3.6 {\pm} 0.5$ | $3.0{\pm}0.3$  | $4.5 \pm 1.5$   | 10 52                                                                  | - S -         | E                 |
| 195 | $24^{+7}_{-6}$        | $18^{+6}_{-4}$      | ${ \begin{array}{c} 12^{+5}_{-3} \\ 7^{+5}_{-3} \\ 1^{+2}_{-1} \end{array} } \\$                          | $2.65^{+0.78}$                                                                                                        | $1.60^{+0.37}_{-0.27}$<br>$1.67^{+0.61}_{-0.46}$                                                                                                    | $\begin{array}{c} 0.13\\ 2.28 \pm 0.90\\ -0.68\\ 0.71 \pm 0.57\\ 0.15 \pm 0.52\\ 0.15 \pm 0.52\\ 1.54 \pm 0.79\\ -0.56\\ 2.44 \pm 0.71\\ 0.79 \pm 0.89\\ -0.59\end{array}$ | $1.0 {\pm} 0.2$ | $0.9{\pm}0.1$  | $1.3 {\pm} 0.5$ | 0.11+0.16                                                              |               | В                 |
| 196 | $14_{-4}^{+5}$        | $13_{-4}^{+5}$      | $1^{+2}_{-1}$                                                                                             | $3.01^{+1.07}$                                                                                                        | $1.67^{+0.61}_{-0.46}$                                                                                                                              | $0.15_{-0.15}^{+0.52}$                                                                                                                                                     | $1.2 {\pm} 0.1$ | $0.9{\pm}0.1$  | $1.3 {\pm} 0.3$ | $0.56^{+0.21}_{-0.17}$                                                 |               | А                 |
| 197 | $11_{-3}^{+4}$        | $3^{+3}_{-2}$       | $8^{+4}_{-3}$                                                                                             | $2.07^{+0.87}_{-0.65}$                                                                                                | $0.33_{-0.19}^{+0.33}$                                                                                                                              | $1.54^{+0.79}_{-0.56}$                                                                                                                                                     | $3.1 {\pm} 0.5$ | $2.4{\pm}0.6$  | $4.2 {\pm} 0.5$ | $1.02^{+0.45}_{-0.26}$                                                 |               | E                 |
| 198 | $12^{+5}_{-4}$        | 3                   | $12^{+5}_{-4}$                                                                                            | $2.07\substack{+0.87\\-0.65}\\2.38\substack{+0.91\\-0.70}$                                                            | 0.30                                                                                                                                                | $2.44^{+0.93}_{-0.71}$                                                                                                                                                     | $5.4 {\pm} 0.6$ | $4.5{\pm}0.7$  | $6.6 {\pm} 1.2$ | $2.05\substack{+0.36\\-0.64}$                                          | - S -         | D                 |
| 199 | $10^{+5}_{-4}$        | $12^{+6}_{-4}$      | $7^{+4}_{-2}_{-2}_{6^{+4}_{-3}}$                                                                          | 1118                                                                                                                  | $1.33^{+0.40}_{-0.29}\ 0.35^{+0.40}_{-0.24}$                                                                                                        | $0.79^{+0.89}_{-0.59}$                                                                                                                                                     | $1.7 {\pm} 0.5$ | $1.0{\pm}0.3$  | $3.1{\pm}2.3$   | $0.67^{+0.38}$                                                         |               | В                 |
| 200 | $9^{+5}_{-4}$         | $3^{+3}$            | $6^{+\tilde{4}}_{-3}$                                                                                     | 1111                                                                                                                  | $0.35^{+0.40}_{-0.24}$                                                                                                                              | $1.40^{+1.01}_{-0.76}$                                                                                                                                                     | $3.1{\pm}1.2$   | $1.8{\pm}0.6$  | $5.0{\pm}0.8$   | $0.97^{+0.66}_{-0.56}$                                                 |               | $\mathbf{C}$      |
| 201 | $18^{+7}_{-5}$        | $6^{+2}_{-3}$       | $12_{-4}^{+6}$                                                                                            |                                                                                                                       | $0.65 \pm 0.27$                                                                                                                                     | $1.31_{-0.48}^{+0.65}$                                                                                                                                                     | $2.9{\pm}0.9$   | $1.9{\pm}0.4$  | $4.6{\pm}1.0$   | $0.94^{+0.44}_{-0.28}$                                                 |               | $\mathbf{C}$      |
| 202 | $6^{+4}_{-3}$         | $6^{+4}_{-2}$       | 3                                                                                                         | $1.17^{+0.78}$                                                                                                        |                                                                                                                                                     | 0.69                                                                                                                                                                       | $0.9{\pm}1.3$   | $0.8{\pm}0.1$  | $1.3 {\pm} 4.1$ |                                                                        | H             | А                 |
| 203 | $16^{+5}_{-4}$        | $20^{+7}_{-5}$      | $\begin{array}{c} 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 7^{+4}_{-3} \end{array}$                                  |                                                                                                                       |                                                                                                                                                     | $\begin{array}{c} 0.72 \substack{+0.72 \\ -0.43} \\ 0.49 \substack{+0.56 \\ -0.31} \\ 1.29 \substack{+0.73 \\ -0.50} \end{array}$                                          | $1.1{\pm}0.1$   | $1.1{\pm}0.1$  | $1.7{\pm}1.0$   | $0.60^{+0.20}$                                                         |               | А                 |
| 204 | $5^{+4}_{-2}$         | $3^{+3}_{-2}$       | $3^{+\bar{3}}_{-2}$                                                                                       |                                                                                                                       |                                                                                                                                                     | $0.49^{+0.56}_{-0.31}$                                                                                                                                                     | $1.9{\pm}0.6$   | $1.5{\pm}0.3$  | $2.6{\pm}0.7$   |                                                                        |               | А                 |
| 205 | $8^{-2}_{-3}$         | $1^{+2}_{-1}$       | $7^{+\bar{4}}_{-3}$                                                                                       | $-1.4 \pm 0.75$                                                                                                       | $0.10^{+0.26}_{-0.00}$                                                                                                                              | $1.29^{+0.73}_{-0.50}$                                                                                                                                                     | $4.0{\pm}0.8$   | $3.1{\pm}0.7$  | $5.0{\pm}0.5$   | $0.93^{+0.52}_{-0.39}$                                                 |               | D                 |
| 206 | $10^{+6}_{-5}$        | $10^{+5}_{-4}$      | 7                                                                                                         | $1.44_{-0.54}$<br>$2.25_{-1.16}^{+1.39}$                                                                              | $1.25^{+0.60}$                                                                                                                                      | 1.70                                                                                                                                                                       | $1.5{\pm}0.3$   | $1.1{\pm}0.4$  | $1.7 {\pm} 0.2$ | $0.54_{-0.29}^{+0.35}$                                                 | H             | А                 |
| 207 | 5                     | $2^{+3}_{-2}$       | 3                                                                                                         | 1.14                                                                                                                  |                                                                                                                                                     | 0.76                                                                                                                                                                       | $5.2 {\pm} 4.8$ | $2.9{\pm}7.1$  | $7.6 {\pm} 7.1$ | 0.96                                                                   | F - H         | $\mathbf{C}$      |
| 208 | $34^{+9}_{-8}$        | $4^{+\bar{2}}_{-1}$ | $36^{+9}_{-7}$                                                                                            | $3.85\substack{+0.96\\-0.79}$                                                                                         | $0.94^{+0.27}$                                                                                                                                      | $4.04\substack{+0.95\\-0.79}$                                                                                                                                              | $5.0{\pm}0.3$   | $4.7{\pm}0.2$  | $5.5 {\pm} 0.2$ | $3.08^{+0.78}_{-0.66}$                                                 |               | $\mathbf{E}$      |
| 209 | $6^{+4}_{-3}$         | $6^{+4}_{-3}$       | 4                                                                                                         | $1.45_{-0.72}^{+0.97}$                                                                                                |                                                                                                                                                     | 1.02                                                                                                                                                                       | $1.1{\pm}2.2$   | $0.8{\pm}0.4$  | $1.5 {\pm} 4.9$ | $0.25^{+0.55}_{-0.54} \\ 0.27^{+0.31}_{-0.28}$                         | H             | В                 |
| 210 | $6^{+3}_{-4}$         | $4^{+4}_{-2}$       | $1^{+4}_{-1} \\ 3^{+3}_{-2}$                                                                              | $\begin{array}{c} 1.45\substack{+0.97\\-0.72}\\ 1.33\substack{+1.08\\-0.83}\\ 2.22\substack{+0.91\\-0.69}\end{array}$ | $\begin{array}{c} 0.80\substack{+0.43\\-0.33}\\ 0.57\substack{+0.47\\-0.31}\\ 0.90\substack{+0.46\\-0.33}\\ 0.66\substack{+0.43\\-0.28}\end{array}$ | $\begin{array}{c} 0.34\substack{+0.89\\-0.34}\\ 0.68\substack{+0.65\\-0.39}\end{array}$                                                                                    | $1.3 {\pm} 1.0$ | $1.1{\pm}0.3$  | $2.6{\pm}1.4$   | $0.27^{+0.31}_{-0.28}$                                                 |               | В                 |
| 211 | $11^{+5}_{-3}$        | $8^{+\bar{4}}_{-3}$ | $3^{+3}_{-2}$                                                                                             | $2.22^{+0.91}_{-0.69}$                                                                                                | $0.90\substack{+0.46\\-0.33}$                                                                                                                       | $0.68^{+0.65}_{-0.39}$                                                                                                                                                     | $1.8{\pm}0.2$   | $1.5{\pm}0.3$  | $2.3{\pm}0.3$   | $0.64^{+0.28}_{-0.22}$                                                 |               | А                 |
| 212 | $11^{+5}_{-4}$        | $6^{+3}_{-2}$       | $5^{+4}_{-3}$                                                                                             | $0.00\pm0.98$                                                                                                         | $0.66\substack{+0.43\\-0.28}$                                                                                                                       | $1.15^{+0.80}_{-0.55}$                                                                                                                                                     | $2.0{\pm}1.2$   | $1.3{\pm}0.4$  | $4.6{\pm}2.9$   | $0.73^{+0.54}_{-0.50}$                                                 |               | В                 |
| 213 | $6^{+4}_{-2}$         | 3                   | $5^{+\tilde{4}}_{-3} \\ 6^{+4}_{-2}$                                                                      | $2.28_{-0.75}_{-0.46}$<br>$1.06_{-0.46}^{+0.69}$                                                                      | 0.29                                                                                                                                                | $1.15_{-0.55}^{+0.80}\\1.10_{-0.47}^{+0.70}$                                                                                                                               | $4.7 {\pm} 1.0$ | $3.4{\pm}0.6$  | $6.0{\pm}0.8$   | $0.80^{+0.55}$                                                         | - S -         | D                 |
| 214 | $2^{+\bar{4}}_{-2}$   | 2                   | $4^{+4}_{-3}$                                                                                             |                                                                                                                       | 0.59                                                                                                                                                |                                                                                                                                                                            | $9.6{\pm}1.9$   | $7.6{\pm}7.1$  | $9.6{\pm}9.1$   | $1.25^{+2.97}_{-1.28}$                                                 | - S -         | D                 |
| 215 | $11^{+5}_{-3}$        | 3                   | $12^{+5}_{-3}$                                                                                            |                                                                                                                       | 0.29                                                                                                                                                | $2.26^{+0.89}_{-0.68}$                                                                                                                                                     | $4.3{\pm}0.7$   | $3.1{\pm}0.5$  | $5.4{\pm}0.8$   | $1.51^{+0.66}_{-0.53}$                                                 | - S -         | D                 |
| 216 | $7^{+4}_{-3}$         | $5^{+3}_{-2}$       | $2^{+3}_{-2}$                                                                                             | $1.42^{+0.79}_{-0.57}$                                                                                                | $0.55^{+0.39}_{-0.25}\ 0.79^{+0.50}_{-0.36}$                                                                                                        | $0.47^{+0.60}_{-0.33}$                                                                                                                                                     | $1.1{\pm}0.6$   | $0.9{\pm}0.2$  | $2.5{\pm}0.8$   | $0.25^{+0.19}_{-0.17}$                                                 |               | В                 |
| 217 | $8^{+\tilde{5}}_{-4}$ | $6^{+2}_{-3}$       | $\begin{array}{c} ^{-2} 1^{+1} \\ 1^{+1} \\ 2^{+3} \\ -1 \\ 6^{+4} \\ 4^{+3} \\ 4^{+3} \\ -2 \end{array}$ | $171 \pm 10$                                                                                                          | $0.79^{+0.50}_{-0.36}$                                                                                                                              | $1.64^{+1.96}_{-1.43}\\2.26^{+0.89}_{-0.68}\\0.47^{+0.60}_{-0.33}\\0.34^{+0.83}_{-0.34}\\0.38^{+0.59}_{-0.29}$                                                             | $1.8{\pm}1.5$   | $1.1{\pm}0.3$  | $2.5 {\pm} 4.3$ | $0.51^{+0.52}_{-0.48}$                                                 |               | В                 |
| 218 | $5^{+3}_{-2}$         | $3^{+3}_{-2}$       | $2^{+3}_{-1}$                                                                                             | $1.74_{-0.85}$<br>$1.02_{-0.47}^{+0.74}$                                                                              | $\begin{array}{c} 0.79^{+0.36}_{-0.36} \\ 0.38^{+0.38}_{-0.21} \end{array}$                                                                         | $0.38^{+0.59}_{-0.29}$                                                                                                                                                     | $1.9{\pm}0.7$   | $1.4{\pm}0.6$  | $3.0{\pm}0.4$   | $0.31_{-0.18}^{+0.25}$                                                 |               | В                 |
| 219 | $6^{+2}_{-2}$         | 3                   | $6^{+4}_{-2}$                                                                                             | $1.02_{-0.47}$<br>$1.06_{-0.45}^{+0.68}$                                                                              | 0.29                                                                                                                                                | $1.10_{-0.46}^{+0.70}$                                                                                                                                                     | $3.3{\pm}1.8$   | $2.9{\pm}0.6$  | $5.6{\pm}1.9$   | $0.56\substack{+0.18\\-0.39}$                                          | - S -         | D                 |
| 220 | $8^{-2}_{-3}$         | $4^{+3}_{-2}$       | $4^{+3}_{-2}$                                                                                             | $285^{\pm 1.44}$                                                                                                      | $0.84^{+0.68}_{-0.41}$                                                                                                                              | $1.44^{+1.18}_{-0.71}$<br>$1.31^{+1.31}_{-1.01}$                                                                                                                           | $1.8{\pm}0.6$   | $1.3{\pm}0.3$  | $2.8{\pm}1.1$   | $0.81^{+0.49}_{-0.40}$                                                 |               | В                 |
| 221 | $9^{+6}_{-4}$         | $4^{+2}_{-2}$       | $5^{+5}_{-4}$                                                                                             | $2.42^{+1.47}$                                                                                                        | $0.84_{-0.41}^{+0.54}$<br>$0.64_{-0.36}^{+0.54}$<br>$0.71_{-0.10}^{+0.26}$                                                                          | $1.31^{+1.31}_{-1.01}$                                                                                                                                                     | $2.8{\pm}2.5$   | $1.4{\pm}0.7$  | $6.6{\pm}2.5$   | $1.07^{+1.16}_{-1.10}$                                                 |               | $\mathbf{C}$      |
| 222 | $27^{+8}_{-6}$        | $3^{+\bar{4}}_{-2}$ | $24^{+7}_{-6}$                                                                                            | $3.12^{+0.89}_{-0.72}$                                                                                                | $0.71^{+0.26}_{-0.10}$                                                                                                                              | $2.81_{-0.68}^{+1.86}$ $0.98_{-0.45}^{+0.71}$                                                                                                                              | $4.2 {\pm} 0.5$ | $3.5{\pm}0.6$  | $5.2{\pm}0.9$   | $2.11_{-0.54}^{+0.65}$                                                 |               | D                 |
| 223 | $6^{+4}_{-2}$         | $1^{+2}_{-1}$       | $5^{+3}_{-2}$                                                                                             | $5.12_{-0.72}$<br>$1.15_{-0.48}^{+0.73}$                                                                              | $0.11^{+0.10}_{-0.10}$                                                                                                                              | $0.98\substack{+0.71\\-0.45}$                                                                                                                                              | $4.2 {\pm} 0.7$ | $3.3{\pm}1.0$  | $4.5{\pm}0.6$   | $0.77_{-0.35}^{+0.51}$                                                 |               | E                 |
| 224 | $4^{+3}_{-2}$         | $4^{+3}_{-2}$       | 3                                                                                                         |                                                                                                                       | $0.75^{+0.60}_{-0.36}$                                                                                                                              | 0.84                                                                                                                                                                       | $0.8{\pm}0.2$   | $0.7{\pm}0.1$  | $1.1{\pm}0.1$   | $0.17\substack{+0.15\\-0.09}$                                          | H             | Α                 |
| 225 | $9^{+2}_{-3}$         | $3^{+\bar{3}}_{-2}$ | $6^{+4}_{-2}\ 3^{+3}_{-2}$                                                                                | $1.22_{-0.62}^{+1.04}$ $1.75_{-0.61}^{+0.84}$                                                                         | $0.35^{+0.36}_{-0.19}$                                                                                                                              | ${}^{1.18^{+0.75}_{-0.49}}_{0.57^{+0.61}_{-0.34}}$                                                                                                                         | $2.1{\pm}0.7$   | $1.8{\pm}0.2$  | $3.9{\pm}0.9$   | $0.60^{+0.35}_{-0.29}$                                                 |               | В                 |
| 226 | $40^{+7}_{-6}$        | $37^{+7}_{-6}$      | $3^{+3}_{-2}$                                                                                             | $8.09^{\pm1.01}$                                                                                                      |                                                                                                                                                     | $0.57^{+0.61}_{-0.34}$                                                                                                                                                     | $1.0{\pm}0.1$   | $0.9{\pm}0.1$  | $1.4{\pm}0.1$   | $\begin{array}{c} 0.60 \\ -0.29 \\ 1.31 \\ -0.22 \\ -0.22 \end{array}$ |               | Α                 |
| 227 | $21^{+7}_{-6}$        | $12_{-4}^{+5}$      | $9^{+6}_{-4}$                                                                                             | $2.27^{+0.81}_{-0.63}$                                                                                                | $1.09^{\pm0.35}$                                                                                                                                    | $0.97^{+0.67}_{-0.46}$                                                                                                                                                     | $1.3 {\pm} 1.0$ | $1.0{\pm}0.2$  | $5.1 {\pm} 2.0$ | $0.46_{-0.40}^{+0.41}$                                                 |               | В                 |
| 228 | $2^{+4}_{-2}$         | $5^{+4}_{-2}$       | 2                                                                                                         | $0.37_{-0.37}^{+0.72}$                                                                                                | $0.58^{+0.42}_{-0.27}$                                                                                                                              | 0.47                                                                                                                                                                       | $1.1{\pm}0.0$   | $1.1{\pm}8.9$  | $1.1 \pm 8.9$   | $0.06\substack{+0.12\\-0.06}$                                          | H             | А                 |
| 229 | $58_{-8}^{+9}$        | $49^{+8}_{-7}$      | $9^{+5}_{-4}$                                                                                             | $13.50^{+2.09}_{-1.84}$                                                                                               | $6.49_{-0.94}^{+1.08}$                                                                                                                              | $2.16^{+1.12}_{-0.86}$                                                                                                                                                     | $1.2{\pm}0.1$   | $1.0{\pm}0.0$  | $1.6{\pm}0.2$   | $2.64_{-0.40}^{+0.45}$                                                 |               | А                 |

Chandra Catalog: Photometry (continued)

| $\begin{array}{cccc} 230 & 6^{+4}_{-2} \\ 231 & 10^{+5}_{-4} \\ 232 & 7^{+4}_{-3} \\ 233 & 8^{+7}_{-6} \\ 234 & 10^{+4}_{-3} \\ 235 & 5^{+4}_{-3} \end{array}$ | $\begin{array}{c}2^{+3}_{-1}\\4^{+2}_{-2}\\6^{+2}_{-4}\\4^{+3}_{-3}\\3^{+2}_{-3}\\5^{+2}_{-3}\\1^{+3}_{-3}\\1^{+3}_{-3}\\5^{+3}_{-3}\end{array}$ | $\substack{4 = 3 \\ -2 \\ 6 = 4 \\ 1 + 2 \\ 3 = 3 \\ 7 = 3 \\ 1 + 3 \\ 7 = 3 \\ 1 + 3 \\ 1 + 3 \\ 1 = 1 \\ 1 + 4 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 = 1 \\ 1 =$ | $\begin{array}{c} 1.52 \substack{+0.97 \\ -0.64 }\\ 3.63 \substack{+1.95 \\ -1.55 }\\ 1.49 \substack{+0.86 \\ -0.58 }\\ 1.79 \substack{+1.54 \\ -1.30 \\ 2.04 \substack{-0.66 \\ -0.66 \\ 1.18 \substack{+0.83 \\ -0.57 }\end{array}$ | $\begin{array}{c} 0.30 \substack{+0.42 \\ -0.20} \\ 0.82 \substack{+0.71 \\ -0.45} \\ 0.77 \substack{+0.47 \\ -0.31} \\ 0.57 \substack{+0.57 \\ -0.42} \\ 0.33 \substack{+0.19 \\ -0.27} \end{array}$ | $\begin{array}{c} 1.02\substack{+0.88\\-0.53}\\ 2.22\substack{+1.76\\-1.34}\\ 0.17+0.54\\-0.17\\-0.17\\0.81\substack{+1.35\\-0.81\\-0.81\\-0.81\\-0.81\\-0.81\\-0.81\\-0.81\\-0.81\\-0.81\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-0.17\\-$ | $2.8 \pm 0.7$<br>$2.2 \pm 2.2$ | $1.8 \pm 0.4$<br>$1.8 \pm 0.4$ | $2.9 \pm 1.1$<br>$7.6 \pm 3.3$ | $0.68^{+0.46}_{-0.33}\ 1.29^{+1.47}_{-1.41}$                                                                                        |       | Е            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                           | $\begin{array}{c} 4^{+3}_{-2} \\ 6^{+2}_{-2} \\ 4^{+3}_{-3} \\ 3^{+2}_{-2} \\ 5^{+2}_{-2} \\ 1^{+3}_{-1} \end{array}$                            | $6^{+5}_{-4}$<br>$1^{+2}_{-1}$<br>$3^{+3}_{-3}$<br>$7^{+4}_{-3}$<br>$1^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} 3.63 \substack{+1.96\\-1.55}\\ 1.49 \substack{+0.86\\-0.58}\\ 1.79 \substack{+1.54\\-1.30\\2.04 \substack{+0.88\\-0.66}\end{array}$                                                                                 | $\begin{array}{r} 0.82\substack{+0.71\\-0.45}\\ 0.77\substack{+0.47\\-0.31}\\ 0.57\substack{+0.57\\-0.42}\end{array}$                                                                                 | $2.22^{+0.36}_{-1.34}\ 0.17^{+0.54}_{-0.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | $1.8 {\pm} 0.4$                | $76 \pm 33$                    | -0.33                                                                                                                               |       |              |
| $\begin{array}{cccc} 232 & 7^{+4}_{-3} \\ 233 & 8^{+7}_{-6} \\ 234 & 10^{+4}_{-3} \\ 235 & 5^{+4}_{-3} \end{array}$                                            | $6^{+4}_{-2} \\ 4^{+4}_{-3} \\ 3^{+3}_{-2} \\ 5^{+3}_{-2} \\ 5^{+3}_{-2} \\ 1^{+3}_{-1}$                                                         | $\begin{array}{c} 1^{+2}_{-1} \\ 3^{+6}_{-3} \\ 7^{+4}_{-3} \\ 1^{+3}_{-1} \\ 1^{+2}_{-1} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.49^{+1.86}_{-0.58}$ $1.79^{+1.54}_{-1.30}$ $2.04^{+0.88}_{-0.66}$                                                                                                                                                                  | $\begin{array}{c} 0.77\substack{+0.47\\-0.31}\\ 0.57\substack{+0.57\\-0.42}\end{array}$                                                                                                               | $0.17_{-0.17}^{+0.54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                | $1.0\pm 0.0$                   | $1.29_{-1.41}$                                                                                                                      |       | В            |
| $\begin{array}{ccc} 234 & 10^{+4}_{-3} \\ 235 & 5^{+4}_{-3} \end{array}$                                                                                       | $\begin{array}{c} 4^{+\bar{4}}_{-3} \\ 3^{+\bar{3}}_{-2} \\ 5^{+\bar{3}}_{-2} \\ 1^{+\bar{3}}_{-1} \end{array}$                                  | $3^{+6}_{-3} \\ 7^{+4}_{-3} \\ 1^{+3}_{-1} \\ 1^{+2}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.79^{+1.54}_{-1.30}$<br>$2.04^{+0.88}_{-0.66}$                                                                                                                                                                                      | $0.57_{-0.42}^{+0.57}$                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.2 \pm 0.2$                  | $1.0 {\pm} 0.1$                | $1.5 {\pm} 0.3$                |                                                                                                                                     |       | А            |
| $\begin{array}{ccc} 234 & 10^{+4}_{-3} \\ 235 & 5^{+4}_{-3} \end{array}$                                                                                       | $3^{+3}_{-2} \\ 5^{+3}_{-2} \\ 1^{+3}_{-1}$                                                                                                      | $7^{+4}_{-3}$<br>$1^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.04^{+0.88}_{-0.66}$                                                                                                                                                                                                                |                                                                                                                                                                                                       | $0.81^{+1.35}_{-0.81}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.6 \pm 2.4$                  | $1.5 {\pm} 0.3$                | $3.3 {\pm} 6.4$                | a + a + 0.79                                                                                                                        |       | В            |
| 235 $5^{+4}_{-3}$                                                                                                                                              | $5^{+3}_{-2}$<br>$1^{+3}_{-1}$                                                                                                                   | $1^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                       | $0.33^{+0.34}_{-0.19}$                                                                                                                                                                                | $1.51^{+0.80}_{-0.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2.4{\pm}0.3$                  | $1.9{\pm}0.3$                  | $2.9 {\pm} 0.5$                | $\begin{array}{c} 0.46 \substack{-0.76 \\ -0.79 \substack{+0.36 \\ -0.28 \\ 0.27 \substack{+0.22 \\ -0.17 \end{array}} \end{array}$ |       | Е            |
|                                                                                                                                                                | $1^{+\bar{3}}_{-1}$                                                                                                                              | , <del>†</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.18^{+0.83}_{-0.57}$                                                                                                                                                                                                                | $0.58^{+0.43}_{-0.27}$                                                                                                                                                                                | $0.17^{+0.60}_{-0.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.4{\pm}0.6$                  | $0.9{\pm}0.3$                  | $1.8 {\pm} 0.7$                | $0.27_{-0.17}^{+0.22}$                                                                                                              |       | В            |
| 236 $7^{+5}_{-4}$                                                                                                                                              | -+3                                                                                                                                              | $7^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 1.18 \substack{+0.87\\-0.57}\\ 2.53 \substack{+1.74\\-1.37}\\ 1.28 \substack{+0.80\\-0.54}\\ 2.23 \substack{+0.79\\-0.62\\-0.62\\-1.32} \end{array}$                                                                | $a + a \pm 0.58$                                                                                                                                                                                      | $2.36^{+1.64}_{-1.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $6.9{\pm}4.0$                  | $2.3 {\pm} 2.5$                | $9.8 {\pm} 1.9$                | $2.78^{+2.51}$                                                                                                                      |       | $\mathbf{C}$ |
| 237 $6^{+\frac{3}{2}}$                                                                                                                                         | $^{0-2}$                                                                                                                                         | $1^{+\hat{3}}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.28^{+0.80}_{-0.54}$                                                                                                                                                                                                                | $\begin{array}{c} 0.12 \substack{+0.12 \\ -0.12 \\ 0.58 \substack{+0.41 \\ -0.26 \\ 1.55 \substack{+0.38 \\ -0.27 \end{array}}}$                                                                      | $0.28^{+0.57}_{-0.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.4{\pm}0.4$                  | $1.4{\pm}0.3$                  | $1.8{\pm}0.7$                  | $0.29^{+0.20}_{-0.15}$                                                                                                              |       | А            |
| 238 $20^{+7}_{-6}$                                                                                                                                             | $20^{+6}_{-5}$                                                                                                                                   | $1^{+4}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.23^{+0.79}_{-0.62}$                                                                                                                                                                                                                | $1.55_{-0.27}^{+0.38}$                                                                                                                                                                                | $0.15^{+0.95}_{-0.15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.1{\pm}0.1$                  | $0.9{\pm}0.1$                  | $1.4 {\pm} 0.1$                | $0.40 \pm 0.15$                                                                                                                     |       | А            |
| 239 $68^{+12}_{-10}$                                                                                                                                           | 6                                                                                                                                                | $71^{+11}_{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $5.49_{-0.77}^{+0.93}$                                                                                                                                                                                                                | 0.30                                                                                                                                                                                                  | $5.84_{-0.78}^{+0.94}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4.0{\pm}0.2$                  | $3.4{\pm}0.2$                  | $5.2 {\pm} 0.6$                | $3.56^{+0.64}_{-0.55}$                                                                                                              | - S - | D            |
| 240 $8^{+4}_{-3}$                                                                                                                                              | $3^{+3}_{-2}$                                                                                                                                    | $5^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $3.62^{+1.84}_{-1.32}$                                                                                                                                                                                                                | $0.79^{+0.79}_{-0.44}$                                                                                                                                                                                | $2.29^{+1.61}_{-1.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2.3{\pm}0.5$                  | $1.9{\pm}0.6$                  | $3.1{\pm}1.2$                  | $1.36^{+0.76}_{-0.76}$                                                                                                              |       | E            |
| 241 $2^{+4}_{2}$                                                                                                                                               | $5^{+\bar{4}}_{-2}$                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                       | $\begin{array}{c} 0.79\substack{+0.79\\-0.44}\\ 0.90\substack{+0.70\\-0.46}\\ \end{array}$                                                                                                            | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.0{\pm}0.3$                  | $0.8 {\pm} 9.2$                | $1.1 {\pm} 8.9$                | $0.10^{+0.22}$                                                                                                                      | H     | А            |
| 242 $11^{+6}_{-5}$                                                                                                                                             | $6^{+5}$                                                                                                                                         | $5^{+5}_{-4}\\1^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2.32^{+1.28}_{-1.06}$                                                                                                                                                                                                                | $0.77^{+0.54}_{-0.41}$                                                                                                                                                                                | ${\begin{array}{c}{1.01}^{+1.03}_{-0.80}\\ 0.12{}^{+0.68}_{-0.12}\end{array}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.1{\pm}2.6$                  | $1.0{\pm}0.6$                  | $5.0{\pm}3.1$                  | $0.42^{+0.99}$                                                                                                                      |       | В            |
| 243 $9^{+5}_{-4}$                                                                                                                                              | $8^{+3}_{-3}$                                                                                                                                    | $1^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.81^{+0.99}_{-0.76}$                                                                                                                                                                                                                | $0.97^{+0.49}_{-0.36}$                                                                                                                                                                                | $0.12^{+0.68}_{-0.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.3{\pm}0.6$                  | $1.1{\pm}0.2$                  | $1.5 {\pm} 3.8$                |                                                                                                                                     |       | А            |
| 244 $2^{+5}_{-2}$                                                                                                                                              | $3^{+4}_{-2}$                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.73^{+1.83}_{-0.73}$                                                                                                                                                                                                                | $\begin{array}{c} 0.90 \substack{+0.70\\-0.46}\\ 0.77 \substack{+0.54\\-0.41}\\ 0.97 \substack{+0.49\\-0.36\\0.53 \substack{+0.74\\-0.49\\-0.49\end{array}}\end{array}$                               | 2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.5 {\pm} 0.1$                | $1.5 {\pm} 8.5$                | $1.6 {\pm} 8.4$                | $0.18^{+0.44}_{-0.18}$                                                                                                              | H     | А            |
| 245 $5^{+\overline{4}}_{-2}$                                                                                                                                   | $3^{+\bar{3}}_{-2}$                                                                                                                              | $2^{+3}_{-2} \\ 9^{+4}_{-3} \\ 5^{+4}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.62 \substack{+1.39\\-0.62}\\ 2.32 \substack{+1.28\\-1.06}\\ 1.81 \substack{+0.99\\-0.76}\\ 0.73 \substack{+1.83\\-0.73}\\ 2.30 \substack{+1.71\\-1.13}\end{array}$                                                | $0.76^{+0.81}_{-0.45}$                                                                                                                                                                                | $1.01^{+1.43}_{-0.79}$ $1.74^{+0.82}_{-0.60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.6{\pm}2.6$                  | $1.4{\pm}0.6$                  | $2.4 \pm 3.9$                  | $0.58^{\pm 1.00}$                                                                                                                   |       | А            |
| 246 $10^{+4}_{-3}$                                                                                                                                             | $1^{+\bar{2}}_{-1}$                                                                                                                              | $9^{+\bar{4}}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.87^{+0.84}_{-0.69}$                                                                                                                                                                                                                | $0.09_{-0.09}^{+0.26}$                                                                                                                                                                                | $1.74_{-0.60}^{+0.82}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4.4{\pm}0.6$                  | $3.1{\pm}0.8$                  | $5.0{\pm}0.8$                  | $1.30^{+0.61}$                                                                                                                      |       | D            |
| 247 $5^{+4}_{-2}$                                                                                                                                              | 2                                                                                                                                                | $5^{+4}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.03^{+0.80}_{-0.53}$<br>$4.74^{+0.99}_{-0.82}$                                                                                                                                                                                      | 0.30                                                                                                                                                                                                  | $1.14_{-0.54}^{+0.82}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $6.6{\pm}1.7$                  | $3.2{\pm}1.5$                  | $7.5{\pm}0.8$                  | 10.00                                                                                                                               | - S - | $\mathbf{C}$ |
| 248 $41^{+9}_{-7}$                                                                                                                                             | $33^{+7}_{-6}$                                                                                                                                   | $7^{+6}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $4.74_{-0.82}^{+0.99}$                                                                                                                                                                                                                | $\begin{array}{c} 2.92 \substack{+0.49\\-0.39}\\ 0.88 \substack{+0.26\\-0.14}\\ 0.84 \substack{+0.50\\-0.34}\\ 1.34 \substack{+0.64\\-0.50}\end{array}$                                               | $\begin{array}{c} 1.11 + 0.60\\ 1.14 + 0.82\\ - 0.54\\ 0.90 + 0.61\\ 0.39\\ 3.37 + 0.86\\ 3.37 + 0.69\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.6{\pm}0.1$                  | $1.3{\pm}0.1$                  | $2.0{\pm}0.2$                  | ${}^{1.09\substack{+0.89\\-0.63}}_{1.22\substack{+0.28\\-0.24}}_{1.82\substack{+0.48\\-0.41}}$                                      |       | А            |
| 249 $38^{+9}_{-7}$                                                                                                                                             | $8^{+5}_{-3}$                                                                                                                                    | $30_{-6}^{+8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} 4.74 \substack{+0.33\\-0.82}\\ 4.05 \substack{+0.90\\-0.74}\end{array}$                                                                                                                                             | $0.88^{+0.26}_{-0.14}$                                                                                                                                                                                | $3.37^{+0.86}_{-0.69}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2.8{\pm}0.4$                  | $2.2{\pm}0.2$                  | $3.9{\pm}0.6$                  | $1.82_{-0.41}^{+0.48}$                                                                                                              |       | E            |
| 250 $4^{+4}_{-3}$                                                                                                                                              | $6^{+4}_{-3}$                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.01^{+0.88}_{-0.60}$                                                                                                                                                                                                                | $0.84_{-0.34}^{+0.50}$                                                                                                                                                                                | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.9{\pm}0.1$                  | $0.8{\pm}0.1$                  | $1.0{\pm}0.1$                  | $0.15^{+0.13}_{-0.09}$                                                                                                              | H     | А            |
| $251 		 5^{+7}_{-5}$                                                                                                                                           | $11^{+5}_{-4}$                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.99^{+1.60}_{-0.99}$<br>$2.02^{+1.03}_{-0.80}$                                                                                                                                                                                      | $1.34_{-0.50}^{+0.64}$                                                                                                                                                                                | 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.8{\pm}0.6$                  | $0.6{\pm}0.3$                  | $1.2 {\pm} 0.5$                | $0.13^{+0.23}_{-0.16}$                                                                                                              | H     | В            |
| $252 	10^{+5}$                                                                                                                                                 | 2                                                                                                                                                | $10^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.02^{+1.03}_{-0.80}$                                                                                                                                                                                                                | 0.28                                                                                                                                                                                                  | $2.20^{+1.05}_{-0.81}\\1.11^{+0.77}_{-0.55}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $6.1{\pm}0.8$                  | $4.6{\pm}0.8$                  | $6.4{\pm}0.4$                  |                                                                                                                                     | - S - | D            |
| $253 	 6^{+4}_{-3}$                                                                                                                                            | 4                                                                                                                                                | $6^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.02_{-0.80}$<br>$1.11_{-0.57}^{+0.79}$                                                                                                                                                                                              | 0.39                                                                                                                                                                                                  | $1.11_{-0.55}^{+0.77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4.4{\pm}1.6$                  | $3.6{\pm}0.8$                  | $6.6 {\pm} 1.9$                | $\begin{array}{c} 1.99\substack{+1.04\\-0.82}\\ 0.79\substack{+0.63\\-0.50}\end{array}$                                             | - S - | D            |
| 254 $2^{+3}_{-2}$                                                                                                                                              | $3^{+3}_{-2}$                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.11_{-0.57}$<br>$0.98_{-0.98}^{+1.98}$                                                                                                                                                                                              | $1.07^{+1.04}_{-0.63}$                                                                                                                                                                                | 1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.5{\pm}0.0$                  | $1.5 {\pm} 8.5$                | $1.6 {\pm} 8.4$                | $0.24^{+0.49}$                                                                                                                      | H     | А            |
| $255  41^{+7}_{-6}$                                                                                                                                            | $39^{+7}$                                                                                                                                        | $2^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $8.21^{+1.51}$                                                                                                                                                                                                                        | $4.56^{+0.86}_{-0.73}$                                                                                                                                                                                | $0.34_{-0.27}^{+0.55}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.1{\pm}0.1$                  | $0.9{\pm}0.0$                  | $1.4{\pm}0.1$                  | $1.39^{+0.27}_{-0.24}$                                                                                                              |       | А            |
| $256  11^{+5}_{-4}$                                                                                                                                            | $1^{+3}_{-1}$                                                                                                                                    | $10^{+5}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.45^{+1.04}_{-0.80}$                                                                                                                                                                                                                | $0.17^{+0.32}_{-0.16}$                                                                                                                                                                                | $2.20^{+1.00}_{-0.76}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2.9{\pm}0.6$                  | $2.4{\pm}0.3$                  | $4.0{\pm}2.1$                  | $1.14^{+0.53}_{-0.44}$                                                                                                              |       | E            |
| $257 	 12^{+6}_{-5}$                                                                                                                                           | $16_{-4}^{+5}$                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} -1.30\\ 2.45^{+1.04}_{-0.80}\\ 3.14^{+1.54}_{-1.27}\\ 1.78^{+0.81}_{-0.60}\end{array}$                                                                                                                              | $\begin{array}{c} 0.50\\ 1.07^{+1.04}_{-0.63}\\ 4.56^{+0.86}_{-0.73}\\ 0.17^{+0.32}_{-0.16}\\ 2.22^{+0.75}_{-0.59}\\ 0.64^{+0.39}_{-0.26}\end{array}$                                                 | 1 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.5{\pm}0.2$                  | $1.1{\pm}0.3$                  | $1.5{\pm}0.1$                  | $0.73^{+0.37}_{-0.30}$<br>$0.48^{+0.26}_{-0.21}$                                                                                    | H     | А            |
| 258 $9^{+4}_{-3}$                                                                                                                                              | $6_{-2}^{-4}$                                                                                                                                    | $4^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.78^{+0.81}_{-0.60}$                                                                                                                                                                                                                | $0.64^{+0.39}_{-0.26}$                                                                                                                                                                                | $0.69^{+0.61}_{-0.37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.7{\pm}0.5$                  | $1.3{\pm}0.3$                  | $2.5{\pm}1.0$                  | $0.48^{+0.26}_{-0.21}$                                                                                                              |       | В            |
| $259  12^{+5}_{-4}$                                                                                                                                            | $1^{+3}_{-1}$                                                                                                                                    | $10^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.66^{+1.18}_{-0.04}$                                                                                                                                                                                                                | $0.18^{+0.34}_{-0.17}$                                                                                                                                                                                | $2.39^{+1.15}_{-0.90}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3.3{\pm}0.7$                  | $2.2{\pm}0.3$                  | $4.5 {\pm} 1.8$                | $\begin{array}{c} 0.48_{-0.21} \\ 1.39_{-0.58}^{+0.69} \end{array}$                                                                 |       | $\mathbf{C}$ |
| $260 	20^{+7}_{-5}$                                                                                                                                            | $14_{-4}^{+6}$                                                                                                                                   | $5^{+5}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.30^{+0.80}_{-0.61}$                                                                                                                                                                                                                | $1.44^{+0.38}_{-0.27}$                                                                                                                                                                                | $0.58\substack{+0.59\\-0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.4{\pm}0.2$                  | $1.2{\pm}0.1$                  | $2.1{\pm}0.3$                  | $0.50^{+0.19}_{-0.15}$                                                                                                              |       | А            |
| 261 $8^{+5}_{-4}$                                                                                                                                              | $5^{+4}_{-2}$                                                                                                                                    | $3^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.67^{+1.05}_{-0.81}$<br>$1.48^{+0.72}_{-0.53}$                                                                                                                                                                                      |                                                                                                                                                                                                       | $0.63\substack{+0.86\\-0.59}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2.0{\pm}0.5$                  | $1.6{\pm}0.3$                  | $2.7{\pm}0.6$                  | $0.53^{+0.35}_{-0.28}$                                                                                                              |       | А            |
| $262 	 13^{+6}_{-5}$                                                                                                                                           | $14^{+6}_{4}$                                                                                                                                    | $3^{+\bar{3}}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.48_{-0.53}^{+0.72}$                                                                                                                                                                                                                | 10.27                                                                                                                                                                                                 | $\begin{array}{c} 1.22\\ 0.69 {+}0.61\\ -0.37\\ 2.39 {+}1.15\\ 2.39 {+}0.59\\ 0.58 {+}0.59\\ 0.58 {+}0.23\\ 0.63 {+}0.86\\ 0.59\\ 0.13 {+}0.70\\ 0.13 {+}0.70\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.9{\pm}0.1$                  | $0.8{\pm}0.1$                  | $1.1{\pm}0.1$                  |                                                                                                                                     |       | А            |
| $263 	10^{+5}_{-3}$                                                                                                                                            | $2^{+3}_{-1}$                                                                                                                                    | $5^{+5}_{-3}$ $3^{+4}_{-3}$ $3^{+3}_{-1}$ $8^{+3}_{-3}$ $4^{+2}_{-2}$ $1^{+1}_{-1}$ $2^{+3}_{-1}$ $1^{+4}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1.48\substack{+0.12\\-0.53}\\ 2.09\substack{+0.98\\-0.75}\\ 3.25\substack{+1.64\\-1.25}\\ 1.48\substack{+1.27\\-0.96}\\ 2.71\substack{+1.09\\-0.83}\end{array}$                                                     |                                                                                                                                                                                                       | $\begin{array}{c} 0.13 \substack{+0.16\\-0.13}\\ 1.80 \substack{+0.94\\-0.70}\\ 1.36 \substack{+1.32\\-0.88}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $3.1 {\pm} 1.5$                | $2.2{\pm}0.6$                  | $5.9{\pm}1.9$                  | $0.20^{+0.11}_{-0.08}$<br>$1.03^{+0.69}_{-0.62}$                                                                                    |       | $\mathbf{C}$ |
| 264 $9^{+5}_{-3}$                                                                                                                                              | $5^{+4}_{-2}$                                                                                                                                    | $4^{+4}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $3.25^{+1.64}_{-1.25}$                                                                                                                                                                                                                | $1.09^{+0.74}_{-0.49}$                                                                                                                                                                                | $1.36^{+1.32}_{-0.88}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.5 {\pm} 1.5$                | $1.1{\pm}0.4$                  | $5.0{\pm}1.6$                  | $0.76^{+0.88}$                                                                                                                      |       | В            |
| 265 $5^{+4}_{-3}$                                                                                                                                              | $5^{+\bar{4}}_{-2}$                                                                                                                              | $1^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.48^{+1.27}_{-0.96}$                                                                                                                                                                                                                | $0.74^{+0.58}_{-0.38}$                                                                                                                                                                                | $0.18^{+1.00}_{-0.18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.0{\pm}0.9$                  | $0.8{\pm}0.2$                  | $1.3{\pm}1.2$                  | $0.23_{-0.25}^{+0.29}$                                                                                                              |       | А            |
| $266 	 11^{+5}_{-3}$                                                                                                                                           | $10_{-3}^{+4}$                                                                                                                                   | $2^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.71^{+1.09}_{-0.83}$                                                                                                                                                                                                                | 1 05 + 0 59                                                                                                                                                                                           | $\begin{array}{c} 0.18 \substack{+1.00\\-0.18}\\ 0.18 \substack{+1.00\\-0.18}\\ 0.37 \substack{+0.65\\-0.31}\\ \scriptstyle \pm 0.80\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.2{\pm}0.2$                  | $0.9{\pm}0.1$                  | $1.5{\pm}0.9$                  | $0.51^{+0.23}_{-0.19}$                                                                                                              |       | А            |
| 267 $8^{+5}_{-4}$                                                                                                                                              | $7^{+4}_{-3}$                                                                                                                                    | $1^{+4}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.77^{+1.08}_{-0.85}$                                                                                                                                                                                                                | $1.35_{-0.43}^{+0.03}$<br>$0.91_{-0.37}^{+0.51}$                                                                                                                                                      | $0.17\substack{+0.80\\-0.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.5{\pm}0.3$                  | $1.3{\pm}0.3$                  | $1.8{\pm}0.2$                  | $\begin{array}{c} 0.11 \\ 0.23 \\ -0.29 \\ 0.23 \\ -0.25 \\ 0.51 \\ -0.19 \\ 0.41 \\ -0.21 \end{array}$                             |       | А            |

Chandra Catalog: Photometry (continued)

| No. | $C_{net}$ FB    | $C_{net}$ SB                                      | $C_{net}$ HB                                                                             | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                           | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                             | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                         | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                               | Phot.<br>Flag | Quantile<br>Group |
|-----|-----------------|---------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 268 | $30^{+7}_{-5}$  | $13^{+5}_{-4}$                                    | $17^{+5}_{4}$                                                                            | $5.77^{+1.28}_{-1.07}$                                                                                                                              | $1.45^{+0.53}_{-0.41}$                                                                                                                                  | $3.32^{+1.04}_{-0.82}$                                                                                                                                                            | $2.1 \pm 0.2$   | $1.6 {\pm} 0.2$ | $2.6 {\pm} 0.3$ | $1.93^{+0.46}_{-0.39}$                                                                                                |               | А                 |
| 269 | $54^{+10}_{-8}$ | $48^{+9}_{-7}$                                    | ${}^{17^{+5}_{-4}}_{6^{+5}_{-3}}$                                                        | $6.02^{+1.07}_{-0.88}$                                                                                                                              | $1.45^{+0.53}_{-0.41}$<br>$3.78^{+0.54}_{-0.45}$                                                                                                        | $\begin{array}{c} 3.32\substack{+1.04\\-0.82}\\ 0.73\substack{+0.58\\-0.35} \end{array}$                                                                                          | $1.0 {\pm} 0.1$ | $0.8 {\pm} 0.0$ | $1.3 {\pm} 0.2$ | $0.94^{+0.17}_{-0.14}$                                                                                                |               | А                 |
| 270 | $q+\tilde{5}$   | $9^{+4}$                                          | $^{-3}_{4}$                                                                              | $2.05^{+1.06}_{-0.81}$                                                                                                                              | 0.70                                                                                                                                                    | 0.95                                                                                                                                                                              | $1.5 \pm 0.3$   | $1.1 {\pm} 0.2$ | $1.7 {\pm} 0.2$ | $0.49^{+0.27}$                                                                                                        | H             | А                 |
| 271 | $3^{-4}_{-3}$   | $6^{+4}_{-2}$                                     | 3                                                                                        | $2.05^{+1.06}_{-0.81}$<br>$0.64^{+1.01}_{-0.64}$                                                                                                    | $a = a \pm 0.02$                                                                                                                                        | 0.78                                                                                                                                                                              | $1.1 {\pm} 0.2$ | $1.0{\pm}0.1$   | $1.2 {\pm} 0.1$ | $0.11^{+0.17}_{-0.11}$                                                                                                | H             | А                 |
| 272 | $13_{-4}^{+5}$  | $8^{+4}_{-3}$                                     | $5^{+4}_{-3}$                                                                            | 1 1 1 1                                                                                                                                             | $\begin{array}{c} 0.76 \substack{+0.36 \\ -0.36 \\ 0.98 \substack{+0.50 \\ -0.37 \\ 0.70 \substack{+0.48 \\ -0.32 \end{array}} \end{array}$             | $\begin{array}{c} 1.11 + 0.90 \\ 1.11 + 0.66 \\ 2.04 + 1.06 \\ 0.39 + 0.55 \\ 0.39 + 0.55 \\ 1.29 - 0.23 \\ 1.29 - 0.80 \\ 2.27 + 2.03 \\ 2.27 + 2.03 \\ 2.27 + 2.03 \end{array}$ | $1.7 {\pm} 0.3$ | $1.5 {\pm} 0.1$ | $2.1 {\pm} 0.7$ | $0.75_{-0.28}^{+0.34}$<br>$1.60_{-0.66}^{+0.76}$                                                                      |               | А                 |
| 273 | $14^{+5}_{-4}$  | $5^{+4}_{-2}$                                     | $5^{+4}_{-3} \\ 9^{+4}_{-3} \\ 3^{+2}_{-2} \\ 6^{+4}_{-3} \\ 6^{+6}_{-5}$                | 11.00                                                                                                                                               | $0.70^{+0.48}_{-0.32}$                                                                                                                                  | $2.04^{+1.06}_{-0.80}$                                                                                                                                                            | $3.1 {\pm} 0.9$ | $1.9{\pm}0.5$   | $4.4{\pm}1.1$   | $1.60^{+0.76}_{-0.66}$                                                                                                |               | $\mathbf{C}$      |
| 274 | $23^{+7}_{-5}$  | $20^{+6}_{-5}$                                    | $3^{+5}_{-2}$                                                                            | $0.71 \pm 0.83$                                                                                                                                     | $1.90 \pm 0.42$                                                                                                                                         | $0.39^{+0.55}_{-0.23}$                                                                                                                                                            | $1.2 {\pm} 0.1$ | $1.0{\pm}0.1$   | $1.3 {\pm} 0.1$ | $0.51^{+0.16}$                                                                                                        |               | А                 |
| 275 | $7^{+4}_{-3}$   | $1^{+2}_{-1}$                                     | $6^{+\bar{4}}_{-3}$                                                                      | $1.40^{+0.81}_{-0.50}$                                                                                                                              |                                                                                                                                                         | $1.29^{+0.80}_{-0.57}$                                                                                                                                                            | $4.9{\pm}1.0$   | $4.5 {\pm} 1.4$ | $6.0{\pm}0.8$   | $1.10 \pm 0.68$                                                                                                       |               | $\mathbf{E}$      |
| 276 | $7^{+6}_{-5}$   | $1^{+3}_{-1}$                                     | $6^{+6}_{-5}$                                                                            | $2.58_{-1.82}^{+2.18}$                                                                                                                              | ±0.68                                                                                                                                                   | $2.27^{+2.03}_{-1.66}$                                                                                                                                                            | $4.2 \pm 3.5$   | $2.2{\pm}2.3$   | $7.0 \pm 3.3$   | $1.10_{-0.52}^{+0.52}$<br>$1.75_{-1.91}^{+2.07}$                                                                      |               | $\mathbf{C}$      |
| 277 | 7               | $6^{+4}_{-3}$                                     | 3                                                                                        | 1.61                                                                                                                                                | $0.78^{+0.51}_{-0.37}$                                                                                                                                  | 0.72                                                                                                                                                                              | $5.2 {\pm} 4.8$ | $2.9{\pm}7.1$   | $7.6 {\pm} 7.1$ | 1.35                                                                                                                  | F - H         | С                 |
| 278 | $33^{+7}_{-6}$  | $29^{+7}_{-5}$                                    | $5^{+4}_{-3}$                                                                            |                                                                                                                                                     | $\begin{array}{c} 0.20 \substack{+0.20 \\ -0.20 \\ 0.78 \substack{+0.51 \\ -0.37 \\ 3.46 \substack{+0.78 \\ -0.66 \end{array}} \end{array}$             | $0.97^{+0.85}_{-0.61}\ 0.22^{+0.84}_{-0.22}$                                                                                                                                      | $1.2 {\pm} 0.1$ | $0.9{\pm}0.1$   | $1.6 {\pm} 0.4$ | $1.35^{+0.32}_{-0.28}$<br>$0.06^{+0.32}_{-0.07}$                                                                      |               | А                 |
| 279 | $1^{+4}$        | 3                                                 | $5^{+4}_{-3} \\ 1^{+3}_{-1} \\ 9^{+5}_{-4} \\ 7^{+4}_{-3} \\ 8^{+5}_{-4} \\ 1^{+2}_{-1}$ | $0.17_{-0.17}^{+0.87}$                                                                                                                              | 0.44                                                                                                                                                    | $0.22_{-0.22}^{+0.84}$                                                                                                                                                            | $2.3 \pm 1.3$   | $0.6 {\pm} 9.4$ | $2.5 {\pm} 7.5$ | $0.06_{-0.07}^{+0.32}$                                                                                                | - S -         | $\mathbf{C}$      |
| 280 | $8^{+5}_{-4}$   | 2                                                 | $9^{+5}_{-4}$                                                                            | $1.88^{+1.10}$                                                                                                                                      | 0.32                                                                                                                                                    | $2.15^{+1.18}_{-0.91}$                                                                                                                                                            | $7.0{\pm}2.5$   | $2.5 {\pm} 1.9$ | $7.9 {\pm} 1.2$ | $0.10 \pm 1.49$                                                                                                       | - S -         | $\mathbf{C}$      |
| 281 | $7^{+4}_{-3}$   | 2                                                 | $7^{+4}_{-3}$                                                                            |                                                                                                                                                     | 0.42                                                                                                                                                    | $\begin{array}{c} 0.12 \pm 0.22 \\ 2.15 \pm 0.91 \\ 2.23 \pm 1.21 \\ 2.23 \pm 1.21 \\ 3.30 \pm 2.18 \\ 3.30 \pm 1.72 \\ 0.15 \pm 0.56 \\ 0.15 \pm 0.56 \end{array}$               | $3.7{\pm}0.9$   | $3.2{\pm}0.3$   | $5.3{\pm}0.8$   | $2.10^{-1.24}_{-1.24}$<br>$1.26^{+0.76}_{-0.58}$                                                                      | - S -         | D                 |
| 282 | $12^{+6}_{-5}$  | $4^{+4}_{-3}$                                     | $8^{+5}_{-4}$                                                                            | $5.07^{+2.45}$                                                                                                                                      | $1.03\substack{+0.88\\-0.60}$                                                                                                                           | $3.30^{+2.18}_{-1.72}$                                                                                                                                                            | $3.6{\pm}1.6$   | $1.7{\pm}0.8$   | $5.5 \pm 2.1$   | $2.94^{+1.94}_{-1.76}$                                                                                                |               | $\mathbf{C}$      |
| 283 | $6^{+4}_{-2}$   | $5^{+3}_{-2}$                                     | $1^{+2}_{-1}$                                                                            | $1.30^{+0.85}_{-0.56}$                                                                                                                              | $0.66^{+0.46}_{-0.29}$                                                                                                                                  | $0.15_{-0.15}^{+0.56}$                                                                                                                                                            | $1.5 \pm 0.3$   | $1.3 {\pm} 0.4$ | $1.8{\pm}0.2$   | $0.32^{+0.22}_{-0.15}$                                                                                                |               | А                 |
| 284 | $12_{-4}^{+5}$  | $4^{+\bar{3}}_{-2}$                               | $8^{+5}_{-4}$                                                                            | $2.67^{+1.19}$                                                                                                                                      | $0.51_{-0.27}^{+0.43}$                                                                                                                                  | $1.82^{+1.08}_{-0.83}$                                                                                                                                                            | $2.3{\pm}0.5$   | $1.6{\pm}0.6$   | $3.2{\pm}2.1$   | $1.00^{+0.50}$                                                                                                        |               | $\mathbf{C}$      |
| 285 | $4^{+6}_{-4}$   | 4                                                 | $8^{+5}_{-4}\\5^{+5}_{-4}$                                                               | 1 + 4 + 1 = 51                                                                                                                                      | 0.62                                                                                                                                                    | $1.28^{+1.44}_{-1.15}$                                                                                                                                                            | $4.0{\pm}4.9$   | $2.6{\pm}2.1$   | $7.4{\pm}4.8$   | $0.72^{+1.32}_{-1.15}$                                                                                                | - S -         | $\mathbf{C}$      |
| 286 | $14^{+5}_{-4}$  | $14^{+5}_{-4}$                                    | 2                                                                                        | $\begin{array}{c} 1.14 \substack{+1.14 \\ -1.14} \\ 2.95 \substack{+1.05 \\ -0.81} \\ 2.54 \substack{+0.78 \\ -0.61} \\ -0.61 \\ -0.61 \end{array}$ | $1.74_{-0.47}^{+0.61}$                                                                                                                                  | 0.52                                                                                                                                                                              | $1.3 {\pm} 0.1$ | $1.2 {\pm} 0.1$ | $1.5 {\pm} 0.1$ | $0.60^{+0.22}$                                                                                                        | H             | А                 |
| 287 | $23^{+7}_{-6}$  | 5                                                 | $24^{+7}_{-5}$                                                                           | $2.54_{-0.61}^{+0.78}$                                                                                                                              | 0.30                                                                                                                                                    | $2.66^{+0.78}_{-0.61}\ 0.14^{+0.78}_{-0.14}$                                                                                                                                      | $4.7{\pm}0.3$   | $4.1{\pm}0.2$   | $5.3 {\pm} 0.4$ | $1.92^{+0.60}_{-0.47}$                                                                                                | - S -         | $\mathbf{E}$      |
| 288 | $23^{+7}_{-6}$  | $23^{+6}_{-5}$                                    | $1^{+3}_{-1} \\ 5^{+6}_{-5} \\ 4^{+3}_{-1} \\ 4^{+3}_{-2} \\ 7^{+4}_{-3}$                | $2.52^{+0.76}_{-0.59}$                                                                                                                              | $1.90\substack{+0.40\\-0.30}$                                                                                                                           | $0.14_{-0.14}^{+0.78}$                                                                                                                                                            | $0.9{\pm}0.1$   | $0.8{\pm}0.1$   | $1.2{\pm}0.2$   | $0.38^{+0.12}$                                                                                                        |               | А                 |
| 289 | $10^{+7}_{-6}$  | $5^{+4}_{-3}$                                     | $5^{+\bar{6}}_{-5}$                                                                      | $2.44^{\pm 1.68}$                                                                                                                                   | $0.64^{+0.59}$                                                                                                                                          | $1.33^{\pm 1.50}$                                                                                                                                                                 | $2.9{\pm}1.3$   | $1.5{\pm}0.8$   | $3.3 {\pm} 4.3$ | $1.14^{+0.93}_{-0.83}$                                                                                                |               | $\mathbf{C}$      |
| 290 | $34^{+8}_{-6}$  | $35_{-6}^{+8}$                                    | $4^{+3}_{-1}$                                                                            | $3.69^{+0.88}_{-0.71}$                                                                                                                              | $a = a \pm 0.48$                                                                                                                                        | $0.18^{+0.63}_{-0.18}$                                                                                                                                                            | $0.9{\pm}0.1$   | $0.8{\pm}0.0$   | $1.0{\pm}0.1$   | $0.52^{+0.13}_{-0.11}$                                                                                                |               | А                 |
| 291 | $16_{-4}^{-9}$  | $12^{+5}_{-3}$                                    | $4^{+\bar{3}}_{-2}$                                                                      | $2.26 \pm 1.05$                                                                                                                                     | $\begin{array}{c} 2.80 \substack{+0.40 \\ -0.38 \\ 1.37 \substack{+0.53 \\ -0.40 \\ 0.30 \substack{+0.33 \\ -0.18 \\ -0.18 \end{array}}$                | $\begin{array}{c} 0.18 \substack{+0.03 \\ -0.18 \\ 0.89 \substack{+0.70 \\ -0.44 \\ 1.34 \substack{+0.80 \\ -0.57 \end{array}}$                                                   | $1.8{\pm}0.1$   | $1.4{\pm}0.3$   | $2.0{\pm}0.5$   | $0.94_{-0.25}^{+0.31}$                                                                                                |               | А                 |
| 292 | $9^{+4}$        | $3^{+3}_{-2}$                                     | $7^{+\bar{4}}_{-3}$                                                                      | $1.83^{+0.87}_{-0.66}$                                                                                                                              | $0.30^{+0.33}_{-0.18}$                                                                                                                                  | $1.34_{-0.57}^{+0.80}$                                                                                                                                                            | $2.3{\pm}0.6$   | $1.9{\pm}0.3$   | $3.4{\pm}1.3$   | $\begin{array}{c} 0.94\substack{+0.31\\-0.25}\\ 0.67\substack{+0.36\\-0.30}\end{array}$                               |               | $\mathbf{E}$      |
| 293 | $6^{+3}_{-3}$   | $6^{+\bar{4}}_{-3}$                               | 4                                                                                        | $1.10^{+0.91}$                                                                                                                                      | $0.73_{-0.31}^{+0.46}$                                                                                                                                  | 0.90                                                                                                                                                                              | $1.4{\pm}0.2$   | $1.1{\pm}0.2$   | $1.5{\pm}0.1$   | $0.27^{+0.21}_{-0.15}$                                                                                                | H             | А                 |
| 294 | $9^{+6}_{-5}$   | 4                                                 | $9^{+5}_{-4}$                                                                            | $2.14^{+1.33}$                                                                                                                                      | 0.49                                                                                                                                                    | $2.23^{+1.30}_{-1.04}$                                                                                                                                                            | $4.4{\pm}1.0$   | $3.8{\pm}0.4$   | $5.8{\pm}0.8$   | $1.51^{+0.99}_{-0.83}$                                                                                                | - S -         | D                 |
| 295 | $18^{+6}_{-5}$  | $16^{+5}_{-4}$                                    | $9^{+5}_{-4} \\ 3^{+3}_{-3} \\ 3^{+3}_{-2} \\ 2^{+1}_{-1} \\ 1^{+3}_{-1} \\ 4^{+5}_{-2}$ | $4.40\pm1.37$                                                                                                                                       | $2.04^{+0.67}_{-0.53}$<br>$1.08^{+0.53}_{-0.39}$                                                                                                        | $\begin{array}{c} -1.04\\ 0.61 \substack{+0.89\\-0.61}\\ 0.63 \substack{+0.79\\-0.50}\\ 0.20 \substack{+0.48\\-0.13}\end{array}$                                                  | $1.4{\pm}0.3$   | $1.0{\pm}0.1$   | $1.8{\pm}0.8$   | $0.92^{+0.34}_{-0.20}$                                                                                                |               | А                 |
| 296 | $11^{+5}_{-4}$  | $8^{+4}_{-3}$                                     | $3^{+3}_{-2}$                                                                            | $\begin{array}{r} 4.19^{+1.01}_{-1.12}\\ 2.53^{+1.10}_{-0.85}\\ 1.55^{+0.69}_{-0.50}\end{array}$                                                    | $1.08^{+0.53}_{-0.39}$                                                                                                                                  | $0.63\substack{+0.79\\-0.50}$                                                                                                                                                     | $1.6{\pm}0.3$   | $1.1{\pm}0.3$   | $1.9{\pm}0.3$   | $0.64^{+0.30}_{-0.24}\ 0.30^{+0.19}_{-0.17}$                                                                          |               | А                 |
| 297 | $13_{-4}^{+6}$  | $12^{+5}_{-4}$                                    | $2^{+4}_{-1}$                                                                            | $1.55^{+0.69}_{-0.50}$                                                                                                                              | $1.08^{+0.53}_{-0.39}\\1.29^{+0.35}_{-0.23}$                                                                                                            | $0.20\substack{+0.48\\-0.13}$                                                                                                                                                     | $1.2{\pm}0.5$   | $1.0{\pm}0.1$   | $1.7{\pm}1.4$   | $0.30\substack{+0.19\\-0.17}$                                                                                         |               | А                 |
| 298 | $12^{+5}_{-4}$  | $11^{+4}_{-3}$                                    | $1^{+3}_{-1}$                                                                            | $2.43^{+0.98}_{-0.56}$                                                                                                                              | $1.23^{\pm0.52}$                                                                                                                                        | $\begin{array}{c} 0.20\substack{+0.48\\-0.13}\\ 0.30\substack{+0.61\\-0.30}\end{array}$                                                                                           | $1.2{\pm}0.2$   | $1.0{\pm}0.1$   | $1.4{\pm}0.9$   | $0.48^{+0.21}_{-0.17}$                                                                                                |               | А                 |
| 299 | $18_{-5}^{-4}$  | $15_{-4}^{-3}$                                    | $4^{+5}_{-2}$                                                                            | $1.94^{+0.68}_{-0.52}$                                                                                                                              |                                                                                                                                                         | $\begin{array}{c} 0.30\substack{+0.30\\-0.30}\\ 0.38\substack{+0.49\\-0.21}\end{array}$                                                                                           | $1.4{\pm}0.3$   | $1.1{\pm}0.1$   | $2.4{\pm}0.7$   | $0.43_{-0.15}^{+0.17}$                                                                                                |               | В                 |
| 300 | $3^{+6}$        | 4+4                                               | 7                                                                                        | $1.03^{\pm 1.90}$                                                                                                                                   | $\begin{array}{c} 1.30 \substack{+0.34\\-0.24}\\ 0.75 \substack{+0.77\\-0.56}\\ 0.17 \substack{+0.45\\-0.16}\\ 1.34 \substack{+0.54\\-0.41}\end{array}$ | 2.12                                                                                                                                                                              | $1.9{\pm}0.5$   | $1.4{\pm}0.4$   | $1.9{\pm}0.2$   | $a_{-1} \pm 0.57$                                                                                                     | H             | А                 |
| 301 | $4^{+3}_{-2}$   | $\begin{array}{c} 4 \\ -3 \\ 1 \\ -1 \end{array}$ | $3^{+3}_{-2}$<br>$4^{+4}_{-2}$                                                           |                                                                                                                                                     | $0.17^{+0.45}_{-0.16}$                                                                                                                                  | $0.92\substack{+0.99\\-0.55}\\0.87\substack{+0.75\\-0.50}$                                                                                                                        | $2.4{\pm}2.9$   | $1.6{\pm}1.0$   | $5.9{\pm}3.0$   | $\begin{array}{c} 0.31\substack{+0.03\\-0.32}\\ 0.45\substack{+0.69\\-0.61}\\ 0.58\substack{+0.30\\-0.27}\end{array}$ |               | $\mathbf{C}$      |
| 302 | $16_{-4}^{+5}$  | $11^{+5}_{-3}$                                    | $4^{+4}_{-2}$                                                                            | $3.18^{+1.09}_{-0.07}$                                                                                                                              | $1.34_{-0.41}^{+0.54}$                                                                                                                                  | $0.87\substack{+0.75\\-0.50}$                                                                                                                                                     | $1.1{\pm}0.4$   | $0.9{\pm}0.1$   | $2.0{\pm}1.9$   | $0.58^{+0.30}_{-0.27}$                                                                                                |               | В                 |
| 303 | $2^{+3}_{-1}$   | 3                                                 | $2^{+3}_{-1}$                                                                            | $0.82^{+1.27}$                                                                                                                                      | 0.73                                                                                                                                                    | $0.00 \pm 1.29$                                                                                                                                                                   | $2.7{\pm}0.0$   | $2.6{\pm}7.4$   | $2.7 {\pm} 7.3$ | $0.35^{+0.54}_{-0.26}$                                                                                                | - S -         | $\mathbf{E}$      |
| 304 | $82_{-10}^{-1}$ | $71^{+10}_{-9}$                                   | $19^{+6}_{-4}$                                                                           | $6.07\substack{+0.94\\-0.80}$                                                                                                                       | $3.00^{+0.46}_{-0.37}$                                                                                                                                  | $\begin{array}{c} 0.88_{-0.63}^{+0.63} \\ 1.28_{-0.39}^{+0.73} \end{array}$                                                                                                       | $1.3 {\pm} 0.1$ | $1.0{\pm}0.1$   | $1.5 \pm 1.4$   | $1.22_{-0.20}^{+0.22}$                                                                                                |               | А                 |
| 305 | $10^{+5}_{-4}$  | $11^{+5}_{-3}$                                    | 6                                                                                        | $1.20_{-0.48}^{+0.69}$                                                                                                                              | $1.27_{-0.24}^{+0.37}$                                                                                                                                  | 0.73                                                                                                                                                                              | $1.2{\pm}0.1$   | $1.1{\pm}0.1$   | $1.3{\pm}0.1$   | $0.23_{-0.10}^{+0.14}$                                                                                                | H             | А                 |

Chandra Catalog: Photometry (continued)

| No. | $C_{net}$ FB                   | $C_{net}$ SB                    | $C_{net}$ HB                                                              | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                     | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                       | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                         | Phot.<br>Flag | Quantile<br>Group |
|-----|--------------------------------|---------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 306 | $24^{+8}_{-6}$                 | $14^{+6}_{-4}$                  | $10^{+6}_{-5}$                                                            | $2.73_{-0.70}^{+0.88}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.28^{+0.36}_{-0.25}$                                                                                                                                        | $1.22^{+0.73}$                                                                                                                                                                                  | $1.9{\pm}0.4$   | $1.1{\pm}0.1$   | $2.8{\pm}1.8$   | $0.83^{+0.33}_{-0.29}$                                                                                          |               | В                 |
| 307 | $6^{+4}$                       | $\frac{1}{2}^{-4}$              | $7^{+4}$                                                                  | $1.36^{+0.98}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.28                                                                                                                                                          | $1.22^{+0.73}_{-0.55}\\1.57^{+1.00}_{-0.75}$                                                                                                                                                    | $3.9 \pm 0.4$   | $3.6 \pm 0.3$   | $4.3 \pm 0.3$   | $0.85^{+0.62}$                                                                                                  | - S -         | E                 |
| 308 | $\circ + 5$                    | 2                               | $7^{+4}_{-3}$<br>$8^{+5}_{-3}$                                            | $1.71^{+1.02}_{-0.74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.29                                                                                                                                                          | $1.92^{+1.04}_{-0.79}$                                                                                                                                                                          | $6.9 \pm 2.0$   | $4.6 \pm 1.5$   | $9.3 \pm 1.3$   | $1.88^{+1.25}$                                                                                                  | - S -         | C                 |
| 309 | $8^{+5}$                       | $8^{+4}_{-3}$                   | 5                                                                         | $1.03 \pm 0.74 \\ 1.71 \pm 0.02 \\ 1.02 \pm 0.01 \\ 1.88 \pm 0.91 \\ 1.93 \pm 0.85 \\ 1.93 \pm 0.91 \\ $ | $1.10^{+0.58}$                                                                                                                                                | 1.18                                                                                                                                                                                            | $1.0 \pm 0.1$   | $0.9{\pm}0.2$   | $1.2 \pm 0.4$   | $0.00 \pm 0.19$                                                                                                 | H             | A                 |
| 310 | $8^{+5}$                       | $8_{-3}^{-3}$                   | 4                                                                         | $1.93^{+0.91}_{-0.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ${}^{1.10^{+0.58}_{-0.43}}_{1.11^{+0.57}_{-0.41}}$                                                                                                            | 1.04                                                                                                                                                                                            | $1.1 {\pm} 0.1$ | $1.0{\pm}0.2$   | $1.2 \pm 0.1$   | $\begin{array}{c} 0.30_{-0.15} \\ 0.34_{-0.15}^{+0.20} \end{array}$                                             | H             | А                 |
| 311 | $5^{+4}$                       | $6^{+4}$                        | 4                                                                         | $1.22^{+1.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.89^{+0.54}_{-0.37}$                                                                                                                                        | 0.98                                                                                                                                                                                            | $0.9{\pm}0.3$   | $0.8 {\pm} 0.1$ | $1.1 {\pm} 0.4$ | $0.17^{+0.16}_{-0.12}$                                                                                          | H             | А                 |
| 312 | $8^{+3}_{-3}$                  | $9^{+4}_{-3}$                   | 2                                                                         | $\begin{array}{c} 1.76^{+0.89}_{-0.65}\\ 2.17^{+0.72}_{-0.55}\\ 4.24^{+0.93}_{-0.75}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.89\substack{+0.54\\-0.37}\\1.09\substack{+0.51\\-0.37}$                                                                                                    | 0.51                                                                                                                                                                                            | $1.1 {\pm} 0.1$ | $1.0{\pm}0.1$   | $1.4{\pm}0.2$   | $0.30^{+0.16}_{-0.12}$                                                                                          | H             | А                 |
| 313 | $21^{+7}$                      | $15^{+6}$                       | $7^{+5}_{-3}\\36^{+8}_{-6}$                                               | $2.17^{+0.72}_{-0.55}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1.03 \pm 0.37 \\ 1.28 \pm 0.34 \\ 0.28 \pm 0.40 \\ 0.28 \pm 0.42 \\ 2.63 \pm 0.48 \\ 2.63 \pm 0.37 \end{array}$                             |                                                                                                                                                                                                 | $1.5 {\pm} 0.2$ | $1.1 {\pm} 0.2$ | $1.8 {\pm} 0.4$ | 10.10                                                                                                           |               | А                 |
| 314 | $38^{+8}_{-7}$                 | $2^{+3}_{-2}$                   | $36^{+8}_{-6}$                                                            | $4.24_{-0.75}^{+0.93}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.28^{+0.20}_{-0.22}$                                                                                                                                        | $4.21^{+0.93}_{-0.75}$                                                                                                                                                                          | $4.6{\pm}0.4$   | $3.0{\pm}0.4$   | $5.7 {\pm} 0.5$ | $2.00 \pm 0.75$                                                                                                 |               | D                 |
| 315 | $36^{+8}_{-6}$                 | $32_{-6}^{+7}$                  | $4^{+5}_{-2}$                                                             | $3.92^{+0.91}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.63^{+0.48}_{-0.37}$                                                                                                                                        | $0.42^{+0.54}_{-0.17}$                                                                                                                                                                          | $1.2 {\pm} 0.1$ | $0.9{\pm}0.1$   | $1.5 {\pm} 0.3$ | $0.75^{+0.18}_{-0.15}$                                                                                          |               | А                 |
| 316 | $6^{+4}_{-3}$                  | 2                               | $8^{+\bar{4}}_{-3}$                                                       | $1.40^{+0.98}_{-0.74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.29                                                                                                                                                          | $1.72^{+1.00}_{-0.75}$                                                                                                                                                                          | $4.9{\pm}0.5$   | $4.4{\pm}0.6$   | $5.1{\pm}0.2$   | $1.09^{+0.77}_{-0.59}$                                                                                          | - S -         | $\mathbf{E}$      |
| 317 | $5^{+4}_{-2}$                  | $5^{+3}_{-2}$                   | 4                                                                         | $1.03_{-0.50}^{+0.75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.58\substack{+0.41 \\ -0.26}$                                                                                                                               | 0.75                                                                                                                                                                                            | $0.9{\pm}0.2$   | $0.8{\pm}0.1$   | $1.2{\pm}0.2$   | $0.14_{-0.08}^{+0.11}$                                                                                          | H             | А                 |
| 318 | 9                              | 5                               | 7                                                                         | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.74                                                                                                                                                          | 1.88                                                                                                                                                                                            | $5.2 {\pm} 4.8$ | $2.9{\pm}7.1$   | $7.6{\pm}7.1$   | 1 90                                                                                                            | F S H         | $\mathbf{C}$      |
| 319 | $293^{+17}_{-17}$              | $171^{+15}_{-13}$               | $122^{+13}_{-11}$                                                         | $31.00^{+1.83}_{-1.83}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $11.58\substack{+0.89\\-0.80}$                                                                                                                                | $13.12^{+1.37}_{-1.21}$                                                                                                                                                                         | $1.8{\pm}0.1$   | $1.3 {\pm} 0.0$ | $2.8{\pm}0.2$   | $8.79^{+0.61}_{-0.61}$                                                                                          |               | В                 |
| 320 | $11^{+5}_{-3}$                 | $7^{+4}_{-3}$                   | $122^{+13}_{-11} \\ 4^{+3}_{-2} \\ 11^{+5}_{-3}$                          | $2.30^{+1.00}_{-0.76}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.84^{+0.47}_{-0.32}$                                                                                                                                        | $0.85^{+0.76}_{-0.48}$                                                                                                                                                                          | $1.7 \pm 1.1$   | $1.2{\pm}0.3$   | $4.3 \pm 2.3$   | $0.64^{+0.49}_{-0.46}$<br>$1.38^{+0.52}_{-0.46}$                                                                |               | В                 |
| 321 | $18_{-4}^{-3}$                 | $7^{+4}_{-3}$                   | $11^{+5}_{-3}$                                                            | $3.83^{+1.15}_{-0.92}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.83^{+0.46}_{-0.31}$                                                                                                                                        | $2.44^{+0.98}_{-0.74}$                                                                                                                                                                          | $2.2{\pm}0.5$   | $1.6{\pm}0.3$   | $4.0{\pm}1.2$   | $1.38^{+0.52}_{-0.46}$                                                                                          |               | $\mathbf{C}$      |
| 322 | $18^{+5}_{-4}$                 | $16^{+5}_{-4}$                  | $3^{+3}_{-2} \\ 4^{+3}_{-2}$                                              | $\begin{array}{c} 31.00^{+1.83}_{-1.83}\\ 2.30^{+1.00}_{-0.76}\\ 3.83^{+1.15}_{-0.76}\\ 3.51^{+1.04}_{-0.83}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} -0.80\\ 0.84\substack{+0.47\\-0.32}\\ 0.83\substack{+0.46\\-0.31}\\ 1.76\substack{+0.56\\-0.44}\end{array}$                                 | $\begin{array}{c} 0.85\substack{+0.76\\-0.48}\\ 2.44\substack{+0.98\\-0.74}\\ 0.51\substack{+0.57\\-0.32}\\-0.32\end{array}$                                                                    | $1.4{\pm}0.1$   | $1.1{\pm}0.1$   | $1.8{\pm}0.7$   | $1.38_{-0.46}^{+0.24}$<br>$0.77_{-0.20}^{+0.24}$                                                                |               | А                 |
| 323 | $11^{+5}_{-3}$                 | $7^{+4}_{-3}$                   | $4^{+3}_{-2}$                                                             | $2.12^{+0.91}_{-0.60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.77^{+0.44}_{-0.30}$                                                                                                                                        | $0.80^{+0.69}_{-0.44}$                                                                                                                                                                          | $1.6{\pm}0.5$   | $1.2{\pm}0.1$   | $3.0{\pm}0.6$   | $0.54_{-0.24}^{+0.28}$                                                                                          |               | В                 |
| 324 | $5^{+4}_{-3}$                  | $6^{+4}_{-2}$                   | 3                                                                         | $1.20^{+0.84}_{-0.57}$<br>$15.26^{+1.94}_{-1.73}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.73_{-0.30}^{+0.46}$                                                                                                                                        | 0.69                                                                                                                                                                                            | $0.9{\pm}0.3$   | $0.8{\pm}0.1$   | $1.3 {\pm} 0.4$ | $0.18_{-0.10}^{+0.14}$                                                                                          | H             | А                 |
| 325 | $78_{-9}^{+10}$                | $5^{+\bar{3}}_{-2}$             | $73^{+10}_{-9}$                                                           | $15.26^{+1.94}_{-1.73}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.163 \pm 0.30\\ 0.54 \pm 0.38\\ 0.55 \pm 0.29\\ 0.55 \pm 0.25\\ 0.67 \pm 0.44\\ 0.67 \pm 0.29\end{array}$                                  | $14.63^{+1.92}_{-1.71}$                                                                                                                                                                         | $4.3 {\pm} 0.2$ | $3.3 \pm 0.2$   | $5.1 {\pm} 0.4$ | $10.56^{+1.44}_{-1.31}$                                                                                         |               | D                 |
| 326 | $5^{+4}_{-2}$                  | $5^{+\bar{3}}_{-2}$             | 4                                                                         | $15.26^{+1.94}_{-1.73}$ $1.00^{+0.71}_{-0.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.55^{+0.39}_{-0.25}$                                                                                                                                        | 0.73                                                                                                                                                                                            | $1.3 {\pm} 2.0$ | $1.0{\pm}0.4$   | $1.6 \pm 3.1$   | $\begin{array}{c} 10.56\substack{+1.44\\-1.31}\\ 0.21\substack{+0.36\\-0.34}\end{array}$                        | H             | А                 |
| 327 | $15_{-4}^{+5}$                 | $5^{+\tilde{4}}_{-2}$           | $9^{+4}_{-3}$                                                             | $3.16^{+1.13}_{-0.89}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.67^{+0.44}_{-0.29}$                                                                                                                                        | $2.03\substack{+0.98\\-0.74}$                                                                                                                                                                   | $2.4{\pm}0.5$   | $1.7 {\pm} 0.3$ | $3.1 {\pm} 0.4$ | $0.21^{+0.36}_{-0.34}$<br>$1.21^{+0.50}_{-0.42}$                                                                |               | $\mathbf{E}$      |
| 328 | $9^{+5}_{-3}$                  | 4                               | $9^{+4}_{-3}$                                                             | $2.14_{-0.81}^{+1.07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.50                                                                                                                                                          | $2.09^{+1.06}_{-0.80}$                                                                                                                                                                          | $5.4 \pm 1.3$   | $4.3 \pm 1.1$   | $7.4 \pm 1.5$   | $1.86^{+1.03}_{-0.83}$<br>$0.21^{+0.22}_{-0.18}$                                                                | - S -         | D                 |
| 329 | $5^{+4}_{-3}$                  | $4^{+3}_{-2}$                   | $1^{+3}_{-1}$                                                             | $0.98^{+0.81}_{-0.55}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.44_{-0.23}^{+0.38}$                                                                                                                                        | $0.20^{+0.64}_{-0.20}$                                                                                                                                                                          | $1.3{\pm}0.9$   | $1.1\pm0.3$     | $1.5 \pm 1.3$   | $0.21^{+0.22}_{-0.18}$                                                                                          |               | А                 |
| 330 | $7^{+4}_{-3}$<br>$6^{+4}_{-3}$ | 3                               | $9^{+4}_{-3} \\ 9^{+4}_{-3} \\ 1^{+3}_{-1} \\ 7^{+4}_{-3} \\ 6^{+4}_{-2}$ | $0.98^{+0.01}_{-0.55}$<br>$1.24^{+0.72}_{-0.49}$<br>$1.13^{+0.73}_{-0.48}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.29                                                                                                                                                          | $\begin{array}{c} 2.09 \substack{+1.06\\ -0.20 \substack{+1.06\\ -0.80} \end{array} \\ 0.20 \substack{+0.64\\ -0.20\\ 1.28 \substack{+0.73\\ -0.50\\ 1.17 \substack{+0.75\\ -0.49} \end{array}$ | $4.8{\pm}0.5$   | $3.9{\pm}0.5$   | $5.1 {\pm} 0.7$ | $0.95^{+0.56}_{-0.39}$                                                                                          | - S -         | $\mathbf{E}$      |
| 331 |                                | 3                               | $6^{+4}_{-2}$                                                             | $1.13^{+0.73}_{-0.48}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.31                                                                                                                                                          | $1.17^{+0.75}_{-0.49}$                                                                                                                                                                          | $2.7 {\pm} 0.6$ | $2.4{\pm}0.2$   | $3.4{\pm}0.7$   | $0.95^{+0.36}_{-0.39} \\ 0.49^{+0.34}_{-0.23}$                                                                  | - S -         | $\mathbf{E}$      |
| 332 | $4^{+4}_{-3}$                  | 2                               | $6^{+4}_{-3}$                                                             | $\substack{1.13 - 0.48 \\ 0.96 + 0.96 \\ -0.71 }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.29                                                                                                                                                          | $1.17_{-0.49}^{+0.98}\\1.26_{-0.72}^{+0.98}$                                                                                                                                                    | $4.6{\pm}3.8$   | $4.4{\pm}2.4$   | $9.2 {\pm} 1.9$ | $0.70_{-0.79}^{+0.91}$                                                                                          | - S -         | $\mathbf{C}$      |
| 333 | $4^{+4}_{-3}$                  | $6^{+4}_{-3}$                   | 4                                                                         | $0.95^{+1.12}_{-0.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.78^{+0.54}_{-0.37}$                                                                                                                                        | 1.05                                                                                                                                                                                            | $1.3 {\pm} 0.5$ | $1.2 {\pm} 0.5$ | $1.4{\pm}0.2$   | $0.20^{+0.24}_{-0.19}$                                                                                          | H             | А                 |
| 334 | $9^{+5}_{-4}$                  | $6^{+\tilde{4}}_{-3}$           | ${\substack{2^{+4}_{-2}\\1^{+3}_{-1}}}$                                   | $1.90^{+1.09}_{-0.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               | $\begin{array}{c} 0.51\substack{+0.85\\-0.51}\\ 0.15\substack{+0.56\\-0.15}\end{array}$                                                                                                         | $1.5 \pm 0.4$   | $1.2 \pm 0.3$   | $1.9 {\pm} 0.6$ | $0.45_{-0.23}^{+0.28}$                                                                                          |               | А                 |
| 335 | $8^{+4}_{-3}$                  | $8^{+\tilde{4}}_{-3}$           | $1^{+3}_{-1}$                                                             | $1.71_{-0.65}^{+0.88}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.89^{+0.46}_{-0.33}$                                                                                                                                        | $0.15^{+0.56}_{-0.15}$                                                                                                                                                                          | $1.5 {\pm} 0.2$ | $1.3 \pm 0.2$   | $1.5 {\pm} 0.7$ | $0.41_{-0.16}^{+0.22}$                                                                                          |               | А                 |
| 336 | 7                              | 4                               | $7^{-}$                                                                   | 3.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.92                                                                                                                                                          | 2 2 2 2                                                                                                                                                                                         | $5.2 \pm 4.8$   | $2.9 \pm 7.1$   | $7.6 \pm 7.1$   | 2.92                                                                                                            | F S H         | С                 |
| 337 | $10^{+5}_{-4}_{+11}$           | $9^{+4}_{-3}_{+11}$             | $1^{+3}_{-1}$<br>$16^{+6}_{-5}$                                           | $2.12^{+1.04}_{-0.80}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.07^{+0.32}_{-0.38}$                                                                                                                                        | $0.23^{+0.72}_{-0.23}$                                                                                                                                                                          | $1.3 \pm 0.3$   | $1.1 \pm 0.1$   | $1.9 \pm 1.5$   | $0.43^{+0.24}_{-0.19}\\4.95^{+0.56}_{-0.56}$                                                                    |               | A                 |
| 338 | $10_{-4}$<br>$103_{-11}^{+11}$ | $87^{+11}_{-10}$                | $16^{+6}_{-5}$                                                            | $23.87^{+2.52}_{-2.52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $11.35^{+1.36}_{-1.24}$                                                                                                                                       | $3.85^{+1.51}_{-1.26}$                                                                                                                                                                          | $1.3 \pm 0.1$   | $1.0 \pm 0.0$   | $1.6 \pm 0.1$   | $4.95^{+0.36}_{-0.56}$                                                                                          |               | A                 |
| 339 | $9^{+4^{11}}_{-3}_{+5}$        | $6^{+40}_{-2}$                  | $3^{+3}_{-2} \\ 1^{+3}_{-1}$                                              | $\begin{array}{c} 2.12\substack{+1.04\\-0.80}\\ 23.87\substack{+2.52\\-2.52}\\ 2.11\substack{+1.04\\-0.77\\1.89\substack{+1.00\\-0.76}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.02\\ 1.07 {+}0.52\\ -0.38\\ 11.35 {+}1.38\\ 11.35 {-}1.24\\ 0.80 {+}0.50\\ -0.33\\ 0.91 {+}0.49\\ 0.91 {-}0.35\\ 0.90 {+}0.58\end{array}$ | $\begin{array}{c} 3.33\\ 0.23^{+0.72}_{-0.23}\\ 3.85^{+1.51}_{-1.26}\\ 0.73^{+0.79}_{-0.48}\\ 0.29^{+0.71}_{-0.29}\\ 1.22^{+1.23}_{-0.96}\\ 1.22^{+1.19}_{-1.92}\end{array}$                    | $1.7 \pm 0.6$   | $1.1 \pm 0.3$   | $2.8 \pm 1.4$   | $\begin{array}{c} 4.95 \substack{+0.56\\-0.57 \substack{+0.35\\-0.30}\\0.37 \substack{+0.24\\-0.20}\end{array}$ |               | В                 |
| 340 | $9^{+5}_{-3}$                  | $7^{+\tilde{4}}_{-3}_{-3}_{-4}$ | $1^{+3}_{-1}_{-5}$                                                        | $1.89^{+1.00}_{-0.76}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.91^{+0.49}_{-0.35}$                                                                                                                                        | $0.29^{+0.71}_{-0.29}$                                                                                                                                                                          | $1.2 \pm 0.5$   | $0.9 \pm 0.2$   | $1.6 \pm 2.2$   | $0.37^{+0.24}_{-0.20}$                                                                                          |               | A                 |
| 341 | $11^{+6}_{-5}$                 | $6^{+4}_{-3}$                   | $5^{+5}_{-4}$                                                             | $\begin{array}{c} 1.89 \substack{+1.00\\-0.76}\\ 2.76 \substack{+1.46\\-1.20}\\ 0.39 \substack{+1.23\\-0.39\\-0.71}\\ 0.40 \substack{+0.71\\-0.40}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.88_{-0.42}$                                                                                                                                                | $1.22^{+1.25}_{-0.96}$                                                                                                                                                                          | $1.9 \pm 2.1$   | $1.4{\pm}0.6$   | $7.5 \pm 3.2$   | $0.84^{+1.01}_{-0.98}$                                                                                          |               | В                 |
| 342 | $2^{+5}_{-2}$<br>$2^{+3}_{-2}$ | 4                               | $2^{+5}_{-2}$                                                             | $0.39^{+1.23}_{-0.39}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.49                                                                                                                                                          | $0.49^{+1.19}_{-0.49}$                                                                                                                                                                          | $4.0 \pm 6.0$   | $3.8 \pm 6.2$   | $9.9 \pm 9.4$   | $0.25^{+0.86}_{-0.45}$                                                                                          | - S -         | С                 |
| 343 |                                | $4^{+3}_{-2}_{-4}$              | $2 \\ 2 + 7$                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.45\substack{+0.40\\-0.24}\\ 0.89\substack{+0.59\\-0.42} \end{array}$                                                                      | 0.52                                                                                                                                                                                            | $1.3 \pm 0.1$   | $1.3 \pm 8.7$   | $1.3 \pm 8.7$   | $0.08\substack{+0.45\\-0.08}\\4.73\substack{+1.12\\-0.99}$                                                      | H             | A                 |
| 344 | $34_{-7}^{+8}$                 | $6^{+4}_{-3}$                   | $28^{+7}_{-6}$                                                            | $8.95_{-1.73}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.89_{-0.42}^{+0.05}$                                                                                                                                        | $7.54^{+1.88}_{-1.59}$                                                                                                                                                                          | $3.3 \pm 0.3$   | $2.7 \pm 0.4$   | $4.3 {\pm} 0.9$ | $4.73_{-0.99}^{+1.12}$                                                                                          |               | E                 |

Chandra Catalog: Photometry (continued)

| No. | $\begin{array}{c} C_{net} \\ \mathrm{FB} \end{array}$ | $C_{net}$ SB                 | $\begin{array}{c} C_{net} \\ \mathrm{HB} \end{array}$                                                                       | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                   | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                         | $\begin{array}{c} f_{\rm ph} {\rm HB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                                                                             | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $\begin{array}{c} f_X(10^{-14} \text{erg} \\ \text{cm}^{-2} \text{ s}^{-1}) \end{array}$ | Phot.<br>Flag | Quantile<br>Group |
|-----|-------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|------------------------------------------------------------------------------------------|---------------|-------------------|
| 345 | $4^{+4}_{-3}$                                         | 2                            | $5^{+4}_{-3}$                                                                                                               | $3.40^{+2.93}_{-2.00}$                                                                                                                      | 0.99                                                                                                                                                              | $3.86^{+3.00}_{-2.04}$                                                                                                                                                                                                                  | $4.6 \pm 2.4$   | $3.4{\pm}1.3$   | $7.8 \pm 1.5$   | $2.53^{+2.53}_{-1.97}$                                                                   | - S -         | С                 |
| 346 | $79^{+11}$                                            | $73^{+10}_{-9}$              | $5^{+5}_{-3}$                                                                                                               | $9.17^{+1.26}_{-1.08}$<br>$1.05^{+0.03}_{-0.75}$                                                                                            | $5.72^{+0.68}_{-0.58}$                                                                                                                                            | $0.61^{+0.57}_{-0.36}$<br>$0.91^{+0.96}_{-0.66}$                                                                                                                                                                                        | $1.1 {\pm} 0.1$ | $1.0{\pm}0.0$   | $1.5 {\pm} 0.1$ | $1.66^{+0.25}$                                                                           |               | А                 |
| 347 | $4^{+4}$                                              | $1^{+3}$                     | $4^{+4}_{-3}$                                                                                                               | $1.05^{+1.03}_{-0.75}$                                                                                                                      | $a a a \pm 0.39$                                                                                                                                                  | $0.91^{+0.96}_{-0.66}$                                                                                                                                                                                                                  | $5.2 {\pm} 2.0$ | $3.1{\pm}1.6$   | $6.2{\pm}0.9$   |                                                                                          |               | $\mathbf{C}$      |
| 348 | $8^{+5}_{-3}$                                         | $4^{+3}_{-2}$                | $5^{+5}_{-3}$<br>$4^{+4}_{-3}$<br>$4^{+3}_{-3}$<br>$8^{+5}_{-4}$<br>$4^{+3}_{-2}$                                           | $1.05^{+1.03}_{-0.75}$<br>$1.69^{+0.98}_{-0.74}$                                                                                            | $\begin{array}{c} 0.09 \substack{+0.09\\-0.09}\\ 0.45 \substack{+0.41\\-0.26}\\ 0.24 \substack{+0.39\\-0.22}\end{array}$                                          | $0.91_{-0.66} \\ 0.92_{-0.57}^{+0.83}$                                                                                                                                                                                                  | $1.9{\pm}0.6$   | $1.3{\pm}0.5$   | $2.5{\pm}0.6$   | $0.52^{+0.34}_{-0.28}$                                                                   |               | В                 |
| 349 | $10^{+5}_{-4}$                                        | $2^{+3}_{-2}$                | $8^{+5}_{-4}$                                                                                                               | $\begin{array}{c} 2.30 \substack{+1.18\\ -0.93}\\ 0.93 \substack{+0.75\\ -0.47\\ -0.47\end{array}$                                          | $0.24_{-0.22}^{+0.39}$                                                                                                                                            | $\begin{array}{c} 0.92 \substack{+0.83\\-0.57}\\ 1.91 \substack{+1.12\\-0.86}\\ 0.98 \substack{+0.76\\-0.48}\\ 0.69 \substack{+1.91\\-0.69\\-0.69\\2.26 \substack{+1.91\\-0.84}\end{array}$                                             | $2.7{\pm}0.6$   | $2.2{\pm}0.6$   | $3.5 {\pm} 1.7$ | $1.00^{+0.56}_{-0.46}$                                                                   |               | E                 |
| 350 | $4^{+3}_{-2}$                                         | 3                            | $4^{+3}_{-2}$                                                                                                               | $0.93\substack{+0.75 \\ -0.47}$                                                                                                             | 0.32                                                                                                                                                              | $0.98\substack{+0.76\\-0.48}$                                                                                                                                                                                                           | $3.1{\pm}0.3$   | $3.0{\pm}0.2$   | $3.2{\pm}0.3$   | $0.46^{+0.37}_{-0.24}$                                                                   | - S -         | E                 |
| 351 | $2^{+\bar{9}}_{-2}$                                   | 6                            | $\substack{3^{+\bar{8}}_{-3}\\10^{+5}_{-4}}$                                                                                | $0.54^{+2.06}$                                                                                                                              | 0.80                                                                                                                                                              | $0.69^{+1.91}_{-0.69}$                                                                                                                                                                                                                  | $8.3{\pm}7.8$   | $3.2{\pm}6.8$   | $8.4{\pm}7.9$   | $0.71^{+2.82}$                                                                           | - S -         | $\mathbf{C}$      |
| 352 | $14^{+5}_{-4}$                                        | $4^{+3}_{-2}$                | $10^{+5}_{-4}$                                                                                                              |                                                                                                                                             | $\begin{array}{c} 0.52\substack{+0.44\\-0.28}\\ 0.58\substack{+0.40\\-0.26}\\ 0.64\substack{+0.46\\-0.29}\end{array}$                                             | $2.26^{+1.09}_{-0.84}$                                                                                                                                                                                                                  | $2.7{\pm}0.4$   | $1.7{\pm}0.5$   | $3.3{\pm}0.4$   |                                                                                          |               | $\mathbf{C}$      |
| 353 | $4^{+3}_{-2}$                                         | $5^{+2}_{-2}$                | 2                                                                                                                           | $3.12^{+1.21}_{-0.97}$<br>$0.90^{+0.69}_{-0.44}$                                                                                            | $0.58^{+0.40}_{-0.26}$                                                                                                                                            | 0.48                                                                                                                                                                                                                                    | $1.2{\pm}0.2$   | $1.1{\pm}0.2$   | $1.3 {\pm} 0.1$ | ${}^{1.35_{-0.46}^{+0.56}}_{0.18_{-0.09}^{+0.14}}$                                       | H             | А                 |
| 354 | $\begin{array}{c} 4 \\ -2 \\ 4 \\ -2 \end{array}$     | $5^{+\tilde{3}}_{-2}$        | 2                                                                                                                           | $\begin{array}{c} 0.90 \_ 0.44 \\ 0.90 \_ 0.51 \\ -0.51 \end{array}$                                                                        | $0.64^{+0.46}_{-0.29}$                                                                                                                                            | 0.55                                                                                                                                                                                                                                    | $1.4{\pm}0.3$   | $1.1{\pm}0.2$   | $1.6{\pm}0.1$   | $0.20^{+0.18}$                                                                           | H             | А                 |
| 355 | $17^{+6}_{-5}$                                        | 3                            | $17^{+6}_{-5}$                                                                                                              | $3.75^{+1.31}_{-1.07}$                                                                                                                      | 0.44                                                                                                                                                              | $3.80^{+1.32}_{-1.07}$                                                                                                                                                                                                                  | $5.2 {\pm} 0.4$ | $4.4 {\pm} 0.3$ | $5.9{\pm}0.3$   | $3.12^{+1.12}_{-0.93}$                                                                   | - S -         | D                 |
| 356 | $7^{+4}_{-3}$                                         | 3                            | $17^{+6}_{-5} \\ 7^{+4}_{-3} \\ 1^{+4}_{-1} \\ 8^{+3}_{-3} \\ 2^{+3}_{+1} \\ 4^{+2}_{-2} \\ 8^{+4}_{-3} \\ 8^{+4}_{-3} \\ $ | $1.41^{+0.83}_{-0.57}$<br>$2.22^{+1.18}_{-0.93}$                                                                                            | 0.31                                                                                                                                                              | $\begin{array}{c} 0.50 \\ 3.80 \\ -1.07 \\ 1.48 \\ +0.84 \\ -0.58 \\ 0.20 \\ +0.86 \\ 0.20 \\ +0.86 \\ 0.20 \\ -0.20 \\ 1.90 \\ +1.03 \\ -0.20 \\ 1.90 \\ +0.61 \\ -0.51 \\ 1.06 \\ -0.51 \\ \end{array}$                               | $3.3 {\pm} 1.7$ | $2.7 {\pm} 0.5$ | $5.7 \pm 2.6$   | $0.75_{-0.48}^{+0.58}$                                                                   | - S -         | $\mathbf{C}$      |
| 357 | $10^{+5}_{-4}$                                        | $9^{+4}_{-3} \\ 5^{+4}_{-2}$ | $1^{+4}_{-1}$                                                                                                               | 1 1 1 0                                                                                                                                     | $\begin{array}{c} 1.14^{+0.56}_{-0.41} \\ 0.64^{+0.46}_{-0.31} \\ 0.24^{+0.35}_{-0.17} \end{array}$                                                               | $0.20^{+0.86}_{-0.20}$                                                                                                                                                                                                                  | $1.3 \pm 1.1$   | $1.2{\pm}0.1$   | $1.8 \pm 3.9$   | $0.46_{-0.42}^{+0.45}$                                                                   |               | А                 |
| 358 | $13^{+5}_{-4}$                                        | $5^{+4}_{-2}$                | $8^{+4}_{-3}$                                                                                                               | $2.22_{-0.93}^{+1.18}$ $2.98_{-0.94}^{+1.18}$                                                                                               | $0.64^{+0.46}_{-0.31}$                                                                                                                                            | $1.90^{+1.03}_{-0.77}$                                                                                                                                                                                                                  | $2.9{\pm}1.0$   | $1.5 {\pm} 0.4$ | $4.1 {\pm} 1.7$ | $\begin{array}{r} 0.46\substack{+0.45\\-0.42}\\ 1.39\substack{+0.73\\-0.65}\end{array}$  |               | $\mathbf{C}$      |
| 359 | $4^{+3}_{-2}$                                         | $2^{+3}_{-1}$                | $2^{+3}_{-1}$                                                                                                               | $2.98^{+1.18}_{-0.94}\\0.79^{+0.72}_{-0.44}$                                                                                                | $0.24_{-0.17}^{+0.35}$                                                                                                                                            | $0.37^{+0.61}_{-0.30}$                                                                                                                                                                                                                  | $2.2 \pm 2.2$   | $1.0{\pm}1.0$   | $5.0 {\pm} 1.4$ | $1.39_{-0.65}^{+0.37}$<br>$0.28_{-0.32}^{+0.37}$                                         |               | В                 |
| 360 | $8^{+2}_{-3}$                                         | $4^{+3}_{-2}$                | $4^{+3}_{-2}$                                                                                                               | $\begin{array}{r} 0.13 \_ 0.44 \\ 1.94 \_ 0.69 \\ 1.81 \_ 1.00 \\ 1.81 \_ 0.75 \end{array}$                                                 | $0.52^{+0.43}_{-0.26}$                                                                                                                                            | $\begin{array}{c} 1.06\substack{+0.80\\-0.51}\\ 1.92\substack{+1.03\\-0.77}\end{array}$                                                                                                                                                 | $2.6 {\pm} 1.0$ | $1.2 \pm 0.4$   | $3.6{\pm}1.6$   | $0.80\substack{+0.50\-0.42}{1.38\substack{+0.79\-0.60}}$                                 |               | $\mathbf{C}$      |
| 361 | $8^{+4}_{-3}$                                         | 2                            | $8^{+4}_{-3}$                                                                                                               | $1.81^{+1.00}_{-0.75}$                                                                                                                      | 0.31                                                                                                                                                              | 1 00+1.03                                                                                                                                                                                                                               | $4.8{\pm}0.6$   | $3.9{\pm}0.4$   | $5.2 \pm 1.1$   | $1.38^{+0.79}_{-0.60}$                                                                   | - S -         | E                 |
| 362 | $11^{+5}_{-4}$                                        | $1^{+3}_{-1}$                | $10^{+5}_{-3}$                                                                                                              | $2.31^{+1.00}_{-0.77}$                                                                                                                      | $0.16^{+0.31}_{-0.15}$                                                                                                                                            | $1.92_{-0.77}^{+0.96}$<br>$2.08_{-0.73}^{+0.96}$                                                                                                                                                                                        | $4.3 {\pm} 0.7$ | $3.9{\pm}0.8$   | $5.8 {\pm} 0.7$ | $1.60^{+0.60}_{-0.59}$                                                                   |               | D                 |
| 363 | $8^{+4}_{-3}$                                         | $8^{+1}_{-3}$                | 2                                                                                                                           | $\begin{array}{c} 2.31 \substack{+1.00 \\ -0.77 \\ 1.49 \substack{+0.78 \\ -0.56 \\ 1.19 \substack{+1.01 \\ -0.61 \end{array}} \end{array}$ | $\begin{array}{c} 0.16 \substack{+0.31 \\ -0.15 \\ 0.91 \substack{+0.45 \\ -0.33 \\ 0.73 \substack{+0.59 \\ -0.35 \\ 1.19 \substack{+1.27 \\ -1.12 \end{array}}}$ | 0.47                                                                                                                                                                                                                                    | $1.3{\pm}0.2$   | $1.0{\pm}0.1$   | $1.6{\pm}0.1$   | $0.32\substack{+0.39\\-0.13}\\0.17\substack{+0.16\\-0.11\\-0.11}$                        | H             | А                 |
| 364 | $\overset{8_{-3}}{\overset{+3}{_{-2}}}$               | $4^{+3}_{-2}$                | 2                                                                                                                           | $1.19^{+1.01}_{-0.61}$                                                                                                                      | $0.73^{+0.59}_{-0.35}$                                                                                                                                            | 0.81                                                                                                                                                                                                                                    | $0.9{\pm}0.3$   | $0.8{\pm}0.1$   | $1.4{\pm}0.3$   | $0.17^{+0.16}_{-0.11}$                                                                   | H             | В                 |
| 365 | $194_{-29}^{+29}$                                     | $9^{+10}_{-9}$               | $194^{+26}_{-26}$                                                                                                           | $1.19^{+1.01}_{-0.61}$ $22.18^{+3.21}_{-3.21}$                                                                                              | $1.19^{+1.27}_{-1.12}$                                                                                                                                            | $22.82^{+3.05}_{-3.05}$                                                                                                                                                                                                                 | $5.2 {\pm} 0.2$ | $4.6{\pm}0.2$   | $5.3 {\pm} 0.2$ | $18.56^{+2.77}_{-2.77}$                                                                  |               | D                 |
| 366 | 4                                                     | $1^{+2}_{-1}$                | 2                                                                                                                           | 0.75                                                                                                                                        | $0.10^{+0.26}_{-0.09}$                                                                                                                                            | 0.46                                                                                                                                                                                                                                    | $5.2 \pm 4.8$   | $2.9{\pm}7.1$   | $7.6 {\pm} 7.1$ | 0.63                                                                                     | F - H         | $\mathbf{C}$      |
| 367 | $9^{+4}_{-3}$                                         | $9^{+4}_{-3}$                | 2                                                                                                                           | $\begin{array}{c} 1.76\substack{+0.85\\-0.62}\\ 3.85\substack{+1.40\\-1.15}\\ 4.34\substack{+0.97\\-0.79}\\-0.95\end{array}$                | $1.06^{+0.49}_{-0.36}$                                                                                                                                            | 0.50                                                                                                                                                                                                                                    | $1.3{\pm}0.2$   | $1.1{\pm}0.2$   | $1.5 {\pm} 0.1$ | $0.36^{+0.18}_{-0.14}$ $2.85^{+1.07}_{-0.89}$ $1.11^{+0.30}_{-0.26}$                     | H             | А                 |
| 368 | $17^{+6}_{-5}$                                        | $2^{+3}_{-2}$                | $15^{+6}_{-5}$                                                                                                              | $3.85^{+1.40}_{-1.15}$                                                                                                                      | $\begin{array}{c} 1.06 \substack{+0.13 \\ -0.36 \\ 0.26 \substack{+0.39 \\ -0.22 \\ 2.24 \substack{+0.44 \\ -0.34 \end{array}}$                                   | $\begin{array}{c} 3.47^{+1.36}_{-1.10} \\ 1.41^{+0.71}_{-0.53} \\ 1.69^{+0.93}_{-0.68} \end{array}$                                                                                                                                     | $4.6{\pm}0.4$   | $3.5 \pm 1.1$   | $5.1 {\pm} 0.7$ | $2.85^{+1.07}_{-0.89}$                                                                   |               | D                 |
| 369 | $38^{+9}_{-7}$                                        | $26^{+7}_{-5}$               | $12_{-5}^{+6}$                                                                                                              | $4.34_{-0.79}^{+0.97}$                                                                                                                      | $2.24^{+0.44}_{-0.34}$                                                                                                                                            | $1.41^{+0.71}_{-0.53}$                                                                                                                                                                                                                  | $1.6{\pm}0.2$   | $1.2 {\pm} 0.1$ | $2.7 {\pm} 0.6$ | $1.11^{+0.30}_{-0.26}$                                                                   |               | В                 |
| 370 | $8^{+4}_{-3}$                                         | $1^{+2}_{-1}$                | $7^{+4}_{-3}$                                                                                                               | $1.78^{+0.95}$                                                                                                                              | $2.24_{-0.34}^{+0.29} \\ 0.07_{-0.07}^{+0.29}$                                                                                                                    | $1.69^{+0.93}_{-0.68}$                                                                                                                                                                                                                  | $4.3 \pm 1.3$   | $2.3\pm0.8$     | $5.2 {\pm} 0.6$ | $1.24^{+0.70}_{-0.62}$                                                                   |               | $\mathbf{C}$      |
| 371 | $17^{+5}_{-4}$                                        | 2                            | $17^{+5}_{-4}$                                                                                                              | $3.42^{+1.09}_{-0.87}$                                                                                                                      | 0.29                                                                                                                                                              | $3.54^{+1.11}_{-0.89}$<br>$1.18^{+0.71}_{-0.36}$                                                                                                                                                                                        | $4.3 {\pm} 0.2$ | $3.7 {\pm} 0.4$ | $4.7 {\pm} 0.3$ | $2.33_{-0.61}^{+0.76}$                                                                   | - S -         | $\mathbf{E}$      |
| 372 | $24^{+7}_{-6}$                                        | $12^{+5}_{-4}$               | $11^{+6}_{-4}$                                                                                                              | $2.73^{+0.86}_{-0.68}$                                                                                                                      | $\begin{array}{c} 1.10 \substack{+0.34 \\ -0.23} \\ 0.35 \substack{+0.46 \\ -0.30} \\ 0.51 \substack{+0.42 \\ -0.27} \end{array}$                                 | $1.18^{+0.71}_{-0.36}$                                                                                                                                                                                                                  | $1.7 {\pm} 0.4$ | $1.2 {\pm} 0.4$ | $2.2 {\pm} 0.4$ | $0.76^{+0.29}_{-0.25}$                                                                   |               | В                 |
| 373 | $28^{+8}_{-7}$                                        | $3^{+2}_{-2}$                | $26^{+7}_{-6}$                                                                                                              | $6.84^{+1.89}_{-1.64}$                                                                                                                      | $0.35^{+0.46}_{-0.30}$                                                                                                                                            | $\begin{array}{c} 1.18 \substack{+0.71 \\ -0.36} \\ 6.35 \substack{+1.84 \\ -1.58} \\ 1.33 \substack{+0.95 \\ -0.70} \\ 1.86 \substack{+1.28 \\ -1.01} \\ 2.51 \substack{+0.93 \\ -0.71} \\ 2.51 \substack{+0.93 \\ -0.71} \end{array}$ | $4.6{\pm}0.6$   | $3.2 {\pm} 0.6$ | $6.4{\pm}1.7$   | $\begin{array}{c} 0.76\substack{+0.29\\-0.25}\\ 5.08\substack{+1.55\\-1.38}\end{array}$  |               | $\mathbf{C}$      |
| 374 | $10^{+5}_{-4}$                                        | $4^{+3}_{-2}$                | $6^{+4}_{-3}$                                                                                                               | $\begin{array}{c} 6.84\substack{+1.89\\-1.64}\\ 2.19\substack{+1.08\\-0.84}\end{array}$                                                     | $0.51^{+0.42}_{-0.27}$                                                                                                                                            | $1.33^{+0.95}_{-0.70}$                                                                                                                                                                                                                  | $3.9{\pm}1.4$   | $1.4{\pm}1.0$   | $4.7 {\pm} 2.0$ | $5.08^{+}_{-1.38}$<br>$1.37^{+0.84}_{-0.72}$<br>$1.96^{+1.43}_{-1.30}$                   |               | $\mathbf{C}$      |
| 375 | $11^{+6}_{-5}$                                        | $3^{+\bar{3}}_{-2}$          | $7^{+5}_{-4}$                                                                                                               | $2.63^{\pm 1.39}$                                                                                                                           | $\begin{array}{c} 0.51 \substack{+0.42 \\ -0.27 \\ 0.46 \substack{+0.47 \\ -0.30 \\ 2.58 \substack{+0.66 \\ -0.54 \\ -0.54 \end{array}}$                          | $1.86^{+1.28}_{-1.01}$                                                                                                                                                                                                                  | $4.6 {\pm} 2.3$ | $1.9{\pm}1.0$   | $6.7 \pm 2.3$   | $1.96^{+1.43}_{-1.30}$                                                                   |               | $\mathbf{C}$      |
| 376 | $36^{+7}_{-6}$                                        | $23_{-5}^{+6}$               | $13^{+5}_{-4}$                                                                                                              | 6 00+1.30                                                                                                                                   | $2.58^{+0.66}_{-0.54}$                                                                                                                                            | $2.51^{+0.93}_{-0.71}$                                                                                                                                                                                                                  | $1.6{\pm}0.2$   | $1.2 {\pm} 0.1$ | $3.1{\pm}0.8$   | $1.76_{-0.36}^{+0.40}$                                                                   |               | В                 |
| 377 | $4^{+4}_{-3}$                                         | $3^{+3}_{-2}$                | $13^{+5}_{-4} \\ 1^{+3}_{-1} \\ 5^{+4}_{-2}$                                                                                | $2.29^{+2.23}_{-1.60}$                                                                                                                      | $0.85^{+0.92}_{-0.51}\ 0.24^{+0.35}_{-0.17}$                                                                                                                      | $0.80^{+1.96}_{-0.80}$ $1.22^{+0.83}_{-0.55}$                                                                                                                                                                                           | $1.4 {\pm} 3.7$ | $1.1{\pm}1.3$   | $5.1 \pm 3.6$   | $0.52^{+1.44}_{-1.40}$                                                                   |               | В                 |
| 378 | $7^{+4}_{-3}\\6^{+4}_{-3}$                            | $2^{+3}_{-1}$                | $5^{+4}_{-2}$                                                                                                               | $2.29^{+2.23}_{-1.60}$ $1.60^{+0.89}_{-0.64}$                                                                                               | $0.24_{-0.17}^{+0.35}$                                                                                                                                            | $1.22_{-0.55}^{+0.83}$                                                                                                                                                                                                                  | $3.0{\pm}0.6$   | $1.6{\pm}0.6$   | $3.1{\pm}0.2$   | $0.76^{+0.49}_{-0.34}$<br>$0.28^{+0.17}_{-0.12}$                                         |               | $\mathbf{C}$      |
| 379 | $6^{+4}_{-3}$                                         | $7^{+4}_{-3}$                | 2                                                                                                                           | $1.34^{+0.79}$                                                                                                                              | $\begin{array}{c} 0.24 \_ 0.17 \\ 0.84 \_ 0.31 \\ -0.31 \end{array}$                                                                                              | 0.49                                                                                                                                                                                                                                    | $1.3{\pm}0.2$   | $0.9{\pm}0.2$   | $1.4{\pm}0.1$   | $0.28^{+0.17}_{-0.12}$                                                                   | H             | А                 |
| 380 | $5^{+4}_{-3}$                                         | $5^{+3}_{-2}$                | $\substack{1^{+3}_{-1}\\6^{+4}_{-3}}$                                                                                       | $1.11^{+0.88}_{-0.64}$                                                                                                                      | $0.56^{+0.41}$                                                                                                                                                    | $0.14_{-0.14}^{+0.70}$                                                                                                                                                                                                                  | $1.8{\pm}2.9$   | $1.5{\pm}0.6$   | $5.6 {\pm} 4.4$ | $0.32_{-0.54}^{+0.57}$                                                                   |               | В                 |
| 381 | $10^{+5}_{-4}$                                        | $3^{+\bar{3}}_{-2}$          | $6^{+4}_{-3}$                                                                                                               | $2.24^{+1.10}_{-0.85}$                                                                                                                      | $0.41^{+0.42}_{-0.25}$                                                                                                                                            | $1.55_{-0.72}^{+0.19}$                                                                                                                                                                                                                  | $3.0{\pm}0.9$   | $1.3{\pm}0.6$   | $3.7 {\pm} 1.1$ | $1.08^{+0.61}_{-0.51}$                                                                   |               | $\mathbf{C}$      |
| 382 | $4^{+5}_{-3}$                                         | $4^{+\bar{4}}_{-2}$          | 5                                                                                                                           | $1.37^{+1.39}_{-1.05}$                                                                                                                      | $0.74_{-0.42}^{+0.63}$                                                                                                                                            | 1.59                                                                                                                                                                                                                                    | $1.3 \pm 3.4$   | $1.3{\pm}0.9$   | $1.5 \pm 3.6$   | $0.29_{-0.77}^{+0.80}$                                                                   | H             | А                 |

Chandra Catalog: Photometry (continued)

| No. | $C_{net}$ FB           | $C_{net}$ SB              | $\begin{array}{c} C_{net} \\ \text{HB} \end{array}$                                                                 | $\begin{array}{c} f_{\rm ph} {\rm FB}(10^{-6} \\ {\rm cm}^{-2} ~{\rm s}^{-1}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $\begin{array}{c} f_X(10^{-14} \mathrm{erg} \\ \mathrm{cm}^{-2} \mathrm{\ s}^{-1}) \end{array}$                          | Phot.<br>Flag | Quantile<br>Group |
|-----|------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 383 | $13^{+5}_{-4}$         | $2^{+3}_{-1}$             | $11^{+5}_{-3}$                                                                                                      | $2.96^{+1.13}_{-0.87}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.24\substack{+0.36\\-0.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2.59^{+1.09}_{-0.82}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.7{\pm}0.8$   | $3.0{\pm}0.8$   | $5.4{\pm}0.9$   | $1.73_{-0.65}^{+0.77}$                                                                                                   |               | D                 |
| 384 | $36^{+9}$              | $12^{+5}_{-4}$            | $24^{+8}_{-7}$                                                                                                      | $2.96^{+1.13}_{-0.87} \\ 8.32^{+2.03}_{-1.79}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ${\stackrel{-0.17}{1.53}}_{-0.52}^{+0.66}\\ 0.10{\stackrel{+0.26}{-0.09}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2.59^{+1.09}_{-0.82} \\ 5.71^{+1.82}_{-1.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2.9{\pm}0.5$   | $1.9{\pm}0.3$   | $4.4{\pm}0.4$   | $3.90^{+1.18}_{-1.09}$                                                                                                   |               | $\mathbf{C}$      |
| 385 | c+4                    | $1^{+2}_{-1}$             | $6^{+4}_{-2}$                                                                                                       | $\begin{array}{r} 8.32 \substack{+2.03\\-1.79}\\ 1.23 \substack{+0.72\\-0.49}\\ 2.15 \substack{+1.24\\-0.99}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.10^{+0.26}_{-0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $5.0{\pm}1.0$   | $4.3 {\pm} 1.2$ | $6.0{\pm}0.9$   | $0.08 \pm 0.60$                                                                                                          |               | D                 |
| 386 | $9^{+5}_{-4}$          | 4                         | $6^{+4}_{-2}\\9^{+5}_{-4}$                                                                                          | $2.15^{+1.24}_{-0.99}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a + a + 1 + 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $7.4{\pm}1.4$   | $5.7 \pm 2.7$   | $9.1{\pm}0.8$   | 0 == +1.55                                                                                                               | - S -         | D                 |
| 387 | $17^{+5}_{-4}$         | 3                         | $18^{+5}_{-4}$                                                                                                      | $3.46^{\pm 1.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 2.19 \substack{+1.21 \\ -0.95 \\ 3.55 \substack{+1.08 \\ -0.86 \\ 0.69 \substack{+0.94 \\ -0.68 \end{array}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4.8{\pm}0.7$   | $3.9{\pm}0.3$   | $6.5{\pm}0.9$   | $2.66^{+0.90}_{-0.75}$                                                                                                   | - S -         | D                 |
| 388 | $8^{+5}_{-4}$          | $5^{+4}_{-2}$             | $3^{+4}_{-3}$                                                                                                       | $1.83^{+1.12}_{-0.07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.66^{+0.47}_{-0.31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.69^{+0.94}_{-0.68}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.4{\pm}0.9$   | $1.0{\pm}0.3$   | $2.8{\pm}0.9$   | $0.42^{+0.37}_{-0.33}$                                                                                                   |               | В                 |
| 389 | $113_{-11}^{+11}$      | $25^{+6}_{-5}$            | $88^{+10}_{-9}$                                                                                                     | $\begin{array}{c} 21.59\substack{+2.04\\-2.04}\\ 1.24\substack{+0.82\\-0.61}\\ 11.21\substack{+1.15\\-1.01}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.30 - 0.31 \\ 2.79 + 0.68 \\ 0.47 + 0.38 \\ 0.31 + 0.37 \\ 0.31 + 0.37 \\ 0.29 + 0.62 \\ 0.29 + 0.62 \\ 0.29 + 0.62 \\ 0.29 + 0.117 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $17.15^{+2.04}_{-1.83}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2.9{\pm}0.2$   | $2.3{\pm}0.2$   | $4.6{\pm}0.2$   | $10.04^{+1.14}_{-1.14}$                                                                                                  |               | $\mathbf{C}$      |
| 390 | $6^{+4}_{-3}$          | $4^{+3}_{-2}$             | $2^{+3}_{-2}$                                                                                                       | $1.24^{+0.82}_{-0.61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.47^{+0.38}_{-0.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.44^{+0.66}_{-0.42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.5{\pm}0.7$   | $1.3{\pm}0.2$   | $2.2{\pm}1.6$   | $0.30_{-0.20}^{+0.24}$                                                                                                   |               | А                 |
| 391 | $150^{+15}_{-13}$      | $6^{+2}_{-2}$             | $148^{+15}_{-13}$                                                                                                   | $11.21^{+1.15}_{-1.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.31^{+0.37}_{-0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $5.52_{-1.85}^{-0.42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.8{\pm}0.1$   | $3.2{\pm}0.1$   | $4.7{\pm}0.2$   | $\begin{array}{c} 0.30\substack{+0.24\\-0.20}\\ 6.83\substack{+0.73\\-0.65}\end{array}$                                  |               | E                 |
| 392 | $14^{+6}_{-5}$         | $1^{+3}_{-1}$             | $13_{-4}^{+6}$                                                                                                      | $5.92^{+2.34}_{-1.90}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.29^{+0.62}_{-0.29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $5.52^{+2.30}_{-1.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.1 {\pm} 0.4$ | $2.9{\pm}0.7$   | $4.3 \pm 1.3$   | $2.98^{+1.24}_{-1.03}$                                                                                                   |               | E                 |
| 393 | $5^{+3}_{-2}$          | $5^{+\bar{3}}_{-2}$       | 3                                                                                                                   | $2.89^{+2.01}_{-1.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.71^{+1.17}_{-0.74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.2{\pm}0.2$   | $0.9{\pm}0.2$   | $1.3 {\pm} 0.1$ | $0.55^{+0.40}$                                                                                                           | H             | А                 |
| 394 | $63_{-9}^{-20}$        | $38^{+8}_{-6}$            | $25^{+7}_{-6}$                                                                                                      | $\begin{array}{c} 2.89 \substack{+2.01 \\ -1.28 \\ 8.14 \substack{+1.30 \\ -1.13 \\ -1.13 \end{array}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.29 \_ 0.29 \_ 0.29 \\ 1.71 + 1.17 \\ -0.74 \\ 2.75 + 0.57 \\ 2.75 + 0.57 \\ 0.66 + 0.23 \\ 0.66 + 0.23 \\ 0.97 \\ 1.23 \_ 0.25 \\ 5.81 \_ 0.56 \\ 0.81 + 0.56 \\ 0.81 + 0.56 \\ 0.81 - 0.36 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3.34^{+0.98}_{-0.79}\ 2.80^{+0.79}_{-0.61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.5 \pm 0.3$   | $1.2 \pm 0.1$   | $3.0 {\pm} 0.4$ | $1.99_{-0.43}^{+0.46}$                                                                                                   |               | В                 |
| 395 | $33_{-7}^{+8}$         | $4^{+4}_{-2}$             | $29^{+8}_{-6} \\ 92^{+12}_{-10}$                                                                                    | $3.01^{+0.81}_{-0.63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.66^{+0.23}_{-0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2.80^{+0.79}_{-0.61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.1 \pm 0.4$   | $3.0{\pm}0.5$   | $5.0\pm0.3$     | ${1.97}^{+0.46}_{-0.46} \\ 6.73{+0.87}_{-0.77}$                                                                          |               | D                 |
| 396 | $103^{+12}_{-11}$      | $11^{+5}_{-4}$            | $92^{+12}_{-10}$                                                                                                    | $12.23^{+1.48}_{-1.30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.23^{+0.37}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 11.11^{+1.43}_{-1.24} \\ 3.37^{+0.86}_{-0.69} \\ 1.81^{+1.32}_{-1.05} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $3.4{\pm}0.2$   | $2.7{\pm}0.1$   | $4.2 \pm 0.2$   | $6.73^{+0.87}_{-0.77}$                                                                                                   |               | D                 |
| 397 | $111^{+13}_{-11}$      | $81^{+11}_{-9}$           | $30_{-6}^{+8}$                                                                                                      | $11.95^{+1.36}_{-1.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $5.81^{+0.66}_{-0.56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $3.37^{+0.86}_{-0.69}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.5 \pm 0.1$   | $1.2 \pm 0.1$   | $2.1 \pm 0.3$   | $2.88^{+0.36}_{-0.32}$                                                                                                   |               | А                 |
| 398 | $13^{+6}_{-5}$         | $6^{+2}_{-3}$             | $7^{+5}_{-4}$                                                                                                       | $3.22^{+1.47}_{-1.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.81^{+0.52}_{-0.36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.81^{+1.32}_{-1.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.1 \pm 2.6$   | $1.5\pm0.5$     | $6.8 {\pm} 2.9$ | $\begin{array}{c} 1.03 \pm 0.32 \\ 1.08 \pm 1.44 \\ 1.33 \pm 1.02 \\ \pm 0.88 \end{array}$                               |               | В                 |
| 399 | $9^{+6}_{-5}$          | $1^{+3}_{-1}$             | $7^{+6}_{-5}$                                                                                                       | $\begin{array}{r} 3.22 \substack{+1.47\\-1.22}\\ 2.37 \substack{+1.68\\-1.40}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.23^{+0.45}_{-0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.81^{+1.05}_{-1.05}$<br>$2.01^{+1.63}_{-1.34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3.5 \pm 1.0$   | $2.3 \pm 1.5$   | $4.2 \pm 1.4$   | $1.33^{+1.02}_{-0.88}$                                                                                                   |               | D                 |
| 400 | $8^{+5}_{-4}_{8^{+4}}$ | $7^{+\bar{4}}_{-\bar{3}}$ | $\begin{array}{c} 1 & -4 \\ 7^{+6}_{-5} \\ 1^{+4}_{-1} \\ 3^{+3}_{-2} \\ 46^{+10}_{-8} \\ 46^{-8}_{-8} \end{array}$ | $\begin{array}{c} 1.88 \pm 1.40 \\ 1.88 \pm 0.89 \\ 1.96 \pm 0.72 \\ 4.40 \pm 0.86 \\ 2.88 \pm 1.39 \\ 2.88 \pm 1.39 \\ 2.88 \pm 1.37 \\ 2.88 \pm 0.86 \\ 2.88 \pm 0.$ | $\begin{array}{c} 0.81\substack{+0.32\\-0.36}\\ 0.23\substack{+0.45\\-0.23}\\ 0.95\substack{+0.53\\-0.38}\\ 0.66+0.47\\-0.30\\0.07\substack{+0.33\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07\\-0.07$ | $\begin{array}{c} 2.01 \\ -1.34 \\ 0.20 \\ +0.88 \\ -0.20 \\ 0.82 \\ +0.78 \\ 0.87 \\ -0.87 \\ 0.78 \\ +1.03 \\ 0.78 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.76 \\ -0.71 \\ -0.76 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.76 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71 \\ -0.71$ | $1.3 \pm 0.2$   | $1.2 \pm 0.2$   | $1.5 \pm 0.4$   | $\begin{array}{c} 0.39 \substack{+0.25\\-0.19}\\ 0.60 \substack{+0.33\\-0.26}\\ 3.14 \substack{+0.76\\-0.44}\end{array}$ |               | А                 |
| 401 | $8^{+4}_{-3}_{-10}$    | $5^{+3}_{-2}$             | $3^{+3}_{-2}$                                                                                                       | $1.96^{+0.99}_{-0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.66^{+0.47}_{-0.30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.82^{+0.78}_{-0.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.9 \pm 0.4$   | $1.4{\pm}0.4$   | $2.5 \pm 0.4$   | $0.60^{+0.33}_{-0.26}$                                                                                                   |               | А                 |
| 402 | $45^{+10}_{-8}$        | $1^{+\bar{3}}_{-\bar{1}}$ | $46^{+10}_{-8}$                                                                                                     | $4.40^{+1.04}_{-0.86}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.07^{+0.33}_{-0.07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $4.63^{+1.05}_{-0.87}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.4 {\pm} 0.3$ | $3.9{\pm}0.2$   | $5.6 \pm 0.8$   | $3.14_{-0.64}^{+0.76}$                                                                                                   |               | D                 |
| 403 | $11^{+5}_{-4}$         | $8^{+\bar{4}}_{-3}$       | $3^{+4}_{-3}$                                                                                                       | $2.88^{+1.39}_{-1.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 1.20\substack{+0.64\\-0.48}\\ 0.23\substack{+1.34\\-0.23}\\ 0.25\substack{+0.35\\-0.17}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.78^{+1.03}_{-0.71}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.5 \pm 0.5$   | $1.0 {\pm} 0.2$ | $2.4{\pm}2.7$   | $0.69^{+0.40}_{-0.35}$                                                                                                   |               | В                 |
| 404 | $320_{-34}^{-34}$      | $2^{+11}_{-2}$            | $322_{-32}^{+32}$                                                                                                   | $35.56^{+3.16}_{-3.78}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.23^{+1.34}_{-0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.110 \\ -0.71 \\ 36.73 \\ -3.63 \\ 1.79 \\ -0.65 \\ 2.59 \\ +1.01 \\ 2.59 \\ +1.01 \\ 0.34 \\ -0.26 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $4.7 \pm 0.1$   | $3.9{\pm}0.2$   | $5.5\pm0.3$     | $27.02^{+2.94}_{-2.94}$                                                                                                  |               | E                 |
| 405 | $10^{+4}_{-3}$         | $2^{+3}_{-1}$             | $8^{+4}_{-3}$                                                                                                       | $2.18^{+0.97}_{-0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.25^{+0.35}_{-0.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.79^{+0.91}_{-0.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.8 \pm 0.3$   | $2.5 \pm 0.4$   | $3.3{\pm}1.0$   | $\begin{array}{c} 0.98\substack{+0.45\\-0.34}\\ 1.92\substack{+0.78\\-0.60}\end{array}$                                  |               | E                 |
| 406 | $12^{+5}_{-3}$         | 3                         | $12^{+5}_{-3}$                                                                                                      | $2.51^{+0.99}_{-0.75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.59^{+1.01}_{-0.77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.8 \pm 0.4$   | $4.2 \pm 0.4$   | $5.4 \pm 1.1$   | $1.92^{+0.78}_{-0.60}$                                                                                                   | - S -         | E                 |
| 407 | $14^{+5}_{-4}$         | $12^{+5}_{-3}$            | $2^{+3}_{-1}$                                                                                                       | $2.64^{+0.94}_{-0.73}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.34^{+0.52}_{-0.39}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.34^{+0.33}_{-0.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.5 \pm 0.2$   | $1.1{\pm}0.2$   | $1.8 {\pm} 0.6$ | $\begin{array}{c} 1.92_{-0.60} \\ 0.62_{-0.19}^{+0.24} \end{array}$                                                      |               | А                 |
| 408 | $4^{+4}_{-3}$          | $5^{+4}_{-2}$             | 3                                                                                                                   | $\begin{array}{c} 2.18 +0.97 \\ -0.72 \\ 2.51 \substack{+0.99 \\ -0.75 \\ 2.64 \substack{+0.94 \\ -0.73 \\ 0.71 \substack{+0.77 \\ -0.56 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.50 \\ -0.$                                                                                                                                                                     | $\begin{array}{c} -0.39\\ 0.56 \substack{+0.41\\-0.27}\\ 0.09 \substack{+0.27\\-0.09\\1.06 \substack{+0.55\\-0.40}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.4 \pm 4.4$   | $1.2 \pm 1.3$   | $1.5 \pm 4.6$   | $0.16\substack{+0.52\\-0.51\\+0.22}$                                                                                     | H             | A                 |
| 409 | $11^{+5}_{-3}$         | $1^{+2}_{-1}$             | $10^{+4}_{-3}$                                                                                                      | $2.23^{+0.91}_{-0.69}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.09^{+0.27}_{-0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2.12^{+0.90}_{-0.67}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.8 {\pm} 0.5$ | $4.0 {\pm} 0.9$ | $5.5 \pm 1.5$   | $1.72_{-0.56}^{+0.73}$                                                                                                   |               | E                 |
| 410 | $20^{+6}_{-5}$         | $8^{+1}_{-3}$             | $12^{+5}_{-4}$                                                                                                      | $\begin{array}{r} 2.29 \\ -0.69 \\ 4.83 \\ -1.21 \\ 2.80 \\ +1.44 \\ -1.15 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.06^{+0.55}_{-0.40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 3.00 \substack{+1.26 \\ -1.00 \\ 2.79 \substack{+1.40 \\ -1.11 \\ 1.97 \substack{+0.96 \\ -0.72 \\ +0.46 \end{array}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $3.1 {\pm} 0.9$ | $1.8 \pm 0.5$   | $4.5 \pm 1.5$   | $2.41_{-0.99}^{+0.99}$                                                                                                   |               | $\mathbf{C}$      |
| 411 | $10^{+5}_{-4}$         | 4                         | $10^{+5}_{-4}$                                                                                                      | $\begin{array}{c} 2.80 \substack{+1.44\\-1.15}\\ 2.07 \substack{+0.97\\-0.73}\\ 1.10 \substack{+0.70\\-0.46}\\ 0.57 \substack{+1.16\\-0.57\\-0.57\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.79^{+1.40}_{-1.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.9 \pm 1.1$   | $2.6 \pm 0.7$   | $5.7 \pm 1.7$   | $1.75_{-0.88}^{+0.03}$<br>$1.45_{-0.60}^{+0.74}$                                                                         | - S -         | С                 |
| 412 | $10^{+5}_{-3}$         | $1^{+2}_{-1}$             | $9^{+4}_{-3}_{-3}_{+2}$                                                                                             | $2.07^{+0.31}_{-0.73}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.08^{+0.28}_{-0.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.97^{+0.90}_{-0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.4{\pm}0.9$   | $3.4{\pm}1.1$   | $5.3 \pm 1.9$   | $1.45^{+0.14}_{-0.60}$                                                                                                   |               | D                 |
| 413 | $6^{+4}_{-2}$          | $5^{+3}_{-2}$             | $9^{+4}_{-3} \\ 1^{+2}_{-1} \\ 3^{+4}_{-3}$                                                                         | $1.10^{+0.10}_{-0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.56\substack{+0.39\\-0.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 1.13 + -0.72 \\ 0.14 + 0.46 \\ 0.79 + 1.19 \\ 0.79 - 0.79 \\ 1.11 + 0.65 \\ 1.044 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.3 \pm 0.6$   | $0.7 {\pm} 0.3$ | $1.9 {\pm} 0.7$ | $0.23^{+0.18}_{-0.14}$                                                                                                   |               | В                 |
| 414 | $2^{+4}_{-2}$          | 2                         | $3^{+4}_{-3}$                                                                                                       | $0.57^{+1.16}_{-0.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.79^{+1.19}_{-0.79}_{-0.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $6.8 \pm 1.7$   | $6.2 \pm 5.7$   | $8.5 \pm 8.0$   | $0.63^{+1.28}_{-0.65}$                                                                                                   | - S -         | D                 |
| 415 | $15^{+7}_{-5}$         | $5^{+4}_{-3}$             | $10^{+6}_{-4}$                                                                                                      | $1.54 \pm 0.70$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.44\substack{+0.26 \\ -0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.11^{+0.05}_{-0.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.5 \pm 0.4$   | $2.1 \pm 0.2$   | $3.1 \pm 0.3$   | $0.62^{+0.30}_{-0.22}$ $0.81^{+1.27}_{-0.82}$ $3.26^{+1.07}_{-0.94}$                                                     |               | E                 |
| 416 | $3^{+5}_{-3}_{+6}$     | 5 + 3                     | $3^{+5}_{-3}_{+6}$                                                                                                  | $\begin{array}{c} 1.04 \_ 0.49 \\ 0.89 \_ 0.89 \\ 4.80 \_ 1.32 \\ -1.09 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c} 1.11 \substack{+0.04 \\ -0.44} \\ 0.79 \substack{+1.31 \\ -0.79} \\ 4.15 \substack{+1.26 \\ -1.02} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $5.7 \pm 1.1$   | $5.2 \pm 0.5$   | $6.4 {\pm} 0.6$ | $0.81^{+1.27}_{-0.82}$                                                                                                   | - S -         | E                 |
| 417 | $23^{+6}_{-5}$         | $3^{+3}_{-2}_{+3}$        | $19^{+6}_{-5}$                                                                                                      | $4.80^{+1.32}_{-1.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.42\substack{+0.39\\-0.23}\\ 0.47\substack{+0.39\\-0.23} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4.15^{+1.20}_{-1.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.2 \pm 0.8$   | $2.2 \pm 0.5$   | $5.2 \pm 1.8$   | $3.26^{+1.07}_{-0.94}$                                                                                                   |               | С                 |
| 418 | $4^{+3}_{-2}$          | $4^{+\bar{3}}_{-2}$       | 4                                                                                                                   | $0.90^{+0.72}_{-0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.47^{+0.39}_{-0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.0 \pm 2.7$   | $0.9{\pm}0.7$   | $1.5 \pm 2.9$   | $0.14_{-0.39}^{+0.40}$                                                                                                   | H             | A                 |
| 419 | $26^{+7}_{-6}$         | $23_{-5}^{+6}$            | $4^{+5}_{-3}$                                                                                                       | $2.92^{+0.81}_{-0.64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.98^{+0.23}_{-0.31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.40^{+0.52}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.4 \pm 0.1$   | $1.1 \pm 0.1$   | $1.7 \pm 0.7$   | $0.64^{+0.19}_{-0.15}$                                                                                                   |               | A                 |
| 420 | $4^{+4}_{-2}$          | 4                         | $3^{+3}_{-2}$                                                                                                       | $0.88\substack{+0.89\\-0.59}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.82\substack{+0.86\\-0.55}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $4.1 \pm 1.0$   | $3.0{\pm}0.8$   | $4.5 \pm 0.5$   | $0.57_{-0.41}^{+0.60}$                                                                                                   | - S -         | D                 |

Chandra Catalog: Photometry (continued)

| No.          | $C_{net}$ FB                                    | $C_{net}$ SB                   | $C_{net}$ HB                                    | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                  | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                             | $E_{50}$ (keV)                 | $E_{25}$ (keV)                 | $E_{75}$ (keV)                 | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{ s}^{-1})$                                        | Phot.<br>Flag  | Quantile<br>Group |
|--------------|-------------------------------------------------|--------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------|----------------|-------------------|
| 401          | 0+4                                             | $1^{+2}_{-1}$                  | 0+4                                             | 1.02+0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.11+0.28                                                                                                  | 1.00+0.87                                                                                                                                                                                                             | 25100                          | 05100                          | 4.4.1.0.0                      | $1.10^{+0.57}_{-0.47}$                                                                          |                | D                 |
| 421          | $9^{+4}_{-3}_{-3}_{-46}$                        |                                | $9^{+4}_{-3}$                                   | $1.96^{+0.89}_{-0.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.11^{+0.28}_{-0.10}$                                                                                     | $1.82^{+0.87}_{-0.63}$                                                                                                                                                                                                | $3.5 \pm 0.9$                  | $2.5 \pm 0.6$                  | $4.4 \pm 2.0$                  | $1.10^{+0.07}_{-0.47}$<br>$0.09^{+0.18}_{-0.11}$                                                |                | D                 |
| 422          | $3^{+6}_{-3}_{42^{+9}_{7}}$                     | $7^{+4}_{-3}_{+2}$             | 7                                               | $0.72^{+1.37}_{-0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.89\substack{+0.56\\-0.41}\\0.87\substack{+0.30\\-0.10}$                                                 | 1.50                                                                                                                                                                                                                  | $0.8 \pm 0.5$                  | $0.7 \pm 9.3$                  | $1.1\pm 8.9$                   | $a = a \pm 0.83$                                                                                | H              | B                 |
| 423          | $42^{+7}_{-7}$<br>$12^{+5}_{-2}$                | $4^{+2}_{-1}$                  | ${}^{41^{+9}_{-7}}_{12^{+5}_{-3}}$              | $\begin{array}{r}4.66\substack{+0.96\\-0.79}\\2.66\substack{+1.05\\-0.79}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.87_{-0.10}$                                                                                             | $\begin{array}{c} 4.67 \substack{+0.96\\-0.79}\\ 2.73 \substack{-0.81\\-0.93}\\ 1.70 \substack{+1.15\\-0.93}\\ 1.22 \substack{+0.77\\-0.52}\\ 3.75 \substack{+1.79\\-1.39}\\ 3.75 \substack{+1.24\\-1.34}\end{array}$ | $5.0\pm0.4$                    | $3.7 \pm 0.4$                  | $6.3 \pm 0.3$                  | $3.76_{-0.70}^{+0.00}$<br>$1.83_{-0.57}^{+0.74}$<br>$1.03_{-1.10}^{+1.16}$                      |                | D<br>E            |
| 424          |                                                 | $3 \\ 1^{+3}_{-1}$             | $12_{-3}^{+6}$                                  | $\begin{array}{r} 2.66 \substack{+0.79\\-0.79}\\ 1.79 \substack{+1.21\\-1.00\\1.36 \substack{+0.79\\-0.56\end{array}}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.35                                                                                                       | $2.73_{-0.81}$                                                                                                                                                                                                        | $4.3 \pm 0.4$                  | $4.0\pm0.4$                    | $5.2 \pm 1.5$                  | $1.83_{-0.57}$<br>$1.02^{\pm 1.16}$                                                             | - S -          | E<br>C            |
| $425 \\ 426$ | $9^{+6}_{-5}_{7^{+4}}$                          | $1^{-1}_{-1}$<br>$1^{+2}_{-1}$ | $9^{+6}_{-5}_{-5}_{6^{+4}}$                     | $1.79^{-1.00}_{-1.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.07^{+0.37}_{-0.07}$                                                                                     | $1.70_{-0.93}$<br>$1.22^{\pm0.77}$                                                                                                                                                                                    | $3.6 \pm 3.3$<br>$2.8 \pm 0.2$ | $2.9 \pm 1.7$<br>$2.7 \pm 0.3$ | $8.3 \pm 2.9$                  | $1.03_{-1.10}$                                                                                  |                | E                 |
| $420 \\ 427$ | $7^{+4}_{-3}_{12^{+5}}_{4}$                     | $1^{-1}_{-1}$<br>$1^{+3}_{-1}$ | ${}^{6^{+4}_{-3}}_{10^{+5}_{-4}}$               | $1.30_{-0.56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.09^{+0.27}_{-0.09}\\0.26^{+0.57}_{-0.26}$                                                               | $\frac{1.22}{0.52}$                                                                                                                                                                                                   | $2.8 \pm 0.2$<br>$5.1 \pm 2.0$ | $2.7 \pm 0.3$<br>$2.4 \pm 1.0$ | $3.1 \pm 0.4$<br>$7.3 \pm 1.2$ | $\begin{array}{r} 0.61\substack{+0.36\\-0.26}\\ 3.38\substack{+2.03\\-1.80}\end{array}$         |                | E<br>C            |
| 427<br>428   | $\frac{12}{-4}$                                 | $\frac{1}{2}$                  | $10^{+}_{-4}$                                   | $4.14^{+1.87}_{-1.48}\\1.42^{+1.22}_{-0.92}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.20_{-0.26}^{+0.26}$<br>0.35                                                                             |                                                                                                                                                                                                                       | $5.1\pm2.0$<br>$7.5\pm1.9$     | $2.4 \pm 1.0$<br>$5.2 \pm 1.2$ | $7.5 \pm 1.2$<br>$8.7 \pm 1.3$ | $1.70^{+1.53}_{-1.10}$                                                                          | <br>- S -      | D                 |
| 428<br>429   | $5^{+5}_{-3}$<br>$6^{+4}_{-3}$<br>$6^{+4}_{-3}$ | 2<br>3                         | $7^{+5}_{-3}$<br>$6^{+4}_{-3}$<br>$3^{+3}_{-2}$ | $a_{00} \pm 1.36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.55 \\ 0.52$                                                                                             | $\begin{array}{c} 1.88 \substack{+1.24\\-0.94}\\ 2.14 \substack{+1.39\\-0.95}\\ 0.55 \substack{+0.62\\-0.34}\\ \end{array}$                                                                                           | $7.5 \pm 1.9$<br>$5.4 \pm 2.0$ | $3.2 \pm 1.2$<br>$4.0 \pm 1.0$ | $8.7 \pm 1.3$<br>$8.7 \pm 1.4$ | 1.7c + 1.35                                                                                     | - S -<br>- S - | D<br>C            |
| 429<br>430   | $^{0}_{-3}_{c^{+4}}$                            | $4^{+3}_{-2}$                  | $0^{-3}_{-3}_{-3}$                              | $2.02_{-0.93}^{+0.78}$<br>$1.34_{-0.53}^{+0.78}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.52<br>$0.46^{+0.38}_{-0.23}$                                                                             | $2.14_{-0.95}$                                                                                                                                                                                                        | $5.4\pm2.0$<br>$1.7\pm1.7$     | $4.0\pm1.0$<br>$1.0\pm0.3$     | $8.7 \pm 1.4$<br>$2.4 \pm 3.5$ | $1.76_{-1.03}$<br>$0.36_{-0.39}^{+0.42}$                                                        | - 5 -          | В                 |
| 430<br>431   | $5^{+3}_{-4}$                                   | $4^{-2}_{1^{+3}_{-1}}$         | $3^{-2}_{-2}_{4^{+5}_{-4}}$                     | $1.54_{-0.53}$<br>$1.14_{-0.93}^{+1.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.00 \pm 0.38$                                                                                            | $0.03_{-0.34}^{+0.04}$<br>$1.00_{-0.85}^{+1.10}$                                                                                                                                                                      | $1.7 \pm 1.7$<br>$2.2 \pm 0.5$ | $1.0\pm0.3$<br>$2.1\pm0.5$     | $2.4\pm 3.5$<br>$2.4\pm 0.9$   | $0.30_{-0.39}$<br>$0.41_{-0.35}^{+0.43}$                                                        |                | Б<br>Е            |
| 431          | $3^{-4}_{-4}_{13^{+6}_{-5}}$                    | $3^{+1}_{-1}_{-2}$             | $4^{-4}_{-4}_{10^{+5}_{-4}}$                    | $3.57^{+1.65}_{-1.34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.40 \pm 0.54$                                                                                            | $2.93^{+1.53}_{-1.22}$                                                                                                                                                                                                | $2.2 \pm 0.3$<br>$7.2 \pm 2.1$ | $2.1\pm0.3$<br>$3.9\pm2.5$     | $2.4 \pm 0.9$<br>$9.3 \pm 0.9$ | $4.10 \pm 2.25$                                                                                 |                | C E               |
| 432          | $6^{+4}$                                        | $7^{+4}_{-3}$                  | $\frac{10-4}{2}$                                | $\frac{5.57}{1.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.40^{+0.34}_{-0.34}$                                                                                     | $2.93_{-1.22}$<br>0.46                                                                                                                                                                                                | $1.2\pm2.1$<br>$1.4\pm0.3$     | $0.9\pm 2.0$<br>$0.9\pm 0.2$   | $3.3 \pm 0.3$<br>$1.7 \pm 0.2$ |                                                                                                 | H              | В                 |
| 434          | $15^{+5}_{-4}$                                  | $^{\prime}_{13}^{-3}_{4}$      | $2^{+3}$                                        | $\begin{array}{c} 1.38 \pm 0.75 \\ 1.28 \pm 0.75 \\ 3.86 \pm 1.31 \\ 2.95 \pm 1.25 \\ 2.95 \pm 0.93 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.79^{+0.43}_{-0.29}$<br>$1.98^{+0.72}_{-0.56}$                                                           | $a_{+}a_{+}0.72$                                                                                                                                                                                                      | $1.4 \pm 0.3$<br>$1.3 \pm 0.1$ | $0.3\pm0.2$<br>$1.1\pm0.2$     | $1.7 \pm 0.2$<br>$1.6 \pm 1.3$ | a a a + 0.29                                                                                    | 11             | A                 |
| 434          | $10^{-4}_{-4}$<br>$10^{+4}_{-3}$                | $8^{+4}_{-3}$                  | $2^{+3}_{-1} \\ 3^{+3}_{-2} \\ 4^{+5}_{-4}$     | $2.05^{-1.02}_{-1.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.98_{-0.56}^{+0.64}$<br>$1.28_{-0.46}^{+0.64}$                                                           | $\begin{array}{c} 0.46 \substack{+0.12\\-0.35}\\ 0.75 \substack{+0.84\\-0.47}\end{array}$                                                                                                                             | $1.5\pm0.1$<br>$1.7\pm0.2$     | $1.1\pm0.2$<br>$1.5\pm0.2$     | $1.0 \pm 1.3$<br>$2.0 \pm 0.6$ | $\begin{array}{c} 0.82 \substack{+0.23 \\ -0.23} \\ 0.81 \substack{+0.35 \\ -0.27} \end{array}$ |                | A                 |
| 436          | e+6                                             | 1+3                            | $3_{-2}_{4+5}$                                  | $1.48^{+1.40}_{-1.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.21^{\pm 0.46}_{\pm 0.50}$                                                                               | $1.15^{\pm 1.27}$                                                                                                                                                                                                     | $1.7 \pm 0.2$<br>$2.5 \pm 1.7$ | $1.3\pm0.2$<br>$1.4\pm1.2$     | $3.8 \pm 1.0$                  | $0.50 \pm 0.69$                                                                                 |                | C                 |
| 430          | $66^{+11}_{-9}$                                 | $1^{-1}_{-1}_{17^{+7}_{-5}}$   | $48^{+10}_{-8}$                                 | $5.59^{+0.94}_{-0.78}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.21\substack{+0.50\\-0.21}\\ 1.02\substack{+0.33\\-0.23}\end{array}$                    | 4 00 + 0.83                                                                                                                                                                                                           | $2.9 \pm 0.4$                  | $1.4 \pm 1.2$<br>$2.0 \pm 0.1$ | $4.6 \pm 0.4$                  | $0.59_{-0.61}$<br>$2.57_{-0.48}^{+0.54}$                                                        |                | C                 |
| 438          | $11^{+5}_{-4}$                                  | 1'_5<br>4                      | $11^{+5}_{-4}$                                  | $0.04 \pm 1.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.43^{1.02}$                                                                                              | $4.02_{-0.67}$<br>$2.33_{-0.77}^{+1.00}$                                                                                                                                                                              | $2.9 \pm 0.4$<br>$3.9 \pm 0.7$ | $2.0\pm0.1$<br>$2.9\pm0.6$     | $4.0\pm0.4$<br>$4.8\pm1.6$     | 2.07 - 0.48<br>1 $47^{\pm 0.68}$                                                                | - S -          | D                 |
| 439          | $5^{+3}_{-2}$                                   | $5^{+3}_{-2}$                  | $\frac{11-4}{2}$                                | $2.34_{-0.78}^{+0.90}\\1.21_{-0.57}^{+0.90}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.43<br>$0.74^{+0.52}_{-0.33}$                                                                             | $0.65^{2.03}$                                                                                                                                                                                                         | $1.0\pm0.1$                    | $2.9 \pm 0.0$<br>$0.9 \pm 0.1$ | $1.1\pm0.1$                    | ${\stackrel{-0.48}{1.47}}_{-0.55}^{+0.68}\\ 0.20{\stackrel{+0.15}{-}}_{-0.10}$                  | H              | A                 |
| 440          | $\frac{5^{-2}}{12}$                             | $^{0-2}_{6}$                   | 9                                               | 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.14_{-0.33}$<br>0.85                                                                                     | 2.53                                                                                                                                                                                                                  | $5.2 \pm 4.8$                  | $0.9 \pm 0.1$<br>$2.9 \pm 7.1$ | $7.6\pm7.1$                    | 2.74                                                                                            | FSH            | C                 |
| 441          | $5^{+4}_{-2}$                                   | 3                              | $6^{+4}_{-2}$                                   | $1.00 \pm 0.71$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.30                                                                                                       | $1.13^{+0.72}$                                                                                                                                                                                                        | $4.9 \pm 0.7$                  | $3.4 \pm 0.6$                  | $5.3 \pm 0.4$                  | $-25 \pm 0.57$                                                                                  | - S -          | D                 |
| 442          | $10^{+5}_{-4}$                                  | 2                              | $12^{+5}_{-4}$                                  | $1.08_{-0.47}^{+0.047}$<br>$2.05_{-0.83}^{+1.04}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.26                                                                                                       | $ \begin{array}{c} 1.13 \substack{+0.72 \\ -0.48 \\ 2.44 \substack{+1.07 \\ -0.84 \end{array} } \end{array} $                                                                                                         | $8.9 \pm 1.1$                  | $7.1 \pm 0.9$                  | $9.5 \pm 0.4$                  | $\begin{array}{c} 0.85_{-0.39} \\ 2.91_{-1.23}^{+1.52} \end{array}$                             | - S -          | D                 |
| 443          | $11^{+5}_{-4}$                                  | $1^{+3}_{-1}$                  | $9^{+4}_{-3}$                                   | $2.49^{+1.11}_{-0.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.20^{+0.36}_{-0.17}$                                                                                     | $2.19^{+1.06}_{-0.80}$                                                                                                                                                                                                | $2.9 \pm 0.6$                  | $2.1 \pm 0.6$                  | $4.0 \pm 1.3$                  | $1.14^{+0.57}_{-0.46}$                                                                          |                | D                 |
| 444          | ×+4                                             | $6^{+4}_{-2}$                  | $2^{+3}_{-1}$                                   | $1.58^{+0.82}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.70^{+0.43}$                                                                                             | $0.37^{+0.56}$                                                                                                                                                                                                        | $1.4 \pm 0.5$                  | $1.0\pm0.2$                    | $2.0 \pm 1.1$                  | $0.36^{+0.22}$                                                                                  |                | B                 |
| 445          | $10^{+5}$                                       | $3^{+3}$                       | $7^{+4}_{-3}$                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.00\pm0.38$                                                                                              |                                                                                                                                                                                                                       | $3.4{\pm}1.2$                  | $1.7 \pm 0.7$                  | $4.8 \pm 1.6$                  | $1.11^{+0.68}_{-0.58}$                                                                          |                | С                 |
| 446          | $13^{+6}_{-5}$                                  | $2^{+3}_{-2}$                  | $11^{+6}_{-5}$                                  | $4.10 \pm 2.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.38_{-0.23} \\ 0.33_{-0.33}^{+0.60} \end{array}$                                        | $a_{a}^{+}$                                                                                                                                                                                                           | $3.1 \pm 0.5$                  | $2.2 \pm 0.7$                  | $3.3 \pm 2.1$                  | $2.05^{+0.38}_{-0.02}$                                                                          |                | E                 |
| 447          | $4^{+4}$                                        | $\frac{-2}{3}$                 | $4^{+3}_{-3}$                                   | $0.88^{+0.97}_{-0.60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.33<br>0.45                                                                                              | $\begin{array}{c} 3.62 \substack{+1.61 \\ -1.61 \\ 0.92 \substack{+0.94 \\ -0.65 \\ 2.46 \substack{+0.79 \\ -0.61 \\ -0.61 \end{array}}$                                                                              | $9.4{\pm}0.3$                  | $9.3 {\pm} 0.2$                | $9.5 {\pm} 0.2$                | $2.05^{+1.09}_{-0.93}$<br>$1.32^{+1.45}_{-1.05}$                                                | - S -          | D                 |
| 448          | $59^{+10}_{-8}$                                 | $38^{+8}_{-6}$                 | $21^{+7}_{-5}$                                  | $6.47^{+1.09}_{-0.91}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2.97^{+0.49}_{-0.39}$                                                                                     | $2.46^{+0.79}_{-0.61}$                                                                                                                                                                                                | $1.6 {\pm} 0.1$                | $1.3 \pm 0.1$                  | $2.5 {\pm} 0.3$                | $1.70_{-0.28}^{+0.32}$                                                                          |                | В                 |
| 449          | $7^{+4}_{-3}$                                   | $3^{+3}_{-2}$                  | $4^{+3}_{-2}$                                   | $1.50^{+0.87}_{-0.62}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.35 \substack{+0.37 \\ -0.21 \\ 0.31 \substack{+0.43 \\ -0.21 \end{array}} \end{array}$ | $0.00 \pm 0.00$                                                                                                                                                                                                       | $3.1 \pm 1.2$                  | $1.6 {\pm} 0.6$                | $4.8 \pm 1.2$                  | $0.74_{-0.42}^{+0.52}$                                                                          |                | $\mathbf{C}$      |
| 450          | $9^{-3}_{-3}$                                   | $2^{+3}_{-1}$                  | $7^{+4}_{-3}$                                   | $2.47^{+1.17}_{-0.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.31^{+0.43}_{-0.21}$                                                                                     | $0.92_{-0.49} \\ 1.97_{-0.75}^{+1.10}$                                                                                                                                                                                | $4.0{\pm}1.0$                  | $2.9{\pm}1.2$                  | $5.8 {\pm} 0.9$                | $1.59_{-0.68}^{+0.42}$                                                                          |                | $\mathbf{C}$      |
| 451          | 5                                               | $3^{-1}$                       | 4                                               | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.51^{-0.21}$                                                                                             | 1.21                                                                                                                                                                                                                  | $5.2 {\pm} 4.8$                | $2.9{\pm}7.1$                  | $7.6 {\pm} 7.1$                | 1.07                                                                                            | F S H          | $\mathbf{C}$      |
| 452          | $12^{+5}_{-4}$                                  | 2                              | $12^{+5}_{-4}$                                  | $2.33^{+0.95}_{-0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.29                                                                                                       | $2.43^{+0.97}_{-0.74}$                                                                                                                                                                                                | $5.0{\pm}0.5$                  | $4.4{\pm}0.4$                  | $6.3 {\pm} 1.1$                | $1.86^{+0.78}_{-0.61}$                                                                          | - S -          | D                 |
| 453          | $5^{+4}_{-2}$                                   | $1^{+2}_{-1}$                  | $12^{+5}_{-4} \\ 4^{+3}_{-2}$                   | $1.17_{-0.57}^{+0.86}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.10^{+0.32}_{-0.10}$                                                                                     | $2.43^{+0.97}_{-0.74}$<br>$1.02^{+0.83}_{-0.52}$                                                                                                                                                                      | $3.8 {\pm} 1.2$                | $3.0{\pm}0.8$                  | $5.7 {\pm} 1.3$                | $0.72^{+0.58}_{-0.42}\ 3.54^{+1.10}_{-0.97}$                                                    |                | D                 |
| 454          | $25^{+7}_{-6}$                                  | $2^{+3}_{-2}$                  | $23^{+6}_{-5}$                                  | $\begin{array}{c} 1.25\\ 2.33 \substack{+0.95\\-0.72}\\ 1.17 \substack{+0.86\\-0.57\\} 5.70 \substack{+1.55\\-1.31\\} 2.35 +0.93\\-0.71\\-0.93 \substack{+1.39\\-0.93\\-0.93 \substack{+1.39\\-0.93\\-0.93 \substack{+1.39\\-0.93\\-0.93 \substack{+1.39\\-0.93\\-0.93 \substack{+1.39\\-0.93\\-0.93\\-0.93 \substack{+1.39\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-0.93\\-$ | $0.10^{+0.32}_{-0.10}$<br>$0.28^{+0.41}_{-0.25}$<br>$0.31^{+0.34}_{-0.19}$                                 | $1.02^{+0.83}_{-0.52}$<br>$5.31^{+1.50}_{-1.25}$<br>$1.84^{+0.86}_{-0.64}$                                                                                                                                            | $3.9{\pm}0.6$                  | $3.0{\pm}0.3$                  | $5.1 {\pm} 0.5$                | $3.54_{-0.97}^{+1.10}$                                                                          |                | D                 |
| 455          | $12^{+5}_{-4}$                                  | $3^{+\bar{3}}$                 | $9^{+4}_{-3}$                                   | $2.35_{-0.71}^{+0.93}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.31_{-0.19}^{+0.34}$                                                                                     | $1.84_{-0.64}^{+0.86}$                                                                                                                                                                                                | $3.1{\pm}0.5$                  | $2.1{\pm}0.3$                  | $3.4{\pm}1.2$                  | $3.54_{-0.97}^{+0.51}$<br>$1.17_{-0.41}^{+0.51}$                                                |                | Ε                 |
| 456          | $11^{+6}_{-5}$                                  | $8^{+\bar{4}}_{-3}$            | $3^{+4}_{-3}$                                   | $2.69^{+1.09}_{-1.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.13^{+0.60}_{-0.44}$                                                                                     | $\begin{array}{c} 1.61 \\ -0.69 \\ +1.10 \\ 0.69 \\ -0.69 \\ 1.67 \\ +0.72 \\ 0.85 \\ +1.34 \\ 0.85 \\ -0.65 \end{array}$                                                                                             | $1.8{\pm}0.5$                  | $1.0{\pm}0.4$                  | $2.4{\pm}0.7$                  | $0.77^{+0.44}$                                                                                  |                | В                 |
| 457          | $24^{+7}_{-6}$                                  | $8^{+5}_{-3}$                  | $15^{+6}_{-5}$                                  | $2.76^{+0.84}_{-0.66}$ $3.26^{+1.87}_{-1.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.85^{+0.31}_{-0.18}$<br>$1.40^{+0.97}_{-0.62}$                                                           | $1.67^{+0.72}_{-0.51}$                                                                                                                                                                                                | $2.3{\pm}0.7$                  | $1.6{\pm}0.3$                  | $4.1{\pm}0.8$                  |                                                                                                 |                | $\mathbf{C}$      |
| 458          | $7^{+4}_{2}$                                    | $5^{+3}_{-2}$                  | $2^{+3}_{-1}$                                   | $3.26^{+1.87}_{-1.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.40_{-0.62}^{+0.97}$                                                                                     | $0.85^{+1.34}_{-0.65}$                                                                                                                                                                                                | $1.6{\pm}1.4$                  | $1.4{\pm}0.3$                  | $4.7 {\pm} 2.8$                | $0.00\pm0.89$                                                                                   |                | В                 |
| 459          | $6^{-3}_{-3}$                                   | $6^{+\bar{4}}_{-2}$            | 3                                               | $\begin{array}{r} 3.26 \substack{+1.27 \\ -1.27 \\ 1.18 \substack{+0.76 \\ -0.52 \end{array}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 1.40 \substack{-0.62 \\ -0.62 \end{array} \\ 0.67 \substack{+0.42 \\ -0.27 \end{array}$  | 0.70                                                                                                                                                                                                                  | $1.4{\pm}0.2$                  | $1.3{\pm}0.1$                  | $1.8{\pm}0.1$                  | $\begin{array}{c} 0.86_{-0.82} \\ 0.27_{-0.12}^{+0.18} \end{array}$                             | H              | А                 |
|              | -5                                              | -2                             |                                                 | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.27                                                                                                      |                                                                                                                                                                                                                       |                                |                                |                                | -0.12                                                                                           |                |                   |

Chandra Catalog: Photometry (continued)

| No. | $C_{net}$ FB                    | $C_{net}$ SB                   | $C_{net}$ HB                                                                                                                    | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                 | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                                     | Phot.<br>Flag | Quantile<br>Group |
|-----|---------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 460 | $36^{+8}_{-7}$                  | $30^{+7}_{-6}$                 | $6^{+5}_{-4}$                                                                                                                   | $9.27^{+2.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4.33_{-0.83}^{+0.98}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.59^{+1.36}_{-1.02}$                                                                                                                                                                                                                                                                                                                                                                                    | $1.0 {\pm} 0.1$ | $0.9{\pm}0.1$   | $1.8 \pm 1.7$   | $1.55_{-0.34}^{+0.38}$                                                                                                      |               | В                 |
| 461 | $9^{+5}_{-3}$                   | $3^{+3}_{-2}$                  | $6^{+4}_{-4}$                                                                                                                   | $2.09^{+1.03}_{-0.78}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.37^{+0.91}_{-0.65}$                                                                                                                                                                                                                                                                                                                                                                                    | $3.6 \pm 2.2$   | $1.6 \pm 1.2$   | $9.0{\pm}2.0$   | $1.10^{+0.95}$                                                                                                              |               | $\mathbf{C}$      |
| 462 | $12^{+6}$                       | $\alpha^{+\overline{5}}$       | $\begin{array}{c} 6^{+4}_{-3} \\ 4^{+3}_{-2} \end{array}$                                                                       | $1.43^{+0.71}_{-0.50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.07^{+0.35}_{-0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.87^{+0.83}_{-0.52}$                                                                                                                                                                                                                                                                                                                                                                                    | $1.0 {\pm} 0.5$ | $0.9{\pm}0.2$   | $1.9{\pm}0.4$   | $0.22^{+0.15}_{-0.12}$                                                                                                      |               | В                 |
| 463 | $19^{+8}_{-6}$                  | $3^{-3}_{-3}$<br>$3^{+4}_{-3}$ | $\begin{array}{c} -2 \\ 16^{+7} \\ 2^{+3} \\ 1^{+3} \\ 2^{+3} \\ 1^{+1} \\ 2^{+3} \\ 1^{+4} \\ 1^{+4} \\ 1^{-1} \\ \end{array}$ | $\begin{array}{r}9.27\substack{+2.08\\-1.81}\\2.09\substack{+1.03\\-0.78}\\1.43\substack{+0.71\\-0.50}\\6.70\substack{+2.64\\-2.26\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.43 \substack{+0.41 \\ -0.25 \\ 1.07 \substack{+0.35 \\ -0.53 \\ 0.67 \substack{+0.77 \\ -0.53 \\ 0.80 \substack{+0.45 \\ -0.30 \\ 0.72 \substack{+0.44 \\ -0.29 \\ -0.29 \end{array}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 1.59 \substack{+1.36\\-1.08}\\ 1.37 \substack{+0.91\\-0.65}\\ 0.87 \substack{+0.83\\-0.53}\\ 5.62 \substack{+2.48\\-2.09}\\ 0.47 \substack{+0.62\\-0.34}\\ 0.21 \substack{+0.58\\-0.21\\-0.21}\\ 0.43 \substack{+0.76\\-0.17\\-0.16 \substack{+0.47\\-0.17\\-0.16 \substack{+0.47\\-0.16}\\-0.11}\\ 3.81 \substack{+0.70\\-0.16\\-0.19\\-0.36\\0.30 \substack{+0.45\\-0.15}\end{array}$ | $2.5 {\pm} 0.4$ | $2.1{\pm}0.4$   | $3.4{\pm}2.3$   | $0.22^{+0.15}_{-0.13}$<br>$2.70^{+1.13}_{-0.99}$                                                                            |               | E                 |
| 464 | $9^{+4}_{-3}$                   | $7^{+4}_{-3}$                  | $2^{+3}_{-2}$                                                                                                                   | $6.70^{+2.04}_{-2.26}$<br>$1.85^{+0.88}_{-0.65}$<br>$1.45^{+0.85}_{-0.61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.80^{+0.45}_{-0.30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.47^{+0.62}_{-0.34}$                                                                                                                                                                                                                                                                                                                                                                                    | $1.5 {\pm} 0.3$ | $1.1 {\pm} 0.3$ | $1.9 {\pm} 0.5$ | $0.45_{-0.18}^{+0.23}$                                                                                                      |               | А                 |
| 465 | $7^{+4}$                        | $6^{+4}_{-2}$                  | $1^{+\bar{3}}_{-1}$                                                                                                             | $1.45_{-0.61}^{+0.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.72_{-0.29}^{+0.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.21_{-0.21}^{+0.58}$                                                                                                                                                                                                                                                                                                                                                                                    | $1.1 \pm 1.1$   | $1.0{\pm}0.2$   | $1.6 {\pm} 3.3$ | $0.27^{+0.19}_{-0.27}$<br>$0.49^{+0.29}_{-0.24}$                                                                            |               | А                 |
| 466 | $8^{+4}_{-3}$                   | $7^{+\bar{4}}_{-3}$            | $2^{+\bar{3}}_{-1}$                                                                                                             | $\begin{array}{c} 1.45 \substack{+0.85\\-0.61}\\ 2.35 \substack{+1.15\\-0.84}\\ 3.12 \substack{+0.84\\-0.75}\\ 3.51 \substack{+0.84\\-0.75\\-0.66}\\ 2.30 +0.96\\-0.73\\-0.73\\1.59 \substack{+0.64\\-0.76\\-0.73\\1.34 \substack{+0.89\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0.70\\-0$ | $\begin{array}{c} 0.72\substack{+0.44\\-0.29}\\ 1.10\substack{+0.61\\-0.41}\\ 2.36\substack{+0.44\\-0.34\\0.75\substack{+0.27\\-0.16\\-0.34}\\ 2.41+0.43\\-0.34\\-0.34\\-0.34\\0.35\substack{+0.49\\-0.34\\-0.34\\0.35\substack{+0.49\\-0.34\\-0.34\\-0.34\\0.35\substack{+0.49\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34\\-0.34$ | $0.43_{-0.37}^{+0.76}$                                                                                                                                                                                                                                                                                                                                                                                    | $1.3{\pm}0.4$   | $1.2{\pm}0.2$   | $1.7{\pm}0.9$   | $0.49_{-0.24}^{+0.29}$                                                                                                      |               | А                 |
| 467 | $28^{+7}_{-6}$                  | $26^{+7}_{-5}$                 | $1^{+4}_{-1}$                                                                                                                   | $3.12^{+0.84}_{-0.66}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2.36\substack{+0.44\\-0.34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.16\substack{+0.47\\-0.11}$                                                                                                                                                                                                                                                                                                                                                                             | $1.1{\pm}0.1$   | $0.9{\pm}0.1$   | $1.5{\pm}0.2$   | $0.54^{+0.15}_{-0.13}\ 2.12^{+0.46}_{-0.39}$                                                                                |               | А                 |
| 468 | $41^{+8}_{-7}$                  | $7^{+4}_{-3}$                  | $ \overset{-1}{34_{-6}^{+8}} \\ \overset{3+5}{2_{-2}^{+3}} \\ \overset{2+3}{3_{-3}^{+4}} \\ \end{array} $                       | $4.46^{+0.91}_{-0.75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.75^{+0.27}_{-0.16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3.81^{+0.87}_{-0.70}$                                                                                                                                                                                                                                                                                                                                                                                    | $3.0{\pm}0.2$   | $2.3{\pm}0.2$   | $3.8{\pm}0.3$   | $2.12^{+0.46}_{-0.39}$                                                                                                      |               | E                 |
| 469 | $34^{+8}_{-6}$                  | $31^{+7}_{-6}$                 | $3^{+5}_{-2}$                                                                                                                   | $3.51^{+0.82}_{-0.66}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2.41_{-0.34}^{+0.43}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.27^{+0.45}_{-0.19}$                                                                                                                                                                                                                                                                                                                                                                                    | $1.0{\pm}0.1$   | $0.9{\pm}0.1$   | $1.3{\pm}0.3$   | $\begin{array}{c} 2.12_{-0.39} \\ 0.56_{-0.11}^{+0.14} \end{array}$                                                         |               | А                 |
| 470 | $11^{+5}_{-4}$                  | $9^{+4}_{-3}$                  | $2^{+3}_{-2}$                                                                                                                   | $2.30^{+0.96}_{-0.73}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ${ \begin{array}{c} -0.34\\ 1.07 {+} 0.49\\ -0.36\\ 1.22 {+} 0.32\\ -0.22\\ -0.22 \end{array} }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.44^{+0.63}_{-0.36}$                                                                                                                                                                                                                                                                                                                                                                                    | $0.9{\pm}0.1$   | $0.8{\pm}0.0$   | $1.1{\pm}0.2$   | $0.33^{+0.14}_{-0.11}$                                                                                                      |               | А                 |
| 471 | $16^{+6}_{-5}$                  | $13^{+5}_{-4}$                 | $3^{+4}_{-3}$                                                                                                                   | $1.59^{+0.64}_{-0.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.22^{+0.32}_{-0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.30^{+0.45}_{-0.15}$                                                                                                                                                                                                                                                                                                                                                                                    | $1.2{\pm}0.7$   | $0.8{\pm}0.1$   | $2.3 \pm 1.4$   | $0.30_{-0.20}^{+0.21}$                                                                                                      |               | В                 |
| 472 | $11^{+7}_{-6}$                  | $15_{-4}^{-4}$                 | 8                                                                                                                               | $1.34^{+0.89}_{-0.70}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 1.45\substack{+0.41\\-0.29}\\ 4.33\substack{+0.84\\-0.72}\\ 0.68\substack{+0.41\\-0.27}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.05                                                                                                                                                                                                                                                                                                                                                                                                      | $1.2{\pm}0.3$   | $1.1{\pm}0.2$   | $1.5{\pm}0.2$   | $0.26^{+0.18}_{-0.15}$                                                                                                      | H             | А                 |
| 473 | $50^{+8}_{-7}$                  | $37^{+7}_{-6}$                 | $14^{+5}_{-4} \\ 1^{+3}_{-1}$                                                                                                   | $10.39^{+1.71}_{-1.49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $4.33^{+0.84}_{-0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 2.85 \substack{+1.05 \\ -0.82 \\ 0.25 \substack{+0.54 \\ -0.25 \\ 2.41 \substack{+2.06 \\ -1.66 \\ 4.82 \substack{+0.92 \\ -0.76 \\ 0.76 \end{array}}}$                                                                                                                                                                                                                                 | $1.4{\pm}0.2$   | $0.9{\pm}0.1$   | $2.1{\pm}0.6$   | $2.30_{-0.42}^{+0.46}$                                                                                                      |               | В                 |
| 474 | $7^{+4}_{-3}$                   | $6^{+4}_{-2}$                  | $1^{+3}_{-1}$                                                                                                                   | $10.39_{-1.49} \\ 1.42_{-0.56}^{+0.78}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.68^{+0.41}_{-0.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.25^{+0.54}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                    | $1.1{\pm}0.6$   | $1.0{\pm}0.1$   | $1.6{\pm}1.3$   | $2.30_{-0.42}$<br>$0.26_{-0.16}^{+0.19}$                                                                                    |               | А                 |
| 475 | $6^{+6}_{-5}$                   | 4                              | $7^{+6}_{-5}$                                                                                                                   | $2.25^{+2.14}_{-1.75}$<br>$5.44^{+0.96}_{-0.80}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.41^{+2.06}_{-1.66}$                                                                                                                                                                                                                                                                                                                                                                                    | $8.8 {\pm} 1.7$ | $7.2 \pm 2.0$   | $9.5{\pm}0.6$   | $3.18^{+3.09}_{-2.56}$                                                                                                      | - S -         | D                 |
| 476 | $52_{-8}^{+9}$                  | $7^{+5}_{-3}$                  | $46^{+9}_{-7}$                                                                                                                  | $5.44^{+0.96}_{-0.80}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.77_{-0.16}^{+0.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4.82^{+0.92}_{-0.76}$                                                                                                                                                                                                                                                                                                                                                                                    | $3.7{\pm}0.2$   | $2.8{\pm}0.3$   | $4.5\pm0.2$     | $3.20^{+0.59}_{-0.50}$                                                                                                      |               | D                 |
| 477 | $11^{+5}_{-3}$                  | $10^{+4}_{-3}$                 | $1^{+3}_{-1}$                                                                                                                   | $2.40^{+0.98}_{-0.74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.22^{+0.53}_{-0.39}$<br>$1.14^{+0.54}_{-0.40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.31_{-0.28}^{+0.18}$                                                                                                                                                                                                                                                                                                                                                                                    | $1.1{\pm}0.2$   | $1.0{\pm}0.1$   | $1.5 \pm 1.3$   | $0.42^{+0.20}_{-0.16}$                                                                                                      |               | А                 |
| 478 | $9^{+5}_{-4}$                   | $9^{+4}_{-3}$                  | 5                                                                                                                               | $2.40_{-0.74}^{+0.00}$ $2.01_{-0.87}^{+1.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.14^{+0.54}_{-0.40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.16                                                                                                                                                                                                                                                                                                                                                                                                      | $0.9{\pm}0.7$   | $0.8{\pm}0.2$   | $1.3 {\pm} 4.5$ | $0.42\substack{+0.20\\-0.16}\\0.28\substack{+0.27\\-0.26}$                                                                  | H             | А                 |
| 479 | 8                               | $3^{+3}_{-2}$                  | 5                                                                                                                               | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1.14 \substack{+0.04\\-0.40}\\ 0.30 \substack{+0.40\\-0.26}\\ 0.47 \substack{+0.41\\-0.25\\-0.25\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.01                                                                                                                                                                                                                                                                                                                                                                                                      | $0.8 \pm 9.2$   | $0.7 \pm 9.3$   | $1.0{\pm}9.0$   | 0.20                                                                                                                        | F - H         | А                 |
| 480 | $5^{+4}_{-3}$                   | $4^{+3}_{-2}$                  | $1^{+3}_{-1}$                                                                                                                   | $1.13^{+0.85}_{-0.58}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.47^{+0.41}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.33 \substack{+0.68 \\ -0.33 \atop -0.33} \\ 3.60 \substack{+1.78 \\ -1.47 \\ 0.25 \substack{+0.54 \\ -0.25} \\ 2.88 \substack{+0.81 \\ -9.63} \end{array}$                                                                                                                                                                                                                            | $1.5 {\pm} 1.9$ | $1.4{\pm}0.6$   | $4.6{\pm}1.9$   | $0.26\substack{+0.40\\-0.37}$                                                                                               |               | В                 |
| 481 | $14^{+7}_{-6}$                  | $1^{-2}_{-1}$                  | $13^{+6}_{-5}$<br>$1^{+3}_{-1}$                                                                                                 | $3.82^{+1.89}_{-1.60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.17^{+0.56}_{-0.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3.60^{+1.78}_{-1.47}$                                                                                                                                                                                                                                                                                                                                                                                    | $8.0 {\pm} 3.1$ | $4.3 {\pm} 2.5$ | $9.7 {\pm} 0.7$ | $4.87^{+3.06}_{-2.76}$                                                                                                      |               | $\mathbf{C}$      |
| 482 | $6^{+4}_{-3}$                   | $5^{+\bar{3}}_{-2}$            | $1^{+3}_{-1}$                                                                                                                   | $1.22^{+0.76}_{-0.52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.56_{-0.25}^{+0.39}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.25^{+0.54}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                    | $1.5 {\pm} 0.4$ | $1.2{\pm}0.2$   | $1.9{\pm}0.5$   | $0.29^{+0.19}_{-0.14}$<br>$1.88^{+0.56}_{-0.45}$                                                                            |               | А                 |
| 483 | $24^{+7}_{-5}$                  | 4                              | $25^{+7}_{-5}$                                                                                                                  | $2.78^{+0.81}_{-0.63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.88^{+0.81}_{-0.63}$                                                                                                                                                                                                                                                                                                                                                                                    | $4.2 {\pm} 0.3$ | $3.6{\pm}0.2$   | $4.8 {\pm} 0.3$ | $1.88^{+0.56}_{-0.45}$                                                                                                      | - S -         | D                 |
| 484 | $8^{+4}_{-3}$                   | $3^{+3}_{-2}$                  | $5^{+4}_{-2} \\ 2^{+3}_{-2}$                                                                                                    | $1.63^{+0.87}_{-0.63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.33\substack{+0.35\\-0.20}\\ 0.57\substack{+0.40\\-0.25}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.07^{+0.77}_{-0.51}$                                                                                                                                                                                                                                                                                                                                                                                    | $2.6{\pm}0.8$   | $1.6{\pm}0.5$   | $3.7{\pm}0.9$   | $\begin{array}{c} 1.88_{-0.45} \\ 0.68_{-0.34}^{+0.42} \end{array}$                                                         |               | $\mathbf{C}$      |
| 485 | $7^{+4}_{-3}$                   | $5^{+\bar{3}}_{-2}$            | $2^{+3}_{-2}$                                                                                                                   | $1.48^{+0.80}_{-0.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.57^{+0.40}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.50^{+0.61}_{-0.34}$                                                                                                                                                                                                                                                                                                                                                                                    | $1.6 \pm 0.5$   | $1.1\pm0.2$     | $2.6{\pm}0.4$   | $0.37_{-0.19}^{+0.23}$                                                                                                      |               | В                 |
| 486 | $8^{+6}_{-5}$                   | 3                              | $10^{+6}_{-5}$                                                                                                                  | $2.18^{+1.54}_{-1.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.74^{+1.54}_{-1.25}$                                                                                                                                                                                                                                                                                                                                                                                    | $5.7 \pm 1.3$   | $5.1\pm0.8$     | $6.9 {\pm} 2.3$ | $2.00^{+1.48}_{-1.24}$                                                                                                      | - S -         | D                 |
| 487 | $43^{+8}_{-7}$                  | $8^{+4}_{-3}$                  | $36^{+7}_{-6}$                                                                                                                  | $\begin{array}{c} 1.15 \pm 0.58\\ 3.82 \pm 1.89\\ 1.22 \pm 0.76\\ 1.22 \pm 0.76\\ 2.78 \pm 0.63\\ 1.63 \pm 0.63\\ 1.63 \pm 0.63\\ 1.48 \pm 0.67\\ 2.18 \pm 1.54\\ 2.18 \pm 1.54\\ 8.56 \pm 1.52\\ 8.56 \pm 1.51\\ 3.57 \pm 1.17\\ 3.57 \pm 1.17\\ 3.57 \pm 0.93\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.90^{+0.45}_{-0.32}\\0.62^{+0.44}_{-0.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 2.88 \substack{+0.81}{-0.63}\\ 1.07 \substack{+0.77\\-0.51}\\ 0.50 \substack{+0.61\\-0.34}\\ 2.74 \substack{+1.54\\-1.25\\-1.21\\-1.21\\2.55 \substack{+1.42\\-0.80\\-0.80\end{array}}$                                                                                                                                                                                                 | $3.6 {\pm} 0.4$ | $2.4{\pm}0.3$   | $4.9 {\pm} 0.2$ | $2.00 \pm 1.24 \\ 4.98 \pm 0.095 \\ 2.01 \pm 0.80 \\ -0.99$                                                                 |               | $\mathbf{C}$      |
| 488 | $16^{+5}_{-4}$                  | $5^{+3}_{-2}$                  | $11^{+5}_{-3}$                                                                                                                  | $3.57^{+1.17}_{-0.93}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.62^{+0.44}_{-0.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2.55^{+1.03}_{-0.80}$                                                                                                                                                                                                                                                                                                                                                                                    | $3.5 \pm 0.8$   | $2.0{\pm}0.4$   | $4.5 \pm 0.8$   | $2.01^{+0.80}_{-0.69}$                                                                                                      |               | С                 |
| 489 | $5^{+4}_{-3}$                   | $6^{+\bar{4}}_{-3}$            | 3                                                                                                                               | $3.57_{-0.93}$<br>$0.96_{-0.63}^{+0.87}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.62 \substack{+0.28\\-0.28}\\ 0.75 \substack{+0.45\\-0.31}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.72                                                                                                                                                                                                                                                                                                                                                                                                      | $1.1 {\pm} 0.2$ | $1.0 {\pm} 0.1$ | $1.3 \pm 0.3$   | $\begin{array}{c} 2.01 \\ -0.69 \\ 0.17 \\ -0.12 \\ -0.12 \end{array}$                                                      | H             | А                 |
| 490 | $26^{+7}_{-6}$                  | $24^{+7}_{-5}$                 | $2^{+4}_{-2} \\ 2^{+4}_{-2}$                                                                                                    | $2.74_{-0.60}^{+0.03}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2.01_{-0.30}^{+0.40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                           | $1.0 \pm 0.1$   | $0.9{\pm}0.0$   | $1.1 \pm 0.6$   | $0.44^{+0.13}_{-0.10}$                                                                                                      |               | А                 |
| 491 | $2^{+5}_{-2}$                   | 3                              | $2^{+4}_{-2}$                                                                                                                   | $2.74_{-0.60}$<br>$0.44_{-0.44}^{+0.96}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.52^{+0.94}_{-0.52}$                                                                                                                                                                                                                                                                                                                                                                                    | $2.2 \pm 7.8$   | $1.6 \pm 8.4$   | $2.4 \pm 7.6$   | $0.15_{-0.57}^{+0.64}$                                                                                                      | - S -         | А                 |
| 492 | $2^{+6}_{-2}$                   | $1^{+3}_{-1}_{+4}$             | 8                                                                                                                               | $0.48^{+1.60}_{-0.48}_{+0.95}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.20^{+0.32}_{-0.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.44                                                                                                                                                                                                                                                                                                                                                                                                      | $9.7 \pm 5.8$   | $9.2 \pm 6.4$   | $9.7{\pm}1.6$   | $0.75^{+2.51}_{-0.87}$                                                                                                      | H             | D                 |
| 493 | $11^{+5}_{-3}$<br>$5^{+7}_{-5}$ | $7^{+4}_{-3}$<br>$1^{+4}_{-1}$ | $\substack{4^{+3}_{-2}\\4^{+6}_{-4}}$                                                                                           | $2.26^{+0.95}_{-0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.20\substack{+0.52\\-0.20}\\ 0.81\substack{+0.45\\-0.31}\\ 0.11\substack{+0.46\\-0.22}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 2.44\\ 0.86 \substack{+0.72\\-0.46}\\ 1.07 \substack{+1.49\\-1.07\\-1.07\\1.44 \substack{+0.67\\-0.48\\0.12 \substack{+0.47\\-0.12}\end{array}$                                                                                                                                                                                                                                         | $1.6 \pm 0.3$   | $1.5 \pm 0.2$   | $2.4{\pm}0.9$   | $\begin{array}{c} 0.75\substack{+2.51\\-0.87\\0.58\substack{+0.27\\-0.22\\0.75\substack{+1.26\\-1.120\\-1.120}\end{array}}$ |               | A                 |
| 494 | $5^{+}_{-5}$                    | $1^{+4}_{-1}$                  | $4^{+0}_{-4}$                                                                                                                   | $1.25^{+1.56}_{-1.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.11^{+0.40}_{-0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.07^{+1.49}_{-1.07}$                                                                                                                                                                                                                                                                                                                                                                                    | $3.7 \pm 4.2$   | $3.2 \pm 2.5$   | $8.6 \pm 5.0$   | $0.75^{+1.20}_{-1.12}$                                                                                                      |               | С                 |
| 495 | $27^{+7}_{-6}$                  | $14^{+5}_{-4}$                 | $12^{+0}_{-4}$                                                                                                                  | $2.86^{+0.80}_{-0.62}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.98^{+0.32}_{-0.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.44^{+0.07}_{-0.48}$                                                                                                                                                                                                                                                                                                                                                                                    | $2.1 \pm 0.4$   | $1.2 \pm 0.2$   | $3.3 \pm 0.7$   | $0.96^{+0.32}_{-0.27}$                                                                                                      |               | В                 |
| 496 | $6^{+4}_{-3}_{+5}$              | $6^{+4}_{-2}_{+3}$             | $\begin{array}{r} {}^{-4}_{12+6}\\ 12^{+6}_{-4}\\ 1^{+2}_{-1}\\ 4^{+4}_{-3}\end{array}$                                         | $1.27^{+0.75}_{-0.51}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.67^{+0.41}_{-0.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.12^{+0.47}_{-0.12}$                                                                                                                                                                                                                                                                                                                                                                                    | $0.9 \pm 0.2$   | $0.9{\pm}0.1$   | $1.0 \pm 0.5$   | $0.19^{+0.12}_{-0.09}$                                                                                                      |               | A                 |
| 497 | $8^{+5}_{-4}$                   | $4^{+3}_{-2}$                  | $4^{+4}_{-3}$                                                                                                                   | $\begin{array}{c} 0.48 \substack{+1.60\\-0.48}\\ 2.26 \substack{+0.95\\-0.72}\\ 1.25 \substack{+1.58\\-1.25}\\ 2.86 \substack{+0.80\\-0.62}\\ 1.27 \substack{+0.75\\-0.51}\\ 1.94 \substack{+1.11\\-0.85}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.57_{-0.30}^{+0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.95\substack{+0.93\\-0.64}$                                                                                                                                                                                                                                                                                                                                                                             | $4.1 \pm 1.9$   | $1.8 \pm 1.2$   | $6.2 \pm 2.1$   | $1.28_{-0.82}^{+0.94}$                                                                                                      |               | $\mathbf{C}$      |

Chandra Catalog: Photometry (continued)

| No.                | $C_{net}$ FB                    | $C_{net}$ SB                      | $C_{net}$ HB                                               | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                   | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                         | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                       | $E_{50}$ (keV)                 | $E_{25}$ (keV)                 | $E_{75}$ (keV)                 | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                                  | Phot.<br>Flag | Quantile<br>Group |
|--------------------|---------------------------------|-----------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 498                | $3^{+6}_{-3}$                   | $8^{+5}_{4}$                      | 6                                                          | $0.78 \pm 1.49$                                                                                                             | $1.03\substack{+0.63 \\ -0.48}$                                                                                                   | 1.40                                                                                                                                                            | 11109                          | 10109                          | $1.2{\pm}0.4$                  | $0.13_{-0.14}^{+0.26}$                                                                                                   | H             | ^                 |
| $498 \\ 499$       | $3^{-3}_{-3}$<br>$14^{+6}_{-5}$ | $^{\circ}{}^{-4}_{11^{+5}_{-4}}$  | $3^{+5}_{-2}$                                              | $\begin{array}{c} 0.78\substack{+1.49\\-0.78}\\ 1.66\substack{+0.73\\-0.55}\end{array}$                                     | 10.25                                                                                                                             | 1.49                                                                                                                                                            | $1.1 \pm 0.3$<br>$1.3 \pm 0.3$ | $1.0\pm0.2$<br>$1.0\pm0.2$     | $1.2 \pm 0.4$<br>$1.4 \pm 0.4$ | $\begin{array}{c} 0.13 \substack{-0.14 \\ 0.34 \substack{+0.16 \\ -0.13 \end{array}} \end{array}$                        | п             | A<br>B            |
| 4 <i>33</i><br>500 | 5+4                             | 2+3                               | $_{2^{+3}}^{3-2}$                                          | . 0.00                                                                                                                      | $\begin{array}{c} 1.20\substack{+0.33\\-0.23}\\ 0.39\substack{+0.41\\-0.22}\end{array}$                                           | $\begin{array}{c} 0.34\substack{+0.56\\-0.16}\\ 0.57\substack{+0.71\\-0.40}\\ 0.27\substack{+0.77\\-0.27\\0.11\substack{+0.45\\-0.11}\\-0.11\\-0.14\end{array}$ | $1.5 \pm 0.5$<br>$1.7 \pm 1.0$ | $1.0\pm0.2$<br>$1.2\pm0.3$     | $3.3 \pm 1.2$                  | $0.34_{-0.13}$<br>$0.33^{+0.30}$                                                                                         |               | B                 |
| 501                | $6^{\pm \overline{4}}$          | 5 <sup>4</sup>                    | $2^{+3}_{-2} \\ 1^{+3}_{-1} \\ 1^{+2}_{-1} \\ 1^{+2}_{-1}$ | ${}^{1.24\substack{+0.86\\-0.57}}_{1.41\substack{+0.98\\-0.73}}$                                                            | $0.65^{+0.22}_{-0.22}$                                                                                                            | $0.27^{+0.77}$                                                                                                                                                  | $1.3\pm0.3$                    | $1.2 \pm 0.0$<br>$1.2 \pm 0.1$ | $1.8 \pm 0.6$                  | $0.33^{+0.130}_{-0.25}$<br>$0.30^{+0.22}_{-0.17}$                                                                        |               | A                 |
| 502                | $11^{+5}_{-3}$                  | $11^{+4}$                         | $1^{+1}_{1^{+2}}$                                          | $\begin{array}{c} 1.41\substack{+0.98\\-0.73}\\ 2.20\substack{+0.88\\-0.66}\\ 1.40\end{array}$                              | $0.65^{+0.45}_{-0.30}$<br>$1.22^{+0.50}_{-0.37}$                                                                                  | $0.11^{+0.45}_{-0.11}$                                                                                                                                          | $1.1 \pm 0.2$                  | $0.9\pm0.1$                    | $1.3 \pm 2.4$                  | $0.30_{-0.17}^{+0.17}$<br>$0.39_{-0.14}^{+0.17}$                                                                         |               | A                 |
| 503                | $23^{+6}_{-5}$                  | $1^{+3}_{-1}$                     | $22^{+6}_{-5}$                                             | $5.34^{+1.49}_{-1.24}$                                                                                                      | $0.14^{+0.36}_{-0.14}$                                                                                                            | $5.20^{+1.40}$                                                                                                                                                  | $4.9 \pm 0.6$                  | $3.4 \pm 0.5$                  | $6.3 \pm 0.6$                  | $4.15^{+1.28}_{-1.10}$                                                                                                   |               | D                 |
| 504                | $12^{-5}$                       | 4                                 | $3^{+6}_{-3}$                                              | 2.82                                                                                                                        | 0.50                                                                                                                              | $ \overset{-1.22}{0.79} \\ \overset{-1.39}{_{-0.79}} \\ 3.81 \overset{+0.92}{_{-0.74}} $                                                                        | $5.2 \pm 4.8$                  | $2.9 \pm 7.1$                  | $7.6 \pm 7.1$                  | 2.37                                                                                                                     | F S -         | $\mathbf{C}$      |
| 505                | $44^{+9}_{-7}$                  | $12^{+5}_{-4}$                    | $32^{+8}_{-6}$                                             | $5.10^{+1.02}_{-0.84}$                                                                                                      | $1.29^{+0.35}_{-0.24}$                                                                                                            | $3.81^{+0.92}_{-0.74}$                                                                                                                                          | $3.5 {\pm} 0.3$                | $1.9{\pm}0.3$                  | $4.1 {\pm} 0.9$                | $2.84^{+0.61}_{-0.52}$<br>$0.47^{+0.20}_{-0.15}$                                                                         |               | $\mathbf{C}$      |
| 506                | $11^{+5}_{2}$                   | $11^{+\frac{1}{4}}$               | 4                                                          | $a a a \pm 0.99$                                                                                                            | $\begin{array}{r} 1.29 \substack{+0.32 \\ -0.24} \\ 1.34 \substack{+0.56 \\ -0.42} \\ 2.82 \substack{+0.49 \\ -0.38} \end{array}$ | 0.81                                                                                                                                                            | $1.2 {\pm} 0.1$                | $1.1{\pm}0.2$                  | $1.3 {\pm} 0.2$                | $0.47_{-0.15}^{+0.20}$                                                                                                   | H             | А                 |
| 507                | $42^{+9}_{-7}$                  | $31^{+7}_{-6}$                    | $11^{+6}_{-4}$                                             | $2.39_{-0.75}$<br>$4.94_{-0.82}^{+0.99}$                                                                                    | $2.82^{+0.42}_{-0.38}$                                                                                                            | $0.92\substack{+0.57\\-0.35}$                                                                                                                                   | $1.1{\pm}0.1$                  | $0.9{\pm}0.1$                  | $1.5 {\pm} 0.3$                | $0.85\substack{+0.19\\-0.17}$                                                                                            |               | В                 |
| 508                | $30^{+\dot{7}}_{-6}$            | $2^{+3}$                          | $28^{+7}_{6}$                                              | $7.71^{+1.85}$                                                                                                              | $0.31^{+0.45}$                                                                                                                    | $7.33^{+1.81}_{-1.53}$                                                                                                                                          | $4.4 {\pm} 0.4$                | $3.2{\pm}0.4$                  | $4.9{\pm}0.4$                  | $5.45^{+1.39}_{-1.21}$                                                                                                   |               | D                 |
| 509                | $27^{+6}_{5}$                   | $1^{+2}_{-1}$                     | $26^{+6}_{-5}$                                             | $5.20^{\pm1.21}$                                                                                                            | $0.10^{+0.26}_{-0.09}$                                                                                                            | $5.13^{+1.22}_{-1.01}$                                                                                                                                          | $4.8{\pm}0.4$                  | $3.9{\pm}0.4$                  | $5.9{\pm}1.0$                  | $4.03^{+1.00}_{-0.85}$                                                                                                   |               | D                 |
| 510                | $8^{+5}_{-3}$                   | $7^{+\bar{4}}_{-3}$               | $1^{+3}$                                                   |                                                                                                                             | $0.86\substack{+0.48\\-0.35}$                                                                                                     | $0.13^{+0.71}_{-0.13}$<br>$3.38^{+2.12}_{-1.54}$                                                                                                                | $1.2{\pm}0.6$                  | $1.1{\pm}0.1$                  | $1.4{\pm}2.5$                  |                                                                                                                          |               | А                 |
| 511                | $7^{+4}_{2}$                    | 4                                 | $7^{+\bar{4}}_{-3}$                                        |                                                                                                                             | 1.06                                                                                                                              | $3.38^{+2.12}_{-1.54}$                                                                                                                                          | $5.0{\pm}1.9$                  | $3.1{\pm}1.1$                  | $7.2 {\pm} 1.7$                | $\begin{array}{c} 0.33\substack{+0.24\\-0.21}\\ 2.79\substack{+2.02\\-1.65}\end{array}$                                  | - S -         | $\mathbf{C}$      |
| 512                | $15^{+7}_{-6}$                  | $5^{+4}_{-3}$                     | $7^{+4}_{-3}$<br>$9^{+6}_{-5}$<br>$7^{+4}_{-3}$            | $3.19^{+1.44}_{-1.22}$                                                                                                      | $\begin{array}{c} 0.68\substack{+0.52\\-0.38}\\ 0.28\substack{+0.40\\-0.19} \end{array}$                                          | $3.38_{-1.54}$<br>$2.04_{-1.03}^{+1.28}$                                                                                                                        | $3.3{\pm}1.8$                  | $1.0{\pm}1.0$                  | $5.5{\pm}2.0$                  | $1.70^{+1.19}_{-1.12}$                                                                                                   |               | $\mathbf{C}$      |
| 513                | $9^{+4}_{2}$                    | $2^{+3}_{-1}$                     | $7^{+4}_{-3}$                                              | $2.20^{+1.06}$                                                                                                              | $0.28^{+0.40}_{-0.19}$                                                                                                            | $1.75\substack{+1.09\\-0.67}\\1.86\substack{+0.89\\-0.65}$                                                                                                      | $2.4{\pm}0.5$                  | $2.0{\pm}0.2$                  | $3.4{\pm}0.7$                  | $0.86^{+0.45}_{-0.25}$                                                                                                   |               | E                 |
| 514                | $9_{-3}^{-3}$                   | 3                                 | $9^{+\tilde{4}}_{-3}$                                      | $1 \circ 1 + 0.87$                                                                                                          | 0.33                                                                                                                              | $1.86^{+0.89}_{-0.65}$                                                                                                                                          | $4.4{\pm}0.4$                  | $4.1{\pm}0.1$                  | $4.9{\pm}1.9$                  | $1.27^{+0.62}$                                                                                                           | - S -         | E                 |
| 515                | $7^{+5}_{-4}$                   | $7^{+4}_{-3}$                     | 5                                                          | $1.81_{-0.63}^{+0.01}$<br>$1.66_{-0.88}^{+1.14}$                                                                            | $0.96\substack{+0.54 \\ -0.38}$                                                                                                   | 1.24                                                                                                                                                            | $1.5 {\pm} 1.4$                | $1.2{\pm}0.3$                  | $1.8 {\pm} 4.5$                | $0.40^{+0.46}_{-0.44}$                                                                                                   | H             | А                 |
| 516                | $14^{+5}_{-4}$                  | 3                                 | $15^{+5}_{-4} \\ 2^{+3}_{-1}$                              | $\begin{array}{c} 1.66 \substack{+0.88\\-0.88}\\ 2.96 \substack{+1.02\\-0.80}\\ 0.89 \substack{+0.66\\-0.42}\\ \end{array}$ | 0.31                                                                                                                              | $3.06^{+1.04}_{-0.81}$<br>$0.33^{+0.53}_{-0.26}$                                                                                                                | $4.0{\pm}0.8$                  | $2.9{\pm}0.4$                  | $5.7{\pm}0.9$                  | $1.00\pm0.77$                                                                                                            | - S -         | D                 |
| 517                | $5^{+3}_{-2}$                   | $3^{+3}_{-2}$                     | $2^{+3}_{-1}$                                              | $0.89^{+0.66}_{-0.42}$                                                                                                      | $0.33_{-0.18}^{+0.33}$                                                                                                            | $0.33^{+0.53}_{-0.26}$                                                                                                                                          | $1.7 {\pm} 0.3$                | $1.6{\pm}0.2$                  | $2.3 {\pm} 0.3$                | $1.92_{-0.65}$<br>$0.24_{-0.12}^{+0.19}$                                                                                 |               | А                 |
| 518                | $7^{+\overline{5}}_{-4}$        | $4^{+\bar{4}}_{-2}$               | $3^{+4}_{-3}\\6^{+4}_{-1}$                                 | 1 = 4 + 1.20                                                                                                                | $\begin{array}{c} 0.52\substack{+0.48\\-0.32}\\ 3.28\substack{+0.51\\-0.41}\end{array}$                                           | $\begin{array}{c} 0.03 \pm 0.20 \\ 0.64 \pm 0.03 \\ 0.28 \pm 0.80 \\ -0.28 \end{array}$                                                                         | $1.6 {\pm} 0.7$                | $1.3 \pm 0.3$                  | $2.4{\pm}1.1$                  | $0.41^{+0.36}_{-0.31}$                                                                                                   |               | А                 |
| 519                | $44^{+9}_{-7}$                  | $42^{+8}_{-7}$                    | $6^{+4}_{-1}$                                              | $4.79^{+0.95}_{-0.81}$                                                                                                      | $3.28^{+0.51}_{-0.41}$                                                                                                            | $0.28^{+0.80}_{-0.28}$                                                                                                                                          | $1.1 \pm 0.1$                  | $0.8 {\pm} 0.1$                | $1.3 \pm 0.2$                  | $0.82^{+0.17}_{-0.14}$                                                                                                   |               | А                 |
| 520                | $12^{+5}_{-4}$                  | 3                                 | $13^{+5}_{-4}$                                             | $2.39^{+0.90}_{-0.69}$                                                                                                      | 0.29                                                                                                                              | $2.46^{+0.92}_{-0.71}$                                                                                                                                          | $4.9 {\pm} 0.2$                | $4.7 \pm 0.6$                  | $5.5 \pm 0.4$                  | $1.88^{+0.14}_{-0.55}$                                                                                                   | - S -         | $\mathbf{E}$      |
| 521                | $16^{+7}_{-5}$                  | 5                                 | $18^{+7}_{-5}$                                             | $2.39^{+0.30}_{-0.69}\\1.82^{+0.82}_{-0.64}\\0.75^{+0.72}_{-0.43}$                                                          | 0.32                                                                                                                              | $\begin{array}{c} 0.123 \pm 0.238\\ 2.46 \pm 0.92\\ -0.71\\ 2.12 \pm 0.64\\ 0.78 \pm 0.73\\ 0.78 \pm 0.74\end{array}$                                           | $4.6 {\pm} 0.5$                | $4.2 \pm 0.5$                  | $5.8 {\pm} 0.4$                | $\begin{array}{c} 1.88 \substack{+0.55\\-0.55}\\ 1.34 \substack{+0.62\\-0.49}\\ 0.65 \substack{+0.63\\-0.38}\end{array}$ | - S -         | E                 |
| 522                | $3^{+3}_{-2}$                   | 3                                 | $3^{+3}_{-2}$                                              | $0.75_{-0.43}^{+0.72}$                                                                                                      | 0.34                                                                                                                              | $0.78^{+0.73}_{-0.44}$                                                                                                                                          | $5.4 \pm 0.7$                  | $4.5 \pm 0.4$                  | $6.2 \pm 0.4$                  | $0.65^{+0.03}_{-0.38}$                                                                                                   | - S -         | D                 |
| 523                | $5 \\ 11 + 5$                   | $\frac{2}{1+2}$                   | $5_{11+4}$                                                 | 1.07                                                                                                                        | 0.31                                                                                                                              | 1.17                                                                                                                                                            | $5.2 \pm 4.8$                  | $2.9 \pm 7.1$                  | $7.6 \pm 7.1$                  | 0.90                                                                                                                     | F S H         | C                 |
| 524                | $11^{+5}_{-3}_{-3}$             | $1^{+2}_{-1}_{4^{+3}}$            | $11^{+4}_{-3}$                                             | $2.37^{+0.96}_{-0.73}\\0.69^{+0.72}_{-0.46}$                                                                                | $0.09^{+0.28}_{-0.09}$                                                                                                            | $2.26^{+0.95}_{-0.71}$                                                                                                                                          | $4.4 \pm 0.4$                  | $3.8 \pm 0.7$                  | $5.2 \pm 0.9$                  | $1.66^{+0.69}_{-0.53}$                                                                                                   |               | E                 |
| $525 \\ 526$       | $3^{+3}_{-2}$<br>$15^{+5}_{-4}$ | $4^{+3}_{-2}_{3}$                 | $3 \\ 15^{+5}_{-4}$                                        | $0.09_{-0.46}$<br>$3.00_{-0.79}^{+1.02}$                                                                                    | $0.43^{+0.39}_{-0.23}$<br>0.31                                                                                                    | 0.66                                                                                                                                                            | $1.1 \pm 0.2$<br>$4.8 \pm 0.4$ | $0.9 \pm 0.1$<br>$4.1 \pm 0.4$ | $1.2 \pm 0.1$<br>$5.3 \pm 0.6$ | $0.13^{+0.13}_{-0.09}$                                                                                                   | H<br>- S -    | A<br>E            |
| $520 \\ 527$       | $15^{+}_{-4}$<br>$26^{+7}_{-6}$ | $1^{+3}_{-1}$                     | $15^{+4}_{-4}$<br>$25^{+7}_{-6}$                           | $3.00_{-0.79}$<br>$3.05^{+0.86}$                                                                                            | $0.12 \pm 0.33$                                                                                                                   | $3.08^{+1.04}_{-0.81}$                                                                                                                                          | $4.8 \pm 0.4$<br>$4.0 \pm 0.3$ | $4.1\pm0.4$<br>$3.2\pm0.3$     | $3.5 \pm 0.0$<br>$4.5 \pm 0.4$ | $2.33\substack{+0.82\\-0.65}$ $1.97\substack{+0.57\\-0.46}$                                                              | - 5 -         | E                 |
| 527<br>528         |                                 | $8^{+1}_{-1}_{-3}$                | $1^{23}_{-6}_{-1}$                                         | $\begin{array}{c} 3.05\substack{+0.86\\-0.68}\\ 1.65\substack{+0.80\\-0.58}\\ 6.21\substack{+1.02\\-0.86}\end{array}$       | $0.13\substack{+0.33 \\ -0.13 \\ 0.89\substack{+0.45 \\ -0.32}$                                                                   | $\begin{array}{c} 2.97\substack{+0.85\\-0.66}\\ 0.13\substack{+0.46\\-0.13}\\ 2.23\substack{+0.73\\-0.51}\\ \end{array}$                                        | $4.0\pm0.3$<br>$1.0\pm0.2$     | $0.8 \pm 0.1$                  | $4.3 \pm 0.4$<br>$1.3 \pm 0.6$ | $1.97_{-0.46}$<br>0.26 <sup>+0.14</sup>                                                                                  |               | A                 |
| $528 \\ 529$       | $60^{+10}_{-8}$                 | 20+8                              | $21^{-1}_{-5}$                                             | $6.21^{\pm1.03}_{\pm1.02}$                                                                                                  | $\begin{array}{c} 0.89 \substack{+0.32 \\ -0.32} \\ 2.30 \substack{+0.47 \\ -0.38} \end{array}$                                   | $0.13_{-0.13}$                                                                                                                                                  | $1.0\pm0.2$<br>$1.5\pm0.6$     | $0.8 \pm 0.1$<br>$1.1 \pm 0.1$ | $1.3\pm0.0$<br>$1.8\pm1.3$     | $0.26^{+0.14}_{-0.10}\\1.45^{+0.63}_{-0.62}$                                                                             |               | A                 |
| 529<br>530         | $12^{+5}$                       | $50^{-6}_{-2}$                    | $7^{+4}_{-3}$                                              | $9.44 \pm 0.94$                                                                                                             | $2.30_{-0.38}$<br>$0.56_{-0.25}^{+0.39}$                                                                                          | $1 E0 \pm 0.80$                                                                                                                                                 | $1.3 \pm 0.0$<br>$2.4 \pm 0.6$ | $1.1\pm0.1$<br>$1.6\pm0.3$     | $1.8 \pm 1.3$<br>$3.8 \pm 1.7$ | $0.95^{+0.44}_{-0.37}$                                                                                                   |               | A<br>C            |
| $530 \\ 531$       | $12_{-4} \\ 13_{-4}^{+5}$       | $\frac{3^{-2}}{3}$                | $^{\prime}_{13^{+5}_{-4}}$                                 | 2.44 - 0.72<br>2 36 $+ 0.89$                                                                                                | 0.29                                                                                                                              | 242+0.91                                                                                                                                                        | $2.4\pm0.0$<br>$4.2\pm0.3$     | $1.0\pm0.3$<br>$3.8\pm0.6$     | $5.0 \pm 0.9$                  | $1.61 \pm 0.62$                                                                                                          | - S -         | E                 |
| 532                | $6^{+4}_{-3}$                   | $2^{+3}_{-1}$                     | $4^{+3}_{-2}$                                              | $2.36^{+0.89}_{-0.68}$<br>$1.29^{+0.79}_{-0.54}$                                                                            | $a_{22} \pm 0.32$                                                                                                                 |                                                                                                                                                                 | $4.2 \pm 0.3$<br>$3.4 \pm 1.1$ | $3.8 \pm 0.0$<br>$2.0 \pm 0.7$ | $3.0 \pm 0.9$<br>$4.8 \pm 0.6$ |                                                                                                                          | - 5 -         | C E               |
| 533                | $10^{+4}$                       | $8^{+4}$                          | $\frac{4-2}{2+3}$                                          | $\begin{array}{r} 1.29\substack{+0.54\\-0.54}\\ 2.55\substack{+1.12\\-0.83}\\ 1.72\substack{+0.83\\-0.60}\end{array}$       | $\begin{array}{c} 0.22 \substack{+0.02\\-0.15}\\ 1.21 \substack{+0.61\\-0.43}\\ 0.58 \substack{+0.40\\-0.25}\end{array}$          | $\begin{array}{c} 0.93 \substack{+0.12\\-0.46}\\ 0.47 \substack{+0.71\\-0.34}\\ 0.75 \substack{+0.65\\-0.39}\end{array}$                                        | $3.4 \pm 1.1$<br>$1.3 \pm 0.4$ | $2.0\pm0.7$<br>$1.0\pm0.2$     | $4.8 \pm 0.0$<br>$1.8 \pm 1.4$ | $0 = 4 \pm 0.28$                                                                                                         |               | A                 |
| 533                | $a^{-3}$                        | $5^{\circ}_{-3}_{5^{\circ}_{-2}}$ | $\begin{array}{c} 2^{+3}_{-1} \\ 4^{+3}_{-2} \end{array}$  | $1.72^{\pm 0.83}$                                                                                                           | $0.58^{+0.43}$                                                                                                                    | 0.47 - 0.34<br>$0.75^{+0.65}$                                                                                                                                   | $1.3 \pm 0.4$<br>$1.9 \pm 0.9$ | $1.0\pm0.2$<br>$1.7\pm0.3$     | $1.8 \pm 1.4$<br>$3.7 \pm 1.6$ | $0.54_{-0.23}$<br>$0.54_{-0.31}^{+0.36}$                                                                                 |               | B                 |
| 535                | $6^{-3}_{-3}$                   | $^{1+3}$                          | $5^{+2}_{-3}$                                              | $1.24^{\pm 0.92}$                                                                                                           | $0.38_{-0.25}$<br>$0.13_{-0.13}^{+0.33}$                                                                                          | $1.04^{+0.87}$                                                                                                                                                  | $4.1 \pm 3.9$                  | $1.7 \pm 0.3$<br>$2.2 \pm 2.2$ | $9.1 \pm 2.4$                  | $0.81^{\pm 0.97}$                                                                                                        |               | C                 |
| 536                | $9^{+4}_{-3}$                   | $^{-1}_{8+4}$                     | $1^{+2}_{-1}$                                              | $1.65^{+0.69}_{-0.58}$                                                                                                      | $0.19_{-0.13}$<br>$0.89_{-0.32}^{+0.45}$                                                                                          | $0.12^{+0.46}_{-0.12}$                                                                                                                                          | $1.1\pm0.3$                    | $1.0\pm0.1$                    | $1.6 \pm 1.4$                  | $0.20 \pm 0.16$                                                                                                          |               | A                 |
| 000                | 0-3                             | 0-3                               | 1-1                                                        | -0.58                                                                                                                       | -0.32                                                                                                                             | -0.12                                                                                                                                                           | 1.1 - 0.0                      | 1.010.1                        | 1.011.1                        | 0.29 - 0.13                                                                                                              |               | <u> </u>          |

Chandra Catalog: Photometry (continued)

| No.               | $C_{net}$ FB                                         | $C_{net}$ SB                 | $C_{net}$ HB                                                                                                                         | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                           | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                    | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                       | $E_{50}$ (keV)                 | $E_{25}$ (keV)                 | $E_{75}$ (keV)                 | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                                           | Phot.<br>Flag | Quantile<br>Group |
|-------------------|------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 537               | $6^{+4}_{-3}$                                        | $1^{+2}_{-1}$                | $5^{+4}_{-2}$                                                                                                                        | $\begin{array}{c} 1.42 \substack{+0.89\\-0.60}\\ 2.01 \substack{+0.76\\-0.63}\\ 1.06 \substack{+0.69\\-0.63}\\ 1.06 \substack{+0.91\\-0.68}\\ 1.25 \substack{+0.84\\-0.85}\\ 1.78 \substack{+0.87\\-0.65\\-3.11 \substack{+1.31\\-1.94}\end{array}$ | $0.11^{+0.31}$                                                                                                                                                                                               | $1.26^{+0.86}$                                                                                                                                                                                                                                                                  | $4.5 \pm 0.9$                  | $4.1 \pm 1.0$                  | $5.8 {\pm} 0.5$                | $1.02^{+0.67}_{-0.48}$                                                                                                            |               | Е                 |
| 538               | $18^{+7}_{-5}$                                       | $10^{+5}$                    | $8^{+6}_{-3}$                                                                                                                        | $2.01^{+0.78}$                                                                                                                                                                                                                                      | $\begin{array}{c} 0.11\substack{+0.31\\-0.11}\\ 1.10\substack{+0.32\\-0.21}\\ 0.81\substack{+0.48\\-0.33}\end{array}$                                                                                        | ${\begin{array}{c} 1.26\substack{+0.86\\-0.57}\\ 0.88\substack{+0.66\\-0.31 \end{array}}$                                                                                                                                                                                       | $1.4\pm0.3$                    | $1.1 \pm 0.2$                  | $1.6 \pm 0.2$                  | $0.45^{+0.20}_{-0.17}$                                                                                                            |               | B                 |
| 539               |                                                      | $6^{+4}_{-3}$                | $^{-3}_{3}$                                                                                                                          | $1.06^{+0.89}_{-0.61}$                                                                                                                                                                                                                              | $0.81^{+0.48}_{-0.21}$                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 | $1.1\pm0.2$                    | $1.0\pm0.2$                    | $1.3 \pm 0.3$                  | $0.18^{+0.16}$                                                                                                                    | H             | A                 |
| 540               | $5^{+4}_{-3}$<br>$5^{+4}_{-3}$                       | 3                            |                                                                                                                                      | $1.06^{+0.91}_{-0.63}$                                                                                                                                                                                                                              | 0.37                                                                                                                                                                                                         | $\begin{array}{c} 0.66\\ 1.14^{+0.90}_{-0.66}\\ 1.07^{+0.81}_{-0.51}\\ 1.24^{+0.79}_{-0.54}\\ 1.75^{+1.10}_{-0.82}\\ 0.32^{+0.53}_{-0.26}\\ 1.01^{+1.06}_{-0.83}\\ 1.02^{+0.84}_{-0.84}\\ 1.02^{+0.65}_{-0.84}\\ 3.07^{+0.84}_{-0.67}\\ 0.88^{+1.45}_{-0.88}\\ 1.08\end{array}$ | $6.8 \pm 1.5$                  | $6.5 \pm 0.6$                  | $9.4 \pm 1.3$                  | $\begin{array}{c} 0.13 \pm 0.12 \\ 1.16 \pm 0.78 \\ 0.54 \pm 0.78 \\ 0.54 \pm 0.32 \\ 0.90 \pm 0.57 \\ 0.90 \pm 0.57 \end{array}$ | - S -         | D                 |
| 541               | $5^{+3}_{-2}$                                        | $1^{+2}_{-1}$                | $5^{+4}_{-3} \\ 5^{+2}_{-2} \\ 6^{+4}_{-3} \\ 7^{+3}_{-3} \\ 2^{+1}_{-14} \\ 4^{+3}_{-2} \\ 4^{+2}_{-2}$                             | $1.25^{+0.84}_{-0.55}$                                                                                                                                                                                                                              | $0.12^{+0.31}_{-0.11}\ 0.32^{+0.34}_{-0.19}$                                                                                                                                                                 | $1.07^{+0.81}_{-0.51}$                                                                                                                                                                                                                                                          | $2.7 \pm 1.0$                  | $2.0{\pm}0.4$                  | $3.8 \pm 1.2$                  | $0.54^{+0.42}_{-0.22}$                                                                                                            |               | Е                 |
| 542               | $9^{+4}_{-3}$                                        | $3^{+3}$                     | $6^{+4}_{-3}$                                                                                                                        | $1.78^{+0.87}_{-0.65}$                                                                                                                                                                                                                              | $0.32_{-0.19}^{+0.34}$                                                                                                                                                                                       | $1.24_{-0.54}^{+0.79}$                                                                                                                                                                                                                                                          | $3.2{\pm}1.3$                  | $1.6 {\pm} 0.8$                | $5.2 {\pm} 0.8$                | $0.90_{-0.49}^{+0.57}$                                                                                                            |               | $\mathbf{C}$      |
| 543               | $12^{+5}_{-4}$                                       | $6^{-2}_{-3}$                | $7^{+4}_{-3}$                                                                                                                        | $3.11^{+1.31}_{-1.04}$                                                                                                                                                                                                                              | $0.78^{+0.134}_{-0.37}$                                                                                                                                                                                      | $1.75^{+1.10}_{-0.82}$                                                                                                                                                                                                                                                          | $2.2{\pm}1.0$                  | $1.4{\pm}0.4$                  | $4.5 \pm 1.2$                  | $1.10^{+0.68}$                                                                                                                    |               | В                 |
| 544               | $4^{+3}_{-2}$                                        | $3^{+3}_{-2}$                | $2^{+3}_{-1}$                                                                                                                        | $\begin{array}{c} 3.11^{+1.31}_{-1.04}\\ 0.88^{+0.67}_{-0.72}\\ 2.40^{+0.78}_{-0.60}\\ 3.58^{+1.23}_{-0.60}\\ 3.58^{+1.23}_{-0.79}\\ 1.24^{+0.71}_{-0.49}\\ 3.95^{+0.76}_{-0.76}\\ 0.18^{+1.45}_{-1.18}\\ 1.39^{+1.15}_{-0.88}\end{array}$          | $\begin{array}{c} 0.32 \_ 0.19 \\ 0.78 + 0.54 \\ 0.33 \_ 0.19 \\ 1.53 + 0.37 \\ 0.33 \_ 0.19 \\ 1.53 - 0.26 \\ 1.48 + 0.61 \\ 1.48 - 0.46 \\ 0.21 \_ 0.14 \\ 0.87 + 0.30 \\ 0.31 - 0.18 \\ 0.41 \end{array}$ | $0.32_{-0.26}^{+0.53}$                                                                                                                                                                                                                                                          | $1.6{\pm}0.2$                  | $1.4{\pm}0.1$                  | $2.0{\pm}0.2$                  | $0.99 \pm 0.18$                                                                                                                   |               | А                 |
| 545               | $22^{+7}_{-6}$                                       | $18^{+6}$                    | $4^{+\bar{4}}_{-3}$                                                                                                                  | $2.40^{+0.78}_{-0.60}$                                                                                                                                                                                                                              | $1.53_{-0.26}^{+0.37}$                                                                                                                                                                                       | $1.01^{+1.06}_{-0.80}$                                                                                                                                                                                                                                                          | $1.1{\pm}0.2$                  | $0.9{\pm}0.1$                  | $1.6{\pm}0.3$                  | $a_{10} \pm 0.15$                                                                                                                 |               | В                 |
| 546               | $15^{+5}_{-4}$                                       | $10_{-4}$<br>$11_{-3}^{+4}$  | $4^{+3}_{-2}$                                                                                                                        | $3.58^{+1.23}_{-0.97}$                                                                                                                                                                                                                              | $1.48_{-0.46}^{+0.61}$                                                                                                                                                                                       | $1.02^{+0.84}_{-0.53}$                                                                                                                                                                                                                                                          | $1.7{\pm}0.3$                  | $1.3{\pm}0.2$                  | $2.7{\pm}0.6$                  | $\begin{array}{c} 0.40 \substack{+0.12\\-0.12}\\ 1.00 \substack{+0.38\\-0.32}\end{array}$                                         |               | В                 |
| 547               | $7^{+4}_{-3}$                                        | $2^{+3}_{-1}$                | $5^{+3}_{-2}$                                                                                                                        | $1.24_{-0.49}^{+0.71}$                                                                                                                                                                                                                              | $0.21\substack{+0.29\\-0.14}$                                                                                                                                                                                | $0.90\substack{+0.65\\-0.41}$                                                                                                                                                                                                                                                   | $4.1 {\pm} 1.2$                | $1.8{\pm}1.1$                  | $5.2{\pm}0.8$                  | $0.82^{+0.53}_{-0.40}$                                                                                                            |               | $\mathbf{C}$      |
| 548               | $37^{+9}_{-7}$                                       | $7^{+\bar{5}}_{-3}$          | $30^{+8}_{-6}$                                                                                                                       | $3.95\substack{+0.92\\-0.76}$                                                                                                                                                                                                                       | $0.87\substack{+0.30 \\ -0.18}$                                                                                                                                                                              | $3.07\substack{+0.84 \\ -0.67}$                                                                                                                                                                                                                                                 | $3.3 {\pm} 0.2$                | $2.0{\pm}0.2$                  | $3.8{\pm}0.8$                  | $\begin{array}{c} -0.52\\ 0.82\substack{+0.53\\-0.40}\\ 2.07\substack{+0.50\\-0.42}\end{array}$                                   |               | D                 |
| 549               | $1^{+5}_{-1}$<br>$6^{+5}_{-4}$                       | 3                            | $3^{+5}_{-3}$                                                                                                                        | $0.18^{+1.45}_{-0.18}$                                                                                                                                                                                                                              |                                                                                                                                                                                                              | $0.88^{+1.45}_{-0.88}$                                                                                                                                                                                                                                                          | $8.8 {\pm} 1.0$                | $8.5 {\pm} 8.0$                | $9.5{\pm}9.0$                  | $0.26^{+2.06}_{-0.26}$                                                                                                            | - S -         | D                 |
| 550               | $6^{+5}_{-4}$                                        | $7^{+4}_{-3} \\ 3^{+3}_{-2}$ | 4                                                                                                                                    | $1.39^{+1.15}_{-0.88}$                                                                                                                                                                                                                              | $\begin{array}{c} 0.41\\ 0.97 {+}0.56\\ 0.36 {+}0.37\\ 0.36 {+}0.37\\ 2.26 {+}0.47\\ 2.26 {+}0.47\\ 0.63 {-}0.42\\ 0.89 {+}0.63\\ 0.89 {+}0.43\\ \end{array}$                                                | 1.00                                                                                                                                                                                                                                                                            | $0.8{\pm}0.2$                  | $0.7{\pm}0.1$                  | $1.1 {\pm} 0.2$                | $\begin{array}{c} -0.42\\ +2.06\\ 0.26 \\ -0.26\\ 0.19 \\ -0.13\\ 0.40 \\ -0.64\\ +0.14\\ \end{array}$                            | H             | А                 |
| 551               | $6^{+4}_{-3}$                                        | $3^{+3}_{-2}$                | $3^{+4}_{-3}$                                                                                                                        | $\begin{array}{c} 1.39 \substack{+0.16\\-0.88}\\ 1.18 \substack{+0.90\\-0.67}\\ 2.91 \substack{+0.90\\-0.72}\end{array}$                                                                                                                            | $0.36^{+0.37}_{-0.22}$                                                                                                                                                                                       | $0.58\substack{+0.78\\-0.54}$                                                                                                                                                                                                                                                   | $2.1 \pm 3.2$                  | $1.8 {\pm} 1.6$                | $7.8 {\pm} 2.0$                | $0.40^{+0.67}_{-0.64}$                                                                                                            |               | В                 |
| 552               | $24^{+8}_{-6}$                                       | $26^{+7}_{-5}$               | 5                                                                                                                                    | $2.91^{+0.90}_{-0.72}$                                                                                                                                                                                                                              | $2.26^{+0.47}_{-0.36}$                                                                                                                                                                                       | 0.65                                                                                                                                                                                                                                                                            | $1.0 {\pm} 0.0$                | $0.9{\pm}0.1$                  | $1.1 {\pm} 0.1$                | $0.47^{+0.13}_{-0.12}$                                                                                                            | H             | А                 |
| 553               | $3^{+4}_{-2}$                                        | $2^{+3}_{-2}$                | $1^{+3}_{-1}$                                                                                                                        | $1.42^{+1.59}_{-1.05}$                                                                                                                                                                                                                              | $0.63^{+0.75}_{-0.42}$                                                                                                                                                                                       | $0.35_{-0.35}^{+1.32}$                                                                                                                                                                                                                                                          | $1.6 \pm 4.7$                  | $1.1 \pm 1.8$                  | $9.3 \pm 3.3$                  | $0.35_{-1.11}^{+0.12}$                                                                                                            |               | В                 |
| 554               | $6^{+5}_{-4}_{+6}$                                   | $5^{-2}_{-3}$                | 7                                                                                                                                    | $1.64^{+1.60}_{-1.28}$<br>$0.49^{+0.49}_{-0.49}$                                                                                                                                                                                                    | $0.89^{+0.03}_{-0.43}$                                                                                                                                                                                       | 2.04                                                                                                                                                                                                                                                                            | $1.1 \pm 2.5$                  | $0.9{\pm}0.4$                  | $1.3 \pm 5.6$                  | $0.29\substack{+0.72\\-0.70\\0.78\substack{+2.31\\-0.78}$                                                                         | H             | A                 |
| 555               | $2^{+\bar{6}}_{-2}_{+5}$                             | 3                            | $4^{+5}_{-4}$                                                                                                                        | $0.49^{+1.45}_{-0.49}_{+1.01}$                                                                                                                                                                                                                      | 0.42                                                                                                                                                                                                         | $\begin{array}{c} 0.97\substack{+1.45\\-0.97}\\ 2.61\substack{+1.03\\-0.78} \end{array}$                                                                                                                                                                                        | $9.9 {\pm} 0.9$                | $9.1 \pm 8.6$                  | $10.0 \pm 9.5$                 | $\begin{array}{c} 0.78^{+2.31}_{-0.78} \\ 2.12^{+0.90}_{-0.72} \end{array}$                                                       | - S -         | D                 |
| 556               | $11^{+5}_{-3}_{-+4}$                                 | $3 \\ 6^{+4}_{-3}$           | $12^{+5}_{-3}$                                                                                                                       | $\begin{array}{c} 0.49 \substack{+0.49 \\ -0.49 \\ 2.53 \substack{+1.01 \\ -0.77 \\ 1.15 \substack{+0.93 \\ -0.67 \\ -0.67 \end{array}}$                                                                                                            | 0.33                                                                                                                                                                                                         | $2.61^{+1.03}_{-0.78}$                                                                                                                                                                                                                                                          | $5.2 \pm 0.8$                  | $4.0 \pm 0.5$                  | $6.6 {\pm} 0.7$                | $2.12^{+0.50}_{-0.72}$                                                                                                            | - S -         | D                 |
| 557               | $5^{+4}_{-3}_{-3}_{-4}$                              | $6^{+4}_{-3} \\ 6^{+4}_{-3}$ | 3                                                                                                                                    | $1.15^{+0.95}_{-0.67}$                                                                                                                                                                                                                              | $0.84^{+0.51}_{-0.35}$                                                                                                                                                                                       | 0.70                                                                                                                                                                                                                                                                            | $1.1 \pm 0.1$                  | $1.0\pm0.1$                    | $1.1 \pm 0.1$                  | $\begin{array}{c} 0.12 \pm 0.72 \\ 0.20 \pm 0.12 \\ 0.20 \pm 0.12 \\ 0.20 \pm 0.15 \\ 0.11 \end{array}$                           | H             | A                 |
| 558               | $6^{+4}_{-3}_{+3}$                                   |                              | 4                                                                                                                                    | $1.30^{+0.00}_{-0.70}$                                                                                                                                                                                                                              | $0.80^{+0.41}_{-0.32}$                                                                                                                                                                                       | 0.94                                                                                                                                                                                                                                                                            | $1.0 \pm 0.1$                  | $0.9 \pm 0.1$                  | $1.1 \pm 0.1$                  | <u>+</u> 0.00                                                                                                                     | H             | A                 |
| 559               | $3^{+3}_{-2}_{-4}$                                   | $3^{+3}_{-2}_{-2}$           | 2 + 3                                                                                                                                | $\begin{array}{c} 1.30 \substack{+0.95\\-0.70}\\ 0.56 \substack{+0.63\\-0.35}\\ 1.28 \substack{+0.87\\-0.60}\end{array}$                                                                                                                            | $\begin{array}{c} 0.80 \substack{+0.47 \\ -0.32} \\ 0.36 \substack{+0.36 \\ -0.20} \\ 0.36 \substack{+0.39 \\ -0.22} \end{array}$                                                                            | 0.53                                                                                                                                                                                                                                                                            | $0.9 \pm 0.0$                  | $0.9 \pm 0.0$                  | $0.9 \pm 0.0$                  | $0.08^{+0.05}_{-0.05}$<br>$0.65^{+0.59}_{-0.49}$<br>$3.08^{+1.70}_{-1.37}$                                                        | H             | A                 |
| 560               | $6^{+\bar{4}}_{-3}$                                  | $3^{+\bar{3}}_{-2}$          | $3^{+3}_{-2}$<br>$9^{+5}_{-4}$<br>$1^{+3}_{-1}$                                                                                      | $1.28_{-0.60}^{+0.01}$ $2.09_{-0.87}^{+1.11}$                                                                                                                                                                                                       | $0.36_{-0.22}$                                                                                                                                                                                               | $\begin{array}{c} 0.67\substack{+0.75\\-0.45}\\ 2.05\substack{+1.08\\-0.83}\\ \end{array}$                                                                                                                                                                                      | $3.2 \pm 1.8$                  | $1.4 \pm 0.8$                  | $4.9 \pm 2.2$                  | $0.65_{-0.49}$                                                                                                                    |               | C                 |
| 561               | $10^{+5}_{-4}$<br>$8^{+5}_{-4}$                      | 4                            | $9_{-4}^{-4}$                                                                                                                        | $2.09_{-0.87}$                                                                                                                                                                                                                                      | 0.52                                                                                                                                                                                                         | $2.05_{-0.83}$                                                                                                                                                                                                                                                                  | $9.2 \pm 1.4$                  | $8.1 \pm 3.6$                  | $9.7 \pm 0.3$                  | $3.08_{-1.37}$                                                                                                                    | - S -         | D                 |
| 562<br>562        | $^{8}_{-4}_{6^{+5}_{-4}}$                            | $8^{+4}_{-3}$                | $^{1}_{-1}_{c+4}$                                                                                                                    | $1.81_{-0.81}$                                                                                                                                                                                                                                      | $0.95^{+0.50}_{-0.37}$                                                                                                                                                                                       | $0.14_{-0.14}$                                                                                                                                                                                                                                                                  | $1.7 \pm 1.9$                  | $1.3 \pm 0.5$                  | $1.8 \pm 3.9$                  | $0.48^{+0.61}_{-0.59}$                                                                                                            |               | A<br>D            |
| $563 \\ 564$      | $38^{+10}_{-8}$                                      | $4 \\ 18^{+7}_{-5}$          | $6^{+4}_{-3}$<br>$21^{+8}_{-5}$                                                                                                      | $\begin{array}{c} 2.05 \pm 0.87 \\ 1.81 \pm 1.04 \\ -0.81 \\ 2.05 \pm 1.57 \\ 2.82 \pm 0.73 \\ 2.82 \pm 0.73 \\ -0.58 \end{array}$                                                                                                                  | 0.82                                                                                                                                                                                                         | $\begin{array}{c} 2.63 \\ -0.83 \\ 0.14 \\ +0.75 \\ -0.14 \\ 1.94 \\ -1.12 \\ 1.71 \\ +0.66 \\ 1.71 \\ +0.80 \\ 1.26 \\ -0.53 \\ 1.66 \\ +1.45 \\ 1.66 \\ +1.04 \\ +0.77 \end{array}$                                                                                           | $5.4 \pm 1.4$                  | $3.8 \pm 0.8$<br>$1.4 \pm 0.1$ | $6.4{\pm}1.3$<br>$2.7{\pm}0.2$ | $1.78^{+1.45}_{-1.14}$                                                                                                            | - S -         | D<br>A            |
|                   | $50^{-8}_{-8}$<br>$6^{+4}_{-2}$                      | $\frac{10}{5}$               | $\begin{array}{c} 21_{-5} \\ 6_{-2}^{+4} \\ 5_{-3}^{+4} \end{array}$                                                                 | $\begin{array}{r} 2.82 \substack{+0.15 \\ -0.58 \\ 1.21 \substack{+0.79 \\ -0.52 \\ 2.05 \substack{+1.54 \\ -1.14 \end{array}} \end{array}$                                                                                                         | $\begin{array}{c} 0.86\substack{+0.27\\-0.16}\\0.33\end{array}$                                                                                                                                              | $1.71_{-0.32}$<br>$1.96^{\pm0.80}$                                                                                                                                                                                                                                              | $2.1\pm0.1$                    |                                |                                | $0.95^{+0.14}_{-0.21}$<br>$0.51^{+0.34}_{-0.23}$                                                                                  | <br>- S -     | A<br>E            |
| 565<br>566        | $\begin{array}{c} 0_{-2} \\ 6_{-3}^{+4} \end{array}$ | $1^{+3}_{-1}$                | $^{0_{-2}}_{r+4}$                                                                                                                    | 1.21 - 0.52<br>2.05 + 1.54                                                                                                                                                                                                                          | 0.35<br>$0.24^{+0.54}_{-0.24}$                                                                                                                                                                               | $1.20_{-0.53}$<br>$1.66^{+1.45}$                                                                                                                                                                                                                                                | $2.6 \pm 0.4$<br>$3.4 \pm 1.7$ | $2.1 \pm 0.2$<br>$1.8 \pm 0.9$ | $3.1 \pm 0.4$<br>$4.6 \pm 1.8$ | $0.51_{-0.23}$<br>$1.11_{-0.83}^{+1.00}$                                                                                          | - 5 -         | E<br>C            |
| $\frac{566}{567}$ |                                                      | $\frac{1}{3}^{-1}$           | $8^{-3}_{-3}_{-3}_{-3}_{-3}_{-3}_{-3}_{-3}_$                                                                                         | $2.03_{-1.14}$<br>$1.43_{-0.54}^{+0.76}$                                                                                                                                                                                                            | $0.24_{-0.24}$<br>0.29                                                                                                                                                                                       | 1.00 - 1.04<br>1.48 + 0.77                                                                                                                                                                                                                                                      | $3.4 \pm 1.7$<br>$3.8 \pm 0.7$ | $1.8 \pm 0.9$<br>$3.0 \pm 0.5$ | $4.0 \pm 1.8$<br>$5.0 \pm 0.6$ | $0.88^{+0.49}_{-0.37}$                                                                                                            | - S -         | D                 |
| 568               | $120^{+14}$                                          | =+5                          | $126^{+13}_{-12}$                                                                                                                    |                                                                                                                                                                                                                                                     | 10.07                                                                                                                                                                                                        | $1.40_{-0.55}$<br>17 17 $^{+1.86}$                                                                                                                                                                                                                                              | $3.8 \pm 0.7$<br>$4.3 \pm 0.2$ | $3.0\pm0.3$<br>$3.2\pm0.2$     | $5.0 \pm 0.0$<br>$5.3 \pm 0.3$ | $0.08_{-0.37}$<br>11.07 <sup>+1.41</sup>                                                                                          | - 3 -         | D                 |
| 569               | $130_{-12}^{-12}$<br>$129_{-12}^{+13}$               | $67 + \bar{1}0$              | $62^{+10}$                                                                                                                           | $17.30^{-1.67}_{-1.47}$                                                                                                                                                                                                                             | $+ \pm 0.62$                                                                                                                                                                                                 | $\frac{17.17}{7.10^{+1.12}}$                                                                                                                                                                                                                                                    | $4.3 \pm 0.2$<br>$2.0 \pm 0.1$ | $3.2 \pm 0.2$<br>$1.5 \pm 0.1$ | $3.3 \pm 0.3$<br>$2.9 \pm 0.3$ | $11.97^{+1.41}_{-1.28}$                                                                                                           |               | A                 |
| $509 \\ 570$      | 8+4 <sup></sup>                                      | $2^{+3}_{-1}$                | $6^{-8}$                                                                                                                             | 14.00 - 1.31<br>$1.49^{+0.77}$                                                                                                                                                                                                                      | $\begin{array}{r} 4.22\substack{+0.52\\-0.52}\\0.22\substack{+0.30\\-0.15}\\0.63\substack{+0.44\\-0.28}\\0.10\substack{+0.27\\-0.10}\end{array}$                                                             | $\begin{array}{c} 1.00 \\ -1.04 \\ +0.77 \\ 1.48 \\ +0.75 \\ 17.17 \\ +1.86 \\ 17.17 \\ +1.65 \\ 7.10 \\ +1.12 \\ 7.10 \\ +1.12 \\ 1.13 \\ +0.72 \\ 1.13 \\ +0.72 \\ 0.34 \\ +0.79 \\ 0.94 \\ +0.70 \\ 0.94 \\ +0.74 \\ 0.68 \\ -0.53 \\ -0.53 \end{array}$                     | $2.0\pm0.1$<br>$3.0\pm0.7$     | $1.5 \pm 0.1$<br>$2.0 \pm 0.6$ | $2.9 \pm 0.3$<br>$3.9 \pm 0.4$ | $\begin{array}{r} 4.64^{+0.25}_{-0.51}\\ 0.70^{+0.40}_{-0.31}\end{array}$                                                         |               | A<br>C            |
| $570 \\ 571$      | $^{\circ}_{6^{+4}_{-3}}$                             | <del>r</del> +3              | $2^{+2}$                                                                                                                             | 1.43 - 0.55<br>$1.42^{\pm 0.83}$                                                                                                                                                                                                                    | 0.22 - 0.15<br>$0.63^{+0.44}$                                                                                                                                                                                | $0.34^{+0.60}$                                                                                                                                                                                                                                                                  | $3.0\pm0.7$<br>$1.5\pm0.6$     | $2.0\pm0.0$<br>$1.0\pm0.2$     | $3.9 \pm 0.4$<br>$2.0 \pm 0.8$ | $\begin{array}{c} 0.70_{-0.31} \\ 0.35_{-0.19}^{+0.24} \end{array}$                                                               |               | В                 |
| $571 \\ 572$      | $5^{+4}_{-2}$                                        | $\frac{5-2}{1+2}$            | $\frac{2}{5+3}$                                                                                                                      | 1.42 - 0.57<br>1.09 + 0.73                                                                                                                                                                                                                          | $0.03_{-0.28}$<br>$0.10^{+0.27}$                                                                                                                                                                             | 0.94 - 0.29<br>0.94 + 0.70                                                                                                                                                                                                                                                      | $1.5 \pm 0.0$<br>$3.1 \pm 1.7$ | $1.0\pm0.2$<br>$2.5\pm0.8$     | $2.0\pm0.8$<br>$6.5\pm1.5$     | $0.53_{-0.19}$<br>$0.53^{+0.46}$                                                                                                  |               | В<br>С            |
| 573               | $9^{-2}_{-3}$                                        | $5^{-1}$                     | $3^{+2}$                                                                                                                             | 1.00 - 0.48<br>1.84 + 0.99                                                                                                                                                                                                                          | $0.10^{+0.10}_{-0.10}$<br>$0.67^{+0.44}_{-0.44}$                                                                                                                                                             | $0.68^{+0.79}$                                                                                                                                                                                                                                                                  | $1.5 \pm 2.2$                  | $1.2 \pm 0.4$                  | $6.0 \pm 3.1$                  | $0.53^{+0.46}_{-0.38}\\0.45^{+0.70}_{-0.68}$                                                                                      |               | В                 |
| 574               | $12^{+5}_{-3}$                                       | $10^{+2}_{-3}$               | $\begin{array}{c} 120_{-12} \\ 62_{-8}^{+10} \\ 6_{-2}^{+3} \\ 2_{-1}^{+3} \\ 5_{-2}^{+3} \\ 3_{-2}^{+4} \\ 2_{-1}^{+3} \end{array}$ | $\begin{array}{c} 17.50^{+1.88}_{-1.67}\\ 14.35^{+1.47}_{-1.31}\\ 1.49^{+0.77}_{-0.55}\\ 1.42^{+0.83}_{-0.75}\\ 1.09^{+0.73}_{-0.48}\\ 1.84^{+0.99}_{-0.75}\\ 2.94^{+1.15}_{-1.87}\\ \end{array}$                                                   | $\begin{array}{c} 0.67\substack{+0.44\\-0.29}\\ 1.45\substack{+0.62\\-0.46}\end{array}$                                                                                                                      | $\begin{array}{c} 0.68 \substack{+0.13\\-0.53}\\ 0.45 \substack{+0.68\\-0.33}\end{array}$                                                                                                                                                                                       | $1.5 \pm 2.2$<br>$1.5 \pm 0.1$ | $1.2 \pm 0.4$<br>$1.3 \pm 0.3$ | $1.7 \pm 0.7$                  | $0.49_{-0.68}$<br>$0.70_{-0.22}^{+0.28}$                                                                                          |               | A                 |
| 011               |                                                      | 3                            |                                                                                                                                      | -0.87                                                                                                                                                                                                                                               | -0.46                                                                                                                                                                                                        | 0.10-0.33                                                                                                                                                                                                                                                                       | 1.0±0.1                        | 1.0±0.0                        | 1.1 ±0.1                       | 0.10-0.22                                                                                                                         |               | - 1               |

Chandra Catalog: Photometry (continued)

| 575<br>576<br>577<br>578<br>579 | $\begin{array}{r} 43\substack{+9\\3-7\\3-3\\6+5\\208\substack{+16\\-15}\\2+2\\8+6\\5-5\\5+7\\5-5\end{array}$ | $5 \\ 4 \\ 134^{+12}_{-12} \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ 3 \\ 4 \\ -12 \\ 2 \\ 3 \\ 3 \\ -12 \\ 2 \\ 3 \\ -12 \\ -12 \\ 2 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ -12 \\ $ | $\begin{array}{c} 44^{+9}_{-7} \\ 3^{+4}_{-3} \\ 5^{+4}_{-3} \\ 74^{+11}_{-9} \end{array}$ | $\begin{array}{c} 4.52\substack{+0.91\\-0.75}\\ 0.62\substack{+0.83\\-0.61}\\ 2.45\substack{+1.94\\-1.48}\\ \end{array}$                       | $0.28 \\ 0.41$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 4.77\substack{+0.92\\-0.76}\\ 0.59\substack{+0.82\\-0.59\\-0.59}\\ 2.34\substack{+1.85\\-1.37\\11.64\substack{+1.83\\-1.56\\-1.09\substack{+1.35\\-1.56}\end{array}}$                    | $4.8 {\pm} 0.3$ | $3.4{\pm}0.3$   |                 |                                                                                                                          |       |              |
|---------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| 576<br>577<br>578<br>579        | $\substack{ 3^{+4}_{-3} \\ 6^{+5}_{-4} \\ 208^{+16}_{-15} \\ 2^{+4}_{-2} \\ 8^{+6}_{-5} \\ 5^{+7}_{-5} }$    | $4 \\ 134^{+12}_{-12} \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $3^{+4}_{-3}$<br>$5^{+4}_{-3}$<br>$74^{+11}_{-9}$                                          | $\begin{array}{c} 0.62\substack{+0.83\\-0.61}\\ 2.45\substack{+1.94\\-1.48}\end{array}$                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.76                                                                                                                                                                                                      |                 | $0.4 \pm 0.0$   | $5.6 \pm 0.5$   | $3.49^{+0.74}_{-0.62}$                                                                                                   | - S - | D            |
| 577<br>578<br>579               | $\begin{array}{c} 6^{+5}_{-4} \\ 208^{+16}_{-15} \\ 2^{+4}_{-2} \\ 8^{+6}_{-5} \\ 5^{+7}_{-5} \end{array}$   | $4 \\ 134^{+12}_{-12} \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $5^{+4}_{-3}$<br>$74^{+11}_{-9}$                                                           | $2.45^{+1.94}_{-1.48}$                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.59^{+0.22}$                                                                                                                                                                                             | $3.9{\pm}0.7$   | $3.8 {\pm} 0.3$ | $4.3 {\pm} 0.5$ | $0.39^{+0.53}$                                                                                                           | - S - | Е            |
| $578 \\ 579$                    | $208^{+16}_{-15}$ $2^{+4}_{-2}$ $8^{+6}_{-5}$ $5^{+7}_{-5}$                                                  | $     \begin{array}{r}       134^{+12}_{-12} \\       2     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $74^{+11}_{-9}$                                                                            | 1.48                                                                                                                                           | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.34^{+1.85}_{-0.59}$                                                                                                                                                                                     | $9.0{\pm}3.9$   | $2.1 \pm 3.6$   | $9.2{\pm}1.0$   | $3.54^{+3.18}$                                                                                                           | - S - | $\mathbf{C}$ |
| 579                             | $2^{+4}_{-2}$<br>$8^{+6}_{-5}$<br>$5^{+7}_{-5}$                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                            | $30.10^{+2.50}_{-2.21}$                                                                                                                        | $10.51^{+1.08}_{-0.97}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $11.64^{+1.83}_{-1.56}$                                                                                                                                                                                    | $1.6 {\pm} 0.1$ | $1.3 {\pm} 0.1$ | $2.7{\pm}0.2$   | $7.84^{+0.97}$                                                                                                           |       | В            |
| <b>F</b> 00                     | $8^{+\bar{6}}_{-5} \\ 5^{+7}_{-5}$                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $3^{+4}$                                                                                   | $0.67^{+1.32}_{-0.67}$<br>$2.64^{+1.82}_{-1.48}$                                                                                               | $0.39^{-0.97}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $11.04_{-1.56}$<br>$1.00_{-1.00}^{+1.35}$                                                                                                                                                                  | $2.4{\pm}2.0$   | $2.2 \pm 7.8$   | $4.5 \pm 5.5$   | $0.26^{+0.55}_{-0.34}$                                                                                                   | - S - | $\mathbf{C}$ |
| 580                             | $5^{+7}_{-5}$                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $9^{+6}_{-4}$                                                                              | $2.64^{+1.82}_{-1.48}$                                                                                                                         | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $3.07^{\pm 1.82}$                                                                                                                                                                                          | $5.9 \pm 1.8$   | $4.1{\pm}1.1$   | $6.5 \pm 1.0$   | $2.49^{+1.87}$                                                                                                           | - S - | D            |
| 581                             |                                                                                                              | $4^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2^{+6}_{2}$                                                                               | $1.13^{+1.42}_{-1.12}$                                                                                                                         | $0.44_{-0.38}^{+0.52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.38^{+1.26}_{-0.28}$                                                                                                                                                                                     | $1.7{\pm}2.6$   | $0.8 {\pm} 1.1$ | $3.6{\pm}2.6$   | $0.30_{-0.57}^{-1.58}$                                                                                                   |       | В            |
| 582                             | $7^{+4}_{-3}$                                                                                                | $5^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2^{+\tilde{3}}_{-2}$                                                                      | $1.44_{-0.60}^{+0.84}$                                                                                                                         | $0.58^{+0.41}_{-0.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.44^{+0.63}_{-0.35}$                                                                                                                                                                                     | $1.5 {\pm} 2.7$ | $0.9{\pm}0.8$   | $8.0{\pm}2.4$   | $0.35^{+0.65}_{-0.63}$                                                                                                   |       | В            |
| 583                             | $7^{+4}_{-3}\\ 8^{+5}_{-3}$                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2^{+3}_{-2}\\8^{+4}_{-3}$                                                                 | ${}^{+1.13}_{1.44}{}^{+0.84}_{-0.60}_{1.80}{}^{+0.98}_{-0.74}$                                                                                 | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.44\substack{+0.63\\-0.35}\\1.81\substack{+0.97\\-0.73}$                                                                                                                                                 | $5.8 {\pm} 1.7$ | $3.0{\pm}1.3$   | $7.5 {\pm} 1.4$ | $\begin{array}{c} 0.35\substack{+0.65\\-0.63}\\ 1.67\substack{+1.04\\-0.85}\end{array}$                                  | - S - | $\mathbf{C}$ |
| 584                             | 5                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                          | 0 99                                                                                                                                           | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.90                                                                                                                                                                                                       | $5.2 {\pm} 4.8$ | $2.9{\pm}7.1$   | $7.6{\pm}7.1$   | 0.83                                                                                                                     | F S H | $\mathbf{C}$ |
| 585                             | $7^{+4}_{-3}$                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $8^{+4}_{-3}$                                                                              | $1.45^{+0.82}_{-0.60}$                                                                                                                         | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{1.56^{+0.83}_{-0.61}}{2.17^{+1.01}_{-0.77}}$                                                                                                                                                        | $4.8{\pm}0.8$   | $4.4{\pm}0.4$   | $6.1{\pm}0.6$   | $1.12^{+0.66}_{-0.50}$                                                                                                   | - S - | D            |
| 586                             | $10^{+5}_{-4}$                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $10^{+5}_{-4}$                                                                             | $\begin{array}{c} 1.45\substack{+0.82\\-0.60}\\2.14\substack{+1.01\\-0.79}\\1.09\substack{+0.71\\-0.47}\end{array}$                            | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.17^{+1.01}_{-0.77}$                                                                                                                                                                                     | $4.4{\pm}1.3$   | $2.6{\pm}0.7$   | $6.5{\pm}1.9$   | ${}^{1.12_{-0.50}^{+0.66}}_{1.50_{-0.71}^{+0.84}}$                                                                       | - S - | $\mathbf{C}$ |
| 587                             | $6^{+4}_{-2}$                                                                                                | $1^{+2}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $5^{+3}_{-2}$                                                                              | $1.09\substack{+0.71 \\ -0.47}$                                                                                                                | $0.10\substack{+0.26\\-0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.17_{-0.77}^{+1.07}$<br>$0.94_{-0.43}^{+0.68}$<br>$4.97_{-1.51}^{+1.74}$                                                                                                                                 | $4.9{\pm}0.8$   | $4.7{\pm}1.4$   | $5.5{\pm}0.7$   | $0.86^{+0.57}_{-0.39}$                                                                                                   |       | E            |
| 588                             | $27^{+9}_{-8}$                                                                                               | $3^{+\bar{5}}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $24^{+8}_{-7}$                                                                             | $5.49^{+1.85}$                                                                                                                                 | $0.36\substack{+0.53\\-0.36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4.97^{+1.74}_{-1.51}$                                                                                                                                                                                     | $3.8{\pm}0.8$   | $2.9{\pm}0.7$   | $7.2 \pm 2.2$   | $3.38^{+1.36}_{-1.24}$                                                                                                   |       | $\mathbf{C}$ |
| 589                             | $5^{-8}_{-3}$                                                                                                | $1^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3^{+4}_{-3}$                                                                              | $\begin{array}{c} 1.74 \substack{+1.60\\ -1.17\\ 1.71 \substack{+0.84\\ -0.61 \end{array}} \end{array}$                                        | $\begin{array}{c} 0.29\substack{+0.58\\-0.28}\\ 1.04\substack{+0.48\\-0.35}\\ 0.82\substack{+0.45\\-0.31}\\ 0.82\substack{+0.51\\-0.31}\\ 0.82\substack{+0.51\\-0.31}\\ 0.83\substack{+0.51\\-0.31}\\ 0.83+0.51\\-0.31\\-0.31\\-0.31\\-0.31\\-0.35\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31\\-0.31$ | $1.26^{+1.50}_{-1.03}$                                                                                                                                                                                     | $3.5 {\pm} 4.4$ | $1.7 {\pm} 2.0$ | $9.7{\pm}2.8$   | $0.99^{+1.53}_{-1.40}$                                                                                                   |       | $\mathbf{C}$ |
| 590                             | $8^{+3}_{-3}$                                                                                                | $9^{+1}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                          | $1.71_{-0.61}^{+0.84}$                                                                                                                         | $1.04^{+0.48}_{-0.35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.48                                                                                                                                                                                                       | $0.9{\pm}0.2$   | $0.8{\pm}0.1$   | $1.3{\pm}0.2$   | $\begin{array}{c} 0.99\substack{+1.33\\-1.40}\\ 0.25\substack{+0.13\\-0.10}\\ \end{array}$                               | H     | А            |
| 591                             | $6^{-3}_{-3}$                                                                                                | $7^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                          | $1.26^{+0.80}_{-0.54}$                                                                                                                         | $0.82^{+0.45}_{-0.31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.49                                                                                                                                                                                                       | $1.0{\pm}0.2$   | $0.9{\pm}0.1$   | $1.2{\pm}0.2$   | $0.20^{+0.13}_{-0.09}$                                                                                                   | H     | А            |
| 592                             | $11^{+6}_{-5}$                                                                                               | $10^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1^{+5}_{-1}$                                                                              | $2.25^{+1.28}_{-1.05}$                                                                                                                         | $1.18^{+0.55}_{-0.42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.19^{+1.01}_{-0.19}$                                                                                                                                                                                     | $1.5{\pm}0.5$   | $1.3{\pm}0.5$   | $1.8{\pm}3.8$   | $0.55_{-0.31}^{+0.35}$                                                                                                   |       | А            |
| 593                             | $24^{+7}_{-5}$                                                                                               | $22_{-5}^{+6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $5^{+3}_{-2}$                                                                              | $3.40^{+1.03}_{-0.80}$                                                                                                                         | $2.37^{+0.55}_{-0.42}\ 0.88^{+0.73}_{-0.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.19\substack{+1.01\\-0.19}\\ 0.93\substack{+1.59\\-0.88} \end{array}$                                                                                                                   | $1.3 \pm 0.1$   | $1.1{\pm}0.1$   | $1.6{\pm}0.1$   | $0.72_{-0.18}^{+0.23}$                                                                                                   |       | А            |
| 594                             | $4^{+3}_{-2}$                                                                                                | $4^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                          |                                                                                                                                                | $0.88\substack{+0.73\\-0.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.41                                                                                                                                                                                                       | $0.9{\pm}0.2$   | $0.8{\pm}0.1$   | $1.1{\pm}0.1$   | $\begin{array}{c} 0.72\substack{+0.23\\-0.18}\\ 0.23\substack{+0.21\\-0.14}\end{array}$                                  | H     | А            |
| 595                             | $10^{+5}_{-4}$                                                                                               | $12^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                          | $1.55^{+1.36}_{-0.87}$<br>$2.12^{+1.09}_{-0.86}$                                                                                               | $\begin{array}{c} 0.88\substack{+0.73\\-0.44}\\ 1.40\substack{+0.57\\-0.43}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.82                                                                                                                                                                                                       | $1.1{\pm}0.1$   | $0.9{\pm}0.2$   | $1.2{\pm}0.2$   | $0.36^{+0.19}_{-0.15}$                                                                                                   | H     | А            |
| 596                             | $9^{+4}_{-3}$                                                                                                | $2^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $7^{+4}_{-3}$                                                                              | $2.16^{+1.03}_{-0.75}$                                                                                                                         | $0.28^{+0.38}_{-0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.32\\ 1.71 {+} 0.97\\ -0.66\\ 2.70 {+} 1.42\\ 1.61 {+} 0.94\\ 1.61 {+} 0.94\\ 0.64 {+} 0.74\\ 0.64 {-} 0.47\\ 0.74 {-} 0.45\\ 0.32 {+} 0.54\\ 0.32 {+} 0.26\\ 1.82 {+} 0.87\end{array}$ | $2.3{\pm}0.7$   | $2.1{\pm}0.3$   | $3.7{\pm}1.9$   | $0.78^{+0.45}_{-0.36}$                                                                                                   |       | $\mathbf{E}$ |
| 597                             | $13^{+6}_{-5}$                                                                                               | $2^{+4}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $11^{+6}_{-5}$                                                                             | $3.04^{+1.51}_{-1.07}$                                                                                                                         | $0.22^{+0.47}_{-0.22}$<br>$0.52^{+0.43}_{-0.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2.70^{+1.42}_{-1.16}$                                                                                                                                                                                     | $3.3 {\pm} 1.1$ | $2.2{\pm}0.9$   | $5.0{\pm}2.3$   | $1.63^{+0.97}_{-0.86}$<br>$1.00^{+0.72}_{-0.66}$                                                                         |       | $\mathbf{C}$ |
| 598                             | $11^{+5}_{-3}$                                                                                               | $4^{+\bar{3}}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $7^{+4}_{-3} \\ 3^{+3}_{-2}$                                                               | $\begin{array}{c} 2.47^{+1.07}_{-0.81}\\ 2.09^{+0.97}_{-0.74}\\ 1.28^{+0.80}_{-0.58}\\ 1.08^{+0.71}_{-0.47}\\ 1.08^{+0.85}_{-0.47}\end{array}$ | $0.52^{+0.43}_{-0.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.61^{+0.94}_{-0.67}$                                                                                                                                                                                     | $2.5 \pm 1.4$   | $1.1{\pm}0.6$   | $5.4{\pm}1.9$   | $1.00^{+0.72}_{-0.66}$                                                                                                   |       | $\mathbf{C}$ |
| 599                             | $9^{+5}_{-3}$                                                                                                | $6^{+\bar{4}}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3^{+3}_{-2}$                                                                              | $2.00^{+0.97}_{-0.74}$                                                                                                                         | $\begin{array}{c} 0.52\substack{+0.43\\-0.26}\\ 0.79\substack{+0.46\\-0.31}\\ 0.32\substack{+0.34\\-0.19\\0.44\substack{+0.36\\-0.22}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.64^{+0.74}_{-0.47}$                                                                                                                                                                                     | $1.8{\pm}0.9$   | $1.2 {\pm} 0.2$ | $2.2{\pm}2.9$   | $0.57^{+0.40}_{-0.36}$                                                                                                   |       | А            |
| 600                             | $6^{-3}_{-3}$                                                                                                | $3^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4^{-2}_{-2}$                                                                              | $1.28^{+0.80}_{-0.58}$                                                                                                                         | $0.32^{+0.34}_{-0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.74^{+0.71}_{-0.45}$                                                                                                                                                                                     | $4.0{\pm}2.3$   | $1.1 {\pm} 1.2$ | $5.8 {\pm} 1.8$ | $0.82^{+0.69}_{-0.59}$                                                                                                   |       | $\mathbf{C}$ |
| 601                             | $5^{+4}_{-2}$                                                                                                | $4^{+\bar{3}}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2^{+3}_{-1}$                                                                              | $1.08^{+0.71}_{-0.47}$                                                                                                                         | $0.44^{+0.36}_{-0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.32^{+0.54}_{-0.26}$                                                                                                                                                                                     | $1.8{\pm}0.2$   | $1.7 {\pm} 0.1$ | $2.1 {\pm} 0.2$ | $\begin{array}{c} 0.82\substack{+0.09\\-0.59}\\ 0.32\substack{+0.21\\-0.14}\\-0.14\end{array}$                           |       | А            |
| 602                             | $13^{+6}_{-4}$                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $14^{+6}_{-4}$                                                                             |                                                                                                                                                | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.82^{+0.87}_{-0.65}$                                                                                                                                                                                     | $4.5 \pm 0.4$   | $3.6 {\pm} 0.3$ | $4.9 {\pm} 0.3$ | $1.20^{+0.03}$                                                                                                           | - S - | $\mathbf{E}$ |
| 603                             | $15^{+6}_{-5}$                                                                                               | $12^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $6^{+4}_{-3}$                                                                              | $1.03_{-0.64}$<br>$1.32_{-0.43}^{+0.65}$                                                                                                       | $1.00\substack{+0.33\\-0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 1.82 \substack{+0.87 \\ -0.65 \\ 0.75 \substack{+1.00 \\ -0.72 \\ -1.42 \end{array}}$                                                                                                    | $1.4{\pm}0.4$   | $1.3 \pm 0.1$   | $1.7 \pm 0.5$   | $0.30^{+0.17}_{-0.13}$                                                                                                   |       | А            |
| 604                             | $9^{+6}_{-5}$                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $11^{+6}_{-5}$                                                                             | $2.04^{+1.41}_{-1.17}$                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 2.71^{+1.42}\\ 2.71^{+1.42}\\ 1.26^{+0.78}\\ 1.26^{+0.78}\\ 0.84^{+0.90}\\ 0.84^{+0.52}\\ 0.24^{+0.52}\\ 0.24^{+0.52}\\ 0.24^{+0.52}\\ \end{array}$                                      | $3.7 \pm 1.7$   | $3.6{\pm}1.0$   | $4.0 \pm 3.1$   | $1.21^{+1.01}_{-0.90}$                                                                                                   | - S - | $\mathbf{E}$ |
| 605                             | $10^{+4}_{-3}$                                                                                               | $4^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ${ \begin{smallmatrix} -3 \\ -3 \\ 4^{+4}_{-3} \end{smallmatrix} }$                        | $2.04^{+1.17}_{-1.17}$ $2.00^{+0.89}_{-0.67}$ $0.70^{+0.88}_{-0.64}$                                                                           | $0.44_{-0.22}^{+0.37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.26^{+0.78}_{-0.53}$                                                                                                                                                                                     | $2.4{\pm}0.7$   | $1.8{\pm}0.3$   | $3.7 {\pm} 0.4$ | $\begin{array}{c} 1.21\substack{+1.01\\-0.90}\\ 0.77\substack{+0.42\\-0.35\end{array}$                                   |       | $\mathbf{C}$ |
| 606                             | $3^{+4}_{-3}$                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4^{+4}_{-3}$                                                                              | $0.70^{+0.88}_{-0.64}$                                                                                                                         | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.84^{+0.90}_{-0.65}$                                                                                                                                                                                     | $5.0 {\pm} 2.3$ | $3.9{\pm}1.0$   | $5.3 \pm 2.2$   | $\begin{array}{c} 0.77 \substack{+0.12\\-0.35}\\ 0.55 \substack{+0.75\\-0.57}\\ 0.34 \substack{+0.22\\-0.20}\end{array}$ | - S - | D            |
| 607                             | $10^{+4}_{-3}$                                                                                               | $9^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1^{+3}_{-1}$                                                                              | $1.92_{-0.64}^{+0.85}$                                                                                                                         | $0.97\substack{+0.46\\-0.34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.24^{+0.52}_{-0.24}$                                                                                                                                                                                     | $1.1 \pm 0.5$   | $1.0 {\pm} 0.1$ | $1.4{\pm}2.8$   | $0.34^{+0.22}_{-0.20}$                                                                                                   |       | А            |
| 608                             | $11^{+5}_{-4}$                                                                                               | $8^{+3}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2^{+4}_{-2}$                                                                              | $2.50^{+1.25}_{-1.00}$                                                                                                                         | $1.10^{+0.34}_{-0.42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.58 \pm 0.95$                                                                                                                                                                                            | $1.2 {\pm} 0.7$ | $1.0 {\pm} 0.2$ | $1.5 \pm 2.8$   | $0.47^{+0.35}_{-0.32}$                                                                                                   |       | А            |
| 609                             | $19^{+6}_{-4}$                                                                                               | $17^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2^{+3}_{-2} \\ 9^{+5}_{-4}$                                                               | $3.84^{+1.14}_{-0.92}$<br>$4.56^{+1.62}_{-1.37}$                                                                                               | $1.99^{+0.62}_{-0.49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $a_{10} \pm 0.62$                                                                                                                                                                                          | $1.1 {\pm} 0.1$ | $0.9 {\pm} 0.1$ | $1.5 {\pm} 0.4$ | $0.66^{+0.21}_{-0.18}$<br>$1.08^{+1.20}_{-1.18}$                                                                         |       | А            |
| 610                             | $19_{-6}^{-4}$                                                                                               | $10^{+4}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $9^{+5}_{-4}$                                                                              | $4.56^{+1.02}_{-1.37}$                                                                                                                         | $1.99^{+0.02}_{-0.49}$<br>$1.33^{+0.64}_{-0.49}$<br>$0.54^{+0.39}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                            | $1.5 \pm 1.6$   | $0.9 {\pm} 0.2$ | $5.4 \pm 3.0$   | $1.08^{+1.20}_{-1.18}$                                                                                                   |       | В            |
| 611                             | $5^{+4}_{-2}$                                                                                                | $5^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                          | $4.56 - 1.37 \\ 0.93 + 0.71 \\ -0.47 \\ -0.47$                                                                                                 | $0.54^{+0.39}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.67                                                                                                                                                                                                       | $1.1{\pm}0.2$   | $0.8{\pm}0.2$   | $1.1{\pm}0.2$   | $0.16^{+0.13}_{-0.09}$                                                                                                   | H     | А            |
| 612                             | $9^{+5}_{-4}$                                                                                                | $8^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                          | ${}^{+0.47}_{1.96}_{-0.81}_{-0.81}_{0.94}_{-0.47}^{+0.72}$                                                                                     | $\begin{array}{c} -0.23\\ 1.07 \substack{+0.52\\-0.38}\\ 0.55 \substack{+0.39\\-0.25}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.14                                                                                                                                                                                                       | $0.8 {\pm} 0.2$ | $0.8 {\pm} 0.1$ | $1.2 \pm 0.5$   | $0.26^{+0.15}_{-0.12}$                                                                                                   | H     | А            |
| 613                             | $5^{+4}_{-2}$                                                                                                | $5^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                          | $0.94^{+0.72}_{-0.47}$                                                                                                                         | $0.55^{+0.39}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.67                                                                                                                                                                                                       | $1.3 \pm 0.2$   | $1.1 \pm 0.2$   | $1.6 {\pm} 0.2$ | $0.19\substack{+0.15\\-0.10}$                                                                                            | H     | А            |

Chandra Catalog: Photometry (continued)

| No. | $C_{net}$ FB                                                     | $C_{net}$ SB                   | $C_{net}$ HB                                  | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                   | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                  | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                      | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $ f_X (10^{-14} \text{erg} \\ \text{cm}^{-2} \text{ s}^{-1}) $                                                                           | Phot.<br>Flag | Quantile<br>Group |
|-----|------------------------------------------------------------------|--------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 614 | $5^{+4}_{-2}$                                                    | $3^{+3}_{-2}$                  | $2^{+3}_{-2}$                                 | $2.02^{+1.76}_{-1.27}$                                                                                                                      | $0.74^{+0.79}_{-0.48}$                                                                                                                                     | $0.70^{+1.45}_{-0.70}$                                                                                                                                                                                         | $1.4 \pm 3.2$   | $0.7{\pm}0.8$   | $2.9 \pm 4.4$   | $0.47^{+1.10}_{-1.06}$                                                                                                                   |               | В                 |
| 615 | $5^{+4}_{-3}$<br>$8^{+4}_{-3}$<br>$6^{+4}_{-3}$<br>$3^{+3}_{-2}$ | $3^{-2}_{-2}$                  | $4^{+\bar{4}}_{2}$                            | $1.57^{\pm 0.87}$                                                                                                                           | $0.41_{-0.22}^{+0.437}$                                                                                                                                    | ${ \begin{array}{c} 0.70\\ 0.88 {+}0.75\\ -0.49\\ 1.47 {+}0.85\\ -0.58 \end{array} } }$                                                                                                                        | $2.2 \pm 2.1$   | $1.2{\pm}0.8$   | $5.9 \pm 1.2$   | $0.54^{+0.60}$                                                                                                                           |               | В                 |
| 616 | $6^{+3}_{-2}$                                                    | $\frac{-2}{3}$                 | $7^{+4}_{-3}$                                 | $1.67_{-0.64}$<br>$1.42_{-0.57}^{+0.83}$<br>$0.63_{-0.38}^{+0.64}$<br>$3.69_{+1.14}^{+1.14}$                                                | 0.33                                                                                                                                                       | $1.47^{+0.85}_{-0.58}$                                                                                                                                                                                         | $4.4{\pm}0.9$   | $3.4{\pm}0.9$   | $5.4 {\pm} 0.6$ | $\begin{array}{c} 0.09 \substack{+0.61 \\ -0.44 \\ 0.09 \substack{+0.09 \\ -0.06 \\ 1.16 \substack{+0.42 \\ -0.36 \\ -0.36 \end{array}}$ | - S -         | D                 |
| 617 | $3^{+3}_{-2}$                                                    | $4^{+3}_{-2}$                  | $2^{-3}$                                      | $0.63^{+0.64}_{-0.38}$                                                                                                                      | $\begin{array}{c} 0.44\substack{+0.36\\-0.22}\\ 1.14\substack{+0.51\\-0.37}\end{array}$                                                                    | 0.47                                                                                                                                                                                                           | $0.9 {\pm} 0.1$ | $0.9{\pm}0.0$   | $1.0 {\pm} 0.0$ | $0.09^{+0.09}_{-0.06}$                                                                                                                   | H             | А                 |
| 618 | $18_{-4}^{-26}$                                                  | $10^{+4}_{-3}$                 | $8^{+4}_{-3}$                                 | $3.69^{+1.14}_{-0.92}$                                                                                                                      | $1.14_{-0.37}^{+0.51}$                                                                                                                                     | $1.75\substack{+0.90\\-0.67}$                                                                                                                                                                                  | $2.0{\pm}0.4$   | $1.2{\pm}0.2$   | $2.9{\pm}0.6$   | $1.16_{-0.36}^{+0.42}$                                                                                                                   |               | В                 |
| 619 | $12^{+6}_{-5}$                                                   | $4^{+4}$                       | $8^{+6}_{-5}$                                 | $2.84^{+1.51}_{-1.26}$                                                                                                                      | $0.48^{+0.49}_{-0.33}$                                                                                                                                     | $2.03^{+1.39}_{-1.13}$                                                                                                                                                                                         | $5.2 \pm 2.1$   | $1.3 \pm 1.7$   | $6.9 {\pm} 1.8$ | $2.35^{+1.58}_{-1.42}$                                                                                                                   |               | С                 |
| 620 | $29^{+7}_{-5}$                                                   | $1^{+2}$                       | $28^{+6}$                                     | $2.84^{+1.51}_{-1.26}\\ 6.36^{+1.44}_{-1.21}$                                                                                               | $0.10^{+0.29}_{-0.10}$                                                                                                                                     | $2.03^{+1.39}_{-1.13}\\ 6.32^{+1.45}_{-1.21}$                                                                                                                                                                  | $4.4 {\pm} 0.3$ | $3.1{\pm}0.4$   | $5.1 {\pm} 0.6$ | $4.44_{-0.91}^{+1.07}$                                                                                                                   |               | D                 |
| 621 | $27^{+7}_{-6}$                                                   | $2^{+\bar{3}}$                 | $25^{+7}_{-6} \\ 8^{+4}_{-3} \\ 21^{+6}_{-5}$ | $6.07^{+1.57}_{-1.33}$                                                                                                                      | $0.21^{+0.37}_{-0.21}$                                                                                                                                     | $5.81^{+1.54}_{-1.30}$ $1.80^{+0.89}_{-0.64}$ $4.26^{+1.16}_{-0.94}$                                                                                                                                           | $3.9{\pm}0.3$   | $3.3{\pm}0.4$   | $4.8 {\pm} 0.5$ | $3.76^{+1.03}$                                                                                                                           |               | $\mathbf{E}$      |
| 622 | $83^{+10}$                                                       | $75^{+10}_{-9}$                | $8^{+4}_{-3}$                                 | $17.54^{+2.15}_{-1.03}$                                                                                                                     | $9.16^{+1.19}_{-1.06}\\0.20^{+0.30}_{-0.15}$                                                                                                               | $1.80^{+0.89}_{-0.64}$                                                                                                                                                                                         | $1.2 {\pm} 0.1$ | $0.9{\pm}0.0$   | $1.4{\pm}0.1$   |                                                                                                                                          |               | А                 |
| 623 | $23^{+6}_{-5}$                                                   | $2^{+3}_{-1}$                  | $21^{+6}_{-5}$                                | $4.52^{\pm1.18}$                                                                                                                            | $0.20^{+0.30}_{-0.15}$                                                                                                                                     | $4.26^{+1.16}_{-0.94}$                                                                                                                                                                                         | $4.0 {\pm} 0.6$ | $2.9{\pm}0.3$   | $5.6 {\pm} 0.5$ | $a a a \pm 0.87$                                                                                                                         |               | D                 |
| 624 | $3^{+3}_{-2}$                                                    | 3                              | $4^{+3}_{-2}$                                 | $0.70^{+0.65}$                                                                                                                              | 0.31                                                                                                                                                       | $0.74^{+0.00}$                                                                                                                                                                                                 | $4.0{\pm}0.6$   | $3.1{\pm}0.4$   | $4.2 {\pm} 0.3$ | $0.45^{+0.42}$                                                                                                                           | - S -         | $\mathbf{E}$      |
| 625 | $5^{+4}_{-2}$                                                    | $4^{+3}_{-2}$                  | $1^{+3}_{-1}$                                 | $1.08^{\pm0.70}$                                                                                                                            | $0.47^{+0.39}_{-0.23}$                                                                                                                                     | $0.27^{+0.57}$                                                                                                                                                                                                 | $1.6 \pm 1.2$   | $0.9{\pm}0.4$   | $3.9{\pm}1.3$   | $0.28^{\pm0.29}$                                                                                                                         |               | В                 |
| 626 | $19^{+7}_{-5}$                                                   | $2^{+\tilde{3}}_{-2}$          | $17^{+6}_{-5}$                                | $1.71\pm0.10$                                                                                                                               | $0.22_{-0.22}^{+0.41}$                                                                                                                                     | $1.75_{-0.50}^{+0.71}$                                                                                                                                                                                         | $4.3 {\pm} 0.5$ | $3.8 {\pm} 0.4$ | $5.2 {\pm} 0.6$ |                                                                                                                                          |               | E                 |
| 627 | 8+5                                                              | $\frac{-2}{2}$                 | $17^{+6}_{-5}$<br>$10^{+5}_{-4}$              | $1.74_{-0.50}$<br>$2.18_{-1.16}^{+1.44}$                                                                                                    | $0.34^{-0.22}$                                                                                                                                             | $2.67^{+1.47}_{-1.18}$                                                                                                                                                                                         | $6.7 \pm 3.2$   | $3.5 \pm 1.6$   | $9.5 {\pm} 1.9$ | $2.33^{+1.90}_{-1.66}$                                                                                                                   | - S -         | $\mathbf{C}$      |
| 628 | $19^{+6}_{-4}$                                                   | $2^{+3}_{-1}$                  | $18^{+5}_{4}$                                 | $3.73^{+1.07}$                                                                                                                              | $0.20\substack{+0.30\\-0.14}$                                                                                                                              | $\begin{array}{c} 0.27 \\ -0.27 \\ 1.75 \substack{+0.71 \\ -0.50 \\ 2.67 \substack{+1.47 \\ -1.18 \\ 3.45 \substack{+1.05 \\ -0.83 \\ -0.83 \end{array}}$                                                      | $4.2 {\pm} 0.5$ | $3.6{\pm}0.5$   | $5.8 {\pm} 0.5$ | $\begin{array}{c} 1.20 \substack{+0.37\\-0.37}\\ 2.33 \substack{+1.90\\-1.66\\2.53 \substack{+0.78\\-0.65\end{array}}\end{array}$        |               | D                 |
| 629 | $8^{+4}_{-3}$                                                    | $2^{-1}$                       | $8^{+4}_{2}$                                  | $1.55^{+0.91}$                                                                                                                              | $0.27^{-0.14}$                                                                                                                                             | $1.73_{-0.70}^{+0.93}$                                                                                                                                                                                         | $4.8 \pm 1.1$   | $4.0{\pm}1.0$   | $5.8 \pm 2.0$   | $1.20^{+0.76}$                                                                                                                           | - S -         | D                 |
| 630 | $7^{+7}_{-6}$                                                    | $1^{+4}_{-1}$                  | $8^{+4}_{-3}\\6^{+7}_{-6}$                    | $\begin{array}{c} 1.68 \substack{+1.74 \\ -1.51 \\ 0.53 \substack{+0.69 \\ -0.41 \\ 2.08 \substack{+0.94 \\ -0.70 \end{array}} \end{array}$ | $0.15\substack{+0.50\\-0.15}$                                                                                                                              | $1.44_{-1.41}^{+1.67}$                                                                                                                                                                                         | $4.0{\pm}2.9$   | $1.2 \pm 1.8$   | $4.6 \pm 1.3$   | $1.08^{+1.36}_{-1.25}$                                                                                                                   |               | $\mathbf{C}$      |
| 631 | $2^{+3}_{2}$                                                     | $4^{+3}$                       | $2^{-0}$                                      | $0.53^{+0.69}_{-0.41}$                                                                                                                      | $\begin{array}{c} 0.13\\ 0.47\substack{+0.39\\-0.24}\\ 0.10\substack{+0.28\\-0.10}\\ 0.22\substack{+0.36\\-0.18}\\ 0.22\substack{+0.36\\-0.18}\end{array}$ | 0.51                                                                                                                                                                                                           | $0.9{\pm}0.0$   | $0.9 \pm 9.1$   | $1.0 {\pm} 9.0$ |                                                                                                                                          | H             | А                 |
| 632 | $10^{-2}_{-3}$                                                   | $1^{-2}_{-2}_{1^{+2}_{-1}}$    | $9^{+4}_{2}$                                  | $2.08^{+0.94}_{-0.70}$                                                                                                                      | $0.10^{+0.24}_{-0.10}$                                                                                                                                     | $1.95_{-0.68}^{+0.93}\\1.00_{-0.52}^{+0.82}$                                                                                                                                                                   | $4.2 {\pm} 0.9$ | $2.7{\pm}0.9$   | $5.5 \pm 1.3$   | $0.08^{+0.10}_{-0.06}\ 1.39^{+0.69}_{-0.55}$                                                                                             |               | $\mathbf{C}$      |
| 633 | $6^{+4}$                                                         | $2^{+3}$                       | $9^{+4}_{-3} \\ 4^{+3}_{-2}$                  | $1.37^{+0.89}_{-0.61}$                                                                                                                      | $0.22^{+0.36}_{-0.18}$                                                                                                                                     | $1.00^{+0.82}_{-0.52}$                                                                                                                                                                                         | $3.2 {\pm} 0.9$ | $2.1{\pm}0.6$   | $4.3 {\pm} 0.6$ | $0.71^{+0.50}$                                                                                                                           |               | $\mathbf{C}$      |
| 634 | $6^{+4}_{-3}$                                                    | $2^{-1}_{-2}$<br>$2^{+3}_{-2}$ | $4^{+4}_{-3}$                                 | $1.40^{+1.10}_{-0.83}$                                                                                                                      | $0.28^{+0.10}_{-0.23}$                                                                                                                                     | $0.91_{-0.72}^{+1.00}$                                                                                                                                                                                         | $7.2 \pm 2.1$   | $4.8 {\pm} 3.0$ | $7.5 \pm 1.4$   | $1.60^{+1.35}_{-1.06}$                                                                                                                   |               | D                 |
| 635 | $5^{-3}_{-3}$                                                    | $5^{+4}_{-2}$                  | 3                                             | $\begin{array}{c}1.40\substack{+0.61\\-0.83}\\0.98\substack{+0.78\\-0.54\end{array}$                                                        | $\begin{array}{c} 0.12 \pm 0.18 \\ 0.28 \pm 0.41 \\ -0.23 \\ 0.63 \pm 0.43 \\ -0.28 \\ -0.28 \end{array}$                                                  | 0.64                                                                                                                                                                                                           | $1.1 {\pm} 0.1$ | $1.0{\pm}0.1$   | $1.2 {\pm} 0.1$ | $0.16^{+0.13}$                                                                                                                           | H             | А                 |
| 636 | $4^{+5}_{-4}$                                                    | $1^{+3}_{-1}$                  | $3^{+5}_{2}$                                  | $2.09^{+2.52}_{-1.98}$                                                                                                                      | $0.38\substack{+0.81\\-0.38}$                                                                                                                              | $1.45^{+2.40}_{-1.45}$                                                                                                                                                                                         | $3.3 \pm 3.2$   | $3.0{\pm}1.8$   | $7.9 \pm 2.3$   |                                                                                                                                          |               | $\mathbf{C}$      |
| 637 | $7^{+4}_{-3}$                                                    | $3^{-1}$                       | $3^{+5}_{-3}$<br>$7^{+4}_{-3}$                | $1.00\pm0.75$                                                                                                                               | $0.30^{-0.38}$                                                                                                                                             | $\begin{array}{c} 1.45^{+2.40}_{-1.45}\\ 1.34^{+0.77}_{-0.52}\\ 1.80^{+1.59}_{-1.30}\end{array}$                                                                                                               | $4.3 \pm 1.0$   | $3.2{\pm}0.7$   | $5.7 \pm 1.3$   | $0.00\pm0.55$                                                                                                                            | - S -         | D                 |
| 638 | $23^{+9}_{-7}$                                                   | $18^{+7}_{-5}$                 | $10^{+6}_{-5}$                                | $1.47^{+0.63}_{-0.46}$                                                                                                                      | $1.18^{+0.31}_{-0.21}$                                                                                                                                     | $1.80^{+1.59}_{-1.30}$                                                                                                                                                                                         | $1.3 \pm 0.1$   | $1.2 \pm 0.1$   | $1.5 {\pm} 0.1$ | $\begin{array}{c} 0.88_{-0.40} \\ 0.30_{-0.10}^{+0.13} \end{array}$                                                                      |               | А                 |
| 639 | $4^{+4}_{-3}$                                                    | $6^{-3}_{-3}$                  | $2^{-3}$                                      | $0.77_{-0.54}^{+0.79}$                                                                                                                      | $0.75_{-0.31}^{+0.45}$                                                                                                                                     | 0.49                                                                                                                                                                                                           | $0.8 {\pm} 0.1$ | $0.7{\pm}0.1$   | $0.9 {\pm} 0.1$ | $0.10^{+0.10}_{-0.07}$                                                                                                                   | H             | А                 |
| 640 | $3^{-3}_{-3}$                                                    | 3                              | $3^{+4}_{2}$                                  | $0.75^{+1.12}_{-5.55}$                                                                                                                      | 0.45                                                                                                                                                       | $0.83^{+1.10}_{-0.80}$                                                                                                                                                                                         | $2.2 \pm 0.1$   | $2.1{\pm}0.1$   | $2.2{\pm}0.0$   | $0.26^{+0.38}_{-0.26}$                                                                                                                   | - S -         | А                 |
| 641 | $6^{+4}_{-2}$                                                    | $2^{+3}_{-1}$                  | $3^{+4}_{-3}$<br>$4^{+3}_{-2}$                | $1.04^{+0.67}_{-0.44}$                                                                                                                      | $0.21^{+0.29}_{-0.14}$                                                                                                                                     | $0.69^{+0.61}_{-0.36}$                                                                                                                                                                                         | $3.7 \pm 1.5$   | $1.9{\pm}0.8$   | $5.3 {\pm} 0.8$ |                                                                                                                                          |               | $\mathbf{C}$      |
| 642 | $5^{+4}_{-2}$                                                    | $3^{-1}_{-2}$                  | $2^{+\frac{2}{3}}$                            | $\begin{array}{c} 1.04\substack{+0.67\\-0.44}\\ 1.15\substack{+0.88\\-0.58}\\ 1.40\substack{+1.82\\-1.40}\end{array}$                       | $\begin{array}{c} 0.21\substack{+0.29\\-0.14}\\ 0.36\substack{+0.41\\-0.23}\end{array}$                                                                    | $\begin{array}{c} 0.83 \substack{+1.10 \\ -0.83 \substack{-0.80 \\ -0.80 \\ 0.69 \substack{+0.61 \\ -0.36 \\ 0.52 \substack{+0.73 \\ -0.41 \\ 1.60 \substack{+1.78 \\ -1.42 \\ -0.41 \atop -1.58 \end{array}}$ | $2.0{\pm}2.1$   | $1.5 \pm 0.6$   | $3.6{\pm}2.9$   | $\begin{array}{c} 0.61^{+0.44}_{-0.36} \\ 0.36^{+0.48}_{-0.43} \\ 2.17^{+2.82}_{-2.17} \end{array}$                                      |               | В                 |
| 643 | $4^{+6}_{-4}$                                                    | 4                              | $2^{+3}_{-2} \\ 5^{+5}_{-4}$                  | $1.40^{+1.82}_{-1.40}$                                                                                                                      | 0.67                                                                                                                                                       | $1.60^{+1.78}_{-1.42}$                                                                                                                                                                                         | $9.7{\pm}0.4$   | $9.6{\pm}0.4$   | $9.7 {\pm} 0.1$ | $2.17^{+2.82}_{-2.17}$                                                                                                                   | - S -         | D                 |
| 644 | $6^{-4}$                                                         | 2                              | $2^{+4}_{-2}$                                 | 2.22                                                                                                                                        | 0.45                                                                                                                                                       | $0.80^{+1.58}_{-0.80}$                                                                                                                                                                                         | $5.2 \pm 4.8$   | $2.9 \pm 7.1$   | $7.6 \pm 7.1$   | 1.87                                                                                                                                     | F S -         | $\mathbf{C}$      |
| 645 | $17^{+6}_{-5}$                                                   | $1^{+2}_{-1}$                  | $16^{+6}_{-5}$                                | $2.15^{+0.84}$                                                                                                                              | $0.13^{+0.39}_{-0.12}$                                                                                                                                     | $0.80^{+1.58}_{-0.80}$<br>$2.04^{+0.82}_{-0.58}$                                                                                                                                                               | $4.5 {\pm} 0.9$ | $3.9{\pm}0.4$   | $6.2 {\pm} 0.5$ | $1.55_{-0.52}^{+0.67}$                                                                                                                   |               | D                 |
| 646 | $18^{+7}$                                                        | $15^{+6}_{4}$                  | $3^{+5}_{-2}$                                 | $1.93^{+0.00}_{-0.50}$                                                                                                                      | $1.32^{+0.36}_{-0.25}$                                                                                                                                     | $0.32^{+0.57}_{-0.17}$                                                                                                                                                                                         | $1.4{\pm}0.2$   | $1.1 \pm 0.2$   | $1.4{\pm}0.8$   | $0.43^{+0.19}_{-0.15}$                                                                                                                   |               | А                 |
| 647 | $50^{+9}_{-8}$                                                   | $15^{+6}_{-4} \\ 34^{+7}_{-6}$ | $3^{+5}_{-2}$<br>$17^{+6}_{-5}$               | $5.02^{+0.39}_{-0.70}$                                                                                                                      | $\begin{array}{c} 0.13\substack{+0.39\\-0.13}\\ 1.32\substack{+0.36\\-0.25}\\ 2.67\substack{+0.46\\-0.36}\end{array}$                                      | $1.44^{+0.65}_{-0.45}$                                                                                                                                                                                         | $1.7 \pm 0.1$   | $1.4{\pm}0.1$   | $2.3 \pm 0.2$   | $1.35^{+0.15}_{-0.24}$                                                                                                                   |               | А                 |
| 648 | $5^{+4}_{-2}$                                                    | 2                              | $5^{+4}_{-2}$                                 | $\begin{array}{c} 1.93 \substack{+0.77 \\ -0.59 \\ 5.02 \substack{+0.96 \\ -0.79 \\ 1.07 \substack{+0.84 \\ -0.55 \end{array}} \end{array}$ | 0.31                                                                                                                                                       | $\begin{array}{c} 0.32\substack{+0.57\\-0.17}\\ 1.44\substack{+0.65\\-0.45}\\ 1.18\substack{+0.86\\-0.57}\\ 1.18\substack{+0.70\\-0.57}\end{array}$                                                            | $7.5 \pm 1.3$   | $6.5 \pm 1.5$   | $7.7 \pm 1.1$   | $\begin{array}{c} 0.43\substack{+0.19\\-0.15}\\ 1.35\substack{+0.28\\-0.24}\\ 1.29\substack{+1.04\\-0.71}\end{array}$                    | - S -         | D                 |
| 649 | 8                                                                | 3                              | $5^{+4}_{-2}$<br>$1^{+5}_{-1}$                | 2.84                                                                                                                                        | 0.61                                                                                                                                                       | $0.42^{+1.79}_{-1.49}$                                                                                                                                                                                         | $6.9 \pm 6.4$   | $4.3 \pm 5.7$   | $9.6 \pm 9.1$   | 3.12                                                                                                                                     | F S -         | C                 |
| 650 | $15^{+5}_{-4}$                                                   | $6^{+4}_{-3}$                  | $9^{+4}_{-2}$                                 | $3.21^{+1.11}_{-0.88}\\1.24^{+0.86}_{-0.58}$                                                                                                | $0.77_{-0.31}^{+0.45}$                                                                                                                                     | ${}^{-0.42}_{1.91}$ ${}^{+0.94}_{-0.70}$ ${}^{1.33}_{-0.60}$                                                                                                                                                   | $2.6 \pm 1.0$   | $1.7{\pm}0.3$   | $5.0 \pm 1.3$   | $1.36\substack{+0.70\\-0.64}$                                                                                                            |               | С                 |
| 651 | $5^{+4}_{-3}$                                                    | $^{-3}_{2}$                    | $9^{+4}_{-3}\\6^{+4}_{-3}$                    | $1.24^{+0.88}_{-0.50}$                                                                                                                      | 0.31                                                                                                                                                       | $1.33^{+0.87}_{-0.60}$                                                                                                                                                                                         | $3.3 \pm 0.5$   | $3.3 \pm 0.4$   | $3.7 \pm 0.6$   | $0.66^{+0.47}_{-0.32}$                                                                                                                   | - S -         | Ē                 |

Chandra Catalog: Photometry (continued)

| No. | $C_{net}$ FB         | $C_{net}$ SB              | $C_{net}$ HB                                                             |                                                                                                                        | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                         | $\begin{array}{c} f_{\rm ph} {\rm HB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                                | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                 | Phot.<br>Flag | Quantile<br>Group |
|-----|----------------------|---------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-------------------------------------------------------------------------|---------------|-------------------|
| 652 | $7^{+4}_{-3}$        | $1^{+2}_{-1}$             | $6^{+4}_{-3}$                                                            | $1.42^{+0.81}_{-0.58}$                                                                                                 | $0.10\substack{+0.28\\-0.10}$                                                                                                                                       | $1.28_{-0.54}^{+0.79}$                                                                                                                                                                     | $5.7 \pm 1.1$   | $4.4{\pm}1.4$   | $6.2{\pm}1.6$   | $1.29_{-0.59}^{+0.78}$                                                  |               | D                 |
| 653 | 9                    | 3                         | $2^{+5}_{-2}$                                                            | 1.80                                                                                                                   | 0.33                                                                                                                                                                | $0.34^{+1.13}_{-0.24}$                                                                                                                                                                     | $5.2 {\pm} 4.8$ | $2.9{\pm}7.1$   | $7.6 {\pm} 7.1$ | 1.51                                                                    | F S -         | С                 |
| 654 | $14^{+5}_{-4}$       | $11^{+4}_{-3}$            | $3^{+3}$                                                                 | $3.02^{+1.04}_{-0.81}$                                                                                                 | $1.99\pm0.54$                                                                                                                                                       | $0.75^{+0.68}_{-0.41}$<br>$1.79^{+0.79}_{-0.61}$                                                                                                                                           | $1.6{\pm}0.2$   | $1.3 {\pm} 0.1$ | $2.0 {\pm} 0.8$ | $0.78^{+0.28}_{-0.22}$                                                  |               | А                 |
| 655 | $57^{+10}_{-8}$      | $42^{+8}_{-7}$            | $15^{+7}_{-5}$                                                           | $6.73^{+1.17}_{-1.00}$                                                                                                 | $\begin{array}{c} 1.33 \substack{+0.40\\-0.45}\\ 2.82 \substack{+0.55\\-0.45}\\ 0.35 \substack{+0.36\\-0.20}\end{array}$                                            | $1.79_{-0.61}^{+0.79}$                                                                                                                                                                     | $1.4{\pm}0.2$   | $1.1 {\pm} 0.1$ | $2.1 {\pm} 0.3$ |                                                                         |               | А                 |
| 656 | $6^{+4}_{-3}$        | $3^{+3}_{-2}$             | $3^{+3}_{-2}$                                                            | $1.34^{+0.80}_{-0.55}$<br>$1.03^{+0.80}_{-0.58}$                                                                       | $0.35^{+0.36}_{-0.20}$                                                                                                                                              | $0.75^{\pm 0.69}$                                                                                                                                                                          | $2.3 {\pm} 0.5$ | $1.8{\pm}0.3$   | $3.2{\pm}0.4$   | $0.48^{+0.31}$                                                          |               | E                 |
| 657 | $5^{+4}_{-3}$        | 2                         | $6^{+\bar{4}}_{-3}$                                                      | $1.03_{-0.58}^{+0.80}$                                                                                                 | 0.26                                                                                                                                                                |                                                                                                                                                                                            | $9.2 {\pm} 1.9$ | $6.1 \pm 1.4$   | $9.7{\pm}0.7$   | $1.51^{+1.21}_{-0.91}$                                                  | - S -         | D                 |
| 658 | $10^{+4}_{-3}$       | 2                         | $10^{+4}_{-3}$                                                           | $1.03^{+0.80}_{-0.58}$ $2.06^{+0.92}_{-0.69}$                                                                          | 0.29                                                                                                                                                                | $2.15^{+0.94}$                                                                                                                                                                             | $3.9{\pm}0.8$   | $3.0{\pm}0.4$   | $5.3{\pm}0.9$   | $1.28^{+0.62}$                                                          | - S -         | D                 |
| 659 | $133^{+13}_{-12}$    | $101^{+12}_{-10}$         | $31^{+8}_{-6}$                                                           | 1400+1.00                                                                                                              | $\begin{array}{c} 6.29\\ 6.46 {+}0.76\\ -0.66\\ 0.60 {+}0.45\\ 0.29\\ 1.56 {+}0.71\\ 1.56 {-}0.53\\ 1.34 {+}0.55\\ 1.34 {+}0.41\\ 0.24 {+}0.24\\ -0.24 \end{array}$ |                                                                                                                                                                                            | $1.6{\pm}0.1$   | $1.2{\pm}0.1$   | $2.1{\pm}0.2$   |                                                                         |               | А                 |
| 660 | $6^{+4^{-2}}_{-3}$   | $5^{+3}_{-2}$             | $1^{+3}_{-1}$<br>$4^{+4}_{-2}$                                           | $14.89_{-1.37}^{+0.93}$ $1.37_{-0.67}^{+0.93}$ $3.87_{-1.18}^{+1.50}$                                                  | $0.60^{+0.45}_{-0.29}$                                                                                                                                              | $\begin{array}{r} 3.63\substack{+0.94\\-0.75}\\ 0.32\substack{+0.71\\-0.32}\\ 1.12\substack{+1.08\\-0.72}\end{array}$                                                                      | $1.7{\pm}0.5$   | $1.5 {\pm} 0.2$ | $2.3 {\pm} 0.9$ | $0.37^{+0.28}_{-0.22}$                                                  |               | А                 |
| 661 | $13^{+5}_{-4}$       | $9^{+4}_{-3}$             | $4^{+\bar{4}}_{-2}$                                                      | $3.87^{+1.50}_{-1.18}$                                                                                                 | $1.56_{-0.53}^{+0.71}$                                                                                                                                              | $1.12^{+1.08}_{-0.72}$                                                                                                                                                                     | $1.3{\pm}0.4$   | $1.0{\pm}0.1$   | $2.1{\pm}1.0$   | $0.80^{+0.38}_{-0.33}$<br>$0.51^{+0.21}_{-0.17}$                        |               | В                 |
| 662 | $13^{+5}_{-4}$       | $11^{+4}_{-3}$            | $2^{+3}_{2}$                                                             | $2.83^{\pm 1.05}$                                                                                                      | $1.34_{-0.41}^{+0.55}$                                                                                                                                              | $0.52^{+0.64}_{-0.36}$                                                                                                                                                                     | $1.1{\pm}0.2$   | $0.9{\pm}0.1$   | $1.4{\pm}1.1$   |                                                                         |               | А                 |
| 663 | $7^{+5}_{-4}$        | $2^{+3}_{-2}$             | $6^{+4}_{-3}$<br>$7^{+4}_{-3}$                                           | $1.93^{\pm1.28}$                                                                                                       | $0.24_{-0.24}^{+0.46}$                                                                                                                                              | $1.55^{\pm 1.19}$                                                                                                                                                                          | $2.6{\pm}2.2$   | $1.5 {\pm} 1.0$ | $6.3 {\pm} 2.7$ | $0.79^{+0.86}_{-0.79}$                                                  |               | $\mathbf{C}$      |
| 664 | $7^{+4}_{-3}$        | 2                         | $7^{+4}_{-3}$                                                            | $1.20 \pm 0.80$                                                                                                        | 0.26                                                                                                                                                                | $1.43^{+0.82}_{-0.60}$                                                                                                                                                                     | $8.1{\pm}0.5$   | $7.4{\pm}0.9$   | $8.2{\pm}0.5$   | $1.68^{+1.04}_{-0.76}$                                                  | - S -         | D                 |
| 665 | $12^{+5}$            | $1^{+2}_{-1}$             | $11_{-3}^{+4}$                                                           | $6.02^{+2.39}_{-1.81}$                                                                                                 | $0.26^{+0.70}_{-0.25}$                                                                                                                                              | $5.68^{+2.36}_{-1.77}$                                                                                                                                                                     | $4.4{\pm}0.4$   | $3.7{\pm}0.6$   | $5.0{\pm}0.7$   | $4.21^{+1.71}_{-1.32}$                                                  |               | E                 |
| 666 | $10^{+4}_{-3}$       | $8^{+4}_{-3}$             | $11_{-3}^{+4} \\ 2_{-1}^{+3}$                                            |                                                                                                                        | $0.26^{+0.70}_{-0.25}\\0.94^{+0.47}_{-0.34}$                                                                                                                        | $5.68^{+0.36}_{-1.77} \\ 0.35^{+0.55}_{-0.27}$                                                                                                                                             | $1.5{\pm}0.4$   | $1.1{\pm}0.2$   | $1.8{\pm}1.0$   | $\begin{array}{c}4.21^{+1.71}_{-1.32}\\0.48^{+0.24}_{-0.19}\end{array}$ |               | А                 |
| 667 | $9^{+4}_{-3}$        | $10^{+4}_{-3}$            | 2                                                                        | $1.80^{+0.82}$                                                                                                         | $1.10_{-0.35}^{+0.47}$                                                                                                                                              | 0.44                                                                                                                                                                                       | $1.0{\pm}0.1$   | $0.9{\pm}0.1$   | $1.2{\pm}0.2$   | $0.29^{+0.14}_{-0.10}$                                                  | H             | А                 |
| 668 | $5^{+5}_{-3}$        | 2                         | $\begin{array}{c} 6^{+4}_{-3} \\ 1^{+5}_{-1} \\ 8^{+4}_{-3} \end{array}$ | $1.56^{+1.50}_{-1.12}$                                                                                                 | 0.43                                                                                                                                                                | $2.21^{+1.52}_{-1.15}$                                                                                                                                                                     | $9.5{\pm}1.3$   | $7.4{\pm}1.3$   | $9.7{\pm}0.4$   | $2.38_{-1.75}^{+0.10}$                                                  | - S -         | D                 |
| 669 | $18^{+8}_{-6}$       | $19^{+6}_{-5}$            | $1^{+5}_{-1}$                                                            | $1.74^{+0.82}_{-0.63}$                                                                                                 | $1.64\substack{+0.40\\-0.30}$                                                                                                                                       | $0.26^{+1.12}_{-0.26}$                                                                                                                                                                     | $1.0{\pm}0.1$   | $1.0{\pm}0.1$   | $1.1{\pm}0.1$   | $0.29_{-0.11}^{+0.14}$                                                  |               | А                 |
| 670 | $7^{+4}_{-3}$        | 3                         | $8^{+4}_{-3}$                                                            | $1.74_{-0.63}^{+0.82}$ $1.41_{-0.54}^{+0.75}$ $4.63_{-1.19}^{+1.44}$                                                   | 0.29                                                                                                                                                                | $\begin{array}{c} 0.26 \substack{+1.12 \\ -0.26 \atop -0.26 \\ 1.46 \substack{+0.77 \\ -0.55 \\ 3.66 \substack{+1.33 \\ -1.07 \\ -1.07 \end{array}}$                                       | $4.9{\pm}0.9$   | $3.5{\pm}0.8$   | $5.7{\pm}0.7$   | $1.10^{+0.62}_{-0.46}$                                                  | - S -         | D                 |
| 671 | $20^{+6}_{-5}$       | $5^{+4}_{-2}$             | $15^{+6}_{-5}$                                                           | $4.63^{+1.44}_{-1.19}$                                                                                                 | $0.60^{+0.48}_{-0.32}$                                                                                                                                              | $3.66^{+1.33}_{-1.07}$                                                                                                                                                                     | $3.4{\pm}0.5$   | $2.4{\pm}0.5$   | $4.5{\pm}0.4$   | $1.10^{+0.02}_{-0.46}$<br>$2.49^{+0.84}_{-0.72}$                        |               | D                 |
| 672 | $5^{+3}_{-2}$        | $4^{+\bar{3}}_{-2}$       | $1^{+2}_{-1}$                                                            | $0.91^{+0.68}_{-0.43}$                                                                                                 | $\begin{array}{c} 0.60\substack{+0.43\\-0.32}\\ 0.45\substack{+0.37\\-0.22} \end{array}$                                                                            | $0.13\substack{+0.47\\-0.13}\\1.51\substack{+0.88\\-0.63}$                                                                                                                                 | $1.2{\pm}0.4$   | $0.8{\pm}0.2$   | $1.7{\pm}0.5$   | $0.18^{+0.14}_{-0.10}$                                                  |               | В                 |
| 673 | $12^{+5}_{-4}$       | $5^{+2}_{-2}$             | $7^{+4}_{-3}$                                                            | $2.52^{+1.03}_{-0.79}$                                                                                                 | $0.60^{+0.43}$                                                                                                                                                      | $1.51^{+0.88}_{-0.63}$                                                                                                                                                                     | $2.1{\pm}0.3$   | $1.6{\pm}0.3$   | $2.4{\pm}1.3$   | $0.87_{-0.29}^{+0.37}$                                                  |               | А                 |
| 674 | $24^{+\bar{9}}_{-7}$ | $27_{-6}^{+8}$            | 12                                                                       | $1.90^{+0.68}_{-0.53}$                                                                                                 | $1.41^{+0.33}_{-0.25}$                                                                                                                                              | 0.95                                                                                                                                                                                       | $1.1{\pm}0.1$   | $1.0{\pm}0.1$   | $1.1{\pm}0.0$   | $0.32_{-0.09}^{+0.12}$                                                  | H             | А                 |
| 675 | $32^{+7}_{-6}$       | $24^{+6}_{-5}$            | $\substack{8^{+4}_{-3}\\1^{+2}_{-1}}$                                    | $ \begin{array}{c} 1.90 \substack{+0.68 \\ -0.53 \\ 6.58 \substack{+1.40 \\ -1.18 \\ -1.18 \end{array} } \end{array} $ | $ \begin{array}{c} 1.41 \substack{+0.33 \\ -0.25 \\ 2.83 \substack{+0.71 \\ -0.58 \end{array} } \end{array} $                                                       | $1.72^{+0.87}_{-0.63}$                                                                                                                                                                     | $1.3{\pm}0.2$   | $1.1{\pm}0.1$   | $2.0{\pm}0.3$   |                                                                         |               | А                 |
| 676 | $7^{+4}_{-3}$        | $7^{+4}_{-3}$             | $1^{+2}_{-1}$                                                            | $1.46^{+0.77}_{-0.55}$                                                                                                 | $0.79^{\pm0.43}$                                                                                                                                                    | ${}^{1.72^{+0.87}_{-0.63}}_{0.11^{+0.46}_{-0.11}}$                                                                                                                                         | $1.0{\pm}0.1$   | $0.9{\pm}0.1$   | $1.1{\pm}0.3$   | $0.25^{+0.13}_{-0.10}$                                                  |               | А                 |
| 677 | $6^{+4}_{-3}$        | $6^{+4}_{-2}$             | 4                                                                        | $1.26^{+0.76}_{-0.51}$                                                                                                 | $0.00\pm0.42$                                                                                                                                                       | 0.78                                                                                                                                                                                       | $0.9{\pm}0.2$   | $0.8{\pm}0.1$   | $1.1 {\pm} 0.2$ | $0.19^{+0.12}_{-0.08}$                                                  | H             | А                 |
| 678 | $28^{+8}_{-6}$       | $19_{-5}^{+6}$            | $9^{+6}_{-4}$                                                            | $3.18_{-0.70}^{+0.87}$                                                                                                 | $\begin{array}{c} 0.68_{-0.27}^{+0.40} \\ 1.74_{-0.30}^{+0.40} \end{array}$                                                                                         | $1.05\substack{+0.65\\-0.44}$                                                                                                                                                              | $1.6{\pm}0.3$   | $1.2 {\pm} 0.1$ | $2.4{\pm}0.7$   | $0.79_{-0.22}^{+0.25}$                                                  |               | В                 |
| 679 | $14^{+5}_{-4}$       | $3^{+3}_{-2}$             | $11^{+5}_{-3}$                                                           | $2.85^{+1.02}_{-0.79}$                                                                                                 |                                                                                                                                                                     | $\begin{array}{c} 1.05 \substack{+0.65 \\ -0.44 \\ 2.33 \substack{+0.95 \\ -0.72 \\ 1.96 \substack{+1.17 \\ -1.96 \\ -1.90 \\ 1.10 \substack{+0.62 \\ -0.41 \\ -0.31 \\ -0.31 \end{array}$ | $3.0{\pm}0.5$   | $2.1{\pm}0.5$   | $4.0{\pm}1.1$   | $1.39_{-0.45}^{+0.54}$                                                  |               | D                 |
| 680 | $22^{+7}_{-5}$       | $13_{-4}^{-25}$           | $8^{+5}_{-4}$                                                            | $2.85^{+1.02}_{-0.79}$ $5.01^{+1.52}_{-1.27}$                                                                          | $\begin{array}{c} 0.32\substack{+0.35\\-0.19}\\ 1.75\substack{+0.66\\-0.51\\-0.51\end{array}$                                                                       | $1.96^{+1.17}_{-0.90}$                                                                                                                                                                     | $1.6{\pm}0.3$   | $1.2{\pm}0.2$   | $2.4{\pm}0.4$   | $1.39^{+0.34}_{-0.45}$<br>$1.28^{+0.46}_{-0.41}$                        |               | В                 |
| 681 | $43^{+9}_{-7}$       | $34_{-6}^{+8}$            | $10^{+6}_{-4}$                                                           | $5.01^{+1.02}_{-1.27}$ $4.67^{+0.95}_{-0.78}$                                                                          | $2.71^{+0.47}_{-0.27}$                                                                                                                                              | $1.10^{+0.62}_{-0.44}$                                                                                                                                                                     | $1.3 {\pm} 0.1$ | $1.0{\pm}0.1$   | $2.1 {\pm} 0.6$ | ${}^{1.28_{-0.41}^{+0.40}}_{1.00_{-0.19}^{+0.22}}$                      |               | А                 |
| 682 | $2^{+4}_{-2}$        | $1^{+3}_{-1}$             | $1^{+3}_{-1}$                                                            | $0.49^{+0.86}_{-0.49}$                                                                                                 | $0.11^{+0.34}_{-0.11}$                                                                                                                                              | $0.31^{+0.79}_{-0.31}$                                                                                                                                                                     | $1.7 {\pm} 1.7$ | $1.7 {\pm} 0.6$ | $4.4{\pm}1.2$   | $0.14^{+0.27}_{-0.19}$                                                  |               | В                 |
| 683 | $4^{+\bar{3}}_{-2}$  | $4^{-1}_{-2}$             | 2                                                                        | $0.68^{+0.60}_{-0.36}$                                                                                                 | $0.43_{-0.21}^{+0.35}$                                                                                                                                              | 0.45                                                                                                                                                                                       | $0.8{\pm}0.2$   | $0.7 {\pm} 0.1$ | $1.0 {\pm} 0.2$ | $0.08^{+0.08}_{-0.05}$                                                  | H             | А                 |
| 684 | $14^{+6}_{-4}$       | $5^{+4}_{-3}$             | $9^{+5}_{-4} \\ 4^{+4}_{-2} \\ 3^{+3}_{-2}$                              | $3.14^{+1.22}_{-0.28}$                                                                                                 | $0.67^{+0.47}_{-0.32}$<br>$0.49^{+0.63}_{-0.35}$                                                                                                                    | $2.00^{+1.06}_{-0.82}$                                                                                                                                                                     | $2.3{\pm}0.7$   | $1.9{\pm}0.3$   | $3.3 {\pm} 1.4$ | $1.16\substack{+0.56\\-0.49}$                                           |               | $\mathbf{E}$      |
| 685 | $7^{+4}_{-3}$        | $2^{+3}_{-2}$             | $4^{+4}_{-2}$                                                            | $3.14_{-0.98}^{+1.22}$ $2.44_{-1.10}^{+1.50}$                                                                          | $0.49^{+0.63}_{-0.35}$                                                                                                                                              | $2.00^{+1.00}_{-0.82}$<br>$1.63^{+1.34}_{-0.89}$<br>$0.53^{+0.58}_{-0.32}$                                                                                                                 | $2.1 {\pm} 1.9$ | $1.1{\pm}0.6$   | $3.9{\pm}3.1$   | ${}^{1.16\substack{+0.36\\-0.49}}_{0.83\substack{+0.90\\-0.83}}$        |               | В                 |
| 686 | $10^{+4}_{-3}$       | $7^{+\bar{4}}_{-3}_{-+3}$ | $3^{+3}_{-2}$                                                            | $1.87_{-0.61}^{-1.10}$                                                                                                 | $\begin{array}{c} 0.49 \substack{+0.03 \\ -0.35 \\ 0.79 \substack{+0.43 \\ -0.29 \end{array}} \end{array}$                                                          | $0.53^{+0.58}_{-0.32}$                                                                                                                                                                     | $1.1{\pm}0.6$   | $0.9{\pm}0.1$   | $1.9{\pm}2.8$   | $0.34^{+0.24}_{-0.22}$                                                  |               | В                 |
| 687 | $6^{+4}_{-3}$        | $5^{+3}_{-2}$             | $2^{+3}_{-2}$                                                            | $1.34_{-0.59}^{+0.83}$                                                                                                 | $0.58\substack{+0.41\\-0.26}$                                                                                                                                       | $0.35\substack{+0.63\-0.35}\ 1.32\substack{+0.79\-0.54}$                                                                                                                                   | $1.6{\pm}1.0$   | $1.1{\pm}0.4$   | $1.9{\pm}2.1$   | $0.34^{+0.31}_{-0.37}$                                                  |               | А                 |
| 688 | $6^{+4}_{-3}$        | 2                         | $2^{+3}_{-2}$<br>$6^{+4}_{-3}$<br>$5^{+4}_{-3}$                          | $1.25^{+0.77}_{-0.52}$                                                                                                 | 0.29                                                                                                                                                                | $1.32^{+0.79}_{-0.54}$                                                                                                                                                                     | $6.2{\pm}0.5$   | $5.6{\pm}0.5$   | $6.8{\pm}0.3$   | $1.25^{+0.78}_{-0.53}$                                                  | - S -         | D                 |
| 689 | $25^{+8}_{-6}$       | $20^{+6}_{-5}$            | $5^{+4}_{-3}$                                                            | $2.77_{-0.72}^{+0.89}$                                                                                                 | $1.67\substack{+0.40 \\ -0.30}$                                                                                                                                     | $1.21_{-0.79}^{+1.05}$                                                                                                                                                                     | $1.0\pm0.1$     | $0.8{\pm}0.1$   | $1.1 {\pm} 0.1$ | $0.45_{-0.13}^{+0.16}$                                                  |               | В                 |

Chandra Catalog: Photometry (continued)

| No.          | $C_{net}$ FB                     | $C_{net}$ SB                                      | $C_{net}$ HB                                                                                              | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                   | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                   | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                   | $E_{50}$ (keV)                 | $E_{25}$ (keV)                 | $E_{75}$ (keV)                 | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                 | Phot.<br>Flag | Quantile<br>Group |
|--------------|----------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 690          | $13^{+9}_{-8}$                   | $2^{+5}_{-2}$                                     | $11^{+8}_{-7}$                                                                                            | $3.08^{+2.10}$                                                                                                              | $0.26^{+0.62}_{-0.26}$                                                                                                      | $2.68^{+1.99}$                                                                                                                              | $3.6 \pm 3.4$                  | $2.7{\pm}1.4$                  | $7.5 \pm 3.0$                  | $1.77^{+2.08}_{-2.00}$                                                                                  |               | С                 |
| 691          | $9^{+4}_{-3}$                    | $6^{-2}_{-2}$                                     | $3^{+3}_{-2}$                                                                                             | $3.08^{+2.10}_{-1.87}$<br>$1.83^{+0.88}_{-0.64}$                                                                            | $0.73^{+0.45}$                                                                                                              | $2.68^{+1.99}_{-1.71} \\ 0.59^{+0.64}_{-0.35}$                                                                                              | $1.3 \pm 0.6$                  | $1.2 \pm 0.2$                  | $2.9 \pm 1.0$                  | $0.39^{+0.26}_{-0.23}$                                                                                  |               | В                 |
| 692          | $10^{+5}$                        | $9^{+\frac{1}{2}}$                                | $1^{+2}_{-1}$                                                                                             |                                                                                                                             | $\begin{array}{c} 1.17\substack{+0.25\\-0.41}\\ 0.25\substack{+0.37\\-0.18}\\ 5.36\substack{+0.81\\-0.67\\-0.67\end{array}$ | $\begin{array}{c} 0.59 \substack{+0.35 \\ -0.35 \\ 0.29 \substack{+0.84 \\ -0.29 \\ 2.52 \substack{+1.11 \\ -0.83 \end{array}} \end{array}$ | $1.3 \pm 0.9$                  | $0.9 \pm 0.2$                  | $1.7 \pm 2.0$                  | $0.50^{+0.42}_{-0.20}$                                                                                  |               | В                 |
| 693          | $12^{+5}$                        | $2^{+3}_{-1}$                                     | $10^{+4}_{-3}$                                                                                            |                                                                                                                             | $0.25^{+0.37}_{-0.18}$                                                                                                      | $2.52^{+1.11}_{-0.22}$                                                                                                                      | $3.1 {\pm} 0.6$                | $2.8 {\pm} 0.6$                | $4.1 \pm 1.4$                  | $\begin{array}{r} -0.63\\ -0.63\\ 1.46\substack{+0.63\\-0.51}\\ 2.71\substack{+0.47\\-0.41}\end{array}$ |               | $\mathbf{E}$      |
| 694          | $66^{+10}_{-9}$                  | $46^{+8}_{-7}$                                    | $20^{+7}_{-5}$                                                                                            | $11.10^{+1.69}$                                                                                                             | $5.36^{+0.81}_{-0.67}$                                                                                                      | $2.52_{-0.83}$<br>$3.35_{-0.81}^{+1.12}$                                                                                                    | $1.5 \pm 0.1$                  | $1.1 \pm 0.1$                  | $2.2 \pm 0.3$                  | $2.71_{-0.41}^{+0.47}$                                                                                  |               | В                 |
| 695          | $8^{+5}_{-3}$                    | $8^{+4}$                                          | 4                                                                                                         | $1.80^{+1.03}_{-0.78}$                                                                                                      | $1.02^{+0.55}_{-0.30}$                                                                                                      | 1.00                                                                                                                                        | $0.9{\pm}0.2$                  | $0.8{\pm}0.1$                  | $1.0 {\pm} 0.4$                | $0.25_{-0.12}^{+0.15}$                                                                                  | H             | А                 |
| 696          | $10^{+5}_{-3}$                   | $8^{+4}_{-3}$                                     | $2^{+3}_{-2}$                                                                                             | $2.10 \pm 1.00$                                                                                                             | $0.94^{+0.49}_{-0.35}$                                                                                                      | $\begin{array}{c} 0.55\substack{+0.71\\-0.43}\\ 0.44\substack{+0.64\\-0.36} \end{array}$                                                    | $1.3 {\pm} 0.4$                | $1.0{\pm}0.2$                  | $2.2{\pm}1.2$                  | $0.46^{+0.26}_{-0.22}$                                                                                  |               | В                 |
| 697          | $12^{+6}_{-5}$                   | $13^{+5}$                                         | $2^{+\tilde{3}}_{-2}$                                                                                     | $2.10_{-0.76}$<br>$1.31_{-0.48}^{+0.65}$                                                                                    | $1.13^{+0.33}_{-0.23}$<br>$0.66^{+0.47}_{-0.30}$                                                                            | $0.44^{+0.64}_{-0.36}$                                                                                                                      | $1.0{\pm}0.2$                  | $0.8{\pm}0.1$                  | $1.1 {\pm} 0.1$                |                                                                                                         |               | А                 |
| 698          | $4^{+3}_{-2}$                    | $5^{+3}_{-2}$                                     | 2                                                                                                         | $\begin{array}{c} 1.31\substack{+0.38\\-0.48}\\ 0.97\substack{+0.82\\-0.52}\\ 1.66\substack{+1.18\\-0.75}\end{array}$       | $0.66^{+0.47}_{-0.30}$                                                                                                      | 0.56                                                                                                                                        | $1.0{\pm}0.1$                  | $1.0{\pm}0.0$                  | $1.1 {\pm} 0.1$                | $\begin{array}{c} 0.21\substack{+0.11\\-0.08}\\ 0.15\substack{+0.13\\-0.08}\end{array}$                 | H             | А                 |
| 699          | $5^{+\bar{3}}_{-2}$              | $5^{+\bar{3}}_{-2}$                               | 3                                                                                                         | $1.66^{+1.18}_{-0.75}$                                                                                                      | $\begin{array}{c} 0.66_{-0.30} \\ 1.00_{-0.43}^{+0.68} \end{array}$                                                         | 0.89                                                                                                                                        | $1.0{\pm}0.1$                  | $1.0{\pm}0.1$                  | $1.2{\pm}0.2$                  | $\begin{array}{c} 0.15 \\ -0.08 \\ 0.27 \\ -0.13 \end{array}$                                           | H             | А                 |
| 700          | 5                                | 4                                                 | 4                                                                                                         | 1.31                                                                                                                        | 0.57                                                                                                                        | 1.17                                                                                                                                        | $5.2 {\pm} 4.8$                | $2.9{\pm}7.1$                  | $7.6{\pm}7.1$                  | 1.10                                                                                                    | F S H         | $\mathbf{C}$      |
| 701          | $31^{+8}_{-6}$                   | $26^{+7}_{-5}$                                    | ${}^{6^{+4}_{-3}}_{1^{+5}_{-1}}$                                                                          | $3.17^{+0.82}_{-0.65}$                                                                                                      | $2.20^{+0.42}_{-0.33}$                                                                                                      | $1.25_{-0.71}^{+0.95}\\0.20_{-0.20}^{+1.47}$                                                                                                | $1.0{\pm}0.1$                  | $0.9{\pm}0.1$                  | $1.1{\pm}0.0$                  | $0.52\substack{+0.14\\-0.11}$                                                                           |               | А                 |
| 702          | 8                                | 3                                                 | $1^{+5}_{-1}$                                                                                             | 2.27                                                                                                                        | 0.50                                                                                                                        | $0.20^{+1.47}_{-0.20}$                                                                                                                      | $5.2 {\pm} 4.8$                | $2.9{\pm}7.1$                  | $7.6 {\pm} 7.1$                | 1.91                                                                                                    | F S -         | $\mathbf{C}$      |
| 703          | $46^{+9}_{-8}$                   | $46^{+8}_{-7}$                                    | $4^{+\bar{4}}_{-1}$                                                                                       | $5.29^{+1.05}_{-0.87}$<br>$1.09^{+0.81}_{-0.53}$                                                                            | $3.67^{+0.56}_{-0.46}$                                                                                                      | $0.29^{+1.08}_{-0.29}$                                                                                                                      | $1.0 {\pm} 0.1$                | $0.9{\pm}0.0$                  | $1.2 \pm 0.1$                  | $0.88^{+0.18}_{-0.15}$                                                                                  |               | А                 |
| 704          | $5^{+4}_{-2}$                    | $4^{+3}_{-2}$                                     | $1^{+3}_{-1}$                                                                                             | ${}^{1.09_{-0.53}^{+0.81}}_{3.92_{-1.34}^{+1.61}}$                                                                          | $0.48^{+0.41}_{-0.25}\\0.25^{+0.45}_{-0.25}$                                                                                | $0.26^{+0.61}_{-0.26}$                                                                                                                      | $1.7 {\pm} 2.2$                | $1.3 \pm 0.5$                  | $2.5 \pm 3.3$                  | $0.30^{+0.45}_{-0.41}$<br>$3.77^{+1.73}_{-1.50}$                                                        |               | В                 |
| 705          | $16^{+7}_{-5}$                   | $2^{+3}_{-2}$                                     | $14^{+6}_{-5} \\ 9^{+5}_{-3}$                                                                             | $3.92^{+1.61}_{-1.34}$                                                                                                      | $0.25^{+0.45}_{-0.25}$                                                                                                      | $\begin{array}{c} 0.26\substack{+0.61\\-0.26}\\ 3.55\substack{+1.54\\-1.27}\end{array}$                                                     | $6.0 {\pm} 1.2$                | $4.8 \pm 1.8$                  | $8.2 \pm 1.6$                  | $3.77^{+1.73}_{-1.50}$                                                                                  |               | D                 |
| 706          | $8^{+5}_{-3}$                    | 2                                                 | $9^{+5}_{-3}$                                                                                             | $3.92_{-1.34}$<br>$1.68_{-0.74}^{+0.97}$                                                                                    | 0.28                                                                                                                        | $1.90^{+0.99}_{-0.75}$                                                                                                                      | $6.8{\pm}2.2$                  | $4.4{\pm}1.3$                  | $8.7 \pm 1.0$                  | $3.77_{-1.50}$<br>$1.83_{-0.99}^{+1.20}$                                                                | - S -         | $\mathbf{C}$      |
| 707          | $20^{+7}_{-6}$                   | $6^{+4}_{-3}$                                     | $14^{+7}_{-5}$                                                                                            | $5.40^{+2.01}_{-1.70}$                                                                                                      | $0.84^{+0.64}_{-0.45}$                                                                                                      | $3.98^{+1.85}_{-1.52}$                                                                                                                      | $7.0 \pm 1.5$                  | $2.2 \pm 2.1$                  | $7.5 {\pm} 0.9$                | $6.06^{+2.59}_{-2.29}$                                                                                  |               | С                 |
| 708          | $6^{+4}_{-3}$                    | $2^{+3}_{-1}$                                     | $5^{+3}_{-2}$                                                                                             | $1.26_{-0.50}^{+0.74}$                                                                                                      | $0.21_{-0.14}^{+0.30}$                                                                                                      | $0.92^{+0.68}_{-0.43}$                                                                                                                      | $3.4{\pm}1.2$                  | $1.6 {\pm} 0.7$                | $4.7 {\pm} 0.9$                | $0.70^{+0.48}_{-0.37}$<br>$0.85^{+0.74}_{-0.51}$                                                        |               | С                 |
| 709          | $4^{+4}_{-3}$                    | $\frac{2}{1}$                                     | $5^{+\bar{4}}_{-3}$                                                                                       | $0.96^{+0.84}_{-0.57}$<br>$0.62^{+0.70}_{-0.39}$                                                                            | 0.29                                                                                                                        | $1.13_{-0.59}^{+0.86}$                                                                                                                      | $5.5 \pm 0.4$                  | $5.3 \pm 0.2$                  | $5.7 \pm 0.4$                  | $0.85^{+0.74}_{-0.51}$<br>$0.09^{+0.10}_{-0.06}$                                                        | - S -         | E                 |
| 710          | $3^{+3}_{-2}$                    | $3^{+3}_{-2}$                                     | 2                                                                                                         | $0.62^{+0.70}_{-0.39}$                                                                                                      | $0.40\substack{+0.40 \\ -0.22}$                                                                                             | 0.59                                                                                                                                        | $0.9{\pm}0.1$                  | $0.8 {\pm} 0.1$                | $1.1 \pm 0.1$                  | $0.09^{+0.10}_{-0.06}$                                                                                  | H             | А                 |
| 711          | $2^{+5}_{-2}$                    | 4                                                 | $2^{+5}_{-2}$                                                                                             | $\begin{array}{c} 0.62 \substack{+0.39\\-0.39}\\ 0.60 \substack{+1.77\\-0.60}\\ 5.50 \substack{+1.33\\-1.10}\\ \end{array}$ | 0.72                                                                                                                        | $\begin{array}{c} 0.60\substack{+1.71\\-0.60}\\ 1.90\substack{+0.91\\-0.66}\end{array}$                                                     | $9.9 {\pm} 8.2$                | $2.5 \pm 7.5$                  | $10.0 \pm 9.5$                 | $0.96^{+2.92}_{-1.24}$                                                                                  | - S -         | $\mathbf{C}$      |
| 712          | $26^{+6}_{-5}$                   | $17^{+5}_{-4}$                                    | $9^{+\bar{4}}_{-3}$                                                                                       | $5.50^{+1.33}_{-1.10}$                                                                                                      | $2.10\substack{+0.65 \\ -0.51}$                                                                                             | $1.90^{+0.91}_{-0.66}$                                                                                                                      | $1.5 \pm 0.3$                  | $1.1 \pm 0.1$                  | $3.0 {\pm} 0.6$                | $1.30_{-0.37}^{+0.41}$                                                                                  |               | В                 |
| 713          | $14^{+6}_{-5}$                   | 4                                                 | $14^{+6}_{-5}$                                                                                            | $3.59^{+1.53}_{-1.25}$                                                                                                      | 0.54                                                                                                                        | $3.75_{-1.22}^{+1.50}$                                                                                                                      | $4.7 \pm 1.0$                  | $2.8 \pm 1.1$                  | $7.9 \pm 2.9$                  | $2.69^{+1.28}_{-1.10}$                                                                                  | - S -         | С                 |
| 714          | $4^{+3}_{-2}$<br>$3^{+5}_{-3}$   | $5^{+3}_{-2}$                                     | 2                                                                                                         | $\begin{array}{c} 3.59^{+1.25}_{-1.25} \\ 0.88^{+0.68}_{-0.43} \\ 1.36^{+2.24}_{-1.36} \end{array}$                         | $0.56\substack{+0.39\\-0.25}$                                                                                               | 0.46                                                                                                                                        | $1.1 \pm 0.2$                  | $0.9{\pm}0.1$                  | $1.1 \pm 0.1$                  | $0.15^{+0.12}_{-0.08}$<br>$2.08^{+3.49}_{-2.19}$                                                        | H             | A                 |
| 715          |                                  | $\frac{3}{-+3}$                                   | $4^{+5}_{-3}_{-5}$                                                                                        | $1.36_{-1.36}^{+2.24}$ $4.32_{-1.40}^{+1.68}$                                                                               | 0.81                                                                                                                        | $1.79^{+2.22}_{-1.67}$ $3.97^{+1.61}_{-1.32}$                                                                                               | $9.6 \pm 3.1$                  | $6.4 \pm 5.9$                  | $9.6 \pm 9.1$                  |                                                                                                         | - S -         | D                 |
| 716          | $16^{+6}_{-5}$                   | $2^{+3}_{-2}_{-5}$                                | $15^{+6}_{-5}_{-5}_{-+5}$                                                                                 | $4.32^{+1.00}_{-1.40}$                                                                                                      | $0.25^{+0.48}_{-0.25}$                                                                                                      |                                                                                                                                             | $4.8 \pm 0.5$                  | $4.2 \pm 0.6$                  | $5.4 \pm 0.6$                  | $3.34^{+1.34}_{-1.13}$                                                                                  |               | E                 |
| 717          | $17^{+6}_{-5}$                   | $9^{+5}_{-3}$<br>$4^{+3}_{-2}$                    | $7^{+5}_{-4}$<br>$1^{+3}_{-1}$                                                                            | $2.02^{+0.78}_{-0.58}$<br>$1.15^{+0.84}_{-0.60}$                                                                            | $1.05_{-0.22}^{+0.35}$                                                                                                      | $0.92^{+0.01}_{-0.41}$                                                                                                                      | $2.1 \pm 1.0$                  | $1.4 \pm 0.4$                  | $5.8 \pm 1.9$                  | $0.67^{+0.42}_{-0.38}$                                                                                  |               | В                 |
| 718<br>710   | $5^{+4}_{-3}$                    | 177                                               | $\frac{1}{-1}$                                                                                            |                                                                                                                             | $0.54^{+0.21}_{-0.26}$<br>$2.00^{+0.41}_{-0.31}$                                                                            | $\begin{array}{c} 0.92 \substack{+0.041\\-0.41}\\ 0.22 \substack{+0.64\\-0.22}\\ 0.11 \substack{+0.72\\-0.11}\end{array}$                   | $1.3 \pm 0.8$                  | $1.2 \pm 0.2$                  | $2.0 \pm 1.1$                  | $0.24_{-0.19}^{+0.22}$                                                                                  |               | A                 |
| 719          | $23^{+7}_{-5}$                   | $24^{+7}_{-5}$<br>$1^{+3}_{-1}$                   | $1^{+3}_{-1}_{-1}_{10^{+5}}$                                                                              | $2.35^{+0.75}_{-0.58}$<br>$2.71^{+1.09}_{-0.87}$                                                                            | $a_{10} + 0.32$                                                                                                             | $\begin{array}{c} 0.11 \substack{+0.11 \\ -0.11} \\ 2.56 \substack{+1.06 \\ -0.83} \end{array}$                                             | $1.0\pm0.1$                    | $0.8 \pm 0.1$                  | $1.2 \pm 0.2$                  | $0.37^{+0.13}_{-0.10}$                                                                                  |               | A                 |
| 720          | $13_{-4}^{+5}$                   | $\begin{array}{c} 1 \\ -1 \\ 6 \\ -2 \end{array}$ | $12_{-4}^{+5}$                                                                                            | $2.71_{-0.87}^{+0.087}$ $1.21_{-0.50}^{+0.74}$                                                                              | $\begin{array}{c} 0.12_{-0.12} \\ 0.65_{-0.27}^{+0.40} \end{array}$                                                         |                                                                                                                                             | $4.3 \pm 0.4$                  | $3.8 \pm 0.7$                  | $4.9 \pm 1.3$                  | $1.86\substack{+0.17\ -0.62} \ 0.25\substack{+0.17\ -0.13} \ 0.25\substack{+0.17\ -0.13} \ 0.13}$       |               | E                 |
| 721          | $6^{+4}_{-3}_{+3}$               | $4^{+3}_{-2}$                                     | 4                                                                                                         | $1.21_{-0.50}$                                                                                                              | $0.65_{-0.27}$<br>$0.81_{-0.41}^{+0.68}$                                                                                    | 0.75                                                                                                                                        | $1.3 \pm 0.4$                  | $1.1 \pm 0.2$                  | $1.4 \pm 0.8$                  | $0.25_{-0.13}$<br>$0.30_{-0.20}^{+0.29}$                                                                | H             | A                 |
| 722<br>722   | $4^{+3}_{-2}$<br>$13^{+5}_{4}$   | $4^{+2}_{-2}_{4^{+3}_{-2}}$                       | $^{3}_{0^{+4}}$                                                                                           | $1.44^{+1.27}_{-0.80}$                                                                                                      |                                                                                                                             | 1.32                                                                                                                                        | $1.3 \pm 0.5$                  | $0.7 \pm 0.3$                  | $1.7 \pm 0.3$                  |                                                                                                         | H             | B<br>E            |
| $723 \\ 724$ | $13_{-4}^{+5}$<br>$12_{-3}^{+5}$ | $4+\overline{3}$                                  | $\begin{array}{c}9^{+4}_{-3}\\8^{+3}_{-3}\\2^{+3}_{-2}\\7^{+4}_{-3}\\1^{+5}_{-1}\\3^{+5}_{-2}\end{array}$ | $\begin{array}{r} -0.80\\ -0.85\\ 2.78 {}^{+1.08}_{-0.85}\\ 2.46 {}^{+0.96}_{-0.73}\\ 2.70 {}^{+1.04}_{-0.80}\end{array}$   | $0.53^{+0.41}_{-0.26}$<br>$0.48^{+0.39}_{-0.23}$                                                                            | $1.90^{+0.96}_{-0.72}$ $1.67^{+0.85}_{-0.61}$ $0.44^{+0.64}_{-0.36}$ $1.48^{+0.86}_{-0.61}$                                                 | $2.5 \pm 0.4$<br>$2.7 \pm 0.5$ | $1.7\pm0.4$                    | $3.2 \pm 1.8$<br>$3.7 \pm 0.4$ | $1.13_{-0.39}^{+0.47}$<br>1.05 $^{+0.45}$                                                               |               | E<br>C            |
| 724<br>725   | $12_{-3}^{+5}$<br>$13_{-4}^{+5}$ | 174                                               | $^{\circ}{}^{-3}_{2^{+3}}$                                                                                | 2.40 - 0.73<br>2 70 $+1.04$                                                                                                 | $1.01 \pm 0.55$                                                                                                             | 1.07 - 0.61<br>0.44 $+ 0.64$                                                                                                                | $2.7 \pm 0.5$<br>1.2 \pm 0.2   | $1.8 \pm 0.4$<br>1.0 \pm 0.2   |                                | $1.05^{+0.45}_{-0.37}$<br>$0.57^{+0.24}_{-0.19}$                                                        |               | A                 |
|              | $7^{+4}_{-3}$                    | $11^{+4}_{-3}_{1^{+2}}$                           | $\frac{2}{7+4}$                                                                                           | $2.70_{-0.80}^{+1.04}$ $1.58_{-0.64}^{+0.87}$                                                                               | $1.31_{-0.41}$<br>$0.08_{-0.08}^{+0.28}$                                                                                    | $0.44_{-0.36}$                                                                                                                              | $1.3 \pm 0.2$                  | $1.0\pm0.2$                    | $1.6 \pm 1.5$                  |                                                                                                         |               | A<br>E            |
| $726 \\ 727$ | $8^{+6}_{-3}$                    | $7^{+1}_{-1}_{7^{+4}_{-2}}$                       | $^{\prime}_{1+5}^{-3}$                                                                                    |                                                                                                                             | $0.99 \pm 0.50$                                                                                                             | 1 .)/ + 1.00                                                                                                                                | $3.2{\pm}0.5$<br>$1.4{\pm}0.6$ | $3.0 \pm 0.5$<br>$1.1 \pm 0.3$ | $3.8 \pm 1.1$<br>$1.8 \pm 0.8$ | $\begin{array}{c} 0.82 \underline{-0.35} \\ 0.37 \underline{+0.32} \\ -0.27 \end{array}$                |               | E<br>A            |
| 728          | $0^{-4}_{-4}$<br>$10^{+6}_{-4}$  | $7^{-3}_{-3}$                                     | $\frac{1}{2+5}$                                                                                           | $1.69^{+1.29}_{-0.99}$<br>$1.41^{+0.78}_{-0.55}$                                                                            | $0.82_{-0.36}^{+0.35}$<br>$1.09_{-0.21}^{+0.35}$                                                                            | $0.24_{-0.24}$<br>$0.46_{-0.32}^{+0.64}$                                                                                                    | $1.4 \pm 0.0$<br>$1.3 \pm 0.7$ | $1.1\pm0.3$<br>$1.1\pm0.2$     | $1.8 \pm 0.8$<br>$3.1 \pm 0.7$ | $0.37_{-0.27}$<br>$0.30_{-0.19}^{+0.23}$                                                                |               | B                 |
| 120          | $10^{-4}$                        | -3                                                | $3^{-2}$                                                                                                  | 1.41 - 0.55                                                                                                                 | 1.09 - 0.21                                                                                                                 | 0.40 - 0.32                                                                                                                                 | 1.3±0.7                        | $1.1\pm0.2$                    | $0.1 \pm 0.7$                  | 0.30 - 0.19                                                                                             |               | Б                 |

Chandra Catalog: Photometry (continued)

|     | FB                        | $C_{net}$ SB            | $C_{net}$ HB                                 | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                           | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                                    | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                                        | Phot.<br>Flag | Quantile<br>Group |
|-----|---------------------------|-------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 729 | $5^{+4}_{-2}$             | $5^{+3}_{-2}$           | 4                                            | $1.03^{+0.72}$                                                                                                                                                                      | $0.55^{+0.39}_{-0.25}$                                                                                                                                                                         | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.0 {\pm} 0.2$ | $0.8{\pm}0.2$   | $1.1{\pm}0.2$   | $0.16^{+0.12}_{-0.08}$                                                                                                         | H             | А                 |
| 730 | $8^{+2}_{-4}$             | $8^{+2}_{-3}$           | 4                                            | ${}^{1.03^{+0.72}_{-0.47}}_{1.78^{+1.08}_{-0.82}}$                                                                                                                                  | $1.11^{+0.55}_{-0.40}$                                                                                                                                                                         | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.4 \pm 0.5$   | $1.1 \pm 0.3$   | $1.5 \pm 1.3$   | $0.40^{+0.28}_{-0.23}$                                                                                                         | H             | A                 |
| 731 | 8                         | 3                       | 8                                            | 2.44                                                                                                                                                                                | $0.51^{-0.40}$                                                                                                                                                                                 | 2.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $5.2 \pm 4.8$   | $2.9 \pm 7.1$   | $7.6 \pm 7.1$   | 2.05                                                                                                                           | F S H         | $\mathbf{C}$      |
| 732 | $4^{+5}_{-4}$             | $8^{+4}_{-3}$           | 5                                            | $0.99^{+1.29}_{-0.99}$                                                                                                                                                              | $1.08\substack{+0.59\\-0.43}$                                                                                                                                                                  | 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.8{\pm}0.4$   | $0.6{\pm}0.2$   | $1.1 {\pm} 0.3$ | $0.12^{+0.17}_{-0.14}$                                                                                                         | H             | в                 |
| 733 | $5^{+4}_{-3}$             | $2^{+3}_{-1}$           | $\substack{ 4^{+3}_{-2} \\ 5^{+4}_{-3} }$    | $\begin{array}{c} 0.05 \pm 0.09 \\ 1.15 \pm 0.57 \\ 3.53 \pm 1.21 \\ 3.53 \pm 1.21 \\ 1.43 \pm 0.98 \\ 1.43 \pm 0.70 \\ 3.56 \pm 0.70 \\ 3.56 \pm 0.90 \\ 1.12 \\ 1.01 \end{array}$ | $\begin{array}{c} 1.00 \\ -0.43 \\ 0.22 \\ +0.34 \\ -0.34 \\ 1.38 \\ +0.57 \\ -0.43 \\ 0.78 \\ +0.51 \\ 0.78 \\ +0.42 \\ 0.65 \\ -0.28 \end{array}$                                            | ${0.80}^{+0.77}_{-0.49}\\{1.13}^{+0.89}_{-0.64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.1{\pm}1.9$   | $1.2{\pm}0.9$   | $4.1 {\pm} 2.3$ | $0.57^{+0.55}_{-0.45}$<br>$0.87^{+0.48}_{-0.45}$<br>$0.86^{+0.27}_{-0.24}$<br>$0.26^{+0.27}_{-0.24}$<br>$1.72^{+0.60}_{-0.51}$ |               | $\mathbf{C}$      |
| 734 | $16^{+6}_{-4}$            | $11^{+5}_{-3}$          | $5^{+\bar{4}}_{-3}$                          | $3.53^{+1.21}_{-0.98}$                                                                                                                                                              | $1.38^{+0.57}_{-0.43}$                                                                                                                                                                         | $1.13^{+0.89}_{-0.64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.5{\pm}0.7$   | $1.0{\pm}0.2$   | $3.9{\pm}2.6$   | $0.87^{+0.48}_{-0.45}$                                                                                                         |               | В                 |
| 735 | $6^{+4}_{-3}$             | $5^{+4}_{-2}$           | 4                                            | $1.43^{+0.98}_{-0.70}$                                                                                                                                                              | $0.78^{+0.51}_{-0.34}$                                                                                                                                                                         | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.1{\pm}0.9$   | $0.8{\pm}0.2$   | $1.8 {\pm} 1.7$ | $0.26^{+0.27}_{-0.24}$                                                                                                         | H             | В                 |
| 736 | $18_{-4}^{+6}$            | $6^{+\bar{4}}_{-2}$     | $12^{+5}_{-4}$                               | $3.56^{+1.12}_{-0.90}$                                                                                                                                                              | $0.65_{-0.28}^{+0.42}$                                                                                                                                                                         | $\begin{array}{c} 2.49 \substack{+1.00\\-0.77}\\ 1.69 \substack{+1.04\\-0.78}\\ 3.58 \substack{+0.81\\-0.65}\\ 2.12 \substack{+0.93\\-0.70}\\ 2.027\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3.0{\pm}0.5$   | $2.0{\pm}0.4$   | $3.8{\pm}0.8$   | $1.72_{-0.51}^{+0.60}$                                                                                                         |               | $\mathbf{C}$      |
| 737 | $6^{+4}_{-3}$             | 2                       | $7^{+4}_{-3}$                                | 1 /571.01                                                                                                                                                                           | 0.30                                                                                                                                                                                           | $1.69^{+1.04}_{-0.78}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5.7 {\pm} 1.7$ | $3.6{\pm}1.5$   | $7.0{\pm}1.2$   | $1.33^{+1.01}$                                                                                                                 | - S -         | $\mathbf{C}$      |
| 738 | $45^{+9}_{-7}$            | $10^{+5}_{-3}$          | $35^{+8}_{-6}$                               | $4 = c \pm 0.89$                                                                                                                                                                    | $0.99^{+0.29}_{-0.19}$                                                                                                                                                                         | $3.58^{+0.81}_{-0.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.5{\pm}0.2$   | $2.1{\pm}0.4$   | $4.3{\pm}0.5$   | $2.55^{+0.52}_{-0.44}$                                                                                                         |               | $\mathbf{C}$      |
| 739 | $12^{+5}_{-4}$            | $2^{+3}$                | $10^{+9}_{-3}$                               | $4.30_{-0.73}$<br>$2.40_{-0.74}^{+0.96}$                                                                                                                                            | $\begin{array}{c} 0.99 \substack{+0.29\\-0.19}\\ 0.99 \substack{-0.19\\-0.15}\\ 0.70 \substack{+0.48\\-0.32}\\ 0.81 \substack{+0.50\\-0.34}\\ 0.81 \substack{+0.50\\-0.34}\\ 0.90 \end{array}$ | $2.12^{+0.93}_{-0.70}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5.1 \pm 1.4$   | $2.7{\pm}1.1$   | $7.8 {\pm} 1.3$ | $1.97^{+0.34}_{-0.81}$<br>$0.15^{+0.14}_{-0.10}$                                                                               |               | $\mathbf{C}$      |
| 740 | $4^{+4}_{-3}$             | $5^{+4}_{-2}$           | 4                                            | $2.40^{+0.96}_{-0.74}\ 0.98^{+0.93}_{-0.66}$                                                                                                                                        | $0.70^{+0.48}_{-0.32}$                                                                                                                                                                         | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.9{\pm}0.2$   | $0.7{\pm}0.1$   | $1.0{\pm}0.1$   | $0.15^{+0.14}_{-0.10}$                                                                                                         | H             | А                 |
| 741 | $6^{+3}_{-3}$             | $6^{+\bar{4}}_{-3}$     | 4                                            | $1.44^{+1.00}_{-0.74}$                                                                                                                                                              | $0.81^{+0.50}_{-0.34}$                                                                                                                                                                         | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.4{\pm}0.2$   | $1.2{\pm}0.2$   | $1.5{\pm}0.3$   | $\begin{array}{c} 0.15\substack{+0.14\\-0.10}\\ 0.32\substack{+0.23\\-0.17\end{array}$                                         | H             | А                 |
| 742 | $8^{+4}_{-3}$             | $4^{+3}_{-2}$           | $4^{+3}_{-2}$                                | $1.67^{+0.87}_{-0.63}$                                                                                                                                                              | $0.45^{+0.39}_{-0.32}$                                                                                                                                                                         | $0.90\substack{+0.73\\-0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.3 {\pm} 1.3$ | $1.9{\pm}0.4$   | $5.1 {\pm} 1.5$ | $0.60^{+0.47}_{-0.42}$                                                                                                         |               | $\mathbf{C}$      |
| 743 | $13^{+6}_{-5}$            | $11_{-4}^{+5}$          | $2^{+4}_{-1}$                                | $1.47^{+0.68}$                                                                                                                                                                      | $1.20^{+0.33}_{-0.22}$                                                                                                                                                                         | $0.24^{+0.50}_{-0.15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.3{\pm}0.3$   | $1.0{\pm}0.1$   | $1.4{\pm}0.6$   | $0.30_{-0.12}^{+0.42}$                                                                                                         |               | А                 |
| 744 | $304_{-18}^{+18}$         | $118^{+\bar{1}2}_{-11}$ | $186^{+15}_{-14}$                            | $20.40 \pm 1.96$                                                                                                                                                                    | ${}^{+0.23}_{-0.22}$ ${}^{1.20}_{-0.22}^{+0.33}_{-0.22}$ ${}^{7.41}_{-0.69}^{+0.78}$                                                                                                           | $\begin{array}{c} 0.90 \substack{+0.73 \\ -0.46 \\ 0.24 \substack{+0.50 \\ -0.15 \\ 20.91 \substack{+1.65 \\ -1.57 \\ 1.73 \substack{+0.86 \\ -0.63 \end{array}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.6{\pm}0.2$   | $1.7{\pm}0.1$   | $3.8{\pm}0.2$   | $14.04^{+1.16}_{-1.16}$                                                                                                        |               | $\mathbf{C}$      |
| 745 | $8^{+4}_{-3}$             | 2                       | $9_{-3}^{+4}$                                | $33.49_{-1.96}$<br>$1.65_{-0.62}^{+0.84}$                                                                                                                                           | 0.28                                                                                                                                                                                           | $1.73^{+0.86}_{-0.63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $6.1{\pm}0.6$   | $5.3 {\pm} 1.0$ | $6.7 {\pm} 1.2$ | $1.60^{+0.83}$                                                                                                                 | - S -         | D                 |
| 746 | $5^{+4}_{-2}$             | $5^{+3}_{-2}$           | 4                                            | $1.08^{+0.73}_{-0.48}$                                                                                                                                                              | $0.57^{+0.40}_{-0.25}$                                                                                                                                                                         | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.1{\pm}0.3$   | $0.9{\pm}0.1$   | $1.4{\pm}0.4$   | $0.19^{+0.14}_{-0.10}$                                                                                                         | H             | А                 |
| 747 | $4^{+\bar{4}}_{-\bar{3}}$ | $6^{+\bar{4}}_{-2}$     | 3                                            | $1.05^{+0.90}_{-0.61}$                                                                                                                                                              | $0.75_{-0.32}^{+0.49}$                                                                                                                                                                         | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.0{\pm}0.1$   | $0.9{\pm}0.1$   | $1.0{\pm}0.1$   | $0.17\substack{+0.15\\-0.10}$                                                                                                  | H             | А                 |
| 748 | $9^{+5}_{-4}$             | 4                       | $9^{+5}_{-4}$                                | $0.17 \pm 1.16$                                                                                                                                                                     | 0.57                                                                                                                                                                                           | $2.08^{+1.12}_{-0.86}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5.4{\pm}0.9$   | $4.7 {\pm} 1.2$ | $6.6{\pm}0.5$   | 1 0 <del>7</del> +1.05                                                                                                         | - S -         | D                 |
| 749 | $6^{-4}_{-3}$             | $6^{+4}_{-2}$           | 3                                            | $2.15_{-0.91}^{+0.91}$<br>$1.11_{-0.50}^{+0.74}$                                                                                                                                    | $0.65^{+0.40}_{-0.27}$                                                                                                                                                                         | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.9{\pm}0.1$   | $0.8{\pm}0.0$   | $1.0{\pm}0.1$   | $1.87_{-0.84}$<br>$0.15_{-0.07}^{+0.10}$                                                                                       | H             | А                 |
| 750 | $1793_{-42}^{+42}$        | $904_{-30}^{+30}$       | $889^{+30}_{-30}$                            | $189.24^{+4.48}$                                                                                                                                                                    | $54.63^{+1.82}_{-1.82}$                                                                                                                                                                        | $95.78^{+3.22}_{-3.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2.0{\pm}0.0$   | $1.4{\pm}0.0$   | $3.5\pm0.1$     | $60.37^{+2.05}_{-2.05}$                                                                                                        |               | В                 |
| 751 | $3^{+3}_{-2}$             | $3^{+3}_{-2}$           | 2                                            | $\begin{array}{c} 0.57\substack{+0.66\\-0.37}\\ 1.46\substack{+0.90\\-0.65}\\ 1.37\substack{+0.77\\-0.55}\\ 4.82\substack{+1.44\\-1.18}\end{array}$                                 | $0.38^{+0.38}_{-0.21}$                                                                                                                                                                         | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.9{\pm}0.1$   | $0.9{\pm}0.0$   | $1.0{\pm}0.0$   | $0.08^{+0.10}_{-0.05}$                                                                                                         | H             | А                 |
| 752 | $7^{+4}_{-3}$             | $5^{+4}_{-2}$           | $1^{+3}_{-1}$                                | $1.46^{+0.90}_{-0.65}$                                                                                                                                                              | $\begin{array}{c} 0.66\substack{+0.45\\-0.29}\\ 0.66\substack{+0.40\\-0.27}\\ 0.65\substack{+0.48\\-0.32}\end{array}$                                                                          | $\begin{array}{c} 0.30 {\pm} 0.65 \\ 0.30 {\pm} 0.53 \\ 0.24 {\pm} 0.53 \\ 0.24 {\pm} 0.53 \\ 3.75 {\pm} 1.32 \\ 3.75 {\pm} 1.32 \\ 2.13 {\pm} 1.76 \\ 2.13 {\pm} 1.76 \\ 0.73 {\pm} 0.71 \\ 0.73 {\pm} 0.45 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.4{\pm}0.5$   | $1.2 {\pm} 0.1$ | $1.5 \pm 1.4$   | $0.32^{+0.23}$                                                                                                                 |               | А                 |
| 753 | $7^{+4}_{-3}$             | $6^{+4}_{-2}$           | $1^{+3}_{-1}$                                | $1.37^{+0.77}_{-0.55}$                                                                                                                                                              | $0.66^{+0.40}_{-0.27}$                                                                                                                                                                         | $0.24^{+0.53}_{-0.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.2{\pm}1.0$   | $1.1{\pm}0.2$   | $1.9{\pm}2.8$   | $0.02_{-0.19}$<br>$0.27_{-0.24}^{+0.26}$                                                                                       |               | А                 |
| 754 | $20^{+6}_{-5}$            | $5^{+\bar{4}}_{-2}$     | $16^{+5}_{-4}$                               | $4.82^{+1.44}_{-1.18}$                                                                                                                                                              | $0.65^{+0.48}_{-0.32}$                                                                                                                                                                         | $3.75^{+1.32}_{-1.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.8{\pm}0.3$   | $2.3 {\pm} 0.5$ | $3.7 {\pm} 0.4$ | $0.27^{+0.20}_{-0.24}$<br>$2.19^{+0.70}_{-0.59}$                                                                               |               | E                 |
| 755 | $5^{+4}_{-3}$             | 4                       | $5^{+4}_{-3}$<br>$3^{+3}_{-2}$               | $\begin{array}{r} 4.82 \\ -1.18 \\ 2.15 \\ -1.32 \\ -1.32 \end{array}$                                                                                                              | 0.85                                                                                                                                                                                           | $2.13^{+1.76}_{-1.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $7.8 {\pm} 1.9$ | $7.4{\pm}2.6$   | $8.3 {\pm} 0.7$ | $2.68^{+2.33}_{-1.76}$                                                                                                         | - S -         | D                 |
| 756 | $8^{+4}_{-3}$             | $5^{+3}_{-2}$           | $3^{+3}_{-2}$                                | $1.64^{+0.88}_{-0.65}$                                                                                                                                                              | $0.53^{+0.40}_{-0.25}$                                                                                                                                                                         | $0.73^{+0.71}_{-0.45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.7 {\pm} 0.6$ | $1.3 \pm 0.2$   | $2.5 \pm 1.5$   | $0.43^{+0.28}_{-0.23}$                                                                                                         |               | В                 |
| 757 | $4^{+3}_{-2}$             | $4^{+\bar{3}}_{-2}$     | 4                                            | $0.82^{+0.73}$                                                                                                                                                                      | $\begin{array}{c} 0.53\substack{+0.40\\-0.25}\\ 0.42\substack{+0.37\\-0.22}\\-0.24\end{array}$                                                                                                 | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.6 \pm 1.5$   | $1.5 \pm 0.4$   | $3.8 {\pm} 1.9$ | $0.21^{+0.23}_{-0.23}$                                                                                                         | H             | В                 |
| 758 | $23_{-6}^{+7}$            | $16^{+5}_{-4}$          | $7^{+5}_{-4}\\6^{+4}_{-3}$                   | $\begin{array}{c} 7.34\substack{+2.12\\-1.78}\\ 2.31\substack{+1.04\\-0.81}\\ 1.19\substack{+0.89\\-0.02}\end{array}$                                                               | $\begin{array}{c} 0.12 \_ 0.22 \\ 2.81 \stackrel{+ 0.94}{_{- 0.75}} \\ 0.62 \stackrel{+ 0.43}{_{- 0.28}} \\ 0.74 \stackrel{+ 0.48}{_{- 0.320}} \end{array}$                                    | $2.39^{+1.57}_{-1.21}\\1.25^{+0.88}_{-0.64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.7 {\pm} 0.2$ | $1.1 \pm 0.1$   | $2.3 {\pm} 0.5$ | $1.97^{+0.63}_{-0.55}$                                                                                                         |               | В                 |
| 759 | $11^{+5}_{-4}$            | $5^{+4}_{-2}$           | $6^{+4}_{-3}$                                | $2.31^{+1.04}_{-0.81}$                                                                                                                                                              | $0.62^{+0.43}_{-0.28}$                                                                                                                                                                         | $1.25^{+0.88}_{-0.64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.5\pm0.5$     | $1.8{\pm}0.4$   | $3.0{\pm}0.7$   | $0.93^{+0.47}_{-0.39}$                                                                                                         |               | E                 |
| 760 | $5^{+4}_{-3}$             | $6^{+\bar{4}}_{-2}$     | 3                                            | $1.19^{+0.89}_{-0.61}$                                                                                                                                                              | $0.74^{+0.48}_{-0.32}$                                                                                                                                                                         | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.1{\pm}0.2$   | $1.0{\pm}0.1$   | $1.3 {\pm} 0.1$ | $\begin{array}{c} 0.93\substack{+0.47\\-0.39}\\ 0.22\substack{+0.17\\-0.12}\end{array}$                                        | H             | А                 |
| 761 | $13^{+5}_{-4}$            | $12^{+5}_{-3}$          | $2^{+3}_{-1}$                                | $2.54_{-0.71}^{+0.92}$                                                                                                                                                              | $1.31^{+0.30}_{-0.38}$                                                                                                                                                                         | $0.29^{+0.51}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.2 \pm 0.3$   | $1.0 {\pm} 0.1$ | $1.8 \pm 1.7$   | $0.49^{+0.22}_{-0.18}$                                                                                                         |               | А                 |
| 762 | $17^{+6}_{-5}$            | $15^{+6}_{-4}$          | $2^{+3}_{-1} \\ 2^{+3}_{-2} \\ 46^{+9}_{-7}$ | $2.54_{-0.71}^{+0.92}$ $1.99_{-0.56}^{+0.74}$                                                                                                                                       | $1.45^{+0.37}_{-0.26}$<br>$0.59^{+0.22}_{-0.07}$                                                                                                                                               | $0.45^{+0.67}_{-0.37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.3 \pm 0.2$   | $1.0{\pm}0.1$   | $1.7{\pm}0.2$   | $0.40^{+0.17}_{-0.13}$                                                                                                         |               | А                 |
| 763 | $48^{+9}_{-74}$           | $2^{+4}_{-1}$           | $46^{+9}_{-7}$                               | $5.35^{+1.00}$                                                                                                                                                                      | $0.59^{+0.22}_{-0.07}$                                                                                                                                                                         | $\begin{array}{c} 0.14\\ 0.29 {+} 0.51\\ -0.25\\ 0.45 {+} 0.67\\ -0.37\\ 5.26 {+} 1.00\\ 1.97 {+} 0.71\\ 1.97 {-} 0.53\\ 0.80 {+} 1.00\\ 0.80 {+} 1.02\\ -0.74\\ 1.97 {+} 0.71\\ -0.53\\ 0.80 {+} 1.92\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -0.74\\ -$ | $3.5 {\pm} 0.4$ | $2.9{\pm}0.2$   | $5.5 {\pm} 0.7$ | $3.01\substack{+0.64\\-0.56}$                                                                                                  |               | D                 |
| 764 | $158^{+14}_{-13}$         | $141_{-12}^{-1}$        | $17^{+6}_{-5}$                               | ${}^{-0.038}_{17.29^{+1.58}_{-1.41}}_{2.71^{+1.30}_{-1.04}}$                                                                                                                        | $0.59^{+0.22}_{-0.07}$<br>$9.96^{+0.84}_{-0.75}$<br>$1.09^{+0.57}_{-0.42}$                                                                                                                     | $1.97^{+0.71}_{-0.53}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.2{\pm}0.1$   | $0.9{\pm}0.0$   | $1.6{\pm}0.1$   | $\begin{array}{c} 3.01 \substack{+0.56\\-0.56}\\ 3.27 \substack{+0.33\\-0.30}\\ 0.68 \substack{+0.38\\-0.33}\end{array}$       |               | А                 |
| 765 | $11^{+5}_{-4}$            | $8^{+4^{12}}_{-3}$      | $3^{+4}_{-3}$                                | $2.71^{+1.30}_{-1.04}$                                                                                                                                                              | $1.09^{+0.57}_{-0.42}$                                                                                                                                                                         | $0.80^{+1.00}_{-0.74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.6{\pm}0.5$   | $1.1{\pm}0.2$   | $2.1 {\pm} 1.2$ | $0.68^{+0.38}_{-0.33}$                                                                                                         |               | В                 |
| 766 | $29^{+8}_{-7}$            | $6^{+\bar{4}}_{-3}$     | $22_{-6}^{+7}$                               | $7.26^{+1.96}_{-1.70}$<br>$1.49^{+0.82}_{-0.60}$                                                                                                                                    | $0.89_{-0.43}^{+0.59}$                                                                                                                                                                         | $5.79^{+0.74}_{-1.55}$ $1.59^{+0.84}_{-0.61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $3.3 {\pm} 0.4$ | $2.2 \pm 0.6$   | $4.9{\pm}0.9$   | $3.87^{\pm 1.10}$                                                                                                              |               | С                 |
| 767 | $8^{+4}_{-3}$             | 2                       | $8^{+4}_{-3}$                                | $1.49^{+0.82}_{-0.60}$                                                                                                                                                              | 0.27                                                                                                                                                                                           | $1.59^{+0.84}_{-0.61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4.7 \pm 0.7$   | $3.4{\pm}0.7$   | $5.2 \pm 0.6$   | $1.12^{+0.64}_{-0.48}$                                                                                                         | - S -         | D                 |

Chandra Catalog: Photometry (continued)

|     | $C_{net}$ FB                                    | $C_{net}$ SB                   | $C_{net}$ HB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                           | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                  | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                         | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                                        | Phot.<br>Flag | Quantile<br>Group |
|-----|-------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 768 | $12^{+7}_{-6}$                                  | $11^{+5}_{-4}$                 | $1^{+5}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.67^{+1.50}$                                                                                                                                      | $1.41^{+0.64}_{-0.50}$                                                                                                                                                                                     | $0.16^{+1.16}$                                                                                                                                                                                    | $1.1 {\pm} 0.2$ | $0.9{\pm}0.2$   | $1.3 {\pm} 0.8$ | $0.49^{+0.29}_{-0.25}$                                                                                                         |               | А                 |
| 769 | $4^{+4}_{-3}$                                   | $1^{+3}$                       | $3^{+4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.67^{+1.50}_{-1.26}\\2.38^{+2.23}_{-1.60}\\2.80^{+1.28}_{-1.04}$                                                                                  | $0.45^{\pm0.83}$                                                                                                                                                                                           | $0.16^{+1.16}_{-0.16}$<br>$1.62^{+2.07}_{-1.38}$                                                                                                                                                  | $5.4 \pm 3.2$   | $4.4 \pm 2.7$   | $6.7 \pm 1.7$   | 2.08 + 2.28                                                                                                                    |               | D                 |
| 770 | $12^{+6}_{-5}$                                  | $3^{+4}$                       | $9^{+5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.80^{+1.28}_{-1.60}$                                                                                                                              | $a_{11} \pm 0.46$                                                                                                                                                                                          | $2.06^{+1.15}_{-1.00}$                                                                                                                                                                            | $2.4 \pm 0.7$   | $1.6 \pm 0.5$   | $3.7 \pm 1.8$   | $1.07^{+0.58}_{-1.84}$                                                                                                         |               | Ē                 |
| 771 | $26^{+6}$                                       | $18^{+5}_{-4}$                 | $8^{+4}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     | $2.32^{+0.31}_{-0.56}$                                                                                                                                                                                     | $\begin{array}{c} 1.62 \\ -1.38 \\ 2.06 \\ -0.90 \\ 2.00 \\ -0.75 \end{array}$                                                                                                                    | $1.6 \pm 0.2$   | $1.1 \pm 0.2$   | $2.2{\pm}0.4$   | $1.07^{+0.58}_{-0.50}$<br>$1.53^{+0.42}_{-0.36}$                                                                               |               | В                 |
| 772 | $10^{+3}_{-3}$                                  | $7^{+4}$                       | $\begin{array}{c} \overset{-}{3}\overset{+}{}\overset{+}{2}\\ & 3\overset{+}{}\overset{-}{2}\\ & 9\overset{+}{}\overset{+}{}\overset{-}{3}\\ & 8\overset{+}{}\overset{+}{}\overset{3}{}\overset{+}{}\overset{3}{}\overset{-}{}\overset{-}{3}\\ & 3\overset{+}{}\overset{-}{}\overset{2}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}{}\overset{-}$ | $2.00^{\pm0.86}$                                                                                                                                    | $\begin{array}{c} 0.44 \substack{+0.40\\-0.31}\\ 2.32 \substack{+0.70\\-0.56}\\ 0.77 \substack{+0.43\\-0.29}\\ -0.29\end{array}$                                                                           | $2.00^{+1.02}_{-0.75}$<br>$0.68^{+0.63}_{-0.38}$                                                                                                                                                  | $1.8 {\pm} 0.2$ | $1.4{\pm}0.2$   | $2.1 \pm 0.5$   | $0.57^{+0.26}$                                                                                                                 |               | А                 |
| 773 | $3^{+3}_{-2}$                                   | $4^{+3}_{-2}$                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.62^{+0.08}_{-0.43}$                                                                                                                              | $0.41^{+0.37}_{-0.22}$                                                                                                                                                                                     | 0.63                                                                                                                                                                                              | $0.9{\pm}0.2$   | $0.8 {\pm} 9.2$ | $1.1 \pm 8.9$   | $0.09^{+0.10}_{-0.07}$                                                                                                         | H             | А                 |
| 774 | $13_{-4}^{+5}$                                  | $4^{+\bar{3}}_{-2}$            | $10^{+4}_{-3} \\ 1^{+2}_{-1} \\ 4^{+5}_{-3} \\ 3^{+3}_{-2} \\ 3^{+2}_{-1} \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2.82 \pm 1.01$                                                                                                                                     | $0.47^{+0.29}_{-0.23}$<br>$2.09^{+0.52}_{-0.37}$                                                                                                                                                           | $\begin{array}{c} 2.05 \substack{+0.91 \\ -0.67 \\ 0.47 \substack{+1.28 \\ -0.46 \\ -0.28 \\ 0.67 \substack{+0.72 \\ -0.40 \\ -0.28 \\ 0.67 \substack{+0.72 \\ -0.40 \\ -0.41 \\ 98 \end{array}}$ | $2.8{\pm}0.4$   | $1.8{\pm}0.5$   | $3.6{\pm}0.7$   | $1.26^{+0.49}$                                                                                                                 |               | $\mathbf{C}$      |
| 775 | $15^{+7}_{-5}$                                  | $15^{+6}$                      | $1^{+2}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.82_{-0.78}$<br>$2.39_{-0.81}^{+1.08}$                                                                                                            | $2.09_{-0.37}^{+0.52}$                                                                                                                                                                                     | $0.47^{+1.28}_{-0.46}$                                                                                                                                                                            | $1.0{\pm}0.2$   | $0.9{\pm}0.1$   | $1.2 {\pm} 0.1$ | 10.10                                                                                                                          |               | А                 |
| 776 | $23^{+7}_{-6}$                                  | $19^{+6}_{-4}$                 | $4^{+5}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 2.39\substack{+1.00\\-0.81}\\ 2.96\substack{+0.89\\-0.69}\\ 1.59\substack{+0.90\\-0.62}\\ \end{array}$                            | $\begin{array}{c} 2.09\substack{+0.37\\-0.37}\\ 1.85\substack{+0.43\\-0.31}\\ 0.54\substack{+0.44\\-0.27\\0.32\substack{+0.32\\-0.18}\end{array}$                                                          | $0.46^{+0.57}_{-0.28}$                                                                                                                                                                            | $1.0{\pm}0.1$   | $0.9{\pm}0.1$   | $1.5{\pm}0.4$   | -15                                                                                                                            |               | В                 |
| 777 | $7^{+4}_{-3}$                                   | $4^{+3}_{-2}$                  | $3^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.59^{+0.90}_{-0.62}$                                                                                                                              | $0.54_{-0.27}^{+0.44}$                                                                                                                                                                                     | $0.67^{+0.72}_{-0.40}$                                                                                                                                                                            | $1.9{\pm}0.6$   | $1.4{\pm}0.2$   | $2.7{\pm}1.0$   | $0.48^{+0.31}_{-0.24}$                                                                                                         |               | В                 |
| 778 | $107^{+10}_{-10}$                               | $3^{+3}_{-2}$                  | $104_{-10}^{+10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $00.05 \pm 1.91$                                                                                                                                    | $0.32^{+0.32}_{-0.18}$                                                                                                                                                                                     | $20.10^{+1.98}_{-1.98}$                                                                                                                                                                           | $4.3{\pm}0.2$   | $3.5{\pm}0.1$   | $5.1{\pm}0.1$   |                                                                                                                                |               | D                 |
| 779 | $5^{+4}_{-3}$                                   | $5^{+\bar{4}}_{-2}$            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.01^{+0.84}$                                                                                                                                      | $\begin{array}{c} 0.32 \substack{+0.32 \\ -0.18 \\ 0.63 \substack{+0.43 \\ -0.29 \\ 1.03 \substack{+0.54 \\ -0.39 \\ 0.94 \substack{+0.53 \\ -0.36 \\ 0.53 \substack{+0.39 \\ -0.25 \\ -0.25 \end{array}}$ | 0.80                                                                                                                                                                                              | $1.0{\pm}0.2$   | $0.9{\pm}0.1$   | $1.3{\pm}0.2$   | $0.16^{+0.14}_{-0.10}$                                                                                                         | H             | А                 |
| 780 | $5^{+5}_{-4}$                                   | $8^{+2}_{-3}$                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.15^{+1.09}_{-0.84}$                                                                                                                              | $1.03_{-0.39}^{+0.54}$                                                                                                                                                                                     | 0.89                                                                                                                                                                                              | $1.1{\pm}0.2$   | $1.0{\pm}0.1$   | $1.4{\pm}0.2$   | $0.20^{+0.19}_{-0.15}$                                                                                                         | H             | А                 |
| 781 | $5^{+5}_{-4}$<br>$6^{+4}_{-3}$<br>$4^{+3}_{-2}$ | $7^{+4}_{-3}$                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 1.15 \pm 0.60\\ 1.15 \pm 0.84\\ 1.44 \pm 0.69\\ 0.69 \pm 0.67\\ 0.69 \pm 0.63\\ 1.30 \pm 0.63\\ 1.30 \pm 0.61\\ 0.61\end{array}$  | $0.94^{+0.53}_{-0.36}$                                                                                                                                                                                     | 0.75                                                                                                                                                                                              | $1.1{\pm}0.2$   | $0.9{\pm}0.2$   | $1.4{\pm}0.2$   | $\begin{array}{c} 0.12 \pm 0.13 \\ 0.26 \pm 0.18 \\ 0.14 \pm 0.14 \\ 0.14 \pm 0.09 \end{array}$                                | H             | А                 |
| 782 | $4^{+3}_{-2}$                                   | $5^{+3}_{-2}$                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.69^{+0.67}_{-0.43}$                                                                                                                              | $0.53^{+0.39}_{-0.25}$                                                                                                                                                                                     | 0.46                                                                                                                                                                                              | $1.3{\pm}0.2$   | $1.1{\pm}0.1$   | $1.5{\pm}0.1$   | $0.14\substack{+0.14\\-0.09}$                                                                                                  | H             | А                 |
| 783 | $6^{+4}$                                        | 2                              | $7^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.30^{+0.85}_{-0.61}$                                                                                                                              | 0.28                                                                                                                                                                                                       | $1.44_{-0.62}^{+0.87}$                                                                                                                                                                            | $4.9{\pm}1.2$   | $4.2{\pm}0.6$   | $6.7 {\pm} 1.3$ | $1.01^{+0.71}_{-0.52}$                                                                                                         | - S -         | D                 |
| 784 | $82^{+11}_{-10}$                                | 3                              | $82_{-9}^{+10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $18.76^{+2.42}_{-1.8}$                                                                                                                              | 0.43                                                                                                                                                                                                       | $19.19_{-2.22}^{+2.46}$                                                                                                                                                                           | $4.7{\pm}0.2$   | $3.8{\pm}0.1$   | $6.1{\pm}0.3$   | $14.11^{+1.94}_{-1.77}$                                                                                                        | - S -         | D                 |
| 785 | $3^{+3}_{-2}$                                   | $4^{+3}_{-2}$                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.66^{+0.60}_{-0.36}$<br>$13.92^{+1.86}_{-1.66}$                                                                                                   | $0.42^{+0.35}_{-0.21}$<br>$0.10^{+0.26}_{-0.09}$                                                                                                                                                           | 0.45                                                                                                                                                                                              | $0.8{\pm}0.1$   | $0.8{\pm}0.0$   | $0.9{\pm}0.0$   | $0.09\substack{+0.08\\-0.05}$                                                                                                  | H             | А                 |
| 786 | $71_{-8}^{+10}$                                 | $1^{-2}_{+2}$<br>$1^{+2}_{-1}$ | $70^{+9}_{-8}\\38^{+8}_{-7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $13.92^{+1.86}_{-1.66}$                                                                                                                             | $0.10^{+0.26}_{-0.09}$                                                                                                                                                                                     | $\begin{array}{c} 14.04^{+1.89}_{-1.68} \\ 7.56^{+1.55}_{-1.33} \\ 0.56^{+0.73}_{-0.44} \\ 0.575 \end{array}$                                                                                     | $5.0{\pm}0.2$   | $4.0{\pm}0.2$   | $6.2{\pm}0.3$   | $ \begin{array}{c} -0.07 \\ -1.07 \\ -1.42 \\ 5.56 \\ -1.05 \\ -1.05 \end{array} $                                             |               | D                 |
| 787 | $39^{+8}_{-7}$                                  | $1^{+3}_{-1}$                  | $38^{+8}_{-7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $13.92^{+1.66}_{-1.66}$<br>$7.56^{+1.54}_{-1.34}$<br>$1.58^{+0.93}_{-0.67}$                                                                         | $\begin{array}{c} 0.10 \substack{+0.26 \\ -0.09 \\ 0.09 \substack{+0.30 \\ -0.09 \\ -0.42 \end{array}}$                                                                                                    | $7.56^{+1.55}_{-1.33}$                                                                                                                                                                            | $4.6{\pm}0.3$   | $3.6{\pm}0.3$   | $5.9{\pm}0.6$   | $5.56^{+1.20}_{-1.05}$                                                                                                         |               | D                 |
| 788 | $7^{+4}_{-3}$                                   | $5^{+3}_{-2}$                  | $2^{+3}_{-2} \\ 7^{+4}_{-3} \\ 1^{+2}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.58^{+0.93}_{-0.67}$                                                                                                                              |                                                                                                                                                                                                            | $0.56\substack{+0.73\\-0.44}$                                                                                                                                                                     | $1.3 \pm 0.8$   | $1.0\pm0.3$     | $2.9{\pm}1.0$   | $0.34^{+0.29}_{-0.26}$                                                                                                         |               | В                 |
| 789 | $18^{+5}_{-4}$                                  | $12^{+5}_{-3}$                 | $7^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $3.59^{+1.06}_{-0.85}$                                                                                                                              | $\begin{array}{c} 0.59\substack{+0.19\\-0.28}\\ 1.34\substack{+0.52\\-0.39}\end{array}$                                                                                                                    | ${}^{+0.44}_{1.30}{}^{+0.75}_{-0.51}_{0.12}{}^{+0.45}_{-0.12}$                                                                                                                                    | $1.3 {\pm} 0.3$ | $1.0{\pm}0.1$   | $2.3 {\pm} 0.4$ | $0.74_{-0.25}^{+0.29}$                                                                                                         |               | В                 |
| 790 | $6^{+4}_{-3}$                                   | $6^{+4}_{-2}$                  | $1^{+2}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $3.59^{+1.06}_{-0.85}$<br>$1.21^{+0.71}_{-0.49}$                                                                                                    |                                                                                                                                                                                                            | $0.12^{+0.45}_{-0.12}$                                                                                                                                                                            | $1.1{\pm}0.7$   | $1.0{\pm}0.1$   | $1.4{\pm}1.4$   |                                                                                                                                |               | А                 |
| 791 | $8^{+3}_{-3}$                                   | $8^{+2}_{-3}$                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                     | $\begin{array}{c} 0.64\substack{+0.39\\-0.26}\\ 0.87\substack{+0.44\\-0.31}\\ 0.76\substack{+0.50\\-0.32}\end{array}$                                                                                      | 0.46                                                                                                                                                                                              | $1.0{\pm}0.2$   | $0.7{\pm}0.2$   | $1.4{\pm}0.1$   | $\begin{array}{c} 0.21\substack{+0.18\\-0.16}\\ 0.23\substack{+0.13\\-0.10}\end{array}$                                        | H             | В                 |
| 792 | $10^{+5}_{-4}$                                  | $5^{+4}_{-2}$                  | $4^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1.43 \substack{+0.16\\-0.54}\\ 2.43 \substack{+1.15\\-0.88}\\ 1.11 \substack{+0.74\\-0.49}\end{array}$                            | $0.76^{+0.50}_{-0.33}$                                                                                                                                                                                     | $1.12^{+0.95}_{-0.65}$                                                                                                                                                                            | $1.9{\pm}0.7$   | $1.5\pm0.2$     | $3.5 \pm 1.1$   | $\begin{array}{c} 0.23 _{-0.10} \\ 0.74 _{-0.38} ^{+0.44} \end{array}$                                                         |               | В                 |
| 793 | $5^{+4}_{-2}$                                   | $3^{+3}_{-2}$                  | $2^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.11_{-0.49}^{+0.74}$                                                                                                                              | $0.35\substack{+0.35\\-0.20}$                                                                                                                                                                              | $0.53^{+0.62}_{-0.34}$                                                                                                                                                                            | $2.1 \pm 2.5$   | $1.4{\pm}0.9$   | $7.3 \pm 2.2$   | $0.38^{+0.51}_{-0.47}$                                                                                                         |               | В                 |
| 794 | $26_{-6}^{+8}$                                  | $26^{+7}_{-5}$                 | $5^{+4}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1.11 \begin{array}{c} -0.49 \\ -0.71 \\ 2.99 \begin{array}{c} +0.89 \\ -0.71 \\ 1.22 \begin{array}{c} +0.71 \\ -0.48 \end{array}$ | $2.13^{+0.44}_{-0.34}$                                                                                                                                                                                     | $0.43^{+0.92}_{-0.43}$                                                                                                                                                                            | $1.0 {\pm} 0.1$ | $1.0 {\pm} 0.1$ | $1.1 \pm 0.1$   | $0.50^{+0.15}_{-0.12}$                                                                                                         |               | А                 |
| 795 | $7^{+4}_{-3}$                                   | $4^{+3}_{-2}$                  | $\begin{array}{c} 4^{+4}_{-3} \\ 2^{+3}_{-2} \\ 5^{+2}_{-2} \\ 3^{+2}_{-2} \\ 3^{+2}_{-2} \\ 2^{+3}_{-2} \\ 2^{+3}_{-2} \\ 2^{+1}_{-3} \\ 7^{+4}_{-3} \\ 3^{+5}_{-3} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.22^{+0.71}_{-0.48}$                                                                                                                              | $\begin{array}{c} 0.35 \substack{+0.35 \\ -0.20 \\ 2.13 \substack{+0.44 \\ -0.34 \\ 0.42 \substack{+0.35 \\ -0.21 \end{array}}}$                                                                           | $\begin{array}{c} 0.40\\ 1.12 \substack{+0.95\\-0.65}\\ 0.53 \substack{+0.62\\-0.34}\\ 0.43 \substack{+0.92\\-0.31\\-0.50 \substack{+0.56\\-0.31\\-1.58}\end{array}$                              | $1.6 {\pm} 0.6$ | $1.2 \pm 0.2$   | $2.6 {\pm} 0.7$ | $\begin{array}{c} 0.103 \pm 0.12 \\ 0.31 \pm 0.12 \\ -0.17 \\ 2.74 \pm 2.21 \\ 2.74 \pm 1.72 \end{array}$                      |               | В                 |
| 796 | $6^{+4}_{-3}$                                   | 2                              | $6^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1.22\substack{+0.71\\-0.48}\\ 2.83\substack{+2.12\\-1.55}\end{array}$                                                             | 0.65                                                                                                                                                                                                       | $\begin{array}{c} 3.30\substack{+2.16\\-1.58\\0.49\substack{+0.59\\-0.33\end{array}}\end{array}$                                                                                                  | $6.0 {\pm} 1.9$ | $3.6{\pm}1.2$   | $7.8 {\pm} 1.5$ | $2.74^{+2.21}_{-1.72}$                                                                                                         | - S -         | $\mathbf{C}$      |
| 797 | $6^{+4}_{-3}$                                   | $4^{+3}_{-2}$                  | $2^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.83_{-1.55}$<br>$1.23_{-0.51}^{+0.75}$                                                                                                            | $0.43^{+0.36}_{-0.22}$                                                                                                                                                                                     | $0.49^{+0.59}_{-0.33}$                                                                                                                                                                            | $1.9{\pm}0.8$   | $1.1 \pm 0.3$   | $3.0{\pm}0.8$   | $\begin{array}{c} 2.74 \substack{-1.72 \\ 0.37 \substack{+0.27 \\ -0.22 \\ 0.22 \end{array}}$                                  |               | В                 |
| 798 | $6^{+4}_{-2}$                                   | $4^{+2}_{-2}$                  | $2^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.05^{+0.68}_{-0.45}$<br>$1.90^{+0.94}_{-0.69}$                                                                                                    | $0.43^{+0.35}_{-0.21}$<br>$0.21^{+0.33}_{-0.16}$                                                                                                                                                           | $0.32^{+0.51}_{-0.25}$                                                                                                                                                                            | $1.5 \pm 0.5$   | $1.2 \pm 0.2$   | $2.5 {\pm} 0.6$ | $0.25_{-0.14}^{+0.18}$                                                                                                         |               | В                 |
| 799 | $9^{+4}_{-3}$                                   | $2^{+\bar{3}}_{-1}$            | $7^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.90^{+0.94}_{-0.69}$                                                                                                                              | $\begin{array}{c} 0.21\substack{+0.33\\-0.16}\\ 0.30\substack{+0.58\\-0.30}\end{array}$                                                                                                                    | $1.57^{+0.88}_{-0.63}$                                                                                                                                                                            | $2.4{\pm}0.8$   | $2.0 {\pm} 0.3$ | $4.2 \pm 1.2$   | $0.73 \substack{+0.14\ -0.36\ }{0.36}$ $2.24 \substack{+3.00\ -2.62\ }$                                                        |               | $\mathbf{C}$      |
| 800 | $5^{+6}_{-5}$                                   | $2^{+3}_{-2}$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.90_{-0.69}^{+0.61}$ $1.47_{-1.35}^{+1.66}$ $1.50_{-0.60}^{+0.84}$                                                                                | $0.30^{+0.58}_{-0.30}$<br>$0.83^{+0.46}_{-0.31}$                                                                                                                                                           | $\begin{array}{c} 0.49 \substack{+0.33 \\ -0.33} \\ 0.32 \substack{+0.51 \\ -0.25} \\ 1.57 \substack{+0.88 \\ -0.63} \\ 0.95 \substack{+1.51 \\ -0.95} \end{array}$                               | $9.5{\pm}6.9$   | $1.3 {\pm} 4.9$ | $9.7 {\pm} 2.6$ | $2.24^{+3.00}_{-2.62}$                                                                                                         |               | $\mathbf{C}$      |
| 801 | $7^{+4}_{-3}$                                   | $7^{+\overline{4}}_{-3}$       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.50^{+0.84}_{-0.60}$                                                                                                                              | $0.83^{+0.46}_{-0.31}$                                                                                                                                                                                     | 0.79                                                                                                                                                                                              | $1.1\pm0.2$     | $0.9{\pm}0.1$   | $1.4{\pm}0.3$   | $\begin{array}{c} 2.24 \substack{+2.62\\-2.62}\\ 0.25 \substack{+0.15\\-0.11}\\ 2.05 \substack{+1.28\\-1.18\\-1.18\end{array}$ | H             | А                 |
| 802 | $21^{+10}_{-8}$                                 | $7^{+6}_{-4}$                  | $14^{+9}_{-7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.50_{-0.60}^{+0.01}$<br>$2.74_{-1.11}^{+1.29}$                                                                                                    | $0.75_{-0.31}^{+0.44}$                                                                                                                                                                                     | $1.88^{+1.18}_{-0.98}$ $3.08^{+1.28}_{-1.02}$                                                                                                                                                     | $4.7 \pm 1.9$   | $1.2 \pm 1.1$   | $5.7 \pm 1.5$   |                                                                                                                                |               | С                 |
| 803 | $13^{+5}_{-4}$                                  | 3                              | $13^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 2.14 \pm 1.11 \\ 3.00 \pm 1.23 \\ 1.17 \pm 0.79 \\ 1.17 \pm 0.52 \end{array}$                                                     | 0.44                                                                                                                                                                                                       | $3.08^{+1.28}_{-1.02}$                                                                                                                                                                            | $4.6 {\pm} 0.9$ | $3.6 {\pm} 0.4$ | $6.2 \pm 1.2$   | $\begin{array}{c} 2.20 \substack{+1.03 \\ -0.87 \\ 0.60 \substack{+0.44 \\ -0.32 \end{array}}$                                 | - S -         | D                 |
| 804 | $5^{+4}_{-2}$                                   | 3                              | $5^{+4}_{-2} \\ 5^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 1.17\substack{+0.79\\-0.52}\\ 1.48\substack{+0.74\\-0.52}\end{array}$                                                             | 0.33                                                                                                                                                                                                       | $1.22^{+0.80}_{-0.53}$                                                                                                                                                                            | $3.2 {\pm} 0.9$ | $2.8 \pm 0.4$   | $4.1 \pm 1.7$   | $0.60^{+0.44}_{-0.32}$                                                                                                         | - S -         | E                 |
| 805 | $12^{+6}_{-4}$                                  | $11^{+5}_{-3}$                 | $5^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.48^{+0.74}_{-0.52}$                                                                                                                              | $1.29\substack{+0.38 \\ -0.25}$                                                                                                                                                                            | $0.63_{-0.63}^{+0.98}$                                                                                                                                                                            | $1.1 \pm 0.3$   | $0.9 {\pm} 0.2$ | $1.6 \pm 0.2$   | $0.27^{+0.15}_{-0.12}$                                                                                                         |               | В                 |

Chandra Catalog: Photometry (continued)

| No. | $C_{net}$ FB                  | $C_{net}$ SB              | $C_{net}$ HB                                                                                                           | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                       | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                                       | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                    | Phot.<br>Flag | Quantile<br>Group |
|-----|-------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 806 | $6^{+4}_{-3}$                 | $3^{+3}_{-2}$             | $4^{+3}_{-2}$                                                                                                          | $1.33\substack{+0.78\\-0.53}$                                                                                                                                                   | $\begin{array}{c} 0.35\substack{+0.35\\-0.19}\\ 2.87\substack{+0.68\\-0.57}\\ 0.21\substack{+0.30\\-0.15}\end{array}$                                                                             | $\begin{array}{c} 0.75 \substack{+0.67 \\ -0.40} \\ 1.29 \substack{+0.74 \\ -0.50} \\ 2.13 \substack{+0.89 \\ -0.67 \\ 4.29 \substack{+2.71 \\ -2.26 \\ 20.18 \substack{+2.61 \\ -2.34 \\ -2.34 \\ -2.40 \atop -77 \end{array}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2.1 \pm 1.1$   | $1.2 \pm 0.5$   | $3.9{\pm}0.9$   | $0.46^{+0.35}_{-0.29}$                                                                                     |               | В                 |
| 807 | $33^{+7}_{-6}$                | $26^{+6}_{-5}$            | $7^{+4}_{-3}$                                                                                                          | $6.20^{+1.30}_{-1.10}$                                                                                                                                                          | $2.87^{+0.68}_{-0.57}$                                                                                                                                                                            | $1.29^{+0.74}_{-0.50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.3 {\pm} 0.1$ | $1.0{\pm}0.1$   | $1.8 {\pm} 0.4$ | ${0.46}^{+0.35}_{-0.29}\\{1.31}^{+0.29}_{-0.25}$                                                           |               | А                 |
| 808 | $12^{+5}$                     | $2^{+3}$                  | $11^{+4}$                                                                                                              | $2.45_{-0.71}^{+0.93}$                                                                                                                                                          | $0.21^{+0.30}_{-0.15}$                                                                                                                                                                            | $2.13^{+0.89}_{-0.67}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $3.4{\pm}0.4$   | $3.0{\pm}0.7$   | $3.9{\pm}0.7$   | $1.33^{+0.52}_{-0.41}$                                                                                     |               | E                 |
| 809 | $12^{+7}_{-6}$                | $2^{+1}_{-2}$             | $10^{+7}_{-5}$                                                                                                         | $\begin{array}{c} 6.20 \substack{+1.30 \\ -1.10 \\ 2.45 \substack{+0.93 \\ -0.71 \\ 4.93 \substack{+2.85 \\ -2.41 \end{array}} \end{array}$                                     | $\begin{array}{c} 0.21\substack{+0.30\\-0.15}\\ 0.42\substack{+0.82\\-0.42}\\ 3.33\substack{+0.70\\-0.70}\\ 2.59\substack{+0.51\\-0.40}\end{array}$                                               | $4.29^{+2.71}_{-2.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $7.6 {\pm} 1.5$ | $5.5 \pm 3.4$   | $8.3{\pm}0.8$   | $5.98^{+3.66}_{-3.16}$                                                                                     |               | D                 |
| 810 | $101^{+10}_{-10}$             | $23_{-5}^{+6}$            | $78^{+10}_{-9}$                                                                                                        | $25.63^{+2.60}$                                                                                                                                                                 | $3.33_{-0.70}^{+0.86}$                                                                                                                                                                            | $20.18^{+2.61}_{-2.34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.2{\pm}0.2$   | $2.1{\pm}0.2$   | $4.3 {\pm} 0.2$ | $12.93^{+1.55}_{-1.55}$                                                                                    |               | $\mathbf{C}$      |
| 811 | $43^{+9}_{-7}$                | $29^{+7}_{-5}$            | $14^{+6}_{-4}$                                                                                                         |                                                                                                                                                                                 | $2.59_{-0.40}^{+0.51}$                                                                                                                                                                            | $\begin{array}{c} 1.84\substack{+0.77\\-0.38}\\ 2.28\substack{+1.10\\-0.83}\\ 1.08\substack{+0.69\\-0.46}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.5{\pm}0.2$   | $1.2{\pm}0.1$   | $2.9{\pm}0.4$   | $1.34^{+0.33}_{-0.29}$<br>$1.83^{+0.96}_{-0.74}$                                                           |               | В                 |
| 812 | $q^{+5}$                      | 2                         | $10^{+5}_{-3}$                                                                                                         |                                                                                                                                                                                 | 0.31                                                                                                                                                                                              | $2.28^{+1.10}_{-0.83}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $5.4{\pm}0.7$   | $4.4{\pm}1.1$   | $6.0{\pm}1.6$   | $1.83_{-0.74}^{+0.96}$                                                                                     | - S -         | D                 |
| 813 | $6^{-3}_{-3}$                 | $1^{+2}_{-1}$             | $6^{+4}_{-2}$                                                                                                          | $\begin{array}{c} 2.12\substack{+1.07\\-0.82}\\ 1.22\substack{+0.71\\-0.49}\\ 0.91\substack{+0.67\\-0.42}\\ 3.02\substack{+0.84\\-0.67\\5.10\substack{+1.00\\-0.84}\end{array}$ | $\begin{array}{c} 0.31\\ 0.09 {+} 0.26\\ -0.09\\ 0.56 {+} 0.39\\ 0.56 {+} 0.25\\ 0.73 {+} 0.29\\ 1.70 {+} 0.39\\ 1.70 {+} 0.39\\ 0.46 {+} 0.43\\ 0.46 {+} 0.27\\ 2.50 {+} 0.47\\ 0.37\end{array}$ | $1.08^{+0.69}_{-0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $3.5{\pm}0.5$   | $3.4{\pm}0.7$   | $4.0{\pm}0.6$   | $0.69^{+0.42}_{-0.29}\ 0.17^{+0.13}_{-0.08}$                                                               |               | E                 |
| 814 | $5^{+3}_{-2}$                 | $5^{+3}_{-2}$             | 2                                                                                                                      | $0.91^{+0.67}_{-0.42}$                                                                                                                                                          | $0.56^{+0.39}_{-0.25}$                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.2{\pm}0.1$   | $1.1{\pm}0.1$   | $1.4{\pm}0.1$   | $0.17_{-0.08}^{+0.13}$                                                                                     | H             | А                 |
| 815 | $27^{+8}_{-6}$                | $7^{+5}_{-3}$             | $20^{+7}_{-5}$                                                                                                         | $3.02_{-0.67}^{+0.84}$                                                                                                                                                          | $0.73_{-0.17}^{+0.29}$                                                                                                                                                                            | $2.27^{+0.77}_{-0.60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $3.1{\pm}0.4$   | $2.0{\pm}0.4$   | $4.1{\pm}0.9$   | $\begin{array}{c} 0.17 \substack{+0.08\\-0.08}\\ 1.51 \substack{+0.47\\-0.40}\end{array}$                  |               | $\mathbf{C}$      |
| 816 | $48^{+9}_{-8}$                | $20^{+6}_{-5}$            | $28^{+8}_{-6}$                                                                                                         | $5.10^{+1.00}_{-0.84}$                                                                                                                                                          | $1.70^{+0.39}_{-0.29}$                                                                                                                                                                            | $\begin{array}{c} 0.48\\ 2.27 \substack{+0.77\\-0.60}\\ 3.00 \substack{+0.84\\-0.84}\\ 1.33 \substack{+0.93\\-0.68}\\ 0.44 \substack{+0.99\\-0.94}\\ 1.69 +0.96\\-0.71\\-0.32\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.52\\-0.5$ | $2.1{\pm}0.2$   | $1.4{\pm}0.2$   | $4.1{\pm}0.4$   | $1.68^{+0.37}_{-0.32}$                                                                                     |               | В                 |
| 817 | $10^{+5}_{-4}$                | $4^{+3}_{-2}$             | $28^{+8}_{-6}\\6^{+4}_{-3}\\6^{+2}_{+2}\\8^{+3}_{-3}\\6^{+2}_{-2}\\2^{+3}_{-2}\\2^{+4}_{-2}$                           | $5.10^{+1.00}_{-0.84}$ $2.10^{+1.07}_{-0.83}$ $3.71^{+0.92}_{-0.75}$ $1.52^{+0.94}_{-0.76}$ $1.28^{+0.81}_{-0.54}$                                                              | $0.46\substack{+0.43\\-0.27}$                                                                                                                                                                     | $1.33^{+0.93}_{-0.68}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.3{\pm}0.4$   | $1.8{\pm}0.3$   | $2.6{\pm}0.7$   | $0.78^{+0.41}_{-0.22}$                                                                                     |               | E                 |
| 818 | $33^{+\bar{8}}_{-7}$          | $31_{-6}^{+7}$            | $6^{+4}_{-2}$                                                                                                          | $3.71^{+0.92}_{-0.75}$                                                                                                                                                          | $2.50_{-0.37}^{+0.47}$                                                                                                                                                                            | $0.44_{-0.44}^{+0.99}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.2{\pm}0.1$   | $1.0{\pm}0.1$   | $1.4{\pm}0.6$   |                                                                                                            |               | А                 |
| 819 | $7^{+4'}_{-3} \\ 6^{+4}_{-2}$ | 2                         | $8^{+4}_{-3}$                                                                                                          | $1.52^{+0.94}_{-0.70}$                                                                                                                                                          | 0.28                                                                                                                                                                                              | $1.69^{+0.96}_{-0.71}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4.9{\pm}0.7$   | $4.4{\pm}0.6$   | $5.7{\pm}0.8$   | $0.70^{+0.18}_{-0.15}$<br>$1.19^{+0.75}_{-0.57}$                                                           | - S -         | E                 |
| 820 | $6^{+4}_{-2}$                 | 3                         | $6^{+4}_{-2}$                                                                                                          | $1.28^{+0.81}_{-0.54}$                                                                                                                                                          | 0.35                                                                                                                                                                                              | $1.33^{+0.83}_{-0.55}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4.7 {\pm} 1.9$ | $3.5{\pm}0.8$   | $8.6{\pm}1.8$   | $\begin{array}{c} 1.19 \substack{-0.57 \\ -0.57 \\ 0.97 \substack{-0.56 \\ -0.58 \\ -0.14 \end{array}}$    | - S -         | $\mathbf{C}$      |
| 821 | $18^{+5}_{-4}$                | $16^{+5}_{-4}$            | $2^{+3}_{-2}$                                                                                                          | $3.51^{+1.06}$                                                                                                                                                                  | $1.78^{+0.57}_{-0.45}$                                                                                                                                                                            | $0.44^{+0.58}_{-0.32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.0{\pm}0.1$   | $0.9{\pm}0.1$   | $1.2{\pm}0.6$   | $0.58\substack{+0.18\\-0.14}$                                                                              |               | А                 |
| 822 | $13^{+6}_{-5}$                | $10_{-4} \\ 11_{-3}^{+5}$ | $2^{+4}_{-2}$                                                                                                          | $1.30^{+0.67}$                                                                                                                                                                  | ${}^{1.78_{-0.45}^{+0.57}}_{1.18_{-0.21}^{+0.32}}$                                                                                                                                                | $0.52^{+1.02}_{-0.52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.2{\pm}0.3$   | $1.1{\pm}0.2$   | $1.8{\pm}0.3$   | $0.25^{+0.14}_{-0.12}$                                                                                     |               | В                 |
| 823 | $5^{+4}_{-3}$                 | $5^{+4}_{-2}$             | 4                                                                                                                      | $1.03^{+0.89}_{-0.64}$                                                                                                                                                          | $0.69\substack{+0.47\\-0.31}$                                                                                                                                                                     | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.9{\pm}0.1$   | $0.8{\pm}0.2$   | $1.0{\pm}0.0$   | $0.16\substack{+0.14\\-0.10}$                                                                              | H             | А                 |
| 824 | $6^{+4}_{-3}$                 | $6^{+2}_{-2}$             | 5                                                                                                                      | $1.03^{+0.49}_{-0.64}$ $1.03^{+0.89}_{-0.64}$ $1.33^{+0.92}_{-0.67}$ $4.22^{+1.09}_{-0.91}$                                                                                     | $\begin{array}{c} 0.69 \substack{+0.47 \\ -0.31 \\ 0.73 \substack{+0.46 \\ -0.31 \\ 1.02 \substack{+0.42 \\ -0.25 \end{array}}}$                                                                  | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.1{\pm}0.5$   | $1.0{\pm}0.1$   | $1.3 {\pm} 1.1$ | $ \begin{array}{c} -0.12\\ 0.16 {+}0.14\\ 0.23 {-}0.10\\ 0.23 {-}0.16\\ 2.70 {+}0.75\\ -0.64 \end{array} $ | H             | А                 |
| 825 | $34^{+9}_{-7}$                | $6^{+3}_{-2}$             | $\begin{array}{r} 32^{+8}_{-7} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 9^{+4}_{-3} \\ 4^{+2}_{-2} \\ 7^{+5}_{-4} \end{array}$ | $4.22^{+1.09}_{-0.91}$                                                                                                                                                          | $1.02^{+0.42}_{-0.25}$                                                                                                                                                                            | $\begin{array}{c} 4.03 \substack{+1.07 \\ -0.88 \\ 0.65 \substack{+0.66 \\ -0.40 \\ 0.57 \substack{+0.57 \\ -0.31 \\ -0.31 \end{array}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $4.0{\pm}0.4$   | $3.6{\pm}0.3$   | $5.2{\pm}0.5$   | $2.70^{+0.75}_{-0.64}$                                                                                     |               | E                 |
| 826 | $12^{+5}_{-4}$                | $9^{+\bar{4}}_{-3}$       | $3^{+3}_{-2}$                                                                                                          | $\begin{array}{r} 4.22 \_ 0.91 \\ 2.41 \_ 0.74 \\ 1.23 \_ 0.74 \\ 1.23 \_ 0.49 \\ 1.88 \_ 0.66 \\ 2.23 \_ 1.17 \\ 2.23 \_ 0.88 \end{array}$                                     | $\begin{array}{c} 1.02\substack{+0.42\\-0.25}\\ 1.02\substack{+0.48\\-0.35}\\ 0.43\substack{+0.35\\-0.21}\end{array}$                                                                             | $0.65\substack{+0.66\\-0.40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.5{\pm}0.2$   | $1.2{\pm}0.2$   | $2.0{\pm}1.0$   | $0.57^{+0.25}_{-0.20}$                                                                                     |               | А                 |
| 827 | $7^{+4}_{-3}$                 | $4^{+3}_{-2}$             | $3^{+3}_{-2}$                                                                                                          | $1.23^{+0.72}_{-0.49}$                                                                                                                                                          | $0.43^{+0.35}_{-0.21}$                                                                                                                                                                            | $0.51^{+0.57}_{-0.31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.8{\pm}0.9$   | $1.5{\pm}0.2$   | $3.2{\pm}1.3$   | $0.36^{+0.28}_{-0.23}$                                                                                     |               | В                 |
| 828 | $9^{+4}_{-3}$                 | 2                         | $9^{+4}_{-3}$                                                                                                          | $1.88^{+0.89}_{-0.66}$                                                                                                                                                          | 0.30                                                                                                                                                                                              | $0.97^{+0.91}_{-0.67}$<br>$0.93^{+0.94}_{-0.62}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3.9{\pm}0.2$   | $3.5{\pm}0.2$   | $3.9{\pm}0.4$   | $1.17^{+0.56}_{-0.42}$<br>$0.56^{+0.32}_{-0.25}$                                                           | - S -         | E                 |
| 829 | $0^{+5}$                      | $5^{+4}_{-2}$             | $4^{+4}_{-2}$                                                                                                          | $2.23^{+1.17}_{-0.88}$                                                                                                                                                          | $0.74_{-0.34}^{+0.52}$                                                                                                                                                                            | $0.93^{+0.94}_{-0.62}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.6{\pm}0.3$   | $1.2{\pm}0.2$   | $2.1{\pm}0.4$   | $0.56^{+0.32}_{-0.25}$                                                                                     |               | А                 |
| 830 | $7^{+3}_{-4}$                 | 4                         | $7^{+5}_{-4}$                                                                                                          | $\begin{array}{c} 2.23 \substack{+0.18\\-0.88}\\ 1.50 \substack{+1.06\\-0.83}\\ 1.71 \substack{+0.71\\-0.53}\\ 1.71 \substack{+0.71\\-0.53}\end{array}$                         | 0.52                                                                                                                                                                                              | $\begin{array}{c} 0.93_{-0.62} \\ 1.43_{-0.79}^{+1.03} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $9.7 {\pm} 1.1$ | $8.5 \pm 2.4$   | $9.7{\pm}0.3$   | $\begin{array}{c} 0.56\substack{+0.32\\-0.25}\\ 2.32\substack{+1.66\\-1.31}\end{array}$                    | - S -         | D                 |
| 831 | $16^{+4}_{-5}$                | $17^{+6}_{-4}$            | 4                                                                                                                      | $1.71^{+0.71}_{-0.53}$                                                                                                                                                          | $1.66\substack{+0.38\\-0.28}$                                                                                                                                                                     | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.1{\pm}0.2$   | $0.9{\pm}0.1$   | $1.2 {\pm} 0.1$ | $0.30^{+0.14}_{-0.11}$                                                                                     | H             | В                 |
| 832 | $8^{+4}_{-3}$                 | 2                         | $8^{+4}_{-3}$                                                                                                          | $1.60^{+0.81}_{-0.59}$                                                                                                                                                          | 0.28                                                                                                                                                                                              | $1.68\substack{+0.82\\-0.60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $5.2 {\pm} 0.8$ | $4.8{\pm}0.7$   | $6.8{\pm}0.6$   | $1.34_{-0.53}^{+0.70}$                                                                                     | - S -         | D                 |
| 833 | $4^{+3}_{-2}$                 | $4^{+3}_{-2}$             | 2                                                                                                                      | $\begin{array}{r} -0.33\\ -0.81\\ 1.60 {-}0.59\\ 1.00 {+}0.85\\ 4.18 {+}1.78\\ 4.18 {-}1.51\end{array}$                                                                         | $\begin{array}{c} 0.61 \substack{+0.50 \\ -0.30} \\ 0.57 \substack{+0.57 \\ -0.39} \\ 0.78 \substack{+0.43 \\ -0.29} \\ 1.29 \substack{+0.76 \\ -0.61} \end{array}$                               | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.0{\pm}0.2$   | $0.9{\pm}0.1$   | $1.2 {\pm} 0.1$ | $0.15^{+0.14}_{-0.08}$<br>$2.49^{+1.27}_{-1.14}$                                                           | H             | А                 |
| 834 | $16^{+7}_{-6}$                | $4^{+2}_{-3}$             | ${}^{12^{+6}_{-5}}_{1^{+3}_{-1}}$                                                                                      | $4.18^{+1.78}_{-1.51}$                                                                                                                                                          | $0.57^{+0.57}_{-0.39}$                                                                                                                                                                            | $\begin{array}{c} 3.23^{+1.65}_{-1.36} \\ 0.29^{+0.53}_{-0.26} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3.7{\pm}1.0$   | $2.6{\pm}1.0$   | $5.7 {\pm} 1.8$ | $2.49^{+1.27}_{-1.14}$                                                                                     |               | $\mathbf{C}$      |
| 835 | $8^{+4}_{-3}$                 | $7^{+4}_{-3}$             | $1^{+3}_{-1}$                                                                                                          | $4.18^{+1.51}_{-1.51}$<br>$1.62^{+0.80}_{-0.58}$                                                                                                                                | $0.78^{+0.43}_{-0.29}$                                                                                                                                                                            | $0.29^{+0.53}_{-0.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.1{\pm}0.4$   | $0.9{\pm}0.1$   | $1.9{\pm}0.9$   | $2.49^{-1.14}_{-1.14}$<br>$0.29^{+0.18}_{-0.15}$                                                           |               | В                 |
| 836 | $4^{+8}_{-4}$                 | $10^{+6}_{-5}$            | 8                                                                                                                      | $0.92^{+1.83}_{-0.92}$                                                                                                                                                          | $1.29^{+0.76}_{-0.61}$                                                                                                                                                                            | 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.1{\pm}8.9$   | $0.9{\pm}2.6$   | $1.2 \pm 8.8$   | $0.17^{+1.35}_{-1.32}$                                                                                     | H             | А                 |
| 837 | $66^{+9}_{-8}$                | $27^{+6}_{-5}$            | $39^{+8}_{-7}$                                                                                                         | $\begin{array}{r} 14.44^{+2.09}_{-1.86}\\ 2.06^{+0.78}_{-0.61}\end{array}$                                                                                                      | $3.34^{+0.80}_{-0.66}$                                                                                                                                                                            | $8.74^{+1.72}_{-1.48}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.3 {\pm} 0.3$ | $1.5 {\pm} 0.1$ | $4.0{\pm}0.4$   | $5.31^{+1.02}_{-0.96}$<br>$0.33^{+0.14}_{-0.11}$                                                           |               | $\mathbf{C}$      |
| 838 | $18^{+7}_{-6}$                | $18^{+6}_{-5}$            | 5                                                                                                                      | $2.06^{+0.78}_{-0.61}$                                                                                                                                                          | $\begin{array}{r} 1.29^{+0.16}_{-0.61}\\ 3.34^{+0.80}_{-0.66}\\ 1.66^{+0.39}_{-0.29}\\ 0.44^{+0.35}_{-0.21}\end{array}$                                                                           | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.0{\pm}0.2$   | $0.9{\pm}0.1$   | $1.3 {\pm} 1.9$ | $0.33^{+0.14}_{-0.11}$                                                                                     | H             | А                 |
| 839 | $5^{+3}_{-2}$                 | $4^{+3}_{-2}$             | $1^{+2}_{-1} \\ 7^{+5}_{-4} \\ 3^{+4}_{-3} \\ 2^{+3}_{-2} \\ 1^{+2}_{-1} \\ 1^{+1}_{-1}$                               | $2.06^{+0.78}_{-0.61}$<br>$0.86^{+0.65}_{-0.41}$                                                                                                                                | $0.44^{+0.35}_{-0.21}$                                                                                                                                                                            | $\begin{array}{c} 0.011^{+0.45}_{-0.11}\\ 1.53^{+1.18}_{-0.94}\\ 0.79^{+0.93}_{-0.67}\\ 1.22^{+1.78}_{-1.08}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.5 {\pm} 0.3$ | $1.2{\pm}0.2$   | $1.7{\pm}0.3$   | $\begin{array}{c} 0.33\substack{+0.14\\-0.11}\\ 0.21\substack{+0.16\\-0.11}\\-0.11\end{array}$             |               | А                 |
| 840 | $12^{+6}_{-5}$                | $5^{+2}_{-3}$             | $7^{+5}_{-4}$                                                                                                          | $2.51^{+1.32}_{-1.00}$                                                                                                                                                          | $\begin{array}{c} 0.44 \substack{-0.21 \\ -0.21 \\ 0.57 \substack{+0.47 \\ -0.32 \\ 1.51 \substack{+0.40 \\ -0.30 \\ -0.32 \end{array}}$                                                          | $1.53^{+1.18}_{-0.94}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4.5 {\pm} 1.7$ | $1.8{\pm}1.0$   | $5.7 {\pm} 1.7$ | $0.21^{+0.16}_{-0.11}\\1.81^{+1.17}_{-1.04}$                                                               |               | $\mathbf{C}$      |
| 841 | $19^{+7}_{-6}$                | $17^{+6}_{-5}$            | $3^{+4}_{-3}$                                                                                                          | $2.23^{+0.88}_{-0.69}$<br>$1.87^{+1.97}_{-1.31}$                                                                                                                                | $1.51^{+0.40}_{-0.30}$                                                                                                                                                                            | $0.79^{+0.93}_{-0.67}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.2{\pm}0.2$   | $1.0{\pm}0.1$   | $1.3 {\pm} 0.1$ | $0.42^{+0.17}$                                                                                             |               | А                 |
| 842 | $3^{+4}_{-2}$                 | $1^{+3}_{-1}$             | $2^{+3}_{-2}$                                                                                                          | $1.87^{+1.97}_{-1.31}$                                                                                                                                                          |                                                                                                                                                                                                   | $1.22^{+1.78}_{-1.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4.5 {\pm} 4.1$ | $0.8 {\pm} 2.1$ | $6.9 {\pm} 2.4$ | $1.35^{+1.89}_{-1.56}$                                                                                     |               | $\mathbf{C}$      |
| 843 | $4^{+\bar{3}}_{-2}$           | $3^{+3}_{-2}$             | $1^{+2}_{-1}$                                                                                                          | $\begin{array}{c} 1.87 \substack{+1.31 \\ -1.31 \\ 0.69 \substack{+0.60 \\ -0.36 \end{array}}$                                                                                  | $\begin{array}{c} 0.38 \substack{+0.38 \\ -0.38} \\ 0.33 \substack{+0.33 \\ -0.18} \end{array}$                                                                                                   | $\begin{array}{c} 1.22 \substack{+1.08 \\ -1.08 \end{array} \\ 0.14 \substack{+0.45 \\ -0.14 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.5 \pm 0.5$   | $1.4 {\pm} 0.2$ | $1.9 {\pm} 0.7$ | $0.16_{-0.10}^{+0.15}$                                                                                     |               | А                 |

Chandra Catalog: Photometry (continued)

| No. | $C_{net}$ FB                                    | $C_{net}$ SB               | $C_{net}$ HB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                   | $\frac{f_{\rm ph} \rm SB(10^{-6}}{\rm cm^{-2}~s^{-1}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} f_{\rm ph} {\rm HB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phot.<br>Flag | Quantile<br>Group |
|-----|-------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 844 | $9^{+5}_{-4}$                                   | $6^{+4}_{-3}$              | $3^{+4}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.74_{-0.73}^{+0.95}$                                                                                                                                                                      | $0.70\substack{+0.44\\-0.30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.54^{+0.73}_{-0.48}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.5 {\pm} 0.6$ | $1.1{\pm}0.3$   | $2.0{\pm}2.3$   | $0.41^{+0.28}_{-0.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | А                 |
| 845 | $18_{-5}^{-4}$                                  | 5                          | $20^{+7}_{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1 - 22 \pm 0.69$                                                                                                                                                                           | $0.28^{-0.30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.54^{+0.73}_{-0.48}\\2.11^{+0.71}_{-0.54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4.5 {\pm} 0.3$ | $4.1 {\pm} 0.2$ | $5.5 {\pm} 0.5$ | $0.92^{+0.24}_{-0.39}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - S -         | E                 |
| 846 | $25^{+6}_{-5}$                                  | $20^{+6}_{-4}$             | $5^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.89_{-0.53}^{+0.03}$ $4.77_{-0.97}^{+1.18}$ $1.93_{-0.87}^{+1.14}$                                                                                                                        | $0.04 \pm 0.63$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.92_{-0.43}^{+0.67}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.2 \pm 0.1$   | $1.0 {\pm} 0.1$ | $1.6 {\pm} 0.7$ | $0.92^{+0.24}_{-0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | А                 |
| 847 | $8^{+5}_{-3}$                                   | $8^{+4}_{-2}$              | $\frac{-2}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.93^{+0.97}_{-0.87}$                                                                                                                                                                      | $1.13^{+0.58}_{-0.58}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.0 {\pm} 0.2$ | $0.9{\pm}0.2$   | $1.3 \pm 0.2$   | $0.31^{+0.19}_{-0.15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H             | А                 |
| 848 | $17^{+5}_{-4}$                                  | $8^{+4}_{-3}\\1^{+2}_{-1}$ | $16^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3.23^{+1.02}$                                                                                                                                                                              | $0.10^{\pm0.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 3.12 \substack{+1.01 \\ -0.80 \\ 0.75 \substack{+0.79 \\ -0.74 \\ 1.62 \substack{+0.98 \\ -0.74 \\ 3.53 \substack{+0.87 \\ -0.69 \\ \end{array}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $3.2{\pm}0.4$   | $2.5 {\pm} 0.3$ | $4.1 \pm 1.3$   | $1.66^{+0.57}_{-0.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | Е                 |
| 849 | $5^{+3}_{-2}$                                   | $2^{+3}$                   | $3^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.25^{+0.90}_{-0.57}$                                                                                                                                                                      | $0.30^{+0.41}_{-0.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.75^{+0.79}_{-0.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.3 {\pm} 0.7$ | $1.7{\pm}0.4$   | $3.5 {\pm} 0.6$ | $0.45^{+0.36}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | $\mathbf{C}$      |
| 850 | $15_{-4}^{-2}$                                  | $8^{+4}_{2}$               | $7^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} 1.25 \pm 0.80 \\ 1.25 \pm 0.90 \\ -0.57 \\ 3.34 \pm 1.20 \\ -0.97 \end{array}$                                                                                            | $0.99^{+0.51}_{-0.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.62^{+0.98}_{-0.74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.0 {\pm} 0.6$ | $1.5 \pm 0.2$   | $3.3 \pm 1.4$   | $0.45^{+0.36}_{-0.25}$<br>$1.07^{+0.50}_{-0.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | В                 |
| 851 |                                                 | $4^{+3}$                   | $32^{+8}_{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                             | $\begin{array}{c} 0.10 \pm 0.09 \\ 0.30 \pm 0.41 \\ 0.99 \pm 0.51 \\ 0.99 \pm 0.51 \\ 0.37 \\ 0.83 \pm 0.31 \\ 0.55 \pm 0.38 \\ 0.55 \pm 0.24 \\ 0.77 \pm 0.63 \\ 0.77 \pm 0.46 \\ 0.10 \pm 0.27 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $3.53^{+0.87}_{-0.60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4.3 {\pm} 0.5$ | $3.3 {\pm} 0.4$ | $5.5 {\pm} 0.7$ | $9.45\pm0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | D                 |
| 852 | $32^{+\circ}_{-6} \\ 4^{+3}_{-2}$               | $5^{+1}_{-2}$              | $2^{-0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 3.56 \substack{+0.67\\-0.71}\\ 0.82 \substack{+0.67\\-0.42}\\ 0.71 \substack{+1.59\\-0.71}\\ \end{array}$                                                                 | $0.55^{+0.38}_{-0.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.2 \pm 0.3$   | $0.9{\pm}0.2$   | $1.3 \pm 0.1$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H             | А                 |
| 853 | $3^{+6}_{-3}$                                   | $5^{+4}$                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.71^{+0.42}_{-0.71}$                                                                                                                                                                      | $0.77^{+0.63}_{-0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.1 \pm 8.9$   | $0.7 \pm 3.7$   | $9.8 {\pm} 7.1$ | $0.12^{+1.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H             | В                 |
| 854 | $29^{+6}_{-5}$                                  | $1^{+2}_{-1}$              | $28^{+6}_{-5} \\ 5^{+5}_{-3} \\ 5^{+4}_{-3} \\ 2^{+3}_{-2} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 6^{+4}_{-3} \\$ | $5.83^{\pm 1.32}$                                                                                                                                                                           | $0.10^{+0.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $5.77^{+1.32}_{-1.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $5.3 {\pm} 0.5$ | $3.5 {\pm} 0.4$ | $6.5 {\pm} 0.3$ | $4.94^{+1.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | D                 |
| 855 | $39^{+9}_{-7}$                                  | $34_{-6}^{-1}$             | $5^{+5}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.68^{+0.84}_{-0.68}$<br>$1.75^{+1.07}_{-0.80}$<br>$1.85^{+2.30}_{-1.47}$<br>$2.61^{+1.45}_{-1.13}$                                                                                        | ${}^{-0.10}_{2.52}{}^{+0.44}_{-0.34}\\_{0.30}{}^{+0.40}_{-0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.11 \\ 0.46 \\ -0.31 \\ 1.24 \\ -0.70 \\ 1.67 \\ +2.20 \\ 1.67 \\ +2.33 \\ 1.83 \\ -0.97 \\ -0.31 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.0 {\pm} 0.0$ | $0.9{\pm}0.0$   | $1.4{\pm}0.5$   | $0.60^{+0.14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | А                 |
| 856 | $7^{+4}_{-2}$                                   | $2^{+3}_{-2}$              | $5^{+3}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.75^{+0.00}_{-0.00}$                                                                                                                                                                      | $0.30^{+0.40}_{-0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.24^{+0.98}_{-0.70}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3.2 \pm 1.5$   | $2.5 {\pm} 0.8$ | $6.1 \pm 1.7$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | $\mathbf{C}$      |
| 857 | $7^{+4}_{-3}\\3^{+3}_{-2}$                      | $\frac{-2}{4}$             | $2^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.85^{+2.30}_{-1.47}$                                                                                                                                                                      | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.67^{+2.20}_{-1.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $6.1 \pm 2.9$   | $1.5 \pm 1.9$   | $7.6 \pm 1.3$   | $\begin{array}{c} 0.89\substack{+0.69\\-0.58}\\ 1.82\substack{+2.42\\-1.69}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - S -         | $\mathbf{C}$      |
| 858 | $9^{+5}_{-4}$                                   | $3^{+3}_{-2}$              | $6^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.61^{+1.45}_{-1.13}$                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.83^{+1.30}_{-0.97}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3.4{\pm}1.5$   | $1.6{\pm}1.0$   | $4.2 \pm 2.7$   | $1.44^{+1.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | $\mathbf{C}$      |
| 859 | $12^{+5}_{-4}$                                  | $4^{+3}_{-2}$              | $9^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                             | $0.48^{+0.39}_{-0.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.89_{-0.66}^{+0.91}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.4{\pm}0.6$   | $1.9{\pm}0.3$   | $3.7 {\pm} 0.5$ | $1.02^{+0.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | E                 |
| 860 | $6^{+4}_{-3}$                                   | $6^{+4}_{-3}$              | $^{-3}_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.50^{+0.99}$                                                                                                                                                                              | $0.86^{+0.24}_{-0.35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.0 {\pm} 0.2$ | $0.9{\pm}0.1$   | $1.4{\pm}0.2$   | $0.24^{+0.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H             | А                 |
| 861 | $10^{+5}_{-4}$                                  | $7^{+4}_{-3}$              | $3^{+4}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.26^{+1.15}_{-0.89}$                                                                                                                                                                      | $0.94_{-0.38}^{+0.54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.63\substack{+0.88 \\ -0.58}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.3 {\pm} 0.4$ | $1.1 {\pm} 0.2$ | $2.1{\pm}1.0$   | $0.46^{+0.29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | А                 |
| 862 | $6^{+4}_{-2}$                                   | $6^{+4}_{-2}$              | $\frac{-2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 1.06 - 0.73 \\ 2.26 + 1.15 \\ - 0.89 \\ 1.06 + 0.68 \\ 0.81 + 0.86 \\ 0.81 + 0.59 \end{array}$                                                                            | $\begin{array}{c} 0.94\substack{+0.54\\-0.38}\\ 0.65\substack{+0.39\\-0.26}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.1 {\pm} 0.2$ | $0.8 {\pm} 0.2$ | $1.3 {\pm} 0.2$ | $\begin{array}{c} 0.19 -0.24\\ -0.09\\ 0.65 \substack{+0.79\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0.61\\ -0$ | H             | В                 |
| 863 | $4^{+4}_{-3}$                                   | $\frac{-2}{4}$             | $3^{+4}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.81^{+0.86}_{-0.59}$                                                                                                                                                                      | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.75^{+0.83}_{-0.55}\\0.66^{+0.83}_{-0.69}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $5.0{\pm}3.0$   | $3.6{\pm}2.0$   | $9.5 {\pm} 1.7$ | $0.65^{+0.79}_{-0.61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - S -         | $\mathbf{C}$      |
| 864 | $20^{+7}_{-5}$                                  | $17^{+6}_{-4}$             | $3^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.46^{+0.84}$                                                                                                                                                                              | $1.74_{-0.30}^{+0.42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.66^{+0.83}_{-0.60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.2 {\pm} 0.2$ | $0.8 {\pm} 0.1$ | $1.6 {\pm} 0.3$ | $0.49^{+0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | В                 |
| 865 | $13^{+5}_{-4}$                                  | $7^{+4}_{-3}$              | $6^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.57^{+0.93}_{-0.72}$                                                                                                                                                                      | $0.77^{+0.42}_{-0.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.27^{+0.75}_{-0.51}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.9{\pm}0.5$   | $1.7 {\pm} 0.2$ | $3.4{\pm}1.5$   | $0.78^{+0.35}_{-0.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | В                 |
| 866 | $7^{+4}_{-3}$                                   | $1^{+2}_{-1}$              | $6^{+4}_{-3}\\6^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 2.16 \pm 0.62\\ 2.57 \pm 0.93\\ 1.36 \pm 0.78\\ 1.36 \pm 0.78\\ 2.71 \pm 1.00\\ 2.71 \pm 1.00\\ 2.24 \pm 0.90\\ 2.24 \pm 0.90\\ 2.24 \pm 0.90\\ 3.20 \pm 0.91\end{array}$ | $0.08_{-0.08}^{+0.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.00 \pm 0.60\\ 1.27 \pm 0.75\\ 1.24 \pm 0.77\\ 1.24 \pm 0.77\\ 2.86 \pm 1.02\\ 2.86 \pm 0.81\\ 0.95 \pm 0.94\\ 0.95 \pm 0.95\\ 0.95 \pm 0.95$ | $4.9{\pm}1.0$   | $4.0{\pm}1.6$   | $6.1 {\pm} 0.6$ | $1.07 \substack{+0.65 \\ -0.49 \\ 1.62 \substack{+0.72 \\ -0.62 }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | D                 |
| 867 | $14^{+5}_{-4}$                                  | 2                          | $15^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2.71^{+1.00}_{-0.79}$                                                                                                                                                                      | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2.86^{+1.02}_{-0.81}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3.7 {\pm} 0.9$ | $3.2{\pm}0.3$   | $5.9{\pm}1.0$   | $1.62^{+0.72}_{-0.62}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - S -         | D                 |
| 868 | $10^{+5}_{-4}$                                  | $6^{+4}_{-3}$              | $4^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.24^{+1.15}_{-0.90}$                                                                                                                                                                      | $0.75_{-0.34}^{+0.50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.95^{+0.94}_{-0.67}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.5{\pm}0.6$   | $1.4{\pm}0.3$   | $2.5 {\pm} 0.9$ | $0.52^{+0.35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | А                 |
| 869 | $23^{+8}_{-6}$                                  | $18_{-4}^{+6}$             | $6^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.66^{+0.91}_{-0.73}$<br>$1.12^{+0.74}_{-0.49}$                                                                                                                                            | $1.69_{-0.31}^{+0.41}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ${}^{+0.05}_{1.46}_{-0.79}_{-0.76}_{1.17}_{-0.50}^{+0.76}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.1{\pm}0.2$   | $1.2 {\pm} 0.1$ | $1.2 {\pm} 0.3$ | $0.49^{+0.18}_{-0.15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | А                 |
| 870 | $5^{+4}_{-2}$                                   | 3                          | $6^{+4}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.12_{-0.49}^{+0.74}$                                                                                                                                                                      | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.17_{-0.50}^{+0.76}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $5.0{\pm}0.7$   | $4.3{\pm}0.8$   | $5.4 {\pm} 0.5$ | $0.90\substack{+0.61\\-0.42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - S -         | E                 |
| 871 | 9                                               | $1^{+3}_{-1}$              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.58                                                                                                                                                                                        | $\begin{array}{c} 0.20 {+}0.55\\ 0.20 {-}0.20\\ 1.05 {-}0.35\\ 0.67 {+}0.41\\ 0.67 {+}0.41\\ 1.28 {+}0.53\\ 1.28 {+}0.53\\ 0.40\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.5$ | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $5.2 {\pm} 4.8$ | $2.9{\pm}7.1$   | $7.6 {\pm} 7.1$ | 2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F - H         | $\mathbf{C}$      |
| 872 | $10^{+4}_{-3}$                                  | $0^{\pm 4}$                | $1^{+2}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.95_{-0.65}^{+0.87}$ $1.24_{-0.50}^{+0.74}$                                                                                                                                               | $1.05^{+0.49}_{-0.35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.13_{-0.13}^{+0.48}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.1{\pm}0.2$   | $0.9{\pm}0.1$   | $1.5 {\pm} 0.3$ | $0.34^{+0.16}_{-0.13}\\0.23^{+0.15}_{-0.120}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | А                 |
| 873 | $6^{+4}_{-3}$                                   | $9^{+3}_{-3}_{-2}$         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.24_{-0.50}^{+0.74}$                                                                                                                                                                      | $0.67^{+0.41}_{-0.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.1{\pm}0.4$   | $1.0{\pm}0.1$   | $2.0{\pm}0.3$   | $0.23_{-0.12}^{+0.15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H             | В                 |
| 874 | $19^{+6}_{-5}$                                  | $11^{+5}_{-3}$             | $\substack{8^{+4}_{-3}\\4^{+3}_{-2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $3.78^{+0.82}_{-0.96}$<br>$1.21^{+0.82}_{-0.56}$                                                                                                                                            | $1.28^{+0.53}_{-0.40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ${}^{1.58 + 0.90}_{-0.67}_{-0.48}_{-0.48}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.8{\pm}0.3$   | $1.5{\pm}0.1$   | $2.5\pm0.4$     | $1.09 \pm 0.39$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | А                 |
| 875 | $6^{+4}_{-3}$                                   | $2^{+3}_{-1}$              | $4^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.21^{+0.82}_{-0.56}$                                                                                                                                                                      | $0.20^{+0.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.88^{+0.75}_{-0.48}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4.4{\pm}1.3$   | $1.9{\pm}1.1$   | $5.0{\pm}0.7$   | $0.85^{+0.62}_{-0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | $\mathbf{C}$      |
| 876 | $^{+6}$                                         | $2^{+\bar{4}}_{-2}$        | $6^{+\bar{6}}_{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.61^{+1.31}_{-1.09}$<br>$1.11^{+0.77}_{-0.52}$                                                                                                                                            | $0.19^{+0.44}_{-0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.30^{+1.19}_{-0.97}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3.1{\pm}0.9$   | $2.3 {\pm} 1.1$ | $4.1{\pm}0.6$   | $0.80^{+0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | D                 |
| 877 | $8^{+5}_{-3}$<br>$5^{+4}_{-3}$<br>$8^{+4}_{-3}$ | $6^{+4}_{-2}$              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.11_{-0.52}^{+0.77}$                                                                                                                                                                      | $\begin{array}{c} 0.19 \substack{+0.44 \\ -0.19 \substack{-0.19 \\ -0.28 \\ 0.66 \substack{+0.42 \\ -0.28 \\ 0.22 \substack{+0.33 \\ -0.16 \end{array}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.1{\pm}0.4$   | $0.9{\pm}0.2$   | $1.8{\pm}0.3$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H             | В                 |
| 878 | $8^{+4}_{-3}$                                   | $2^{+3}_{-1}$              | $6^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.66^{+0.91}_{-0.66}$                                                                                                                                                                      | $0.22_{-0.16}^{+0.33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.30^{+0.85}_{-0.58}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4.1 {\pm} 1.2$ | $2.1{\pm}0.9$   | $5.0 {\pm} 1.2$ | $1.09^{+0.67}_{-0.54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | $\mathbf{C}$      |
| 879 | $5^{+3}_{-2}$                                   | 3                          | $6^{+4}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.24^{\pm0.82}$                                                                                                                                                                            | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.29_{-0.55}^{+0.84}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4.3{\pm}1.0$   | $4.1{\pm}0.5$   | $6.6{\pm}0.9$   | $0.07 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - S -         | D                 |
| 880 | $7^{+5}_{-4}$                                   | $7^{+4}_{-3}$              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.49^{+1.01}_{-0.76}$                                                                                                                                                                      | $0.82\substack{+0.49\\-0.35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.4{\pm}0.6$   | $1.3{\pm}0.3$   | $1.7 {\pm} 1.5$ | $\begin{array}{c} 0.85 \\ -0.42 \\ 0.34 \\ -0.22 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H             | А                 |
| 881 | $200^{+15}_{-14}$                               | $46^{+8}_{-7}$             | $154^{+14}_{-13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $21.54_{-1.54}^{+1.63}$                                                                                                                                                                     | $\begin{array}{c} 0.82\substack{+0.49\\-0.35}\\ 3.54\substack{+0.52\\-0.43} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $16.67^{+1.54}_{-1.38}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3.3{\pm}0.2$   | $2.1{\pm}0.2$   | $4.4{\pm}0.2$   | $11.39^{+1.05}_{-1.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | $\mathbf{C}$      |

Chandra Catalog: Photometry (continued)

| No. | $C_{net}$ FB         | $C_{net}$ SB                    | $C_{net}$ HB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                        | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                                  | Phot.<br>Flag | Quantile<br>Group |
|-----|----------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 882 | $12^{+5}_{-4}$       | $5^{+4}_{-2}$                   | $8^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2.88^{+1.28}_{-1.03}$                                                                                                   | $0.60^{+0.48}_{-0.32}$                                                                                                                                             | $1.85^{+1.13}_{-0.87}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2.5 \pm 1.2$   | $1.5 \pm 0.4$   | $3.6 \pm 3.1$   | $1.14_{-0.69}^{+0.75}$                                                                                                   |               | С                 |
| 883 | $5^{+4}$             | $5^{+2}_{-2}$                   | $^{-4}_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2.88^{+1.28}_{-1.03}\\1.11^{+0.82}_{-0.54}$                                                                             | $0.62^{+0.44}$                                                                                                                                                     | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.5 \pm 2.1$   | $1.3 \pm 0.4$   | $1.8 \pm 3.3$   | $0.26^{+0.42}$                                                                                                           | H             | А                 |
| 884 | $9^{+2}_{-3}$        | $8^{+4}_{-3}$                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1 co \pm 0.84$                                                                                                          | $0.92^{+0.45}_{-0.22}$                                                                                                                                             | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.1 {\pm} 0.2$ | $0.9{\pm}0.1$   | $1.3 \pm 1.0$   | $0.20 \pm 0.16$                                                                                                          | H             | А                 |
| 885 | $47^{-31}_{-9}$      | $15^{+7}_{-5}$                  | $32^{+10}_{-8} \\ 4^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.08_{-0.63}$<br>$3.13_{-0.58}^{+0.72}$                                                                                 | $\begin{array}{c} 0.92\substack{+0.45\\-0.33}\\ 0.64\substack{+0.25\\-0.15}\\ 0.53\substack{+0.43\\-0.28}\end{array}$                                              | $2.35^{+0.66}_{-0.52}\\0.92^{+0.89}_{-0.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.7 {\pm} 0.5$ | $1.9{\pm}0.3$   | $4.5 \pm 1.2$   | $1.00 \pm 0.38$                                                                                                          |               | $\mathbf{C}$      |
| 886 | $9^{+5}_{-4}$        | $4^{+4}_{-2}$                   | $4^{+8}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3.13_{-0.58}$<br>$1.83_{-0.82}^{+1.04}$                                                                                 | $0.53_{-0.28}^{+0.43}$                                                                                                                                             | $0.92^{+0.89}_{-0.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2.1 \pm 1.1$   | $1.3 \pm 0.4$   | $3.4{\pm}3.4$   | $1.33_{-0.34}$<br>$0.61_{-0.43}^{+0.48}$                                                                                 |               | В                 |
| 887 | 7                    | 4                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.29                                                                                                                     | 1.07                                                                                                                                                               | 3.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $8.2 {\pm} 7.7$ | $1.9{\pm}8.1$   | $8.9 {\pm} 8.4$ | 1 33                                                                                                                     | F S H         | $\mathbf{C}$      |
| 888 | $28^{+8}_{-6}$       | $10^{+5}_{-3}$                  | $18^{+7}_{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $3.36^{+0.89}_{-0.71}$<br>$0.86^{+0.87}_{-0.59}$                                                                         | $\begin{array}{c} 0.97\substack{+0.34\\-0.23}\\ 0.50\substack{+0.44\\-0.28}\end{array}$                                                                            | $2.21^{+0.78}_{-0.60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2.8{\pm}0.4$   | $1.6{\pm}0.3$   | $3.7 {\pm} 0.7$ | $1.50^{+0.46}_{-0.39}$                                                                                                   |               | $\mathbf{C}$      |
| 889 | $4_{-3}^{+4}$        | $4^{+3}_{-2}$                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.86^{+0.87}_{-0.59}$                                                                                                   | $0.50^{+0.44}_{-0.28}$                                                                                                                                             | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.9{\pm}3.7$   | $0.8{\pm}1.0$   | $0.9{\pm}4.0$   | $0.12^{+0.52}$                                                                                                           | H             | А                 |
| 890 | $12^{+5}$            | $7^{+4}_{-3}$                   | $5^{+4}_{-2} \\ 4^{+4}_{-3} \\ 8^{+4}_{-3} \\ 183^{+15}_{-14} \\ 5^{+4}_{-3} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.45^{+0.96}_{-0.73}$<br>$1.08^{+0.61}_{-0.43}$                                                                         | $\begin{array}{c} 0.50 \substack{+0.11\\-0.28}\\ 0.78 \substack{+0.44\\-0.30}\\ 1.48 \substack{+0.41\\-0.27}\end{array}$                                           | $1.10\substack{+0.75\\-0.49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.8{\pm}0.4$   | $1.2{\pm}0.3$   | $2.3{\pm}0.7$   | $0.70^{+0.31}_{-0.26}$                                                                                                   |               | В                 |
| 891 | $10_{-4}^{-4}$       | $10^{+4}$                       | $4^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.08^{+0.61}_{-0.43}$                                                                                                   | $1.48^{+0.41}_{-0.27}$                                                                                                                                             | $\begin{array}{c} 1.10 - 0.49\\ 0.92 + 0.96\\ -0.71\\ 1.88 + 1.02\\ 24.06 + 1.94\\ 24.06 + 1.85\\ 1.40 + 0.88\\ 1.40 + 0.58\\ -0.75\\ 1.42 + 0.23\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.6{\pm}0.2$   | $1.3{\pm}0.2$   | $1.7{\pm}0.2$   | $0.27^{+0.16}_{-0.12}$                                                                                                   |               | А                 |
| 892 | $9^{+4}_{-3}$        | $10^{-2}_{-2}$<br>$1^{+2}_{-1}$ | $8^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.08_{-0.43}$<br>$1.98_{-0.77}^{+1.03}$                                                                                 |                                                                                                                                                                    | $1.88^{+1.02}_{-0.75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3.4{\pm}0.4$   | $2.9{\pm}0.5$   | $3.9{\pm}0.6$   | $1.06^{+0.57}_{-0.43}$<br>$17.67^{+1.50}_{-1.44}$                                                                        |               | $\mathbf{E}$      |
| 893 | $187_{-14}^{+15}$    | $3^{+4}_{-3}$                   | $183_{-14}^{+15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.98^{+1.03}_{-0.77}$ $24.02^{+1.93}_{-1.84}$                                                                           |                                                                                                                                                                    | $24.06^{+1.94}_{-1.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.6{\pm}0.1$   | $3.8{\pm}0.1$   | $5.4 {\pm} 0.1$ | $17.67^{+1.50}_{-1.44}$                                                                                                  |               | D                 |
| 894 | $11^{+4}_{-3}$       | $5^{+3}_{2}$                    | $6^{+\frac{1}{2}}_{-\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $255^{\pm 1.00}$                                                                                                         | $0.68^{+0.47}_{-0.30}$                                                                                                                                             | $1.40^{+0.88}_{-0.58}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2.0{\pm}0.5$   | $1.6{\pm}0.2$   | $3.1{\pm}0.7$   | $17.67^{+1.50}_{-1.44}\\0.81^{+0.40}_{-0.33}$                                                                            |               | В                 |
| 895 | $8^{+5}_{-4}$        | $2^{+3}$                        | $6^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 - 2 + 1 - 33                                                                                                           | $0.27^{+0.45}$                                                                                                                                                     | $1.45_{-0.95}^{+1.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4.9{\pm}2.7$   | $3.0{\pm}2.1$   | $8.5{\pm}2.1$   | $1.49^{+1.34}$                                                                                                           |               | $\mathbf{C}$      |
| 896 | $6^{+4}_{-3}$        | $5^{-2}_{-2}$                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.89^{+1.06}_{-1.06}$<br>$1.33^{+0.96}_{-0.70}$<br>$0.69^{+0.75}_{-0.50}$                                               | $a = a \pm 0.47$                                                                                                                                                   | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.3{\pm}0.2$   | $1.1{\pm}0.1$   | $1.5{\pm}0.3$   | $0.27^{+0.20}_{-0.15}$                                                                                                   | H             | А                 |
| 897 | $3^{+4}_{-2}$        | $4^{+3}_{-2}$                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.69^{+0.75}_{-0.50}$                                                                                                   | $\begin{array}{c} 0.70_{-0.31}^{+0.11} \\ 0.43_{-0.23}^{+0.38} \end{array}$                                                                                        | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.3{\pm}0.2$   | $1.2{\pm}0.1$   | $1.4{\pm}0.1$   | $\begin{array}{c} 0.27\substack{+0.20\\-0.15}\\ 0.15\substack{+0.16\\-0.11}\\ \end{array}$                               | H             | А                 |
| 898 | $5^{+\bar{6}}_{-5}$  | 3                               | $8^{+6}_{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.69 \substack{+0.50 \\ -0.50 \end{array} \\ 1.04 \substack{+1.27 \\ -1.04 \end{array}$                | 0.37                                                                                                                                                               | $1.58^{+1.24}_{-1.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $7.4{\pm}0.9$   | $6.8{\pm}1.0$   | $7.5{\pm}0.8$   | $1.23^{+1.52}_{-1.24}$                                                                                                   | - S -         | $\mathbf{E}$      |
| 899 | $109^{+12}_{-11}$    | $3^{+4}_{-2}$                   | $105^{+12}_{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $11.39^{+1.29}_{-1.13}$                                                                                                  | $0.40^{+0.24}_{-0.12}$                                                                                                                                             | $11.29^{+1.30}_{-1.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.8{\pm}0.2$   | $3.9{\pm}0.2$   | $6.0{\pm}0.2$   | $8.67^{+1.05}_{-0.02}$                                                                                                   |               | D                 |
| 900 | $9^{+4}_{-3}$        | $1^{+\bar{2}}_{-1}$             | $8^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.68^{+0.79}_{-0.58}$                                                                                                   | $0.07_{-0.07}^{+0.25}$                                                                                                                                             | ${}^{+1.01}_{11.29^{+1.30}_{-1.13}}_{1.59^{+0.77}_{-0.56}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $3.5{\pm}0.5$   | $3.3{\pm}1.0$   | $4.3 {\pm} 1.1$ | $0.95\substack{+0.47\\-0.36}$                                                                                            |               | E                 |
| 901 | 9                    | 4                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.70                                                                                                                     | 0.64                                                                                                                                                               | 2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $5.2 \pm 4.8$   | $2.9{\pm}7.1$   | $7.6 {\pm} 7.1$ | 2.27                                                                                                                     | F S H         | $\mathbf{C}$      |
| 902 | $36^{+9}_{-7}$       | $34^{+8}_{-6}$                  | $1^{+5}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3.85^{+0.93}_{-0.75}$                                                                                                   | $2.90^{+0.49}_{-0.39}$                                                                                                                                             | $0.36\substack{+1.19 \\ -0.36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.2 \pm 0.1$   | $1.0{\pm}0.1$   | $1.6 {\pm} 0.1$ | $0.75_{-0.17}^{+0.20}$                                                                                                   |               | А                 |
| 903 | $23^{+\dot{7}}_{-6}$ | $4^{+3}_{-1}$                   | $23_{-6}^{+7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $3.85_{-0.75}^{+0.93}$ $2.65_{-0.65}^{+0.82}$                                                                            | $1.01\substack{+0.42\\-0.18}$                                                                                                                                      | $2.62^{+0.81}_{-0.64}\\0.41^{+1.48}_{-0.41}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4.0 {\pm} 0.2$ | $3.7{\pm}0.4$   | $5.0 {\pm} 0.5$ | $1.68\substack{+0.53\\-0.42}$                                                                                            |               | E                 |
| 904 | 9                    | 3                               | $1^{+5}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.48                                                                                                                     | 0.44                                                                                                                                                               | $0.41^{+1.48}_{-0.41}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $5.2 \pm 4.8$   | $2.9{\pm}7.1$   | $7.6 \pm 7.1$   | 2.08                                                                                                                     | F S -         | $\mathbf{C}$      |
| 905 | $4^{+4}_{-3}$        | $6^{+4}_{-3}$                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.81\substack{+0.80\\-0.57}\\ 9.52\substack{+1.25\\-1.08}\end{array}$                                  | $\begin{array}{c} 0.71^{+0.44}_{-0.30} \\ 3.63^{+0.54}_{-0.44} \end{array}$                                                                                        | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.0 {\pm} 0.1$ | $0.9{\pm}0.0$   | $1.1 {\pm} 0.0$ | $0.13^{+0.13}_{-0.09}$                                                                                                   | H             | А                 |
| 906 | $4^{-3}_{-10}$       | $46^{+8}_{-7}$                  | $42^{+9}_{-7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $9.52^{+1.25}_{-1.08}$                                                                                                   | $3.63^{+0.54}_{-0.44}$                                                                                                                                             | $4.42^{+0.94}_{-0.76}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.9 {\pm} 0.2$ | $1.4{\pm}0.1$   | $3.4{\pm}0.2$   | $\begin{array}{c} 0.13 \substack{+0.09\\-0.48}\\ 2.83 \substack{+0.48\\-0.45}\end{array}$                                |               | В                 |
| 907 | $11_{-4}^{+6}$       | $13^{+5}_{-4}$                  | $1^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.10^{+0.59}_{-0.43}$<br>$1.05^{+1.25}_{-1.00}$                                                                         | $1.10^{+0.31}_{-0.21}$                                                                                                                                             | $0.17^{+0.61}_{-0.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.0 {\pm} 0.1$ | $0.8 {\pm} 0.1$ | $1.1 \pm 0.1$   | $0.18\substack{+0.10\\-0.07}$                                                                                            |               | А                 |
| 908 | $4^{+5}_{-4}$        | $2^{+3}_{-2}$                   | $\begin{smallmatrix} -4 \\ 1^{+3} \\ -1 \\ 3^{+5} \\ -3 \\ 10^{+5} \\ 10^{+5} \\ -4 \end{smallmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.05^{+1.25}_{-1.00}$                                                                                                   | $0.22^{+0.45}_{-0.22}$                                                                                                                                             | $0.68^{+1.16}_{-0.68}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $9.1 \pm 5.3$   | $5.0 {\pm} 4.6$ | $9.6 {\pm} 2.0$ | $1.53^{+2.03}_{-1.71}$                                                                                                   |               | $\mathbf{C}$      |
| 909 | $9^{-4}_{-4}$        | 2                               | $10^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{r} 1.05 \substack{+1.20\\-1.00}\\ 1.97 \substack{+1.05\\-0.82}\\ 6.40 \substack{+1.40\\-1.18}\end{array}$ | 0.27                                                                                                                                                               | $2.23^{+1.07}_{-0.84}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4.0 \pm 1.0$   | $3.6{\pm}0.6$   | $4.6 \pm 2.3$   | $\begin{array}{r} 1.53 \substack{+2.01\\-1.71}\\ 1.27 \substack{+0.75\\-0.62}\\ 1.35 \substack{+0.32\\-0.27}\end{array}$ | - S -         | $\mathbf{E}$      |
| 910 | $31^{+7}_{-6}$       | $25^{+6}_{-5}$                  | $7^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $6.40^{+1.40}_{-1.18}$                                                                                                   | $2.89^{+0.72}_{-0.59}$                                                                                                                                             | $1.39^{+0.83}_{-0.59}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.3 \pm 0.1$   | $1.1 \pm 0.1$   | $1.8 {\pm} 0.5$ | $1.35^{+0.32}_{-0.27}$                                                                                                   |               | А                 |
| 911 | $10^{+7}_{-6}$       | $9^{+5}_{-4}$                   | $1^{+5}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 6.40^{+1.46}_{-1.18}\\ 1.90^{+1.37}_{-1.16}\\ 1.37^{+0.65}_{-0.46}\\ 1.80^{+1.43}_{-1.06}\end{array}$  | $\begin{array}{c} 2.89\substack{+0.72\\-0.59}\\ 1.00\substack{+0.56\\-0.44}\\ 1.20\substack{+0.33\\-0.22}\end{array}$                                              | $\begin{array}{c} 4.42 \_ 0.76 \\ 0.17 + 0.61 \\ 0.68 \_ 0.17 \\ 0.68 \_ 0.68 \\ 2.23 \pm 0.70 \\ 1.39 \pm 0.83 \\ 1.39 \pm 0.83 \\ 0.14 \pm 0.14 \\ 0.14 \pm 0.14 \\ 0.52 \pm 0.83 \\ 0.14 \pm 0.14 \\ 0.52 \pm 0.$ | $0.9 \pm 2.4$   | $0.7{\pm}0.3$   | $1.4{\pm}6.2$   | $\begin{array}{c} 1.35\substack{+0.32\\-0.27}\\ 0.28\substack{+0.76\\-0.76\end{array}$                                   |               | В                 |
| 912 | $13^{+6}_{-4}$       | $11^{+5}_{-3}$                  | $2^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.37^{+0.65}_{-0.46}$                                                                                                   | $1.20^{+0.33}_{-0.22}$                                                                                                                                             | $0.52^{+0.83}_{-0.52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.0 \pm 0.1$   | $1.0 \pm 0.1$   | $1.1 \pm 0.1$   | $0.23^{+0.11}_{-0.08}$<br>$1.51^{+1.30}_{-1.02}$                                                                         |               | А                 |
| 913 | $5^{+4}_{-3}$        | $\frac{2}{2}$                   | $6^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.80^{+1.43}_{-1.06}$                                                                                                   | 0.42                                                                                                                                                               | $2.11^{+1.46}_{-1.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $5.2 \pm 1.7$   | $5.1 \pm 0.5$   | $7.6 \pm 2.0$   | $1.51^{+1.30}_{-1.02} \\ 1.06^{+0.61}_{-0.51}$                                                                           | - S -         | D                 |
| 914 | $9^{+3}_{-3}$        | $1^{+3}_{-1}$                   | $8^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.80^{+1.16}_{-1.06}$<br>$1.85^{+0.89}_{-0.67}$<br>$5.11^{+0.98}_{-0.81}$                                               | $0.17^{+0.31}_{-0.15}$                                                                                                                                             | $1.58^{+0.84}_{-0.61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3.6 {\pm} 1.2$ | $2.6{\pm}0.7$   | $5.6 \pm 1.5$   |                                                                                                                          |               | $\mathbf{C}$      |
| 915 | $46^{+9}_{-7}$       | $39_{-6}^{+8}$                  | $7^{+4^{-}}_{-3} \\ 1^{+5}_{-1} \\ 2^{+3}_{-2} \\ 6^{-3}_{-3} \\ 8^{+4}_{-3} \\ 8^{+3}_{-3} \\ 2^{+3}_{-2} \\ 2^{+3}_{-2} \\ 2^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2$ | $5.11^{+0.98}_{-0.81}$<br>$1.92^{+0.96}_{-0.71}$                                                                         | $\begin{array}{c} 0.42\\ 0.17\substack{+0.31\\-0.15}\\ 3.18\substack{+0.50\\-0.41}\\ 0.87\substack{+0.48\\-0.33}\\ 0.20\substack{+0.32\\-0.15}\\ 2.221\end{array}$ | $0.52_{-0.52}$<br>$2.11_{-1.08}^{+1.46}$<br>$1.58_{-0.61}^{+0.84}$<br>$1.73_{-0.68}^{+0.94}$<br>$0.41_{-0.67}^{+0.94}$<br>$2.11_{-0.78}^{+0.98}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.2 {\pm} 0.1$ | $1.0{\pm}0.1$   | $1.5 {\pm} 0.2$ | $\begin{array}{c} 0.98 \substack{+0.20 \\ -0.17 \\ 0.39 \substack{+0.36 \\ -0.34 \end{array}} \end{array}$               |               | В                 |
| 916 | $9^{+4}_{-3}$        | $7^{+4}_{-3}$                   | $2^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.92^{+0.96}_{-0.71}$                                                                                                   | $0.87^{+0.48}_{-0.33}$                                                                                                                                             | $0.41^{+0.67}_{-0.37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.3 {\pm} 1.0$ | $0.9{\pm}0.1$   | $1.6 \pm 3.3$   | $0.39^{+0.36}_{-0.34}$                                                                                                   |               | А                 |
| 917 | $12^{+5}_{-4}$       | $2^{+3}_{-1}$                   | $10^{+5}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.41^{+1.01}_{-0.78}$                                                                                                   | $0.20^{+0.32}_{-0.15}$                                                                                                                                             | $2.11^{+0.98}_{-0.74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3.6{\pm}0.8$   | $2.8 {\pm} 0.7$ | $4.9 {\pm} 0.8$ | $1.41^{+0.66}$                                                                                                           |               | D                 |
| 918 | $10^{+7}_{-6}$       | 4                               | $11^{+6}_{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.77^{+1.92}_{-1.62}$<br>$1.28^{+0.75}_{-0.51}$                                                                         | 0.63                                                                                                                                                               | $3.14^{+1.00}_{-1.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $7.1 \pm 1.7$   | $5.5 \pm 3.4$   | $8.9 {\pm} 1.6$ | $3.13^{+0.54}_{-1.98}$                                                                                                   | - S -         | D                 |
| 919 | $6^{+4}_{-3}$        | $7^{+4}_{-3}$                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.28^{+0.75}_{-0.51}$                                                                                                   | $\begin{array}{c} 0.80\substack{+0.44\\-0.30}\\ 0.52\substack{+0.51\\-0.37} \end{array}$                                                                           | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.3\pm0.2$     | $1.0{\pm}0.1$   | $1.6{\pm}0.2$   | $0.27^{+0.17}_{-0.12}$                                                                                                   | H             | А                 |
| 920 | $8^{+7}_{-6}$        | $4^{+4}_{-3}$                   | $3^{+7}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.28_{-0.51}^{+0.51} \\ 1.64_{-1.34}^{+1.56}$                                                                           | $0.52^{+0.51}_{-0.37}$                                                                                                                                             | $0.74_{-0.74}^{+1.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.7 \pm 2.7$   | $0.8 \pm 0.6$   | $2.2 \pm 6.0$   | $0.44_{-0.79}^{+0.82}$                                                                                                   |               | В                 |

Chandra Catalog: Photometry (continued)

| No. | $C_{net}$ FB                                    | $C_{net}$ SB          | $C_{net}$ HB                                                                   | $\frac{f_{\rm ph} FB(10^{-6})}{\rm cm^{-2} \ s^{-1}}$                                                                        | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                         | $\begin{array}{c} f_{\rm ph} {\rm HB} (10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  |                                                                                                                                 | Phot.<br>Flag | Quantile<br>Group |
|-----|-------------------------------------------------|-----------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 921 | $9^{+5}_{-3}$                                   | $6^{+4}_{-2}$         | $4^{+4}_{-2}$                                                                  | $1.98\substack{+0.96\\-0.73}\\2.57\substack{+1.05\\-0.80}$                                                                   | $0.66_{-0.28}^{+0.43}$                                                                                                                                            | $0.84_{-0.51}^{+0.77}$                                                                                                                      | $1.7{\pm}1.8$   | $1.1{\pm}0.5$   | $5.0{\pm}2.9$   | $0.55_{-0.59}^{+0.61}$                                                                                                          |               | В                 |
| 922 | $11^{+5}_{-3}$                                  | 3                     | $11^{+5}_{-3}$                                                                 | $2.57^{+1.05}_{-0.80}$                                                                                                       | 0.34                                                                                                                                                              | $2.66^{+1.08}$                                                                                                                              | $3.2{\pm}0.4$   | $2.7{\pm}0.2$   | $3.9{\pm}1.0$   | $1.32^{+0.57}$                                                                                                                  | - S -         | E                 |
| 923 | $17^{+8}_{-7}$                                  | $6^{+5}_{-3}$         | $12^{+7}$                                                                      | $3.83^{+1.80}_{-1.58}$<br>$2.23^{+0.74}_{-0.58}$                                                                             | $0.70^{+0.58}_{-0.44}$                                                                                                                                            | $2.66 \pm 1.63$                                                                                                                             | $2.4{\pm}1.2$   | $1.3{\pm}0.9$   | $4.7{\pm}1.3$   |                                                                                                                                 |               | $\mathbf{C}$      |
| 924 | $22^{+\dot{7}}_{-6}$                            | $12_{-4}^{+5}$        | $10^{+6}_{-2}$                                                                 | $2.23_{-0.58}^{+0.74}$                                                                                                       | $\begin{array}{c} 0.70 \substack{+0.34 \\ -0.44} \\ 1.03 \substack{+0.32 \\ -0.22} \\ 0.62 \substack{+0.38 \\ -0.25} \end{array}$                                 | $1.05^{+0.61}_{-0.10}$                                                                                                                      | $1.9{\pm}0.3$   | $1.8{\pm}0.1$   | $2.3{\pm}0.3$   | $0.co \pm 0.26$                                                                                                                 |               | А                 |
| 925 | $6^{+4}_{-3}$                                   | $6^{+4}_{-2}$         | $1^{+2}_{-1}$                                                                  | $1.18^{+0.69}_{-0.47}$                                                                                                       | $0.62^{+0.38}_{-0.25}$                                                                                                                                            | $0.12^{+0.43}_{-0.12}$                                                                                                                      | $1.0{\pm}1.6$   | $0.9{\pm}0.2$   | $1.6 {\pm} 3.4$ | $0.18^{+0.32}_{-0.31}$                                                                                                          |               | А                 |
| 926 | $3^{+7}_{-3}$                                   | 5                     | $4^{+6}_{-4}$                                                                  | $0.65^{+1.75}_{-0.65}$                                                                                                       | 0.69                                                                                                                                                              | $0.93^{+1.60}_{-0.93}$                                                                                                                      | $6.5 \pm 1.2$   | $5.7{\pm}0.8$   | $6.6{\pm}0.5$   | $0.68^{+1.82}$                                                                                                                  | - S -         | E                 |
| 927 | $15_{-5}^{+6}$                                  | $5^{+4}_{-3}$         | $10^{+5}$                                                                      | $2.91^{+1.17}$                                                                                                               | $\begin{array}{c} 0.57 + 0.43 \\ 0.57 - 0.29 \\ 1.14 + 0.52 \\ 0.71 + 0.50 \\ 0.71 + 0.53 \\ 0.83 - 0.57 \\ 0.83 - 0.37 \\ 0.85 + 0.41 \end{array}$               | $1.95^{+1.03}$                                                                                                                              | $2.3 \pm 1.1$   | $1.6{\pm}0.4$   | $5.2 {\pm} 1.6$ | $1.09^{+0.69}_{-0.64}$                                                                                                          |               | $\mathbf{C}$      |
| 928 | $14^{+5}_{-4}$                                  | $9^{+4}$              | $\begin{array}{c} -4 \\ 4^{+4}_{-3} \\ 6^{+5}_{-4} \\ 7^{+5}_{-4} \end{array}$ |                                                                                                                              | $1.14_{-0.38}^{+0.52}$                                                                                                                                            | $0.01 \pm 0.83$                                                                                                                             | $1.7{\pm}0.3$   | $1.4{\pm}0.2$   | $2.1 \pm 1.1$   |                                                                                                                                 |               | А                 |
| 929 | $11_{-4}^{-4}$                                  | $5^{-3}_{-2}$         | $6^{+5}_{-4}$                                                                  | $2.62^{+1.34}_{-1.00}$                                                                                                       | $0.71_{-0.33}^{+0.50}$                                                                                                                                            | · · · · +1 18                                                                                                                               | $2.3{\pm}0.7$   | $1.6{\pm}0.6$   | $3.1{\pm}0.9$   | $\begin{array}{c} 0.80\substack{+0.33\\-0.27}\\ 0.96\substack{+0.57\\-0.48}\end{array}$                                         |               | $\mathbf{C}$      |
| 930 | $12^{+6}_{-5}$                                  | $6^{-2}_{-3}$         | $7^{+5}_{-4}$                                                                  | $3.18^{\pm 1.40}_{-1.10}$                                                                                                    | $0.83^{+0.55}_{-0.37}$                                                                                                                                            | $1.75^{+1.29}_{-1.00}$                                                                                                                      | $3.1{\pm}1.8$   | $1.3{\pm}0.6$   | $5.8 {\pm} 1.4$ | $1.57^{+1.10}_{-1.10}$                                                                                                          |               | $\mathbf{C}$      |
| 931 | $7^{+4}_{-3}$                                   | $4^{+3}_{-2}$         | $3^{+\bar{3}}_{-2}$                                                            | $1.53^{+0.89}_{-0.64}$                                                                                                       | $0.47^{+0.41}_{-0.25}$                                                                                                                                            | $\begin{array}{c} 1.39\substack{+1.10\\-0.91}\\ 1.75\substack{+1.29\\-1.00}\\ 0.72\substack{+0.73\\-0.44}\end{array}$                       | $1.5{\pm}1.8$   | $1.2{\pm}0.5$   | $5.5{\pm}2.6$   | $0.38^{+0.50}_{-0.47}$                                                                                                          |               | В                 |
| 932 | $5^{+4}_{-2}$                                   | $5^{+\bar{3}}_{-2}$   | 3                                                                              | $0.94^{+0.69}_{-0.46}$<br>$1.62^{+0.85}_{-0.61}$                                                                             | $0.54_{-0.24}^{+0.38}$                                                                                                                                            | 0.68                                                                                                                                        | $1.3{\pm}0.2$   | $1.2{\pm}0.1$   | $1.6{\pm}0.2$   | $a + a \pm 0.15$                                                                                                                | H             | А                 |
| 933 | $8^{+\bar{4}}_{-3}$                             | 3                     | $8^{+4}_{-3}$                                                                  | $1.62^{+0.85}_{-0.61}$                                                                                                       | 0.33                                                                                                                                                              | $1.67\substack{+0.86\\-0.62}$                                                                                                               | $5.2{\pm}0.8$   | $4.2{\pm}0.5$   | $6.3{\pm}1.0$   | $0.19^{+0.10}_{-0.10}$<br>$1.35^{+0.73}_{-0.54}$                                                                                | - S -         | D                 |
| 934 | $3^{+3}_{-3}$                                   | $5^{+4}_{-3}$         | 3                                                                              | $0.75^{+1.04}_{-0.75}$                                                                                                       | $0.69^{+0.53}_{-0.36}$                                                                                                                                            | 0.84                                                                                                                                        | $1.0{\pm}0.1$   | $0.9{\pm}0.1$   | $1.1{\pm}0.1$   | $0.12^{+0.16}_{-0.12}$                                                                                                          | H             | А                 |
| 935 | $13^{+5}_{-4}$                                  | 2                     | $13^{+5}_{-4}$                                                                 | $ \begin{array}{c} -0.01\\ 0.75 \substack{+1.04\\ -0.75\\ 2.68 \substack{+1.02\\ -0.80\\ -0.80\\ \end{array} } \end{array} $ | 0.27                                                                                                                                                              | $2.82^{+1.05}_{-0.81}$ $1.74^{+1.00}_{-0.74}$ $1.74^{+1.72}_{-1.39}$                                                                        | $4.3{\pm}0.5$   | $3.3{\pm}0.5$   | $5.2{\pm}0.6$   | $1.84_{-0.60}^{+0.74}$                                                                                                          | - S -         | D                 |
| 936 | $13^{+5}_{-4}$                                  | $5^{+4}_{-2}$         | $7^{+4}_{-3}$<br>$6^{+6}_{-5}$<br>$8^{+4}_{-3}$                                | $2.90^{+1.17}_{-0.02}$                                                                                                       | $0.68^{+0.47}_{-0.31}$                                                                                                                                            | $1.74^{+1.00}_{-0.74}$                                                                                                                      | $2.2{\pm}0.7$   | $1.3{\pm}0.4$   | $3.9{\pm}1.7$   | $1.01^{+0.52}_{-0.46}$                                                                                                          |               | В                 |
| 937 | $7^{+6}_{-5}$                                   | $2^{+\tilde{4}}_{-2}$ | $6^{+6}_{-5}$                                                                  | $2.16_{-1.53}^{+0.92}$                                                                                                       | $0.25^{\pm0.58}$                                                                                                                                                  | $1.74^{+1.72}_{-1.39}$                                                                                                                      | $2.4{\pm}3.9$   | $1.8{\pm}1.6$   | $7.4 \pm 3.4$   | $0.83^{+1.51}_{-1.46}$                                                                                                          |               | $\mathbf{C}$      |
| 938 | $9^{+4}_{-3}$                                   | $1^{+2}_{-1}$         | $8^{+4}_{-3}$                                                                  | $1.72^{+0.83}_{-0.62}$                                                                                                       |                                                                                                                                                                   | $1.61_{-0.60}^{-1.39}$                                                                                                                      | $3.2{\pm}1.6$   | $2.3{\pm}0.5$   | $5.9{\pm}2.5$   | $0.87^{+0.62}_{-0.55}\ 0.16^{+0.14}_{-0.11}$                                                                                    |               | $\mathbf{C}$      |
| 939 | $9^{+3}_{-3}$<br>$5^{+4}_{-3}$<br>$4^{+4}_{-2}$ | $6^{-1}_{-3}$         | 4                                                                              | ${}^{1.72 + 0.83}_{-0.62} \\ 1.12 + 0.91 \\ -0.66 \\ -0.66$                                                                  | $\begin{array}{c} 0.08 \substack{+0.26 \\ -0.08 \\ 0.73 \substack{+0.48 \\ -0.32 \\ 0.68 \substack{+0.46 \\ -0.30 \\ 0.41 \substack{+0.33 \\ -0.20 \end{array}}}$ | 0.81                                                                                                                                        | $0.9{\pm}0.3$   | $0.8{\pm}0.1$   | $1.3{\pm}0.3$   |                                                                                                                                 | H             | А                 |
| 940 | $4^{+4}_{-2}$                                   | $5^{+4}_{-2}$         | 2                                                                              | $0.83^{+0.80}_{-0.53}$                                                                                                       | $0.68\substack{+0.46 \\ -0.30}$                                                                                                                                   | 0.52                                                                                                                                        | $1.3{\pm}0.2$   | $1.1{\pm}0.2$   | $1.4{\pm}0.1$   | $0.17_{-0.11}^{+0.17}$                                                                                                          | H             | А                 |
| 941 | $6^{+4}_{-2}$                                   | $4^{+3}_{-2}$         | $2^{+3}_{-1}$                                                                  | $1.01^{+0.65}_{-0.43}$                                                                                                       | $0.41^{+0.33}_{-0.20}$                                                                                                                                            | $0.32\substack{+0.49\\-0.24}$                                                                                                               | $1.4{\pm}1.3$   | $1.2 {\pm} 0.3$ | $2.7 \pm 2.3$   | $0.22_{-0.23}^{+0.25}$                                                                                                          |               | В                 |
| 942 | $6^{+\bar{4}}_{-2}$                             | $6^{+2}_{-2}$         | 2                                                                              | $1.01\substack{+0.65\\-0.43}$                                                                                                | $0.62^{+0.38}_{-0.25}$                                                                                                                                            | 0.44                                                                                                                                        | $1.2 {\pm} 0.1$ | $1.0{\pm}0.1$   | $1.4{\pm}0.1$   | $0.20_{-0.09}^{+0.13}$                                                                                                          | H             | А                 |
| 943 | 4                                               | $1^{+2}_{-1}$         | 2                                                                              | 0.66                                                                                                                         | $0.02_{-0.25}^{-0.25}$<br>$0.09_{-0.09}^{+0.25}$                                                                                                                  | 0.43                                                                                                                                        | $5.2 \pm 4.8$   | $2.9{\pm}7.1$   | $7.6 {\pm} 7.1$ | 0.55                                                                                                                            | F - H         | $\mathbf{C}$      |
| 944 | $15^{+5}_{-4}$                                  | $13_{-4}^{+5}$        | $\substack{1^{+3}_{-1}\\4^{+4}_{-2}}$                                          | $3.27^{+1.19}_{-0.95}$ $2.45^{+1.02}_{-0.80}$                                                                                | $0.09^{+0.25}_{-0.09}$<br>$1.70^{+0.62}_{-0.48}$                                                                                                                  | $\begin{array}{c} 0.31\substack{+0.73\\-0.31\\0.75\substack{+0.76\\-0.59\end{array}}$                                                       | $1.4 {\pm} 0.2$ | $1.1{\pm}0.1$   | $1.7 {\pm} 0.3$ | $0.75_{-0.23}^{+0.28}\\0.58_{-0.31}^{+0.35}$                                                                                    |               | А                 |
| 945 | $12^{+5}_{-4}$                                  | $8^{+4}_{-3}$         | $4^{+4}_{-2}$                                                                  | $2.45^{+1.02}_{-0.80}$                                                                                                       | $0.99^{+0.49}_{-0.35}$                                                                                                                                            | $0.75^{+0.76}_{-0.50}$                                                                                                                      | $1.5\pm0.6$     | $1.3 {\pm} 0.2$ | $2.8 {\pm} 1.8$ | $0.58^{+0.35}_{-0.31}$                                                                                                          |               | В                 |
| 946 | $11^{+5}_{-4}$                                  | $8^{-3}_{-3}$         | $3^{+4}_{-2}$                                                                  |                                                                                                                              | $\begin{array}{c} 1.70 \substack{+0.48\\ -0.99 \substack{+0.49\\ -0.35\\ 1.05 \substack{+0.54\\ -0.39\\ -0.39} \end{array}$                                       | $0.65^{+0.85}_{-0.56}$                                                                                                                      | $1.0{\pm}0.8$   | $0.8{\pm}0.1$   | $1.9 {\pm} 3.6$ | $0.40^{+0.38}_{-0.36}$                                                                                                          |               | В                 |
| 947 | $8^{+4}_{-3}$                                   | $1^{-3}_{-1}$         | $7^{+4}_{-3}$                                                                  | $2.49^{+0.90}_{-0.90}$<br>$1.93^{+1.08}_{-0.81}$                                                                             | $0.18^{+0.37}_{-0.18}$                                                                                                                                            | $1.65^{+1.02}_{-0.75}$                                                                                                                      | $4.0{\pm}2.0$   | $2.7 \pm 1.3$   | $7.6 {\pm} 2.4$ | $1.23^{+0.93}_{-0.81}$                                                                                                          |               | $\mathbf{C}$      |
| 948 | $5^{+4}_{-3}$                                   | $2^{+3}_{-2}$         | $3^{+4}_{-2} \\7^{+4}_{-3} \\2^{+3}_{-2}$                                      | $1.03_{-0.65}^{+0.90}$                                                                                                       | $0.31^{+0.38}_{-0.21}$<br>$1.42^{+0.37}_{-0.27}$                                                                                                                  | $0.50^{+0.79}_{-0.50}$                                                                                                                      | $1.8 {\pm} 3.0$ | $1.0{\pm}1.2$   | $6.8 {\pm} 2.3$ | $0.30^{+0.57}_{-0.54}$                                                                                                          |               | В                 |
| 949 | $43_{-7}^{+9}$                                  | $15^{+6}_{-4}$        | $29^{+8}_{-6}$                                                                 | $\begin{array}{r} 4.96 \substack{+1.02 \\ -0.85 \\ 2.18 \substack{+1.09 \\ -0.83 \\ -0.83 \end{array}}$                      | $1.42^{+0.37}_{-0.27}$                                                                                                                                            | $\begin{array}{c} 0.50 \substack{+0.19 \\ -0.50 \\ 3.35 \substack{+0.90 \\ -0.72 \\ 1.13 \substack{+0.92 \\ -0.64 \end{array}} \end{array}$ | $2.3\pm0.2$     | $1.9{\pm}0.1$   | $3.2{\pm}0.2$   | $\begin{array}{c} 0.30 \substack{+0.54 \\ -0.54 \\ 1.87 \substack{+0.43 \\ -0.37 \\ 0.69 \substack{+0.37 \\ -0.30 \end{array}}$ |               | E                 |
| 950 | $9^{+5}_{-4}$                                   | $5^{+3}_{-2}$         | $5^{+4}_{-3}$                                                                  | $2.18^{+1.09}_{-0.83}$                                                                                                       | $1.42_{-0.27}_{-0.46}$<br>$0.61_{-0.29}^{+0.46}$                                                                                                                  | $1.13^{+0.92}_{-0.64}$                                                                                                                      | $2.0{\pm}0.4$   | $1.6{\pm}0.3$   | $2.5 \pm 1.1$   | $0.69^{+0.37}_{-0.30}$                                                                                                          |               | А                 |
| 951 | $10^{+5}_{-4}$                                  | 2                     | $11^{+5}_{-4}$                                                                 | $2.48^{+0.13}_{-0.89}$<br>$0.91^{+0.69}_{-0.45}$                                                                             | 0.32                                                                                                                                                              | $2.69^{+1.18}_{-0.91}$                                                                                                                      | $4.3 {\pm} 0.9$ | $3.0{\pm}0.6$   | $5.8 {\pm} 0.6$ | $1.69^{+0.86}_{-0.70}$                                                                                                          | - S -         | D                 |
| 952 | $5^{+4}_{-2}$                                   | $5^{+3}_{-2}$         | 3                                                                              | $0.91^{+0.69}_{-0.45}$                                                                                                       | $0.52^{+0.37}_{-0.24}$                                                                                                                                            | 0.67                                                                                                                                        | $1.1 \pm 0.1$   | $0.9{\pm}0.1$   | $1.1 \pm 0.1$   | $0.16\substack{+0.12\\-0.08}$                                                                                                   | H             | А                 |
| 953 | $12_{-4}^{+6}$                                  | $1^{+3}_{-1}$         | $11^{+5}_{-4}$                                                                 |                                                                                                                              | $0.24^{+0.49}_{-0.24}\\0.63^{+0.39}_{-0.26}$                                                                                                                      | $3.24^{+1.54}_{-1.21}\\0.13^{+0.44}_{-0.13}\\2.40^{+1.50}_{-1.27}$                                                                          | $2.8 \pm 1.9$   | $2.1 {\pm} 0.4$ | $6.0 \pm 3.1$   | $0.20^{+0.12}_{-0.09}$                                                                                                          |               | $\mathbf{C}$      |
| 954 | $7^{+4}_{-3}$<br>$9^{+7}_{-6}$                  | $6^{-1}_{-2}$         | $1^{+2}_{-1}\\11^{+7}_{-6}$                                                    | $3.60^{+1.09}_{-1.29}$<br>$1.21^{+0.70}_{-0.48}$                                                                             | $0.63^{+0.39}_{-0.26}$                                                                                                                                            | $0.13^{+0.44}_{-0.13}$                                                                                                                      | $1.0{\pm}0.2$   | $0.9{\pm}0.1$   | $1.3 {\pm} 0.4$ | $0.20^{+0.12}_{-0.09}$                                                                                                          |               | А                 |
| 955 |                                                 | 4                     | $11^{+7}_{-6}$                                                                 | $1.21_{-0.48}^{+0.48}$ $1.93_{-1.31}^{+1.54}$ $2.18_{-0.73}^{+0.97}$                                                         | 0.45                                                                                                                                                              | $2.40^{+1.50}_{-1.27}$                                                                                                                      | $4.3 \pm 3.5$   | $3.1 \pm 1.3$   | $9.3 \pm 3.9$   | $1.34^{+1.53}_{-1.42}$                                                                                                          | - S -         | $\mathbf{C}$      |
| 956 | $10^{+5}_{-3}$                                  | $7^{+4}_{-3}$         | $3^{+3}_{-2}_{6^{+4}_{-3}}$                                                    | $2.18^{+0.97}_{-0.73}$                                                                                                       | $0.82^{+0.46}_{-0.31}$                                                                                                                                            | $\begin{array}{c} 2.40 \substack{+1.27 \\ -1.27 \\ 0.74 \substack{+0.74 \\ -0.47 \\ 0.76 \end{array}}$                                      | $1.2 {\pm} 0.8$ | $0.8 \pm 0.3$   | $3.1{\pm}1.0$   | $0.44_{-0.30}^{+0.33}$                                                                                                          |               | В                 |
| 957 | $17^{+5}_{-4}$                                  | $11^{+4}_{-3}$        | $6^{+4}_{-3}$                                                                  | $3.24^{+1.04}_{-0.83}$                                                                                                       | $\begin{array}{c} 0.02 \_ 0.31 \\ 1.21 \substack{+0.50 \\ -0.37 \\ -0.37 \end{array}$                                                                             | $1.16_{-0.51}^{+0.76}$                                                                                                                      | $1.6 {\pm} 0.4$ | $1.3 \pm 0.2$   | $3.2 {\pm} 0.9$ | $0.84_{-0.31}^{+0.35}$                                                                                                          |               | В                 |
| 958 | $6^{+4}_{-2}$                                   | $6^{+4}_{-2}$         | 2                                                                              | $1.01\substack{+0.64\\-0.42}$                                                                                                | $0.62_{-0.25}^{+0.38}$                                                                                                                                            | 0.45                                                                                                                                        | $1.1 \pm 0.2$   | $1.0 {\pm} 0.1$ | $1.4{\pm}0.1$   | $0.19_{-0.08}^{+0.12}$                                                                                                          | H             | А                 |

Chandra Catalog: Photometry (continued)

| No. | $C_{net}$ FB                                 | $C_{net}$ SB                    | $C_{net}$ HB                                                                                                                                               | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                     | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{ s}^{-1})$                                                                | Phot.<br>Flag | Quantile<br>Group |
|-----|----------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 959 | $14^{+5}_{-4}$                               | $12^{+5}_{-2}$                  | $2^{+3}_{-2}$                                                                                                                                              | $2.73^{+0.97}_{-0.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.32_{-0.39}^{+0.51}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.45_{-0.32}^{+0.58}$                                                                                                                                                                        | $1.4{\pm}0.2$   | $1.3 \pm 0.1$   | $1.8 \pm 1.3$   | $0.62^{+0.24}_{-0.19}$                                                                                                  |               | А                 |
| 960 | $5^{+4}_{-2}$                                | $6^{12}_{-2}$                   | 2                                                                                                                                                          | $2.73^{+0.97}_{-0.76}$<br>$0.94^{+0.70}_{-0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1.32 \substack{+0.36\\-0.27}\\ 0.65 \substack{+0.40\\-0.27}\\ 5.95 \substack{+0.76\\-0.65}\\ 0.36 \substack{+0.40\\-0.22}\\ 1.9 \substack{+0.30\\-0.30}\\ 1.9 \substack{+0.30\\-0.34}\\ 0.51 \substack{+0.34\\-0.34}\\ 0.09 \substack{+0.24\\-0.09\\-0.09\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.45                                                                                                                                                                                          | $1.4 \pm 0.3$   | $1.0 \pm 0.2$   | $1.5 \pm 0.1$   | $0.21 \pm 0.16$                                                                                                         | H             | A                 |
| 961 | $157^{+13}_{-12}$                            | $86^{+11}_{-9}$                 | $71^{+10}$                                                                                                                                                 | $19.11^{+1.65}_{-1.56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $5.95^{+0.75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $8.90^{+1.28}$                                                                                                                                                                                | $1.9 \pm 0.1$   | $1.3 \pm 0.0$   | $3.2{\pm}0.4$   | $5.85^{+0.67}_{-0.11}$                                                                                                  |               | В                 |
| 962 | $11^{+5}_{-4}$                               | $3^{+3}_{-2}$                   | $71^{+10}_{-9} \\ 9^{+4}_{-3} \\ 30^{+9}_{-7}$                                                                                                             | $\begin{array}{c} 19.11 \substack{+1.65\\-1.56}\\ 2.71 \substack{+1.12\\-0.86}\\ 3.85 \substack{+0.78\\-0.65}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.36^{+0.40}_{-0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 8.90 \substack{+1.28 \\ -1.09 \\ 2.13 \substack{+1.04 \\ -0.77 \\ 2.15 \substack{+0.65 \\ -0.51 \\ +1.41 \end{array}}$                                                      | $3.2{\pm}0.9$   | $2.2{\pm}0.6$   | $5.2 \pm 1.0$   | $5.85 \substack{+0.67 \\ -0.65 \\ 1.38 \substack{+0.70 \\ -0.59 }$                                                      |               | С                 |
| 963 | $53_{-9}^{-41}$                              | $23^{+7}$                       | $30^{+9}_{-7}$                                                                                                                                             | $3.85^{+0.78}_{-0.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.19^{+0.30}_{-0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2.15^{+0.65}_{-0.51}$                                                                                                                                                                        | $2.1 \pm 0.3$   | $1.6 {\pm} 0.1$ | $3.4{\pm}0.5$   | $1.38_{-0.59}^{+0.15}$ $1.28_{-0.29}^{+0.33}$ $1.23_{-1.46}^{+1.51}$                                                    |               | В                 |
| 964 | $12^{-9}_{-6}$                               | $4^{+4}_{-3}$                   | $8^{+6}_{5}$                                                                                                                                               | $2.60^{+1.54}_{-1.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.51^{+0.49}_{-0.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.73^{+1.41}_{-1.17}$                                                                                                                                                                        | $3.0{\pm}3.2$   | $1.9{\pm}1.0$   | $7.7 \pm 3.0$   | $1.23_{-1.46}^{-0.29}$                                                                                                  |               | $\mathbf{C}$      |
| 965 | $7^{+4}_{-3}$                                | $1^{+2}_{-1}$                   | $8^{+6}_{-5}$<br>$6^{+4}_{-2}$                                                                                                                             | $1.19^{+0.68}_{-0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.09^{+0.24}_{-0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.73^{+0.31}_{-1.17}$ $1.05^{+0.66}_{-0.44}$                                                                                                                                                 | $6.3 \pm 1.9$   | $2.7 \pm 1.3$   | $7.2 {\pm} 0.8$ | $1.20_{-0.59}^{+0.77}$                                                                                                  |               | $\mathbf{C}$      |
| 966 | $16^{+8}_{-8}$                               | 6                               | $\begin{array}{r} & & & & & \\ 16^{+8}_{-7} \\ 2^{+3}_{-1} \\ 6^{+6}_{-5} \end{array}$                                                                     | $\begin{array}{c} 2.60 \substack{+1.54 \\ -1.31 \\ 1.19 \substack{+0.68 \\ -0.46 \\ 2.91 \substack{+1.56 \\ -1.38 \\ 1.59 \substack{+0.77 \\ -0.56 \end{array}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 1.03 - 0.44\\ 3.03 + 1.48\\ -1.27\\ 0.31 + 0.51\\ 1.025\\ 1.50 + 1.37\\ -1.11\\ \end{array}$                                                                                | $4.1{\pm}1.0$   | $3.2{\pm}1.3$   | $5.4 \pm 3.1$   | $1.93^{+1.15}_{-1.04}$                                                                                                  | - S -         | D                 |
| 967 | $9^{+4}_{-3}$                                | $7^{+4}_{-3}$                   | $2^{+3}_{-1}$                                                                                                                                              | $1.59^{+0.77}_{-0.56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.75_{-0.28}^{+0.41}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.31^{+0.51}_{-0.25}$                                                                                                                                                                        | $1.3 {\pm} 0.3$ | $1.1{\pm}0.1$   | $1.8 {\pm} 0.3$ | $0.34\substack{+0.18\\-0.14}\\1.97\substack{+2.15\\-1.84}$                                                              |               | А                 |
| 968 | $6^{+6}_{-5}$                                | 4                               | $6^{+6}_{-5}$                                                                                                                                              | $1.41^{+1.41}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.50^{+1.37}_{-1.11}$                                                                                                                                                                        | $8.7 {\pm} 3.8$ | $4.0{\pm}3.0$   | $9.7{\pm}1.4$   | $1.97^{+2.15}_{-1.84}$                                                                                                  | - S -         | $\mathbf{C}$      |
| 969 | $11^{+6}$                                    | $1^{+3}_{-1}$                   | $10^{+6}_{-5}$<br>$4^{+4}_{-3}$                                                                                                                            | 0 00±1 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.17\substack{+0.44\\-0.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 2.45\substack{+1.47\\-1.21}\\ 0.83\substack{+0.90\\-0.62}\end{array}$                                                                                                       | $5.0 {\pm} 1.1$ | $4.3 \pm 2.4$   | $5.9 {\pm} 1.4$ | $2.17^{+1.32}_{-1.13}$                                                                                                  |               | D                 |
| 970 | $11^{+5}_{-4}$                               | $7^{+4}_{-3}$                   | $4^{+4}_{-3}$                                                                                                                                              | $2.47^{\pm 1.16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.94^{+0.52}_{-0.37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.83^{+0.90}_{-0.62}$                                                                                                                                                                        | $1.7 {\pm} 1.9$ | $1.2{\pm}0.4$   | $6.2 \pm 2.1$   | $0.66_{-0.80}^{+0.82}$                                                                                                  |               | В                 |
| 971 | $9^{+6}_{-5}$<br>$8^{+4}_{-3}$               | $9^{+5}_{-3}$                   | 6                                                                                                                                                          | $\begin{array}{c} 2.13 \substack{+1.33 \\ -1.08 \\ 1.45 \substack{+0.75 \\ -0.54 \\ 0.82 \substack{+0.63 \\ -0.40 \\ 0.10 \end{array}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.21_{-0.46}^{+0.61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.46                                                                                                                                                                                          | $1.5{\pm}0.3$   | $0.9{\pm}0.3$   | $1.6{\pm}0.2$   | $a = a \pm 0.33$                                                                                                        | H             | В                 |
| 972 | $8^{+4}_{-3}$                                | 3                               | $8^{+4}_{-3}$                                                                                                                                              | $1.45^{+0.75}_{-0.54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.50^{+0.77}_{-0.55}$                                                                                                                                                                        | $5.7 {\pm} 0.7$ | $4.4{\pm}0.8$   | $6.2 {\pm} 0.5$ | $\begin{array}{c} 0.50 \substack{+0.50\\-0.28}\\ 1.33 \substack{+0.71\\-0.52}\\ 0.13 \substack{+0.10\\-0.07\end{array}$ | - S -         | D                 |
| 973 | $\overset{8_{-3}}{\overset{+3}{_{-2}}}$      | $5^{+3}_{-2}$                   | 2                                                                                                                                                          | $0.82^{+0.63}_{-0.40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.53^{+0.37}_{-0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.43                                                                                                                                                                                          | $1.0{\pm}0.2$   | $0.8{\pm}0.1$   | $1.2 {\pm} 0.1$ | $0.13_{-0.07}^{+0.10}$                                                                                                  | H             | А                 |
| 974 | $12_{-4}^{+5}$                               | 2                               | $12^{+5}_{-4}$                                                                                                                                             | $2.71^{+1.19}_{-0.04}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2.93^{+1.22}_{-0.96}\\0.66^{+0.81}_{-0.52}$                                                                                                                                                  | $4.7{\pm}0.8$   | $3.8{\pm}0.6$   | $6.0 {\pm} 1.0$ | $2.03^{+0.96}_{-0.78}$                                                                                                  | - S -         | D                 |
| 975 | $11^{+5}_{-4}$                               | $9^{+4}_{-3}$                   | $3^{+3}_{-2}$                                                                                                                                              | $2.65^{+1.13}_{-0.87}$<br>$0.59^{+1.02}_{-0.59}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1.14 +0.54 \\ -0.39 \\ 0.64 \substack{+0.47 \\ -0.31 \\ 1.13 \substack{+0.86 \\ -0.57 \\ 0.80 \substack{+0.48 \\ -0.48 \\ 1.87 \substack{+0.58 \\ -0.46 \\ -0.46 \\ 0.97 \substack{+0.59 \\ -0.46 \\ 0.97 \substack{+0.57 \\ -0.57 \\ -0.46 \\ 0.97 \substack{+0.57 \\ -0.57 \\ 0.97 \substack{+0.57 \\ -0.57 \\ 0.97 \substack{+0.57 \\ -0.57 \\ -0.57 \\ 0.97 \substack{+0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \atop{+0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.57 \\ -0.$ | $0.66^{+0.81}_{-0.52}$                                                                                                                                                                        | $1.6{\pm}0.6$   | $1.4{\pm}0.3$   | $3.3 {\pm} 2.3$ | $0.66^{+0.38}_{-0.22}$                                                                                                  |               | В                 |
| 976 | $3^{+4}_{-3}$                                | $5^{-3}_{-2}$                   | 4                                                                                                                                                          | $0.59^{+1.02}_{-0.59}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.64_{-0.31}^{+0.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                          | $1.2{\pm}0.4$   | $0.7{\pm}0.3$   | $1.2{\pm}0.2$   | $0.11^{+0.19}_{-0.12}$<br>$1.07^{+0.65}_{-0.51}$                                                                        | H             | В                 |
| 977 | $3^{+4}_{-3} \\ 8^{+5}_{-4} \\ 7^{+4}_{-3}$  | $5^{+4}_{-2}$                   | $3^{+4}_{-3} \\ 1^{+3}_{-1} \\ 1^{+2}_{-1}$                                                                                                                | $\begin{array}{c} 0.59 +1.02 \\ -0.59 \\ -0.59 \\ -0.59 \\ -0.75 \\ 3.43 \substack{+1.99 \\ -1.00 \\ -0.75 \\ 3.35 \substack{+1.02 \\ -0.81 \\ -0.81 \\ 3.33 \substack{+1.53 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.$ | $1.13^{+0.86}_{-0.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.33\\ 1.46^{+1.64}_{-1.12}\\ 0.18^{+0.74}_{-0.18}\\ 0.12^{+0.45}_{-0.12}\\ 2.77^{+1.40}_{-1.13}\\ 1.12^{+0.96}_{-0.66}\\ 2.00^{+0.76}_{-0.56}\\ \end{array}$               | $1.9{\pm}0.3$   | $1.7{\pm}0.2$   | $2.2 {\pm} 0.5$ | $1.07^{+0.65}_{-0.51}$                                                                                                  |               | А                 |
| 978 | $7^{+4}_{-3}$                                | $6^{+\bar{4}}_{-3}$             | $1^{+3}_{-1}$                                                                                                                                              | $1.59^{+1.00}_{-0.75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.80^{+0.48}_{-0.33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.18_{-0.18}^{+0.74}$                                                                                                                                                                        | $1.1{\pm}0.3$   | $1.0{\pm}0.2$   | $1.3{\pm}0.9$   | $1.07_{-0.51}^{+0.19}$<br>$0.28_{-0.16}^{+0.19}$                                                                        |               | А                 |
| 979 | $17^{+5}_{-4}$                               | $17^{+5}_{-4}$                  | $1^{+\bar{2}}_{-1}$                                                                                                                                        | $3.35^{+1.02}_{-0.81}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.87^{+0.58}_{-0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.12_{-0.12}^{+0.45}$                                                                                                                                                                        | $0.9{\pm}0.1$   | $0.8{\pm}0.1$   | $1.2{\pm}0.3$   | $0.48^{+0.16}_{-0.14}$                                                                                                  |               | А                 |
| 980 | $14^{+6}_{-5}$                               | $3^{+4}_{-2}$                   | $11^{+6}_{-5}$                                                                                                                                             | $3.33^{+1.53}_{-1.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.35 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2.77^{+1.40}_{-1.13}$                                                                                                                                                                        | $2.2{\pm}1.4$   | $2.0{\pm}0.6$   | $5.1 {\pm} 2.7$ | $1.17^{+0.91}$                                                                                                          |               | В                 |
| 981 | $8^{+4}_{-3}$                                | $4^{+3}_{-2}$                   | $4^{+4}_{-3}$                                                                                                                                              | $1.99^{+1.10}_{-0.82}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.50_{-0.34}^{+0.45}$<br>$0.50_{-0.27}^{+0.45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.12_{-0.66}^{+0.96}$                                                                                                                                                                        | $2.0{\pm}0.6$   | $1.5{\pm}0.4$   | $2.9{\pm}0.7$   | $0.65_{-0.33}^{+0.41}$                                                                                                  |               | В                 |
| 982 | $22^{+8}_{-6}$                               | $4^{+\bar{4}}_{-3}$             | $\substack{4^{+4}_{-3}\\18^{+7}_{-5}}$                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 = 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.00^{+0.76}_{-0.56}$                                                                                                                                                                        | $3.9{\pm}0.5$   | $2.9{\pm}0.5$   | $5.0 {\pm} 1.3$ | $0.65^{+0.41}_{-0.33}\\1.55^{+0.55}_{-0.46}\\0.08^{+0.75}_{-0.73}$                                                      |               | $\mathbf{C}$      |
| 983 | $2^{+6}_{-2}$                                | $11_{-4}^{+5}$                  | 4                                                                                                                                                          | $0.50^{+1.28}_{-0.50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.58_{-0.39} \\ 1.39_{-0.47}^{+0.61} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.91                                                                                                                                                                                          | $1.0{\pm}9.0$   | $1.0{\pm}9.0$   | $1.0{\pm}9.0$   | $0.08^{+0.75}_{-0.73}$                                                                                                  | H             | А                 |
| 984 | $7^{+4}_{-3}$                                | 3                               | $7^{+4}_{-3}$                                                                                                                                              | $1.24_{-0.49}^{+0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.28^{+0.73}_{-0.50}$                                                                                                                                                                        | $3.6{\pm}0.3$   | $3.3{\pm}0.4$   | $4.0{\pm}0.3$   | $0.71^{+0.42}_{-0.29}$                                                                                                  | - S -         | $\mathbf{E}$      |
| 985 | $6^{+4}_{-2}$                                | $5^{+3}_{-2}$                   | $7^{+4}_{-3}$<br>$1^{+2}_{-1}$                                                                                                                             | $1.05\substack{+0.67\\-0.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.54^{+0.37}_{-0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.13\substack{+0.44\\-0.13}$                                                                                                                                                                 | $1.5{\pm}0.3$   | $1.0{\pm}0.2$   | $1.7{\pm}0.2$   | $0.25^{+0.17}$                                                                                                          |               | А                 |
| 986 | $23^{+7}_{-6}$                               | $15_{-4}^{+6}$                  | $8^{+5}_{-4}$                                                                                                                                              | $\begin{array}{c} 2.50\substack{+0.61\\-0.65}\\ 0.50\substack{+1.28\\-0.50}\\ 1.24\substack{+0.72\\-0.49}\\ 1.05\substack{+0.67\\-0.44}\\ 3.11\substack{+0.97\\-0.74}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.54\substack{+0.37\\-0.23}\\ 1.77\substack{+0.45\\-0.32}\\ 0.89\substack{+0.48\\-0.34}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 1.28 \substack{+0.73 \\ -0.50 \\ 0.13 \substack{+0.44 \\ -0.13 \\ 0.88 \substack{+0.70 \\ -0.38 \end{array}}}$                                                              | $1.2{\pm}0.5$   | $1.0{\pm}0.1$   | $2.3 {\pm} 1.5$ |                                                                                                                         |               | В                 |
| 987 | $7^{+4}_{-3}$                                | $7^{+4}_{-3}$<br>$1^{+3}_{-1}$  | 4                                                                                                                                                          | $\begin{array}{r} 3.11 \substack{+0.74 \\ -0.74 \\ 1.43 \substack{+0.94 \\ -0.71 \\ 10.49 \substack{+2.36 \\ -2.07 \end{array}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.89^{+0.48}_{-0.34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.88                                                                                                                                                                                          | $1.3{\pm}0.3$   | $0.8{\pm}0.2$   | $1.4{\pm}0.1$   | $0.61^{+0.30}_{-0.27} \\ 0.31^{+0.21}_{-0.17}$                                                                          | H             | В                 |
| 988 | $37^{+8}_{-7}$                               | $1^{+3}_{-1}$                   | $36^{+8}_{-7}$                                                                                                                                             | $10.49^{+2.36}_{-2.07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.89 \substack{+0.40 \\ -0.34 \\ 0.10 \substack{+0.47 \\ -0.10 \\ 0.79 \substack{+0.51 \\ -0.34 \end{array}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 10.55 \\ 10.55 \\ -2.05 \\ 0.69 \\ -0.61 \\ -0.61 \\ 0.81 \end{array}$                                                                                                      | $5.3{\pm}0.3$   | $4.5{\pm}0.3$   | $5.9{\pm}0.2$   | $8.92^{+2.08}$                                                                                                          |               | D                 |
| 989 | $8^{+5}_{-3}$                                | $6^{+4}_{-2}$                   | $3^{+4}_{-2}$                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.79^{+0.51}_{-0.34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.69\substack{+0.92\\-0.61}$                                                                                                                                                                 | $1.7 \pm 3.5$   | $1.1{\pm}0.9$   | $9.5{\pm}2.7$   | $0.56^{+1.19}_{-1.17}$                                                                                                  |               | В                 |
| 990 | $7^{+4}_{-3}$                                | 3                               | $8^{+4}_{-3}$                                                                                                                                              | $2.06^{+0.19}_{-0.86}$<br>$1.50^{+0.79}_{-0.57}$<br>$4.16^{+1.08}_{-0.88}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.56^{+0.81}_{-0.58}$                                                                                                                                                                        | $4.5{\pm}0.5$   | $3.8{\pm}0.5$   | $4.9{\pm}1.1$   | $1.08^{+0.58}_{-0.42}$                                                                                                  | - S -         | $\mathbf{E}$      |
| 991 | $23^{+6}_{-5}$                               | $22^{+6}_{-5}$                  | $1^{+2}_{-1}$                                                                                                                                              | $4.16^{+1.08}_{-0.88}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.34\substack{+0.62\\-0.50}\\0.36\substack{+0.47\\-0.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.14\substack{+0.44\\-0.14}$                                                                                                                                                                 | $1.1{\pm}0.1$   | $0.9{\pm}0.1$   | $1.4{\pm}0.2$   | $0.72^{+0.20}_{-0.16}$                                                                                                  |               | А                 |
| 992 | $6^{+5}_{-4}$                                | $22_{-5}^{+3}$<br>$2_{-2}^{+3}$ | $4^{+5}_{-3}$                                                                                                                                              | $1.65^{+1.31}_{-1.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.36\substack{+0.47\\-0.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.03^{+1.19}_{-0.90}$                                                                                                                                                                        | $8.0{\pm}5.1$   | $0.9{\pm}3.2$   | $9.5{\pm}1.9$   |                                                                                                                         |               | $\mathbf{C}$      |
| 993 | $23^{+6}_{-5} \\ 6^{+5}_{-4} \\ 7^{+4}_{-3}$ | 3                               | $\substack{\substack{3+4\\-2}\\8-4\\-3}\\1+2\\-3\\-3\\1+3\\-3\\-3\\1+1\\2+2\\-3\\-3\\-3\\-3\\-5\\-4\\-3\\-3\\-3\\-3\\-3\\-3\\-3\\-3\\-3\\-3\\-3\\-3\\-3\\$ | $\begin{array}{c} 4.16 \substack{+1.08 \\ -0.88} \\ 1.65 \substack{+1.31 \\ -1.02} \\ 1.25 \substack{+0.71 \\ -0.48} \\ 1.06 \substack{+0.72 \\ -0.49} \\ 2.15 \substack{+1.12 \\ -0.86} \\ -0.49 \\ 2.15 \substack{+1.12 \\ -0.86} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.09 \\ -0.61 \\ 1.56 \\ +0.81 \\ 0.14 \\ -0.14 \\ 1.03 \\ -0.90 \\ 1.28 \\ +0.72 \\ 1.28 \\ -0.49 \\ 0.20 \\ -0.20 \\ -0.20 \\ 0.43 \\ -0.43 \\ 1.72 \\ +1.77 \end{array}$ | $6.5{\pm}1.0$   | $4.4{\pm}1.5$   | $6.6{\pm}0.3$   | $2.13_{-1.89}^{+0.76}$ $1.29_{-0.54}^{+0.76}$ $0.18_{-0.31}^{+0.32}$                                                    | - S -         | D                 |
| 994 | $6^{+4}_{-3}$                                | $5^{+3}_{-2}$                   | $1^{+3}_{-1}$                                                                                                                                              | $1.06\substack{+0.72\\-0.49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.50^{+0.37}_{-0.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.20^{+0.52}_{-0.20}$                                                                                                                                                                        | $1.1{\pm}1.8$   | $1.0{\pm}0.2$   | $1.3 {\pm} 4.0$ | $0.18^{+0.32}_{-0.31}$                                                                                                  |               | А                 |
| 995 | $9^{+5}_{-4}$                                | $7^{+\bar{4}}_{-3}$             | $2^{+3}_{-2}$                                                                                                                                              | $2.15^{+1.12}_{-0.86}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.50 \substack{+0.24\\-0.24}\\ 0.98 \substack{+0.53\\-0.38}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.43^{+0.83}_{-0.43}$                                                                                                                                                                        | $1.1{\pm}0.4$   | $0.9{\pm}0.1$   | $1.3{\pm}0.8$   | $0.37^{+0.23}_{-0.19}$                                                                                                  |               | А                 |
| 996 | $7^{+5}_{-4}$                                | $2^{+3}_{-2}$                   | $5^{+5}_{-4}$                                                                                                                                              | $2.46^{+1.93}_{-1.55}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.44_{-0.41}^{+0.66}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.72^{+1.77}_{-1.38}$                                                                                                                                                                        | $5.3 {\pm} 4.0$ | $1.8 {\pm} 2.4$ | $8.2 {\pm} 2.5$ | $2.07^{+2.25}_{-2.03}$                                                                                                  |               | $\mathbf{C}$      |

Chandra Catalog: Photometry (continued)

| No.  | $C_{net}$ FB                         | $C_{net}$ SB               | $C_{net}$ HB                     | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                    | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                               | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phot.<br>Flag | Quantile<br>Group |
|------|--------------------------------------|----------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 997  | $7^{+4}_{-3}$                        | $2^{+3}_{-1}$              | $5^{+3}_{-2}$                    | $1.24_{-0.48}^{+0.71}\\1.53_{-0.69}^{+1.09}$                                                                                             | $0.21\substack{+0.29\\-0.14}$                                                                                                                | $0.89\substack{+0.65\\-0.41}$                                                                                                           | $2.5 \pm 1.3$   | $2.1{\pm}0.4$   | $5.0{\pm}1.8$   | $0.49^{+0.38}_{-0.32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | С                 |
| 998  | $5^{+3}_{-2}$                        | 3                          | $5^{+3}_{-2}$                    | $1.53^{+1.09}_{-0.69}$                                                                                                                   | 0.49                                                                                                                                         | $1.58^{+1.11}_{-0.70}$                                                                                                                  | $5.6{\pm}0.6$   | $5.2 {\pm} 0.3$ | $6.7 {\pm} 0.4$ | $1.38^{+0.99}_{-0.64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - S -         | D                 |
| 999  | $14716_{-122}^{\tilde{+}122}$        | $46^{+9}_{-7}$             | $14670_{-122}^{-122}$            |                                                                                                                                          | $1.86\substack{+0.38\\-0.30}$                                                                                                                | $1000 41 \pm 8.98$                                                                                                                      | $5.4 {\pm} 0.0$ | $4.6{\pm}0.0$   | $6.3{\pm}0.0$   | $923.27^{+7.92}_{-7.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | D                 |
| 1000 | 8+5                                  | 3                          | $9^{+5}_{-4}$                    | $1062.62^{+8.80}_{-8.80}$ $1.97^{+1.30}_{-1.04}$ $3.51^{+2.19}_{-1.86}$                                                                  | 0.40                                                                                                                                         | $\begin{array}{c} 1082.41 \\ -8.98 \\ 2.28 \\ -1.03 \\ 3.17 \\ -1.76 \\ \end{array}$                                                    | $3.9{\pm}2.0$   | $3.8{\pm}0.5$   | $7.7 \pm 3.2$   | $\begin{array}{r} +1.03^{+}\\ 1.22^{+}\\ -0.91\\ 2.21^{+}\\ -1.37\\ -1.37\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - S -         | $\mathbf{C}$      |
| 1001 | $11^{+7}_{-6}$                       | $1^{+3}_{-1}$              | $10^{+7}_{-6}$                   | $3.51^{+2.19}_{-1.86}$                                                                                                                   | $0.22^{+0.60}_{-0.22}$                                                                                                                       | $3.17^{+2.09}_{-1.76}$                                                                                                                  | $3.9{\pm}1.2$   | $2.7{\pm}1.0$   | $5.0{\pm}2.6$   | $2.21^{+1.54}_{-1.37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | D                 |
| 1002 | $66_{-9}^{-0}$                       | $8^{+5}_{-3}$              | $59^{+10}_{-8}$                  | $7.47^{+1.19}_{-1.09}$                                                                                                                   | $0.87^{+0.32}_{-0.18}$                                                                                                                       | $6.75^{+1.15}_{-0.07}$                                                                                                                  | $3.9{\pm}0.3$   | $3.0{\pm}0.3$   | $5.3 {\pm} 0.4$ | $4.68^{+0.84}_{-0.74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | D                 |
| 1003 | $13^{+5}_{-4}$                       | $4^{+3}_{-2}$              | $8^{+4}_{-3}$                    | $2.60^{+1.06}$                                                                                                                           | $0.51^{+0.40}$                                                                                                                               | $1.74 \pm 0.94$                                                                                                                         | $2.6{\pm}0.5$   | $2.0{\pm}0.4$   | $3.4{\pm}0.5$   | $1.07^{\pm0.48}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | $\mathbf{E}$      |
| 1004 | $73^{+11}_{-10}$                     | $70^{+\overline{1}0}_{-9}$ | $10^{+6}_{-4}$                   | $7.30^{+1.14}_{-0.07}$                                                                                                                   | $4.09^{+0.26}_{-0.47}$                                                                                                                       | $1.21^{+0.99}_{-0.66}$                                                                                                                  | $0.9{\pm}0.0$   | $0.8{\pm}0.0$   | $0.9{\pm}0.0$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | А                 |
| 1005 | $12^{+6}_{-5}$                       | 2                          | $13^{+6}_{-5}$                   | $2.98^{+1.42}_{-1.15}$<br>$1.04^{+1.05}_{-0.83}$                                                                                         | 0.33                                                                                                                                         | $3.35_{-1.18}^{+1.46}$                                                                                                                  | $9.2 {\pm} 1.4$ | $6.3 {\pm} 1.8$ | $9.6{\pm}0.3$   | $4.38^{\pm 2.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - S -         | D                 |
| 1006 | $5^{+5}$                             | $5^{+4}_{-3}$              | 6                                | $1.04^{+1.05}_{-0.83}$                                                                                                                   | $0.55_{-0.31}^{+0.45}$                                                                                                                       | 1.25                                                                                                                                    | $1.4{\pm}2.4$   | $1.1{\pm}0.5$   | $2.1 \pm 3.7$   | $0.23^{+0.46}_{-0.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H             | А                 |
| 1007 | $9^{+4}_{-3}$                        | $3^{+3}_{2}$               | $6^{+4}_{-2}$                    | $1.60^{\pm 0.70}$                                                                                                                        | $0.31 \pm 0.32$                                                                                                                              | $\begin{array}{c} 1.09 \substack{+0.68 \\ -0.45} \\ 0.25 \substack{+0.60 \\ -0.25} \\ 4.11 \substack{+1.55 \\ -1.26} \end{array}$       | $3.3{\pm}0.8$   | $1.6{\pm}0.6$   | $4.0{\pm}1.4$   | $0.83^{+0.45}_{-0.36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | $\mathbf{C}$      |
| 1008 | $14^{+5}_{-4}$                       | $13^{+5}$                  | $1^{+3}_{-1}$                    | $2.73^{+1.01}_{-0.80}$                                                                                                                   | $1.42^{+0.54}_{-0.41}$                                                                                                                       | $0.25\substack{+0.60\\-0.25}$                                                                                                           | $1.3{\pm}0.1$   | $1.2{\pm}0.1$   | $1.7{\pm}0.3$   | $0.57^{+0.22}_{-0.18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | А                 |
| 1009 | $17^{+6}_{-5}$                       | $2^{+3}_{-2}$              | $16^{+6}_{-5}$                   | $4.47^{+1.58}_{-1.30}$                                                                                                                   | $0.25^{+0.41}_{-0.22}$<br>$0.12^{+0.74}_{-0.12}$                                                                                             | $4.11^{+1.55}_{-1.26}$                                                                                                                  | $7.3 {\pm} 1.2$ | $4.7 {\pm} 2.1$ | $8.4{\pm}1.1$   | $5.23_{-1.76}^{+2.04}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | D                 |
| 1010 | 5                                    | $1^{-2}_{-1}$              | 4                                | 2.19                                                                                                                                     | $0.12^{+0.74}_{-0.12}$                                                                                                                       | 1.66                                                                                                                                    | $5.2 {\pm} 4.8$ | $2.9{\pm}7.1$   | $7.6{\pm}7.1$   | 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F - H         | $\mathbf{C}$      |
| 1011 | $5^{+4}_{-2}$                        | $6^{+\hat{4}}_{-2}$        | 2                                | $1.15_{-0.52}^{+0.79}$                                                                                                                   | $\begin{array}{c} 0.12 \substack{+0.12 \\ -0.12} \\ 0.73 \substack{+0.46 \\ -0.30} \end{array}$                                              | 0.51                                                                                                                                    | $1.3{\pm}0.2$   | $1.1{\pm}0.1$   | $1.5 {\pm} 0.2$ | $0.23^{+0.16}_{-0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H             | А                 |
| 1012 | $6^{+4}_{-2}$                        | $3^{+3}_{-2}$              | $3^{+3}_{-2}$                    | $1.02^{+0.67}_{-0.44}$                                                                                                                   | $0.30^{+0.31}_{-0.17}$                                                                                                                       | $0.50\substack{+0.55\\-0.31}$                                                                                                           | $1.8{\pm}0.8$   | $1.1{\pm}0.4$   | $2.7{\pm}0.7$   | $0.29^{+0.23}_{-0.18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | В                 |
| 1013 | $3^{+5}_{-3}$                        | $3^{+\bar{3}}_{-2}$        | 6                                | $0.64^{+1.04}$                                                                                                                           | $0.43^{+0.44}_{-0.28}$                                                                                                                       | 1.28                                                                                                                                    | $1.3{\pm}6.4$   | $0.9{\pm}2.4$   | $1.8 {\pm} 4.6$ | $0.13^{+0.70}_{-0.67}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H             | В                 |
| 1014 | $3^{+4}_{-3}$                        | $4^{+3}_{-2}$              | 5                                | $0.c0 \pm 0.93$                                                                                                                          | $0.44_{-0.27}^{+0.42}$                                                                                                                       | 1.10                                                                                                                                    | $1.4{\pm}0.2$   | $1.3{\pm}0.1$   | $1.6{\pm}0.1$   | $0.15^{+0.21}_{-0.16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H             | А                 |
| 1015 | $3^{+4}_{-3}_{5^{+3}}_{5^{-2}_{-2}}$ | $2^{+2}_{-1}$              | $3^{+3}_{-2}\\21^{+7}_{-5}$      | $1.00\pm0.74$                                                                                                                            | $0.44\substack{+0.42\\-0.27}\\0.25\substack{+0.34\\-0.16}$                                                                                   | $\begin{array}{c} 0.62\substack{+0.65\\-0.36}\\ 2.09\substack{+0.72\\-0.53}\\ 4.31\substack{+1.72\\-1.42}\end{array}$                   | $3.1{\pm}1.7$   | $1.3{\pm}0.8$   | $4.2 {\pm} 2.0$ | $0.51_{-0.37}^{+0.46}$ $2.09_{-0.67}^{+0.83}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | $\mathbf{C}$      |
| 1016 | $21^{+7}_{-6}$                       | 5                          | $21^{+7}_{-5}$                   | $1.03_{-0.47}^{+0.71}$<br>$1.98_{-0.53}^{+0.71}$                                                                                         | 0.31                                                                                                                                         | $2.09^{+0.72}_{-0.53}$                                                                                                                  | $6.6{\pm}1.2$   | $4.1{\pm}0.8$   | $9.0{\pm}0.8$   | $2.09\substack{+0.83\\-0.67}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - S -         | $\mathbf{C}$      |
| 1017 | $16^{+7}_{-6}$                       | 5                          | $16^{+6}_{-5}$                   | $4.26^{+1.79}_{-1.51}$                                                                                                                   | 0.72                                                                                                                                         | $4.31^{+1.72}_{-1.42}$                                                                                                                  | $5.8{\pm}0.9$   | $4.5 \pm 1.3$   | $7.3 {\pm} 1.7$ | $3.96^{+1.77}_{-1.52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - S -         | D                 |
| 1018 | $24^{+6}_{-5}$                       | 2                          | $26^{+6}_{-5}$                   | $5.43^{\pm1.44}$                                                                                                                         | 0.29                                                                                                                                         | $5.85^{+1.47}_{-1.23}$                                                                                                                  | $4.3{\pm}0.3$   | $3.7{\pm}0.4$   | $5.8{\pm}0.6$   | $3.78^{+1.05}_{-0.89}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - S -         | D                 |
| 1019 | $7^{+6}_{-5}$                        | $11^{+5}_{-3}$             | 5                                | 1 (a±117                                                                                                                                 | $1.28^{+0.54}_{-0.41}$                                                                                                                       | 1.03                                                                                                                                    | $1.2 {\pm} 2.0$ | $1.1{\pm}0.3$   | $1.4{\pm}6.4$   | $0.27^{+0.51}_{-0.49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H             | А                 |
| 1020 | $14^{+5}_{-4}$                       | $11^{+5}_{-3}$             | ${}^{2^{+3}_{-2}}_{1^{+3}_{-1}}$ | $\begin{array}{c} 1.40 \substack{+1.07 \\ -0.95 \\ 2.86 \substack{+1.07 \\ -0.84 \\ 1.19 \substack{+1.79 \\ -1.19 \\ -1.19 \end{array}}$ | $\begin{array}{c} 1.28 \substack{+0.54 \\ -0.41 \\ 1.36 \substack{+0.55 \\ -0.42 \\ 0.28 \substack{+0.75 \\ -0.28 \end{array}}} \end{array}$ | $0.50^{+0.68}_{-0.41}$<br>$0.71^{+1.62}_{-0.71}$                                                                                        | $1.0{\pm}0.2$   | $0.8{\pm}0.1$   | $1.6{\pm}0.6$   | $\begin{array}{c} 0.173 \pm 0.89\\ 0.27 \pm 0.51\\ 0.47 \pm 0.21\\ 0.47 \pm 0.17\\ 0.71 \pm 0.81\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\ 0.91\\$ |               | В                 |
| 1021 | $2^{+4}_{-2}$                        | $1^{+3}_{-1}$              | $1^{+3}_{-1}$                    | $1.19^{+1.79}_{-1.19}$                                                                                                                   | $0.28_{-0.28}^{+0.75}$                                                                                                                       | $0.71^{+1.62}_{-0.71}$                                                                                                                  | $3.7 {\pm} 2.1$ | $0.8 {\pm} 9.2$ | $4.0{\pm}6.0$   | $0.71^{+1.14}_{-0.81}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | $\mathbf{C}$      |
| 1022 | $25^{+7}_{-6}$                       | $3^{+4}_{-2}$              | $22^{+7}_{-5}$                   | $2.71^{\pm0.80}$                                                                                                                         | $0.38^{+0.25}_{-0.10}$                                                                                                                       | 0 90 T 0.10                                                                                                                             | $4.3{\pm}0.5$   | $3.5{\pm}0.6$   | $5.8{\pm}0.6$   | $1.87^{+0.59}_{-0.49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | D                 |
| 1023 | $22^{+6}_{-5}$                       | $6^{+4}_{-2}$              | $16^{+5}_{-4}$                   | $4.31^{+1.15}_{-0.04}$                                                                                                                   | $0.65\substack{+0.41\\-0.27}$                                                                                                                | $3.25^{+1.04}_{-0.82}$                                                                                                                  | $3.7{\pm}0.6$   | $2.0{\pm}0.5$   | $4.5{\pm}0.9$   | $2.56^{+0.81}_{-0.70}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | $\mathbf{C}$      |
| 1024 | $185^{+14}_{-14}$                    | $10^{+4}_{-3}$             | $175_{-13}^{+13}$                | ${}^{-0.94}_{-2.75}$<br>$37.22{}^{+2.75}_{-2.75}$<br>$2.16{}^{+0.86}_{-0.65}$<br>$8.78{}^{+1.24}_{-1.07}$                                | $\begin{array}{c} -0.12\\ 0.65 \substack{+0.41\\ -0.27}\\ 1.17 \substack{+0.51\\ -0.38}\end{array}$                                          | $\begin{array}{c} 2.36_{-0.58}\\ 3.25_{-0.82}^{+1.04}\\ 35.92_{-2.73}^{+2.73}\\ 2.23_{-0.67}^{+0.88}\\ 2.12_{-0.80}^{+1.06}\end{array}$ | $4.1{\pm}0.2$   | $3.1{\pm}0.1$   | $5.3 {\pm} 0.2$ | $24\ 47^{+2.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | D                 |
| 1025 | $11^{+5}$                            | 3                          | $12^{+5}_{-3}$                   | $2.16^{+0.86}_{-0.65}$                                                                                                                   | 0.28                                                                                                                                         | $2.23^{+0.88}_{-0.67}$                                                                                                                  | $5.2{\pm}0.6$   | $4.1{\pm}0.4$   | $6.1{\pm}0.6$   | $= -\pm 0.75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - S -         | D                 |
| 1026 | $74_{-9}^{-3}$                       | $66^{+10}_{-8}$            | $9^{+4}_{-3}$                    | $8.78^{+1.24}_{-1.07}$                                                                                                                   | $\begin{array}{c} 4.49\substack{+0.66\\-0.56}\\ 0.71\substack{+0.45\\-0.30} \end{array}$                                                     | $2.12^{+1.06}_{-0.80}$                                                                                                                  | $1.0{\pm}0.1$   | $0.9{\pm}0.0$   | $1.4 {\pm} 0.2$ | $1.79_{-0.58}^{+0.23}$<br>$1.47_{-0.20}^{+0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | А                 |
| 1027 | $5^{+5}_{-4}$                        | $6^{+\bar{4}}_{-3}$        | 5                                | $1.13^{+0.98}_{-0.76}$                                                                                                                   | $0.71_{-0.30}^{+0.45}$                                                                                                                       | 1.09                                                                                                                                    | $1.1{\pm}0.1$   | $1.0{\pm}0.1$   | $1.2 {\pm} 0.1$ | $0.20^{+0.18}_{-0.14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H             | А                 |
| 1028 | $5^{+4}$                             | 3                          | $5^{+4}_{-3}$                    | $1.11^{+0.86}$                                                                                                                           | 0.41                                                                                                                                         | $1.11\substack{+0.84\\-0.60}$                                                                                                           | $4.9{\pm}0.6$   | $4.6{\pm}0.3$   | $5.7{\pm}0.6$   | $0.87^{+0.68}_{-0.50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - S -         | $\mathbf{E}$      |
| 1029 | $8^{+5}_{-4}$                        | 2                          | $9^{+5}_{-4}$                    | $1.74_{-0.78}^{+1.00}$                                                                                                                   | 0.27                                                                                                                                         | $1.97^{+1.02}_{-0.79}$                                                                                                                  | $7.5{\pm}2.0$   | $3.6{\pm}1.9$   | $8.1{\pm}0.7$   | $0.00 \pm 1.32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - S -         | $\mathbf{C}$      |
| 1030 | $5^{+5}_{-4}$                        | $6^{+4}_{-3}$              | 5                                | ${}^{-0.63}_{1.74}{}^{+1.00}_{-0.78}\\ 1.20{}^{+1.04}_{-0.79}\\ 1.21{}^{+0.85}_{-0.61}$                                                  | $0.72^{+0.49}_{-0.34}\\0.69^{+0.44}_{-0.29}$                                                                                                 | 1.16                                                                                                                                    | $1.7{\pm}0.3$   | $1.4{\pm}0.2$   | $1.8{\pm}0.1$   | $0.33^{+0.29}_{-0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H             | А                 |
| 1031 | $6^{+4}_{-3}$                        | $6^{+4}_{-2}$              | 4                                | $1.21_{-0.61}^{+0.85}$                                                                                                                   | $0.69^{+0.44}_{-0.29}$                                                                                                                       | 0.84                                                                                                                                    | $1.4{\pm}0.2$   | $1.3{\pm}0.1$   | $1.8{\pm}0.2$   | $0.27^{\pm 0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H             | А                 |
| 1032 | $26^{+8}_{-7}$                       | $24^{+6}_{-5}$             | $2^{+5}_{-2}$                    | 6 20+1.80                                                                                                                                | $3.27^{+0.86}_{-0.72}$                                                                                                                       | $0.51^{+1.25}_{-0.51}$                                                                                                                  | $1.4{\pm}0.1$   | $1.1{\pm}0.1$   | $1.6{\pm}0.2$   | $1.43^{+0.44}_{-0.39}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | А                 |
| 1033 | $16^{+6}_{-5}$                       | $13^{+5}_{-4}$             | $4^{+3}_{-2}$                    | $1.62^{+0.69}_{-0.50}$                                                                                                                   | ${\stackrel{-0.72}{\overset{-0.72}{_{-0.23}}}\atop{0.33}{\stackrel{+0.44}{_{-0.25}}}}$                                                       | $0.73\substack{+0.69\\-0.44}\\0.75\substack{+0.93\\-0.61}$                                                                              | $1.3{\pm}0.3$   | $1.0{\pm}0.1$   | $1.7{\pm}0.2$   | $0.33^{+0.16}_{-0.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | В                 |
| 1034 | $5^{+4}_{-3}$                        | $2^{+3}_{-2}$              | $3^{+\bar{4}}_{-2}$              | $1.32_{-0.78}^{+1.06}$                                                                                                                   | $0.33_{-0.25}^{+0.44}$                                                                                                                       | $0.75_{-0.61}^{+0.93}$                                                                                                                  | $2.2 \pm 3.6$   | $1.6{\pm}1.4$   | $6.3 \pm 3.1$   | $0.46_{-0.81}^{+0.84}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | В                 |

Chandra Catalog: Photometry (continued)

| No.  | $C_{net}$ FB                   | $C_{net}$ SB        | $C_{net}$ HB                                                                             | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                                                                                    | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                  | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                                                    | Phot.<br>Flag | Quantile<br>Group |
|------|--------------------------------|---------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 1035 | $17^{+5}_{-4}$                 | $14^{+5}_{-4}$      | 4+3                                                                                      | $3.27^{\pm1.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 1.49\substack{+0.53\\-0.41}\\ 0.48\substack{+0.40\\-0.26}\\ 0.45\substack{+0.41\\-0.25}\\ 0.13\substack{+0.36\\-0.13}\\ 0.12\substack{+0.31\\-0.11}\\ 0.44\substack{+0.36\\-0.21}\\ 0.53\substack{+0.41\\-0.21} \end{array}$ | $0.68^{+0.62}$                                                                                                                                                                                             | $1.2 \pm 0.2$   | $1.0 {\pm} 0.1$ | $1.8 {\pm} 0.6$ | $0.64^{+0.22}_{-0.19}$                                                                                                                     |               | В                 |
| 1036 | $6^{+4}_{-3}$                  | $4^{+3}_{-2}$       | $\substack{4^{+3}_{-2}\\2^{+3}_{-2}}$                                                    | $3.27^{+1.01}_{-0.80}$<br>$1.19^{+0.90}_{-0.66}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.48^{+0.40}_{-0.20}$                                                                                                                                                                                                                         | $\begin{array}{c} 0.68\substack{+0.62\\-0.37}\\ 0.35\substack{+0.73\\-0.35}\end{array}$                                                                                                                    | $1.7 \pm 1.3$   | $1.3 \pm 0.2$   | $2.0 \pm 2.9$   | $0.22 \pm 0.35$                                                                                                                            |               | Ā                 |
| 1037 | $2^{+3}$                       | $3^{+3}$            | 3                                                                                        | $0.52^{+0.78}_{-0.40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.45^{+0.41}_{-0.25}$                                                                                                                                                                                                                         | 0.69                                                                                                                                                                                                       | $0.7{\pm}0.5$   | $0.5 \pm 9.5$   | $1.3 \pm 8.7$   | $0.32_{-0.31}^{-0.31}$<br>$0.06_{-0.07}^{+0.09}$                                                                                           | H             | В                 |
| 1038 | 14+6                           | $1^{+3}$            | $13^{+5}_{-4}\\30^{+7}_{-5}$                                                             | $\begin{array}{c} 1.19\substack{+0.90\\-0.66}\\ 0.52\substack{+0.78\\-0.49}\\ 2.96\substack{+1.23\\-1.00}\\ 7.07\substack{+1.54\\-1.29\\0.88\substack{+0.66\\-0.42}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.13^{+0.36}_{-0.12}$                                                                                                                                                                                                                         | $\begin{array}{c} 2.79^{+1.18}_{-0.94} \\ 7.00^{+1.55}_{-1.29} \\ 0.12^{+0.46}_{-0.12} \end{array}$                                                                                                        | $8.0 {\pm} 1.9$ | $2.4{\pm}2.3$   | $8.6 {\pm} 0.6$ | $0.06^{+0.09}_{-0.07}$<br>$3.79^{+1.82}_{-1.57}$                                                                                           |               | $\mathbf{C}$      |
| 1039 | $31^{+7}_{-6}$                 | $1^{+2}$            | $30^{+7}_{-5}$                                                                           | $7.07^{+1.54}_{-1.29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.12^{+0.11}_{-0.11}$                                                                                                                                                                                                                         | $7.00^{+1.55}_{-1.29}$                                                                                                                                                                                     | $4.5 {\pm} 0.3$ | $3.7 {\pm} 0.3$ | $6.1 {\pm} 0.6$ | $\begin{array}{r} 3.79 \substack{+1.57 \\ -1.57 \\ 5.05 \substack{+1.14 \\ -0.97 \\ 0.15 \substack{+0.23 \\ -0.21 \\ -0.21 \end{array}}$   |               | D                 |
| 1040 | $5^{+3}_{-2}$                  | $4^{+3}_{-2}$       | $1^{+2}_{-1}$                                                                            | $0.88^{+0.66}_{-0.42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.44^{+0.36}_{-0.21}$                                                                                                                                                                                                                         | $0.12^{+0.46}_{-0.12}$                                                                                                                                                                                     | $1.0{\pm}1.4$   | $0.8 {\pm} 0.4$ | $1.4{\pm}2.2$   | $0.15_{-0.21}^{+0.23}$                                                                                                                     |               | В                 |
| 1041 | $5^{+4}_{-3}$                  | $5^{+\bar{3}}_{-2}$ | 4                                                                                        | $1.06^{+0.81}_{-0.55}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ${ \begin{array}{c} -0.21 \\ 0.56 {+0.41 \\ -0.26 \\ 1.11 {+0.49 \\ -0.36 \end{array} } } \\ \end{array} }$                                                                                                                                    | 0.93                                                                                                                                                                                                       | $1.0{\pm}0.6$   | $0.7{\pm}0.2$   | $1.2 {\pm} 0.8$ | $0.18^{+0.1}$                                                                                                                              | H             | В                 |
| 1042 | $10^{+4}$                      | $10_{-3}^{+4}$      | 3                                                                                        | $1.94_{-0.65}^{+0.87}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.11_{-0.36}^{+0.49}$                                                                                                                                                                                                                         | 0.70                                                                                                                                                                                                       | $1.0{\pm}0.2$   | $1.0{\pm}0.0$   | $1.3 {\pm} 1.3$ | $0.33^{+0.16}$                                                                                                                             | H             | А                 |
| 1043 | 0+4                            | 4                   | $7^{+4}_{-3} \\ 8^{+6}_{-4}$                                                             | $1.48^{+0.85}_{-0.64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                | $\begin{array}{c} 1.46\substack{+0.84\\-0.62}\\ 0.61\substack{+0.58\\-0.31}\\ 8.79\substack{+1.20\\-1.03}\end{array}$                                                                                      | $6.4 {\pm} 2.5$ | $3.2{\pm}1.5$   | $9.3 {\pm} 1.3$ |                                                                                                                                            | - S -         | $\mathbf{C}$      |
| 1044 | $51^{+9}_{-8}$                 | $43^{+8}_{-7}$      | $8^{+\bar{6}}_{-4}$                                                                      | $5.48^{+1.03}_{-0.86}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3.39^{+0.53}_{-0.43}$                                                                                                                                                                                                                         | $0.61^{+0.58}_{-0.31}$                                                                                                                                                                                     | $1.0{\pm}0.1$   | $0.8{\pm}0.0$   | $1.5 {\pm} 0.5$ | $\begin{array}{c} 1.52\substack{+1.00\\-0.89}\\ 0.85\substack{+0.19\\-0.16}\\ 5.38\substack{+0.62\\-0.58}\end{array}$                      |               | А                 |
| 1045 | $145^{+14}_{-12}$              | $65^{+10}_{-8}$     | $80^{+11}_{-9}$                                                                          | $15.52^{+1.49}_{-1.33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.40\\ 3.39^{+0.53}_{-0.43}\\ 3.95^{+0.59}_{-0.50}\\ 0.95^{+0.52}_{-0.38}\\ 0.43^{+0.36}_{-0.22}\\ 0.78^{+0.53}_{-0.36}\\ 0.91^{+0.46}_{-0.33}\\ 0.66^{+0.40}_{-0.27}\\ 0.90^{+0.49}_{-0.34}\\ 0.22\end{array}$              | $8.79^{+1.20}_{-1.03}$                                                                                                                                                                                     | $2.2{\pm}0.1$   | $1.7{\pm}0.1$   | $3.4{\pm}0.2$   | $5.38^{+0.62}_{-0.58}$                                                                                                                     |               | В                 |
| 1046 | $6^{+5}$                       | $8^{+4}$            | 4                                                                                        | $1.28^{+1.01}_{-0.77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.95\substack{+0.52\\-0.38}$                                                                                                                                                                                                                  | 0.84                                                                                                                                                                                                       | $1.2{\pm}0.3$   | $0.9{\pm}0.2$   | $1.5{\pm}0.3$   | $5.38_{-0.58}^{+0.21}$<br>$0.25_{-0.17}^{+0.21}$                                                                                           | H             | А                 |
| 1047 | $4^{+3}_{-2}$                  | $4^{+3}$            | 4                                                                                        | $0.78\substack{+0.67\\-0.42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.43^{+0.36}_{-0.22}$                                                                                                                                                                                                                         | 0.71                                                                                                                                                                                                       | $1.1{\pm}0.3$   | $0.9{\pm}0.1$   | $1.4{\pm}0.3$   | $\begin{array}{c} -0.17\\ 0.13 \substack{+0.12\\ -0.08\\ 1.03 \substack{+0.65\\ -0.59\\ 0.38 \substack{+0.20\\ -0.17\\ +0.11\end{array}}}$ | H             | А                 |
| 1048 | $12_{-4}^{+5}$                 | $6^{+4}$            | ${}^{6^{+5}_{-4}}_{2^{+3}_{-1}}$                                                         | $2.99^{+1.36}_{-1.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.78^{+0.53}_{-0.36}$                                                                                                                                                                                                                         | $\begin{array}{c} 1.64^{+1.17}_{-0.89} \\ 0.32^{+0.55}_{-0.27} \end{array}$                                                                                                                                | $2.2{\pm}0.9$   | $1.3{\pm}0.4$   | $3.4{\pm}0.9$   | $1.03^{+0.65}_{-0.59}$                                                                                                                     |               | В                 |
| 1049 | $9^{+4}_{-3}$                  | $8^{-3}_{-3}$       | $2^{+3}_{-1}$                                                                            | $1.90^{+0.87}_{-0.64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.91\substack{+0.46 \\ -0.33}$                                                                                                                                                                                                                | $0.32^{+0.55}_{-0.27}$                                                                                                                                                                                     | $1.3{\pm}0.3$   | $1.0{\pm}0.2$   | $1.8{\pm}0.7$   | $0.38\substack{+0.20\\-0.17}$                                                                                                              |               | А                 |
| 1050 | $5^{+4}_{-2}$                  | $6^{+4}_{-2}$       | 2                                                                                        | $1.07\substack{+0.70\\-0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.66\substack{+0.40\\-0.27}$                                                                                                                                                                                                                  | 0.46                                                                                                                                                                                                       | $0.9{\pm}0.1$   | $0.9{\pm}0.1$   | $1.0{\pm}0.1$   | $0.16^{+0.11}_{-0.07}$                                                                                                                     | H             | А                 |
| 1051 | $8^{+\bar{4}}_{-3}$            | $7^{+\bar{4}}_{-3}$ | $2^{+3}_{-1}$                                                                            | $1.91^{+0.93}_{-0.68}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.90\substack{+0.49\\-0.34}$                                                                                                                                                                                                                  | $0.37\substack{+0.61\\-0.30}$                                                                                                                                                                              | $1.3{\pm}0.3$   | $1.1{\pm}0.1$   | $1.7{\pm}1.0$   | $0.40^{+0.22}_{-0.18}$                                                                                                                     |               | А                 |
| 1052 | $6^{+4}_{-3}$                  | 3                   | $6^{+4}_{-3}$                                                                            | $1.29^{+0.85}_{-0.58}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                | $1.36^{+0.87}_{-0.59}$                                                                                                                                                                                     | $6.0 {\pm} 1.1$ | $4.2{\pm}0.7$   | $6.6{\pm}0.9$   | $1.24^{+0.85}_{-0.60}$<br>$0.94^{+0.37}_{-0.31}$                                                                                           | - S -         | D                 |
| 1053 | $26^{+8}_{-7}$                 | $11^{+5}_{-4}$      | $2^{+3}_{-1} \\ 6^{+4}_{-3} \\ 15^{+7}_{-6} \\ 5^{+4}_{-2} \\ 2$                         | $2.34^{+0.77}_{-0.59}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.09 \\ 1.09 \\ -0.19 \\ 0.20 \\ -0.15 \\ 0.59 \\ -0.27 \\ 0.07 \\ -0.07 \\ -0.07 \\ 0.07 \\ +0.27 \\ 0.07 \\ -0.07 \\ -0.07 \\ 0.07 \\ +0.46 \\ \end{array}$                                                                | $\begin{array}{c} 0.37 \substack{+0.61 \\ -0.30 \\ 1.36 \substack{+0.87 \\ -0.59 \\ 1.43 \substack{+0.67 \\ -0.48 \\ 1.07 \substack{+0.72 \\ -0.48 \\ 1.07 \substack{+0.72 \\ -0.48 \\ -0.48 \end{array}}$ | $2.5\pm0.5$     | $1.9{\pm}0.2$   | $4.2{\pm}0.7$   | $0.94^{+0.37}_{-0.31}$                                                                                                                     |               | $\mathbf{C}$      |
| 1054 | $7^{+4'}_{-3} \\ 4^{+3}_{-2}$  | $2_{-1}^{+3}$       | $5^{+4}_{-2}$                                                                            | $1.41^{+0.78}_{-0.56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.20\substack{+0.30\\-0.15}$                                                                                                                                                                                                                  | $1.07^{+0.72}_{-0.48}$                                                                                                                                                                                     | $3.9{\pm}1.0$   | $2.0{\pm}0.8$   | $4.6{\pm}0.5$   | $0.94_{-0.31}\\0.88_{-0.42}^{+0.54}$                                                                                                       |               | $\mathbf{C}$      |
| 1055 | $4^{+3}_{-2}$                  | $5^{+3}_{-2}$       | 2                                                                                        | $0.89^{+0.72}_{-0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.59^{+0.42}_{-0.27}$                                                                                                                                                                                                                         | 0.50                                                                                                                                                                                                       | $1.2 {\pm} 0.1$ | $1.1{\pm}0.0$   | $1.3 {\pm} 0.1$ | $0.17^{+0.14}_{-0.09}$                                                                                                                     | H             | А                 |
| 1056 | $8^{+4}_{-3}$                  | $1^{+2}_{-1}$       | $7^{+4}_{-3}$                                                                            | $1.59^{+0.85}_{-0.63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.07\substack{+0.27\\-0.07}$                                                                                                                                                                                                                  | $1.49\substack{+0.84\\-0.61}$                                                                                                                                                                              | $2.9{\pm}0.3$   | $2.5\pm0.6$     | $3.1{\pm}0.5$   | $0.73_{-0.30}^{+0.40}$                                                                                                                     |               | E                 |
| 1057 | $6^{+4}_{-3}$                  | $7^{+4}_{-3}$       | 3                                                                                        | $1.16^{+0.84}_{-0.62}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.80^{+0.46}_{-0.33}$                                                                                                                                                                                                                         | 0.69                                                                                                                                                                                                       | $1.3{\pm}0.4$   | $0.7{\pm}0.3$   | $1.6{\pm}0.2$   | $0.24^{+0.19}_{-0.15}$<br>$1.69^{+0.85}_{-0.69}$                                                                                           | H             | В                 |
| 1058 | $11^{+5}_{-4}$                 | 2                   | $12^{+5}_{-4} \\ 7^{+5}_{-3}$                                                            | $2.31^{+1.14}_{-0.90}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.28                                                                                                                                                                                                                                           | $\begin{array}{c} 0.02\\ 2.70^{+1.16}_{-0.92}\\ 0.69^{+0.54}_{-0.30}\\ 1.35^{+0.65}_{-0.45}\\ 1.14^{+0.70}_{-0.46}\\ 1.51^{+0.83}_{-0.61}\\ 1.01^{+0.74}_{-0.49}\\ 2.45^{+1.00}_{-0.76}\\ 0.45\end{array}$ | $4.6{\pm}0.5$   | $3.9{\pm}0.4$   | $5.2{\pm}0.7$   | $1.69^{+0.85}_{-0.69}$                                                                                                                     | - S -         | E                 |
| 1059 | $199_{-14}^{-45}$              | $192^{+15}_{-14}$   | $7^{+5}_{-3}$                                                                            | $19.99^{+1.51}_{-1.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $12.19\substack{+0.84\\-0.80}$                                                                                                                                                                                                                 | $0.69^{+0.54}_{-0.30}$                                                                                                                                                                                     | $0.9{\pm}0.0$   | $0.8{\pm}0.0$   | $1.2 {\pm} 0.0$ | $1.69_{-0.69}^{+0.24}$<br>$3.02_{-0.23}^{+0.24}$                                                                                           |               | А                 |
| 1060 | $20^{+7}_{-5}$                 | $6^{+4}_{-3}$       | $13^{+6}_{-4}\\15^{+7}_{-6}$                                                             | $2.23^{+0.75}_{-0.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 12.19 \_ 0.80 \\ 0.78 + 0.48 \\ -0.23 \\ 0.81 + 0.33 \\ 0.81 - 0.23 \\ 0.50 + 0.38 \\ 0.50 + 0.38 \\ 0.15 + 0.31 \\ 0.15 + 0.31 \\ 0.71 + 0.49 \\ 0.71 + 0.49 \end{array}$                                                   | $1.35^{+0.65}_{-0.45}$                                                                                                                                                                                     | $1.9{\pm}0.2$   | $1.8{\pm}0.2$   | $2.4{\pm}0.4$   | $\begin{array}{c} 0.02 \pm 0.23\\ 0.68 \pm 0.24\\ -0.19\\ 0.69 \pm 0.30\\ 1.05 \pm 0.51\\ 1.05 \pm 0.43\end{array}$                        |               | А                 |
| 1061 | $24^{+8}_{-7}$                 | $9^{+5}_{-4}$       | $15^{+7}_{-6}$                                                                           | $2.26^{+0.84}_{-0.64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.81^{+0.35}_{-0.23}$                                                                                                                                                                                                                         | $1.14^{+0.70}_{-0.46}$                                                                                                                                                                                     | $1.9{\pm}0.4$   | $1.5 {\pm} 0.3$ | $2.8{\pm}0.5$   | $0.69^{+0.30}_{-0.25}$                                                                                                                     |               | В                 |
| 1062 | $12_{-4}^{+5}$                 | $4^{+3}_{-2}$       | $7^{+4}_{-3} \\ 5^{+4}_{-2} \\ 11^{+5}_{-3}$                                             | $2.35^{+0.96}_{-0.74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.50^{+0.38}_{-0.24}$                                                                                                                                                                                                                         | $1.51^{+0.83}_{-0.61}$                                                                                                                                                                                     | $2.8{\pm}0.7$   | $1.7{\pm}0.4$   | $3.7{\pm}0.6$   | $1.05^{+0.51}_{-0.43}$                                                                                                                     |               | $\mathbf{C}$      |
| 1063 | $6^{+4}_{-3}$                  | $1^{+2}_{-1}$       | $5^{+4}_{-2}$                                                                            | $1.24^{+0.80}_{-0.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.15^{+0.31}_{-0.15}$                                                                                                                                                                                                                         | $1.01^{+0.74}_{-0.49}$                                                                                                                                                                                     | $3.2 \pm 1.5$   | $2.5 {\pm} 1.0$ | $4.8 {\pm} 2.4$ | $1.05^{+0.31}_{-0.43}$<br>$0.63^{+0.51}_{-0.42}$                                                                                           |               | D                 |
| 1064 | $17^{+5}_{-4}$                 | $6^{+1}_{-2}$       | $11^{+5}_{-3}$                                                                           | $3.64^{+1.15}_{-0.91}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.71^{+0.44}_{-0.29}$                                                                                                                                                                                                                         | $2.45^{+1.00}_{-0.76}$                                                                                                                                                                                     | $3.2{\pm}0.8$   | $1.8{\pm}0.4$   | $4.6{\pm}1.4$   | $\begin{array}{c} 0.63 \_ 0.42 \\ 1.84 \_ 0.73 \\ -0.64 \end{array}$                                                                       |               | $\mathbf{C}$      |
| 1065 | $6^{+4}_{-3}$                  | $7^{+\bar{4}}_{-3}$ | 2                                                                                        | $1.19^{+0.72}_{-0.49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.76^{+0.42}_{-0.29}$                                                                                                                                                                                                                         | 0.40                                                                                                                                                                                                       | $1.1 \pm 0.1$   | $1.0 {\pm} 0.1$ | $1.3 \pm 0.2$   | $0.22^{+0.13}_{-0.09}$<br>$0.99^{+0.71}_{-0.50}$                                                                                           | H             | А                 |
| 1066 | $5^{+4}_{-3}$                  | 2                   | $6^{+4}_{-3}$                                                                            | $1.10^{+0.76}_{-0.52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.26                                                                                                                                                                                                                                           | $1.20^{+0.77}_{-0.53}$                                                                                                                                                                                     | $5.7 \pm 1.0$   | $4.5 \pm 0.8$   | $5.9 {\pm} 1.0$ | $0.99^{+0.71}_{-0.50}$                                                                                                                     | - S -         | D                 |
| 1067 | $5^{+6}_{-5}$<br>$6^{+5}_{-4}$ | $1^{+4}_{-1}$       | ${6^{+4}_{-3}\atop 3^{+6}_{-3}\atop 5}$                                                  | $0.93^{+1.28}_{-0.93}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.16^{+0.45}_{-0.16}$                                                                                                                                                                                                                         | ${\begin{array}{c} 1.20\substack{+0.77\\-0.53}\\ 0.65\substack{+1.15\\-0.65 \end{array}}$                                                                                                                  | $3.9 {\pm} 4.7$ | $1.3 \pm 3.0$   | $6.5 \pm 3.1$   | $\begin{array}{c} 0.99\substack{+0.71\\-0.50}\\ 0.58\substack{+1.06\\-0.90}\\ \end{array}$                                                 |               | $\mathbf{C}$      |
| 1068 | $6^{+5}_{-4}$                  | $6^{+1}_{-3}$       | 5                                                                                        | $\begin{array}{c} 0.88 \pm 0.42 \\ 1.06 \pm 0.81 \\ 1.06 \pm 0.81 \\ 1.94 \pm 0.87 \\ 1.94 \pm 0.63 \\ 1.48 \pm 0.64 \\ 5.48 \pm 0.86 \\ 15.52 \pm 1.49 \\ 1.552 \pm 1.49 \\ 1.552 \pm 1.33 \\ 1.28 \pm 1.01 \\ 0.78 \pm 0.67 \\ 0.78 \pm 0.67 \\ 0.78 \pm 0.67 \\ 1.91 \pm 0.68 \\ 1.99 \pm 0.85 \\ 1.99 \pm 0.85 \\ 1.99 \pm 0.85 \\ 1.29 \pm 0.85 \\ 1.59 \pm 0.83 \\ 1.16 \pm 0.62 \\ 2.31 \pm 0.75 \\ 2.26 \pm 0.84 \\ 2.35 \pm 0.96 \\ 1.24 \pm 0.83 \\ 1.28 \pm 0.83 \\ 1.78 \pm 0.92 \\ 5.55 \pm 0.83 \\ 3.27 \pm 1.44 \\ 2.27 \pm 0.83 \\ 3.27 \pm 1.44 \\ 2.27 \pm 0.83 \\ 3.27 \pm 1.44 \\ 2.27 \pm 0.83 \\ 3.27 \pm 0.83 \\ 3.28 \pm$ | $\begin{array}{c} 0.16 \substack{+0.45 \\ -0.16 \substack{-0.16 \\ -0.35 \\ 0.60 \substack{+0.41 \\ -0.35 \\ 0.60 \substack{-0.27 \\ 2.42 \substack{+0.44 \\ -0.35 \\ \end{array}}}$                                                           | 1 16                                                                                                                                                                                                       | $1.1 {\pm} 0.2$ | $1.1{\pm}0.2$   | $1.3\pm0.3$     | $\begin{array}{c} 0.58 \substack{+1.090\\-0.90}\\ 0.23 \substack{+0.20\\-0.16}\\ 0.54 \substack{+0.56\\-0.53}\\ 26\end{array}$             | H             | А                 |
| 1069 | $9^{+5}_{-4}$                  | $5^{+4}_{-2}$       | $4^{+4}_{-3}$                                                                            | $1.78^{+0.93}_{-0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.60^{+0.41}_{-0.27}$                                                                                                                                                                                                                         | $0.75^{+0.77}_{-0.52}$                                                                                                                                                                                     | $1.9 {\pm} 1.7$ | $1.1{\pm}0.6$   | $4.8 {\pm} 2.3$ | $0.54^{+0.56}_{-0.53}$                                                                                                                     |               | В                 |
| 1070 | $71^{+12}_{-10}$               | $54_{-8}^{+10}$     | $17^{+8}_{-5}$                                                                           | $5.55^{+0.97}_{-0.83}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2.42^{+0.44}_{-0.35}$                                                                                                                                                                                                                         | $1.31^{+0.71}_{-0.41}$                                                                                                                                                                                     | $1.6\pm0.1$     | $1.2 \pm 0.1$   | $1.9{\pm}0.3$   | $\begin{array}{c} 0.04 \_ 0.53 \\ 1.38 ^{+0.26} _{-0.23} \\ 0.92 ^{+0.91} _{-0.89} \end{array}$                                            |               | А                 |
| 1071 | $17^{+7}_{-6}$                 | $8^{+5}_{-4}$       | $\begin{array}{c} 4^{+4}_{-3} \\ 17^{+8}_{-5} \\ 8^{+6}_{-5} \\ 8^{+5}_{-4} \end{array}$ | $3.27^{+1.44}_{-1.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c}2.42\substack{+0.44\\-0.35}\\0.96\substack{+0.57\\-0.44}\\0.26\substack{+0.39\\-0.24}\end{array}$                                                                                                                             | $1.64^{+1.19}_{-0.98}$                                                                                                                                                                                     | $1.7 {\pm} 1.6$ | $1.0\pm0.4$     | $6.0{\pm}2.8$   | $0.92^{+0.91}_{-0.89}$                                                                                                                     |               | В                 |
| 1072 | $11^{+5}_{-4}$                 | $2^{+3}_{-2}$       | $8^{+5}_{-4}$                                                                            | $2.27^{+1.13}_{-0.89}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.26^{+0.39}_{-0.24}$                                                                                                                                                                                                                         | $\begin{array}{c} 0.75 \substack{+0.77\\-0.52}\\ 1.31 \substack{+0.71\\-0.41}\\ 1.64 \substack{+1.19\\-0.98}\\ 1.84 \substack{+1.04\\-0.80}\end{array}$                                                    | $2.6 {\pm} 0.8$ | $2.1 \pm 0.8$   | $3.8 {\pm} 0.8$ | $\begin{array}{c} 0.92 \substack{-0.89\\-0.89}\\ 0.96 \substack{+0.55\\-0.47}\end{array}$                                                  |               | Ε                 |

Chandra Catalog: Photometry (continued)

| No.  | $C_{net}$ FB                                              | $C_{net}$ SB                                      | $C_{net}$ HB                                                                                                                                        | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                          | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E_{50}$ (keV)             | $E_{25}$ (keV)             | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                                           | Phot.<br>Flag | Quantile<br>Group |
|------|-----------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 1073 | 53+9                                                      | $41^{+8}_{-6}$                                    | $13^{+6}_{-4}$                                                                                                                                      | $6.24^{\pm1.08}$                                                                                                                                                                                                         | 3 49+0.53                                                                                                                          | $1.42^{\pm 0.68}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.3 {\pm} 0.1$            | $1.0 {\pm} 0.1$            | $1.7 \pm 0.2$   | $1.26^{+0.24}_{-0.20}$                                                                                                            |               | В                 |
| 1074 | $53^{+9}_{-8}$<br>$21^{+7}_{-6}$                          | $14^{-6}_{-4}$                                    | $7^{+6}_{-4}$                                                                                                                                       | $6.24^{+1.08}_{-0.90}$<br>$4.98^{+1.72}_{-1.47}$                                                                                                                                                                         | $\begin{array}{c} 3.49\substack{+0.53\\-0.43}\\ 1.84\substack{+0.71\\-0.56} \end{array}$                                           | $\begin{array}{c} 1.42 +0.68 \\ -0.38 \\ 1.73 \substack{+1.36 \\ -1.10 \\ 3.19 \substack{+0.85 \\ -0.66 \\ 1.56 \substack{+0.86 \\ -0.63 \\ 4.13 \substack{+1.36 \\ -1.07 \\ 0.23 \substack{+0.90 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23 \\ -0.23$ | $1.9\pm0.1$<br>$1.9\pm0.3$ | $1.5\pm0.1$<br>$1.5\pm0.2$ | $2.1 \pm 1.6$   | $1.48 \pm 0.56$                                                                                                                   |               | A                 |
| 1075 |                                                           | <sup>1</sup> -4<br>5                              | $28^{+7}_{-6}$                                                                                                                                      |                                                                                                                                                                                                                          | 0.30                                                                                                                               | $3.19^{+0.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $5.0\pm0.3$                | $4.2 \pm 0.2$              | $5.8 \pm 0.4$   | $2.44^{+0.68}$                                                                                                                    | - S -         | E                 |
| 1076 | $27^{+7}_{-6}_{-6}_{10^{+5}_{-3}}$                        | $3^{+3}_{-2}$                                     | $7^{+4}$                                                                                                                                            |                                                                                                                                                                                                                          | $0.30^{+0.34}_{-0.19}$                                                                                                             | $1.56^{+0.86}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2.9 \pm 1.0$              | $2.0\pm0.5$                | $4.4 \pm 2.0$   | $2.44^{+0.68}_{-0.55}$<br>$0.94^{+0.55}_{-0.47}$                                                                                  |               | Ē                 |
| 1077 | $10_{-3} \\ 15_{-4}^{+5}$                                 | 3                                                 | $7^{+4}_{-3} \\ 15^{+5}_{-4}$                                                                                                                       | $4.01^{\pm 1.33}$                                                                                                                                                                                                        | 0.39                                                                                                                               | $4.13^{+1.36}_{-0.63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.7\pm0.3$                | $4.2 \pm 0.6$              | $5.5 \pm 0.6$   | $3.00^{+1.02}$                                                                                                                    | - S -         | Ē                 |
| 1078 | $7^{+5}_{-4}$                                             | $6^{+4}_{-3}$                                     | $1^{+4}_{-1}$                                                                                                                                       | $1.78^{+1.18}$                                                                                                                                                                                                           | $0.88^{+0.54}_{-0.20}$                                                                                                             | $0.23^{+0.90}_{-0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.3 \pm 1.6$              | $1.1 \pm 0.2$              | $1.4 \pm 5.2$   | $0.36^{+0.53}$                                                                                                                    |               | Ā                 |
| 1079 | $4^{+3}_{-2}$                                             | $5^{+3}_{-2}$                                     | $\frac{-1}{2}$                                                                                                                                      | $\begin{array}{c} 1.16 \pm 0.92 \\ 0.77 \pm 0.67 \\ 0.72 \pm 0.78 \\ 1.23 \pm 0.78 \\ 1.64 \pm 0.97 \\ 1.64 \pm 0.97 \\ 1.18 \pm 0.90 \\ 1.18 \pm 0.90 \\ 4 \pm 0.64 \\ 4 \pm 0.64 \\ 4 \pm 0.64 \\ 1.73 \\ \end{array}$ | $\begin{array}{c} 0.88\substack{+0.54\\-0.39}\\ 0.54\substack{+0.39\\-0.24} \end{array}$                                           | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.3 \pm 0.2$              | $1.0 \pm 0.1$              | $1.5 \pm 0.1$   | $0.16^{+0.14}$                                                                                                                    | H             | А                 |
| 1080 | $6^{+2}_{-3}$                                             | 2                                                 | $6^{+4}_{-2}$                                                                                                                                       | $1.23^{+0.43}_{-0.78}$                                                                                                                                                                                                   | 0.29                                                                                                                               | $\begin{array}{c} 1.32 \substack{+0.79 \\ -0.54 \\ -0.66 \\ -0.79 \\ 0.66 \substack{+0.79 \\ -0.60 \\ -0.79 \\ 0.32 \substack{+1.21 \\ -0.31 \\ -0.31 \\ -0.31 \\ 0.51 \\ +0.55 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $3.5 \pm 1.3$              | $3.2{\pm}0.5$              | $4.7 \pm 2.4$   | $0.69^{+0.51}$                                                                                                                    | - S -         | $\mathbf{E}$      |
| 1081 | $7^{+3}_{-2}$                                             | $2^{+3}_{-2}$                                     | $5^{+3}_{-3}$                                                                                                                                       | $1.64^{+0.97}_{-0.72}$                                                                                                                                                                                                   | $\begin{array}{c} 0.28 \substack{+0.38 \\ -0.21 \\ 0.30 \substack{+0.38 \\ -0.21 \\ -0.21 \end{array}}$                            | $1.17^{+0.88}_{-0.60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.8 {\pm} 0.9$            | $2.0{\pm}0.8$              | $4.2 \pm 0.5$   | $1.01 \pm 0.65$                                                                                                                   |               | С                 |
| 1082 | $7^{+4}_{-3} \\ 5^{+4}_{-3}$                              | $2^{+3}_{-2}$                                     | $3^{+3}_{-2}$                                                                                                                                       | $1.18^{+0.90}_{-0.64}$                                                                                                                                                                                                   | $0.30^{+0.38}_{-0.21}$                                                                                                             | $0.66^{+0.79}_{-0.50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.9 \pm 1.3$              | $1.9{\pm}0.9$              | $4.5 \pm 1.3$   | $1.01_{-0.51}^{+0.49}$<br>$0.55_{-0.39}^{+0.49}$                                                                                  |               | $\mathbf{C}$      |
| 1083 | $20^{+7}_{-6}$                                            | $19^{+6}$                                         | $\begin{array}{c} 6^{+4}_{-3} \\ 5^{+4}_{-3} \\ 3^{+2}_{-2} \\ 1^{+5}_{-1} \\ 1^{+1}_{-1} \\ 1^{+3}_{-1} \\ 1^{+3}_{-3} \\ 6^{+4}_{-3} \end{array}$ | 4.77 1 40                                                                                                                                                                                                                | $251 \pm 0.80$                                                                                                                     | $0.32^{+1.21}_{-0.32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.5 {\pm} 0.2$            | $1.0{\pm}0.2$              | $1.8 {\pm} 1.1$ | $1.17^{+0.46}_{-0.40}$                                                                                                            |               | А                 |
| 1084 | $2^{+5}_{-2}$                                             | $1^{+3}$                                          | $1^{+4}_{-1}$                                                                                                                                       | $0.42^{+1.05}_{-0.42}$<br>$1.45^{+0.84}_{-0.61}$                                                                                                                                                                         | $\begin{array}{c} 2.01 \\ -0.65 \\ 0.07 \\ +0.37 \\ -0.07 \\ 0.75 \\ +0.44 \\ 0.89 \\ +0.49 \\ 0.32 \\ +0.39 \\ -0.22 \end{array}$ | $0.31^{+0.98}_{-0.31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $5.2 \pm 4.8$              | $4.6 {\pm} 3.0$            | $7.6{\pm}2.6$   | $0.36^{+0.94}_{-0.48}$                                                                                                            |               | D                 |
| 1085 | $7^{+4}_{-3}$                                             | $6^{-1}_{-3}$                                     | $1^{+3}_{-1}$                                                                                                                                       | $1.45^{+0.84}_{-0.61}$                                                                                                                                                                                                   | $0.75_{-0.30}^{+0.44}$                                                                                                             | $\begin{array}{c} 0.31 - 0.31 \\ -0.14 + 0.55 \\ 0.14 + 0.52 \\ 0.30 - 0.62 \\ -0.30 \\ 1.47 + 0.94 \\ 1.98 - 0.73 \\ 5.81 + 0.99 \\ 5.81 - 0.82 \\ -0.73 \\ 5.81 + 0.99 \\ 5.81 + 0.92 \\ -0.73 \\ -0.82 \\ -0.81 \\ -0.82 \\ -0.81 \\ -0.82 \\ -0.81 \\ -0.82 \\ -0.81 \\ -0.82 \\ -0.81 \\ -0.82 \\ -0.81 \\ -0.82 \\ -0.81 \\ -0.82 \\ -0.81 \\ -0.82 \\ -0.81 \\ -0.82 \\ -0.81 \\ -0.82 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0.81 \\ -0$                                         | $1.0 {\pm} 0.2$            | $0.9{\pm}0.1$              | $1.1 {\pm} 0.6$ | $0.04\pm0.14$                                                                                                                     |               | А                 |
| 1086 | $7^{+ar{4}}_{-3} \ 8^{+4}_{-3}$                           | $7^{+\frac{3}{2}}$                                | $1^{+3}_{-1}$                                                                                                                                       | +0.94                                                                                                                                                                                                                    | $0.89^{+0.49}_{-0.34}$                                                                                                             | $0.30^{+0.62}_{-0.30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.4{\pm}0.7$              | $0.8 {\pm} 0.3$            | $1.9{\pm}1.8$   | $\begin{array}{c} 0.24 \substack{+0.11 \\ -0.11} \\ 0.43 \substack{+0.29 \\ -0.25} \\ 1.11 \substack{+0.64 \\ -0.52} \end{array}$ |               | В                 |
| 1087 | $9^{+4}_{-3}$                                             | $2^{+3}_{-2}$                                     | $6^{+4}_{-3}$                                                                                                                                       | $2.00^{+1.03}_{-0.77}$                                                                                                                                                                                                   | $0.32_{-0.22}^{+0.39}$                                                                                                             | $1.47^{+0.94}_{-0.67}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.4{\pm}0.9$              | $2.1{\pm}0.7$              | $4.3 \pm 1.4$   | $1.11^{+0.64}_{-0.52}$                                                                                                            |               | $\mathbf{C}$      |
| 1088 | $10^{+5}$                                                 | $2^{+\bar{3}}_{-1}$                               | $9^{+4}_{-3}$                                                                                                                                       | $\begin{array}{r} 1.85 \substack{+0.01\\-0.68}\\ 2.00 \substack{+1.03\\-0.77}\\ 2.32 \substack{+1.03\\-0.78}\end{array}$                                                                                                 | $0.22^{+0.34}_{-0.17}$                                                                                                             | $1.98^{+0.99}_{-0.73}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.7 {\pm} 0.5$            | $2.2{\pm}0.5$              | $3.5{\pm}0.6$   | $1.00^{+0.48}_{-0.28}$                                                                                                            |               | $\mathbf{E}$      |
| 1089 | $56^{+9}_{-8}$                                            | $2^{+4}_{-1}$                                     | $54^{+9}_{-8}$                                                                                                                                      | $5.94^{+0.99}_{-0.82}$                                                                                                                                                                                                   | $0.56^{+0.21}$                                                                                                                     | $5.81^{+0.99}_{-0.82}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.6{\pm}0.3$              | $3.7{\pm}0.2$              | $5.6 {\pm} 0.2$ | $4.36_{-0.68}^{+0.79}$                                                                                                            |               | D                 |
| 1090 | $27^{+7}_{6}$                                             | $3^{+1}_{-2}$                                     | $24^{+7}$                                                                                                                                           | $3.92^{+1.06}_{-0.82}$                                                                                                                                                                                                   | $a_{-}a_{-}\pm 0.32$                                                                                                               | $3.57^{+1.03}_{-0.77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $5.2 {\pm} 0.4$            | $4.4{\pm}0.7$              | $5.9{\pm}0.3$   | $3.24^{+0.091}_{-0.71}$<br>$0.89^{+0.42}_{-0.35}$                                                                                 |               | D                 |
| 1091 | $11^{+5}_{-3}$                                            | $3^{+2}_{-2}$<br>$3^{+3}_{-2}$                    | $8^{+4}_{-3} \\ 2^{+3}_{-2} \\ 1^{+2}_{-1}$                                                                                                         | $3.92^{+1.06}_{-0.82}$<br>$2.15^{+0.87}_{-0.66}$                                                                                                                                                                         | $\begin{array}{c} 0.68 \substack{+0.32\\-0.14}\\ 0.31 \substack{+0.33\\-0.18}\\ 1.24 \substack{+0.33\\-0.23}\end{array}$           | $\begin{array}{c} 3.57^{+1.03}_{-0.77}\\ 3.57^{+0.80}_{-0.77}\\ 1.64^{+0.80}_{-0.58}\\ 0.34^{+0.78}_{-0.34}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2.6{\pm}0.6$              | $2.0{\pm}0.3$              | $3.8{\pm}0.7$   | $0.89^{+0.42}_{-0.35}$                                                                                                            |               | $\mathbf{E}$      |
| 1092 | $13^{+6}_{-4}$                                            | $13_{-4}^{+5}$                                    | $2^{+3}_{-2}$                                                                                                                                       | $2.15_{-0.66}^{+0.63}\\1.35_{-0.46}^{+0.63}\\1.09_{-0.46}^{+0.70}$                                                                                                                                                       | $1.24_{-0.23}^{+0.33}$                                                                                                             | $0.34_{-0.34}^{+0.78}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.4{\pm}0.1$              | $1.2 {\pm} 0.1$            | $1.5 {\pm} 0.1$ | $\begin{array}{c} 0.89\substack{+0.42\\-0.35\\0.30\substack{+0.14\\-0.11\\-0.11\end{array}}$                                      |               | А                 |
| 1093 | $6^{+4}_{-2}$                                             | $5^{+3}_{-2}$                                     | $1^{+\bar{2}}_{-1}$                                                                                                                                 | $1.09_{-0.46}^{+0.70}$                                                                                                                                                                                                   | $0.55_{-0.24}^{+0.38}$                                                                                                             | $0.13^{+0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.3{\pm}0.3$              | $0.9{\pm}0.2$              | $1.6{\pm}0.4$   | $0.23^{+0.15}_{-0.11}$                                                                                                            |               | А                 |
| 1094 | $6^{+\bar{4}}_{-3}$                                       | 3                                                 | $6^{+\bar{4}}_{-3}$                                                                                                                                 | ${1.23^{+0.83}_{-0.56}}\ {2.36^{+1.10}_{-0.86}}$                                                                                                                                                                         | 0.31                                                                                                                               | $1.30^{+0.84}_{-0.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.7{\pm}0.9$              | $3.5{\pm}0.3$              | $5.4{\pm}1.0$   | $0.73^{+0.52}$                                                                                                                    | - S -         | $\mathbf{E}$      |
| 1095 | $11^{+5}_{-4}$                                            | $5^{+4}_{-2}$                                     | $6^{+4}_{-3}$                                                                                                                                       | $2.36^{+1.10}_{-0.86}$                                                                                                                                                                                                   | $0.59^{+0.44}_{-0.29}$                                                                                                             | $1.34_{-0.70}^{+0.94}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.3 {\pm} 2.8$            | $1.6{\pm}1.2$              | $9.4{\pm}1.9$   |                                                                                                                                   |               | $\mathbf{C}$      |
| 1096 | $\begin{array}{c} 6^{+4}_{-3} \\ 8^{+4}_{-3} \end{array}$ | $2^{+\bar{3}}_{-1}$                               | $6^{+4}_{-3} \\ 6^{+4}_{-3} \\ 5^{+4}_{-3} \\ 8^{+4}_{-3} \\ 1^{+2}_{-1}$                                                                           | $2.36^{+1.10}_{-0.86}\\1.32^{+0.90}_{-0.66}$                                                                                                                                                                             | $\begin{array}{c} 0.59\substack{+0.44\\-0.29}\\ 0.19\substack{+0.33\\-0.16} \end{array}$                                           | $\begin{array}{c} 0.13 \\ 1.30 \substack{+0.84 \\ -0.57 \\ 1.34 \substack{+0.94 \\ -0.70 \\ 1.01 \substack{+0.85 \\ -0.58 \\ 2.62 \substack{+1.41 \\ -1.03 \\ -1.03 \end{array}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $5.1 \pm 1.9$              | $3.1{\pm}1.5$              | $6.3 \pm 2.1$   | $1.00 \pm 0.84$                                                                                                                   |               | $\mathbf{C}$      |
| 1097 | $8^{+4}_{-3}$                                             | 4                                                 | $8^{+4}_{-3}$                                                                                                                                       | $2.73^{+1.43}_{-1.06}$                                                                                                                                                                                                   | 0.74                                                                                                                               | $2.62^{+1.41}_{-1.03}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3.6{\pm}1.4$              | $3.2{\pm}0.9$              | $6.7 {\pm} 1.3$ | $1.56^{+1.01}_{-0.85}$                                                                                                            | - S -         | $\mathbf{C}$      |
| 1098 | $5^{+4}_{-2}$                                             | $5^{+3}_{-2}$                                     | $1^{+2}_{-1}$                                                                                                                                       | $\begin{array}{r} -1.0^{+0.73}\\ 1.10^{+0.73}_{-0.48}\\ 3.77^{+2.23}_{-1.82}\end{array}$                                                                                                                                 | $\begin{array}{c} 0.57\substack{+0.40\\-0.25}\\ 1.02\substack{+0.83\\-0.57} \end{array}$                                           | $\begin{array}{c} 2.62 \substack{+1.41\\-1.03}\\ 0.12 \substack{+0.48\\-0.12}\\ 2.00 \substack{+1.96\\-1.53}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.1{\pm}0.5$              | $1.1{\pm}0.1$              | $1.3{\pm}0.7$   | $0.19^{+0.15}_{-0.12}$                                                                                                            |               | А                 |
| 1099 | $10^{+6}_{-5}$                                            | $5^{+4}_{-3}$                                     | $5^{+5}_{4}$                                                                                                                                        | $3.77^{+2.23}_{-1.82}$                                                                                                                                                                                                   | $1.02^{+0.83}_{-0.57}$                                                                                                             | $2.00^{+1.96}_{-1.53}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.2{\pm}0.5$              | $1.6{\pm}0.5$              | $2.8{\pm}0.7$   | $1.34^{+0.85}_{-0.72}$                                                                                                            |               | А                 |
| 1100 | $10^{+5}_{-4}$                                            | 4                                                 | $10 \pm 5$                                                                                                                                          | $2.09^{+0.98}_{-0.76}$                                                                                                                                                                                                   | 0.41                                                                                                                               | $2.00^{+1.96}_{-1.53}$<br>$2.10^{+0.97}_{-0.74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $6.2 {\pm} 1.2$            | $4.1 {\pm} 1.3$            | $7.4{\pm}1.4$   |                                                                                                                                   | - S -         | D                 |
| 1101 | $4^{+3}_{-2}$                                             | $2^{+3}_{-1}$                                     | $\begin{array}{c} 10^{+}_{-4} \\ 3^{+3}_{-2} \\ 6^{+4}_{-3} \end{array}$                                                                            | $2.09^{+0.98}_{-0.76}$<br>$1.01^{+0.78}_{-0.49}$                                                                                                                                                                         | $\begin{array}{c} 0.11\\ 0.25\substack{+0.35\\-0.17}\\ 0.29\substack{+0.32\\-0.18}\\ 1.73\substack{+0.62\\-0.48}\end{array}$       | $2.10_{-0.74}^{+0.074}\\0.59_{-0.38}^{+0.68}\\1.12_{-0.50}^{+0.73}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.4{\pm}1.0$              | $1.2{\pm}0.6$              | $3.7{\pm}0.6$   | $\begin{array}{c} 2.07\substack{+1.05\\-0.85}\\ 0.39\substack{+0.34\\-0.25}\end{array}$                                           |               | $\mathbf{C}$      |
| 1102 | $8^{+4}_{-3}$                                             | $\begin{array}{c} 2 \\ -1 \\ 3 \\ -2 \end{array}$ | $6^{+4}_{-3}$                                                                                                                                       | $1.61^{+0.81}_{-0.60}$                                                                                                                                                                                                   | $0.29^{+0.32}_{-0.18}$                                                                                                             | $1.12^{+0.73}_{-0.50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.5{\pm}0.5$              | $1.9{\pm}0.5$              | $3.4{\pm}0.7$   | $0.65^{+0.35}_{-0.27}$                                                                                                            |               | $\mathbf{E}$      |
| 1103 | $13^{+5}_{-4}$                                            | $14^{+5}_{-4}$                                    | 3                                                                                                                                                   |                                                                                                                                                                                                                          | $1.73^{+0.62}_{-0.48}$                                                                                                             | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.3{\pm}0.1$              | $1.2{\pm}0.1$              | $1.5{\pm}0.1$   | $0.64^{+0.24}$                                                                                                                    | H             | А                 |
| 1104 | $7^{+5}_{-4}$                                             | 2                                                 | $9^{+5}_{-4}$                                                                                                                                       | $2.98^{+1.10}_{-0.86}$<br>$1.56^{+1.04}_{-0.80}$                                                                                                                                                                         | 0.28                                                                                                                               | $1.96^{+1.06}_{-0.82}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.7{\pm}0.8$              | $3.5{\pm}0.6$              | $5.0{\pm}0.5$   | 1 1 - + 0.81                                                                                                                      | - S -         | D                 |
| 1105 | $8^{+4}_{-3}$                                             | $6^{+4}_{-2}$                                     | $3^{+3}_{-2}$                                                                                                                                       | ${}^{1.56^{+1.04}_{-0.80}}_{1.61^{+0.79}_{-0.58}}$                                                                                                                                                                       | $0.65\substack{+0.40\\-0.26}$                                                                                                      | $0.50^{+0.57}_{-0.32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.8{\pm}0.5$              | $0.9{\pm}0.3$              | $2.0{\pm}0.7$   | $\begin{array}{c} 1.17 \substack{+0.03 \\ -0.63 \\ 0.45 \substack{+0.26 \\ -0.21 \\ 0.48 \substack{+0.26 \\ -0.24 \end{array}}$   |               | В                 |
| 1106 | $14^{+5}_{-4}$                                            | $11^{+5}_{-3}$                                    | $9^{+5}_{-4} \\ 3^{+3}_{-2} \\ 3^{+4}_{-2}$                                                                                                         | 0 00±1.14                                                                                                                                                                                                                | $0.65\substack{+0.40\\-0.26}\\1.31\substack{+0.56\\-0.42\\+0.61}$                                                                  | $\begin{array}{c} 1.96\substack{+1.06\\-0.82}\\ 0.50\substack{+0.57\\-0.32}\\ 0.64\substack{+0.78\\-0.52}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.0{\pm}0.4$              | $0.9{\pm}0.1$              | $1.9{\pm}2.0$   | $0.48^{+0.26}_{-0.24}$                                                                                                            |               | В                 |
| 1107 | $10^{+5}_{-4}$                                            | $11^{+5}_{-3}$                                    | 3                                                                                                                                                   | $2.28^{\pm 1.13}$                                                                                                                                                                                                        | $1.47_{-0.46}^{+0.61}$                                                                                                             | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.0{\pm}0.2$              | $0.8{\pm}0.1$              | $1.3{\pm}0.2$   | $0.36^{+0.19}_{-0.15}$                                                                                                            | H             | А                 |
| 1108 | $11^{+5}_{-4}$                                            | 3                                                 | $12^{+5}_{-4}$                                                                                                                                      | $2.64^{\pm1.28}$                                                                                                                                                                                                         | 0.41                                                                                                                               | $2.93^{+1.27}_{-1.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $6.5 {\pm} 1.1$            | $5.7 \pm 1.4$              | $8.6{\pm}1.3$   | $2.74^{+1.40}_{-1.15}$                                                                                                            | - S -         | D                 |
| 1109 | $19^{+6}_{-4}$                                            | $1^{+2}_{-1}$                                     | $18^{+5}_{-4}$                                                                                                                                      | $4 co \pm 1.37$                                                                                                                                                                                                          | $0.10\substack{+0.33\\-0.10}$                                                                                                      | $4.55^{+1.37}_{-1.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.9{\pm}0.4$              | $3.9{\pm}0.5$              | $5.5 {\pm} 0.3$ | $3.60^{+1.10}_{-0.90}$                                                                                                            |               | D                 |
| 1110 | $17^{+6}_{-5}$                                            | $11^{+5}_{-4}$                                    | $6^{+4}_{-3}$                                                                                                                                       | $4.62^{+1.11}_{-1.11}$<br>$3.65^{+1.29}_{-1.06}$                                                                                                                                                                         | $\begin{array}{c} 0.10\substack{+0.33\\-0.10\\1.30\substack{+0.57\\-0.44}\end{array}$                                              | $\begin{array}{c} 2.93 \substack{+1.27 \\ -1.00 \\ 4.55 \substack{+1.37 \\ -1.10 \\ 1.36 \substack{+0.98 \\ -0.74 \end{array}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.6{\pm}0.3$              | $1.1{\pm}0.2$              | $2.2{\pm}1.4$   | $3.60^{+1.10}_{-0.90}\\0.96^{+0.38}_{-0.32}$                                                                                      |               | В                 |

Chandra Catalog: Photometry (continued)

| No.  | $C_{net}$ FB                     | $C_{net}$ SB                     | $C_{net}$ HB                                                                                 | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                         | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                              | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                  | Phot.<br>Flag | Quantile<br>Group |
|------|----------------------------------|----------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|----------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 1111 | $8^{+6}_{$                       | $1^{+3}_{-1}$                    | $8^{+6}_{-5}$                                                                                | $2.64^{+2.03}_{-1.69}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.11\substack{+0.54\\-0.11}$                                                                                                                                                                                     | $2.49^{+1.98}_{-1.62}$                                                                                                                                                                 | $5.4{\pm}3.8$   | $2.3 \pm 2.7$   | $8.4{\pm}2.1$   | $2.28^{+2.38}_{-2.18}$                                                                                   |               | С                 |
| 1112 | $^{8^{+6}_{-5}}_{2^{+7}_{-2}}$   | $10^{+5}_{-4}$                   | $6^{-5}$                                                                                     | $0.39^{\pm 1.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.16^{+0.62}$                                                                                                                                                                                                    | 1.29                                                                                                                                                                                   | $0.8 \pm 9.2$   | $0.7 \pm 9.3$   | $8.2 \pm 7.7$   | $0.05^{+0.61}_{-0.50}$                                                                                   | H             | В                 |
| 1113 | $c^{+9}$                         | $7^{+5}_{-4}$                    | 15                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.92^{\pm 0.71}$                                                                                                                                                                                                 | 3.44                                                                                                                                                                                   | $1.2 \pm 0.5$   | $1.2 \pm 0.8$   | $1.4{\pm}0.2$   | $0.28^{+0.41}$                                                                                           | H             | А                 |
| 1114 | $9^{+6}_{-4}$                    | $3^{+3}_{-2}$                    | $6^{+5}_{-4}$                                                                                | $-0.00 \pm 1.31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $a_{0}a_{0}\pm 0.46$                                                                                                                                                                                              | $\begin{array}{c} 1.57^{+1.19}_{-0.93}\\ 2.39^{+1.11}_{-0.86}\\ 1.39^{+0.94}_{-0.75}\end{array}$                                                                                       | $3.9{\pm}1.4$   | $1.8 {\pm} 0.8$ | $4.9 \pm 1.5$   | 10.05                                                                                                    |               | $\mathbf{C}$      |
| 1115 | $14^{+5}_{-4}$                   | $4^{+3}_{-2}$                    | $10^{+4}_{-4}$                                                                               | $3.24^{+1.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.38_{-0.29} \\ 0.51_{-0.28}^{+0.43} \end{array}$                                                                                                                                               | $2.39^{+1.11}_{-0.86}$                                                                                                                                                                 | $3.3 {\pm} 0.6$ | $1.8 {\pm} 0.7$ | $4.2 {\pm} 0.6$ | $1.69^{+0.70}_{-0.59}$                                                                                   |               | $\mathbf{C}$      |
| 1116 | $21^{+9}_{-8}$                   | $9^{+6}$                         | $12^{+\bar{8}}_{-6}$                                                                         | $2.56^{+1.08}_{-0.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.03^{+0.40}_{-0.26}$                                                                                                                                                                                            | $1.39^{+0.94}_{-0.75}$                                                                                                                                                                 | $4.2 \pm 1.5$   | $1.7{\pm}1.0$   | $5.9{\pm}0.8$   | $1.74_{-0.86}^{+0.95}$                                                                                   |               | $\mathbf{C}$      |
| 1117 | $3^{+6}_{-3}$                    | $6^{+4}$                         | 3                                                                                            | $0.58^{+0.84}_{-0.56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.67^{+0.43}$                                                                                                                                                                                                    | 0.67                                                                                                                                                                                   | $1.0{\pm}0.3$   | $0.8{\pm}0.2$   | $1.1 {\pm} 0.1$ | $0.09^{+0.14}_{-0.10}$                                                                                   | H             | А                 |
| 1118 | $10^{+5}$                        | $5^{+4}$                         | $\begin{array}{c} 4^{+4}_{-2} \\ 1^{+3}_{-1} \\ 26^{+14}_{-14} \end{array}$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.69^{+0.45}_{-0.30}$                                                                                                                                                                                            | $\begin{array}{c} 0.95\substack{+0.81\\-0.54}\\ 0.22\substack{+0.63\\-0.22}\end{array}$                                                                                                | $1.5 {\pm} 1.0$ | $1.1{\pm}0.3$   | $4.1 \pm 1.3$   | $0.51^{+0.41}_{-0.38}$<br>$0.29^{+0.21}_{-0.17}$                                                         |               | В                 |
| 1119 | $6^{+4}_{-3}$                    | $5^{+\bar{4}}_{-2}$              | $1^{+\bar{3}}_{-1}$                                                                          | $1.36^{+0.87}_{-0.63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a a + 0.43                                                                                                                                                                                                        | $0.22_{-0.22}^{+0.63}$                                                                                                                                                                 | $1.3{\pm}0.5$   | $1.1{\pm}0.1$   | $1.5{\pm}0.9$   | $0.29_{-0.17}^{+0.21}$                                                                                   |               | А                 |
| 1120 | $64^{+17}_{-17}$                 | $14_{-8}^{+9}$                   | $26^{+14}_{-14}$                                                                             | $15.61^{+4.02}_{-4.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.90^{\pm 1.19}$                                                                                                                                                                                                 | $\begin{array}{c} 0.22_{-0.22} \\ 6.56_{-3.42}^{+3.42} \end{array}$                                                                                                                    | $2.8{\pm}0.7$   | $1.7{\pm}0.3$   | $4.3{\pm}0.5$   | $6.98^{+2.46}_{-2.46}$                                                                                   |               | $\mathbf{C}$      |
| 1121 | $6^{+5}$                         | $6^{+4}_{-3}$                    | 6                                                                                            | $1.61^{+1.43}_{-1.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1.30 - 1.06 \\ 0.89 + 0.61 \\ 0.64 \\ 0.05 + 0.41 \\ 1.66 + 0.47 \\ 0.35 + 0.35 \\ 0.35 + 0.35 \\ 0.27 + 0.44 \\ 0.27 + 0.46 \\ 1.19 + 0.36 \\ 1.19 + 0.36 \\ 0.26 \\ 0.26 \\ 0.26 \end{array}$ | 1.77                                                                                                                                                                                   | $1.0{\pm}0.4$   | $0.7{\pm}0.2$   | $1.1{\pm}0.5$   | $0.26^{+0.25}_{-0.21}$                                                                                   | H             | В                 |
| 1122 | $43^{+10}_{-8}$                  | $16^{+6}$                        | $30^{+9}_{-7}$<br>$4^{+4}_{-2}$                                                              | $3.37^{+0.84}_{-0.67}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.66_{-0.34}^{+0.47}$                                                                                                                                                                                            | $2.65^{+0.77}_{-0.60}$ $0.95^{+0.76}_{-0.50}$ $3.24^{+1.38}_{-1.11}$                                                                                                                   | $2.6{\pm}0.3$   | $1.9{\pm}0.1$   | $3.8{\pm}0.3$   | $1.41^{+0.40}$                                                                                           |               | $\mathbf{C}$      |
| 1123 | $7^{+4}_{2}$                     | $3^{+3}$                         | $4^{+4}_{-2}$                                                                                | $1.53^{+0.86}_{-0.62}$<br>$3.65^{+1.45}_{-1.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.35\substack{+0.35\\-0.19}$                                                                                                                                                                                     | $0.95\substack{+0.76\\-0.50}$                                                                                                                                                          | $2.2{\pm}0.3$   | $1.6{\pm}0.4$   | $2.5{\pm}0.5$   |                                                                                                          |               | А                 |
| 1124 | $15^{+6}_{-5}$                   | $2^{+3}_{-2}$                    | $13^{+6}_{-5}$                                                                               | $3.65^{+1.45}_{-1.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.27^{+0.44}_{-0.26}$                                                                                                                                                                                            | $3.24^{+1.38}_{-1.11}$                                                                                                                                                                 | $3.3{\pm}0.6$   | $2.8{\pm}0.6$   | $4.8 {\pm} 1.2$ | $\begin{array}{c} 0.53\substack{+0.31\\-0.23}\\ 1.91\substack{+0.84\\-0.72}\end{array}$                  |               | E                 |
| 1125 | $17^{+8}_{-6}$                   | $13_{-4}^{+6}$                   | $\begin{array}{c} ^{-2} 13^{+6}_{-5} \\ 4^{+5}_{-4} \\ 7^{+4}_{-3} \end{array}$              | $\begin{array}{c} 3.65 \begin{array}{c} -1.19 \\ +0.87 \\ -0.69 \\ 2.58 \begin{array}{c} +1.21 \\ -0.96 \\ 2.38 \begin{array}{c} +1.33 \\ -0.91 \\ -0.91 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.19^{+0.36}_{-0.26}$                                                                                                                                                                                            | $3.24^{-1.11}_{-1.11}$<br>$0.95^{+1.14}_{-0.90}$<br>$1.59^{+1.05}_{-0.79}$                                                                                                             | $1.3{\pm}0.5$   | $1.0{\pm}0.2$   | $1.8{\pm}2.3$   | $0.38^{+0.24}_{-0.21}$                                                                                   |               | В                 |
| 1126 | $11^{+5}_{-4}$                   | $4^{+4}_{-2}$                    | $7^{+4}_{-3}$                                                                                | $2.58^{+1.21}_{-0.96}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.58^{+0.47}_{-0.31}\ 1.22^{+0.74}_{-0.49}$                                                                                                                                                                      | $1.59^{+1.05}_{-0.79}$                                                                                                                                                                 | $4.2{\pm}2.0$   | $1.8 {\pm} 1.1$ | $6.0 {\pm} 1.3$ | $1.75^{+1.17}_{-1.06}$                                                                                   |               | $\mathbf{C}$      |
| 1127 | $7^{+4}_{-3}$                    | $6^{+\bar{4}}_{-2}$              | $1^{+2}_{1}$                                                                                 | $2.38^{+1.33}_{-0.91}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.22_{-0.49}^{+0.74}$                                                                                                                                                                                            | $\begin{array}{c}1.59\substack{+1.05\\-0.79\\0.29\substack{+0.83\\-0.29\end{array}}\\\end{array}$                                                                                      | $1.4{\pm}0.3$   | $1.0{\pm}0.2$   | $1.6{\pm}0.8$   | $0.55^{+0.33}_{-0.24}$                                                                                   |               | А                 |
| 1128 | $177^{+13}_{-13}$                | $65^{+9}_{-8}$<br>$19^{+7}_{-5}$ | $112^{+11}_{-11}$                                                                            | $32.28^{+2.43}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 1.22\substack{+0.14\\-0.49}\\ 6.90\substack{+0.97\\-0.86}\end{array}$                                                                                                                           | $\begin{array}{c} 0.29 \substack{+0.29\\-0.29}\\ 20.83 \substack{+1.97\\-1.97\\1.19 \substack{+0.60\\-0.45}\end{array}$                                                                | $2.5\pm0.1$     | $1.8{\pm}0.1$   | $3.7{\pm}0.2$   | $13.04^{+1.13}_{-1.12}$                                                                                  |               | $\mathbf{C}$      |
| 1129 | $35_{-8}^{+10}$                  | $19^{+7}_{-5}$                   | $16^{+8}_{-6}$                                                                               | $\begin{array}{c} 2.59\substack{+0.71\\-0.57}\\ 6.34\substack{+2.06\\-1.73\\-1.73\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 6.90 \substack{+0.36\\-0.86}\\ 1.08 \substack{+0.29\\-0.20}\\ 0.86 \substack{+0.70\\-0.50}\\ 1.12 \substack{+0.32\\-0.22}\end{array}$                                                           | $1.19^{+0.60}_{-0.45}$                                                                                                                                                                 | $2.1{\pm}0.3$   | $1.3{\pm}0.2$   | $2.5{\pm}0.8$   | $0.86_{-0.22}^{-1.13}$                                                                                   |               | В                 |
| 1130 | $20^{+7}_{-6}$                   | $5^{+4}_{-3}$                    | $16^{+6}_{-5}$                                                                               | $6.34^{+2.06}_{-1.73}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.86^{+0.70}_{-0.50}$                                                                                                                                                                                            | $4.91^{+1.85}_{-1.51}$                                                                                                                                                                 | $2.9{\pm}0.9$   | $2.1{\pm}0.5$   | $4.9{\pm}1.0$   | $2.98^{+1.35}_{-1.24}$                                                                                   |               | $\mathbf{C}$      |
| 1131 | $14^{+6}_{-5}$                   | $12^{+5}_{-4}$                   | $7^{+3}_{-2}$                                                                                | $1.51^{+0.67}_{-0.50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.12^{+0.32}_{-0.22}$                                                                                                                                                                                            | $0.50^{+0.72}_{-0.46}$                                                                                                                                                                 | $1.5\pm0.2$     | $1.1{\pm}0.2$   | $1.6{\pm}0.2$   | $0.35_{-0.13}^{+0.16}$                                                                                   |               | А                 |
| 1132 | $5^{+3}_{-2}$                    | $1^{+2}_{-1}$                    | $\begin{array}{c} 7^{+3}_{-2} \\ 4^{+3}_{-2} \\ 5^{+4}_{-3} \\ 5^{-3}_{-3} \end{array}$      | $1.51_{-0.50}^{+1.67}\\0.96_{-0.46}^{+0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 1.12 \substack{+0.22 \\ -0.22} \\ 0.11 \substack{+0.29 \\ -0.10} \end{array}$                                                                                                                   | $\begin{array}{c} 1.19 \substack{+0.30\\-0.45}\\ 4.91 \substack{+1.85\\-1.51}\\ 0.50 \substack{+0.72\\-0.46}\\ 0.79 \substack{+0.69\\-0.41}\\ 1.17 \substack{+1.08\\-0.82}\end{array}$ | $2.5\pm0.3$     | $2.3\pm0.2$     | $2.9{\pm}0.3$   | $0.38^{+0.29}_{-0.19}$                                                                                   |               | $\mathbf{E}$      |
| 1133 | $10^{+5}_{-4}$                   | $5^{+4}_{-3}$                    | $5^{+4}_{-3}$                                                                                | $2.35^{+1.27}_{-1.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.67^{+0.51}_{-0.35}$                                                                                                                                                                                            | $1.17^{+1.08}_{-0.82}$                                                                                                                                                                 | $6.5 \pm 3.8$   | $1.1{\pm}1.4$   | $7.7 {\pm} 1.9$ | $2.45^{+1.96}_{-1.79}$                                                                                   |               | $\mathbf{C}$      |
| 1134 | $6^{+4}_{-3}$                    | $7^{+4}_{-3}$                    | 3                                                                                            | $\begin{array}{c} 2.35^{+1.27}_{-1.02} \\ 1.37^{+0.86}_{-0.62} \\ 9.42^{+2.37}_{-1.94} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.67\substack{+0.51\\-0.35}\\ 0.82\substack{+0.47\\-0.32}\\ 4.38\substack{+1.26\\-1.01}\end{array}$                                                                                             | 0.69                                                                                                                                                                                   | $0.9{\pm}0.1$   | $0.9{\pm}0.1$   | $1.1{\pm}0.1$   | $2.45^{+1.96}_{-1.79}\\0.20^{+0.13}_{-0.09}\\1.62^{+0.45}_{-0.38}$                                       | H             | А                 |
| 1135 | $24_{-5}^{+6}$                   | $19^{+5}_{-4}$                   | $5^{+3}_{-2}$                                                                                | $9.42^{+2.37}_{-1.94}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4.38^{+1.26}_{-1.01}$                                                                                                                                                                                            | $1.95^{+1.37}_{-0.87}$                                                                                                                                                                 | $1.1{\pm}0.1$   | $1.0{\pm}0.1$   | $1.8{\pm}0.6$   | $1.62^{+0.45}_{-0.38}$                                                                                   |               | В                 |
| 1136 | $8^{+4}_{-3}$                    | 2                                | $8_{-3}^{+4}$                                                                                | $1.56^{+0.85}_{-0.62}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.29                                                                                                                                                                                                              | $1.65^{+0.87}_{-0.63}$                                                                                                                                                                 | $3.8 {\pm} 1.0$ | $2.4{\pm}0.6$   | $5.2 {\pm} 0.6$ | $0.96\substack{+0.58\\-0.45}$                                                                            | - S -         | $\mathbf{C}$      |
| 1137 | $14^{+5}_{-4}$                   | 3                                | $14^{+5}_{-4}$                                                                               | $6.18^{+2.16}_{-1.67}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.69                                                                                                                                                                                                              | $6.32^{+2.21}_{-1.71}$                                                                                                                                                                 | $4.4 {\pm} 0.7$ | $3.4{\pm}0.4$   | $6.4 {\pm} 0.7$ | $4.40^{+1.71}_{-1.40}$                                                                                   | - S -         | D                 |
| 1138 | 7<br>17±6                        | 4                                | 6                                                                                            | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.78                                                                                                                                                                                                              | 1.97                                                                                                                                                                                   | $5.2 \pm 4.8$   | $2.9 \pm 7.1$   | $7.6 \pm 7.1$   | 1.88                                                                                                     | FSΗ           | С                 |
| 1139 | $15^{+6}_{-5}$<br>$19^{+6}_{-5}$ | $20^{+6}_{-5}$                   | $7^{+5}$                                                                                     | $1.66^{+0.68}_{-0.51}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.74_{-0.28}^{+0.38}\\1.45_{-0.52}^{+0.67}$                                                                                                                                                                      | 0.66                                                                                                                                                                                   | $1.2 \pm 0.1$   | $1.1\pm0.1$     | $1.4 \pm 0.3$   | $0.32^{+0.13}_{-0.10}$                                                                                   | H             | A                 |
| 1140 |                                  | $10^{+5}_{-4}$                   | $9^{+5}_{-4}$<br>$8^{+4}_{-3}$<br>$8^{+3}_{-4}$<br>$4^{+5}_{-4}$                             | $\begin{array}{c} 4.77 \substack{+1.63\\-1.36}\\ 1.73 \substack{+0.91\\-0.66\\7.96 \substack{+2.06\\-1.68\\-1.68\end{array}}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.45_{-0.52}$                                                                                                                                                                                                    | $\begin{array}{c} 2.23^{+1.30}_{-1.02}\\ 1.85^{+0.93}_{-0.68}\\ 2.78^{+1.42}_{-1.01}\\ 1.17^{+1.51}_{-1.17}\\ 2.76^{+1.34}_{-1.17}\end{array}$                                         | $1.9 \pm 1.2$   | $1.4 \pm 0.3$   | $5.6 \pm 1.8$   | $\begin{array}{c} -0.10\\ 1.42^{+1.02}_{-0.99}\\ 1.59^{+0.86}_{-0.64}\\ 1.95^{+0.60}_{-0.53}\end{array}$ |               | В                 |
| 1141 | $8^{+4}_{-3}$                    | 2                                | $8^{+1}_{-3}_{-4}$                                                                           | $1.73_{-0.66}^{+0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.30                                                                                                                                                                                                              | $1.85_{-0.68}$                                                                                                                                                                         | $5.7 \pm 0.7$   | $4.7 \pm 0.7$   | $6.5 \pm 0.7$   | $1.59^{+0.00}_{-0.64}$                                                                                   | - S -         | D                 |
| 1142 | $23^{+6}_{-5}_{-5}_{-+6}$        | $15^{+5}_{-4}$                   | $8_{-3}^{+1}$                                                                                | $7.96_{-1.68}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $3.06^{+1.02}_{-0.79}$                                                                                                                                                                                            | $2.78^{+1.01}_{-1.01}$                                                                                                                                                                 | $1.5 \pm 0.3$   | $1.2 \pm 0.2$   | $2.8 \pm 0.6$   | $1.95_{-0.53}^{+0.00}$                                                                                   |               | В                 |
| 1143 | $5^{+6}_{-5}$                    | $1^{+4}_{-1}$                    | $4_{-4}$                                                                                     | $1.45^{+1.66}_{-1.35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.18^{+0.59}_{-0.18}$                                                                                                                                                                                            | 1.17 - 1.17<br>0.70 + 1.34                                                                                                                                                             | $9.7 \pm 4.9$   | $9.6 \pm 7.6$   | $9.8 \pm 0.9$   | $2.26^{+2.82}_{-2.39}$<br>$2.80^{+1.96}_{-1.73}$                                                         |               | D                 |
| 1144 | $10^{+6}_{-5}$                   | $4 \\ 18^{+5}_{-4}$              | $11^{+6}_{-5}$                                                                               | $\begin{array}{c} 2.39 \substack{+1.39\\-1.39}\\ 2.39 \substack{+1.39\\-1.46}\\ 8.96 \substack{+1.69\\-1.46}\\ 1.59 \substack{+0.81\\-0.59}\\ 2.15 +1.19\\-1.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.92\\-0.9$ | 0.56                                                                                                                                                                                                              | $2.50^{+1.34}_{-1.08}$<br>$2.50^{+1.38}_{-1.08}$<br>$5.13^{+1.38}_{-1.14}$<br>$0.26^{+0.53}_{-0.26}$<br>$1.28^{+0.76}_{-0.76}$                                                         | $7.3 \pm 2.9$   | $3.2\pm2.4$     | $9.6 \pm 1.1$   |                                                                                                          | - S -         | C                 |
| 1145 | $41^{+8}_{-7}$<br>$8^{+4}_{-2}$  | $18_{-4}^{+3}$                   | $23^{+6}_{-5}_{+3}$                                                                          | 8.96 - 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 2.23\substack{+0.67\\-0.54}\\ 0.77\substack{+0.43\\-0.29}\\ 0.50\substack{+0.47\\-0.30}\\-0.30\end{array}$                                                                                      | $5.13^{+1.04}_{-1.14}$                                                                                                                                                                 | $2.3 \pm 0.3$   | $1.5 \pm 0.1$   | $3.2 \pm 0.4$   | $3.23^{+0.71}_{-0.64}$<br>$0.39^{+0.29}_{-0.26}$                                                         |               | C                 |
| 1146 | $8^{+1}_{-3}_{-3}_{9^{+5}_{-4}}$ | $7^{+4}_{-3}_{+3}$               | $\frac{1}{-1}$                                                                               | $1.59_{-0.59}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.77_{-0.29}$                                                                                                                                                                                                    | $0.26_{-0.26}$                                                                                                                                                                         | $1.5 \pm 0.8$   | $1.0\pm0.2$     | $1.7 \pm 3.3$   | $\begin{array}{c} 0.39^{+0.26}_{-0.26} \\ 0.98^{+1.42}_{-1.38} \end{array}$                              |               | B                 |
| 1147 | $9^{+0}_{-4}$<br>$8^{+5}_{-4}$   | $4^{+3}_{-2}_{2^{+3}}$           | $^{5-3}_{c+4}$                                                                               | $2.15_{-0.92}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.50_{-0.30}$                                                                                                                                                                                                    | $1.28_{-0.76}$<br>1.90 <sup>+1.38</sup>                                                                                                                                                | $2.8 \pm 3.8$   | $1.8 \pm 1.0$   | $9.6 \pm 2.9$   | $0.98^{+1.12}_{-1.38}$<br>$2.91^{+1.97}_{-1.61}$                                                         |               | C                 |
| 1148 |                                  | 2                                | $\begin{array}{c} 1^{+3} \\ 1^{+3} \\ 5^{+4} \\ 6^{+3} \\ 6^{+5} \\ 6^{+5} \\ 3 \end{array}$ | $2.45_{-1.15}^{+0.49} \\ 2.52_{-0.60}^{+0.77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.34^{+0.52}_{-0.29}$                                                                                                                                                                                            | $\begin{array}{c}1.89\substack{+1.38\\-1.03}\\0.62\substack{+0.55\\-0.36\end{array}$                                                                                                   | $7.4 \pm 2.2$   | $3.7 \pm 2.5$   | $7.9 \pm 1.2$   |                                                                                                          |               | C<br>B            |
| 1149 | $23^{+7}_{-6}$                   | $18_{-4}^{+6}$                   | 0 <u>-</u> 3                                                                                 | 2.52 - 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.51_{-0.27}^{+0.37}$                                                                                                                                                                                            | $0.62_{-0.36}$                                                                                                                                                                         | $1.3 \pm 0.3$   | $1.0 \pm 0.1$   | $2.3 \pm 0.6$   | $0.51_{-0.17}^{+0.20}$                                                                                   |               | В                 |

Chandra Catalog: Photometry (continued)

| No.            | $C_{net}$ FB                     | $C_{net}$ SB            | $C_{net}$ HB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                      | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                | $f_{\rm ph} HB(10^{-6} cm^{-2} s^{-1})$                                                                               | $E_{50}$ (keV)                 | $E_{25}$ (keV)                 | $E_{75}$ (keV)                 | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                                  | Phot.<br>Flag  | Quantile<br>Group |
|----------------|----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|
| 1150           | $17^{+5}_{-4}$                   | $15^{+5}_{-4}$          | $2^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.04^{+1.27}_{-1.00}$                                                                                                         | $2.10^{+0.70}_{-0.54}$                                                                                                                                                   | $0.42^{+0.66}$                                                                                                        | $1.1 {\pm} 0.1$                | $0.9{\pm}0.1$                  | $1.5 \pm 0.3$                  | $0.69^{+0.23}_{-0.19}$                                                                                                   |                | А                 |
| 1151           | $11^{+4}_{-3}$                   | $9_{-3}^{+4}$           | $2^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.24^{+0.94}_{-0.70}$                                                                                                         | $1.10^{+0.51}_{-0.27}$                                                                                                                                                   | $0.36^{+0.57}_{-0.28}$                                                                                                | $1.3 \pm 0.3$                  | $1.0 \pm 0.1$                  | $1.7 {\pm} 0.9$                | $0.48^{+0.22}_{-0.18}$                                                                                                   |                | А                 |
| 1152           | $69_{-10}^{-3}$                  | $46^{+9}_{-7}$          | $23^{+8}_{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $5.37^{+0.90}_{-0.75}$                                                                                                         | ${}^{+0.54}_{1.10}{}^{+0.51}_{-0.37}_{2.35}{}^{+0.39}_{-0.31}$                                                                                                           | $\begin{array}{c} 0.42\substack{+0.66\\-0.32}\\ 0.36\substack{+0.57\\-0.28}\\ 1.90\substack{+0.66\\-0.51}\end{array}$ | $1.3 {\pm} 0.2$                | $1.1{\pm}0.1$                  | $3.0{\pm}0.6$                  | $1.16^{+0.24}_{-0.22}$                                                                                                   |                | В                 |
| 1153           | $17^{+7}_{-6}$                   | 4                       | $23^{+8}_{-6}$<br>$18^{+7}_{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2.24^{+0.94}_{-0.70}$<br>$2.24^{+0.90}_{-0.75}$<br>$5.37^{+0.90}_{-0.75}$<br>$3.80^{+1.64}_{-1.40}$<br>$0.97^{+0.87}_{-0.59}$ | 0.55                                                                                                                                                                     | $1.90^{+0.00}_{-0.51}$ $4.10^{+1.59}_{-1.35}$                                                                         | $4.9 {\pm} 0.6$                | $4.1 \pm 1.5$                  | $6.4{\pm}2.2$                  | ${1.16}^{+0.14}_{-0.22}\ 3.01{+1.35}^{+1.35}$                                                                            | - S -          | D                 |
| 1154           | $4^{+4}_{-3}$                    | $5^{+3}_{-2}$           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.97^{+0.87}_{-0.59}$                                                                                                         | $0.60\substack{+0.45\\-0.28}$                                                                                                                                            | 0.88                                                                                                                  | $0.9{\pm}0.5$                  | $0.8{\pm}0.2$                  | $1.8 {\pm} 0.4$                | $0.15^{+0.15}_{-0.12}$                                                                                                   | H              | В                 |
| 1155           | $8^{+4}_{-3}$                    | 3                       | $9^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.68_{-0.60}^{+0.82}$                                                                                                         | 0.29                                                                                                                                                                     | $1.74_{-0.61}^{+0.84}$                                                                                                | $5.4{\pm}0.8$                  | $4.7{\pm}0.6$                  | $7.0 {\pm} 1.1$                | $1.46^{+0.74}$                                                                                                           | - S -          | D                 |
| 1156           | $5^{+4}_{-2}$                    | $2^{+3}_{-1}$           | $9^{+4}_{-3} \\ 3^{+3}_{-2} \\ 7^{+6}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.68^{+0.82}_{-0.60}$<br>$1.80^{+1.22}_{-0.80}$                                                                               | $0.36\substack{+0.52\\-0.25}$                                                                                                                                            | $1.19^{+1.10}_{-0.66}$                                                                                                | $2.7{\pm}0.7$                  | $1.8{\pm}0.4$                  | $3.1{\pm}0.6$                  | $0.78^{+0.56}_{-0.40}$                                                                                                   |                | $\mathbf{E}$      |
| 1157           | $45_{-8}^{+9}$                   | $38^{+8}_{-6}$          | $7^{+6}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $5.24^{+1.05}_{-0.87}$<br>$5.24^{+1.05}_{-0.87}$<br>$1.74^{+0.79}_{-0.58}$<br>$1.07^{+1.22}_{-0.95}$<br>$0.43^{+1.17}_{-0.43}$ | $\begin{array}{c} 3.22\substack{+0.52\\-0.42}\\ 1.06\substack{+0.46\\-0.34}\\ 0.98\substack{+0.60\\-0.43}\\ 0.40\end{array}$                                             | $0.74_{-0.42}^{+0.65}$                                                                                                | $1.2{\pm}0.1$                  | $1.0{\pm}0.1$                  | $1.3{\pm}0.4$                  | $\begin{array}{c} 0.99\substack{+0.21\\-0.18}\\ 0.27\substack{+0.13\\-0.10}\\ 0.20\substack{+0.23\\-0.18}\end{array}$    |                | А                 |
| 1158           | $9^{+4}_{-3}\\4^{+5}_{-4}$       | $10_{-3}^{+4}$          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.74^{+0.79}_{-0.58}$                                                                                                         | $1.06\substack{+0.46\\-0.34}$                                                                                                                                            | 0.43                                                                                                                  | $1.0{\pm}0.1$                  | $0.8{\pm}0.1$                  | $1.1{\pm}0.1$                  | $0.27^{+0.13}_{-0.10}$                                                                                                   | H              | А                 |
| 1159           | $4^{+5}_{-4}$                    | $7^{+4}_{-3}$           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.07^{+1.22}_{-0.95}$                                                                                                         | $0.98\substack{+0.60\\-0.43}$                                                                                                                                            | 1.01                                                                                                                  | $1.2{\pm}0.2$                  | $0.8{\pm}0.2$                  | $1.2{\pm}0.1$                  | $0.20^{+0.23}_{-0.18}$                                                                                                   | H              | А                 |
| 1160           | $2^{+6}_{-2}$                    | $5^{+\bar{4}}_{-3}$     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.43^{+1.17}_{-0.43}$                                                                                                         | $0.61\substack{+0.49\\-0.36}$                                                                                                                                            | 1.24                                                                                                                  | $1.4 {\pm} 8.6$                | $1.2 {\pm} 8.8$                | $9.9{\pm}9.4$                  | $0.09^{+0.64}_{-0.59}$                                                                                                   | H              | В                 |
| 1161           | $5^{+\bar{4}}_{-3}$              | 3                       | $5^{+4}_{-3}$<br>$2^{+3}_{-1}$<br>$3^{+4}_{-2}$<br>$7^{+6}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.49 \\ -0.43 \\ 1.04 \\ -0.58 \\ 2.78 \\ -0.76 \\ 1.87 \\ -0.73 \\ 2.22 \\ -0.61 \\ -0.61 \end{array}$      | 0.39                                                                                                                                                                     | $1.04^{+0.78}_{-0.56}$ $0.36^{+0.55}_{-0.27}$ $0.60^{+0.75}_{-0.50}$ $0.86^{+0.76}_{-0.47}$                           | $6.3 {\pm} 1.2$                | $5.2 \pm 1.2$                  | $7.3 {\pm} 0.5$                | $1.05^{+0.83}$                                                                                                           | - S -          | D                 |
| 1162           | $14^{+5}_{-4}$                   | $12^{+5}_{-3}$          | $2^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.78^{+0.98}_{-0.76}$                                                                                                         | $1.42^{+0.54}_{-0.41}$                                                                                                                                                   | $0.36^{+0.55}_{-0.27}$                                                                                                | $1.3 {\pm} 0.2$                | $1.1{\pm}0.1$                  | $1.8{\pm}0.5$                  |                                                                                                                          |                | А                 |
| 1163           | $9^{+5}_{-4}$                    | $6^{+4}_{-3}$           | $3^{+4}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.87^{+0.96}_{-0.73}$                                                                                                         | $0.73^{+0.44}_{-0.30}$                                                                                                                                                   | $0.60^{+0.75}_{-0.50}$                                                                                                | $1.6{\pm}0.4$                  | $1.3 {\pm} 0.2$                | $2.2 \pm 0.4$                  | $\begin{array}{c} 0.59\substack{+0.22\\-0.18}\\ 0.47\substack{+0.27\\-0.22}\end{array}$                                  |                | А                 |
| 1164           | $28^{+9}_{-8}$                   | $21^{+7}$               | $7^{+6}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.22_{-0.61}^{+0.76}$                                                                                                         | $1.42^{+0.54}_{-0.41}$ $0.73^{+0.44}_{-0.30}$ $1.23^{+0.33}_{-0.24}$ $1.252^{+0.52}$                                                                                     | $0.86^{+0.76}_{-0.47}$                                                                                                | $1.4{\pm}0.4$                  | $1.1{\pm}0.1$                  | $3.4{\pm}1.2$                  | $0.49^{+0.23}_{-0.21}$                                                                                                   |                | В                 |
| 1165           | $12^{+5}_{-3}$                   | $9_{-3}^{-5}$           | $3^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.55^{+1.01}_{-0.77}$                                                                                                         | $1.14^{+0.33}_{-0.38}$                                                                                                                                                   | $0.60^{+0.00}_{-0.37}$                                                                                                | $1.3 {\pm} 0.6$                | $1.1\pm0.1$                    | $2.2{\pm}2.6$                  | $0.53_{-0.29}^{+0.32}$                                                                                                   |                | В                 |
| 1166           | 9                                | 4                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.82                                                                                                                           | 0.78                                                                                                                                                                     | 2.52                                                                                                                  | $5.2 \pm 4.8$                  | $2.9 \pm 7.1$                  | $7.6 \pm 7.1$                  | 2.38                                                                                                                     | FSΗ            | С                 |
| 1167           | $4^{+3}_{-2}$                    | $4^{+3}_{-2}$           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.97^{+0.75}_{-0.48}$                                                                                                         | $0.50^{+0.41}_{-0.24}$                                                                                                                                                   | 0.87                                                                                                                  | $1.2 \pm 1.9$                  | $1.1 \pm 0.5$                  | $1.4{\pm}2.1$                  | $0.18^{+0.33}_{-0.31}$                                                                                                   | H              | A                 |
| 1168           | $228^{+16}_{-16}$                | $146^{+13}_{-12}$       | ${}^{82^{+11}_{-10}}_{4^{+3}_{-2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $25.75^{+1.82}_{-1.75}$                                                                                                        | $\begin{array}{c} 0.30 \\ -0.24 \\ 9.37 \\ -0.78 \\ 0.23 \\ -0.15 \\ 0.79 \\ -0.30 \\ 1.50 \\ -0.39 \\ 1.50 \\ -0.29 \end{array}$                                        | $9.49^{+1.28}_{-1.11}\\0.78^{+0.67}_{-0.40}$                                                                          | $1.6 \pm 0.1$                  | $1.2 \pm 0.0$                  | $2.7 \pm 0.4$                  | $6.59_{-0.65}^{+0.66}$                                                                                                   |                | В                 |
| 1169           | $6^{+4}_{-2}$<br>$6^{+4}_{-3}$   | $2^{+3}_{-1}_{-+4}$     | $4^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.15^{+0.74}_{-0.49}$ $1.23^{+0.77}_{-0.52}$ $2.96^{+0.86}_{-0.70}$                                                           | $0.23^{+0.31}_{-0.15}$                                                                                                                                                   | $0.78^{+0.07}_{-0.40}$                                                                                                | $2.2 \pm 0.4$                  | $1.6 \pm 0.2$                  | $2.5 \pm 0.6$                  | $0.41^{+0.27}_{-0.19}\\ 0.21^{+0.14}_{-0.10}$                                                                            |                | A                 |
| 1170           | $6^{+4}_{-3}$                    | $7^{+4}_{-3}_{-3}_{-3}$ | $2 \\ 0 + 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.23^{+0.11}_{-0.52}$                                                                                                         | $0.79^{+0.44}_{-0.30}$                                                                                                                                                   | 0.47                                                                                                                  | $1.1 \pm 0.2$                  | $1.0 \pm 0.2$                  | $1.4 \pm 0.1$                  | $\begin{array}{c} 0.21 \substack{+0.14 \\ -0.10} \\ 0.71 \substack{+0.24 \\ -0.21} \end{array}$                          | H              | A                 |
| 1171           | $27^{+8}_{-6}$                   | $18^{+6}_{-5}$          | $9^{+6}_{-3}\\6^{+4}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.96_{-0.70}^{+0.00}$                                                                                                         | $1.50_{-0.29}^{+0.00}$                                                                                                                                                   | $1.01^{+0.66}_{-0.27}$                                                                                                | $1.5 \pm 0.3$                  | $1.0\pm0.1$                    | $2.3 \pm 0.6$                  | $0.71^{+0.21}_{-0.21}$                                                                                                   |                | A                 |
| 1172           | $6^{+4}_{-2}$                    | $\frac{3}{24+8}$        | $6_{-2}^{+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.04_{-0.44}^{+0.66}$<br>$5.23_{-0.82}^{+0.99}$                                                                               | 0.28                                                                                                                                                                     | $1.07^{+0.67}_{-0.44}$                                                                                                | $5.0 \pm 0.5$                  | $4.6 \pm 0.3$                  | $5.4 \pm 0.7$                  | $0.82^{+0.53}_{-0.36}$                                                                                                   | - S -          | E                 |
| 1173           | $48^{+9}_{-8}$<br>$10^{+5}_{-4}$ | $34^{+8}_{-6}_{+3}$     | $14_{-4}^{+6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $5.23^{+0.00}_{-0.82}$                                                                                                         | $2.84^{+0.48}_{-0.38}$                                                                                                                                                   | ${}^{1.41\substack{+0.66\\-0.46}}_{1.19\substack{+0.89\\-0.67}}$                                                      | $1.4 \pm 0.1$                  | $1.1 \pm 0.1$                  | $2.0 \pm 0.5$                  | $1.19^{+0.25}_{-0.22} \\ 0.81^{+0.64}_{-0.59}$                                                                           |                | A                 |
| 1174           | $10^{+0}_{-4}$                   | $4^{+3}_{-2}$           | $6^{+4}_{-3}\\6^{+4}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ${}^{+1.02}_{-0.79}$                                                                                                           | $0.45_{-0.24}^{+0.38}$                                                                                                                                                   | $1.19^{+0.67}_{-0.67}$<br>$1.06^{+0.68}_{-0.45}$                                                                      | $2.6 \pm 1.6$                  | $1.5 \pm 0.7$                  | $5.9 \pm 2.7$                  | $\begin{array}{c} 0.81 \substack{+0.01 \\ -0.59 \\ 0.60 \substack{+0.41 \\ -0.28 \end{array}}$                           |                | C                 |
| 1175           | $6^{+4}_{-2}_{5}$                | 3<br>3                  | $6^{+2}_{-2}_{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.02_{-0.44}$<br>1.58                                                                                                         | $0.28 \\ 0.57$                                                                                                                                                           | $1.06_{-0.45}$<br>1.45                                                                                                | $3.7 \pm 0.8$                  | $3.3 \pm 0.5$                  | $4.8 \pm 1.0$                  | $0.60_{-0.28}^{+0.28}$<br>1.33                                                                                           | - S -<br>F S H | E<br>C            |
| $1176 \\ 1177$ | $6^{+5}_{-4}$                    | 2+3                     | $3^{+4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00<br>$1.68^{\pm 1.58}$                                                                                                      | 0.57<br>$0.48^{\pm 0.59}$                                                                                                                                                | $1.40 \\ 0.84^{\pm 1.40}$                                                                                             | $5.2 \pm 4.8$<br>$8.7 \pm 4.3$ | $2.9 \pm 7.1$<br>$1.6 \pm 2.5$ | $7.6 \pm 7.1$<br>$9.3 \pm 1.8$ | $234^{+2.48}$                                                                                                            | гэп            | C                 |
| 1177           | 10+4                             | 8 <sup>-4</sup>         | $3^{+4}_{-3} \\ 2^{+3}_{-1} \\ 4^{+3}_{-2} \\ 2^{+3}_{-1} \\ 4^{-2}_{-1} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ 3^{+3}_{-2} \\ $ | $1.68^{+1.58}_{-1.24}\\3.23^{+1.41}_{-1.04}\\0.94^{+0.81}_{-0.49}$                                                             | $0.48^{+0.59}_{-0.38}\\1.53^{+0.76}_{-0.54}$                                                                                                                             | $\begin{array}{c} 0.84^{+1.40}_{-0.84}\\ 0.62^{+0.89}_{-0.43}\\ 0.98^{+0.83}_{-0.50}\end{array}$                      | $1.4 \pm 0.4$                  | $0.9 \pm 0.2$                  | $1.7 \pm 0.9$                  | $\begin{array}{c} 2.34 \substack{+2.48\\-2.08}\\ 0.73 \substack{+0.37\\-0.30}\\ 0.73 \substack{+0.67\\-0.44}\end{array}$ |                | В                 |
| 1170           | $10^{+3}_{-3}$<br>$4^{+3}_{-2}$  | $3^{0-3}$               | $^{2}_{4+3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.23 - 1.04<br>0.94 + 0.81                                                                                                     | $0.39^{1.03}$                                                                                                                                                            | $0.02_{-0.43}$<br>$0.08^{+0.83}$                                                                                      | $4.8 \pm 1.5$                  | $0.9 \pm 0.2$<br>$2.9 \pm 1.0$ | $6.2 \pm 0.7$                  | $0.73_{-0.30}$<br>$0.73^{+0.67}$                                                                                         | - S -          | C                 |
| 1175           | $^{4-2}_{335^{+19}_{-19}}$       | $4^{+5}_{-3}$           | $332^{+19}_{-19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $26.40^{+1.52}_{-1.52}$                                                                                                        | 0.39<br>$0.26^{+0.30}_{-0.17}$                                                                                                                                           | $26.79^{+1.53}_{-1.53}$                                                                                               | $4.3 \pm 1.3$<br>$4.3 \pm 0.1$ | $2.9 \pm 1.0$<br>$3.6 \pm 0.1$ | $5.2 \pm 0.1$<br>5.2 $\pm 0.1$ | $18.07^{+1.11}_{-1.11}$                                                                                                  | - 5 -          | E                 |
| 1180           | $51^{+9}_{-8}$                   | $^{1+3}$                | $552_{-19} \\ 51_{-8}^{+9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $7.09^{+1.26}_{-1.05}$                                                                                                         | $0.20_{-0.17}$<br>$0.13_{-0.13}^{+0.56}$                                                                                                                                 | $7.12^{+1.27}_{-1.05}$                                                                                                | $4.3\pm0.1$<br>$5.0\pm0.5$     | $3.0\pm0.1$<br>$3.4\pm0.2$     | $5.2 \pm 0.1$<br>$6.3 \pm 0.4$ | $5.70^{+1.11}_{-1.01}$                                                                                                   |                | D                 |
| 1181           | <sup>51</sup> -8<br>8            | $^{1}-1$ 4              | <sup>51</sup> -8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.18                                                                                                                           | 0.56                                                                                                                                                                     | $2.04^{1.12}$                                                                                                         | $5.0 \pm 0.3$<br>$5.2 \pm 4.8$ | $3.4\pm0.2$<br>$2.9\pm7.1$     | $0.5\pm0.4$<br>$7.6\pm7.1$     | $1.83^{0-1.01}$                                                                                                          | FSH            | D<br>C            |
| 1182           | $24^{+9}_{-7}$                   | $7^{+3}_{-2}$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $a_{10}\pm 0.92$                                                                                                               | $1.13^{+0.43}_{-0.37}$                                                                                                                                                   | $1.86^{+0.82}_{-0.62}$                                                                                                | $2.7 \pm 0.8$                  | $1.9 \pm 0.5$                  | $3.8 \pm 0.4$                  | $1.03^{+0.51}_{-0.45}$                                                                                                   |                | $\tilde{c}$       |
| 1184           | $7^{+4}_{-3}$                    | $7^{+2}_{-3}$           | $23^{+8}_{-7} \\ 1^{+2}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.42_{-0.73}^{+0.92}$ $1.43_{-0.55}^{+0.93}$ $2.30_{-0.71}^{+0.93}$                                                           | $\begin{array}{c} 1.13 \substack{+0.43 \\ -0.27 \\ 0.77 \substack{+0.42 \\ -0.29 \\ 1.15 \substack{+0.50 \\ -0.37 \\ 0.44 \substack{+0.36 \\ -0.21 \\ 0.21 \end{array}}$ | $1.86^{+0.82}_{-0.62} \\ 0.10^{+0.46}_{-0.10}$                                                                        | $1.2 \pm 0.2$                  | $1.0 \pm 0.1$                  | $1.5 \pm 0.3$                  | $1.03^{+0.51}_{-0.45}\\0.27^{+0.15}_{-0.12}$                                                                             |                | Ă                 |
| 1185           | $11^{+5}_{-2}$                   | $10^{+4}_{-3}$          | $1^{+3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2.30^{+0.93}_{-0.71}$                                                                                                         | $1.15^{+0.29}_{-0.27}$                                                                                                                                                   | a a a + 0.55                                                                                                          | $1.1 \pm 0.2$                  | $1.0 \pm 0.1$                  | $1.6 \pm 0.7$                  |                                                                                                                          |                | A                 |
| 1186           | $10^{+4}_{-3}$                   | $4^{+3}_{-2}$           | $\begin{smallmatrix} -1 \\ 1^{+3} \\ -1 \\ 6^{+4} \\ -2 \end{smallmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.87^{+0.84}$                                                                                                                 | $0.44^{+0.36}_{-0.22}$                                                                                                                                                   | $\begin{array}{c} 0.30 \substack{+0.27 \\ -0.27 \\ 1.13 \substack{+0.72 \\ -0.47 \end{array}} \end{array}$            | $2.9 \pm 0.5$                  | $1.8 \pm 0.4$                  | $3.1 \pm 0.4$                  | $0.86^{+0.42}_{-0.22}$                                                                                                   |                | E                 |
| 1187           | $4^{+4}_{-3}$                    | $5^{+2}_{-2}$           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.10^{+0.98}_{-0.70}$                                                                                                         | $0.67^{+0.22}_{-0.34}$                                                                                                                                                   | 0.94                                                                                                                  | $1.6 \pm 0.4$                  | $1.1 \pm 0.4$                  | $1.8 \pm 0.2$                  | $0.28^{+0.26}_{-0.19}$                                                                                                   | H              | Ā                 |
| 1188           | $7^{+6}_{-5}$                    | $2^{+2}_{-2}$           | $5^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.76_{-1.78}^{+2.19}$                                                                                                         | $0.49\substack{+0.34\\-0.49} $                                                                                                                                           | $1.91^{+1.97}_{-1.54}$                                                                                                | $3.8 {\pm} 3.4$                | $2.1{\pm}1.7$                  | $6.0{\pm}3.1$                  | $1.70_{-1.85}^{-0.19}$                                                                                                   |                | $\mathbf{C}$      |
|                | -0                               | -2                      | -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1.10                                                                                                                          | -0.49                                                                                                                                                                    | -1.04                                                                                                                 |                                |                                |                                | -1.00                                                                                                                    |                |                   |

Chandra Catalog: Photometry (continued)

| No.  | $C_{net}$ FB                     | $C_{net}$ SB                                                                         | $C_{net}$ HB                                                                                  | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $f_{\rm ph} {\rm SB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                       | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                   | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                         | Phot.<br>Flag | Quantile<br>Group |
|------|----------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-------------------------------------------------------------------------------------------------|---------------|-------------------|
| 1189 | $6^{+5}_{-3}$                    | $3^{+3}_{-2}$                                                                        | $4^{+4}_{-3}$                                                                                 | $2.97^{+2.09}_{-1.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.71_{-0.50}^{+0.83}$                                                                                                          | $1.73^{+1.83}_{-1.26}$                                                                                                                      | $8.1 \pm 3.7$   | $1.3 \pm 3.4$   | $8.9 \pm 1.2$   | $3.84_{-2.69}^{+3.23}$                                                                          |               | С                 |
| 1190 | $6^{+3}_{-3}$                    | $1^{+2}_{-1}$                                                                        | $6^{+3}_{-2}$                                                                                 | $1.56^{+0.91}_{-0.62}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.12^{+0.32}_{-0.11}$                                                                                                          | $1.73^{+1.83}_{-1.26}\\1.37^{+0.88}_{-0.58}$                                                                                                | $3.6 \pm 1.2$   | $2.6 {\pm} 0.8$ | $5.1 \pm 1.1$   | $0.89^{+0.59}$                                                                                  |               | C                 |
| 1191 | $28^{+8}$                        | $\frac{-1}{5}$                                                                       | $30^{+8}$                                                                                     | $3.25^{+0.92}_{-0.75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.32                                                                                                                            | $3.56^{+0.93}_{-0.75}$                                                                                                                      | $4.0 {\pm} 0.3$ | $3.4{\pm}0.2$   | $5.1 \pm 0.6$   | $2.08^{+0.61}_{-0.51}$                                                                          | - S -         | D                 |
| 1192 | $9^{+4}_{-3}$                    | $3^{+3}_{-2}$                                                                        | $30^{+8}_{-6} \\ 6^{+4}_{-3}$                                                                 | $3.25^{+0.92}_{-0.75}$<br>$1.74^{+0.86}_{-0.64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.31^{+0.34}_{-0.19}$                                                                                                          | ${3.56^{+0.93}_{-0.75}}\ {1.23^{+0.78}_{-0.53}}$                                                                                            | $2.6 \pm 1.2$   | $1.6 {\pm} 0.5$ | $5.2 \pm 2.1$   | $0.73\substack{+0.50\\-0.43}\\0.17\substack{+0.17\\-0.13}$                                      |               | $\mathbf{C}$      |
| 1193 | $4^{-3}_{-3}$                    | $6^{+4}_{-3}$                                                                        | 3                                                                                             | $0.95^{+0.93}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.78^{+0.49}_{-0.25}$                                                                                                          | 0.73                                                                                                                                        | $1.1 {\pm} 0.2$ | $1.1{\pm}0.1$   | $1.2 {\pm} 0.1$ | $0.17^{+0.17}_{-0.13}$                                                                          | H             | А                 |
| 1194 | $8^{+6}_{-5}$                    | $3^{+3}$                                                                             | $5^{+5}_{-4}$                                                                                 | $2.19^{+1.45}_{-1.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.45^{+0.50}_{-0.32}$                                                                                                          | $1.41^{+1.32}_{-1.03}$                                                                                                                      | $2.9{\pm}1.4$   | $1.4{\pm}0.9$   | $4.0{\pm}3.6$   | $1.02^{+0.83}_{-0.73}$                                                                          |               | $\mathbf{C}$      |
| 1195 | $14^{+5}_{-4}$                   | $1^{+3}_{-1}$                                                                        | $12^{+5}_{-4}$                                                                                | $0.01 \pm 1.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.15^{+0.31}_{-0.15}$                                                                                                          | $2.60^{+1.03}_{-0.81}$                                                                                                                      | $4.8{\pm}0.5$   | $4.1{\pm}0.7$   | $5.7 {\pm} 0.6$ | $2.16_{-0.69}^{+0.85}$                                                                          |               | D                 |
| 1196 | $13_{-4}^{-3}$                   | $8^{+1}_{-3}$                                                                        | ${12^{+5}_{-4}\atop 5^{+3}_{-2}}$                                                             | $2.81_{-0.84}^{+0.93}$<br>$2.46_{-0.71}^{+0.93}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.89_{-0.32}^{+0.45}$                                                                                                          | $\begin{array}{c} 1.41 \substack{+1.32 \\ -1.03 \\ 2.60 \substack{+1.03 \\ -0.81 \\ 0.93 \substack{+0.68 \\ -0.43 \end{array}} \end{array}$ | $1.8{\pm}0.4$   | $1.3{\pm}0.2$   | $2.9{\pm}0.8$   | $0.73_{-0.27}^{+0.32}$                                                                          |               | В                 |
| 1197 | 5                                | 2                                                                                    | 6                                                                                             | 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.40                                                                                                                            | 1.89                                                                                                                                        | $5.2 {\pm} 4.8$ | $2.9{\pm}7.1$   | $7.6{\pm}7.1$   | 1.29                                                                                            | F S H         | $\mathbf{C}$      |
| 1198 | $5^{+3}_{-2}$                    | $3^{+3}_{-2}$                                                                        | $2^{+3}_{-1}$                                                                                 | $1.45^{+1.04}_{-0.66}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.52^{+0.52}_{-0.29}$                                                                                                          | $0.56\substack{+0.83\\-0.40}$                                                                                                               | $1.7 {\pm} 1.2$ | $1.1{\pm}0.5$   | $4.0{\pm}0.9$   | $0.40^{+0.40}_{-0.33}$                                                                          |               | В                 |
| 1199 | $10^{+5}_{-4}$                   | $8^{+2}_{-3}$                                                                        | $\substack{2^{+3}_{-1}\\3^{+4}_{-3}}$                                                         | $1.45_{-0.66}$<br>$2.09_{-0.86}^{+1.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.52 \substack{+0.32\\-0.29}\\ 0.88 \substack{+0.49\\-0.35}\\ 0.75 \substack{+0.42\\-0.28}\end{array}$        | $\begin{array}{c} 0.56\substack{+0.83\\-0.40}\\ 0.55\substack{+0.84\\-0.55}\end{array}$                                                     | $1.4{\pm}0.8$   | $1.3 {\pm} 0.4$ | $3.2{\pm}1.1$   | $0.47^{+0.33}_{-0.32}$                                                                          |               | В                 |
| 1200 | $7^{+4}_{-3}$                    | $7^{+4}_{-3}$                                                                        | 4                                                                                             | $2.09^{+1.08}_{-0.86}$<br>$1.35^{+0.76}_{-0.54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.75^{+0.42}_{-0.28}$                                                                                                          | 0.71                                                                                                                                        | $1.1{\pm}0.3$   | $1.0{\pm}0.1$   | $1.4{\pm}0.8$   | $\begin{array}{c} 0.47 \substack{+0.32 \\ -0.32} \\ 0.24 \substack{+0.15 \\ -0.12} \end{array}$ | H             | А                 |
| 1201 | $15^{+5}_{-4}$                   | $10^{+4}_{-3}$                                                                       | $5^{+4}_{-3}$                                                                                 | $3.08^{+1.07}_{-0.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.75 \\ -0.28 \\ 1.12 \\ -0.37 \\ -0.37 \end{array}$                                                          | $1.14\substack{+0.79\\-0.54}$                                                                                                               | $1.9{\pm}0.3$   | $1.4{\pm}0.2$   | $2.7 \pm 1.1$   | $0.92_{-0.29}^{+0.35}$                                                                          |               | В                 |
| 1202 | $14^{+6}_{-5}$                   | $1^{+3}_{-1}$                                                                        | $13^{+6}_{-5}$                                                                                | $2.90^{+1.25}_{-1.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.13_{-0.13}^{+0.36}$                                                                                                          | $2.73^{+1.21}_{-0.97}$                                                                                                                      | $4.2 \pm 1.2$   | $2.6{\pm}1.0$   | $7.1 \pm 2.7$   | $1.97^{+1.03}_{-0.90}$                                                                          |               | $\mathbf{C}$      |
| 1203 | $250^{+16}_{-16}$                | $154_{-13}^{+14}$                                                                    | $96^{+12}_{-10} \\ 3^{+3}_{-2} \\ 1^{+2}_{-1}$                                                | $28.25^{+1.83}_{-1.83}$<br>$2.48^{+0.95}_{-0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $11.20_{-0.81}^{+0.190}$ $1.02_{-0.35}^{+0.48}$                                                                                 | $^{-0.97}_{-1.18}$ $^{-0.97}_{-1.18}$ $^{-0.15}_{-0.39}$ $^{-0.15+0.47}_{-0.15}$                                                            | $1.7 {\pm} 0.1$ | $1.2 \pm 0.0$   | $2.6 {\pm} 0.1$ | $7.57^{+0.60}_{-0.60}$<br>$0.51^{+0.22}_{-0.18}$                                                |               | В                 |
| 1204 | $12_{-4}^{+5}$                   | $9^{+4}_{-3}$                                                                        | $3^{+3}_{-2}$                                                                                 | $2.48^{+0.95}_{-0.72}$<br>$1.11^{+0.71}_{-0.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.02^{+0.48}_{-0.35}$                                                                                                          | $0.71^{+0.65}_{-0.39}$                                                                                                                      | $1.3 {\pm} 0.3$ | $1.0{\pm}0.1$   | $2.0 {\pm} 0.4$ | $0.51^{+0.22}_{-0.18}$                                                                          |               | В                 |
| 1205 | $6^{+4}_{-2}$                    | $5^{+3}_{-2}$                                                                        | $1^{+2}_{-1}$                                                                                 | $1.11^{+0.71}_{-0.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.02_{-0.35}$<br>$0.56_{-0.24}^{+0.39}$                                                                                        | $0.15^{+0.47}_{-0.15}$                                                                                                                      | $1.2 \pm 0.2$   | $1.1 \pm 0.1$   | $1.3 \pm 0.3$   | $\begin{array}{c} 0.51 \\ -0.18 \\ 0.21 \\ -0.10 \\ -0.10 \end{array}$                          |               | А                 |
| 1206 | $6^{+\bar{4}}_{-3}$              | $2^{+3}_{-1}$                                                                        | $4^{+3}_{-2}$                                                                                 | $1.25^{+0.75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.21_{-0.15}^{+0.24}$                                                                                                          | $0.90^{+0.08}_{-0.43}$                                                                                                                      | $2.6 \pm 1.2$   | $1.8 {\pm} 0.6$ | $4.2 \pm 1.6$   | $0.52_{-0.32}^{+0.39}$                                                                          |               | $\mathbf{C}$      |
| 1207 | $4^{+3}_{-2}$                    | $5^{+\bar{3}}_{-2}$                                                                  | 2                                                                                             | $0.99^{+0.77}_{-0.49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.63^{+0.44}_{-0.28}$                                                                                                          | 0.53                                                                                                                                        | $1.3 \pm 0.2$   | $1.2 \pm 0.1$   | $1.7 {\pm} 0.2$ | $0.21_{-0.11}^{+0.17}$                                                                          | H             | А                 |
| 1208 | $12^{+6}_{-5}$                   | $1^{+3}_{-1}$                                                                        | ${ \begin{array}{c} 11^{+6}_{-5} \\ 9^{+5}_{-4} \\ 8^{+6}_{-3} \\ 8^{-3}_{-3} \end{array} } $ | $2.93^{+1.46}_{-1.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.20^{+0.44}_{-0.20}$                                                                                                          | $\begin{array}{c} 2.63 \substack{+1.39 \\ -1.13 \\ 2.24 \substack{+1.14 \\ -0.87 \\ 1.08 \substack{+0.73 \\ -0.17 \\ -0.70 \end{array}}$    | $4.6 \pm 2.4$   | $2.3 \pm 1.0$   | $7.3 \pm 2.3$   | $2.14^{+1.56}_{-1.43}$<br>$1.49^{+0.73}_{-0.60}$                                                |               | $\mathbf{C}$      |
| 1209 | $11^{+5}_{-4}$                   | $2^{+3}_{-2}$                                                                        | $9^{+5}_{-4}$                                                                                 | $2.65^{+1.20}_{-0.95}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.20 \substack{+0.44\\-0.20}\\ 0.26 \substack{+0.40\\-0.22}\\ 6.67 \substack{+0.73\\-0.63}\\-0.63\end{array}$ | $2.24^{+1.14}_{-0.87}$                                                                                                                      | $3.5 {\pm} 0.7$ | $2.6{\pm}1.0$   | $4.1 \pm 1.0$   | $1.49^{+0.73}_{-0.60}$                                                                          |               | $\mathbf{E}$      |
| 1210 | $94^{+12}_{-10}$                 | $85^{+11}_{-9}$                                                                      | $8^{+0}_{-3}$                                                                                 | $11.03^{+1.41}_{-1.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $6.67^{+0.73}_{-0.63}$                                                                                                          | $1.08^{+0.13}_{-0.17}$                                                                                                                      | $1.1 \pm 0.0$   | $1.0{\pm}0.0$   | $1.4{\pm}0.1$   | $1.49_{-0.60}^{+0.27}$<br>$1.99_{-0.24}^{+0.27}$                                                |               | А                 |
| 1211 | $22^{+7}_{-6}$                   | $6^{+5}_{-3}$                                                                        | $16^{+7}_{-5}$                                                                                | $2.10^{+0.76}_{-0.58}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.53_{-0.14}^{+0.26}$                                                                                                          | $\begin{array}{c} 1.60 \pm 0.17 \\ 1.62 \pm 0.70 \\ -0.53 \\ 4.59 \pm 1.89 \\ -1.61 \end{array}$                                            | $3.4{\pm}0.8$   | $2.1 \pm 0.5$   | $5.3 \pm 0.9$   | $1.14_{-0.41}^{+0.48}$                                                                          |               | $\mathbf{C}$      |
| 1212 | $14_{-6}^{+8}$                   | 3                                                                                    | $18^{+7}_{-6}$                                                                                | $3.59^{+1.88}_{-1.63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.41                                                                                                                            | $4.59^{+1.89}_{-1.61}$                                                                                                                      | $8.7 \pm 1.2$   | $7.2 \pm 2.4$   | $9.0 {\pm} 0.6$ | $4.97_{-2.36}^{+2.70}$                                                                          | - S -         | D                 |
| 1213 | 11                               | $1^{+4}_{-1}$                                                                        | 9                                                                                             | 2.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.09\substack{+0.54 \\ -0.09}$                                                                                                 | 2.28                                                                                                                                        | $9.8 {\pm} 9.3$ | $1.9 \pm 8.1$   | $9.9 \pm 9.4$   | 4.45                                                                                            | F - H         | $\mathbf{C}$      |
| 1214 | ${6^{+4}_{-3}} \\ {7^{+4}_{-3}}$ | 3                                                                                    | $^{6^{+4}_{-3}}_{6^{+4}_{-3}}$                                                                | $1.28^{+0.81}_{-0.55}\\1.39^{+0.80}_{-0.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.31                                                                                                                            | ${}^{1.34}_{-0.57}^{+0.83}_{1.24}_{-0.53}^{+0.78}_{-0.53}$                                                                                  | $4.4 {\pm} 0.9$ | $3.5 {\pm} 0.7$ | $5.4 \pm 0.8$   | $0.90^{+0.60}_{-0.43}\ 1.08^{+0.72}_{-0.57}$                                                    | - S -         | D                 |
| 1215 | $7^{+4}_{-3}$                    | $1^{+2}_{-1}$                                                                        | $6^{+4}_{-3}$                                                                                 | $1.39^{+0.80}_{-0.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.10\substack{+0.27\\-0.10\\+0.25}$                                                                                            | $1.24^{+0.78}_{-0.53}$                                                                                                                      | $4.9 \pm 1.6$   | $3.0{\pm}1.4$   | $6.8 \pm 1.4$   | $1.08^{+0.12}_{-0.57}$                                                                          |               | С                 |
| 1216 | $55^{+9}_{-8}$                   | $5^{+3}_{-1}_{+4}$                                                                   | $54_{-8}^{+9}$                                                                                | $6.27^{+1.05}_{-0.89}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.14_{-0.14}^{+0.35}$                                                                                                          | $6.24_{-0.89}^{+1.05}$                                                                                                                      | $4.2 \pm 0.5$   | $3.3 \pm 0.4$   | $5.5 \pm 0.9$   | $4.26^{+0.87}_{-0.78}$                                                                          |               | D                 |
| 1217 | $1^{+5}_{-1}$                    | $4^{+4}_{-2}$                                                                        | 4                                                                                             | $0.21 - 0.89 \\ 0.21 + 1.49 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ -0.21 \\ $ | $0.65^{+0.65}_{-0.43}$                                                                                                          | 1.44                                                                                                                                        | $5.2 \pm 4.8$   | $2.9 \pm 7.1$   | $7.6 \pm 7.1$   | $0.17_{-0.24}^{+0.127}\\1.35_{-0.19}^{+0.22}$                                                   | H             | С                 |
| 1218 | $65^{+10}_{-9}_{-+4}$            | $48^{+9}_{-7}$                                                                       | $17^{+6}_{-5}$                                                                                | $6.85^{+1.06}_{-0.90}$<br>$2.54^{+1.64}_{-1.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $3.40_{-0.42}^{+0.51}$                                                                                                          | $\begin{array}{c} 1.48\substack{+0.63\\-0.44}\\ 2.59\substack{+1.62\\-1.20}\\ 0.75\substack{+0.58\\-0.38}\end{array}$                       | $1.2 \pm 0.1$   | $1.1 \pm 0.0$   | $1.8 \pm 0.2$   | $1.35^{+0.22}_{-0.19}$                                                                          |               | В                 |
| 1219 | $7^{+4}_{-3}$                    | $3 \\ 22^{+7}$                                                                       | $7^{+4}_{-3} \\ 7^{+5}_{-3}$                                                                  | $2.54_{-1.23}$<br>$3.30_{-0.68}^{+0.86}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70                                                                                                                            | $2.59^{+1.02}_{-1.20}$                                                                                                                      | $2.4 \pm 3.7$   | $2.2 \pm 1.2$   | $9.2 \pm 2.5$   | $\begin{array}{c} 1.03 \pm 0.19 \\ 0.97 \pm 1.63 \\ 0.77 \pm 0.22 \\ 0.77 \pm 0.19 \end{array}$ | - S -         | С                 |
| 1220 | $30^{+8}_{-6}$                   | $23^{+7}_{-5}$<br>$4^{+4}_{-2}$                                                      | $7^{+0}_{-3}$                                                                                 | $3.30^{+0.00}_{-0.68}$<br>$1.20^{+1.09}_{-0.81}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.88^{+0.41}_{-0.31}$                                                                                                          | $0.75_{-0.38}^{+0.00}$                                                                                                                      | $1.5 \pm 0.2$   | $1.1 \pm 0.1$   | $1.8 \pm 0.6$   | $0.77^{+0.22}_{-0.19}$                                                                          |               | A                 |
| 1221 | $5^{+4}_{-3}$                    | $4^{+4}_{-2}_{-+4}$                                                                  | 5                                                                                             | $1.20^{+1.05}_{-0.81}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.65^{+0.52}_{-0.35}$                                                                                                          | 1.25                                                                                                                                        | $1.0 \pm 0.5$   | $0.8 \pm 0.3$   | $1.2 \pm 0.7$   | $0.20^{+0.20}_{-0.17}$                                                                          | H             | A                 |
| 1222 | $16^{+6}_{-5}$                   | $5^{+2}_{-3}$<br>$6^{+4}_{-2}$                                                       | $11^{+5}_{-4}$                                                                                | $4.04^{+1.55}_{-1.29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.72^{+0.55}_{-0.40}$                                                                                                          | $2.83^{+1.38}_{-1.11}$                                                                                                                      | $3.6 \pm 0.7$   | $1.8 \pm 1.0$   | $4.2 \pm 1.1$   | $2.35^{+1.01}_{-0.88}$                                                                          |               | C                 |
| 1223 | $8^{+4}_{-3}$                    | $6_{-2}^{-4}$                                                                        | $2^{+3}_{-2}$                                                                                 | $4.04_{-1.29}$<br>$1.78_{-0.70}^{+0.07}$<br>$1.29_{-0.47}^{+0.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} 0.72 \_ 0.40 \\ 0.78 \_ 0.32 \\ 1.33 \_ 0.24 \\ -0.24 \end{array}$                                            | $0.44_{-0.39}^{-1.11}$                                                                                                                      | $1.5 \pm 0.7$   | $1.0\pm0.3$     | $2.0\pm 2.5$    | $\begin{array}{c} 0.42\substack{+0.30\\-0.26}\\ 0.18\substack{+0.09\\-0.97}\end{array}$         |               | В                 |
| 1224 | $12^{+6}_{-4}_{-+4}$             | $ \begin{array}{c}             14^{+5}_{-4} \\             2^{+3}_{-2} \end{array} $ | $^{6}_{-+4}$                                                                                  | $1.29_{-0.47}^{+0.65}$ $1.48_{-0.71}^{+0.95}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 1.33\substack{+0.34\\-0.24}\\ 0.28\substack{+0.36\\-0.20}\end{array}$                                         | 0.64                                                                                                                                        | $0.9 \pm 0.1$   | $0.8 \pm 0.0$   | $1.1 \pm 0.1$   | $\begin{array}{c} 0.18\substack{+0.09\\-0.07}\\ 1.61\substack{+1.36\\-1.17}\\ \end{array}$      | H             | A                 |
| 1225 | $7^{+4}_{-3}_{-3}_{+5}$          | $2^{+3}_{-2}_{-4}$                                                                   | $5^{+4}_{-3}_{-4}$                                                                            | $1.48_{-0.71}^{+0.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.28^{+0.00}_{-0.20}$                                                                                                          | $1.00^{+0.87}_{-0.62}$                                                                                                                      | $6.8 \pm 3.7$   | $1.1 \pm 2.2$   | $9.6 \pm 1.8$   | $1.61^{+1.00}_{-1.17}$                                                                          |               | C                 |
| 1226 | $11^{+5}_{-3}_{-3}_{+8}$         | $6^{+\bar{4}}_{-2}$                                                                  | $5^{+4}_{-2}_{+2}$                                                                            | $2.17_{-0.69}^{+0.92}$ $7.92_{-1.24}^{+1.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.65^{+0.41}_{-0.27}$                                                                                                          | $1.06^{+0.74}_{-0.49}$                                                                                                                      | $2.0\pm0.8$     | $1.1 \pm 0.3$   | $3.0 \pm 1.3$   | $0.70^{+0.41}_{-0.36}$                                                                          |               | В                 |
| 1227 | $42^{+8}_{-6}$                   | $41^{+7}_{-6}$                                                                       | $1^{+\tilde{2}}_{-1}$                                                                         | $7.92_{-1.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4.48_{-0.70}^{+0.82}$                                                                                                          | $0.13_{-0.13}^{+0.45}$                                                                                                                      | $1.0 \pm 0.0$   | $0.9 {\pm} 0.0$ | $1.2 \pm 0.1$   | $1.26_{-0.20}^{+0.23}$                                                                          |               | А                 |

Chandra Catalog: Photometry (continued)

| No.  | $C_{net}$ FB          | $C_{net}$ SB        | $C_{net}$ HB                                                                                           | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                      | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                          | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                            | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                          | Phot.<br>Flag | Quantile<br>Group |
|------|-----------------------|---------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 1228 | $10^{+10}_{-9}$       | 6                   | $13^{+9}_{-8}$                                                                                         | $2.41^{+2.24}_{-2.02}$                                                                                                                         | 0.77                                                                                                                                                                                 | $3.03^{+2.09}_{-1.86}$                                                                                                                                                                                                                                                               | $6.3 \pm 1.6$   | $5.1{\pm}0.9$   | $7.3 \pm 2.0$   | $2.43^{+2.33}_{-2.12}$                                                                                           | - S -         | D                 |
| 1229 | $7^{-3}_{-3}$         | $2^{+3}_{-2}$       | $5^{+4}_{-8}$                                                                                          | $1.67_{-0.75}^{+0.99}$                                                                                                                         | $0.30^{+0.37}_{-0.21}$                                                                                                                                                               | $1.16^{+0.91}_{-0.65}$                                                                                                                                                                                                                                                               | $3.4{\pm}1.4$   | $1.7 {\pm} 0.8$ | $3.8 {\pm} 2.9$ | $0.90^{+0.65}_{-0.55}$                                                                                           |               | $\mathbf{C}$      |
| 1230 | $10^{+5}_{-3}$        | $4^{+\bar{3}}_{2}$  | $5^{+4}_{-3}$<br>$6^{+4}_{-3}$                                                                         | $2.28^{+1.04}_{-0.79}$                                                                                                                         | $0.57^{+0.44}_{-0.28}$                                                                                                                                                               | $1.32_{-0.60}^{+0.88}$                                                                                                                                                                                                                                                               | $2.0{\pm}0.6$   | $1.3 \pm 0.3$   | $2.9{\pm}2.1$   | $0.74_{-0.33}^{+0.39}$                                                                                           |               | В                 |
| 1231 | $7^{-3}$              | $4^{+2}_{-3}$       | 4                                                                                                      | 1.60                                                                                                                                           | $0.57^{+0.44}_{-0.28}\\0.49^{+0.49}_{-0.34}$                                                                                                                                         | 0.84                                                                                                                                                                                                                                                                                 | $5.2 {\pm} 4.8$ | $2.9{\pm}7.1$   | $7.6 {\pm} 7.1$ | 1.34                                                                                                             | F - H         | $\mathbf{C}$      |
| 1232 | 18                    | 4                   | $3^{+8}_{-3}$                                                                                          | 4.18                                                                                                                                           | 0.56                                                                                                                                                                                 | $0.70^{+1.89}_{-0.70}\\0.70^{+0.52}_{-0.24}$                                                                                                                                                                                                                                         | $5.2 {\pm} 4.8$ | $2.9{\pm}7.1$   | $7.6 {\pm} 7.1$ | 3.52                                                                                                             | F S -         | $\mathbf{C}$      |
| 1233 | $41^{+11}_{-9}$       | $31^{+8}_{-6}$      | $\begin{array}{c} ^{-3}_{-3} \\ 10^{+8}_{-4} \\ 8^{+4}_{-3} \\ 3^{+4}_{-2} \\ 4^{+4}_{-3} \end{array}$ | $3.53\substack{+0.82\\-0.67}$                                                                                                                  | $1.87^{+0.37}_{-0.29}$                                                                                                                                                               | $0.70_{-0.24}^{+0.52}$                                                                                                                                                                                                                                                               | $1.5{\pm}0.1$   | $1.2{\pm}0.1$   | $2.1{\pm}0.3$   | $0.82^{+0.20}_{-0.17}$                                                                                           |               | А                 |
| 1234 | $12^{+5}_{-4}$        | $4^{+3}_{-2}$       | $8^{+4}_{-3}$                                                                                          | $2.84^{+1.19}$                                                                                                                                 | $0.50^{+0.45}_{-0.27}$                                                                                                                                                               | $2.01^{+1.08}_{-0.80}$                                                                                                                                                                                                                                                               | $2.3{\pm}0.4$   | $1.9{\pm}0.2$   | $3.1{\pm}0.2$   | $1.06^{+0.48}_{-0.39}$                                                                                           |               | $\mathbf{E}$      |
| 1235 | $10^{+5}_{-4}$        | $6^{+4}_{-3}$       | $3^{+4}_{-2}$                                                                                          | $\begin{array}{c} 2.31\substack{+1.15\\-0.88}\\ 5.07\substack{+1.51\\-1.25}\\ 2.21\substack{+0.79\\-0.62}\end{array}$                          | $0.86^{+0.53}_{-0.36}$<br>$2.40^{+0.74}_{-0.59}$                                                                                                                                     | $0.82\substack{+0.90\\-0.59}\\0.86\substack{+0.98\\-0.70}$                                                                                                                                                                                                                           | $1.8{\pm}0.9$   | $1.7{\pm}0.3$   | $3.1{\pm}2.4$   | $0.67^{+0.47}_{-0.42}$<br>$1.02^{+0.34}_{-0.30}$                                                                 |               | А                 |
| 1236 | $21^{+6}_{-5}$        | $18^{+5}_{-4}$      | $4^{+4}_{-3}$                                                                                          | $5.07^{+1.51}_{-1.25}$                                                                                                                         | $2.40^{+0.74}_{-0.59}$                                                                                                                                                               | $0.86\substack{+0.98\\-0.70}$                                                                                                                                                                                                                                                        | $1.3{\pm}0.2$   | $0.8{\pm}0.1$   | $1.6{\pm}0.3$   | $1.02^{+0.34}_{-0.30}$                                                                                           |               | В                 |
| 1237 | $19^{+7}_{-6}$        | $20^{+6}_{-5}$      | 6                                                                                                      | $2.21^{+0.79}_{-0.62}$                                                                                                                         | $2.40^{+0.14}_{-0.59}$<br>$1.86^{+0.41}_{-0.21}$                                                                                                                                     | 0.74                                                                                                                                                                                                                                                                                 | $1.2{\pm}0.1$   | $1.0{\pm}0.1$   | $1.5{\pm}0.2$   | $\begin{array}{c} 1.02\substack{+0.34\\-0.30}\\ 0.43\substack{+0.16\\-0.13}\end{array}$                          | H             | А                 |
| 1238 | $6^{+4}_{-3}$         | $5^{+3}_{-2}$       | $2^{+3}_{-2}$                                                                                          | $1.63^{+1.01}_{-0.72}$                                                                                                                         | $0.69_{-0.31}^{+0.50}$                                                                                                                                                               | $0.44_{-0.43}^{+0.77}$                                                                                                                                                                                                                                                               | $1.8{\pm}0.5$   | $1.0{\pm}0.3$   | $2.0{\pm}0.4$   | $0.48_{-0.24}^{+0.32}$                                                                                           |               | В                 |
| 1239 | 12                    | 4                   | 11                                                                                                     | 2.79                                                                                                                                           | 0.52                                                                                                                                                                                 | 2.66                                                                                                                                                                                                                                                                                 | $5.2 \pm 4.8$   | $2.9{\pm}7.1$   | $7.6 {\pm} 7.1$ | 2.35                                                                                                             | F S H         | $\mathbf{C}$      |
| 1240 | $24^{+7}_{-6}$        | $2^{+3}_{-2}$       | $22^{+6}_{-5}$                                                                                         | $5.46^{+1.53}_{-1.28}$                                                                                                                         | $0.29^{+0.41}_{-0.25}$                                                                                                                                                               | $5.06^{+1.47}_{-1.22}$                                                                                                                                                                                                                                                               | $5.5 {\pm} 0.6$ | $4.1 {\pm} 1.0$ | $6.8 {\pm} 1.3$ | $4.78^{+1.44}_{-1.25}$                                                                                           |               | D                 |
| 1241 | $8^{+4}_{-3}$         | 2                   | $9^{+4}_{-3}$                                                                                          | $1.67_{-0.69}^{+0.92}$                                                                                                                         | 0.27                                                                                                                                                                                 | $1.89^{+0.94}_{-0.71}$                                                                                                                                                                                                                                                               | $3.7 \pm 1.1$   | $3.3 {\pm} 0.5$ | $5.4 \pm 2.1$   | $0.98^{+0.62}_{-0.50}$                                                                                           | - S -         | D                 |
| 1242 | $9^{+4}_{-3}$         | $3^{+3}_{-2}$       | $6^{+4}_{-3}$                                                                                          | $2.13^{+1.04}_{-0.77}$<br>$1.19^{+0.73}_{-0.50}$                                                                                               | $0.37^{+0.41}_{-0.23}$                                                                                                                                                               | $1.53^{+0.93}_{-0.64}$                                                                                                                                                                                                                                                               | $4.0 {\pm} 1.7$ | $1.6{\pm}1.0$   | $6.5 \pm 2.2$   | $1.37^{+0.89}_{-0.77}$                                                                                           |               | $\mathbf{C}$      |
| 1243 | $6^{-3}_{-3}$         | $4^{+3}_{-2}$       | $\begin{array}{c}5\\ 9^{+4}_{-3}\\ 6^{+4}_{-3}\\ 2^{+3}_{-2}\end{array}$                               | $1.19^{+0.73}_{-0.50}$                                                                                                                         | $\begin{array}{c} 0.37^{+0.41}_{-0.23} \\ 0.42^{+0.35}_{-0.21} \\ 1.06^{+1.05}_{-0.63} \end{array}$                                                                                  | $\begin{array}{c} 1.53 \substack{+0.93 \\ -0.64 \\ 0.46 \substack{+0.58 \\ -0.32 \end{array}} \end{array}$                                                                                                                                                                           | $1.0{\pm}2.0$   | $0.8{\pm}0.4$   | $2.4 \pm 3.0$   | $\begin{array}{c} 1.37\substack{+0.89\\-0.77\\0.18\substack{+0.41\\-0.40\end{array}}$                            |               | В                 |
| 1244 | $4^{+4}_{-3}$         | $3^{+\bar{3}}_{-2}$ | 5                                                                                                      | $1.19_{-0.50}^{+0.10}$ $2.14_{-1.49}^{+2.19}$                                                                                                  | $1.06^{+1.05}_{-0.63}$                                                                                                                                                               | 2.79                                                                                                                                                                                                                                                                                 | $1.2 {\pm} 0.5$ | $0.9{\pm}0.3$   | $1.8{\pm}0.4$   | $0.41^{+0.46}_{-0.24}$                                                                                           | H             | В                 |
| 1245 | $4^{+4}_{-3}$         | 2                   | $\substack{5^{+4}_{-3}\\1^{+3}_{-1}}$                                                                  | $0.87^{+0.75}_{-0.51}$                                                                                                                         | 0.26                                                                                                                                                                                 | $1.00^{+0.77}_{-0.52}$                                                                                                                                                                                                                                                               | $2.9{\pm}2.3$   | $2.5\pm0.7$     | $6.3 {\pm} 2.2$ | $0.41_{-0.40}^{+0.34}$                                                                                           | - S -         | $\mathbf{C}$      |
| 1246 | $5^{+4}_{-2}$         | $4^{+3}_{-2}$       | $1^{+3}_{-1}$                                                                                          | $1.29^{+0.93}_{-0.61}$                                                                                                                         | $\begin{array}{c} 0.56 + 0.47 \\ 0.56 + 0.28 \\ 0.88 + 0.51 \\ 0.88 + 0.37 \\ 1.08 + 0.31 \\ 0.70 + 0.51 \\ 0.70 + 0.51 \\ 0.94 \pm 0.54 \end{array}$                                | $0.33\substack{+0.70\\-0.33}$                                                                                                                                                                                                                                                        | $1.2 {\pm} 0.9$ | $1.0 {\pm} 0.3$ | $1.9{\pm}1.3$   | $0.24_{-0.23}^{+0.26}$                                                                                           |               | В                 |
| 1247 | $7^{+\bar{4}}_{-3}$   | $7^{+\bar{4}}_{-3}$ | 4                                                                                                      | 1 8.98                                                                                                                                         | $0.88^{+0.51}_{-0.37}$                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                 | $0.9{\pm}0.1$   | $0.9{\pm}0.1$   | $1.2 {\pm} 0.1$ | $0.22_{-0.12}^{+0.15}$                                                                                           | H             | А                 |
| 1248 | $25_{-6}^{+8}$        | $10^{+5}_{-3}$      | $15^{+7}_{-5}$<br>$1^{+3}_{-1}$                                                                        | $2.78_{-0.66}^{+0.83}$ $1.49_{-0.66}^{+0.98}$                                                                                                  | $1.08^{+0.31}_{-0.20}$                                                                                                                                                               | $1.75_{-0.56}^{+0.73}\\0.29_{-0.29}^{+0.70}$                                                                                                                                                                                                                                         | $2.0{\pm}0.2$   | $1.8{\pm}0.2$   | $2.6{\pm}0.4$   | $\begin{array}{c} 0.22\substack{+0.13\\-0.12}\\ 0.91\substack{+0.29\\-0.24}\end{array}$                          |               | А                 |
| 1249 | $6^{+4}_{-3}$         | $5^{+3}_{-2}$       | $1^{+3}_{-1}$                                                                                          | $1.49^{+0.98}_{-0.66}$                                                                                                                         | $0.70^{+0.51}_{-0.32}$                                                                                                                                                               | $0.29^{+0.70}_{-0.29}$                                                                                                                                                                                                                                                               | $0.9{\pm}0.3$   | $0.9{\pm}0.1$   | $1.3 {\pm} 0.6$ | $\begin{array}{c} 0.91\substack{+0.29\\-0.24}\\ 0.23\substack{+0.17\\-0.13}\\ \end{array}$                       |               | А                 |
| 1250 | $16^{+5}_{-4}$        | $6^{+4}_{-3}$       | $10^{+4}_{-3}$                                                                                         | $3.99^{+1.34}_{-1.07}$                                                                                                                         | 0.91                                                                                                                                                                                 | $2.44^{+1.14}_{-0.85}$                                                                                                                                                                                                                                                               | $2.6\pm0.6$     | $1.6 {\pm} 0.4$ | $4.2 \pm 1.4$   | $1.69^{+0.13}_{-0.61}$                                                                                           |               | $\mathbf{C}$      |
| 1251 | $33^{+8}_{-7}$        | $32^{+7}_{-6}$      | $1^{+4}_{-1}$                                                                                          | $\begin{array}{r} -0.00\\ -0.07\\ 3.99 {}^{+1.07}_{-1.07}\\ 3.65 {}^{+0.90}_{-0.73}\\ 1.92 {}^{+1.01}_{-0.77}\end{array}$                      | $\begin{array}{c} 2.67\substack{+0.47\\-0.37}\\ 0.29\substack{+0.37\\-0.20}\\ 3.12\substack{+0.85\\-0.69}\end{array}$                                                                | $\begin{array}{c} 0.29 \substack{-0.29\\-0.29} \\ 2.44 \substack{+0.85\\-0.21} \\ 0.21 \substack{+0.96\\-0.21} \\ 1.45 \substack{+0.93\\-0.68} \\ 5.36 \substack{+1.51\\-1.22} \\ 0.25 \substack{+1.98\\-0.25} \\ 1.46 \substack{+1.02\\-0.22} \\ 0.25 \substack{+2.06} \end{array}$ | $1.1 \pm 0.1$   | $0.9{\pm}0.1$   | $1.4{\pm}0.2$   | $0.63^{+0.16}_{-0.13}$                                                                                           |               | А                 |
| 1252 | $9^{+5}_{-3}$         | $2^{+3}_{-2}$       | $6^{+\hat{4}}_{-3}$                                                                                    | $1.92^{+1.01}_{-0.77}$                                                                                                                         | $0.29^{+0.37}_{-0.20}$                                                                                                                                                               | $1.45^{+0.93}_{-0.68}$                                                                                                                                                                                                                                                               | $2.5 \pm 0.7$   | $1.9{\pm}0.2$   | $3.5 \pm 1.3$   | $0.77^{+0.146}_{-0.37}\ 3.38^{+0.96}_{-0.90}$                                                                    |               | E                 |
| 1253 | $41^{+8}_{-6}$        | $21^{+6}_{-5}$      | $20^{+6}_{-5}$                                                                                         | $10.67^{+1.97}_{-1.69}$                                                                                                                        | $3.12^{+0.85}_{-0.69}$                                                                                                                                                               | $5.36^{+1.51}_{-1.22}$                                                                                                                                                                                                                                                               | $2.0 \pm 0.4$   | $1.5 \pm 0.1$   | $3.6 {\pm} 0.4$ | $3.38^{+0.96}_{-0.90}$                                                                                           |               | В                 |
| 1254 | $4^{+9}_{-4}$         | $3^{+5}_{-3}$       | $1^{+8}_{-1}$                                                                                          | $1.09^{+2.20}_{-1.09}$                                                                                                                         | $3.12_{-0.69}$<br>$0.48_{-0.48}^{+0.72}$                                                                                                                                             | $0.25^{+1.98}_{-0.25}_{-1.02}$                                                                                                                                                                                                                                                       | $2.2 \pm 4.1$   | $1.9{\pm}0.7$   | $3.1 \pm 6.9$   | $0.39^{+1.06}_{-0.81}$                                                                                           |               | А                 |
| 1255 | $13^{+5}_{-4}$        | $7^{+4}_{-3}_{-4}$  | $5^{+4}_{-3}$                                                                                          | $3.38^{+1.31}_{-1.02}$                                                                                                                         | $1.11^{+0.39}_{-0.42}$                                                                                                                                                               | $1.46^{+1.02}_{-0.70}$                                                                                                                                                                                                                                                               | $1.7 {\pm} 0.8$ | $1.5 \pm 0.2$   | $3.5 \pm 2.9$   | $0.93^{+0.55}_{-0.50}$<br>$2.38^{+1.52}_{-1.38}$                                                                 |               | В                 |
| 1256 | $13^{+7}_{-6}$        | $^{0-3}$            | $1^{+8}_{-1}$ $5^{+4}_{-4}$ $8^{+6}_{-5}$ $1^{+2}_{-1}$ $4^{-2}_{-2}$ $37^{+9}_{-7}$ $3^{+3}_{-2}$     | $\begin{array}{c} 4.67^{+2.34}_{-1.96}\\ 1.08^{+0.72}_{-0.48}\\ 3.06^{+1.07}_{-0.84}\\ 4.75^{+1.01}_{-0.84}\\ 4.75^{-2.84}_{-0.84}\end{array}$ | $\begin{array}{c} 0.40 \\ -0.42 \\ 1.11 \\ +0.52 \\ 0.98 \\ -0.61 \\ 0.57 \\ +0.40 \\ 0.57 \\ +0.40 \\ 0.57 \\ +0.40 \\ 0.63 \\ +0.30 \\ 0.63 \\ +0.30 \\ 0.63 \\ +0.19 \end{array}$ | $2.98^{+2.06}_{-1.67}$                                                                                                                                                                                                                                                               | $3.2 \pm 1.3$   | $1.4{\pm}0.6$   | $3.8 {\pm} 0.4$ | 1.00                                                                                                             |               | С                 |
| 1257 | $5^{+4}_{-2}_{+5}$    | $5^{+3}_{-2}$       | $1^{+2}_{-1}$                                                                                          | $1.08^{+0.12}_{-0.48}_{+1.07}$                                                                                                                 | $0.57^{+0.40}_{-0.25}$                                                                                                                                                               | $0.10^{+0.48}_{-0.10}$                                                                                                                                                                                                                                                               | $1.0 \pm 0.4$   | $0.8 {\pm} 0.1$ | $1.4 \pm 0.4$   | $ \begin{array}{c} 0.17 \substack{+0.13 \\ -0.10 \\ 0.83 \substack{+0.30 \\ -0.24 \\ \end{array} } \end{array} $ |               | A                 |
| 1258 | $15^{+5}_{-4}$        | $11^{+4}_{-3}$      | $4^{+3}_{-2}$                                                                                          | $3.06^{+1.07}_{-0.84}$                                                                                                                         | $1.28^{+0.33}_{-0.40}$                                                                                                                                                               | $0.83^{+0.13}_{-0.46}$                                                                                                                                                                                                                                                               | $1.7 \pm 0.2$   | $1.4{\pm}0.2$   | $2.1 \pm 0.5$   | $0.83^{+0.30}_{-0.24}$                                                                                           |               | А                 |
| 1259 | $44^{+9}_{-8}$        | $6^{+5}_{-3}$       | $37^{+9}_{-7}$                                                                                         | $4.75^{+1.01}_{-0.84}$                                                                                                                         | $0.63^{+0.30}_{-0.19}$                                                                                                                                                               | $4.08^{+0.93}_{-0.77}$                                                                                                                                                                                                                                                               | $3.5 {\pm} 0.3$ | $2.7 \pm 0.3$   | $4.1 \pm 0.2$   | $2.65_{-0.51}^{+0.60}$                                                                                           |               | E                 |
| 1260 | $3^{+4}_{-2}$         | 4                   | $3^{+3}_{-2}$                                                                                          | $1.87^{+2.31}_{-1.53}$<br>$1.78^{+0.99}_{-0.65}$                                                                                               | 1.32                                                                                                                                                                                 | $\begin{array}{c} 1.49 \\ -0.70 \\ 2.98 \\ +2.06 \\ -1.67 \\ 0.10 \\ +0.48 \\ 0.71 \\ 0.83 \\ +0.73 \\ -0.46 \\ 4.08 \\ +0.77 \\ 1.70 \\ +2.23 \\ 1.68 \\ +1.28 \\ 1.68 \\ +1.28 \\ 1.68 \\ +1.08 \\ -1.03 \\ 0.14 \\ +0.48 \end{array}$                                             | $8.2 \pm 1.1$   | $7.4 \pm 0.6$   | $9.2 \pm 0.7$   | $2.44^{+3.04}_{-2.04}$                                                                                           | - S -         | D                 |
| 1261 | $17^{+9}_{-6}_{-+4}$  | $14^{+6}_{-5}$      | $13^{+6}_{-5}$                                                                                         | $1.78^{+0.99}_{-0.65}$                                                                                                                         | $1.18^{+0.40}_{-0.30}$                                                                                                                                                               | $1.68^{+1.28}_{-1.03}$                                                                                                                                                                                                                                                               | $1.0 \pm 0.4$   | $0.7 \pm 0.2$   | $1.2 \pm 0.2$   | $0.27_{-0.15}^{+0.19}$                                                                                           |               | В                 |
| 1262 | $6^{+4}_{-2}_{-5}$    | $5^{+3}_{-2}$       | $1^{+2}_{-1}$                                                                                          | $1.12^{+0.73}_{-0.48}$                                                                                                                         | $0.57_{-0.25}^{+0.40}$                                                                                                                                                               | $\begin{array}{c} 0.13 \substack{+0.48 \\ -0.13 \\ 2.52 \substack{+1.04 \\ -0.89 \\ 4.04 \substack{+0.89 \\ -0.72 \end{array}} \end{array}$                                                                                                                                          | $1.4 \pm 0.6$   | $0.9 \pm 0.3$   | $1.9 {\pm} 0.9$ | $0.25^{+0.19}_{-0.15}$                                                                                           |               | В                 |
| 1263 | $12^{+5}_{-4}$        | 4                   | $12^{+5}_{-4}$                                                                                         | $\begin{array}{c} 1.12 \substack{+0.48\\-0.48}\\ 2.56 \substack{+1.04\\-0.81}\\ 6.19 \substack{+1.03\\-0.87}\end{array}$                       | 0.45                                                                                                                                                                                 | $2.52^{+1.04}_{-0.80}$                                                                                                                                                                                                                                                               | $4.7 \pm 0.8$   | $3.7 \pm 0.8$   | $6.4 {\pm} 0.9$ | $1.91^{+0.185}_{-0.69}$<br>$2.23^{+0.43}_{-0.38}$                                                                | - S -         | D                 |
| 1264 | $58^{+10}_{-8}_{-+4}$ | $21^{+6}_{-5}$      | $37^{+\hat{8}}_{-7}$                                                                                   |                                                                                                                                                | $1.83^{+0.39}_{-0.29}$                                                                                                                                                               | $4.04_{-0.72}^{+0.039}$                                                                                                                                                                                                                                                              | $2.3 \pm 0.2$   | $1.8 \pm 0.2$   | $3.1 \pm 0.5$   | $2.23^{+0.43}_{-0.38}$                                                                                           |               | E                 |
| 1265 | $5^{+4}_{-2}_{+4}$    | $6^{+4}_{-2}_{+3}$  | 2                                                                                                      | $1.10^{+0.12}_{-0.48}$                                                                                                                         | $0.68^{+0.42}_{-0.28}$                                                                                                                                                               | 0.47                                                                                                                                                                                                                                                                                 | $1.0 \pm 0.1$   | $0.8 \pm 0.1$   | $1.1 \pm 0.1$   | $0.17^{+0.11}_{-0.08}$                                                                                           | H             | А                 |
| 1266 | $4^{+\bar{4}}_{-3}$   | $4^{+\bar{3}}_{-2}$ | 4                                                                                                      | $0.93\substack{+0.89\\-0.64}$                                                                                                                  | $0.51_{-0.27}^{+0.43}$                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                 | $1.3 \pm 2.2$   | $1.3 \pm 0.6$   | $1.8 \pm 3.4$   | $0.20_{-0.36}^{+0.38}$                                                                                           | H             | А                 |

Chandra Catalog: Photometry (continued)

| No.  | $C_{net}$ FB                        | $C_{net}$ SB   | $C_{net}$ HB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} f_{\rm ph} {\rm FB}(10^{-6} \\ {\rm cm}^{-2} ~{\rm s}^{-1}) \end{array}$                                                                                                                           | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                           | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                         | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{s}^{-1})$                                                                                  | Phot.<br>Flag | Quantile<br>Group |
|------|-------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 1267 | $7^{+4}_{-3}$                       | 3              | $7^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.44_{-0.71}^{+0.95}$                                                                                                                                                                                               | 0.40                                                                                                                  | ${}^{1.49_{-0.69}^{+0.94}}_{3.34_{-1.49}^{+1.90}}$                                                                                                                | $6.0{\pm}1.2$   | $5.3 \pm 1.4$   | $7.4{\pm}1.1$   | $1.38^{+0.95}_{-0.73}$                                                                                                                   | - S -         | D                 |
| 1268 | $10^{+5}_{-4}$                      | $1^{+3}_{-1}$  | $9^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{r} -0.71\\ -0.71\\ 3.53 \substack{+1.96\\ -1.55\\ 1.08 \substack{+0.75\\ -0.51\\ 0.85 \substack{+1.15\\ -0.85} \end{array}}$                                                                          | $\begin{array}{c} 0.15\substack{+0.56\\-0.15}\\ 0.75\substack{+0.43\\-0.29}\end{array}$                               | $3.34^{+1.90}_{-1.49}$                                                                                                                                            | $5.9 {\pm} 1.6$ | $3.9{\pm}1.7$   | $7.8 {\pm} 1.1$ | $3.31^{+2.05}_{-1.72}$                                                                                                                   |               | $\mathbf{C}$      |
| 1269 | $5^{+4}_{-4}$                       | $7^{+4}_{-3}$  | $2^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.08^{+0.75}_{-0.51}$                                                                                                                                                                                               | $0.75^{+0.43}_{-0.20}$                                                                                                | 0.47                                                                                                                                                              | $0.9{\pm}0.0$   | $0.8 {\pm} 0.0$ | $0.9{\pm}0.0$   | $0.15^{+0.11}_{-0.07}$                                                                                                                   | H             | А                 |
| 1270 | $5^{+4}_{-3}_{-3}_{4^{+5}_{-4}}$    | $^{-3}_{2}$    | $6^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.85_{-0.85}^{+0.31}$                                                                                                                                                                                               | 0.31                                                                                                                  | $1.42_{-0.91}^{+1.17}$ $1.57_{-1.142}^{+1.40}$                                                                                                                    | $6.4 \pm 3.2$   | $3.3{\pm}6.7$   | $6.6 {\pm} 6.1$ | $0.15^{+0.11}_{-0.07}$<br>$0.87^{+1.25}_{-0.97}$                                                                                         | - S -         | $\mathbf{C}$      |
| 1271 | $29^{+9}_{-7}$                      | $22^{+7}_{-5}$ | $6^{+\bar{6}}_{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.85 \substack{+0.85 \\ -0.85 \\ 3.20 \substack{+0.97 \\ -0.80 \\ 2.15 \substack{+0.99 \\ -0.75 \end{array}} \end{array}$                                                                          | $1.96\substack{+0.43\\-0.33}$                                                                                         | $1.57^{+1.40}_{-1.14}$                                                                                                                                            | $1.4{\pm}0.3$   | $1.0 {\pm} 0.1$ | $1.7 {\pm} 0.2$ | $0.70^{+0.25}$                                                                                                                           |               | А                 |
| 1272 | $10^{+5}_{-3}$                      | $2^{-3}$       | $10^{+5}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.15_{-0.75}^{+0.99}$                                                                                                                                                                                               | $0.28^{-0.33}$                                                                                                        | $2.33^{+1.02}_{-0.77}$                                                                                                                                            | $5.5 {\pm} 0.7$ | $4.6 {\pm} 0.7$ | $6.3 {\pm} 0.8$ |                                                                                                                                          | - S -         | D                 |
| 1273 | $43^{+8}_{-7}$                      | $1^{+2}_{-1}$  | $43^{+8}_{-7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1140                                                                                                                                                                                                                 | $0.09\substack{+0.25 \\ -0.09}$                                                                                       | $2.33^{+1.02}_{-0.77}$<br>$8.02^{+1.43}_{-1.24}$                                                                                                                  | $4.8 {\pm} 0.4$ | $3.4{\pm}0.3$   | $6.0 {\pm} 0.4$ | $6.11^{+1.20}$                                                                                                                           |               | D                 |
| 1274 | $6^{+9}_{-6}$                       | 6              | 7+8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 8.01^{+1.42}_{-1.22} \\ 1.81^{+2.49}_{-1.81} \\ 1.52^{+0.91}_{-0.68} \\ 8.59^{+1.27}_{-1.09} \\ \end{array}$                                                                                       | 0.93                                                                                                                  | $\begin{array}{c} 8.02^{+1.43}_{-1.24}\\ 2.12^{+2.29}_{-1.95}\\ 1.70^{+0.93}_{-0.69}\\ 8.85^{+1.29}_{-1.10}\\ 8.85^{-1.10}_{-1.66}\end{array}$                    | $3.2{\pm}3.0$   | $2.5 \pm 2.1$   | $4.2 \pm 5.8$   | $\begin{array}{c} 0.93 \substack{+1.54 \\ -1.26 \\ 1.24 \substack{+0.93 \\ -0.78 \\ 6.03 \substack{+0.94 \\ -0.82 \\ -0.82 \end{array}}$ | - S -         | $\mathbf{E}$      |
| 1275 | $7^{+4}_{-3}$                       | 2              | $\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & &$ | $1.52^{+0.91}_{-0.68}$                                                                                                                                                                                               | 0.28                                                                                                                  | $1.70^{+0.93}_{-0.69}$                                                                                                                                            | $5.1 \pm 2.2$   | $3.9{\pm}1.1$   | $8.8 {\pm} 1.9$ | $1.24_{-0.78}^{+0.293}$                                                                                                                  | - S -         | $\mathbf{C}$      |
| 1276 | $72_{-9}^{+11}$                     | 6              | $73_{-9}^{+11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $8.59^{+1.27}_{-1.09}$                                                                                                                                                                                               | 0.41                                                                                                                  | $8.85^{+1.29}_{-1.10}$                                                                                                                                            | $4.4{\pm}0.2$   | $3.7{\pm}0.2$   | $5.8 {\pm} 0.3$ | $6.03^{+0.194}_{-0.82}$                                                                                                                  | - S -         | D                 |
| 1277 | $4^{+4}_{-3}$                       | $1^{+3}_{-1}$  | $3^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.83^{+0.82}_{-0.52}$                                                                                                                                                                                               | $0.13^{+0.32}_{-0.13}$                                                                                                | $0.61^{+0.10}_{-0.40}$                                                                                                                                            | $3.3 {\pm} 2.3$ | $1.9 {\pm} 8.1$ | $6.2 {\pm} 5.7$ | $0.44_{-0.43}^{+0.53}$                                                                                                                   |               | $\mathbf{C}$      |
| 1278 | $191^{+14}_{-14}$                   | $1^{+3}$       | $190^{+14}_{-14} \\ 177^{+14}_{-14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 42.72 \substack{+3.16\\-3.50}\\ 42.72 \substack{+3.16\\-3.50}\\ 45.56 \substack{+3.50\\-3.50}\\ 0.91 \substack{+0.79\\-0.57\\0.34 \substack{+1.11\\-1.30}\end{array}$                              | $\begin{array}{c} 0.13\substack{+0.32\\-0.13}\\ 0.09\substack{+0.37\\-0.09} \end{array}$                              | $ \begin{array}{c} -0.49\\ 43.50 {+3.21}\\ -3.21\\ 44.50 {+3.48}\\ -3.48\\ 0.50 {+0.69}\\ -0.44 \end{array} $                                                     | $4.0 {\pm} 0.1$ | $3.2{\pm}0.1$   | $4.8 {\pm} 0.1$ | $27.19^{+2.08}_{-2.08}$                                                                                                                  |               | D                 |
| 1279 | $185_{-14}^{-14}$                   | $8^{+4}$       | $177^{+14}_{-14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $45.56^{+3.50}_{-3.50}$                                                                                                                                                                                              | $1.14^{+0.62}_{-0.47}$                                                                                                | $44.50^{+3.48}_{-3.48}$                                                                                                                                           | $3.7 {\pm} 0.2$ | $3.0{\pm}0.1$   | $4.5 \pm 0.1$   | $27.29^{+2.37}_{-2.27}$                                                                                                                  |               | E                 |
| 1280 | $5^{+4}_{-2}$                       | $2^{+3}_{-2}$  | $2^{+3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.91^{+0.79}_{-0.57}$                                                                                                                                                                                               | $0.25^{+0.34}_{-0.10}$                                                                                                | $0.50^{+0.69}_{-0.44}$                                                                                                                                            | $2.1 \pm 2.1$   | $1.2{\pm}0.9$   | $5.3 \pm 1.5$   | $0.31^{+0.41}_{-0.26}$                                                                                                                   |               | В                 |
| 1281 | $5^{+4^{14}}_{-3}$<br>$2^{+5}_{-2}$ | $1^{+3}$       | $2^{+3}_{-2} \\ 1^{+5}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.34_{-0.34}^{+0.31}$                                                                                                                                                                                               | $\begin{array}{c} 1.14\substack{+0.62\\-0.47}\\ 0.25\substack{+0.34\\-0.19}\\ 0.11\substack{+0.40\\-0.52}\end{array}$ | $\begin{array}{c} 0.50 \substack{+0.04\\-0.44}\\ 0.15 \substack{+1.02\\-0.15}\\ 1.52 \substack{+1.07\\-0.82}\end{array}$                                          | $2.3 \pm 1.2$   | $1.8 \pm 8.2$   | $2.8 \pm 7.2$   | $ \begin{array}{c} -2.31 \\ 0.31 \substack{+0.41 \\ -0.36 \\ 0.13 \substack{+0.42 \\ -0.14 \\ -0.14 \end{array} } \end{array} $          |               | $\mathbf{E}$      |
| 1282 | $14^{+6}$                           | $8^{+4}_{-3}$  | $7^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $3.29^{+1.30}_{-1.06}$                                                                                                                                                                                               | $1.02_{-0.39}^{+0.53}$                                                                                                | $1.52^{+1.07}_{-0.82}$                                                                                                                                            | $1.7 \pm 1.1$   | $1.4{\pm}0.2$   | $3.9{\pm}3.0$   | $0.91\substack{+0.67\\-0.64}$                                                                                                            |               | В                 |
| 1283 | $11^{+6}_{-5}$                      | 4              | $11^{+6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.00                                                                                                                                                                                                                | $0.53^{-0.39}$                                                                                                        | $\begin{array}{c} 1.02\_0.82\\ 2.81^{+1.43}\\ -1.15\\ 0.45^{+0.93}\\ 0.29^{+0.52}\\ 0.29^{+0.52}\\ 0.71^{+0.64}\\ 0.71^{+0.64}\\ -0.38\\ 0.93^{+1.17}\end{array}$ | $5.1 \pm 2.8$   | $2.9{\pm}1.2$   | $8.4{\pm}1.3$   | $2.17^{+1.68}$                                                                                                                           | - S -         | $\mathbf{C}$      |
| 1284 | $12^{+6}$                           | $10^{+5}_{-3}$ | $2^{+4}_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2.71^{+1.24}_{-1.01}$                                                                                                                                                                                               | $1.29^{+0.57}_{-0.42}$                                                                                                | $0.45^{+0.93}_{-0.45}$                                                                                                                                            | $1.0 {\pm} 0.2$ | $1.0{\pm}0.1$   | $1.3 \pm 2.7$   | $0.45^{+0.22}_{-0.18}$                                                                                                                   |               | А                 |
| 1285 | $10^{-5}_{-3}$                      | $9^{+4}_{-3}$  | $2^{+4}_{-2} \\ 1^{+3}_{-1} \\ 4^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 2.69^{+1.46}_{-1.18} \\ 2.71^{+1.24}_{-1.01} \\ 1.97^{+0.85}_{-0.63} \\ 1.26^{+0.74}_{-0.51} \\ \end{array}$                                                                                       | $1.29^{+0.57}_{-0.43}\ 0.98^{+0.46}_{-0.33}$                                                                          | $0.29^{+0.52}_{-0.25}$                                                                                                                                            | $1.3 {\pm} 0.4$ | $1.1{\pm}0.2$   | $1.7 \pm 1.6$   | $\begin{array}{c} 0.45^{+0.22}_{-0.18}\\ 0.45^{+0.22}_{-0.18}\\ 0.41^{+0.22}_{-0.18}\\ 0.51^{+0.36}_{-0.29}\end{array}$                  |               | А                 |
| 1286 | $6^{+4}_{-3}$                       | $3^{+3}_{-2}$  | $4^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.26^{+0.74}_{-0.51}$                                                                                                                                                                                               | $\begin{array}{c} 0.98^{+0.13}_{-0.33} \\ 0.33^{+0.34}_{-0.19} \end{array}$                                           | $0.71_{-0.38}^{+0.64}$                                                                                                                                            | $2.5 \pm 1.0$   | $1.4{\pm}0.5$   | $3.8 \pm 1.1$   | $0.51^{+0.36}_{-0.20}$                                                                                                                   |               | $\mathbf{C}$      |
| 1287 | $8^{+5}_{-4}$                       | 3              | $8^{+5}_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.81                                                                                                                                                                                                                 | 0.40                                                                                                                  | 2.00 + 0.01                                                                                                                                                       | $4.4{\pm}1.4$   | $4.0 {\pm} 0.8$ | $5.5 \pm 2.4$   | $1.27^{+0.92}_{-0.77}$                                                                                                                   | - S -         | E                 |
| 1288 | $12^{+7}_{-6}$                      | $10^{+5}_{-4}$ | $2^{+6}_{-2} \\ 1^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 2.82 \substack{+1.74 \\ -1.49 \\ 3.52 \substack{+0.98 \\ -0.98 \\ 1.81 \substack{+1.32 \\ -1.06 \end{array}}}$                                                                                     | ${\begin{array}{c} 1.32\substack{+0.67\\-0.52}\\1.86\substack{+0.63\\-0.49}\\1.28\substack{+0.63\\-0.48}\end{array}}$ | $0.47^{+0.34}_{-0.47}\\0.23^{+0.71}_{-0.23}$                                                                                                                      | $1.5 {\pm} 0.4$ | $1.3 {\pm} 0.5$ | $1.6 \pm 3.8$   | $0.67^{+0.45}_{-0.20}$                                                                                                                   |               | А                 |
| 1289 | $16_{-4}^{+6}$                      | $15_{-4}^{+5}$ | $1^{+3}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $3.52^{+1.21}_{-0.98}$                                                                                                                                                                                               | $1.86^{+0.63}_{-0.49}$                                                                                                | $0.23_{-0.23}^{+0.71}$                                                                                                                                            | $1.4{\pm}0.2$   | $1.1{\pm}0.2$   | $1.8 \pm 1.2$   | $0.82^{+0.39}_{-0.25}$                                                                                                                   |               | А                 |
| 1290 | $7^{+5}_{-4}$                       | $9^{+5}_{-3}$  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.81^{+1.32}_{-1.06}$                                                                                                                                                                                               | $1.28^{+0.63}_{-0.48}$                                                                                                | 1 17                                                                                                                                                              | $1.2 {\pm} 0.1$ | $1.1{\pm}0.2$   | $1.2 {\pm} 0.1$ | $\begin{array}{c} 0.32 + 0.30 \\ 0.82 + 0.25 \\ 0.34 + 0.25 \\ 0.34 + 0.20 \\ 3.36 + 1.34 \\ - 1.08 \end{array}$                         | H             | А                 |
| 1291 | $13_{-4}^{-4}$                      | 3              | $13^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4.93^{+1.82}_{-1.30}$                                                                                                                                                                                               | 0.60                                                                                                                  | $5.05^{+1.86}_{-1.42}$                                                                                                                                            | $4.3 {\pm} 0.6$ | $3.5 {\pm} 0.3$ | $5.6 {\pm} 0.5$ | $3.36^{+1.34}_{-1.08}$                                                                                                                   | - S -         | D                 |
| 1292 | $12_{-4}^{+5}$                      | $6^{+4}_{-3}$  | $6^{+4}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.99^{+1.26}_{-1.00}$                                                                                                                                                                                               | $0.83^{+0.52}_{-0.35}$                                                                                                | $1.56^{+1.06}_{-0.79}$                                                                                                                                            | $2.1 {\pm} 0.9$ | $1.6 {\pm} 0.4$ | $4.7 \pm 2.8$   | $1.01^{+0.59}_{-0.52}$                                                                                                                   |               | В                 |
| 1293 | $7^{+8}_{-7}$                       | $2^{+4}$       | $6^{+4}_{-3}$<br>$5^{+7}_{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.99^{+1.26}_{-1.00}$<br>$1.58^{+1.72}_{-1.48}$                                                                                                                                                                     | $\begin{array}{c} 0.83\substack{+0.52\\-0.35}\\ 0.31\substack{+0.54\\-0.31\end{array}$                                | $1.05^{+1.59}_{-1.05}$                                                                                                                                            | $4.3 \pm 3.9$   | $3.0{\pm}2.3$   | $7.6{\pm}4.0$   | $1.09^{\pm 1.55}$                                                                                                                        |               | $\mathbf{C}$      |
| 1294 | $10^{+8}_{-7}$                      | $4^{+5}$       | $6^{+7}_{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{r} 1.58 \substack{+1.12\\-1.48}\\ 2.37 \substack{+1.95\\-1.69}\\ 1.50 \substack{+1.07\\-0.79}\end{array}$                                                                                             | $0.53^{+0.64}_{-0.49}$                                                                                                | $5.05^{+1.86}_{-1.42}$ $1.56^{+1.06}_{-0.79}$ $1.05^{+1.59}_{-1.05}$ $1.47^{+1.76}_{-1.47}$                                                                       | $3.8 \pm 3.4$   | $1.1{\pm}2.0$   | $5.8 {\pm} 1.7$ | $1 44 \pm 175$                                                                                                                           |               | $\mathbf{C}$      |
| 1295 | $6^{+4}_{-3}$                       | $6^{+4}$       | $^{-0}_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.50^{+1.07}_{-0.70}$                                                                                                                                                                                               | $0.84^{+0.54}_{-0.27}$                                                                                                | 1.10                                                                                                                                                              | $1.3 \pm 0.2$   | $1.1 \pm 0.1$   | $1.4{\pm}0.2$   | $0.31^{+0.22}_{-0.17}$                                                                                                                   | H             | А                 |
| 1296 | $12^{+6}_{-5}$                      | $6^{-3}_{-3}$  | $6^{+5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.94^{+1.57}_{-1.21}$                                                                                                                                                                                               | $0.53^{+0.64}_{-0.49} \ 0.84^{+0.54}_{-0.37} \ 0.83^{+0.59}_{-0.43}$                                                  | $\begin{array}{c} 1.49^{+1.37}_{-1.09}\\ 2.53^{+1.04}_{-0.80}\\ 8.42^{+1.89}_{-1.63}\end{array}$                                                                  | $2.7{\pm}1.5$   | $1.3 {\pm} 0.5$ | $3.6{\pm}3.0$   | $\begin{array}{c} 1.44 \substack{-1.65\\-1.65}\\ 0.31 \substack{+0.22\\-0.17}\\ 1.28 \substack{+0.99\\-0.91}\\ \end{array}$              |               | С                 |
| 1297 | $13^{+5}$                           | $2^{+3}_{-1}$  | $11^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.82^{+1.08}$                                                                                                                                                                                                       |                                                                                                                       | $2.53^{+1.04}_{-0.80}$                                                                                                                                            | $3.8{\pm}0.7$   | $2.7{\pm}0.5$   | $5.2 {\pm} 0.8$ | $1.71^{+0.72}_{-0.60}$                                                                                                                   |               | D                 |
| 1298 | $49_{-8}^{-4}$                      | $15^{+1}_{-4}$ | $34_{-7}^{+8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $11.92^{+2.16}$                                                                                                                                                                                                      | $\begin{array}{c} 0.19^{+0.03}_{-0.16} \\ 2.06^{+0.73}_{-0.58} \end{array}$                                           | $8.42_{-1.63}^{+0.80}$                                                                                                                                            | $3.4{\pm}0.5$   | $1.9{\pm}0.2$   | $4.3 \pm 0.3$   | $6.57^{+1.47}_{-1.36}$                                                                                                                   |               | $\mathbf{C}$      |
| 1299 | $11^{+5}_{-4}$                      | $2^{-4}$       | $12_{-4}^{-7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.60^{+1.14}_{-0.80}$                                                                                                                                                                                               | 0.30                                                                                                                  | $2.77^{+1.16}_{-0.91}$                                                                                                                                            | $3.7 {\pm} 0.4$ | $3.3 {\pm} 0.4$ | $4.5 {\pm} 0.4$ | $1.54^{+0.69}_{-0.55}$                                                                                                                   | - S -         | Е                 |
| 1300 | $11^{+6}_{-5}$                      | $3^{+3}_{-2}$  | $8^{+5}_{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 2.60 \substack{+1.14 \\ -0.89 \\ 2.53 \substack{+1.26 \\ -1.03 \\ 2.53 \substack{+0.95 \\ -0.73 \\ 3.41 \substack{+1.43 \\ -1.16 \\ -0.22 \substack{+1.50 \\ -0.73 \\ -0.73 \\ -0.73 \end{array}}$ | $\begin{array}{c} 0.38\substack{+0.43\\-0.27}\\ 0.10\substack{+0.27\\-0.10\end{array}$                                | $\begin{array}{c} 2.77 \substack{+1.16 \\ -0.91 \\ 1.91 \substack{+1.16 \\ -0.92 \\ 2.40 \substack{+0.94 \\ -0.72 \\ +1.05 \end{array}}$                          | $3.0{\pm}2.4$   | $2.4{\pm}0.5$   | $9.7 {\pm} 3.7$ | $1.54^{+1.69}_{-0.55}$<br>$1.21^{+1.13}_{-1.07}$                                                                                         |               | $\mathbf{C}$      |
| 1301 | $12_{-4}^{+5}$                      | $1^{+2}_{-1}$  | $12^{+5}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.53^{+0.95}_{-0.73}$                                                                                                                                                                                               | $0.10^{+0.27}_{-0.10}$                                                                                                | $2.40^{+0.94}_{-0.72}$                                                                                                                                            | $4.3 {\pm} 0.3$ | $3.3 {\pm} 0.7$ | $4.7 {\pm} 0.2$ | $1.73^{+0.67}_{-0.52}$                                                                                                                   |               | Е                 |
| 1302 | $13_{-5}^{+6}$                      | $11^{+5}_{-3}$ | $2^{+3}_{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $3.41^{+1.43}_{-1.16}$                                                                                                                                                                                               | $\begin{array}{c} 1.59\substack{+0.66\\-0.50}\\ 0.23\substack{+0.47\\-0.23}\end{array}$                               | $\begin{array}{c} 2.13 \pm 0.72 \\ 0.59 \pm 0.59 \\ 1.95 \pm 1.44 \\ 1.95 \pm 1.09 \\ 2.37 \pm 0.95 \\ 2.37 \pm 0.72 \end{array}$                                 | $1.5 \pm 0.2$   | $1.1 \pm 0.2$   | $1.8 {\pm} 0.3$ | $0.82^{+0.37}_{-0.31}$                                                                                                                   |               | А                 |
| 1303 | $7^{+5}_{-4}$                       | $1^{+3}_{-1}$  | $6^{+2}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.32^{+1.50}_{-1.16}$ $2.28^{+0.94}_{-0.71}$                                                                                                                                                                        | $0.23^{+0.47}_{-0.22}$                                                                                                | $1.95^{+1.44}_{-1.00}$                                                                                                                                            | $5.8 \pm 3.0$   | $2.5 \pm 2.0$   | $9.7{\pm}2.4$   | $2.15^{+1.78}_{-1.55}$                                                                                                                   |               | $\mathbf{C}$      |
| 1304 | $11^{+5}_{-3}$                      | $\frac{-1}{3}$ | $11^{+5}_{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.28^{+0.94}_{-0.71}$                                                                                                                                                                                               | 0.30                                                                                                                  | $2.37^{+0.95}_{-0.72}$                                                                                                                                            | $3.8 {\pm} 0.8$ | $2.8 \pm 0.5$   | $5.3 \pm 1.4$   | $1.38^{+0.63}_{-0.52}$                                                                                                                   | - S -         | D                 |

Chandra Catalog: Photometry (continued)

| No.  | $\begin{array}{c} C_{net} \\ \mathrm{FB} \end{array}$     | $C_{net}$ SB          | $\begin{array}{c} C_{net} \\ \mathrm{HB} \end{array}$                                                                                             | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                         | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                                           | $f_{\rm ph} {\rm HB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $\begin{array}{c} f_X(10^{-14} {\rm erg} \\ {\rm cm}^{-2} {\rm \ s}^{-1}) \end{array}$     | Phot.<br>Flag | Quantile<br>Group |
|------|-----------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|--------------------------------------------------------------------------------------------|---------------|-------------------|
| 1305 | $19^{+6}_{-4}$                                            | $18^{+5}_{-4}$        | $2^{+3}_{-1}$                                                                                                                                     | $3.94^{+1.12}_{-0.00}$                                                                                                                                                            | $2.10\substack{+0.63\\-0.50}$                                                                                                                                                                         | $\begin{array}{c} 0.32\substack{+0.55\\-0.27}\\ 1.27\substack{+0.73\\-0.49}\\ 0.20\substack{+0.63\\-0.20}\\ 0.19\substack{+0.67\\-0.19}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.1 \pm 0.1$   | $0.9{\pm}0.1$   | $1.4{\pm}0.2$   | $0.67^{+0.20}_{-0.17}$                                                                     |               | А                 |
| 1306 | $7^{+4}_{-3}$                                             | 3                     | $\begin{array}{c} & & & & & & \\ & 7^{+4}_{-3} & & & & \\ & 1^{+3}_{-1} & & & & \\ & 1^{+3}_{-1} & & & & \\ & 1^{+3}_{-1} & & & & \\ \end{array}$ | $3.94^{+1.12}_{-0.90}$<br>$1.23^{+0.71}_{-0.48}$                                                                                                                                  | 0.28                                                                                                                                                                                                  | $1.27^{+0.73}_{-0.49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4.5 {\pm} 0.9$ | $4.2 {\pm} 0.3$ | $5.7 {\pm} 2.0$ |                                                                                            | - S -         | E                 |
| 1307 | $7^{+4}_{-3}\\6^{+4}_{-3}$                                | $6^{+4}$              | $1^{+3}_{-1}$                                                                                                                                     | 1 - 71 + 0.96                                                                                                                                                                     | $0.87^{+0.51}_{-0.34}$                                                                                                                                                                                | $0.20^{+0.63}_{-0.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.1 \pm 1.3$   | $0.9{\pm}0.2$   | $1.9 {\pm} 3.9$ |                                                                                            |               | В                 |
| 1308 | $6^{+4}_{-3}$                                             | $5^{+4}_{-2}$         | $1^{+3}_{-1}$                                                                                                                                     | $1.71_{-0.70}$<br>$1.25_{-0.66}^{+0.89}$                                                                                                                                          | $\begin{array}{c} 0.87 \substack{+0.51 \\ -0.34 \\ 0.61 \substack{+0.43 \\ -0.28 \\ 0.72 \substack{+1.67 \\ -0.72 \\ 1.17 \substack{+0.48 \\ -0.36 \\ 0.84 \substack{+0.52 \\ -0.35 \\ \end{array}}}$ | $0.19^{+0.67}_{-0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.4 {\pm} 0.4$ | $1.3 {\pm} 0.1$ | $1.5 {\pm} 0.7$ | $\begin{array}{c} 0.31\substack{+0.40\\-0.38}\\ 0.27\substack{+0.21\\-0.16}\\ \end{array}$ |               | А                 |
| 1309 | $273^{+30}_{-30}$                                         | $5^{+12}_{-5}$        | $267^{+28}_{-28}$                                                                                                                                 | $63.82^{+7.05}_{-7.05}$                                                                                                                                                           | $0.72^{+1.67}_{-0.72}$                                                                                                                                                                                | $63.69^{+6.56}_{-6.56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4.5{\pm}0.2$   | $3.6{\pm}0.1$   | $5.5 {\pm} 0.3$ | $45.83^{+5.49}_{-5.49}$                                                                    |               | D                 |
| 1310 | $14^{+5}_{-4}$                                            | $11^{+4}_{-3}$        | $4^{+3}_{-2}$                                                                                                                                     | $2.69^{+0.92}_{-0.72} \ 3.66^{+1.30}_{-1.05}$                                                                                                                                     | $1.17^{+0.48}_{-0.36}$                                                                                                                                                                                | $0.69^{+0.60}_{-0.36}$<br>$2.24^{+1.12}_{-0.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.7{\pm}0.2$   | $1.3{\pm}0.2$   | $2.0{\pm}0.6$   |                                                                                            |               | А                 |
| 1311 | $15^{+5}_{-4}$                                            | $6^{+4}_{-3}$         | $\begin{array}{c}9^{+5}\\-3\\4^{-2}\\1^{+2}\\7^{+3}\\4^{-1}\\4^{+4}\\4^{-8}\\4^{+6}\\1^{-1}\\1^{+3}\\-1\end{array}$                               | $3.66^{+1.30}_{-1.05}$                                                                                                                                                            | $0.84_{-0.35}^{+0.52}$                                                                                                                                                                                | $2.24^{+1.12}_{-0.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2.1{\pm}0.5$   | $1.2{\pm}0.3$   | $2.7{\pm}0.5$   | $1.25_{-0.45}^{+0.52}$                                                                     |               | В                 |
| 1312 | $5^{+3}_{-2}$                                             | $1^{+2}_{-1}$         | $4^{+3}_{-2}$                                                                                                                                     | $3.66^{+1.36}_{-1.05}$<br>$2.81^{+2.01}_{-1.28}$                                                                                                                                  | $\begin{array}{c} 0.84\substack{+0.32\\-0.35}\\ 0.33\substack{+0.80\\-0.28}\\ 0.74\substack{+0.41\\-0.28}\\ 1.20\substack{+0.49\\-0.37}\\ \end{array}$                                                | $2.20^{\pm 1.92}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $3.6{\pm}0.6$   | $3.0{\pm}0.7$   | $4.2{\pm}0.3$   | $1.62^{+1.19}_{-0.78}$                                                                     |               | E                 |
| 1313 | $8^{+4}_{-3}$                                             | $7^{+\bar{4}}_{-3}$   | $1^{+2}_{-1}$                                                                                                                                     | $2.81^{+2.01}_{-1.28}$ $1.39^{+0.73}_{-0.52}$                                                                                                                                     | $0.74^{+0.41}_{-0.28}$                                                                                                                                                                                | $2.29^{-1.15}_{-1.15}$<br>$0.13^{+0.44}_{-0.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.3{\pm}0.3$   | $0.9{\pm}0.2$   | $1.6{\pm}0.5$   | $\begin{array}{c}1.62\substack{+1.19\\-0.78}\\0.29\substack{+0.16\\-0.12}\end{array}$      |               | В                 |
| 1314 | $18_{-4}^{+5}$                                            | $11^{+4}_{-3}$        | $7^{+4}_{-3}$                                                                                                                                     | $\begin{array}{c} 1.39 \substack{+0.52\\-0.52}\\ 3.34 \substack{+1.01\\-0.81}\\ 3.38 \substack{+0.82\\-0.67}\end{array}$                                                          | $1.20^{+0.49}_{-0.37}$                                                                                                                                                                                | $1.29^{+0.73}_{-0.50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.8{\pm}0.3$   | $1.4{\pm}0.3$   | $2.6{\pm}0.4$   | $0.95^{+0.133}_{-0.28}\ 2.47^{+0.61}_{-0.50}$                                              |               | А                 |
| 1315 | $42^{+10}_{-8}$                                           | 9                     | $43^{+10}_{-8}$                                                                                                                                   | $3.38\substack{+0.82\\-0.67}$                                                                                                                                                     | 0.42                                                                                                                                                                                                  | $\begin{array}{c} 0.13 \substack{+0.44 \\ -0.13} \\ 1.29 \substack{+0.73 \\ -0.50} \\ 3.56 \substack{+0.82 \\ -0.66} \\ 0.28 \substack{+1.29 \\ -0.28} \\ 0.22 \substack{+0.52 \\ -0.22} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $4.6{\pm}0.2$   | $3.9{\pm}0.3$   | $4.7 {\pm} 0.1$ | $2.47^{+0.61}_{-0.50}$                                                                     | - S -         | E                 |
| 1316 | $10^{+7}_{-6}$                                            | $9^{+5}_{-4}$         | $1^{+6}_{-1}$                                                                                                                                     | $2.22^{+1.55}_{-1.32}$                                                                                                                                                            | $1.11_{-0.48}^{+0.62}$                                                                                                                                                                                | $0.28^{+1.29}_{-0.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.6{\pm}0.9$   | $1.1\pm0.3$     | $1.8 {\pm} 4.9$ | $0.58^{+0.53}_{-0.48}$                                                                     |               | А                 |
| 1317 | $\begin{array}{c} 6^{+4}_{-3} \\ 6^{+4}_{-3} \end{array}$ | $5^{+3}_{-2}$         |                                                                                                                                                   | $2.22 - 1.32 \\ 1.11 + 0.72 \\ -0.49$                                                                                                                                             |                                                                                                                                                                                                       | $0.22^{+0.52}_{-0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.2 {\pm} 0.4$ | $1.1\pm0.1$     | $1.8 {\pm} 0.5$ | $0.21^{+0.15}_{-0.11}$                                                                     |               | А                 |
| 1318 | $6^{+4}_{-3}$                                             | $7^{+4}_{-3}$         | 2                                                                                                                                                 | $1.11\substack{+0.72\\-0.49}\\1.28\substack{+0.76\\-0.52}$                                                                                                                        | $0.52^{+0.38}_{-0.24}$<br>$0.80^{+0.44}_{-0.30}$                                                                                                                                                      | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.2 {\pm} 0.1$ | $1.1{\pm}0.0$   | $1.3 {\pm} 0.1$ | $0.24_{-0.10}^{+0.11}$                                                                     | H             | А                 |
| 1319 | $13^{+5}_{-4}$                                            | $11_{-3}^{+4}$        | $2^{+3}_{-1}$                                                                                                                                     | $\begin{array}{r} 1.28_{-0.52}^{+0.16} \\ 4.28_{-1.21}^{+1.58} \\ 1.20_{-1.20}^{+2.26} \\ 14.69_{-1.97}^{+2.24} \end{array}$                                                      | $0.80^{+0.30}_{-0.30}$<br>$2.14^{+0.87}_{-0.65}$                                                                                                                                                      | $\begin{array}{c} 0.62\substack{+0.91\\-0.44}\\ 1.46\substack{+2.12\\-1.46}\\ 15.01\substack{+2.29\\-2.01\\-2.01\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.4 {\pm} 0.2$ | $1.1\pm0.1$     | $1.9{\pm}1.2$   | $0.95_{-0.31}^{+0.38}$                                                                     |               | А                 |
| 1320 | $3^{+6}_{-3}$                                             | 5                     | $4^{+5}_{-4}$                                                                                                                                     | $1.20^{+2.26}_{-1.20}$                                                                                                                                                            | 0.98                                                                                                                                                                                                  | $1.46^{+2.12}_{-1.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4.0 \pm 1.5$   | $2.7 \pm 1.1$   | $4.1 {\pm} 0.6$ | $\begin{array}{c} 0.77\substack{+1.48\\-0.83}\\ 10.83\substack{+1.83\\-1.65}\end{array}$   | - S -         | D                 |
| 1321 | $56^{+9}_{-8}$                                            | 3                     | $56^{+9}_{-8}$                                                                                                                                    | $14.69^{+2.24}_{-1.97}$                                                                                                                                                           | 0.40                                                                                                                                                                                                  | $15.01^{+2.29}_{-2.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $4.6 {\pm} 0.3$ | $3.4{\pm}0.2$   | $5.8 {\pm} 0.4$ | $10.83^{+1.83}_{-1.65}$                                                                    | - S -         | D                 |
| 1322 | $8^{+4}_{-3}$                                             | $3^{+3}_{-2}$         | $5^{+3}_{-2}$                                                                                                                                     | $4.13^{+2.12}_{-1.52}$                                                                                                                                                            | $0.89^{+0.90}_{-0.50}$                                                                                                                                                                                | $2.62^{+1.86}_{-1.18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2.1 {\pm} 0.7$ | $1.7 \pm 0.3$   | $2.8 {\pm} 2.6$ | $1.39^{+0.86}_{-0.70}$<br>$0.74^{+0.42}_{-0.31}$                                           |               | А                 |
| 1323 | $7^{+4}_{-3}$                                             | $1^{+2}_{-1}$         | $5^{+3}_{-2} \\ 6^{+4}_{-3} \\ 11^{+5}_{-3}$                                                                                                      | $\begin{array}{c} 4.13\substack{+2.12\\-1.52}\\ 1.67\substack{+0.90\\-0.65}\\ 3.12\substack{+1.09\\-0.85}\end{array}$                                                             | $\begin{array}{c} 0.40\\ 0.89 \substack{+0.90\\-0.50}\\ 0.11 \substack{+0.30\\-0.11}\\ 0.36 \substack{+0.37\\-0.21}\\ 0.21 \substack{+0.35\\-0.21}\\ 0.21 \substack{+0.35\\-0.21}\end{array}$         | $\begin{array}{c} 13.01_{-2.01}\\ 2.62_{-1.18}\\ 1.51_{-0.60}\\ 2.55_{-0.78}\\ 1.89_{-0.77}^{+0.08}\\ 1.89_{-0.77}^{+0.097}\\ 5.23_{-1.06}^{+1.29}\\ 2.47_{-0.94}^{-1.20}\\ 2.02_{-0.79}^{+1.09}\\ 2.55_{-0.78}^{-1.06}\\ 2.55_{-0.78}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1.55_{-0.79}^{-1.06}\\ 1$ | $2.8 {\pm} 0.4$ | $2.0{\pm}0.3$   | $3.2 {\pm} 0.3$ | $0.74^{+0.42}_{-0.31}$                                                                     |               | $\mathbf{E}$      |
| 1324 | $14_{-4}^{+5}$                                            | $3^{+3}_{-2}$         | $11^{+5}_{-3}$                                                                                                                                    | $3.12^{+1.09}_{-0.85}$<br>$2.22^{+1.04}_{-0.84}$                                                                                                                                  | $0.36^{+0.37}_{-0.21}$                                                                                                                                                                                | $2.55^{+1.03}_{-0.78}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3.2 {\pm} 0.5$ | $2.1{\pm}0.3$   | $3.8{\pm}0.2$   | $1.57^{+0.61}_{-0.50}$                                                                     |               | D                 |
| 1325 | $12^{+6}_{-5}$                                            | $2^{+\bar{3}}_{-2}$   | $10^{+5}_{-4}$                                                                                                                                    | $2.22_{-0.84}^{+1.04}$ $5.10_{-1.04}^{+1.26}$                                                                                                                                     | $0.21^{+0.35}_{-0.21}$                                                                                                                                                                                | $1.89^{+0.97}_{-0.77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $5.1 \pm 1.9$   | $2.7 \pm 1.3$   | $6.8 {\pm} 2.1$ | $1.83^{+1.09}_{-0.97}$                                                                     |               | $\mathbf{C}$      |
| 1326 | $25^{+6}_{-5}$                                            | 3                     | $25^{+6}_{-5}$                                                                                                                                    | $5.10^{+1.26}_{-1.04}$                                                                                                                                                            | 0.31                                                                                                                                                                                                  | $5.23^{+1.29}_{-1.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4.0 {\pm} 0.6$ | $3.7 {\pm} 0.2$ | $6.1{\pm}0.5$   | $3.27^{+0.95}_{-0.83}$                                                                     | - S -         | D                 |
| 1327 | $9^{+5}_{-4}$                                             | 2                     | $10^{+5}_{-4}$                                                                                                                                    | $2.18^{+1.18}_{-0.92}$                                                                                                                                                            | 0.30                                                                                                                                                                                                  | $2.47^{+1.20}_{-0.94}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3.9 {\pm} 0.7$ | $3.4{\pm}0.5$   | $5.2 {\pm} 0.8$ | $1.35^{+0.87}_{-0.62}$<br>$1.64^{+0.98}_{-0.73}$                                           | - S -         | E                 |
| 1328 | $7^{+4}_{-3}$<br>$4^{+4}_{-3}$                            | 2                     | $8^{+4}_{-3}$                                                                                                                                     | $1.83^{+1.07}_{-0.78}$                                                                                                                                                            | 0.34                                                                                                                                                                                                  | $2.02^{+1.09}_{-0.79}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $5.6 {\pm} 0.7$ | $5.2 {\pm} 0.6$ | $6.8 {\pm} 0.7$ | $1.64^{+0.98}_{-0.73}$                                                                     | - S -         | D                 |
| 1329 | $4^{+4}_{-3}$                                             | $6^{+4}_{-3}$         | 3                                                                                                                                                 | $5.10^{+1.20}_{-1.04}$ $2.18^{+1.18}_{-0.92}$ $1.83^{+1.07}_{-0.78}$ $0.89^{+0.80}_{-0.58}$                                                                                       | $\begin{array}{c} 0.04 \\ 0.71 \substack{+0.44 \\ -0.30 \\ 5.38 \substack{+0.69 \\ -0.60 \\ 0.10 \substack{+0.25 \\ -0.09 \\ 1.21 \substack{+0.55 \\ -0.41 \\ 0.041 \end{array}}$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.0 {\pm} 0.2$ | $0.9{\pm}0.1$   | $1.1 \pm 0.1$   | $1.64_{-0.73}^{+0.13}$<br>$0.14_{-0.09}^{+0.13}$<br>$1.72_{-0.21}^{+0.23}$                 | H             | А                 |
| 1330 | $90^{+11}_{-10}$                                          | $84_{-9}^{-31}$       | ${6^{+5}_{-3}}\atop{7^{+4}_{-3}}$                                                                                                                 | $10.08^{\pm1.00}$                                                                                                                                                                 | $5.38^{+0.69}_{-0.60}$                                                                                                                                                                                | $\begin{array}{c} 0.63\\ 0.62\substack{+0.60\\-0.38}\\ 1.24\substack{+0.72\\-0.49}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.1 \pm 0.0$   | $1.0{\pm}0.0$   | $1.3 {\pm} 0.2$ | $1.72^{+0.23}_{-0.21}$                                                                     |               | А                 |
| 1331 | $7^{+4}_{-3}$                                             | $1^{+2}_{-1}$         | $7^{+4}_{-3}$                                                                                                                                     | $1.38^{+0.74}_{-0.53}$                                                                                                                                                            | $0.10^{+0.25}_{-0.09}$                                                                                                                                                                                | $1.24_{-0.49}^{+0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4.0 {\pm} 1.3$ | $2.4{\pm}1.0$   | $5.8 \pm 1.1$   | $0.87^{+0.55}_{-0.45}$                                                                     |               | $\mathbf{C}$      |
| 1332 | $9^{+5}_{-4}$                                             | $10^{+4}_{-3}$        | 5                                                                                                                                                 | $2.04^{+1.09}_{-0.85}$                                                                                                                                                            | $1.21^{+0.55}_{-0.41}$                                                                                                                                                                                | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.4 {\pm} 0.2$ | $1.1 \pm 0.1$   | $1.5 {\pm} 0.2$ | $0.46^{+0.25}_{-0.20}$                                                                     | H             | А                 |
| 1333 | $6^{-4}_{-4}$                                             | 2                     | $8^{+5}_{-4} \\ 7^{+4}_{-3}$                                                                                                                      | $2.04_{-0.85}$ $1.44_{-0.89}^{+1.15}$ $2.04_{-0.89}^{+1.15}$                                                                                                                      | 0.30                                                                                                                                                                                                  | $1.89^{+1.17}_{-0.91}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $7.7 \pm 1.7$   | $6.4 \pm 1.2$   | $9.7 \pm 1.2$   | $1.78^{+0.46}_{-1.16}\\1.04^{+0.63}_{-0.51}$                                               | - S -         | D                 |
| 1334 | $9^{+5}_{-4}$                                             | $2^{+3}_{-2}$         | $7^{+4}_{-3}$                                                                                                                                     | $2.04^{+1.15}_{-0.89}$                                                                                                                                                            | $0.21^{+0.40}_{-0.21}$                                                                                                                                                                                | $1.71^{+1.08}_{-0.81}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3.2 \pm 0.7$   | $2.5\pm0.8$     | $3.7 \pm 1.5$   | $1.04^{+0.03}_{-0.51}$                                                                     |               | E                 |
| 1335 | $13^{+5}_{-4}$                                            | $1^{+\tilde{2}}_{-1}$ | $12^{+5}_{-4}$                                                                                                                                    | $2.04^{+1.10}_{-0.89}$ $2.67^{+1.00}_{-0.77}$ $1.59^{+0.80}_{-0.58}$                                                                                                              | $\begin{array}{c} 0.21\substack{+0.40\\-0.21}\\ 0.09\substack{+0.28\\-0.09}\\ 0.76\substack{+0.43\\-0.29}\\ \end{array}$                                                                              | $2.57^{+0.99}_{-0.76}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3.4 {\pm} 0.8$ | $2.5 \pm 0.4$   | $5.8 \pm 1.3$   | $1.44_{-0.54}^{+0.64}$                                                                     |               | С                 |
| 1336 | $8^{+4}_{-3}$                                             | $7^{+4}_{-3}$         | $1^{+3}_{-1}$                                                                                                                                     | $1.59^{+0.80}_{-0.58}$                                                                                                                                                            | $0.76^{+0.43}_{-0.29}$                                                                                                                                                                                | $0.28^{+0.33}_{-0.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.5 \pm 0.3$   | $1.3 \pm 0.1$   | $1.7 {\pm} 0.9$ | $0.38_{-0.16}^{+0.21}$                                                                     |               | A                 |
| 1337 | $22^{+7}_{-5}$                                            | $9^{+5}_{-3}_{+4}$    | $13^{+6}_{-4} \\ 5^{+4}_{-2}$                                                                                                                     | $\begin{array}{c} 3.26\substack{+1.08\\-0.84}\\ 3.26\substack{+1.08\\-0.84}\\ 2.77\substack{+1.07\\-0.83}\\ 2.06\substack{+0.90\\-0.68}\\ 3.92\substack{+1.28\\-1.05}\end{array}$ | ${}^{+0.29}_{-0.29}\\1.15{}^{+0.45}_{-0.29}\\0.97{}^{+0.50}_{-0.36}$                                                                                                                                  | $1.02 + 1.17 \\ 1.89^{+0.11}_{-0.81} \\ 1.71^{+1.08}_{-0.81} \\ 2.57^{+0.99}_{-0.76} \\ 0.28^{+0.53}_{-0.26} \\ 1.76^{+0.90}_{-0.66} \\ 1.10^{+0.81}_{-0.54} \\ 2.14^{+0.92}_{-0.69} \\ 0.99^{+0.81}_{-0.68} \\ 1.80^{-0.68}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{+0.81}_{-0.68} \\ 0.99^{$                  | $2.7 \pm 0.3$   | $1.6 \pm 0.3$   | $3.1 {\pm} 0.5$ | $1.41^{+0.10}_{-0.40}$                                                                     |               | E                 |
| 1338 | $13^{+5}_{-4}_{+4}$                                       | $8^{+3}_{-3}$         | $5^{+4}_{-2}$                                                                                                                                     | $2.77^{+1.07}_{-0.83}$                                                                                                                                                            | $0.97^{+0.30}_{-0.36}$                                                                                                                                                                                | $1.10^{+0.81}_{-0.54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.6 {\pm} 0.6$ | $1.3 \pm 0.2$   | $3.6{\pm}1.0$   | $0.72^{+0.39}_{-0.35}$<br>$1.59^{+0.76}_{-0.61}$                                           |               | В                 |
| 1339 | $10^{+4}_{-3}$                                            | 3                     | $10^{+4}_{-3}$                                                                                                                                    | $2.06^{+0.90}_{-0.68}$                                                                                                                                                            | 0.30                                                                                                                                                                                                  | $2.14^{+0.92}_{-0.69}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4.8 \pm 0.9$   | $3.9 {\pm} 0.5$ | $6.8 {\pm} 0.8$ | 10.25                                                                                      | - S -         | D                 |
| 1340 | $18^{+6}_{-5}$                                            | $14^{+5}_{-4}$        | $4^{+4}_{-3}$                                                                                                                                     | $3.92^{+1.28}_{-1.05}$                                                                                                                                                            | $1.74^{+0.61}_{-0.48}$<br>$0.43^{+0.39}_{-0.23}$                                                                                                                                                      | $0.88 \substack{+0.88 \\ -0.63}\\ 3.12 \substack{+1.11 \\ -0.88}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.2 \pm 0.4$   | $1.0 \pm 0.1$   | $1.7 \pm 2.9$   | $0.75\substack{+0.35\\-0.32}\\1.90\substack{+0.70\\-0.60}$                                 |               | A                 |
| 1341 | $18_{-4}^{+6}$                                            | $3^{+3}_{-2}$         | $14^{+5}_{-4}$                                                                                                                                    | $3.80^{+1.19}_{-0.96}$                                                                                                                                                            |                                                                                                                                                                                                       | $3.12^{+1.11}_{-0.88}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3.1 \pm 0.6$   | $2.4{\pm}0.4$   | $4.3 \pm 0.4$   | $1.90^{+0.70}_{-0.60}$                                                                     |               | D                 |
| 1342 | $5^{+4}_{-3}$                                             | $6^{+\bar{4}}_{-3}$   | 2                                                                                                                                                 | $2.11^{+1.57}_{-1.07}$                                                                                                                                                            | $1.53_{-0.61}^{+0.90}$                                                                                                                                                                                | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.0 {\pm} 0.2$ | $0.9{\pm}0.1$   | $1.1 \pm 0.2$   | $0.33_{-0.18}^{+0.25}$                                                                     | H             | А                 |

Chandra Catalog: Photometry (continued)

| No.  | $\begin{array}{c} C_{net} \\ \mathrm{FB} \end{array}$ | $C_{net}$ SB          | $C_{net}$ HB                                                                              | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                           | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                                                      | $f_{\rm ph} HB(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                                                                  | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  | $f_X(10^{-14} \text{erg} \text{cm}^{-2} \text{ s}^{-1})$                                                                                      | Phot.<br>Flag | Quantile<br>Group |
|------|-------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 1343 | $9^{+4}_{-3}$                                         | $9^{+4}_{-3}$         | $1^{+3}_{-1}$                                                                             | $2.09^{+0.99}_{-0.74}$ $1.27^{+0.77}_{-0.55}$ $2.89^{+1.24}_{-1.00}$                                                                                                                                | $1.10\substack{+0.52\\-0.38}$                                                                                                                                                                                    | $\begin{array}{c} 0.16\substack{+0.61\\-0.16}\\ 1.37\substack{+0.79\\-0.56}\\ 2.77\substack{+1.22\\-0.96}\\ 0.31\substack{+0.61\\-0.29}\\ 1.14\substack{+1.07\\-0.83\\-0.79\\-0.721,-0.21\\-0.21\\-0.21\\-0.21\\-0.98\\-0.55\end{array}$                             | $1.2 \pm 0.2$   | $1.0{\pm}0.1$   | $1.4{\pm}0.5$   | $0.41^{+0.20}_{-0.16}$                                                                                                                        |               | А                 |
| 1344 | $6^{-3}_{-3}$                                         | 2                     | $7^{+4}_{-3}$                                                                             | $1.27^{+0.77}_{-0.55}$                                                                                                                                                                              | 0.26                                                                                                                                                                                                             | $1.37^{+0.79}_{-0.56}$                                                                                                                                                                                                                                               | $6.7 \pm 1.1$   | $6.0{\pm}1.6$   | $7.9 {\pm} 0.7$ | $0.41^{+0.20}_{-0.16}\ 1.36^{+0.86}_{-0.63}$                                                                                                  | - S -         | D                 |
| 1345 | $13^{+5}_{-4}$                                        | $1^{+3}$              | $12^{+5}_{-4}$                                                                            | $2.89^{+1.24}_{-1.00}$                                                                                                                                                                              | $a + a \pm 0.34$                                                                                                                                                                                                 | $2.77^{+1.22}_{-0.96}$                                                                                                                                                                                                                                               | $4.5{\pm}0.7$   | $3.2{\pm}1.0$   | $5.6 \pm 1.1$   | 10.00                                                                                                                                         |               | D                 |
| 1346 | $5^{+4}_{-2}$                                         | $4^{+3}_{-2}$         | $1^{+3}_{-1}$                                                                             | $\begin{array}{c} 2.89\substack{+1.24\\-1.00}\\ 1.15\substack{+0.80\\-0.53}\\ 1.97\substack{+1.22\\-1.00\\1.32\substack{+0.77\\-0.55\\1.81\substack{+0.91\\-0.69}}\end{array}$                      | $\begin{array}{c} 0.10 \substack{+0.34\\-0.10}\\ 0.49 \substack{+0.41\\-0.25}\\ 0.49 \substack{+0.47\\-0.32}\end{array}$                                                                                         | $0.31^{+0.61}_{-0.29}$                                                                                                                                                                                                                                               | $1.5{\pm}0.8$   | $1.1{\pm}0.3$   | $2.6{\pm}0.9$   | $0.28^{+0.24}_{-0.19}$                                                                                                                        |               | В                 |
| 1347 | $9^{+\bar{6}}_{-5}$                                   | $4^{+\bar{4}}_{-3}$   | $1^{+3}_{-1} \\ 5^{+5}_{-4} \\ 7^{+4}_{-3} \\ 1^{+3}_{-1} \\ 1^{+8}_{-1} \\ 11^{+5}_{-4}$ | $1.97^{+1.22}_{-1.00}$                                                                                                                                                                              | $0.49_{-0.32}^{+0.47}$                                                                                                                                                                                           | $1.14_{-0.83}^{+1.07}$                                                                                                                                                                                                                                               | $3.9{\pm}2.7$   | $1.0{\pm}1.6$   | $7.2 \pm 1.5$   | $1.24^{+1.13}_{-1.05}$                                                                                                                        |               | $\mathbf{C}$      |
| 1348 | $7^{+4}$                                              | 2                     | $7^{+4}_{-3}$                                                                             | $1.32^{+0.77}_{-0.55}$                                                                                                                                                                              | 0.27                                                                                                                                                                                                             | $1.41^{+0.79}_{-0.57}$                                                                                                                                                                                                                                               | $4.4{\pm}0.9$   | $3.8{\pm}0.6$   | $6.1{\pm}0.8$   | $0.93^{+0.57}_{-0.43}$<br>$0.41^{+0.25}_{-0.21}$                                                                                              | - S -         | D                 |
| 1349 | $9^{+4}_{-3}$                                         | $7^{+4}_{-3}$         | $1^{+3}_{-1}$                                                                             | $1.81\substack{+0.91\\-0.69}$                                                                                                                                                                       | $0.89^{+0.47}_{-0.34}$                                                                                                                                                                                           | $0.27\substack{+0.62\\-0.27}$                                                                                                                                                                                                                                        | $1.4{\pm}0.5$   | $1.1{\pm}0.2$   | $1.7 {\pm} 1.1$ | $0.41^{+0.25}_{-0.21}$                                                                                                                        |               | А                 |
| 1350 | $3^{+9}_{-3}$                                         | $2^{+5}_{-2}$         | $1^{+8}_{-1}$                                                                             | 19.61                                                                                                                                                                                               | $0.89^{+0.47}_{-0.34}$<br>$0.36^{+0.78}_{-0.36}$                                                                                                                                                                 | $0.21^{+2.48}_{-0.21}$                                                                                                                                                                                                                                               | $9.8{\pm}9.3$   | $0.9{\pm}9.1$   | $9.9{\pm}9.4$   | $0.41^{+0.23}_{-0.21}$<br>$1.32^{+4.29}_{-1.82}$                                                                                              |               | $\mathbf{C}$      |
| 1351 | $20^{+6}_{-5}$                                        | $9^{+\tilde{4}}_{-3}$ |                                                                                           | $\begin{array}{c} 0.84\substack{+2.01\\-0.84}\\ 4.81\substack{+1.50\\-1.24}\end{array}$                                                                                                             | a a a ±0 b0                                                                                                                                                                                                      | $2.76^{+1.25}_{-0.98}$                                                                                                                                                                                                                                               | $2.0{\pm}0.9$   | $1.5{\pm}0.2$   | $4.2{\pm}0.5$   |                                                                                                                                               |               | В                 |
| 1352 | $4^{+4}_{-2}$                                         | $6^{+3}_{-2}$         | 2                                                                                         | $\begin{array}{r} 4.81_{-1.24} \\ 1.01_{-0.56}^{+0.85} \end{array}$                                                                                                                                 | $\begin{array}{c} 1.19 \substack{-0.44 \\ -0.44 \\ 0.74 \substack{+0.48 \\ -0.32 \\ 0.62 \substack{+0.44 \\ -0.29 \end{array}} \end{array}$                                                                      |                                                                                                                                                                                                                                                                      | $0.9{\pm}0.3$   | $0.7{\pm}0.2$   | $1.3{\pm}0.2$   | $0.14^{+0.13}_{-0.00}$                                                                                                                        | H             | В                 |
| 1353 | $12_{-4}^{+5}$                                        | $5^{+4}_{-2}$         | $7^{+4}_{-3} \\ 3^{+4}_{-2}$                                                              | $2.50^{+1.05}_{-0.82}$                                                                                                                                                                              | $0.62^{+0.44}_{-0.29}$                                                                                                                                                                                           | $\begin{array}{c} 1.45 + 0.89 \\ 1.45 + 0.65 \\ 0.72 + 0.82 \\ 0.72 + 0.82 \\ 2.12 + 0.92 \\ 2.56 + 1.09 \\ 2.56 + 0.74 \\ 1.04 + 0.74 \\ 1.04 + 0.74 \\ 0.94 + 1.61 \end{array}$                                                                                    | $2.7{\pm}0.7$   | $1.8{\pm}0.3$   | $3.4{\pm}2.1$   | $1.09^{+0.54}$                                                                                                                                |               | D                 |
| 1354 | $8^{+5}_{-3}$                                         | $5^{+4}_{-2}$         | $3^{+4}_{-2}$                                                                             | $\begin{array}{c} 2.50 \substack{+1.05\\-0.82}\\ 1.84 \substack{+1.01\\-0.77}\\ 2.75 \substack{+0.99\\-0.72\\-0.72}\\ 3.60 \substack{+1.22\\-0.93\\-1.58 \substack{+0.83\\-0.60\\-2.38}\end{array}$ | $\begin{array}{c} 0.62\substack{+0.44\\-0.29}\\ 0.65\substack{+0.45\\-0.30\\1.02\substack{+0.36\\-0.16}\end{array}$                                                                                              | $0.72^{+0.82}_{-0.54}$                                                                                                                                                                                                                                               | $1.8{\pm}0.7$   | $1.6{\pm}0.2$   | $3.3 {\pm} 1.2$ | $0.54_{-0.30}^{+0.36}$                                                                                                                        |               | В                 |
| 1355 | $20^{+7}_{-5}$                                        | $5^{+4}_{-3}$         | $14^{+6}_{-5}$                                                                            | $2.75^{+0.99}_{-0.72}$                                                                                                                                                                              | $1.02^{+0.36}_{-0.16}$                                                                                                                                                                                           | $2.12^{+0.92}_{-0.65}$                                                                                                                                                                                                                                               | $3.3{\pm}0.6$   | $2.0{\pm}0.6$   | $4.4{\pm}0.4$   | $1.46^{+0.58}_{-0.46}$                                                                                                                        |               | $\mathbf{C}$      |
| 1356 | $15^{+5}_{-4}$                                        | $5^{+3}_{-2}$         | $11^{+5}_{-3}$                                                                            | $3.60^{+1.22}_{-0.96}$                                                                                                                                                                              | $0.62^{+0.45}_{-0.29}$                                                                                                                                                                                           | $2.56^{+1.09}_{-0.83}$                                                                                                                                                                                                                                               | $3.4 {\pm} 0.7$ | $1.9{\pm}0.4$   | $4.1 {\pm} 0.7$ | ${}^{1.46\substack{+0.38\\-0.46}}_{1.96\substack{+0.77\\-0.65}}$                                                                              |               | $\mathbf{C}$      |
| 1357 | $8^{+4}_{-3}$                                         | $3^{+\bar{3}}_{-2}$   | $5^{+4}_{-2}$                                                                             | $1.58^{+0.83}_{-0.60}$                                                                                                                                                                              | ${ \begin{array}{c} 1.02 \substack{+0.06 \\ -0.16 \end{array} } \\ 0.62 \substack{+0.45 \\ -0.29 \end{array} } \\ 0.33 \substack{+0.34 \\ -0.19 \end{array} } \\ 10.58 \substack{+1.25 \\ -1.13 \end{array} } }$ | $1.04_{-0.49}^{+0.74}$                                                                                                                                                                                                                                               | $3.5 {\pm} 1.3$ | $1.7{\pm}0.9$   | $5.1{\pm}0.6$   | $0.89^{+0.57}_{-0.48}$                                                                                                                        |               | $\mathbf{C}$      |
| 1358 | $131^{+11}_{-11}$                                     | $89_{-9}^{+10}$       | $42^{+8}_{-7}$                                                                            | $27.06^{+2.38}_{-2.38}$ $1.82^{+0.74}_{-0.53}$                                                                                                                                                      | $10.58^{+1.25}_{-1.13}$                                                                                                                                                                                          | $8.86^{+1.61}_{-1.39}$                                                                                                                                                                                                                                               | $1.5\pm0.1$     | $1.2{\pm}0.0$   | $2.1 {\pm} 0.2$ | $6.49^{+0.64}_{-0.64}$                                                                                                                        |               | А                 |
| 1359 | $16^{+6}_{-5}$                                        | $15_{-4}^{+6}$        | $4^{+4}_{-2}$                                                                             |                                                                                                                                                                                                     | $10.58^{+1.25}_{-1.13}\\1.52^{+0.39}_{-0.28}$                                                                                                                                                                    | $0.44^{+0.86}_{-0.44}$                                                                                                                                                                                                                                               | $1.0{\pm}0.1$   | $0.9{\pm}0.1$   | $1.4{\pm}0.2$   | $0.30\substack{+0.13\\-0.10}$                                                                                                                 |               | А                 |
| 1360 | $5^{+4}_{-2}$                                         | $4^{+3}_{-2}$         | $1^{+3}_{-1}$                                                                             | $1.02^{+0.76}_{-0.50}$                                                                                                                                                                              | $0.45^{+0.39}_{-0.23}$                                                                                                                                                                                           | $0.25^{+0.57}_{-0.25}$                                                                                                                                                                                                                                               | $1.8{\pm}0.4$   | $1.5\pm0.2$     | $2.3\pm0.5$     | $0.29^{+0.23}_{-0.16}$                                                                                                                        |               | А                 |
| 1361 | $5^{+4}_{-2}$                                         | $1^{-2}_{-1}$         | $\begin{array}{c} -4 \\ 4^{+4}_{-2} \\ 1^{+3}_{-1} \\ 4^{+3}_{-2} \end{array}$            | $1.82^{+0.74}_{-0.53}$ $1.02^{+0.76}_{-0.50}$ $0.93^{+0.74}_{-0.49}$ $3.98^{+1.98}_{-1.75}$ $9.66^{+1.31}_{-1.14}$                                                                                  | $\begin{array}{c} 1.52\substack{+0.39\\-0.28}\\ 0.45\substack{+0.39\\-0.23}\\ 0.07\substack{+0.28\\-0.07\\-0.07\\0.36\substack{+0.60\\-0.36\\5.78\substack{+0.67\\-0.57}\end{array}$                             | $\begin{array}{c} 8.86^{+1.61}_{-1.39}\\ 0.44^{+0.86}_{-0.44}\\ 0.25^{+0.57}_{-0.25}\\ 0.82^{+0.72}_{-0.45}\\ 3.42^{+1.83}_{-1.59}\\ 0.95^{+0.68}_{-0.47}\\ 1.15^{+1.04}_{-0.78}\\ 1.72^{+1.14}_{-0.87}\\ 4.96^{+2.03}_{-1.56}\\ 1.42^{+0.73}_{-0.95}\\ \end{array}$ | $4.9 {\pm} 1.3$ | $3.6{\pm}1.4$   | $6.0{\pm}0.6$   | $\begin{array}{c} 0.29 \substack{+0.16\\-0.73 \substack{+0.62\\-0.43}\\3.27 \substack{+1.70\\-1.52\\1.71 \substack{+0.24\\-0.22}\end{array}}$ |               | D                 |
| 1362 | $17_{-8}^{+9}$                                        | $3^{+5}_{-3}$         | $14^{+8}_{-7}$                                                                            | $3.98^{+1.98}_{-1.75}$                                                                                                                                                                              | $0.36\substack{+0.60\\-0.36}$                                                                                                                                                                                    | $3.42^{+1.83}_{-1.59}$                                                                                                                                                                                                                                               | $5.1 \pm 0.8$   | $3.6{\pm}1.7$   | $5.9 {\pm} 1.8$ | $3.27^{+1.70}_{-1.52}$                                                                                                                        |               | D                 |
| 1363 | $84_{-10}^{-8}$                                       | $75^{+10}_{-9}$       | $9^{+6}_{-5}$<br>$5^{+4}_{-3}$<br>$7^{+5}_{-4}$                                           | $9.66^{+1.31}_{-1.14}$                                                                                                                                                                              | $5.78^{+0.67}_{-0.57}$                                                                                                                                                                                           | $0.95\substack{+0.68\\-0.47}$                                                                                                                                                                                                                                        | $1.1{\pm}0.0$   | $0.9{\pm}0.0$   | $1.4{\pm}0.1$   | $1.71^{+0.24}_{-0.22}$                                                                                                                        |               | А                 |
| 1364 | $6^{+5}_{-4}$                                         | $1^{+3}_{-1}$         | $5^{+4}_{-3}$                                                                             | $1.40^{+1.09}_{-0.83}$                                                                                                                                                                              | $5.78^{+0.67}_{-0.57}$<br>$0.16^{+0.36}_{-0.16}$                                                                                                                                                                 | $1.15^{+1.04}_{-0.78}$                                                                                                                                                                                                                                               | $3.5 {\pm} 1.8$ | $2.8{\pm}1.6$   | $5.8 \pm 1.3$   | $ \begin{array}{c} 1.71\substack{+0.24\\-0.22}\\ 0.79\substack{+0.74\\-0.62} \end{array} $                                                    |               | $\mathbf{C}$      |
| 1365 | $14^{+6}_{-5}$                                        | $7^{+4}_{-3}$         | $7^{+5}_{-4}$                                                                             | $1.40_{-0.83}$<br>$3.39_{-1.09}^{+1.35}$                                                                                                                                                            | $0.97^{+0.54}_{-0.39}$                                                                                                                                                                                           | $1.72^{+1.14}_{-0.87}$                                                                                                                                                                                                                                               | $1.9{\pm}0.7$   | $1.2{\pm}0.2$   | $2.7 \pm 2.5$   |                                                                                                                                               |               | В                 |
| 1366 | $13^{+5}_{-4}$                                        | $2^{+3}_{-1}$         | $12^{+5}_{4}$                                                                             | $3.39^{+1.35}_{-1.09}$<br>$5.52^{+2.10}_{-1.63}$                                                                                                                                                    | $0.38^{+0.64}_{-0.31}$                                                                                                                                                                                           | $4.96^{+2.03}_{-1.56}$                                                                                                                                                                                                                                               | $3.7 {\pm} 0.7$ | $2.6{\pm}0.7$   | $5.2 {\pm} 0.6$ | $1.05^{+0.55}_{-0.49}$<br>$3.28^{+1.39}_{-1.16}$                                                                                              |               | $\mathbf{C}$      |
| 1367 | $46^{+\bar{9}}_{-7}$                                  | $34^{+7}_{-6}$        | $12_{-4}^{-4}$                                                                            | $5.25^{+1.07}_{-0.87}$                                                                                                                                                                              | $2.89^{+0.52}_{-0.40}$                                                                                                                                                                                           | $1.42^{+0.73}_{-0.50}$                                                                                                                                                                                                                                               | $1.6{\pm}0.1$   | $1.2 {\pm} 0.1$ | $2.4{\pm}0.6$   | $3.28^{+1.16}_{-0.25}$<br>$1.36^{+0.30}_{-0.25}$<br>$1.00^{+0.21}_{-0.17}$                                                                    |               | В                 |
| 1368 | $45^{+9}_{-7}$                                        | $45^{+8}_{-7}$        | $3^{+4}_{-1} \\ 4^{+4}_{-3}$                                                              | $5.34^{+1.06}_{-0.88}$<br>$8.08^{+1.77}_{-1.52}$                                                                                                                                                    | $\begin{array}{c} 0.16 \pm 0.16 \\ 0.97 \pm 0.54 \\ 0.38 \pm 0.64 \\ 0.38 \pm 0.64 \\ 2.89 \pm 0.52 \\ 2.89 \pm 0.52 \\ 3.74 \pm 0.57 \\ 3.74 \pm 0.40 \\ 0.90 \end{array}$                                      | $\begin{array}{c} 1.42\substack{+0.73\\-0.50}\\ 0.12\substack{+0.95\\-0.12}\end{array}$                                                                                                                                                                              | $1.2 {\pm} 0.1$ | $1.0{\pm}0.0$   | $1.3 \pm 0.1$   | $1.00^{+0.21}_{-0.17}$                                                                                                                        |               | А                 |
| 1369 | $34^{+7}_{-6}$                                        | $30^{+7}_{-6}$        | $4^{+4}_{-3}$                                                                             | $8.08^{+1.77}_{-1.52}$                                                                                                                                                                              | $4.05_{-0.76}^{+0.30}$                                                                                                                                                                                           | $0.93^{+1.00}_{-0.73}$                                                                                                                                                                                                                                               | $1.2 {\pm} 0.1$ | $0.9{\pm}0.1$   | $1.5 {\pm} 0.2$ | $1.56^{+0.37}_{-0.32}$                                                                                                                        |               | А                 |
| 1370 | $2^{+4}_{-2}$                                         | $3^{+3}_{-2}$         | 4                                                                                         | $0.57^{+1.05}_{-0.57}$<br>$3.21^{+1.85}_{-1.32}$                                                                                                                                                    | $0.51_{-0.32}^{+0.50}$                                                                                                                                                                                           | 1.04                                                                                                                                                                                                                                                                 | $1.1{\pm}8.9$   | $0.9 {\pm} 9.1$ | $1.2 \pm 8.8$   | $0.10^{+0.84}_{-0.83}$<br>$2.22^{+1.41}_{-1.09}$                                                                                              | H             | А                 |
| 1371 | $7^{+\bar{4}}_{-3}$                                   | 2                     | $7^{+4}_{-3}$<br>$7^{+4}_{-3}$<br>$6^{+4}_{-2}$                                           | $3.21^{+1.85}_{-1.32}$                                                                                                                                                                              | 0.66                                                                                                                                                                                                             | $\begin{array}{c} 3.39^{+1.88}_{-1.35}\\ 1.35^{+0.76}_{-0.52}\\ 1.12^{+0.71}_{-0.471}\end{array}$                                                                                                                                                                    | $4.3 \pm 1.2$   | $3.4{\pm}0.8$   | $6.5 \pm 0.8$   | $2.22^{+1.41}_{-1.09}$                                                                                                                        | - S -         | D                 |
| 1372 | $28^{+6}_{-5}$                                        | $21^{+6}_{-5}$        | $7^{+4}_{-3}$                                                                             | $5.41^{+1.25}_{-1.04}$                                                                                                                                                                              | $2.38^{+0.65}_{-0.52}$                                                                                                                                                                                           | $1.35^{+0.76}_{-0.52}$                                                                                                                                                                                                                                               | $1.3 {\pm} 0.1$ | $1.0{\pm}0.1$   | $2.0 {\pm} 0.4$ | $2.22^{+1.41}_{-1.09}$ $1.14^{+0.29}_{-0.25}$                                                                                                 |               | В                 |
| 1373 | $6^{+4}_{-2}$                                         | 3                     | $6^{+4}_{-2}$                                                                             | $\begin{array}{r} 3.21 \substack{+1.00 \\ -1.32 \\ 5.41 \substack{+1.25 \\ -1.04 \\ 1.08 \substack{+0.70 \\ -0.46 \\ -0.46 \end{array}}$                                                            | 0.30                                                                                                                                                                                                             | $1.12^{+0.71}_{-0.47}$                                                                                                                                                                                                                                               | $5.0 \pm 1.2$   | $3.7{\pm}0.9$   | $6.8 {\pm} 1.1$ | $0.85^{+0.59}_{-0.42}$                                                                                                                        | - S -         | D                 |
| 1374 | $286_{-17}^{-27}$                                     | $157^{+13}_{-13}$     | $129^{+12}_{-12}$                                                                         | $33.05^{+2.01}$                                                                                                                                                                                     | $10.22^{+0.84}_{-0.82}$                                                                                                                                                                                          | $15.28^{+1.41}_{-1.20}$                                                                                                                                                                                                                                              | $1.8{\pm}0.1$   | $1.3 {\pm} 0.1$ | $2.5 {\pm} 0.2$ | $9.43_{-0.80}^{+0.81}$                                                                                                                        |               | А                 |
| 1375 | $5^{+5}_{-4}$                                         | $1^{+3}_{-1}$         | $\begin{array}{c} -12\\ 4^{+4}_{-3}\\ 6^{+4}_{-3}\end{array}$                             |                                                                                                                                                                                                     | $0.08^{+0.36}_{-0.08}$                                                                                                                                                                                           | $1.02^{+1.04}_{-0.77}$<br>$1.55^{+1.09}_{-0.80}$                                                                                                                                                                                                                     | $7.9{\pm}2.7$   | $7.2 \pm 3.9$   | $8.6{\pm}0.8$   |                                                                                                                                               |               | D                 |
| 1376 | $33^{+7}_{-6}$                                        | $27^{+6}_{-5}$        | $6^{+4}_{-3}$                                                                             | $8.09^{+1.79}_{-1.53}$                                                                                                                                                                              | $\begin{array}{c} 0.08 \substack{+0.08 \\ -0.08 \\ -0.08 \\ 3.70 \substack{+0.89 \\ -0.74 \\ 0.81 \substack{+0.56 \\ -0.40 \end{array}}$                                                                         | $1.55^{+1.09}_{-0.80}$                                                                                                                                                                                                                                               | $1.4{\pm}0.1$   | $1.1{\pm}0.1$   | $1.8{\pm}0.3$   | ${}^{1.43^{+1.46}_{-1.16}}_{1.80^{+0.43}_{-0.38}}$                                                                                            |               | А                 |
| 1377 | $6^{+5}_{-4}$                                         | $6^{+4}_{-3}$         | 5                                                                                         | $1.49^{+1.22}_{-0.95}$                                                                                                                                                                              | $0.81^{+0.56}_{-0.40}$                                                                                                                                                                                           | 1.39                                                                                                                                                                                                                                                                 | $1.3 \pm 0.3$   | $1.0{\pm}0.2$   | $1.5 \pm 0.2$   | $0.01 \pm 0.20$                                                                                                                               | H             | А                 |
| 1378 | $8^{+4}_{-3}$                                         | $7^{+4}_{-3}$         | $\substack{1^{+2}_{-1}\\61^{+9}_{-8}}$                                                    | $1.47^{+0.77}_{-0.55}$                                                                                                                                                                              | $0.78_{-0.29}^{+0.43}$                                                                                                                                                                                           | $0.13^{+0.46}_{-0.13}$                                                                                                                                                                                                                                               | $1.1{\pm}0.1$   | $1.0{\pm}0.0$   | $1.1{\pm}0.3$   | $0.25^{+0.13}_{-0.10}$                                                                                                                        |               | А                 |
| 1379 | $233_{-15}^{+15}$                                     | $172^{+13}_{-13}$     | $61^{+9}_{-8}$                                                                            | $\begin{array}{r} 1.49\substack{+1.22\\-0.95}\\ 1.47\substack{+0.77\\-0.55}\\ 105.33\substack{+6.98\\-6.98}\\ \end{array}$                                                                          | $43.41_{-3.33}^{+3.33}$                                                                                                                                                                                          | $\begin{array}{c} 0.13\substack{+0.46\\-0.13}\\28.29\substack{+4.22\\-3.74}\end{array}$                                                                                                                                                                              | $1.5\pm0.1$     | $1.1{\pm}0.0$   | $2.1{\pm}0.2$   | $25.27^{+2.00}_{-2.00}$                                                                                                                       |               | В                 |
| 1380 | $9^{+4}_{-3}$                                         | $9^{+4}_{-3}$         | 3                                                                                         | $2.87^{+1.34}_{-0.98}$                                                                                                                                                                              | $1.69_{-0.57}^{+0.78}$                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                                 | $1.4{\pm}0.2$   | $1.3{\pm}0.1$   | $1.7 {\pm} 0.1$ | $0.65_{-0.23}^{+0.31}$                                                                                                                        | H             | А                 |

Chandra Catalog: Photometry (continued)

| No.  | $C_{net}$ FB                   | $C_{net}$ SB                   | $\begin{array}{c} C_{net} \\ \mathrm{HB} \end{array}$                                     | $f_{\rm ph} {\rm FB}(10^{-6} {\rm cm}^{-2} {\rm s}^{-1})$                                                                                                                                                                             | $\begin{array}{c} f_{\rm ph} {\rm SB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} f_{\rm ph} {\rm HB}(10^{-6} \\ {\rm cm}^{-2} \ {\rm s}^{-1}) \end{array}$                                                         | $E_{50}$ (keV)  | $E_{25}$ (keV)  | $E_{75}$ (keV)  |                                                                                                                                                                                                                                                           | Phot.<br>Flag | Quantile<br>Group |
|------|--------------------------------|--------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|
| 1381 | $9^{+5}_{-4}$                  | 4                              | $9^{+5}$                                                                                  | $2.10^{+1.27}$                                                                                                                                                                                                                        | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2.21^{+1.24}_{-0.97}$                                                                                                                              | $4.1 {\pm} 0.7$ | $3.6{\pm}0.5$   | $4.9{\pm}1.0$   | $1.36_{-0.69}^{+0.85}$                                                                                                                                                                                                                                    | - S -         | Е                 |
| 1382 | $17^{+5}_{-4}$                 | $15^{+5}_{-4}$                 | $9^{+5}_{-4} \\ 2^{+3}_{-1}$                                                              | $2.10^{+1.27}_{-1.01}\\3.85^{+1.20}_{-0.95}$                                                                                                                                                                                          | $2.00^{+0.66}_{-0.52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.40^{+0.63}_{-0.30}$                                                                                                                              | $1.2 \pm 0.1$   | $1.0 \pm 0.1$   | $1.3 \pm 0.5$   | $0.72^{+0.23}_{-0.19}$                                                                                                                                                                                                                                    |               | Ā                 |
| 1383 | $10^{+5}$                      | $2^{+3}_{-1}$                  | $9^{-1}_{-3}$                                                                             | $2.18^{+0.99}_{-0.75}$                                                                                                                                                                                                                | $0.20^{+0.33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.88^{+0.94}_{-0.70}$                                                                                                                              | $4.1 \pm 0.9$   | $2.5 \pm 0.7$   | $4.8 \pm 1.1$   | $1.45^{+0.72}$                                                                                                                                                                                                                                            |               | C                 |
| 1384 | $3^{+4}$                       | $^{4+3}$                       | $^{-3}_{3}$                                                                               | $0.55^{+0.75}$                                                                                                                                                                                                                        | $0.47^{+0.42}_{-0.16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.63                                                                                                                                                | $1.0\pm0.3$     | $0.9\pm0.1$     | $1.2 \pm 0.2$   | $1.45^{+0.72}_{-0.58}$<br>$0.09^{+0.13}_{-0.09}$                                                                                                                                                                                                          | H             | Ă                 |
| 1385 | $3^{-2}_{-2}_{8^{+4}_{-3}}$    | $4^{-2}_{-2}$<br>$4^{+3}_{-2}$ | $4^{+3}$                                                                                  | $\begin{array}{c} 2.18 \substack{+0.99\\-0.75}\\ 0.55 \substack{+0.77\\-0.55}\\ 1.49 \substack{+0.77\\-1.85}\\ 3.72 \substack{+2.15\\-1.87\\+1.45}\\ 1.87 \substack{+1.45\\-1.20\\-6.65 \substack{+1.55\\-1.31\\-0.91,78}\end{array}$ | $\begin{array}{c} 0.20\substack{+0.33\\-0.16}\\ 0.47\substack{+0.42\\-0.27}\\ 0.44\substack{+0.36\\-0.22}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.75^{+0.63}$                                                                                                                                      | $2.2 \pm 1.0$   | $1.6 \pm 0.4$   | $4.0\pm2.2$     | $0.53^{+0.37}$                                                                                                                                                                                                                                            |               | C                 |
| 1386 | $16^{+9}$                      | $10^{+5}_{-4}$                 | $6^{+8}_{-2}$                                                                             | $3.72^{+2.15}_{-1.05}$                                                                                                                                                                                                                | $1.32^{+0.72}_{-0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.48^{+1.93}_{-1.48}$                                                                                                                              | $1.6 \pm 0.5$   | $1.3 \pm 0.3$   | $2.4 \pm 4.8$   | $0.93^{+0.62}_{-0.52}$                                                                                                                                                                                                                                    |               | Ă                 |
| 1387 | $^{-6}_{8+6}$                  | $4^{+4}_{-3}$                  | $\begin{array}{c} -28\\ 6^{+2}_{-6}\\ 4^{+5}_{-4}\\ 3^{+3}_{-2}\\ 2^{+3}_{-2}\end{array}$ | $1.87^{+1.45}_{-1.00}$                                                                                                                                                                                                                | $0.51^{+0.52}_{-0.52}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.16 \pm 0.38\\ 1.48 \pm 1.93\\ -1.48\\ 0.98 \pm 1.29\\ -0.98\\ 0.60 \pm 0.80\\ 0.60 \pm 0.51\\ 0.45 \pm 0.73\\ -0.44\end{array}$ | $4.6 \pm 3.0$   | $1.9{\pm}1.5$   | $7.7 \pm 3.4$   | $1.38^{+1.40}_{-0.56}$                                                                                                                                                                                                                                    |               | С                 |
| 1388 | 20+7                           | $26^{+6}_{-5}$                 | $3^{+3}$                                                                                  | $6.65^{+1.20}_{-1.20}$                                                                                                                                                                                                                | $3.45^{+0.82}_{-0.82}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.60^{+0.80}_{-0.51}$                                                                                                                              | $1.2 \pm 0.1$   | $1.0 \pm 0.1$   | $1.5 \pm 0.2$   | $1.23^{+0.30}_{-0.20}$                                                                                                                                                                                                                                    |               | A                 |
| 1389 | $^{-0}_{+5}$                   | $7^{+4}_{-3}$                  | $2^{+3}$                                                                                  | $2.09^{+1.02}_{-0.70}$                                                                                                                                                                                                                | $0.94^{+0.51}_{-0.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.45^{+0.73}_{-0.44}$                                                                                                                              | $1.1 \pm 0.3$   | $1.0 \pm 0.1$   | $1.5 \pm 0.4$   | $0.37^{+0.20}_{-0.10}$                                                                                                                                                                                                                                    |               | А                 |
| 1390 | $9^{+3}_{-3}$<br>$3^{+3}_{-2}$ | $7^{+4}_{-3} \\ 4^{+3}_{-2}$   | $\frac{-2}{2}$                                                                            | $2.09^{+1.02}_{-0.78}$ $0.69^{+0.65}_{-0.39}$                                                                                                                                                                                         | $0.45^{+0.36}_{-0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.48                                                                                                                                                | $1.3 \pm 0.2$   | $1.0 \pm 0.2$   | $1.4{\pm}0.1$   | $\begin{array}{c} 0.93 \substack{+0.62\\-0.32}\\ 0.93 \substack{+0.62\\-0.56}\\ 1.38 \substack{+1.40\\-1.26}\\ 1.23 \substack{+0.30\\-0.26}\\ 0.37 \substack{+0.20\\-0.16\\-0.14 \substack{+0.14\\-0.14}\\0.14 \substack{+0.16\\-0.00}\\-0.00\end{array}$ | H             | А                 |
| 1391 | $37^{+9}_{-8}$                 | $2^{+2}_{-2}$                  | $35^{+9}_{-7}$                                                                            | $3.90^{+1.01}_{-0.81}$                                                                                                                                                                                                                | $\begin{array}{c} 0.44 \_ 0.22 \\ 1.32 \_ 0.54 \\ 0.51 \_ 0.55 \\ 0.51 \_ 0.35 \\ 3.45 \_ 0.68 \\ 0.94 \_ 0.51 \\ 0.36 \\ 0.45 \_ 0.27 \\ 0.27 \_ 0.27 \\ 0.27 \_ 0.27 \\ 0.27 \_ 0.27 \\ 0.44 \_ 0.32 \\ 0.27 \_ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.44 \\ 0.22 \\ 0.27 \_ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.$ | $4.03^{+1.01}_{-0.81}$                                                                                                                              | $3.6 {\pm} 0.3$ | $2.6 {\pm} 0.3$ | $4.2 \pm 0.4$   |                                                                                                                                                                                                                                                           |               | D                 |
| 1392 | $4^{+3}_{-2}$                  | $4^{+3}_{-2}$                  | $\frac{-1}{2}$                                                                            | $3.90^{+1.01}_{-0.81}$<br>$0.71^{+0.63}_{-0.38}$                                                                                                                                                                                      | $0.44^{+0.36}_{-0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.49                                                                                                                                                | $1.3 \pm 0.2$   | $1.1{\pm}0.2$   | $1.6 {\pm} 0.1$ | $2.23_{-0.50}^{+0.14}$<br>$0.15_{-0.09}^{+0.14}$                                                                                                                                                                                                          | H             | А                 |
| 1393 | $3^{+4}_{-2}$                  | $4^{+3}$                       | 3                                                                                         | $0.74_{-0.53}^{+0.81}$                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.76                                                                                                                                                | $1.2 \pm 0.1$   | $1.1{\pm}0.0$   | $1.3 \pm 0.1$   | $0.14\substack{+0.15\\-0.10}$                                                                                                                                                                                                                             | H             | А                 |
| 1394 | $\frac{-2}{5}$                 | -+4                            | 2                                                                                         | 1.20                                                                                                                                                                                                                                  | $0.74_{-0.37}^{+0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.61                                                                                                                                                | $5.2 \pm 4.8$   | $2.9 \pm 7.1$   | $7.6 \pm 7.1$   | 1.01                                                                                                                                                                                                                                                      | F - H         | $\mathbf{C}$      |
| 1395 | $5^{+4}_{-2}$                  | $3^{+3}_{-2}$                  | $2^{+3}_{-2}$                                                                             | $1.11_{-0.59}^{+0.89}$                                                                                                                                                                                                                | $0.39^{+0.42}_{-0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.45_{-0.42}^{+0.75}$                                                                                                                              | $1.2 \pm 2.9$   | $1.1{\pm}0.8$   | $7.0{\pm}3.2$   | $0.22_{-0.53}^{+0.55}$                                                                                                                                                                                                                                    |               | В                 |
| 1396 | $1^{+\tilde{2}}_{-1}$          | 3                              | $1^{+\tilde{2}}_{-1}$                                                                     | $0.11^{+0.47}_{-0.11}$                                                                                                                                                                                                                | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.13^{+0.48}_{-0.13}$                                                                                                                              | $2.4{\pm}7.6$   | $1.3 \pm 8.7$   | $4.8 {\pm} 5.2$ | $0.04^{+0.23}$                                                                                                                                                                                                                                            | - S -         | $\mathbf{C}$      |
| 1397 | $20^{+7}$                      | $11^{+5}_{-4}$                 | $9^{+6}_{-5}$                                                                             | $4.07^{+1.50}_{-1.07}$                                                                                                                                                                                                                | $1.30\substack{+0.58\\-0.45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.85^{+1.27}_{-1.03}$                                                                                                                              | $2.0{\pm}1.1$   | $1.1 {\pm} 0.3$ | $6.6 {\pm} 3.7$ | $1.28^{+0.85}_{-0.82}$                                                                                                                                                                                                                                    |               | В                 |
| 1398 | 4+3°                           | $4^{+3}_{-2}$                  | 2                                                                                         | $\begin{array}{c} -1.27\\ 0.90 {+}0.79\\ -0.47\\ 2.31 {+}1.17\\ 2.31 {-}0.89\\ 1.25 {+}0.92\\ 1.25 {+}0.92\\ -0.61\end{array}$                                                                                                        | $0.56\substack{+0.45\\-0.27}\\1.20\substack{+0.60\\-0.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.61                                                                                                                                                | $1.0{\pm}0.2$   | $0.8{\pm}0.1$   | $1.2{\pm}0.2$   | $0.14^{\pm0.13}$                                                                                                                                                                                                                                          | H             | А                 |
| 1399 | $4^{-2}_{-2}_{9^{+5}_{-3}}$    | $8^{+\tilde{4}}_{-3}$          | ${\substack{1^{+3}_{-1}\\5^{+4}_{-3}}}$                                                   | $2.31^{+1.17}_{-0.89}$                                                                                                                                                                                                                | $1.20^{+0.60}_{-0.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.20\substack{+0.77\\-0.20}\\ 1.17\substack{+0.90\\-0.61} \end{array}$                                                            | $0.8{\pm}0.2$   | $0.8{\pm}0.1$   | $1.3 {\pm} 0.3$ | $0.01 \pm 0.18$                                                                                                                                                                                                                                           |               | А                 |
| 1400 | $5^{+3}_{-3}$                  | 4                              | $5^{+\bar{4}}_{-3}$                                                                       | $1.25_{-0.66}^{+0.92}$                                                                                                                                                                                                                | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.17_{-0.61}^{+0.90}$                                                                                                                              | $5.0{\pm}3.1$   | $3.1{\pm}1.4$   | $9.6{\pm}2.0$   | $1.01^{+0.96}$                                                                                                                                                                                                                                            | - S -         | $\mathbf{C}$      |
| 1401 | $8^{+4}_{-3}$                  | $9^{+4}_{-3}$                  | 2                                                                                         | $4.13^{+2.01}$                                                                                                                                                                                                                        | $2.49^{+1.15}_{-0.84}\\0.70^{+0.50}_{-0.34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.14                                                                                                                                                | $1.1{\pm}0.2$   | $1.0{\pm}0.1$   | $1.5 {\pm} 0.2$ | $0.72^{+0.37}_{-0.28}$                                                                                                                                                                                                                                    | H             | А                 |
| 1402 | $7^{+5}_{4}$                   | $5^{+4}_{-3}$                  | $2^{+4}_{-2}$                                                                             | $1.73^{+1.15}$                                                                                                                                                                                                                        | $0.70_{-0.34}^{+0.50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.51^{+0.92}_{-0.51}$                                                                                                                              | $1.5 {\pm} 0.4$ | $1.4{\pm}0.3$   | $2.0{\pm}0.6$   | $0.40^{+0.29}_{-0.23}$                                                                                                                                                                                                                                    |               | А                 |
| 1403 | $9^{+5}_{-3}$                  | $8^{+4}_{2}$                   | $1^{+3}_{-1}$                                                                             |                                                                                                                                                                                                                                       | $1.10^{+0.55}_{-0.40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.16_{-0.16}^{+0.71}$                                                                                                                              | $1.0{\pm}0.2$   | $0.9{\pm}0.1$   | $1.4{\pm}0.3$   |                                                                                                                                                                                                                                                           |               | А                 |
| 1404 | $14^{+5}_{-4}$                 | $2^{+3}_{-2}$                  | $12^{+5}_{-4}$                                                                            | $\begin{array}{r} 2.09 \substack{+1.00\\-0.82}\\ 3.34 \substack{+1.26\\-1.00}\\ 10.33 \substack{+1.95\\-1.69}\end{array}$                                                                                                             | ${}^{-0.34}_{-0.40}\\ 1.10{}^{+0.55}_{-0.40}\\ 0.30{}^{+0.40}_{-0.22}\\ 1.39{}^{+0.63}_{-0.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} -0.51\\ 0.16 \substack{+0.71\\-0.16}\\ 2.86 \substack{+1.20\\-0.93}\\ 8.05 \substack{+1.76\\-1.50} \end{array} $                 | $3.9{\pm}0.6$   | $2.8{\pm}0.9$   | $5.3{\pm}0.5$   | $\begin{array}{c} 0.35\substack{+0.19\\-0.15}\\ 2.09\substack{+0.86\\-0.71}\end{array}$                                                                                                                                                                   |               | D                 |
| 1405 | $43^{+\bar{8}}_{-7}$           | $10^{+5}_{-3}$                 | $33^{+7}_{-6}$                                                                            | $10.33^{+1.95}_{-1.69}$                                                                                                                                                                                                               | $1.39_{-0.47}^{+0.63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $8.05^{+1.76}_{-1.50}$                                                                                                                              | $2.6{\pm}0.2$   | $2.1{\pm}0.2$   | $3.4{\pm}0.3$   | $4.23^{+0.90}_{-0.01}$                                                                                                                                                                                                                                    |               | $\mathbf{E}$      |
| 1406 | $4^{+1\dot{0}}_{-4}$           | 6                              | $4^{+9}_{-4}$                                                                             | $0.85^{+2.35}_{-0.85}$                                                                                                                                                                                                                | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.07^{+2.21}$                                                                                                                                      | $7.5{\pm}7.0$   | $2.6{\pm}7.4$   | $9.6{\pm}5.3$   | $1.02^{+2.98}_{-1.20}$                                                                                                                                                                                                                                    | - S -         | $\mathbf{C}$      |
| 1407 | $66^{+9}$                      | $46^{+8}_{-7}$                 | $20^{+6}$                                                                                 | $15.13^{+2.17}$                                                                                                                                                                                                                       | $5.99^{+1.04}_{-0.90}$<br>$0.62^{+0.46}_{-0.30}$<br>$0.43^{+0.44}_{-0.28}$<br>$0.84^{+0.53}_{-0.38}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4.67^{+1.39}_{-1.12}$                                                                                                                              | $1.6{\pm}0.1$   | $1.2{\pm}0.1$   | $2.4{\pm}0.4$   | $3.93_{-0.54}^{+0.60}$                                                                                                                                                                                                                                    |               | В                 |
| 1408 | $57^{+9}_{-8}$                 | $5^{+4}_{-2}$                  | $52^{+9}_{-7} \\ 9^{+5}_{-4} \\ 4^{+4}_{-3}$                                              | $12.67^{+1.99}_{-1.76}$ $2.90^{+1.25}_{-1.00}$ $2.45^{+1.24}_{-0.98}$                                                                                                                                                                 | $0.62^{+0.46}_{-0.30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ${ \begin{array}{c} -1.13\\ 11.84^{+1.95}\\ -1.71\\ 2.20^{+1.14}\\ 2.20^{+1.00}\\ 0.99^{+1.00}_{-0.73} \end{array} }$                               | $3.7{\pm}0.2$   | $2.9{\pm}0.3$   | $4.5{\pm}0.2$   | $7.43^{+1.22}_{-1.09}$<br>$1.47^{+0.78}_{-0.68}$                                                                                                                                                                                                          |               | $\mathbf{E}$      |
| 1409 | $13^{+6}_{-4}$                 | $3^{+\bar{3}}_{-2}$            | $9^{+5}_{-4}$                                                                             | $2.90^{+1.25}_{-1.00}$                                                                                                                                                                                                                | $0.43^{+0.44}_{-0.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2.20^{+1.14}_{-0.88}$                                                                                                                              | $3.2{\pm}1.0$   | $1.8{\pm}0.6$   | $4.4{\pm}1.6$   | $1.47^{+0.78}_{-0.68}$                                                                                                                                                                                                                                    |               | $\mathbf{C}$      |
| 1410 | $10_{-4}^{-4}$                 | $6^{+\bar{4}}_{-3}$            | $4^{+4}_{-3}$                                                                             | $2.45^{+1.24}_{-0.98}$                                                                                                                                                                                                                | $0.84_{-0.38}^{+0.53}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.99^{+1.00}_{-0.73}$                                                                                                                              | $1.3 {\pm} 1.5$ | $1.1{\pm}0.3$   | $4.5 \pm 3.1$   | $1.47_{-0.68}$<br>$0.51_{-0.62}^{+0.64}$                                                                                                                                                                                                                  |               | В                 |
| 1411 | $10^{+5}_{-4}$                 | $11^{+5}_{-3}$                 | 4                                                                                         | $3.10^{+1.53}_{-1.19}$<br>$3.61^{+1.54}_{-1.28}$                                                                                                                                                                                      | $1.86_{-0.50}^{+0.76}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.27                                                                                                                                                | $1.3{\pm}0.2$   | $1.0{\pm}0.2$   | $1.4{\pm}0.1$   | $0.64^{+0.33}$                                                                                                                                                                                                                                            | H             | А                 |
| 1412 | $14_{-5}^{+6}$                 | $8^{+4}_{-3}$                  | $6^{+5}_{-4}$                                                                             | $3.61^{+1.54}_{-1.28}$                                                                                                                                                                                                                | $1.17^{+0.63}_{-0.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.55^{+1.26}_{-0.98}$                                                                                                                              | $1.8{\pm}0.5$   | $1.4{\pm}0.2$   | $2.7{\pm}2.3$   | $1.02_{-0.47}^{+0.53}$                                                                                                                                                                                                                                    |               | А                 |
| 1413 | $12^{+6}_{-5}$                 | $11^{+5}_{-4}$                 | $2^{+4}_{-2}$                                                                             | $3.32^{+1.53}_{-1.24}$                                                                                                                                                                                                                | $1.63^{+0.71}_{-0.54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.42^{+1.10}_{-0.42}$                                                                                                                              | $0.8{\pm}0.3$   | $0.8{\pm}0.0$   | $1.0{\pm}3.8$   | $0.44_{-0.22}^{+0.25}$                                                                                                                                                                                                                                    |               | А                 |
| 1414 | 5                              | 2                              | 6                                                                                         | 1.33                                                                                                                                                                                                                                  | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.53                                                                                                                                                | $5.2 {\pm} 4.8$ | $2.9{\pm}7.1$   | $7.6{\pm}7.1$   | 1.12                                                                                                                                                                                                                                                      | F S H         | $\mathbf{C}$      |
| 1415 | $7^{+6}_{-5}$                  | $6^{+4}_{-3}$                  | $1^{+5}_{-1}$                                                                             | $1.90^{+1.49}_{-1.22}$                                                                                                                                                                                                                | $0.92\substack{+0.60\\-0.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.26\substack{+1.24 \\ -0.26}$                                                                                                                     | $1.9 {\pm} 1.9$ | $1.6 {\pm} 0.5$ | $2.0{\pm}6.1$   | $0.58\substack{+0.74 \\ -0.69}$                                                                                                                                                                                                                           |               | А                 |

Chandra Catalog: Photometry (continued)

## A.3 Table of Infrared Counterparts

(1) NARCS catalog source number.

(2) Name of VVV source that is closest to the *Chandra* source position, within  $3\sigma$  of the position provided in Table 2.3.

(3) Right ascension (J2000.0) of the VVV source.

(4) Declination (J2000.0) of the VVV source.

(5) Angular separation between the *Chandra* and VVV source.

(6) Probability that the VVV source is a noise fluctuation, provided in the VVV catalog.

(7) Reliability of the VVV counterpart calculated according to the method of Sutherland & Saunders (1992). The reliability depends on the distance between the X-ray and IR sources, the positional uncertainties of the X-ray and IR sources, and the spatial density of IR sources. The reliability is expressed as a fraction between zero and one; VVV sources with a higher reliability are more likely to be true IR counterparts to the *Chandra* sources.

| Table A.3: | Chandra | Catalog | of | Point | and | Extended | Sources: | Infrared | Coun- |
|------------|---------|---------|----|-------|-----|----------|----------|----------|-------|
| terparts   |         |         |    |       |     |          |          |          |       |

| No. | VVV Source Name | R.A.       | Dec.       | $\Delta_{\rm X-IR}$ | $p_{\text{noise}}$ | Reliability |
|-----|-----------------|------------|------------|---------------------|--------------------|-------------|
|     |                 | (deg)      | (deg)      | (arcsec)            |                    |             |
| (1) | (2)             | (3)        | (4)        | (5)                 | (6)                | (7)         |
| 1   | 515727792649    | 248.117752 | -47.631649 | 1.89                | 3.07e-03           | 0.3216      |
| 2   | 515726841264    | 248.172806 | -47.677017 | 1.84                | 5.29e-07           | 0.8660      |
| 3   | 515726837733    | 248.185730 | -47.693638 | 4.13                | 5.29e-07           | 0.3508      |
| 4   | 515727238897    | 248.203003 | -47.505127 | 1.05                | 1.71e-04           | 0.7804      |
| 5   | 515726847521    | 248.212341 | -47.693485 | 1.52                | 1.71e-04           | 0.9482      |
| 6   | 515727540494    | 248.220947 | -47.700108 | 0.76                | 1.71e-04           | 0.9142      |
| 7   | 515726868309    | 248.246140 | -47.638630 | 0.64                | 5.29e-07           | 0.9777      |
| 8   | 515726918176    | 248.247345 | -47.468082 | 0.78                | 9.52e-06           | 0.4607      |
| 9   | 515726930863    | 248.262817 | -47.429794 | 1.29                | 5.29e-07           | 0.0657      |
| 10  | 515727577185    | 248.276459 | -47.544682 | 1.59                | 2.81e-04           | 0.8825      |
| 11  | 515726849311    | 248.284439 | -47.720947 | 1.66                | 1.71e-04           | 0.4653      |
| 12  | —               | -          | -          | -                   | -                  | -           |
| 13  | 515726902991    | 248.301819 | -47.556408 | 0.30                | 9.52e-06           | 0.9888      |
| 14  | —               | -          | -          | -                   | -                  | -           |
| 15  | —               | -          | -          | -                   | -                  | -           |
| 16  | —               | -          | -          | -                   | -                  | -           |
| 17  | 515726886955    | 248.315262 | -47.624165 | 0.69                | 9.52e-06           | 0.9662      |
| 18  | 515727536700    | 248.316101 | -47.778404 | 1.08                | 1.55e-03           | 0.0523      |
| 19  | 515726892336    | 248.319962 | -47.608994 | 0.18                | 5.29e-07           | 0.9921      |
| 20  | 515726916284    | 248.320389 | -47.522675 | 0.15                | 5.29e-07           | 0.9902      |
| 21  | 515726872863    | 248.321442 | -47.673111 | 0.33                | 5.29e-07           | 0.9882      |
| 22  | 515726900711    | 248.325470 | -47.579105 | 0.08                | 5.29e-07           | 0.9925      |
| 23  | 515727236656    | 248.331909 | -47.619701 | 1.16                | 1.71e-04           | 0.8759      |
| 24  | 515726896348    | 248.342468 | -47.606651 | 0.48                | 1.62e-04           | 0.9819      |
| 25  | 515726886643    | 248.343933 | -47.651249 | 0.82                | 5.29e-07           | 0.9691      |
| 26  | 515726939169    | 248.344574 | -47.450134 | 0.96                | 5.29e-07           | 0.1770      |
| 27  | 515726935318    | 248.346451 | -47.465511 | 0.64                | 6.80e-07           | 0.1182      |
| 28  | 515726888298    | 248.346817 | -47.641685 | 0.75                | 5.29e-07           | 0.9644      |
| 29  | 515726886646    | 248.348068 | -47.646889 | 0.31                | 5.29e-07           | 0.9891      |
| 30  | 515727822171    | 248.349823 | -47.435467 | 3.21                | 3.07e-03           | 0.4811      |
| 31  | 515726895046    | 248.354202 | -47.624043 | 0.09                | 5.29e-07           | 0.9917      |
| 32  | 515726921314    | 248.354263 | -47.527267 | 0.81                | 9.53e-06           | 0.9627      |
| 33  | 515726835781    | 248.356781 | -47.809982 | 2.82                | 5.29e-07           | 0.5577      |
| 34  | 515726918568    | 248.359360 | -47.534481 | 1.48                | 1.62e-04           | 0.4898      |
|     |                 |            |            |                     |                    |             |

| No.             | VVV Source Name              | R.A.                     | Dec.                     | $\Delta_{\rm X-IR}$      | <i>n</i> .           | Reliability        |
|-----------------|------------------------------|--------------------------|--------------------------|--------------------------|----------------------|--------------------|
| 110.            | v v v Source Name            | (deg)                    | (deg)                    | $\Delta x - IR$ (arcsec) | $p_{\text{noise}}$   | Renability         |
|                 |                              | (ucg)                    | (408)                    | (dresee)                 |                      |                    |
| 35              |                              | _                        | _                        | -                        | _                    | -                  |
| 36              | 515726915754                 | 248.368668               | -47.550976               | 0.56                     | 5.29e-07             | 0.9781             |
| 37              | 515726928476                 | 248.372375               | -47.507313               | 0.61                     | 5.29e-07             | 0.9634             |
| 38              | 515727245968                 | 248.373215               | -47.559093               | 0.15                     | 9.53e-06             | 0.9939             |
| 39              | —                            | -                        | -                        | -                        | -                    | -                  |
| 40              | 515726951422                 | 248.378479               | -47.426388               | 0.68                     | 5.29e-07             | 0.9664             |
| 41              | 515726876489                 | 248.386765               | -47.700935               | 1.07                     | 5.29e-07             | 0.5932             |
| 42              | 515726927264                 | 248.387756               | -47.530861               | 2.61                     | 1.62e-04             | 0.3316             |
| 43              | —                            | -                        | -                        | -                        | -                    | -                  |
| 44              | 515727617958                 | 248.397186               | -47.395027               | 3.90                     | 2.92e-03             | 0.3047             |
| 45              | 515726965153                 | 248.397690               | -47.393360               | 1.60                     | 5.29e-07             | 0.7562             |
| 46              |                              | -                        | -                        | -                        | -                    | -                  |
| 47              | 515726933821                 | 248.398346               | -47.503017               | 0.66                     | 1.62e-04             | 0.9747             |
| $\frac{48}{49}$ | 515726858944<br>515726972327 | 248.399689<br>248.400757 | -47.763542<br>-47.373447 | $1.06 \\ 0.28$           | 6.80e-07<br>5.29e-07 | $0.6330 \\ 0.9252$ |
| $\frac{49}{50}$ | 313720972327                 | 246.400757               | -41.313441               | -                        | J.29e-07<br>-        | -                  |
| $50 \\ 51$      | 515726932059                 | -248.403870              | -47.519299               | 1.62                     | -<br>5.29e-07        | 0.7710             |
| 52              | 515726962286                 | 248.406509               | -47.411800               | 0.86                     | 5.29e-07<br>5.29e-07 | 0.9563             |
| 53              | 515726847345                 | 248.407928               | -47.808243               | 2.14                     | 5.29e-07             | 0.8048             |
| 54              | 515726920408                 | 248.411133               | -47.560318               | 0.19                     | 5.29e-07             | 0.9918             |
| 55              | 515727546584                 | 248.411270               | -47.788212               | 1.46                     | 2.92e-03             | 0.2320             |
| 56              | 515726873309                 | 248.412537               | -47.729134               | 3.09                     | 9.53e-06             | 0.0933             |
| 57              | 515726845546                 | 248.417068               | -47.813835               | 1.44                     | 1.62e-04             | 0.8816             |
| 58              | 515727627704                 | 248.420197               | -47.361183               | 1.94                     | 2.92e-03             | 0.7080             |
| 59              | —                            | -                        | -                        | -                        | -                    | -                  |
| 60              | 515727270718                 | 248.424301               | -47.405876               | 1.36                     | 1.21e-04             | 0.4989             |
| 61              | 515726970209                 | 248.425034               | -47.392921               | 3.01                     | 5.29e-07             | 0.5471             |
| 62              | 515732384008                 | 248.425613               | -47.757118               | 0.69                     | 3.07e-03             | 0.5515             |
| 63              | 515726919982                 | 248.430969               | -47.576023               | 1.60                     | 5.29e-07             | 0.7219             |
| 64              | 515726927774                 | 248.432709               | -47.554955               | 0.90                     | 9.52e-06             | 0.9633             |
| 65              | 515726927788                 | 248.436661               | -47.557644               | 0.89                     | 1.62e-04             | 0.9533             |
| 66<br>67        | 515731861511                 | 248.438126               | -47.772339               | 1.71                     | 1.71e-04             | 0.0300             |
| 67<br>68        | 515726885017                 | 248.441437               | -47.712498               | 1.52                     | 5.29e-07             | 0.7666             |
| 68<br>60        | 515731836990                 | 248.444489               | -47.813679               | 0.38                     | 2.92e-03             | 0.7228             |
| 69<br>70        | 515726978475<br>515726870055 | 248.449066<br>248.448502 | -47.382710<br>-47.759991 | $0.75 \\ 1.54$           | 9.52e-06<br>5.29e-07 | $0.9706 \\ 0.8369$ |
| 70              | 515727225879                 | 248.448502<br>248.453079 | -47.772549               | 3.76                     | 3.07e-03             | 0.0527             |
| 72              |                              | -                        | -41.112049               | -                        | 3.076-03             | -                  |
| 73              | 515727009631                 | 248.467117               | -47.304317               | 0.27                     | 5.29e-07             | 0.9627             |
| 74              | 515727024557                 | 248.467972               | -47.261200               | 0.71                     | 9.52e-06             | 0.1897             |
| 75              | 515726920702                 | 248.475739               | -47.615055               | 1.14                     | 8.75e-07             | 0.6027             |
| 76              | 515727249359                 | 248.478088               | -47.616798               | 0.70                     | 3.07e-03             | 0.9411             |
| 77              | 515726930329                 | 248.478348               | -47.567638               | 0.24                     | 5.29e-07             | 0.9818             |
| 78              | 515726911773                 | 248.479614               | -47.634678               | 0.07                     | 1.62e-04             | 0.9945             |
| 79              | 515727619083                 | 248.482376               | -47.443478               | 0.42                     | 2.92e-03             | 0.9842             |
| 80              | 515726891995                 | 248.491608               | -47.714260               | 0.98                     | 9.52e-06             | 0.9163             |
| 81              | 515727236330                 | 248.495575               | -47.704136               | 0.16                     | 1.54e-03             | 0.9931             |
| 82              | 515726966091                 | 248.495667               | -47.450733               | 0.06                     | 5.29e-07             | 0.9895             |
| 83              | 515727023388                 | 248.497116               | -47.279175               | 1.34                     | 6.80e-07             | 0.5574             |
| 84              | 515727602199                 | 248.508743               | -47.545742               | 0.30                     | 3.07e-03             | 0.6248             |
| 85              | 515726956974                 | 248.509842               | -47.489536               | 5.03                     | 1.71e-04             | 0.2845             |
| 86              | —                            | -                        | -                        | -                        | -                    | -                  |
| 87              |                              | -                        | -                        | -                        | -                    | -                  |
| 88              | 515726926068                 | 248.519913               | -47.617504               | 0.99                     | 5.29e-07             | 0.9597             |
| 89              | 515726951465                 | 248.524048               | -47.515182               | 0.60                     | 5.29e-07             | 0.9375             |
| 90<br>01        | 515726888585                 | 248.527618               | -47.750206               | 0.26                     | 9.53e-06             | 0.9879             |
| 91<br>02        | 515732372434                 | 248.531067               | -47.912136               | 3.22                     | 3.07e-03             | 0.0330             |
| 92<br>02        | 515707570579                 | -                        | -<br>47 701054           | -                        | -<br>1 71c 04        | -                  |
| 93              | 515727578573                 | 248.542603               | -47.701954               | 0.16                     | 1.71e-04             | 0.9905             |

Chandra Catalog: Infrared Counterparts (continued)

| No.          | VVV Source Name | R.A.<br>(deg)            | Dec.<br>(deg) | $\Delta_{\rm X-IR}$ (arcsec) | $p_{\rm noise}$ | Reliability      |
|--------------|-----------------|--------------------------|---------------|------------------------------|-----------------|------------------|
| 94           | 515726927377    | 248.551636               | -47.622246    | 0.95                         | 1.62e-04        | 0.8775           |
| 95           | 515726877136    | 248.551050<br>248.555450 | -47.803242    | 0.33<br>0.78                 | 5.29e-07        | 0.9687           |
| 95<br>96     | 515731857641    | 248.556686               | -47.853981    | 1.61                         | 1.71e-04        | 0.9087<br>0.6772 |
|              |                 |                          |               |                              |                 |                  |
| 97           | 515721375089    | 248.566101               | -47.269386    | 1.36                         | 3.07e-03        | 0.8623           |
| 98           | 515727274310    | 248.567688               | -47.454254    | 0.21                         | 1.71e-04        | 0.9915           |
| 99           | 515726986399    | 248.569595               | -47.433563    | 0.19                         | 9.53e-06        | 0.9874           |
| 100          | 515727030236    | 248.570190               | -47.304718    | 1.59                         | 1.62e-04        | 0.7854           |
| 101          | —               | -                        | -             | -                            | -               | -                |
| 102          | 515719995615    | 248.574310               | -47.234753    | 0.92                         | 5.29e-07        | 0.2709           |
| 103          | 515726892227    | 248.574768               | -47.766094    | 0.46                         | 5.29e-07        | 0.9779           |
| 104          | 515726954807    | 248.575821               | -47.535477    | 0.53                         | 5.29e-07        | 0.9613           |
| 105          | 515727010007    | 248.575211               | -47.372810    | 2.70                         | 1.62e-04        | 0.5622           |
| 106          | 515727020542    | 248.582840               | -47.341137    | 1.16                         | 1.54e-03        | 0.3064           |
| 107          |                 | -                        | -             | -                            | -               | -                |
| 108          |                 | -                        | -             | -                            | -               | -                |
| 109          | 515731888973    | 248.589035               | -47.829006    | 1.16                         | 1.71e-04        | 0.5439           |
| 110          | —               | -                        | -             | -                            | -               | -                |
| 111          | 515727005478    | 248.590836               | -47.390930    | 0.05                         | 6.80e-07        | 0.9900           |
| 112          | —               | -                        | -             | -                            | -               | -                |
| 113          | 515726908002    | 248.594437               | -47.721920    | 0.35                         | 9.53e-06        | 0.9857           |
| 114          | 515727036512    | 248.595139               | -47.301022    | 0.89                         | 1.71e-04        | 0.5946           |
| 115          | 515727820877    | 248.597214               | -47.606785    | 3.44                         | 3.07e-03        | 0.2777           |
| 116          | _               | -                        | -             | -                            | -               | -                |
| 117          | 515727597156    | 248.597900               | -47.628376    | 0.95                         | 1.71e-04        | 0.3969           |
| 118          | 515726938431    | 248.605835               | -47.616306    | 1.16                         | 5.29e-07        | 0.9369           |
| 119          |                 | -                        | -             | -                            | -               | -                |
| 120          | 515726956310    | 248.609390               | -47.552338    | 1.48                         | 1.62e-04        | 0.7565           |
| 121          | 515719978197    | 248.610977               | -47.311214    | 0.97                         | 5.29e-07        | 0.5992           |
| 122          | 515727000452    | 248.611450               | -47.418983    | 0.20                         | 5.29e-07        | 0.9885           |
| 123          | 515726953188    | 248.611710               | -47.562889    | 0.87                         | 5.29e-07        | 0.7956           |
| $123 \\ 124$ | 515726910695    | 248.612152               | -47.722424    | 0.37                         | 1.62e-04        | 0.9856           |
| 125          | 515727037379    | 248.612534               | -47.310509    | 0.37                         | 5.29e-07        | 0.9833           |
| 126          | 515727269852    | 248.621674               | -47.537827    | 1.60                         | 1.71e-04        | 0.3635<br>0.5765 |
| $120 \\ 127$ | 515719998064    | 248.627548               | -47.266396    | 0.80                         | 1.62e-04        | 0.9703<br>0.9653 |
| 127          |                 |                          |               |                              |                 |                  |
|              | 515731927781    | 248.630127               | -47.794415    | 0.77                         | 1.71e-04        | 0.8578           |
| 129          | 515727017501    | 248.631668               | -47.381599    | 1.10                         | 9.52e-06        | 0.9543           |
| 130          | 515721074747    | 248.633774               | -47.217724    | 2.02                         | 1.71e-04        | 0.3784           |
| 131          | 515726961170    | 248.637985               | -47.553284    | 0.27                         | 5.29e-07        | 0.9785           |
| 132          | 515727288954    | 248.637619               | -47.325638    | 1.36                         | 9.53e-06        | 0.6773           |
| 133          | 515727654625    | 248.639771               | -47.360050    | 1.11                         | 1.71e-04        | 0.5873           |
| 134          | 515726913635    | 248.639999               | -47.729778    | 0.32                         | 5.29e-07        | 0.9875           |
| 135          | 515732381884    | 248.640320               | -47.905617    | 2.23                         | 3.07e-03        | 0.1611           |
| 136          | 515726991911    | 248.642319               | -47.462894    | 0.47                         | 5.29e-07        | 0.9819           |
| 137          | 515720014326    | 248.642487               | -47.221340    | 3.05                         | 9.53e-06        | 0.4550           |
| 138          | 515727270761    | 248.644455               | -47.541241    | 4.13                         | 9.53e-06        | 0.3942           |
| 139          | —               | -                        | -             | -                            | -               | -                |
| 140          | 515726949540    | 248.644989               | -47.597916    | 0.27                         | 8.75e-07        | 0.4171           |
| 141          | 515719987007    | 248.649994               | -47.308914    | 0.74                         | 1.62e-04        | 0.9717           |
| 142          | 515731909689    | 248.651794               | -47.832462    | 0.43                         | 1.71e-04        | 0.8894           |
| 143          | —               | -                        | -             | -                            | -               | -                |
| 144          | 515720876334    | 248.659500               | -47.158161    | 1.85                         | 1.22e-05        | 0.6512           |
| 145          | 515719997468    | 248.660507               | -47.283695    | 0.27                         | 5.29e-07        | 0.9883           |
| 146          | 515727028863    | 248.662170               | -47.365997    | 0.41                         | 9.52e-06        | 0.9843           |
| 147          | 515731927232    | 248.664520               | -47.831417    | 1.51                         | 1.55e-03        | 0.7932           |
| 148          | 515727020965    | 248.664230               | -47.390392    | 0.53                         | 5.29e-07        | 0.9059           |
| 149          | —               | -                        | -             | -                            | -               | -                |
| 150          | 515726918170    | 248.670868               | -47.730507    | 0.25                         | 1.71e-04        | 0.5076           |
|              |                 |                          |               |                              |                 |                  |
| 151          | 515727253034    | 248.671158               | -47.695904    | 1.00                         | 9.53e-06        | 0.6316           |

Chandra Catalog: Infrared Counterparts (continued)

| No.          | VVV Source Name              | R.A.<br>(deg)                                           | Dec.<br>(deg)            | $\Delta_{\rm X-IR}$ (arcsec)                | $p_{\rm noise}$      | Reliability        |
|--------------|------------------------------|---------------------------------------------------------|--------------------------|---------------------------------------------|----------------------|--------------------|
|              |                              | (8)                                                     | (~~8)                    | ()                                          |                      |                    |
| 153          | —                            | -                                                       | -                        | -                                           | -                    | -                  |
| 154          | 515719983536                 | 248.674301                                              | -47.331829               | 1.10                                        | 1.62e-04             | 0.9376             |
| 155          | 515719988309                 | 248.676514                                              | -47.321289               | 0.31                                        | 5.29e-07             | 0.9861             |
| 156          | 515731955313                 | 248.678772                                              | -47.770729               | 2.33                                        | 1.71e-04             | 0.4943             |
| 157          | 515726978466                 | 248.678085                                              | -47.526428               | 1.63                                        | 1.62e-04             | 0.6649             |
| 158          | 515727009565                 | 248.679382                                              | -47.434265               | 0.07                                        | 5.29e-07             | 0.9896             |
| $159 \\ 160$ | 515720040214<br>515726958100 | 248.680420<br>248.682526                                | -47.171551<br>-47.591198 | $\begin{array}{c} 0.71 \\ 0.07 \end{array}$ | 9.52e-06<br>3.07e-03 | $0.9730 \\ 0.9922$ |
| 161          | 515720958100<br>515731845105 | 248.682520<br>248.683899                                | -47.948299               | 0.07<br>0.57                                | 1.71e-04             | 0.9922             |
| 162          | 515726951760                 | 248.683929                                              | -47.612850               | 0.66                                        | 5.29e-07             | 0.9736             |
| 163          | 515726921715                 | 248.685654                                              | -47.728119               | 0.86                                        | 9.53e-06             | 0.9617             |
| 164          | 515727824795                 | 248.687256                                              | -47.613922               | 0.22                                        | 3.07e-03             | 0.9879             |
| 165          | 515720031250                 | 248.688522                                              | -47.205475               | 0.84                                        | 5.29e-07             | 0.7657             |
| 166          | 515720006635                 | 248.689102                                              | -47.274502               | 0.95                                        | 9.52e-06             | 0.8531             |
| 167          | 515726994090                 | 248.689682                                              | -47.486549               | 0.63                                        | 5.29e-07             | 0.9746             |
| 168          | 515726931885                 | 248.689316                                              | -47.690281               | 0.86                                        | 5.29e-07             | 0.9649             |
| 169          | 515731930854                 | 248.693726                                              | -47.822491               | 0.24                                        | 2.92e-03             | 0.9799             |
| 170          | 515731928607                 | 248.696854                                              | -47.841946               | 1.70                                        | 1.71e-04             | 0.9225             |
| 171          | 515727004931                 | 248.696671                                              | -47.458675               | 1.60                                        | 5.29e-07             | 0.5399             |
| 172          | 515727273626                 | 248.699677                                              | -47.545654               | 0.72                                        | 9.53e-06             | 0.9688             |
| 173          | 515727273626                 | 248.699677                                              | -47.545654               | 0.72                                        | 9.53e-06             | 0.9688             |
| 174          | 515726976188                 | 248.699982                                              | -47.546177               | 0.22                                        | 1.62e-04             | 0.9336             |
| 175          | 515719982095                 | 248.701462                                              | -47.355320               | 0.54                                        | 5.29e-07             | 0.9766             |
| 176          | 515726978416                 | 248.702042                                              | -47.541595               | 0.63                                        | 5.29e-07             | 0.9689             |
| 177          | 515732036896                 | 248.703735                                              | -47.644413               | 0.10                                        | 1.71e-04             | 0.9909             |
| 178          |                              | -                                                       | -                        | -                                           | -                    | -                  |
| 179          | 515726937573                 | 248.709015                                              | -47.681850               | 0.99                                        | 1.22e-05             | 0.0394             |
| 180          | 515720039772                 | 248.709290                                              | -47.193062               | 1.87                                        | 5.29e-07             | 0.8514             |
| 181          | 515731979258                 | 248.710175                                              | -47.747566               | 0.92                                        | 1.71e-04             | 0.2728             |
| 182          | 515719987272                 | 248.710205                                              | -47.344597               | 0.24                                        | 5.29e-07             | 0.9848             |
| 183          | 515731943086                 | 248.710510                                              | -47.809185               | 0.63                                        | 1.55e-03             | 0.9623             |
| $184 \\ 185$ | 515719986515<br>515726944973 | $\begin{array}{c} 248.711212 \\ 248.711624 \end{array}$ | -47.346302<br>-47.655052 | $\begin{array}{c} 0.47 \\ 0.09 \end{array}$ | 2.92e-03<br>5.34e-04 | $0.9821 \\ 0.5177$ |
| 185          | 515731977032                 | 248.711024<br>248.711563                                | -47.055052<br>-47.753231 | 1.02                                        | 1.71e-04             | 0.3177<br>0.8449   |
| $180 \\ 187$ | 515727611684                 | 248.711803<br>248.711823                                | -47.620644               | 1.64                                        | 1.71e-04<br>1.71e-04 | 0.6941             |
| 188          | 515731972036                 | 248.712357<br>248.712357                                | -47.772594               | 0.35                                        | 1.71e-04<br>1.71e-04 | 0.9812             |
| 189          | 515727032894                 | 248.713257                                              | -47.389008               | 0.56                                        | 5.29e-07             | 0.9011             |
| 190          | 515727280596                 | 248.713882                                              | -47.471909               | 0.72                                        | 1.54e-03             | 0.8388             |
| 191          | _                            | -                                                       | -                        | -                                           | -                    | -                  |
| 192          | 515731856307                 | 248.721497                                              | -47.956249               | 1.96                                        | 6.12e-04             | 0.2153             |
| 193          | 515720037527                 | 248.722580                                              | -47.211098               | 1.70                                        | 5.29e-07             | 0.9070             |
| 194          | _                            | -                                                       | -                        | -                                           | -                    | -                  |
| 195          | 515726945138                 | 248.724487                                              | -47.669174               | 0.57                                        | 5.29e-07             | 0.9765             |
| 196          | 515726971924                 | 248.724731                                              | -47.573833               | 0.04                                        | 5.29e-07             | 0.9924             |
| 197          | 515719997400                 | 248.725800                                              | -47.324165               | 0.25                                        | 5.29e-07             | 0.9894             |
| 198          | 515727827306                 | 248.727768                                              | -47.602806               | 0.16                                        | 3.07e-03             | 0.9901             |
| 199          | 515727259403                 | 248.728256                                              | -47.690479               | 0.53                                        | 2.16e-04             | 0.8519             |
| 200          | 515727262707                 | 248.729126                                              | -47.667572               | 0.19                                        | 9.53e-06             | 0.5382             |
| 201          | E15797009040                 | -<br>049 720215                                         | -                        | -                                           | -<br>5.29e-07        | -                  |
| $202 \\ 203$ | 515727002049<br>515720026180 | 248.732315<br>248.722215                                | -47.500977<br>47.216742  | 0.54                                        |                      | 0.9742             |
| $203 \\ 204$ | 515720036180<br>515731916357 | 248.733215<br>248.733734                                | -47.216743<br>-47.870708 | $0.08 \\ 0.22$                              | 5.29e-07<br>1.71e-04 | $0.9890 \\ 0.9882$ |
| $204 \\ 205$ | 515751910557                 | 248.733932                                              | -47.870708<br>-47.319386 | $0.22 \\ 0.12$                              | 2.92e-03             | 0.9882<br>0.9910   |
| $205 \\ 206$ | 515720041355                 | 248.734573                                              | -47.319580<br>-47.206612 | $0.12 \\ 0.43$                              | 2.92e-03<br>1.62e-04 | 0.9910<br>0.2262   |
| $200 \\ 207$ | 515720041355<br>515731861894 | 248.734575<br>248.734589                                | -47.200012<br>-47.960239 | 1.93                                        | 1.02e-04<br>1.71e-04 | 0.2202<br>0.1579   |
| 207          |                              | -                                                       | -47.900239               | -                                           | -                    | -                  |
| $200 \\ 209$ | 515720053128                 | 248.738495                                              | -47.177895               | 1.04                                        | 3.07e-03             | 0.2968             |
| 210          | 515727649348                 | 248.740768                                              | -47.447750               | 0.41                                        | 1.71e-04             | 0.4149             |
| 211          | 515720032769                 | 248.741302                                              | -47.231571               | 0.71                                        | 5.29e-07             | 0.9645             |
|              |                              | '                                                       |                          |                                             |                      | -                  |

Chandra Catalog: Infrared Counterparts (continued)

| No.          | VVV Source Name              | R.A.                     | Dec.                     | $\Delta_{\rm X-IR}$       | $p_{\text{noise}}$   | Reliability      |
|--------------|------------------------------|--------------------------|--------------------------|---------------------------|----------------------|------------------|
|              |                              | (deg)                    | (deg)                    | $(\operatorname{arcsec})$ |                      |                  |
|              |                              |                          |                          |                           |                      |                  |
| 212          | 515726948542                 | 248.742188               | -47.660358               | 1.01                      | 5.29e-07             | 0.9592           |
| 213          |                              | _                        | -                        | -                         | _                    | -                |
| 214          | 515732003691                 | 248.752716               | -47.731861               | 1.37                      | 2.81e-04             | 0.0756           |
| 215          | 515720001217                 | 248.753891               | -47.329540               | 0.83                      | 1.56e-05             | 0.8721           |
| 216          | 515726960020                 | 248.759293               | -47.632729               | 0.38                      | 5.29e-07             | 0.9819           |
| $210 \\ 217$ | 515732009667                 | 248.765427               | -47.730007               | 1.90                      | 1.71e-04             | 0.5510           |
| 217          | 515752009007                 | 240.100421               | -41.150001               |                           |                      |                  |
| $210 \\ 219$ | —                            | -                        | -                        | -                         | -                    | -                |
|              |                              |                          | -                        |                           |                      |                  |
| 220          | 515731935369                 | 248.767746               | -47.859001               | 0.23                      | 2.92e-03             | 0.9906           |
| 221          | 515731837735                 | 248.768738               | -48.010948               | 1.99                      | 2.92e-03             | 0.0905           |
| 222          | 515727844660                 | 248.769608               | -47.406601               | 0.90                      | 3.07e-03             | 0.8629           |
| 223          | 515721075338                 | 248.772827               | -47.300995               | 0.77                      | 2.92e-03             | 0.8968           |
| 224          | 515731941796                 | 248.776291               | -47.856983               | 0.14                      | 1.71e-04             | 0.9910           |
| 225          | 515726993046                 | 248.777649               | -47.543415               | 0.29                      | 5.29e-07             | 0.9883           |
| 226          | 515720025405                 | 248.780502               | -47.278145               | 0.32                      | 5.29e-07             | 0.9873           |
| 227          | 515732003337                 | 248.785599               | -47.755592               | 0.94                      | 1.71e-04             | 0.9645           |
| 228          | —                            | -                        | -                        | -                         | -                    | -                |
| 229          | 515720093414                 | 248.791000               | -47.104362               | 0.81                      | 5.29e-07             | 0.9625           |
| 230          | 515720010415                 | 248.790863               | -47.326038               | 0.37                      | 5.29e-07             | 0.9851           |
| 231          | 515720036176                 | 248.793518               | -47.252426               | 1.46                      | 1.62e-04             | 0.0938           |
| 232          | 515726979513                 | 248.796600               | -47.596577               | 0.25                      | 5.29e-07             | 0.9884           |
| 233          | 515727286032                 | 248.799179               | -47.460991               | 2.08                      | 9.53e-06             | 0.6737           |
| 234          | 515726971018                 | 248.800491               | -47.624043               | 0.21                      | 5.29e-07             | 0.9875           |
| 235          | 515731902524                 | 248.804489               | -47.940125               | 1.27                      | 1.71e-04             | 0.9299           |
| 236          | 515732420758                 | 248.807541               | -47.720116               | 2.02                      | 3.07e-03             | 0.1545           |
| $230 \\ 237$ | 515752420758<br>515726970055 | 248.807541<br>248.810715 | -47.635796               | 0.45                      | 9.53e-06             | 0.1343<br>0.9794 |
| 237<br>238   |                              |                          |                          |                           |                      |                  |
|              | 515731994482                 | 248.810898               | -47.784054               | 0.10                      | 1.71e-04             | 0.9891           |
| 239          | 515720865399                 | 248.813293               | -47.384487               | 0.14                      | 9.53e-06             | 0.9889           |
| 240          |                              | -                        | -                        | -                         | -                    | -                |
| 241          | 515720039153                 | 248.815994               | -47.260143               | 1.19                      | 5.29e-07             | 0.1370           |
| 242          | —                            | -                        | -                        | -                         | -                    | -                |
| 243          | 515720109142                 | 248.821976               | -47.074017               | 0.50                      | 5.29e-07             | 0.8036           |
| 244          | 515732408188                 | 248.822235               | -47.828049               | 0.17                      | 3.07e-03             | 0.9904           |
| 245          |                              | -                        | -                        | -                         | -                    | -                |
| 246          |                              | -                        | -                        | -                         | -                    | -                |
| 247          | 515720051620                 | 248.823669               | -47.227947               | 2.88                      | 5.29e-07             | 0.4095           |
| 248          | 515727006204                 | 248.826019               | -47.535732               | 0.29                      | 5.29e-07             | 0.9883           |
| 249          | —                            | -                        | -                        | -                         | -                    | -                |
| 250          | 515732073827                 | 248.828110               | -47.662491               | 0.70                      | 1.71e-04             | 0.9605           |
| 251          | 515719973711                 | 248.828094               | -47.457275               | 2.39                      | 5.29e-07             | 0.4164           |
| 252          | 515721068519                 | 248.828934               | -47.376015               | 2.63                      | 1.71e-04             | 0.4871           |
| 253          |                              | -                        | -                        | -                         | -                    | -                |
| 254          | 515720884674                 | 248.832092               | -47.168694               | 1.23                      | 9.53e-06             | 0.1523           |
| 255          | 515731967336                 | 248.833267               | -47.852566               | 0.22                      | 1.71e-04             | 0.9916           |
| 256          | 515720881053                 | 248.833420               | -47.212570               | 1.53                      | 9.53e-06             | 0.8986           |
| $250 \\ 257$ | 515720801055<br>515719980215 | 248.833847               | -47.440487               | 0.87                      | 5.29e-07             | 0.4999           |
| $257 \\ 258$ | 515731956293                 | 246.833647<br>248.834595 | -47.440487<br>-47.864429 | 0.87<br>0.35              | 5.29e-07<br>1.71e-04 | 0.4999<br>0.9864 |
|              |                              | 248.835159<br>248.835159 |                          |                           | 1.71e-04<br>2.20e-04 |                  |
| 259<br>260   | 515732185036<br>515727028120 |                          | -47.465240               | 1.46                      |                      | 0.3387           |
| 260          | 515727028129                 | 248.835663               | -47.475506               | 0.54                      | 5.29e-07             | 0.4226           |
| 261          | 515732054042                 | 248.835434               | -47.696312               | 1.26                      | 1.71e-04             | 0.4186           |
| 262          | 515732067980                 | 248.835800               | -47.674492               | 0.68                      | 2.92e-03             | 0.9494           |
| 263          | 515719987619                 | 248.836426               | -47.420834               | 1.20                      | 1.62e-04             | 0.9498           |
| 264          | 515732162909                 | 248.836990               | -47.515781               | 1.36                      | 1.71e-04             | 0.4912           |
| 265          | 515732037899                 | 248.837280               | -47.724346               | 1.16                      | 1.71e-04             | 0.2444           |
| 266          | 515720032005                 | 248.838089               | -47.295616               | 0.15                      | 5.29e-07             | 0.9899           |
| 267          | 515731885333                 | 248.839981               | -47.984676               | 1.63                      | 2.92e-03             | 0.4393           |
| 268          | 515731980319                 | 248.840652               | -47.827808               | 0.26                      | 1.71e-04             | 0.9903           |
| 269          | 515720023597                 | 248.840958               | -47.321793               | 0.33                      | 5.29e-07             | 0.9875           |
| 270          | 515721096433                 | 248.840454               | -47.227257               | 2.37                      | 2.92e-03             | 0.8179           |
|              |                              |                          |                          | - •                       |                      |                  |

Chandra Catalog: Infrared Counterparts (continued)

| No.               | VVV Source Name              | R.A.                     | Dec.                     | $\Delta_{\rm X-IR}$                         | $p_{\rm noise}$      | Reliability        |
|-------------------|------------------------------|--------------------------|--------------------------|---------------------------------------------|----------------------|--------------------|
|                   |                              | (deg)                    | (deg)                    | (arcsec)                                    |                      |                    |
| 271               | 515720130362                 | 248.844757               | -47.035686               | 1.57                                        | 5.29e-07             | 0.3472             |
| $271 \\ 272$      | 515732083934                 | 248.844620               | -47.654381               | 0.81                                        | 1.71e-04             | 0.8620             |
| 273               | 515724886301                 | 248.846466               | -47.472534               | 1.61                                        | 5.29e-07             | 0.4962             |
| 274               | 515732071629                 | 248.849091               | -47.679520               | 0.30                                        | 1.71e-04             | 0.9780             |
| 275               | —                            | -                        | -                        | -                                           | -                    | -                  |
| 276               | 515727657182                 | 248.851120               | -47.477173               | 2.44                                        | 1.71e-04             | 0.0185             |
| 277               | 515719987064                 | 248.851898               | -47.431778               | 1.75                                        | 6.80e-07             | 0.2174             |
| 278               | 515720124625                 | 248.851685               | -47.056900               | 0.86                                        | 5.29e-07             | 0.9626             |
| $279 \\ 280$      | 515720074177<br>515720073957 | 248.853470<br>248.852356 | -47.188053<br>-47.186268 | $2.56 \\ 1.37$                              | 9.52e-06<br>6.80e-07 | $0.6378 \\ 0.1589$ |
| $280 \\ 281$      | 515720051419                 | 248.852951               | -47.248470               | 1.37                                        | 0.80e-07<br>9.52e-06 | 0.1389<br>0.9217   |
| 282               | 515732381537                 | 248.854355               | -48.042179               | 1.79                                        | 3.07e-03             | 0.0371             |
| 283               | 515731962796                 | 248.855911               | -47.865074               | 1.31                                        | 1.71e-04             | 0.5805             |
| 284               | 515732435856                 | 248.856461               | -47.626453               | 1.72                                        | 3.07e-03             | 0.8323             |
| 285               | 515720902172                 | 248.856384               | -46.983253               | 3.63                                        | 9.53e-06             | 0.1406             |
| 286               | 515731970035                 | 248.857254               | -47.854713               | 0.30                                        | 1.71e-04             | 0.9887             |
| 287               | 515727654559                 | 248.857452               | -47.494255               | 1.57                                        | 2.92e-03             | 0.5923             |
| 288               | 515732102614                 | 248.858261               | -47.633507               | 0.75                                        | 2.92e-03             | 0.9691             |
| $289 \\ 290$      | 515720072762                 | 248.859909<br>248.860870 | -47.193726<br>-47.239975 | $1.30 \\ 0.41$                              | 5.29e-07<br>5.29e-07 | $0.5584 \\ 0.9842$ |
| $290 \\ 291$      | 515720059099<br>515731994386 | 248.800870<br>248.861618 | -47.239973<br>-47.815742 | $0.41 \\ 0.15$                              | 1.71e-04             | 0.9909             |
| $291 \\ 292$      | 515720073318                 | 248.863174               | -47.193897               | 1.57                                        | 1.44e-06             | 0.5070             |
| 293               | 515720129524                 | 248.863358               | -47.049614               | 0.21                                        | 5.29e-07             | 0.5648             |
| 294               | 515720149224                 | 248.864746               | -47.003742               | 1.24                                        | 9.53e-06             | 0.5278             |
| 295               | 515731903338                 | 248.865356               | -47.975574               | 1.78                                        | 1.71e-04             | 0.5830             |
| 296               | 515720064674                 | 248.866104               | -47.220802               | 0.52                                        | 5.29e-07             | 0.9564             |
| 297               | 515732012299                 | 248.866470               | -47.787773               | 0.61                                        | 1.71e-04             | 0.9605             |
| 298               | 515731933308                 | 248.869797               | -47.927883               | 0.15                                        | 1.71e-04             | 0.9843             |
| 299               | 515732088827                 | 248.870224               | -47.663033               | 0.18                                        | 1.71e-04             | 0.9771             |
| 300               | 515720166055                 | 248.871063               | -46.968105               | 1.02                                        | 9.53e-06             | 0.0614             |
| 301               | 515720102721                 | 248.872665               | -47.121250               | 0.67                                        | 5.34e-04             | 0.7731             |
| $\frac{302}{303}$ | 515732036446                 | 248.872772               | -47.749222               | 0.52                                        | 1.71e-04             | 0.9800             |
| $303 \\ 304$      | 515720045238                 | 248.873535               | -47.278801               | 0.28                                        | 5.29e-07             | 0.9892             |
| 305               | 515732027680                 | 248.874207               | -47.766140               | 1.20                                        | 1.71e-04             | 0.8940             |
| 306               | 515732436459                 | 248.874634               | -47.634850               | 0.55                                        | 3.07e-03             | 0.9779             |
| 307               | 515732169976                 | 248.878845               | -47.523911               | 1.36                                        | 3.07e-03             | 0.7135             |
| 308               | 515732170999                 | 248.879532               | -47.522358               | 1.72                                        | 1.71e-04             | 0.2899             |
| 309               | 515732131652                 | 248.880722               | -47.601063               | 1.66                                        | 1.71e-04             | 0.4884             |
| 310               | 515732393401                 | 248.881104               | -47.963284               | 0.40                                        | 3.07e-03             | 0.5629             |
| 311               | 515731910512                 | 248.881180               | -47.972481               | 0.79                                        | 1.71e-04             | 0.5013             |
| 312               | 515731964505                 | 248.883728               | -47.888878               | 0.49                                        | 1.71e-04             | 0.9785             |
| $313 \\ 314$      | 515732025092<br>515720074429 | 248.883865<br>248.886124 | -47.776867<br>-47.208069 | $\begin{array}{c} 0.53 \\ 0.93 \end{array}$ | 1.71e-04<br>1.71e-04 | $0.9791 \\ 0.7108$ |
| $314 \\ 315$      | 515720020099                 | 248.888199               | -47.358376               | 0.33<br>0.22                                | 5.29e-07             | 0.9886             |
| 316               | 515732092389                 | 248.891434               | -47.668709               | 2.17                                        | 1.55e-03             | 0.4252             |
| 317               | 515720082972                 | 248.891830               | -47.190517               | 0.42                                        | 5.29e-07             | 0.9796             |
| 318               | 515720136518                 | 248.893402               | -47.053493               | 4.39                                        | 8.75e-07             | 0.0304             |
| 319               | 515732100727                 | 248.892380               | -47.659374               | 0.30                                        | 1.71e-04             | 0.9872             |
| 320               | 515727015651                 | 248.894028               | -47.551750               | 1.50                                        | 5.29e-07             | 0.5254             |
| 321               | —                            | -                        | -                        | -                                           | -                    | -                  |
| 322               |                              | -                        | -                        | -                                           | -                    | -                  |
| 323               | 515732049697                 | 248.897110               | -47.740799               | 0.49                                        | 1.71e-04             | 0.9815             |
| $324 \\ 325$      | 515732145281<br>515720119160 | 248.900620               | -47.586121               | $0.33 \\ 0.35$                              | 1.71e-04<br>5.20e.07 | 0.9315             |
| $325 \\ 326$      | 515720119160<br>515720895917 | 248.901138<br>248.902695 | -47.096752<br>-47.085217 | $0.35 \\ 2.10$                              | 5.29e-07<br>9.53e-06 | $0.9862 \\ 0.4514$ |
| $320 \\ 327$      | 515720052381                 | 248.902095<br>248.903351 | -47.085217<br>-47.275715 | 0.71                                        | 9.53e-00<br>5.29e-07 | 0.4314<br>0.9733   |
| 328               | 515720060536                 | 248.903976               | -47.254051               | 1.82                                        | 8.75e-07             | 0.8712             |
| 329               | 515720043917                 | 248.907181               | -47.301254               | 2.20                                        | 6.80e-07             | 0.3639             |
|                   |                              |                          |                          |                                             |                      |                    |

Chandra Catalog: Infrared Counterparts (continued)

| No.               | VVV Source Name               | R.A.<br>(deg)            | Dec.<br>(deg)            | $\Delta_{\rm X-IR}$ (arcsec) | $p_{\rm noise}$      | Reliability        |
|-------------------|-------------------------------|--------------------------|--------------------------|------------------------------|----------------------|--------------------|
| 220               |                               |                          |                          |                              |                      |                    |
| $330 \\ 331$      |                               | -<br>248.911240          | -<br>47 165745           | - 0.37                       | -<br>5.29e-07        | -0.9862            |
| 332               | 515720095589<br>515721391165  | 248.911240               | -47.165745<br>-47.308117 | 1.16                         | 3.07e-03             | 0.3302<br>0.4744   |
| 333               | 515732088573                  | 248.912506               | -47.689438               | 1.33                         | 1.71e-04             | 0.1155             |
| 334               | 515731930432                  | 248.916107               | -47.957863               | 2.25                         | 1.71e-04             | 0.7639             |
| 335               | 515731997298                  | 248.918350               | -47.845325               | 0.28                         | 2.92e-03             | 0.9802             |
| 336               | 515732126350                  | 248.923096               | -47.632431               | 9.46                         | 2.92e-03             | 0.1645             |
| 337               | 515732130818                  | 248.920105               | -47.622913               | 0.35                         | 1.71e-04             | 0.8423             |
| 338               | 515720170385                  | 248.920441               | -46.989658               | 0.70                         | 5.29e-07             | 0.9742             |
| 339               | 515731980548                  | 248.920853               | -47.874779               | 0.42                         | 1.71e-04             | 0.9777             |
| 340               | 515732166177                  | 248.925674               | -47.561626               | 1.24                         | 1.71e-04             | 0.9488             |
| 341               | 515732165794                  | 248.927414               | -47.562771               | 1.42                         | 2.92e-03             | 0.6187             |
| 342               | 515720900228                  | 248.928146               | -47.049198               | 1.04                         | 3.43e-05             | 0.1170             |
| 343               | 515731984608                  | 248.930038               | -47.873573               | 0.69                         | 3.07e-03             | 0.5939             |
| 344               | 515732163126                  | 248.930283               | -47.569763               | 0.61                         | 1.71e-04             | 0.9500             |
| 345               | 515720086780                  | 248.930756               | -47.200630               | 2.39                         | 1.62e-04             | 0.2663             |
| 346               | 515732034350                  | 248.930573               | -47.793633               | 0.11                         | 1.71e-04             | 0.9916             |
| 347               | 515721114893                  | 248.931427               | -47.148045               | 0.42                         | 1.71e-04             | 0.9841             |
| 348               | 515720155486                  | 248.933243               | -47.033833               | 0.80                         | 5.29e-07             | 0.8636             |
| 349               | 515732010861                  | 248.934738               | -47.834263               | 2.50                         | 2.92e-03             | 0.3502             |
| 350               | 515721124762                  | 248.938080               | -47.085915               | 0.56                         | 2.20e-04             | 0.6534             |
| $351 \\ 352$      | 515720161333<br>515720902796  | 248.939087<br>248.938583 | -47.026745<br>-47.027782 | $0.69 \\ 1.55$               | 9.52e-06<br>1.54e-03 | $0.3821 \\ 0.6839$ |
| $352 \\ 353$      | 515720888891                  | 248.939713               | -47.027782<br>-47.189156 | 1.03                         | 1.54e-05<br>9.53e-06 | 0.0839<br>0.9079   |
| 353               | 5157203000001<br>515720142415 | 248.940445               | -47.067116               | 0.97                         | 5.29e-07             | 0.9475             |
| 355               | 515732136668                  | 248.940796               | -47.625229               | 1.03                         | 1.71e-04             | 0.7478             |
| 356               | 515732054208                  | 248.941132               | -47.759998               | 1.00                         | 3.07e-03             | 0.9185             |
| 357               | 515732010598                  | 248.941895               | -47.836094               | 1.76                         | 2.20e-04             | 0.6587             |
| 358               | 515732033464                  | 248.941879               | -47.798439               | 0.95                         | 1.71e-04             | 0.8988             |
| 359               | 515732053442                  | 248.942291               | -47.761799               | 2.82                         | 1.71e-04             | 0.5980             |
| 360               | 515721124750                  | 248.943924               | -47.090107               | 0.16                         | 1.71e-04             | 0.9861             |
| 361               | 515732137601                  | 248.944244               | -47.625790               | 0.27                         | 1.71e-04             | 0.9560             |
| 362               | 515720073473                  | 248.945007               | -47.244347               | 1.11                         | 5.29e-07             | 0.6208             |
| 363               | 515719997510                  | 248.945374               | -47.462490               | 0.29                         | 5.29e-07             | 0.9877             |
| 364               | 515720100906                  | 248.945740               | -47.173359               | 0.99                         | 1.62e-04             | 0.9011             |
| 365<br>266        | _                             | -                        | -                        | -                            | -                    | -                  |
| $\frac{366}{367}$ | 515720127548                  | -248.946823              | -47.106262               | 0.29                         | -<br>5.29e-07        | -0.9889            |
| 368               | 515720127548<br>515732140206  | 248.946976               | -47.622875               | 3.05                         | 2.92e-07<br>2.92e-03 | 0.4907             |
| 369               | 515732152481                  | 248.947815               | -47.602310               | 0.26                         | 1.71e-04             | 0.9842             |
| 370               | 515720078855                  | 248.949600               | -47.233395               | 1.97                         | 1.62e-04             | 0.7268             |
| 371               | 515721389020                  | 248.951462               | -47.358044               | 0.29                         | 3.07e-03             | 0.9876             |
| 372               | 515732146789                  | 248.951599               | -47.613953               | 0.87                         | 1.71e-04             | 0.9647             |
| 373               | 515721084910                  | 248.952469               | -47.358337               | 2.83                         | 1.71e-04             | 0.3838             |
| 374               | 515720877915                  | 248.953857               | -47.322083               | 1.32                         | 2.16e-04             | 0.9264             |
| 375               | 515720043823                  | 248.954330               | -47.329937               | 2.73                         | 1.22e-05             | 0.6823             |
| 376               | 515732104330                  | 248.954712               | -47.688095               | 0.15                         | 1.71e-04             | 0.9925             |
| 377               | 515732170991                  | 248.957001               | -47.574657               | 2.89                         | 1.71e-04             | 0.0762             |
| 378               | 515720031123                  | 248.957321               | -47.368336               | 0.50                         | 5.29e-07             | 0.9807             |
| 379               | 515719996033                  | 248.958374               | -47.471565               | 0.55                         | 5.29e-07             | 0.6233             |
| 380<br>201        | 515732445238<br>515731988503  | 248.958771<br>248.959122 | -47.614983               | 0.46                         | 3.07e-03<br>1.71e-04 | $0.5667 \\ 0.3858$ |
| $\frac{381}{382}$ | 515732057788                  | 248.959122<br>248.959534 | -47.884365<br>-47.766354 | $3.25 \\ 2.64$               | 1.71e-04<br>1.71e-04 | 0.3858<br>0.1847   |
| 383               | 515720085994                  | 248.959554<br>248.960495 | -47.700354<br>-47.222069 | $2.64 \\ 0.60$               | 1.62e-04             | 0.1847<br>0.9775   |
| 384               | 515720085994<br>515732143663  | 248.960493<br>248.962616 | -47.627651               | 1.66                         | 1.02e-04<br>1.71e-04 | 0.6630             |
| 385               | 515752145005<br>515721113327  | 248.962646               | -47.182266               | 0.42                         | 2.92e-03             | 0.9845             |
| 386               | 515721140040                  | 248.964798               | -47.002792               | 4.10                         | 1.71e-04             | 0.3547             |
| 387               |                               | -                        | -                        | -                            | -                    | -                  |
| 388               | 515720188425                  | 248.962646               | -46.972706               | 2.17                         | 1.71e-04             | 0.3152             |

Chandra Catalog: Infrared Counterparts (continued)

| No.          | VVV Source Name               | R.A.<br>(deg)            | Dec.<br>(deg)            | $\Delta_{\rm X-IR}$ (arcsec) | $p_{ m noise}$       | Reliability        |
|--------------|-------------------------------|--------------------------|--------------------------|------------------------------|----------------------|--------------------|
| 200          |                               |                          |                          |                              |                      |                    |
| $389 \\ 390$ | 515720100154                  | -<br>248.963928          | -47.186428               | -0.37                        | -<br>5.29e-07        | 0.9860             |
| $390 \\ 391$ |                               | 240.903920               | -47.180428               | -                            | -                    | -                  |
| 392          | 515732166039                  | 248.966721               | -47.588295               | 1.56                         | 6.12e-04             | 0.4459             |
| $392 \\ 393$ | 515720120252                  | 248.968307<br>248.968307 | -47.136795               | 0.32                         | 5.29e-07             | 0.4459<br>0.9880   |
| 394          | 515732059728                  | 248.900007<br>248.971237 | -47.770782               | 0.52<br>0.50                 | 1.71e-04             | 0.9794             |
| 395          |                               | -                        | -41.110102               | -                            | -                    | -                  |
| 396          | 515720906266                  | 248.972916               | -47.010567               | 0.94                         | 9.53e-06             | 0.8977             |
| 397          | 515720155530                  | 248.972310<br>248.974487 | -47.060776               | 0.22                         | 5.29e-07             | 0.9909             |
| 398          | 515732161491                  | 248.974655               | -47.599796               | 3.12                         | 3.07e-03             | 0.5903<br>0.5677   |
| 399          | 515720055706                  | 248.974055<br>248.975052 | -47.312187               | 2.73                         | 5.29e-07             | 0.2534             |
| 400          | 515720197603                  | 248.976013               | -46.961464               | 0.76                         | 9.52e-06             | 0.2730             |
| 400          | 515720148302                  | 248.980377               | -47.076874               | 0.31                         | 6.80e-07             | 0.9852             |
| 401          | 515720054266                  | 248.979996               | -47.317814               | 0.82                         | 9.52e-06             | 0.9652             |
| 402          | 515720054200<br>515720158664  | 248.980301<br>248.980301 | -47.054329               | 0.82<br>0.77                 | 1.71e-04             | 0.6206             |
| 403          |                               | -                        | -41.004020               | -                            | -                    | -                  |
| 404          |                               | _                        | _                        | _                            | _                    | _                  |
| $403 \\ 406$ | _                             | -                        | -                        | -                            | -                    | -                  |
| $400 \\ 407$ | 515720136437                  | -248.981613              | -47.108875               | 0.23                         | -<br>5.29e-07        | 0.9906             |
| 407          |                               | 240.901015               | -47.108875               | -                            | 5.296-07             | -                  |
| 408          | 515732069048                  | -248.983444              | -<br>-47.764084          | 1.05                         | -<br>2.92e-03        | -0.8599            |
| 409          | 515732009048<br>515732012362  | 248.983444<br>248.983597 | -47.860275               | 2.57                         | 2.92e-03<br>1.71e-04 | 0.8399<br>0.4086   |
| 410          | 515732012502<br>515732416593  | 248.983597<br>248.983704 | -47.856270               | 0.45                         | 3.07e-04             | 0.4080<br>0.5888   |
| 411 412      | 010702410090                  | -                        | -41.030210               | -                            | 3.07e-03<br>-        | 0.0000             |
|              | 515720100285                  |                          | -                        |                              | -<br>1.71e-04        |                    |
| 413          | 515732129285                  | 248.995819               | -47.684292               | 0.45                         |                      | 0.9820             |
| $414 \\ 415$ | $515724897196 \\515720148545$ | 248.997101<br>248.996490 | -47.525642               | $2.30 \\ 0.70$               | 6.80e-07<br>5.29e-07 | $0.2838 \\ 0.9733$ |
| 415          | 515720148545<br>515732418811  | 248.990490<br>249.000580 | -47.088127<br>-47.873241 | 1.82                         | 3.07e-07             | 0.9733<br>0.2623   |
| 410          | 515732045388                  | 249.0005264              |                          | 0.28                         | 1.71e-03             | 0.2023<br>0.9834   |
| 417 418      | 515732045588<br>515732078081  | 249.005204<br>249.008301 | -47.815010<br>-47.765320 | 1.38                         | 1.71e-04<br>1.71e-04 | $0.9834 \\ 0.8751$ |
| 418          | 515720169097                  | 249.008301<br>249.008316 | -47.046535               | 0.06                         | 5.29e-07             | 0.8751<br>0.9849   |
| $419 \\ 420$ | 515720109097                  | 249.008310<br>249.014053 | -47.040555<br>-47.738167 | $0.00 \\ 0.78$               | 2.92e-07<br>2.92e-03 | 0.9849<br>0.9464   |
| $420 \\ 421$ | 01070200000                   | 249.014035               | -41.150101               | 0.78                         | 2.926-03             | 0.9404             |
| 421<br>422   | 515725812244                  | -249.014923              | -<br>-47.332363          | 0.73                         | -<br>1.71e-04        | -0.3587            |
| 422 423      | 515725812244<br>515724944189  | 249.014923<br>249.015411 | -47.360378               | $0.73 \\ 0.67$               | 5.29e-07             | 0.3587<br>0.9557   |
| $423 \\ 424$ | 010724944109                  | -                        | -47.300378               | -                            | 5.29e-07<br>-        | 0.9557             |
| 424<br>425   | 515732090747                  | -249.018906              | -47.749676               | - 0.66                       | -<br>2.81e-04        | -0.9619            |
| $420 \\ 426$ | 515720106559                  | 249.018900<br>249.019608 | -47.204140               | 0.00<br>0.13                 | 5.29e-07             | 0.9019<br>0.9841   |
| $420 \\ 427$ | 515720100559<br>515720242627  | 249.019008<br>249.020950 | -47.204140<br>-46.876747 | 1.42                         | 1.62e-07             | 0.3016             |
| 427          | 515721436904                  | 249.020930<br>249.021896 | -46.879711               | 2.96                         | 3.07e-03             | 0.3010<br>0.3886   |
| 428<br>429   | 515720206314                  | 249.021890<br>249.022598 | -46.963253               | 3.17                         | 5.29e-07             | 0.5880<br>0.5993   |
| 430          | 515720130878                  | 249.022398<br>249.023392 | -40.903233<br>-47.144848 | 0.41                         | 9.52e-07             | 0.9848             |
| $430 \\ 431$ | 515732146909                  | 249.023392<br>249.024124 | -47.659218               | $0.41 \\ 0.52$               | 9.52e-00<br>1.71e-04 | 0.9848<br>0.2673   |
| 431          | 515732146909<br>515732145381  | 249.024124<br>249.024872 |                          | $0.32 \\ 0.39$               | 2.92e-03             |                    |
|              |                               |                          | -47.664749               |                              |                      | 0.4741             |
| 433          | 515720142307                  | 249.025269               | -47.119320               | 0.17                         | 5.29e-07             | 0.9871             |
| 434          | 515732108366                  | 249.025818               | -47.733418<br>-47.180714 | 0.20                         | 1.71e-04             | 0.9913             |
| 435          | 515720116495                  | 249.026123               |                          | 0.40                         | 5.29e-07             | 0.9851             |
| 436          | E1E7900027E1                  | -                        | -                        |                              | -                    | -                  |
| 437          | 515720093751                  | 249.029312               | -47.242882               | 0.41                         | 6.80e-07             | 0.9843             |
| 438          | 515720915548                  | 249.031342               | -46.943924               | 0.67                         | 1.22e-05             | 0.9092             |
| 439          | 515732141878                  | 249.032196               | -47.673733               | 0.53                         | 1.71e-04             | 0.9804             |
| 440          | —                             | -                        | -                        | -                            | -                    | -                  |
| 441          | —                             | -                        | -                        | -                            | -                    | -                  |
| 442          |                               | -                        | -                        | -                            | -                    | -                  |
| 443          | 515720067425                  | 249.045807               | -47.323288               | 1.10                         | 6.80e-07             | 0.9065             |
| 444          | 515732134867                  | 249.046021               | -47.693775               | 0.83                         | 1.71e-04             | 0.9009             |
| 445          | 515724907512                  | 249.045776               | -47.512859               | 2.25                         | 1.12e-06             | 0.7916             |
| 446          | 515720059043                  | 249.045883               | -47.345200               | 2.35                         | 5.29e-07             | 0.6833             |
| 447          | 515721404166                  | 249.049469               | -47.252144               | 2.07                         | 3.07e-03             | 0.1443             |

Chandra Catalog: Infrared Counterparts (continued)

| No.          | VVV Source Name              | R.A.<br>(deg)            | Dec.<br>(deg)            | $\Delta_{\rm X-IR}$ (arcsec) | $p_{\rm noise}$      | Reliability        |
|--------------|------------------------------|--------------------------|--------------------------|------------------------------|----------------------|--------------------|
|              |                              | (8)                      | (8)                      | (                            |                      |                    |
| 448          | 515720182374                 | 249.049881               | -47.040188               | 0.20                         | 5.29e-07             | 0.9905             |
| 449          | 515720206949                 | 249.050629               | -46.978340               | 0.45                         | 8.75e-07             | 0.9779             |
| 450          | 515724927889                 | 249.051056               | -47.436462               | 0.88                         | 3.40e-05             | 0.9083             |
| 451          | 515720272054                 | 249.055191               | -46.833179               | 0.80                         | 5.29e-07             | 0.0426             |
| 452          | 515720214281                 | 249.055023               | -46.963814               | 0.84                         | 5.29e-07             | 0.9605             |
| 453          | 515732163380                 | 249.056793               | -47.647984               | 1.45                         | 2.20e-04             | 0.5787             |
| 454          | 515720257706                 | 249.059372               | -46.872715               | 1.18                         | 2.92e-03             | 0.4628             |
| 455          |                              | -                        | -                        | -                            | -                    | -                  |
| 456          | 515732426367                 | 249.059784               | -47.858116               | 0.78                         | 3.07e-03             | 0.4758             |
| $457 \\ 458$ | 515724890143<br>515720214105 | 249.060944<br>249.061401 | -47.592270<br>-46.972649 | $0.34 \\ 0.54$               | 5.29e-07<br>9.53e-06 | $0.9838 \\ 0.9790$ |
| $458 \\ 459$ | 515720214105<br>515720145803 | 249.061401<br>249.061859 | -40.972049<br>-47.134422 | $0.34 \\ 0.13$               | 9.53e-00<br>5.29e-07 | 0.9790<br>0.9842   |
| 460          | 515732038026                 | 249.001839<br>249.065445 | -47.864979               | 0.13                         | 1.71e-04             | 0.9140             |
| 461          |                              | -                        | -41.004313               | -                            | -                    | -                  |
| 462          | 515720168424                 | 249.068802               | -47.085751               | 0.86                         | 9.52e-06             | 0.9117             |
| 463          | 515732024260                 | 249.071777               | -47.898083               | 2.37                         | 6.12e-04             | 0.3588             |
| 464          | 515724940782                 | 249.071701               | -47.408062               | 0.46                         | 9.52e-06             | 0.9822             |
| 465          | 515720080244                 | 249.071442               | -47.304394               | 0.71                         | 5.29e-07             | 0.9758             |
| 466          | 515732116671                 | 249.072113               | -47.740463               | 0.13                         | 1.71e-04             | 0.9884             |
| 467          | 515724903203                 | 249.073608               | -47.548725               | 0.50                         | 5.29e-07             | 0.9834             |
| 468          | 515720066296                 | 249.080750               | -47.350937               | 0.54                         | 1.62e-04             | 0.9781             |
| 469          | 515720108282                 | 249.082367               | -47.243420               | 0.46                         | 5.29e-07             | 0.9828             |
| 470          | 515720152650                 | 249.084457               | -47.135689               | 0.27                         | 9.53e-06             | 0.9797             |
| 471          | 515720115401                 | 249.084549               | -47.223469               | 0.31                         | 5.29e-07             | 0.9777             |
| 472          | 515720901490                 | 249.085358               | -47.135098               | 0.72                         | 1.54e-03             | 0.4868             |
| 473          | F1F500004055                 | -                        | -                        | -                            | -                    | -                  |
| 474          | 515720224277                 | 249.086044               | -46.959698               | 0.21                         | 9.52e-06             | $0.9785 \\ 0.0721$ |
| $475 \\ 476$ | 515732027852<br>515721123324 | 249.087692<br>249.087982 | -47.895588<br>-47.187393 | $2.41 \\ 0.67$               | 1.71e-04<br>2.81e-04 | 0.0721<br>0.9655   |
| $470 \\ 477$ | 515721125524<br>515720197538 | 249.087982<br>249.088730 | -47.187393<br>-47.029129 | 0.07                         | 5.29e-07             | 0.9055<br>0.9901   |
| 478          | 515720892073                 | 249.088394               | -47.242523               | 1.50                         | 1.71e-04             | 0.3858             |
| 479          | 515720108293                 | 249.091202               | -47.241528               | 1.42                         | 1.62e-04             | 0.9276             |
| 480          | 515732105978                 | 249.091644               | -47.769962               | 1.66                         | 1.71e-04             | 0.4855             |
| 481          | 515732033580                 | 249.091553               | -47.890438               | 1.14                         | 1.71e-04             | 0.0803             |
| 482          | 515720230485                 | 249.092468               | -46.948616               | 0.37                         | 5.29e-07             | 0.9801             |
| 483          | —                            | -                        | -                        | -                            | -                    | -                  |
| 484          | —                            | -                        | -                        | -                            | -                    | -                  |
| 485          | 515720200594                 | 249.099762               | -47.026379               | 0.39                         | 5.29e-07             | 0.9850             |
| 486          | 515720930238                 | 249.100098               | -46.833572               | 2.88                         | 9.53e-06             | 0.2447             |
| 487          | —                            | -                        | -                        | -                            | -                    | -                  |
| 488          |                              | -                        | -                        | -                            |                      | -                  |
| 489          | 515724929083                 | 249.106842               | -47.468323               | 0.93                         | 5.29e-07             | 0.9263             |
| $490 \\ 491$ | 515724914888                 | 249.107819               | -47.523438               | 0.52                         | 5.29e-07             | 0.9820             |
| 491 492      | 515720246163                 | -249.111465              | -<br>46.923542           | 3.19                         | -<br>1.62e-04        | 0.0697             |
| 493          | 515732150302                 | 249.111405<br>249.110550 | -47.708370               | 0.20                         | 1.02e-04<br>1.71e-04 | 0.9863             |
| 494          | 515720243858                 | 249.113693               | -46.929314               | 1.64                         | 1.62e-04             | 0.0342             |
| 495          | 515724921946                 | 249.113815               | -47.497047               | 0.64                         | 5.29e-07             | 0.9744             |
| 496          | 515720233172                 | 249.116913               | -46.957218               | 0.64                         | 5.29e-07             | 0.9718             |
| 497          | 515732191556                 | 249.117844               | -47.626019               | 0.91                         | 1.71e-04             | 0.1604             |
| 498          | 515724889456                 | 249.116882               | -47.629704               | 2.74                         | 5.29e-07             | 0.3338             |
| 499          | 515720140487                 | 249.117752               | -47.180855               | 0.14                         | 5.29e-07             | 0.9799             |
| 500          | 515724898608                 | 249.118530               | -47.593502               | 0.52                         | 5.29e-07             | 0.9820             |
| 501          | 515732101405                 | 249.118774               | -47.794201               | 1.02                         | 2.92e-03             | 0.3955             |
| 502          | 515720218153                 | 249.122284               | -47.000443               | 0.20                         | 5.29e-07             | 0.9915             |
| 503          | 515720270467                 | 249.122513               | -46.874691               | 0.33                         | 8.75e-07             | 0.9757             |
| 504          | 515720920853                 | 249.122757               | -46.945145               | 2.60                         | 9.53e-06             | 0.0323             |
| 505          | 515732165734                 | 249.124146               | -47.683514               | 0.53                         | 1.71e-04             | 0.9799             |
| 506          | 515720243169                 | 249.124710               | -46.938114               | 0.32                         | 5.29e-07             | 0.9869             |

Chandra Catalog: Infrared Counterparts (continued)

| No.          | VVV Source Name | R.A.<br>(deg)            | Dec.<br>(deg) | $\Delta_{\rm X-IR}$ (arcsec) | $p_{ m noise}$ | Reliabilit |
|--------------|-----------------|--------------------------|---------------|------------------------------|----------------|------------|
| 507          | 515724916206    | 249.127213               | -47.541203    | 0.30                         | 5.29e-07       | 0.9900     |
| 508          | 515725793032    | 249.129578               | -47.535233    | 1.99                         | 2.92e-03       | 0.6158     |
| 509          |                 | -                        | -             | -                            | -              | -          |
| 510          | 515720902250    | 249.131195               | -47.158421    | 1.06                         | 1.71e-04       | 0.6014     |
| 511          | 515721400657    | 249.132614               | -47.341660    | 1.22                         | 3.07e-03       | 0.8731     |
| 512          | 515732150519    | 249.135590               | -47.721256    | 1.82                         | 2.92e-03       | 0.8261     |
| 513          | 515721152020    | 249.136093               | -47.034760    | 1.14                         | 2.92e-03       | 0.6144     |
| 514          |                 | -                        | -             | -                            | -              | -          |
| 515          | 515720076253    | 249.139816               | -47.357056    | 2.21                         | 5.29e-07       | 0.5918     |
| 516          | 515720912550    | 249.141525               | -47.044315    | 0.17                         | 1.71e-04       | 0.9907     |
| 517          | 515720236452    | 249.144882               | -46.967361    | 0.23                         | 9.53e-06       | 0.9893     |
| 518          | 515720167031    | 249.145844               | -47.135757    | 0.29                         | 1.62e-04       | 0.3730     |
| 519          | 515724945913    | 249.149044<br>249.148239 | -47.440449    | 0.23<br>0.74                 | 5.29e-07       | 0.9735     |
| 519<br>520   | 010724940910    | -                        | -47.440449    |                              | J.29e-07<br>-  |            |
|              | 515720002664    |                          |               | -<br>0.10                    |                | -          |
| 521<br>522   | 515720903664    | 249.150558               | -47.148373    | 2.12                         | 2.92e-03       | 0.4888     |
| 522<br>522   |                 | -                        | -             | -                            | -              | -          |
| 523          | _               | -                        | -             | -                            | -              | -          |
| 524          |                 | -                        | -             | -                            | -              | -          |
| $525 \\ 526$ | 515720263787    | 249.157349<br>-          | -46.910229    | 0.63                         | 6.80e-07<br>-  | 0.9354     |
| 527          | 515724885858    | 249.159149               | -47.665913    | 1.33                         | 1.62e-04       | 0.9082     |
| 528          | 515720213346    | 249.160934               | -47.033241    | 0.14                         | 5.29e-07       | 0.9911     |
| 529          | 515724889097    | 249.161392               | -47.656342    | 0.55                         | 5.29e-07       | 0.9775     |
| 530          | 515720097716    | 249.162415               | -47.332787    | 0.32                         | 5.29e-07       | 0.9886     |
| 531          | 515726072802    | 249.166351               | -47.537273    | 0.83                         | 3.07e-03       | 0.8591     |
| 532          | 515724901115    | 249.166489               | -47.619526    | 0.76                         | 5.29e-07       | 0.9733     |
| 533          | 515720222755    | 249.166672               | -47.014179    | 0.12                         | 5.29e-07       | 0.9926     |
| 534          | 515724909998    | 249.167969               | -47.578453    | 0.16                         | 1.22e-05       | 0.9923     |
| 535          | —               | -                        | -             | -                            | -              | -          |
| 536          | 515720216879    | 249.168457               | -47.030846    | 0.45                         | 5.29e-07       | 0.9824     |
| 537          | 515720143346    | 249.168304               | -47.205711    | 1.65                         | 9.52e-06       | 0.7266     |
| 538          | 515724966788    | 249.169769               | -47.387352    | 0.85                         | 5.29e-07       | 0.9568     |
| 539          | 515720274923    | 249.170959               | -46.895279    | 0.67                         | 5.29e-07       | 0.8732     |
| 540          | 515721449482    | 249.175949               | -46.835365    | 2.99                         | 3.07e-03       | 0.4033     |
| 541          | 515726077735    | 249.182312               | -47.507824    | 0.75                         | 3.07e-03       | 0.9703     |
| 542          | 515720204483    | 249.182846               | -47.066235    | 0.73                         | 5.29e-07       | 0.9729     |
| 543          | 515732148546    | 249.185928               | -47.754539    | 1.21                         | 1.71e-04       | 0.5371     |
| 544          | 515724990248    | 249.187790               | -47.325607    | 0.47                         | 5.29e-07       | 0.9807     |
| 545          | 515720153028    | 249.190430               | -47.196701    | 0.28                         | 5.29e-07       | 0.9867     |
| 546          | 515724939373    | 249.192886               | -47.484303    | 0.31                         | 9.52e-06       | 0.9829     |
| 547          | 515724910177    | 249.194000               | -47.594296    | 1.03                         | 5.29e-07       | 0.9278     |
| 548          | 515725621661    | 249.193863               | -47.471081    | 1.13                         | 2.92e-03       | 0.8885     |
| 549          | 515720911777    | 249.195236               | -47.085205    | 1.84                         | 1.71e-04       | 0.0787     |
| 550          | 515724887210    | 249.195496               | -47.684166    | 1.71                         | 5.29e-07       | 0.4566     |
| 551          |                 | -                        | -             | -                            | -              | -          |
| 552          | 515720295945    | 249.197998               | -46.864697    | 0.30                         | 1.71e-04       | 0.9820     |
| 553<br>554   | E1E701400004    | -                        | -             | -                            | -              | -          |
| 554          | 515721423884    | 249.199707               | -47.129383    | 1.67                         | 3.07e-03       | 0.0975     |
| 555          | 515720201302    | 249.200317               | -47.084721    | 1.25                         | 3.40e-05       | 0.0488     |
| 556          | 515726079909    | 249.201187               | -47.509350    | 0.16                         | 3.07e-03       | 0.9919     |
| 557          | 515720197272    | 249.202896               | -47.097733    | 0.43                         | 8.75e-07       | 0.6226     |
| 558          | 515720192683    | 249.204514               | -47.115482    | 0.70                         | 6.80e-07       | 0.2907     |
| 559          | 515720111337    | 249.204819               | -47.304268    | 0.77                         | 5.29e-07       | 0.9669     |
| 560          | 515720270223    | 249.205048               | -46.925480    | 0.47                         | 5.29e-07       | 0.9807     |
| 561          | 515721441807    | 249.206482               | -46.938778    | 2.92                         | 3.07e-03       | 0.7478     |
| 562          | 515721200331    | 249.205231               | -46.766151    | 1.85                         | 1.71e-04       | 0.2126     |
| 563          | 515732453510    | 249.208862               | -47.705822    | 0.96                         | 3.07e-03       | 0.2327     |
| 564          | 515720909745    | 249.208817               | -47.118050    | 0.79                         | 1.71e-04       | 0.9495     |
| 565          | 515720892319    | 249.210144               | -47.311420    | 0.58                         | 9.53e-06       | 0.5935     |

Chandra Catalog: Infrared Counterparts (continued)

| No.          | VVV Source Name | R.A.<br>(deg) | Dec.<br>(deg) | $\Delta_{\rm X-IR}$ (arcsec) | $p_{\rm noise}$ | Reliability |
|--------------|-----------------|---------------|---------------|------------------------------|-----------------|-------------|
| 566          | 515724982587    | 249.210571    | -47.362900    | 1.41                         | 9.52e-06        | 0.5063      |
| 567          | —               | -             | -             | -                            | -               | -           |
| 568          | —               | -             | -             | -                            | -               | -           |
| 569          | 515720296118    | 249.213058    | -46.875580    | 0.49                         | 5.29e-07        | 0.9770      |
| 570          | 515720118390    | 249.216095    | -47.292747    | 0.24                         | 5.29e-07        | 0.9908      |
| 571          | 515720111537    | 249.218246    | -47.312550    | 0.47                         | 5.29e-07        | 0.9838      |
| 572          | _               | -             | -             | -                            | -               | -           |
| 573          | 515721199425    | 249.223877    | -46.787167    | 0.88                         | 1.71e-04        | 0.5154      |
| 574          | 515724923577    | 249.227554    | -47.560837    | 0.11                         | 5.29e-07        | 0.9940      |
| 575          | 515720217280    | 249.228668    | -47.063328    | 1.01                         | 2.92e-03        | 0.8517      |
| 576          | _               | -             | -             | -                            | -               | -           |
| 577          | _               | -             | -             | -                            | -               | -           |
| 578          | 515732184723    | 249.231812    | -47.708950    | 0.79                         | 3.07e-03        | 0.9503      |
| 579          | 515721165546    | 249.232193    | -47.016762    | 1.50                         | 1.71e-04        | 0.3506      |
| 580          | 515725624933    | 249.232330    | -47.453514    | 2.32                         | 3.07e-03        | 0.1342      |
| 581          | 515725623539    | 249.232727    | -47.471066    | 2.00                         | 1.71e-04        | 0.6047      |
| 582          | 515720228465    | 249.234863    | -47.040588    | 0.75                         | 9.52e-06        | 0.8321      |
| 583          |                 | -             | -             | -                            | -               | -           |
| 584          | —               | -             | -             | -                            | -               | -           |
| 585          | 515720327101    | 249.237289    | -46.817364    | 2.47                         | 5.29e-07        | 0.5732      |
| 586          | 515725815632    | 249.243805    | -47.445656    | 1.44                         | 3.07e-03        | 0.6165      |
| 587          | _               | -             | -             | -                            | -               | -           |
| 588          | —               | -             | -             | -                            | -               | -           |
| 589          | 515720119341    | 249.244995    | -47.308006    | 2.18                         | 5.29e-07        | 0.1652      |
| 590          | 515720146424    | 249.247177    | -47.247803    | 0.43                         | 5.29e-07        | 0.9851      |
| 591          | 515720264981    | 249.248138    | -46.964821    | 0.32                         | 5.29e-07        | 0.9829      |
| 592          | 515725056985    | 249.249435    | -47.153648    | 1.21                         | 5.29e-07        | 0.6357      |
| 593          | 515725047888    | 249.250900    | -47.183926    | 0.66                         | 5.29e-07        | 0.9775      |
| 594          | 515720209728    | 249.251526    | -47.096092    | 0.84                         | 5.29e-07        | 0.7004      |
| 595          | 515720272199    | 249.251755    | -46.951454    | 0.61                         | 1.62e-04        | 0.8444      |
| 596          | 515724925489    | 249.255020    | -47.570324    | 0.41                         | 5.29e-07        | 0.9862      |
| 597          | 515720387613    | 249.255630    | -46.695210    | 1.99                         | 1.71e-04        | 0.4757      |
| 598          | 515725059944    | 249.255402    | -47.148273    | 0.65                         | 5.29e-07        | 0.9774      |
| 599          | 515720225573    | 249.256607    | -47.060959    | 1.65                         | 5.29e-07        | 0.7837      |
| 600          | 515725789727    | 249.259094    | -47.638348    | 0.96                         | 1.71e-04        | 0.5482      |
| 601          | 515724937697    | 249.260040    | -47.530712    | 0.88                         | 9.53e-06        | 0.9054      |
| 602          | 515720235293    | 249.260300    | -47.039978    | 0.62                         | 5.29e-07        | 0.9767      |
| 603          | 515720247209    | 249.260559    | -47.014755    | 1.06                         | 5.29e-07        | 0.9642      |
| 604          | 515720389760    | 249.261597    | -46.696289    | 1.70                         | 5.29e-07        | 0.2791      |
| 605          | 515720309641    | 249.261932    | -46.872944    | 0.38                         | 5.29e-07        | 0.9825      |
| 606          | 515720235847    | 249.262787    | -47.039463    | 2.16                         | 9.53e-06        | 0.7041      |
| 607          | 515720330371    | 249.266129    | -46.828033    | 0.35                         | 5.29e-07        | 0.9848      |
| 608<br>600   | 515720377972    | 249.269424    | -46.725529    | 1.68                         | 5.29e-07        | 0.4275      |
| 609          | 515725069959    | 249.270447    | -47.132717    | 0.11                         | 9.52e-06        | 0.9907      |
| 610          | 515725861202    | 249.271698    | -47.133347    | 1.17                         | 2.92e-03        | 0.9101      |
| 611          | 515725069957    | 249.273361    | -47.131233    | 0.67                         | 5.29e-07        | 0.9761      |
| 612          | 515720242396    | 249.273605    | -47.032948    | 1.46                         | 5.29e-07        | 0.5073      |
| 613          | 515720349987    | 249.275970    | -46.790188    | 1.06                         | 5.29e-07        | 0.9163      |
| 614          | 515725058369    | 249.277145    | -47.165653    | 1.16                         | 5.29e-07        | 0.3092      |
| 615<br>616   | 515721461040    | 249.280136    | -46.773251    | 1.73                         | 3.07e-03        | 0.6058      |
| 616<br>617   | E1E794040949    | -             | -             | -                            | -<br>E 00- 07   | -           |
| 617          | 515724940348    | 249.283554    | -47.539314    | 0.74                         | 5.29e-07        | 0.9492      |
| 618<br>610   | 515724998520    | 249.285156    | -47.358986    | 0.58                         | 5.29e-07        | 0.9814      |
| 619<br>620   | 515721177467    | 249.289001    | -46.974834    | 2.67                         | 1.71e-04        | 0.4107      |
| 620          | 515724942904    | 249.290588    | -47.532536    | 0.24                         | 5.29e-07        | 0.9910      |
| $621 \\ 622$ | 515725807772    | 249.290680    | -47.531811    | 0.79                         | 3.07e-03        | 0.9547      |
| 022          | 515720211060    | 249.293762    | -47.130573    | 0.02                         | 9.52e-06        | 0.9941      |
| 623          |                 |               | -             | -                            | -               | -           |

Chandra Catalog: Infrared Counterparts (continued)

| No.          | VVV Source Name | R.A.<br>(deg)            | Dec.<br>(deg) | $\Delta_{\rm X-IR}$ (arcsec) | $p_{\rm noise}$      | Reliabilit       |
|--------------|-----------------|--------------------------|---------------|------------------------------|----------------------|------------------|
| 625          | 515724991447    | 249.300827               | -47.395355    | 1.22                         | 5.29e-07             | 0.9244           |
| 626          |                 | _                        | _             | -                            | _                    | _                |
| 627          | 515724984338    | 249.299973               | -47.411667    | 2.81                         | 1.71e-04             | 0.0804           |
| 628          |                 | -                        | -             | -                            | -                    | -                |
| 629          | 515720290390    | 249.302887               | -46.940868    | 0.23                         | 9.53e-06             | 0.9538           |
| 630          |                 | -                        | -             | -                            | -                    | -                |
| 631          | 515720301761    | 249.307098               | -46.918213    | 0.83                         | 5.29e-07             | 0.8878           |
| 632          | 515724935715    | 249.307190               | -47.566078    | 0.54                         | 1.62e-04             | 0.9820           |
| 633          | 515720371273    | 249.307465               | -46.772045    | 1.02                         | 5.29e-07             | 0.9583           |
| 634          | 515720280408    | 249.307968               | -46.966370    | 2.19                         | 5.29e-07             | 0.5225           |
| 635          | 515720374187    | 249.308167               | -46.758747    | 0.69                         | 5.29e-07             | 0.9278           |
| 636          | 515726118547    | 249.308548               | -47.234848    | 1.93                         | 3.07e-03             | 0.0533           |
| 637          |                 | 240.000040               | -41.204040    | -                            | 0.010-00             | 0.0000           |
| 638          | 515725041101    | 249.309448               | -47.241631    | 0.86                         | 5.29e-07             | 0.9634           |
| 639          | 515724961420    | 249.309448<br>249.311005 | -47.489975    | 0.80                         | 1.62e-04             | 0.9004<br>0.9007 |
| 640          | 515720304818    | 249.311003<br>249.312088 | -46.912670    | 1.53                         | 1.02e-04<br>1.71e-04 | 0.3926           |
| $640 \\ 641$ | 515720326537    | 249.312088<br>249.313568 | -46.865971    | 0.16                         | 9.52e-06             | 0.3920<br>0.9893 |
| $641 \\ 642$ | 515720372864    | 249.313508<br>249.318451 | -46.768192    | 0.10                         | 9.32e-00<br>1.22e-05 | 0.9893<br>0.7989 |
| 643          | 515720243083    | 249.324402               | -47.060371    | 1.73                         | 5.29e-07             | 0.0735           |
| 644          | 515721181768    | 249.324402<br>249.324356 | -46.967121    | 1.82                         | 1.71e-04             | 0.2879           |
| 645          |                 | 240.024000               | -40.001121    | 1.02                         | 1.110-04             | -                |
| 646          | 515720266141    | 249.325089               | -47.008671    | 0.67                         | 3.07e-03             | 0.9718           |
| 647          | 515720175612    | 249.325531               | -47.225090    | 0.39                         | 5.29e-07             | 0.9865           |
| 648          | 515725817690    | 249.326813               | -47.481369    | 2.95                         | 2.92e-03             | 0.5871           |
| 649          | 515720168679    | 249.327759               | -47.242439    | 3.10                         | 9.52e-06             | 0.0645           |
| 650          | 515720383711    | 249.329147<br>249.329147 | -46.756416    | 0.55                         | 5.29e-07             | 0.0045<br>0.9780 |
| 651          | 515725856202    | 249.333282               | -47.206051    | 1.33                         | 1.71e-04             | 0.7549           |
| 652          | 515725006660    | 249.334198               | -47.363964    | 0.74                         | 5.29e-07             | 0.9760           |
| 653          |                 | -                        | -41.000004    | -                            | -                    | -                |
| 654          | 515725068477    | 249.335648               | -47.174309    | 0.33                         | 5.29e-07             | 0.9885           |
| 655          | 515720392342    | 249.336655               | -46.743141    | 0.50                         | 1.54e-03             | 0.9005<br>0.9775 |
| 656          | 515724979680    | 249.338394               | -47.451092    | 0.43                         | 5.29e-07             | 0.9856           |
| 657          |                 | 240.000004               | -41.401052    | -                            | -                    | -                |
| 658          | _               |                          |               | _                            |                      | _                |
| 659          | 515720381782    | 249.342072               | -46.764351    | 0.18                         | 5.29e-07             | 0.9901           |
| 660          | 515724937515    | 249.343613               | -47.588268    | 0.67                         | 9.52e-06             | 0.8521           |
| 661          | 515725041439    | 249.343903               | -47.260960    | 0.48                         | 5.29e-07             | 0.8855           |
| 662          | 515724982923    | 249.345230               | -47.453609    | 0.38                         | 5.29e-07             | 0.9876           |
| 663          |                 | 240.040200               | -41.400000    | -                            | 0.200-01             | 0.0010           |
| 664          |                 |                          | _             | _                            |                      | _                |
| 665          | _               | _                        | _             | -                            | _                    | -                |
| 666          | 515725079124    | 249.352478               | -47.149704    | 0.22                         | 9.53e-06             | 0.9915           |
| 667          | 515720327682    | 249.353622               | -46.889778    | 0.20                         | 5.29e-07             | 0.9894           |
| 668          | 515720930616    | 249.357635               | -46.988300    | 1.14                         | 1.71e-04             | 0.1863           |
| 669          | 515725034163    | 249.357758               | -47.292580    | 1.10                         | 5.29e-07             | 0.9231           |
| 670          |                 | -                        | -             | -                            | -                    | -                |
| 671          |                 | -                        | -             | -                            | -                    | -                |
| 672          | 515725102694    | 249.359451               | -47.084740    | 0.15                         | 5.29e-07             | 0.9879           |
| 673          | 515720313621    | 249.360123               | -46.923710    | 0.59                         | 5.29e-07             | 0.9767           |
| 674          | 515725031467    | 249.361328               | -47.304470    | 0.32                         | 5.29e-07             | 0.9778           |
| 675          | 515725066967    | 249.361954               | -47.192951    | 0.45                         | 5.29e-07             | 0.9830           |
| 676          | 515725010572    | 249.363785               | -47.376850    | 0.35                         | 9.53e-06             | 0.9887           |
| 677          | 515725014858    | 249.367004               | -47.362183    | 0.62                         | 9.52e-06             | 0.9783           |
| 678          | 515720379916    | 249.372025               | -46.787155    | 0.42                         | 5.29e-07             | 0.9831           |
| 679          | 515720938487    | 249.372757               | -46.913124    | 0.87                         | 9.53e-06             | 0.9423           |
| 680          | 515720452230    | 249.373459               | -46.630745    | 1.35                         | 5.29e-07             | 0.9010           |
| 681          | 515720394991    | 249.374573               | -46.755085    | 0.54                         | 5.29e-07             | 0.9778           |
| 682          | 515720406912    | 249.376175               | -46.727020    | 1.32                         | 6.80e-07             | 0.5313           |
| 683          | 515720354211    | 249.377197               | -46.844021    | 0.12                         | 5.29e-07             | 0.9904           |

Chandra Catalog: Infrared Counterparts (continued)

| No.          | VVV Source Name              | R.A.<br>(deg)            | Dec.<br>(deg)            | $\Delta_{\rm X-IR}$ (arcsec) | $p_{\rm noise}$      | Reliability        |
|--------------|------------------------------|--------------------------|--------------------------|------------------------------|----------------------|--------------------|
|              |                              |                          | ( 0)                     |                              |                      |                    |
| 684          | 515720407806                 | 249.378601               | -46.727169               | 2.20                         | 1.62e-04             | 0.7320             |
| 685          | 515724991027                 | 249.378479               | -47.444263               | 0.86                         | 5.29e-07             | 0.9167             |
| 686          | 515725006718                 | 249.379364               | -47.391388               | 0.34                         | 5.29e-07             | 0.9890             |
| 687          | 515726133806                 | 249.379089               | -47.161301               | 0.88                         | 3.07e-03             | 0.8990             |
| 688          | 515725841379                 | 249.380081               | -47.350487               | 0.44                         | 1.71e-04             | 0.9851             |
| 689          | 515725044280                 | 249.381241               | -47.277000               | 1.97                         | 5.29e-07             | 0.7567             |
| 690          | 515720283013                 | 249.381531               | -47.006428               | 3.21                         | 2.92e-03             | 0.2863             |
| 691          | 515724985484                 | 249.388748               | -47.462952               | 0.13                         | 5.29e-07             | 0.9895             |
| 692          | 515720288575                 | 249.389877               | -46.999199               | 2.20                         | 5.29e-07             | 0.1638             |
| 693<br>604   | 515725642378                 | 249.391098               | -47.337360               | $0.53 \\ 0.41$               | 9.53e-06<br>5.29e-07 | 0.9823             |
| $694 \\ 695$ | 515720390344<br>515720435098 | 249.392273<br>249.392654 | -46.774975<br>-46.680653 | $0.41 \\ 0.71$               | 5.29e-07<br>5.29e-07 | $0.9835 \\ 0.7997$ |
| 696          | 515720320326                 | 249.392034<br>249.397324 | -46.930752               | 1.34                         | 5.29e-07<br>5.29e-07 | 0.7200             |
| $690 \\ 697$ | 515720324625                 | 249.397324<br>249.397293 | -46.921448               | 0.79                         | 5.29e-07<br>5.29e-07 | 0.7200<br>0.8594   |
| 698          | 515725025255                 | 249.397293<br>249.398758 | -47.345295               | 0.13                         | 5.29e-07<br>5.29e-07 | 0.9833             |
| 699          | 515725104431                 | 249.398834               | -47.105907               | 0.25                         | 5.29e-07<br>5.29e-07 | 0.9860             |
| 700          | 515721452114                 | 249.399475               | -46.944458               | 2.76                         | 3.07e-03             | 0.0490             |
| 701          | 515725124908                 | 249.399277               | -47.040958               | 0.55                         | 5.29e-07             | 0.9805             |
| 702          | 515721452890                 | 249.402039               | -46.938335               | 0.31                         | 3.07e-03             | 0.0561             |
| 703          | 515724982779                 | 249.403809               | -47.497658               | 0.25                         | 5.29e-07             | 0.9891             |
| 704          | 515720262902                 | 249.404099               | -47.063671               | 0.80                         | 5.29e-07             | 0.9666             |
| 705          | 515720494602                 | 249.407516               | -46.563118               | 1.86                         | 5.29e-07             | 0.1511             |
| 706          | 515720288963                 | 249.408768               | -47.009426               | 2.03                         | 5.29e-07             | 0.8589             |
| 707          | 515720321285                 | 249.409637               | -46.941891               | 2.41                         | 9.52e-06             | 0.3284             |
| 708          | 515721210255                 | 249.413498               | -46.827168               | 0.39                         | 1.71e-04             | 0.9844             |
| 709          | 515720401013                 | 249.414001               | -46.764332               | 0.43                         | 5.29e-07             | 0.9377             |
| 710          | 515720362163                 | 249.414291               | -46.850433               | 0.38                         | 5.29e-07             | 0.9822             |
| 711          | 515721191690                 | 249.415253               | -46.956486               | 0.42                         | 2.92e-03             | 0.0548             |
| 712          | 515720366508                 | 249.416687               | -46.841366               | 0.12                         | 5.29e-07             | 0.9922             |
| 713          | 515725624896                 | 249.420456               | -47.573006               | 1.11                         | 9.53e-06             | 0.9508             |
| 714          | 515724991300                 | 249.421280               | -47.465572               | 0.25                         | 1.62e-04             | 0.9868             |
| 715          | 515725137611                 | 249.422241               | -47.018391               | 2.28                         | 5.29e-07             | 0.0612             |
| 716          | 515724957139                 | 249.424026               | -47.574215               | 3.08                         | 5.29e-07             | 0.6006             |
| 717          | 515720349112                 | 249.425888               | -46.884518               | 0.05                         | 5.29e-07             | 0.9881             |
| 718          | 515720463509                 | 249.426895               | -46.639771               | 0.47                         | 1.62e-04             | 0.8979             |
| 719          | 515725129528                 | 249.426773               | -47.045036               | 1.29                         | 5.29e-07             | 0.8912             |
| 720          | 515720473269                 | 249.429504               | -46.620834               | 1.51                         | 5.29e-07             | 0.7606             |
| 721          | 515720360138                 | 249.429611               | -46.863533               | 0.32                         | 5.29e-07             | 0.9842             |
| 722          |                              | -                        | -                        | -                            | -                    | -                  |
| 723          | 515720411515                 | 249.431915               | -46.754482               | 0.63                         | 9.52e-06             | 0.9649             |
| 724          | 515725012942                 | 249.433060               | -47.404778               | 0.11                         | 5.29e-07             | 0.9937             |
| 725<br>726   | 515720442832                 | 249.433929               | -46.691166               | 0.63                         | 2.92e-03             | 0.9717             |
| $726 \\ 727$ | 515726115121                 | 249.434158               | -47.339352               | 0.67                         | 3.07e-03             | 0.9642             |
| $727 \\ 728$ | 515725843355<br>515725126792 | 249.434647<br>249.434097 | -47.366776<br>-47.057049 | $1.39 \\ 1.40$               | 2.92e-03<br>5.29e-07 | 0.5356<br>0.6384   |
| $728 \\ 729$ | 515725126792<br>515720383220 | 249.434097<br>249.435196 | -47.057049<br>-46.822803 | $1.40 \\ 0.80$               | 5.29e-07<br>9.53e-06 | $0.6384 \\ 0.9675$ |
| $729 \\ 730$ | 515725127068                 | 249.435196<br>249.436508 | -46.822803<br>-47.058788 | $0.80 \\ 0.70$               | 9.53e-06<br>5.29e-07 | 0.9675<br>0.6825   |
| $730 \\ 731$ | 515725043682                 | 249.436508<br>249.436493 | -47.309525               | 1.59                         | 5.29e-07<br>5.29e-07 | 0.0825<br>0.0537   |
| 732          | 515720373581                 | 249.430493<br>249.438019 | -46.840630               | 1.19                         | 5.29e-07<br>5.29e-07 | 0.1628             |
| 733          | 515720311655                 | 249.438843<br>249.438843 | -46.976086               | 1.13                         | 5.29e-07<br>5.29e-07 | 0.9547             |
| 734          | 515720480742                 | 249.439758               | -46.614506               | 0.57                         | 1.62e-04             | 0.8160             |
| 735          | 515725139596                 | 249.441132               | -47.024033               | 1.27                         | 5.29e-07             | 0.5388             |
| 736          | 515720468396                 | 249.443665               | -46.639729               | 1.43                         | 8.75e-07             | 0.5959             |
| 737          | 515720958194                 | 249.443192               | -46.753880               | 2.79                         | 9.53e-06             | 0.4044             |
| 738          |                              | -                        | -                        | -                            | -                    | -                  |
| 739          | 515720322836                 | 249.445602               | -46.955349               | 2.69                         | 5.29e-07             | 0.4199             |
| 740          | 515720482584                 | 249.447311               | -46.613384               | 0.31                         | 1.22e-05             | 0.5053             |
| 741          | 515720331617                 | 249.447815               | -46.938259               | 1.73                         | 5.29e-07             | 0.3056             |
| 742          | 515721476446                 | 249.450455               | -46.681496               | 1.94                         | 3.07e-03             | 0.5152             |
|              |                              |                          |                          |                              |                      |                    |

Chandra Catalog: Infrared Counterparts (continued)

| N   |                 | D A                      | D          | •                         |                      | D I: 1 'I'       |
|-----|-----------------|--------------------------|------------|---------------------------|----------------------|------------------|
| No. | VVV Source Name | R.A.                     | Dec.       | $\Delta_{\rm X-IR}$       | $p_{\text{noise}}$   | Reliability      |
|     |                 | (deg)                    | (deg)      | $(\operatorname{arcsec})$ |                      |                  |
|     |                 |                          |            |                           |                      |                  |
| 743 | 515720394093    | 249.450516               | -46.803783 | 0.54                      | 5.29e-07             | 0.9765           |
| 744 | 515725026645    | 249.451263               | -47.372242 | 0.16                      | 5.29e-07             | 0.9946           |
| 745 | 515720936505    | 249.451172               | -46.983242 | 0.63                      | 9.53e-06             | 0.9683           |
| 746 | 515725111635    | 249.451767               | -47.112877 | 0.53                      | 9.52e-06             | 0.9820           |
| 747 | 515725070912    | 249.454697               | -47.241360 | 2.21                      | 5.29e-07             | 0.4972           |
| 748 | —               | -                        | -          | -                         | -                    | -                |
| 749 | 515720424597    | 249.459366               | -46.741810 | 0.28                      | 5.29e-07             | 0.9744           |
| 750 | 515720338856    | 249.461670               | -46.929234 | 0.26                      | 5.29e-07             | 0.9891           |
| 751 | 515725012074    | 249.465195               | -47.427475 | 0.29                      | 5.29e-07             | 0.9840           |
| 752 | 515720403515    | 249.465271               | -46.793232 | 0.48                      | 5.29e-07             | 0.9612           |
| 753 | 515720458505    | 249.466019               | -46.674942 | 0.18                      | 1.71e-04             | 0.9845           |
| 754 | 515724982579    | 249.469757               | -47.520866 | 0.33                      | 1.62e-04             | 0.9797           |
| 755 | 515726158952    | 249.473282               | -47.017632 | 0.53                      | 3.07e-03             | 0.3610           |
| 756 | 515721215799    | 249.473694               | -46.830879 | 0.59                      | 2.92e-03             | 0.9643           |
| 757 | 515720348476    | 249.478424               | -46.918137 | 0.71                      | 5.29e-07             | 0.9231           |
| 758 | 515720385672    | 249.478790               | -46.836918 | 0.77                      | 9.52e-06             | 0.9360           |
| 759 | 515725872245    | 249.479156               | -47.185486 | 1.72                      | 2.92e-03             | 0.6409           |
| 760 | 515720409938    | 249.481110               | -46.808907 | 0.57                      | 9.52e-06             | 0.9657           |
| 761 | 515720458238    | 249.481949               | -46.684975 | 0.20                      | 9.52e-06             | 0.9881           |
| 762 | 515720419547    | 249.481720               | -46.766144 | 0.66                      | 1.62e-04             | 0.9737           |
| 763 | _               | _                        | -          | _                         | _                    | -                |
| 764 | 515725647384    | 249.485321               | -47.330597 | 0.18                      | 9.53e-06             | 0.9937           |
| 765 | 515724980138    | 249.485703               | -47.539387 | 2.65                      | 2.16e-04             | 0.6180           |
| 766 | 515724969695    | 249.488800               | -47.571896 | 1.76                      | 5.29e-07             | 0.5800           |
| 767 | 515726134131    | 249.489182               | -47.226486 | 2.17                      | 3.07e-03             | 0.5322           |
| 768 | 515720978328    | 249.491394               | -46.588692 | 0.73                      | 9.53e-06             | 0.0739           |
| 769 | 515726159954    | 249.492798               | -47.023342 | 2.73                      | 3.07e-03             | 0.3428           |
| 770 | 515721261351    | 249.491928               | -46.567612 | 1.85                      | 3.07e-03             | 0.6798           |
| 771 | 515725043311    | 249.495102               | -47.347778 | 0.09                      | 5.29e-07             | 0.9900           |
| 772 | 515720480093    | 249.495346               | -46.650452 | 0.62                      | 5.29e-07             | 0.9697           |
| 773 | 515725089829    | 249.496597               | -47.209164 | 1.12                      | 9.52e-06             | 0.9637           |
| 774 | 515720443274    | 249.497116               | -46.727409 | 0.33                      | 8.75e-07             | 0.9850           |
| 775 | 515725172153    | 249.496902               | -46.973492 | 0.95                      | 5.29e-07             | 0.9450           |
| 776 | 515725149698    | 249.500854               | -47.036350 | 0.49                      | 5.29e-07             | 0.9823           |
| 777 | 515720454683    | 249.501694               | -46.707951 | 0.44                      | 1.62e-04             | 0.9797           |
| 778 |                 | -                        | -          | -                         |                      | -                |
| 779 | 515720395265    | 249.504395               | -46.832645 | 0.87                      | 5.29e-07             | 0.3867           |
| 780 | 515725893211    | 249.504166               | -47.050404 | 0.85                      | 2.20e-04             | 0.7759           |
| 781 | 515720365641    | 249.504379               | -46.896538 | 0.93                      | 2.83e-04             | 0.9576           |
| 782 | 515720425785    | 249.507233               | -46.767948 | 0.63                      | 2.92e-03             | 0.5299           |
| 783 | 515720500473    | 249.510971               | -46.615517 | 2.16                      | 3.40e-05             | 0.7542           |
| 784 |                 |                          |            | -                         | -                    | -                |
| 785 | 515720337310    | 249.511032               | -46.968151 | 0.29                      | 5.29e-07             | 0.7837           |
| 786 |                 |                          |            | -                         | -                    | -                |
| 787 |                 | -                        | -          | -                         | _                    | _                |
| 788 | 515725012241    | 249.512466               | -47.454777 | 1.12                      | 5.29e-07             | 0.8059           |
| 789 | 515720485727    | 249.513535               | -46.649693 | 0.47                      | 9.53e-06             | 0.9767           |
| 790 | 515720469451    | 249.513580               | -46.682083 | 0.31                      | 5.29e-07             | 0.9856           |
| 791 |                 | -                        | -          | -                         | -                    | -                |
| 792 | 515725107085    | 249.518784               | -47.167160 | 0.98                      | 5.29e-07             | 0.9567           |
| 793 | 515725068660    | 249.518417               | -47.282616 | 0.06                      | 5.29e-07             | 0.9896           |
| 794 | 515720390260    | 249.520050               | -46.854855 | 0.36                      | 5.29e-07<br>5.29e-07 | 0.9386           |
| 795 | 515720966028    | 249.521454               | -46.724400 | $0.30 \\ 0.45$            | 1.71e-04             | 0.9380<br>0.9476 |
| 796 | 515725897162    | 249.522705               | -47.033939 | 1.98                      | 2.92e-03             | 0.1909           |
| 797 | 515725092878    | 249.527145               | -47.215267 | 0.38                      | 2.92e-03             | 0.9730           |
| 798 | 515725186017    | 249.530869               | -46.958214 | 0.38                      | 5.29e-07             | 0.9885           |
| 799 | 515720507860    | 249.532303<br>249.532303 | -46.621002 | 0.20<br>0.55              | 5.29e-07<br>5.29e-07 | 0.9134           |
| 800 | 515725888846    | 249.532505<br>249.532516 | -47.098984 | 1.99                      | 1.71e-04             | 0.0518           |
| 801 | 515725061720    | 249.532510<br>249.534592 | -47.314850 | 0.48                      | 5.29e-07             | 0.9850           |
| 001 | 010120001120    | 240.004002               | 11.014000  | 0.40                      | 0.200-01             | 0.0000           |

Chandra Catalog: Infrared Counterparts (continued)

| No.          | VVV Source Name                | R.A.<br>(deg)            | Dec.<br>(deg)            | $\Delta_{\rm X-IR}$ (arcsec) | $p_{\rm noise}$      | Reliability      |
|--------------|--------------------------------|--------------------------|--------------------------|------------------------------|----------------------|------------------|
| 000          |                                |                          |                          |                              |                      |                  |
| 802          | E1E794000279                   | -                        | -                        | -                            | -<br>5 20a 07        | -                |
| 803          | 515724999378                   | 249.536041               | -47.508160               | 0.63                         | 5.29e-07<br>3.07e-03 | 0.9198           |
| 804          | $515721461614 \\ 515725111412$ | 249.537216               | -46.925671               | 1.05                         |                      | 0.9045           |
| 805<br>806   |                                | 249.536819               | -47.173035               | 0.74                         | 5.29e-07             | 0.9711           |
| 806          | 515725066962                   | 249.537994               | -47.299011               | 1.48                         | 9.52e-06             | 0.5819           |
| 807          | 515725165094                   | 249.537598               | -47.017467               | 0.70                         | 5.29e-07             | 0.9499           |
| 808          | 515720975550                   | 249.539505               | -46.643795               | $0.45 \\ 1.38$               | 9.53e-06             | 0.9791           |
| 809          | 515725638717                   | 249.539444               | -47.473366               | 1.56                         | 3.07e-03             | 0.7988           |
| $810 \\ 811$ | 515725063944                   | -249.541550              | -<br>-47.316021          | 0.31                         | -<br>1.62e-04        | -<br>0.9899      |
| 812          | 515725045763                   | 249.541050<br>249.543076 | -47.367516               | $0.51 \\ 0.53$               | 1.02e-04<br>1.71e-04 | 0.9899<br>0.7782 |
| 812<br>813   | 010720040700                   | -                        | -47.307310               | 0.00                         | -                    | 0.1182           |
| 813<br>814   | 515720321386                   | -249.544128              | -47.019245               | 0.68                         | -<br>9.52e-06        | 0.9708           |
| 814<br>815   | 515725118896                   | 249.544128<br>249.544205 | -47.019243<br>-47.146633 | $0.68 \\ 0.69$               | 9.32e-00<br>5.29e-07 | 0.9762           |
| 816          | 515720522703                   | 249.546219               | -46.595791               | 0.88                         | 5.29e-07<br>5.29e-07 | 0.9397           |
| 817          | 515720530857                   | 249.545944               | -46.578770               | $0.33 \\ 0.46$               | 5.29e-07<br>5.29e-07 | 0.9410           |
| 818          | 515720420063                   | 249.546051               | -46.806614               | 0.40<br>0.14                 | 5.29e-07<br>5.29e-07 | 0.9410           |
| 819          | 515725847995                   | 249.540051<br>249.549652 | -40.800014<br>-47.399933 | 3.14                         | 5.29e-07<br>1.71e-04 | 0.5980           |
| 819          | 010720047990                   | 249.049002               | -41.399933               | 5.10                         | 1.716-04             | 0.3980           |
| 820<br>821   | 515720445141                   | -249.552109              | -46.757401               | 0.50                         | -<br>5.29e-07        | -0.9762          |
| 822          | 515725146870                   | 249.557983               | -47.076134               | 1.22                         | 5.29e-07<br>5.29e-07 | 0.5469           |
| 823          | 515725140870                   | 249.001900               | -47.070134               | 1.22                         | - 01                 | 0.0409           |
| $823 \\ 824$ |                                | -                        | -                        | -                            | -                    | -                |
| 825          | 515721468438                   | 249.561707               | -46.858456               | 1.87                         | 3.07e-03             | 0.8352           |
| 826          | 515720381034                   | 249.564880               | -46.903843               | 0.89                         | 6.85e-06             | 0.9441           |
| 827          | 515725077186                   | 249.566971               | -47.286156               | 0.06                         | 5.29e-07             | 0.9932           |
| 828          | 515726162570                   | 249.568192               | -47.045200               | 0.00<br>0.95                 | 3.07e-03             | 0.93932          |
| 829          | 515725040714                   | 249.570526               | -47.401127               | 1.38                         | 1.62e-04             | 0.8190           |
| 830          | 515721280417                   | 249.571732               | -46.483395               | 0.82                         | 2.92e-03             | 0.4474           |
| 831          | 515725055489                   | 249.572937               | -47.355640               | 0.15                         | 5.29e-07             | 0.9838           |
| 832          | 515720450690                   | 249.572845               | -46.758259               | 0.35                         | 9.53e-06             | 0.9820           |
| 833          | 515720482766                   | 249.572922               | -46.690189               | 0.77                         | 9.52e-06             | 0.8901           |
| 834          | 515720448578                   | 249.575729               | -46.761360               | 2.90                         | 5.29e-07             | 0.0891           |
| 835          | 515725069856                   | 249.574646               | -47.313046               | 0.55                         | 5.29e-07             | 0.9827           |
| 836          | 515720989181                   | 249.575745               | -46.541630               | 1.77                         | 9.53e-06             | 0.5384           |
| 837          | 515720529482                   | 249.576050               | -46.599045               | 0.65                         | 1.54e-03             | 0.9093           |
| 838          | 515725211630                   | 249.576416               | -46.933918               | 0.33                         | 1.62e-04             | 0.9808           |
| 839          | 515725073868                   | 249.577621               | -47.302563               | 0.23                         | 5.29e-07             | 0.9893           |
| 840          | 515725211645                   | 249.577744               | -46.920845               | 2.26                         | 9.52e-06             | 0.5166           |
| 841          | 515725127739                   | 249.580688               | -47.143784               | 1.86                         | 1.62e-04             | 0.8862           |
| 842          | 515720998755                   | 249.583755               | -46.461769               | 1.92                         | 1.71e-04             | 0.1071           |
| 843          | 515725079033                   | 249.585205               | -47.292297               | 0.90                         | 6.80e-07             | 0.9406           |
| 844          | 515720565459                   | 249.585526               | -46.540504               | 0.42                         | 5.29e-07             | 0.4437           |
| 845          | _                              | -                        | -                        | -                            | -                    | -                |
| 846          | 515725102456                   | 249.586304               | -47.224285               | 0.16                         | 9.52e-06             | 0.9937           |
| 847          | 515720405672                   | 249.589905               | -46.861008               | 2.23                         | 9.52e-06             | 0.4182           |
| 848          | 515721484122                   | 249.590851               | -46.670242               | 0.54                         | 3.07e-03             | 0.9626           |
| 849          | 515725656799                   | 249.591660               | -47.278912               | 0.18                         | 1.57e-05             | 0.9921           |
| 850          | 515721231044                   | 249.591858               | -46.817326               | 0.39                         | 3.07e-03             | 0.6702           |
| 851          | 515725920135                   | 249.593460               | -46.906067               | 1.10                         | 1.71e-04             | 0.8671           |
| 852          | 515720461702                   | 249.594345               | -46.750935               | 0.44                         | 9.52e-06             | 0.9769           |
| 853          | 515720444366                   | 249.596558               | -46.783306               | 2.32                         | 5.29e-07             | 0.2230           |
| 854          | —                              | -                        | -                        | -                            | -                    | -                |
| 855          | 515725226081                   | 249.597076               | -46.894234               | 0.12                         | 5.29e-07             | 0.9885           |
| 856          | 515720407004                   | 249.598480               | -46.863346               | 1.52                         | 5.29e-07             | 0.6071           |
| 857          | 515721271681                   | 249.600143               | -46.569710               | 0.48                         | 1.71e-04             | 0.8722           |
| 858          | 515720550483                   | 249.599930               | -46.572762               | 1.21                         | 1.62e-04             | 0.5378           |
| 859          | 515721486823                   | 249.601395               | -46.654682               | 0.58                         | 3.07e-03             | 0.9692           |
| 860          | 515720538039                   | 249.601883               | -46.605785               | 1.15                         | 9.53e-06             | 0.7238           |
|              |                                |                          |                          |                              |                      |                  |

Chandra Catalog: Infrared Counterparts (continued)

| No.               | VVV Source Name              | R.A.                     | Dec.                     | $\Delta_{\rm X-IR}$                         | $p_{\rm noise}$      | Reliability        |
|-------------------|------------------------------|--------------------------|--------------------------|---------------------------------------------|----------------------|--------------------|
|                   |                              | (deg)                    | (deg)                    | (arcsec)                                    |                      |                    |
| 861               | 515720605137                 | 249.602661               | -46.474174               | 0.33                                        | 5.29e-07             | 0.7374             |
| 862               | 515720352453                 | 249.602707               | -46.988304               | 0.30<br>0.79                                | 5.29e-07             | 0.9345             |
| 863               | 515721266020                 | 249.603210               | -46.606850               | 1.41                                        | 1.71e-04             | 0.3810             |
| 864               | 515720519091                 | 249.603516               | -46.636024               | 0.35                                        | 1.62e-04             | 0.9801             |
| 865               | 515725176581                 | 249.605057               | -47.026356               | 0.77                                        | 2.92e-03             | 0.9585             |
| 866               |                              | -                        | -                        | -                                           | -                    | -                  |
| 867               | 515720995402                 | 249.609161               | -46.508446               | 2.31                                        | 3.07e-03             | 0.3755             |
| $\frac{868}{869}$ | 515725232108<br>515725049489 | 249.609924<br>249.609100 | -46.882824<br>-47.396534 | $3.24 \\ 1.97$                              | 5.29e-07<br>5.29e-07 | $0.4982 \\ 0.8396$ |
| 809<br>870        | 51572049489<br>515720498694  | 249.609100<br>249.611282 | -46.680473               | 0.54                                        | 5.29e-07<br>6.85e-06 | 0.8390<br>0.9755   |
| 871               | 515726163071                 | 249.611725               | -47.067329               | 0.65                                        | 3.07e-03             | 0.0679             |
| 872               | 515725202229                 | 249.612000               | -46.965050               | 0.19                                        | 5.29e-07             | 0.9905             |
| 873               | 515725078287                 | 249.612610               | -47.311008               | 0.31                                        | 9.53e-06             | 0.9893             |
| 874               | 515720444417                 | 249.613831               | -46.794842               | 0.45                                        | 5.29e-07             | 0.9690             |
| 875               | 515720525215                 | 249.614532               | -46.635700               | 0.54                                        | 1.71e-04             | 0.9714             |
| 876               | 515721236586                 | 249.618057               | -46.799862               | 2.57                                        | 3.07e-03             | 0.3867             |
| 877               | 515725070166                 | 249.621323               | -47.340717               | 0.73                                        | 5.29e-07             | 0.9771             |
| 878<br>870        | 515720392829<br>515725114261 | 249.621979               | -46.908539               | 1.91                                        | 9.52e-06             | 0.6844             |
| $879 \\ 880$      | 515725174201<br>515725174209 | 249.627335<br>249.632004 | -47.211323<br>-47.052780 | $0.96 \\ 0.49$                              | 5.29e-07<br>1.62e-04 | $0.9312 \\ 0.2992$ |
| 881               |                              | -                        | -41.052180               | -                                           | -                    | -                  |
| 882               | 515725150630                 | 249.636963               | -47.114296               | 2.80                                        | 5.29e-07             | 0.7982             |
| 883               | 515720482166                 | 249.638992               | -46.735237               | 0.69                                        | 5.29e-07             | 0.9687             |
| 884               | 515720606803                 | 249.640610               | -46.492989               | 0.80                                        | 1.62e-04             | 0.8533             |
| 885               | —                            | -                        | -                        | -                                           | -                    | -                  |
| 886               | 515720520382                 | 249.643875               | -46.658760               | 2.46                                        | 5.29e-07             | 0.4473             |
| 887               | 515720979986                 | 249.644409               | -46.668205               | 2.01                                        | 1.71e-04             | 0.0545             |
| 888               | 515720978267                 | 249.646698               | -46.684982               | 1.18                                        | 9.53e-06             | 0.4897             |
| 889               | 515720542009                 | 249.646805               | -46.625332               | 0.43                                        | 5.29e-07             | 0.8047             |
| 890               | 515720507686                 | 249.648163               | -46.687843               | 0.85                                        | 5.29e-07             | 0.9395             |
| $891 \\ 892$      | 515720491701<br>515725157520 | 249.648880<br>249.649933 | -46.717487<br>-47.104881 | $1.32 \\ 1.69$                              | 5.29e-07<br>5.29e-07 | $0.8782 \\ 0.7459$ |
| 893               |                              | -                        | -47.104881               | -                                           | 5.296-07             | -                  |
| 894               | 515725102720                 | 249.652512               | -47.261955               | 0.38                                        | 5.29e-07             | 0.9883             |
| 895               | 515720505455                 | 249.652573               | -46.694855               | 1.43                                        | 1.62e-04             | 0.1184             |
| 896               | 515725069692                 | 249.653900               | -47.361134               | 0.92                                        | 5.29e-07             | 0.6033             |
| 897               | 515725136747                 | 249.653870               | -47.160828               | 1.53                                        | 1.71e-04             | 0.7287             |
| 898               | 515721258809                 | 249.656372               | -46.686867               | 1.64                                        | 2.92e-03             | 0.4509             |
| 899               | —                            | -                        | -                        | -                                           | -                    | -                  |
| 900               |                              | -                        | -                        | -                                           | -                    | -                  |
| 901               | 515725248496                 | 249.658691               | -46.870335               | 1.32                                        | 1.57e-05             | 0.0498             |
| $902 \\ 903$      | 515725208441<br>515726161425 | 249.658829<br>249.659882 | -46.975269<br>-47.113945 | $\begin{array}{c} 0.85 \\ 0.76 \end{array}$ | 9.52e-06<br>3.07e-03 | $0.9298 \\ 0.9713$ |
| 903<br>904        | 515725045316                 | 249.660233               | -47.113943<br>-47.440273 | 2.95                                        | 8.75e-07             | 0.9713<br>0.0528   |
| 905               | 515720402298                 | 249.661758               | -46.913067               | 0.89                                        | 9.52e-06             | 0.5127             |
| 906               | 515725159893                 | 249.663177               | -47.105007               | 0.86                                        | 3.07e-03             | 0.8992             |
| 907               | 515725177482                 | 249.665039               | -47.062027               | 1.33                                        | 5.29e-07             | 0.9212             |
| 908               | —                            | -                        | -                        | -                                           | -                    | -                  |
| 909               | 515720491675                 | 249.669815               | -46.731194               | 0.52                                        | 1.62e-04             | 0.7719             |
| 910               | 515725084462                 | 249.670685               | -47.331310               | 0.36                                        | 5.29e-07             | 0.9887             |
| 911               | 515720538257                 | 249.675293               | -46.650654               | 2.19                                        | 5.29e-07             | 0.4150             |
| 912<br>012        | 515725244481                 | 249.676132               | -46.894691               | 0.60                                        | 5.29e-07             | 0.9726             |
| 913<br>014        | 515720428199                 | 249.677048               | -46.866417               | 1.42                                        | 9.53e-06             | 0.4114             |
| $914 \\ 915$      | 515725242618                 | -<br>249.679810          | -<br>-46.899971          | -<br>1.17                                   | -<br>5.29e-07        | -0.6895            |
| 915<br>916        | 515725223092                 | 249.679810<br>249.681793 | -46.899971<br>-46.951042 | 0.76                                        | 5.29e-07<br>5.29e-07 | 0.0895<br>0.9730   |
| 910<br>917        | 515725867659                 | 249.681305               | -47.339607               | 2.17                                        | 2.92e-07             | 0.5237             |
| 918               | 515725894042                 | 249.683502               | -47.153881               | 1.07                                        | 1.71e-04             | 0.2387             |
| 919               | 515720588952                 | 249.684082               | -46.552860               | 0.33                                        | 2.92e-03             | 0.9832             |
|                   |                              |                          |                          |                                             |                      |                    |

Chandra Catalog: Infrared Counterparts (continued)

| No.          | VVV Source Name              | R.A.<br>(deg)            | Dec.<br>(deg)            | $\Delta_{\rm X-IR}$ (arcsec)                | $p_{ m noise}$           | Reliability        |
|--------------|------------------------------|--------------------------|--------------------------|---------------------------------------------|--------------------------|--------------------|
|              |                              |                          | ,                        | ///////////////                             |                          |                    |
| 920          | 515725686540                 | 249.684540               | -46.977810               | 1.81                                        | 1.71e-04                 | 0.4119             |
| 921          | 515725085557                 | 249.688156               | -47.334438               | 0.76                                        | 9.52e-06                 | 0.6854             |
| 922          | 515725899976                 | 249.688538               | -47.114796               | 1.04                                        | 1.71e-04                 | 0.9306             |
| 923          | 515720528512                 | 249.690247               | -46.674545               | 2.96                                        | 9.52e-06                 | 0.4128             |
| 924<br>025   | 515720467451                 | 249.689301               | -46.793304               | 0.09                                        | 5.29e-07                 | 0.9888             |
| $925 \\ 926$ | 515720608874<br>515725252240 | 249.690353<br>249.690964 | -46.516899               | $0.13 \\ 2.88$                              | 1.22e-05<br>5.29e-07     | $0.9855 \\ 0.5445$ |
| 920<br>927   | 515725232240<br>515725247711 | 249.690904<br>249.692337 | -46.880795<br>-46.893589 | 0.39                                        | 5.29e-07<br>5.29e-07     | 0.9749             |
| 921<br>928   | 515725085179                 | 249.692398               | -40.895589<br>-47.345467 | 1.41                                        | 9.52e-07                 | 0.9343             |
| 928<br>929   | 515721243404                 | 249.695007               | -46.807022               | 0.72                                        | 3.07e-03                 | 0.5343<br>0.5341   |
| 930          | 515725277817                 | 249.695587               | -46.811928               | 0.99                                        | 6.80e-07                 | 0.4933             |
| 931          | 515720558746                 | 249.697556               | -46.620796               | 0.46                                        | 1.22e-05                 | 0.7314             |
| 932          | 515725157325                 | 249.699173               | -47.136574               | 0.94                                        | 5.29e-07                 | 0.9662             |
| 933          | _                            | _                        | _                        | _                                           | _                        | _                  |
| 934          | 515726192646                 | 249.700851               | -46.878532               | 1.30                                        | 3.07e-03                 | 0.2879             |
| 935          | 515725660754                 | 249.707443               | -47.300343               | 2.20                                        | 9.53e-06                 | 0.8000             |
| 936          | 515725238275                 | 249.707916               | -46.929489               | 0.54                                        | 5.29e-07                 | 0.9767             |
| 937          | 515726182356                 | 249.709778               | -46.966919               | 3.42                                        | 3.07e-03                 | 0.1599             |
| 938          |                              | -                        | -                        | -                                           | -                        | -                  |
| 939          | 515720657827                 | 249.709656               | -46.441113               | 0.48                                        | 5.29e-07                 | 0.6855             |
| 940          | 515725138852                 | 249.710358               | -47.190765               | 1.60                                        | 5.29e-07                 | 0.7796             |
| 941          | 515720614721                 | 249.712494               | -46.519634               | 0.36                                        | 8.75e-07                 | 0.9822             |
| 942          | 515720616750                 | 249.712967               | -46.515491               | 0.46                                        | 5.29e-07                 | 0.9790             |
| 943          | 515720570249                 | 249.713913               | -46.604862               | 0.53                                        | 1.12e-06                 | 0.6360             |
| 944          | 515725239248                 | 249.714157               | -46.928650               | 0.47                                        | 5.29e-07                 | 0.9767             |
| $945 \\ 946$ | 515720976670                 | 249.716324               | -46.741833               | 2.25                                        | 1.71e-04<br>5.29e-07     | 0.4357             |
| $940 \\ 947$ | 515725143579<br>515725684380 | 249.718353<br>249.719009 | -47.183826<br>-47.027874 | $\begin{array}{c} 0.56 \\ 0.95 \end{array}$ | 5.29e-07<br>1.22e-05     | $0.9344 \\ 0.5916$ |
| 948          | 515725139004                 | 249.719009<br>249.721100 | -47.196346               | 2.09                                        | 1.22e-0.03<br>1.62e-0.04 | 0.5288             |
| 949          | 515725219337                 | 249.721390<br>249.721390 | -46.984543               | 0.68                                        | 9.52e-04                 | 0.9288<br>0.9746   |
| 950          | 515725095440                 | 249.721878               | -47.326347               | 1.24                                        | 5.29e-07                 | 0.9092             |
| 951          |                              | -                        | -                        | -                                           | -                        | -                  |
| 952          | 515720638205                 | 249.724365               | -46.478539               | 0.45                                        | 1.54e-03                 | 0.9720             |
| 953          | 515725261006                 | 249.726776               | -46.878456               | 1.63                                        | 5.29e-07                 | 0.6941             |
| 954          | 515720469453                 | 249.726501               | -46.812244               | 0.95                                        | 5.29e-07                 | 0.7766             |
| 955          | 515725689078                 | 249.726776               | -46.973110               | 0.82                                        | 9.53e-06                 | 0.1970             |
| 956          | 515725119425                 | 249.728516               | -47.257626               | 1.64                                        | 5.29e-07                 | 0.8819             |
| 957          | —                            | -                        | -                        | -                                           | -                        | -                  |
| 958          |                              | -                        | -                        | -                                           | -                        | -                  |
| 959          | 515720490380                 | 249.729385               | -46.772900               | 0.13                                        | 5.29e-07                 | 0.9887             |
| 960          | 515720638538                 | 249.729507               | -46.482307               | 0.19                                        | 5.29e-07                 | 0.9419             |
| 961          | 515725204199                 | 249.729660               | -47.029446               | 0.39                                        | 2.92e-03                 | 0.9846             |
| 962<br>062   | 515720976221                 | 249.731705               | -46.755146               | 1.60                                        | 9.53e-06                 | 0.6229             |
| 963<br>064   | 515720508049                 | 249.731796               | -46.736412               | 0.40                                        | 5.29e-07                 | 0.9814             |
| 964<br>065   | 515725689319                 | 249.733963               | -46.974918               | 1.76                                        | 1.71e-04                 | 0.3870             |
| 965<br>066   | —                            | -                        | -                        | -                                           | -                        | -                  |
| $966 \\ 967$ | 515725290196                 | -<br>249.735794          | -<br>-46.805904          | -<br>0.63                                   | -<br>5.29e-07            | -0.9567            |
| 967<br>968   | 515725230436                 | 249.736618               | -46.966820               | 2.00                                        | 5.29e-07<br>5.29e-07     | 0.2061             |
| 908<br>969   | 515725926597                 | 249.730018<br>249.737335 | -46.900820<br>-46.947224 | 1.55                                        | 1.71e-04                 | 0.3130             |
| 970          | 515721271125                 | 249.738449               | -46.663334               | 1.25                                        | 2.92e-03                 | 0.5380             |
| 971          | 515720568510                 | 249.742310               | -46.644402               | 1.10                                        | 9.52e-06                 | 0.3636             |
| 972          |                              | -                        | -                        | -                                           | -                        | -                  |
| 973          | 515720587145                 | 249.748444               | -46.594090               | 0.26                                        | 9.52e-06                 | 0.9827             |
| 974          | 515725891460                 | 249.749191               | -47.211346               | 2.03                                        | 3.07e-03                 | 0.8785             |
| 975          | 515725122048                 | 249.749908               | -47.262032               | 1.88                                        | 5.29e-07                 | 0.8752             |
| 976          | 515725199090                 | 249.751495               | -47.056389               | 3.29                                        | 2.16e-04                 | 0.1206             |
| 977          | 515720709459                 | 249.750595               | -46.346096               | 3.57                                        | 5.29e-07                 | 0.1942             |
| 978          | 515725138334                 | 249.751038               | -47.232342               | 1.94                                        | 9.52e-06                 | 0.5943             |
|              |                              |                          |                          |                                             |                          |                    |

Chandra Catalog: Infrared Counterparts (continued)

| N.   | MAN Comer Nor   | D A        | Dee        | 4                         |                    | D - 1: - 1: 1: 4 |
|------|-----------------|------------|------------|---------------------------|--------------------|------------------|
| No.  | VVV Source Name | R.A.       | Dec.       | $\Delta_{\rm X-IR}$       | $p_{\text{noise}}$ | Reliability      |
|      |                 | (deg)      | (deg)      | $(\operatorname{arcsec})$ |                    |                  |
|      |                 |            |            |                           |                    |                  |
| 979  | 515720491026    | 249.752594 | -46.787189 | 0.27                      | 5.29e-07           | 0.5177           |
| 980  | 515720991588    | 249.754745 | -46.632057 | 1.81                      | 1.71e-04           | 0.1262           |
| 981  | 515725666886    | 249.755325 | -47.251152 | 0.45                      | 3.07e-03           | 0.7947           |
| 982  | 515720568506    | 249.755524 | -46.634907 | 3.23                      | 3.07e-03           | 0.2670           |
| 983  | 515720527943    | 249.757523 | -46.714386 | 1.40                      | 5.29e-07           | 0.6590           |
| 984  | 515725300140    | 249.757446 | -46.794167 | 0.08                      | 5.29e-07           | 0.9899           |
| 985  | —               | -          | -          | -                         | -                  | -                |
| 986  | 515725149355    | 249.760895 | -47.193047 | 0.38                      | 5.29e-07           | 0.9680           |
| 987  | 515720688626    | 249.760635 | -46.394772 | 0.89                      | 3.43e-05           | 0.2763           |
| 988  | 515721265539    | 249.761383 | -46.703857 | 0.37                      | 2.20e-04           | 0.4925           |
| 989  | 515720694419    | 249.762711 | -46.381840 | 0.39                      | 9.52e-06           | 0.4719           |
| 990  |                 | -          | -          | -                         | -                  | -                |
| 991  | 515720630796    | 249.765411 | -46.521233 | 0.28                      | 5.29e-07           | 0.9870           |
| 992  | 515725886206    | 249.767273 | -47.261127 | 2.46                      | 1.71e-04           | 0.5957           |
| 993  | 515726168994    | 249.769058 | -47.113411 | 0.65                      | 3.07e-03           | 0.9597           |
| 994  | 515720583767    | 249.770523 | -46.622295 | 1.83                      | 9.52e-06           | 0.8883           |
| 995  | 515725125664    | 249.770386 | -47.264996 | 2.33                      | 5.29e-07           | 0.8589           |
| 996  | 515720555018    | 249.771347 | -46.676319 | 2.97                      | 9.53e-06           | 0.3481           |
| 997  | 515725676900    | 249.771591 | -47.144363 | 0.42                      | 9.53e-06           | 0.9874           |
| 998  | _               | -          | -          | -                         | -                  | -                |
| 999  | —               | -          | -          | -                         | -                  | -                |
| 1000 | 515725246681    | 249.774048 | -46.946152 | 0.80                      | 6.80e-07           | 0.6133           |
| 1001 | 515720524731    | 249.775208 | -46.732319 | 1.78                      | 5.29e-07           | 0.5626           |
| 1002 | 515720522225    | 249.774826 | -46.734467 | 0.85                      | 1.12e-06           | 0.9159           |
| 1003 | 515720691824    | 249.775879 | -46.394154 | 2.41                      | 5.29e-07           | 0.5517           |
| 1004 | 515720555021    | 249.777802 | -46.676304 | 0.18                      | 9.53e-06           | 0.9850           |
| 1005 | 515725928126    | 249.778152 | -46.960812 | 1.32                      | 2.92e-03           | 0.1040           |
| 1006 | —               | -          | -          | -                         | -                  | -                |
| 1007 | —               | -          | -          | -                         | -                  | -                |
| 1008 | 515720661988    | 249.781296 | -46.464352 | 0.40                      | 9.52e-06           | 0.9775           |
| 1009 | 515725928281    | 249.781616 | -46.961723 | 1.19                      | 3.07e-03           | 0.2124           |
| 1010 | 515721280685    | 249.782913 | -46.611687 | 2.12                      | 1.71e-04           | 0.0383           |
| 1011 | 515720601376    | 249.784225 | -46.604137 | 1.16                      | 5.29e-07           | 0.9030           |
| 1012 | —               | -          | -          | -                         | -                  | -                |
| 1013 | 515720532037    | 249.788681 | -46.726215 | 0.96                      | 1.62e-04           | 0.1688           |
| 1014 | 515720728580    | 249.792603 | -46.321533 | 0.32                      | 6.85e-06           | 0.3500           |
| 1015 | 515725193290    | 249.794785 | -47.098122 | 0.28                      | 8.75e-07           | 0.9916           |
| 1016 | 515720652948    | 249.795074 | -46.496323 | 1.74                      | 5.29e-07           | 0.5106           |
| 1017 | _               | -          | -          | -                         | -                  | -                |
| 1018 | _               | -          | -          | -                         | -                  | -                |
| 1019 | 515720552244    | 249.798187 | -46.710011 | 0.57                      | 1.71e-04           | 0.9567           |
| 1020 | 515720696765    | 249.798370 | -46.397129 | 0.38                      | 5.29e-07           | 0.9760           |
| 1021 | 515720603000    | 249.797882 | -46.594170 | 3.13                      | 1.62e-04           | 0.1174           |
| 1022 | _               | -          | -          | -                         | -                  | -                |
| 1023 | _               | -          | -          | -                         | -                  | -                |
| 1024 | _               | -          | -          | -                         | -                  | -                |
| 1025 | _               | -          | -          | -                         | -                  | -                |
| 1026 | 515725232110    | 249.810318 | -47.005810 | 0.14                      | 5.29e-07           | 0.9908           |
| 1027 | 515725920925    | 249.810150 | -47.032227 | 2.92                      | 2.20e-04           | 0.4472           |
| 1028 | 515726159476    | 249.810730 | -47.218273 | 2.70                      | 3.07e-03           | 0.6182           |
| 1029 | 515720546331    | 249.811798 | -46.715294 | 0.99                      | 5.29e-07           | 0.7523           |
| 1030 | _               | -          | -          | -                         | -                  | -                |
| 1031 | 515720668187    | 249.812241 | -46.468163 | 1.36                      | 1.62e-04           | 0.4244           |
| 1032 | 515720776844    | 249.814102 | -46.246727 | 1.39                      | 5.29e-07           | 0.6564           |
| 1033 | 515720661660    | 249.814041 | -46.485027 | 0.09                      | 5.29e-07           | 0.9818           |
| 1034 | 515720661659    | 249.815842 | -46.486588 | 1.93                      | 5.29e-07           | 0.4439           |
| 1035 | 515720637381    | 249.817871 | -46.543972 | 0.28                      | 5.29e-07           | 0.9866           |
| 1036 | 515725266028    | 249.818558 | -46.920170 | 0.48                      | 5.29e-07           | 0.4406           |
| 1037 | 515720587090    | 249.818893 | -46.636578 | 1.39                      | 5.29e-07           | 0.2889           |
| 1001 | 010120001000    | 10.010000  | 10.000010  | 1.00                      | 0.200 01           | 0.2000           |

Chandra Catalog: Infrared Counterparts (continued)

| No.            | VVV Source Name              | R.A.<br>(deg)            | Dec.<br>(deg)            | $\Delta_{\rm X-IR}$ (arcsec) | $p_{ m noise}$           | Reliabilit         |
|----------------|------------------------------|--------------------------|--------------------------|------------------------------|--------------------------|--------------------|
| 1038           | 515720653035                 | 249.819626               | -46.507729               | 1.66                         | 9.53e-06                 | 0.7207             |
| 1039           | 515720489725                 | 249.835220               | -46.835167               | 0.27                         | 5.29e-07                 | 0.9884             |
| 1040           | _                            | -                        | -                        | -                            | -                        | -                  |
| 1041           | 515725274397                 | 249.835434               | -46.910030               | 0.59                         | 5.29e-07                 | 0.9478             |
| 1042           | 515720717717                 | 249.838562               | -46.375259               | 0.10                         | 1.71e-04                 | 0.9562             |
| 1043           | —                            | -                        | -                        | -                            | -                        | -                  |
| 1044           | 515725254459                 | 249.839508               | -46.966343               | 0.49                         | 5.29e-07                 | 0.9794             |
| 1045           | 515725353017                 | 249.840805               | -46.725601               | 0.14                         | 5.29e-07                 | 0.9915             |
| 1046           | 515721343028                 | 249.840546               | -46.285446               | 1.70                         | 1.71e-04                 | 0.6816             |
| 1047           | 515725177232                 | 249.841843               | -47.169090               | 0.78                         | 5.29e-07                 | 0.9764             |
| 1048           | 515725215412                 | 249.843033               | -47.067802               | 3.46                         | 1.62e-04                 | 0.3193             |
| 1049           | 515725312738                 | 249.843369               | -46.819786               | 0.33                         | 5.29e-07                 | 0.9854             |
| 1050           | 515725206686                 | 249.843903               | -47.093105               | 0.44                         | 5.29e-07                 | 0.9869             |
| 1051           | 515725189241                 | 249.844070               | -47.140823               | 0.41                         | 5.29e-07                 | 0.9880             |
| 1052           | 515725945193                 | 249.846436               | -46.874222               | 1.78                         | 3.07e-03                 | 0.6689             |
| 1053           | —                            | -                        | -                        | -                            | -                        | -                  |
| 1054           | 515721258305                 | 249.849167               | -46.808498               | 0.17                         | 3.07e-03                 | 0.9851             |
| 1055           | 515720703031                 | 249.850464               | -46.417774               | 0.31                         | 1.71e-04                 | 0.8238             |
| 1056           | 515721272799                 | 249.851425               | -46.710178               | 0.45                         | 1.71e-04                 | 0.9384             |
| 1057           | 515720674761                 | 249.856445               | -46.483391               | 1.09                         | 2.31e-05                 | 0.2991             |
| 1058           | 515725153997                 | 249.855667               | -47.237171               | 2.17                         | 1.22e-05                 | 0.6804             |
| 1059           | 515725290815                 | 249.857239               | -46.884251               | 0.31                         | 5.29e-07                 | 0.9889             |
| 1060           | 515720678099                 | 249.857971               | -46.475811               | 0.62                         | 5.29e-07                 | 0.9709             |
| 1061           | 515725245291                 | 249.860336               | -47.003632               | 0.73                         | 1.54e-03                 | 0.9665             |
| 1062           | 515720636996                 | 249.862000               | -46.567638               | 1.19                         | 5.29e-07                 | 0.9131             |
| 1063           | 515720632867                 | 249.862381               | -46.587986               | 0.73                         | 1.94e-05                 | 0.9459             |
| 1064           | 515725711438                 | 249.864807               | -46.797962               | 1.05                         | 1.71e-04                 | 0.8696             |
| 1065           | 515720723464                 | 249.866241               | -46.388046               | 0.57                         | 5.29e-07                 | 0.9749             |
| 1066           | 515720979649                 | 249.867538               | -46.805794               | 0.72                         | 9.53e-06                 | 0.9463             |
| 1067           |                              | -                        | -                        | -                            | -                        | -                  |
| 1068           | 515725158434                 | 249.868591               | -47.234940               | 1.18                         | 9.52e-06                 | 0.5414             |
| 1069           | 515725287633                 | 249.870407               | -46.893597               | 1.78                         | 2.16e-04                 | 0.5711             |
| 1070           | 515725246047                 | 249.869690               | -47.005367               | 0.19                         | 9.53e-06                 | 0.9914             |
| 1071           |                              | -                        | -                        | -                            | -                        | -                  |
| 1072           | 515725949598                 | 249.873093               | -46.864399               | 0.23                         | 2.92e-03                 | 0.8133             |
| 1073           | 515720614074<br>515725254358 | 249.873734<br>249.874191 | -46.644215               | $0.29 \\ 0.54$               | 9.53e-06                 | $0.9865 \\ 0.5057$ |
| 1074           |                              |                          | -46.986324               |                              | 5.29e-07                 |                    |
| 1075           | 515721269457                 | 249.875565               | -46.746899               | 1.68                         | 2.92e-03                 | 0.3203             |
| 1076           | 515725354420                 | 249.877914<br>249.878448 | -46.741447               | 1.28                         | 9.53e-06<br>3.07e-03     | 0.6969             |
| $1077 \\ 1078$ | 515726172633<br>515721493584 | 249.878448<br>249.879410 | -47.147888<br>-46.730820 | $0.47 \\ 0.73$               | 3.07e-03<br>3.07e-03     | $0.9862 \\ 0.2561$ |
| 1078           |                              |                          |                          | 0.73<br>0.23                 | 5.29e-07                 |                    |
| 1079           | 515725202658<br>515725369139 | 249.880600<br>249.881668 | -47.126808<br>-46.709103 | $0.25 \\ 0.35$               | 3.29e-07<br>3.07e-03     | $0.9847 \\ 0.9707$ |
| 1080           | 515720621831                 | 249.881008<br>249.882751 | -46.608845               | 1.62                         | 1.44e-06                 | 0.6016             |
| 1081           | 515720534545                 | 249.882731<br>249.882294 | -46.775608               | 0.90                         | 5.29e-07                 | 0.6010<br>0.6971   |
| 1082           | 515720554545<br>515720658551 | 249.882294<br>249.882614 | -46.532043               | 1.44                         | 1.57e-05                 | 0.0371<br>0.6147   |
| 1085           | 010720000001                 | 249.002014               | -40.002040               | -                            | 1.076-00                 | -                  |
| $1084 \\ 1085$ | 515725323307                 | -249.883972              | -46.816483               | 0.46                         | -<br>5.29e-07            | 0.9456             |
| 1085           | 515725682119                 | 249.885529<br>249.885529 | -40.810483<br>-47.153435 | 1.38                         | 1.22e-07<br>1.22e-05     | 0.9430<br>0.7580   |
| 1080           | 515720624293                 | 249.885529<br>249.886703 | -47.133433<br>-46.606834 | 0.56                         | 1.22e-0.05<br>5.29e-0.07 | 0.7580<br>0.9525   |
| 1088           | 515720024295<br>515720761428 | 249.886459               | -46.316734               | 0.50<br>0.64                 | 5.29e-07<br>5.29e-07     | 0.9525<br>0.9680   |
| 1088           | 515725924877                 | 249.880459<br>249.887375 | -40.310734<br>-47.050846 | $0.04 \\ 0.41$               | 5.29e-07<br>1.71e-04     | 0.9680<br>0.9876   |
| 1089           |                              | -                        | -47.050840               | -                            | -                        | 0.9870             |
| 1090           | 515726226364                 | -249.888397              | -46.689507               | 0.47                         | -<br>3.07e-03            | 0.9788             |
| 1091           | 515720622293                 | 249.888397<br>249.891357 | -46.613663               | 0.47                         | 5.29e-07                 | 0.3788<br>0.8645   |
| 1092           | 515720743364                 | 249.891357<br>249.894958 | -46.357281               | $0.33 \\ 0.36$               | 5.29e-07<br>5.29e-07     | 0.8043<br>0.9824   |
| 1093           | 515725682674                 | 249.894958<br>249.896164 | -40.357281<br>-47.153141 | 2.07                         | 2.16e-07                 | 0.9824<br>0.8139   |
| $1094 \\ 1095$ | 515725351222                 | 249.896881<br>249.896881 | -46.762722               | 2.00                         | 5.29e-07                 | 0.8139<br>0.4599   |
| 1095           | 515725335218                 | 249.899811               | -46.799034               | 0.61                         | 1.71e-04                 | 0.4333<br>0.9384   |

Chandra Catalog: Infrared Counterparts (continued)

| No.                                         | VVV Source Name              | R.A.                       | Dec.                     | $\Delta_{\rm X-IR}$ | $p_{\rm noise}$      | Reliability        |
|---------------------------------------------|------------------------------|----------------------------|--------------------------|---------------------|----------------------|--------------------|
|                                             |                              | (deg)                      | (deg)                    | (arcsec)            |                      |                    |
| 1007                                        | F1 F F 00 4000010            | 240.001280                 | 10,100000                | 1.05                | 0.0 <b>F</b> 0.0     | 0.0740             |
| 1097                                        | 515720683319                 | 249.901230                 | -46.489826               | 1.85                | 6.85e-06             | 0.8742             |
| 1098                                        | 515720710446                 | 249.903336                 | -46.430962               | $0.12 \\ 4.09$      | 9.52e-06             | $0.9853 \\ 0.1182$ |
| 1099                                        | 515720674355<br>515725308474 | 249.905350                 | -46.516514<br>-46.868454 |                     | 5.29e-07             |                    |
| $\begin{array}{c} 1100 \\ 1101 \end{array}$ | 515726199917                 | 249.904633<br>249.905655   | -46.808434<br>-46.947121 | $2.41 \\ 0.99$      | 9.53e-06<br>3.07e-03 | $0.6837 \\ 0.9568$ |
| $1101 \\ 1102$                              | 515725703396                 | 249.905055<br>249.909149   | -46.947121<br>-46.910648 | $0.99 \\ 0.55$      | 3.07e-03<br>1.54e-03 | 0.9508<br>0.9799   |
| 1102                                        | 515720767717                 | 249.909149<br>249.909683   | -46.320553               | $0.35 \\ 0.25$      | 1.54e-05<br>1.71e-04 | 0.9799<br>0.9834   |
| $1103 \\ 1104$                              | 515721006889                 | 249.909083<br>249.909866   | -46.585213               | $0.23 \\ 0.78$      | 1.71e-04<br>1.71e-04 | 0.6923             |
| 1104                                        | 515720607010                 | 249.905000<br>249.912415   | -46.656204               | 0.26                | 5.29e-07             | 0.9860             |
| 1105                                        | 515720646871                 | 249.912415<br>249.913055   | -46.581009               | 0.20<br>0.34        | 5.29e-07<br>5.29e-07 | 0.9300<br>0.9755   |
| 1100                                        | 515725345452                 | 249.913239                 | -46.790989               | 0.23                | 5.29e-07             | 0.8782             |
| 1108                                        | 515721315111                 | 249.913025                 | -46.488918               | 3.06                | 3.07e-03             | 0.4652             |
| 1109                                        | 515725916590                 | 249.915573                 | -47.129879               | 0.25                | 2.92e-03             | 0.9892             |
| 1110                                        | 515721004115                 | 249.919189                 | -46.617020               | 0.59                | 5.34e-04             | 0.9498             |
| 1111                                        | 515725894944                 | 249.919434                 | -47.290394               | 2.11                | 1.71e-04             | 0.3430             |
| 1112                                        | 515721342612                 | 249.922012                 | -46.338272               | 1.31                | 2.92e-03             | 0.7374             |
| 1113                                        | 515725342296                 | 249.922684                 | -46.795906               | 1.91                | 5.29e-07             | 0.3206             |
| 1114                                        | 515725904901                 | 249.922028                 | -47.218918               | 1.78                | 2.20e-04             | 0.1044             |
| 1115                                        | 515725909052                 | 249.922379                 | -47.189663               | 0.37                | 2.20e-04             | 0.9665             |
| 1116                                        | —                            | -                          | -                        | -                   | -                    | -                  |
| 1117                                        | 515720773612                 | 249.925278                 | -46.318314               | 3.21                | 5.29e-07             | 0.3226             |
| 1118                                        | 515725356914                 | 249.924500                 | -46.765575               | 0.61                | 5.29e-07             | 0.7533             |
| 1119                                        | 515725223964                 | 249.925446                 | -47.095798               | 2.24                | 5.29e-07             | 0.9014             |
| 1120                                        | —                            | -                          | -                        | -                   | -                    | -                  |
| 1121                                        | 515725214656                 | 249.926254                 | -47.120319               | 2.19                | 9.53e-06             | 0.1765             |
| 1122                                        | 515720657309                 | 249.928177                 | -46.563007               | 0.92                | 3.07e-03             | 0.8597             |
| 1123                                        | 515720773995                 | 249.928391                 | -46.317284               | 0.43                | 5.29e-07             | 0.9751             |
| 1124                                        | 515725906465                 | 249.931137                 | -47.213390               | 0.79                | 2.92e-03             | 0.8107             |
| 1125                                        | 515725339096                 | 249.932449                 | -46.815975               | 1.73                | 5.29e-07             | 0.4857             |
| 1126                                        | 515721303616                 | 249.933777                 | -46.565220               | 2.34                | 3.07e-03             | 0.3811             |
| 1127                                        | 515725279802                 | 249.934708                 | -46.953926               | 0.07                | 5.29e-07             | 0.9920             |
| 1128                                        | 515725286315                 | 249.934982                 | -46.937469               | 0.06                | 5.29e-07             | 0.9945             |
| 1129                                        | 515725328997                 | 249.936432                 | -46.835083               | 0.93                | 5.29e-07             | 0.9595             |
| 1130                                        | 515721510068                 | 249.937119                 | -46.554733               | 0.23                | 3.07e-03             | 0.5643             |
| $1131 \\ 1132$                              | 515725323031<br>515725287105 | $249.937164 \\ 249.937363$ | -46.864212<br>-46.703564 | $0.09 \\ 0.19$      | 9.52e-06<br>5.29e-07 | $0.9854 \\ 0.9878$ |
| 1132<br>1133                                | 515725387195<br>515721512955 | 249.937303<br>249.938492   | -46.517651               | 3.40                | 3.07e-03             | 0.4372             |
| 1133<br>1134                                | 515725245081                 | 249.939148<br>249.939148   | -47.049854               | 0.40                | 5.29e-07             | 0.9501             |
| $1134 \\ 1135$                              |                              | -                          | -41.049804               | -                   | 5.296-07             | -                  |
| $1135 \\ 1136$                              | 515720775650                 | 249.941025                 | -46.323383               | 0.71                | 1.71e-04             | 0.9632             |
| 1137                                        |                              | -                          | -                        | -                   | -                    | -                  |
| 1138                                        | 515721491671                 | 249.941986                 | -46.790424               | 1.71                | 3.07e-03             | 0.0785             |
| 1139                                        | 515725255511                 | 249.945786                 | -47.025440               | 0.66                | 5.29e-07             | 0.9736             |
| 1140                                        | 515720652643                 | 249.948990                 | -46.585320               | 2.52                | 1.12e-06             | 0.3803             |
| 1141                                        | _                            | _                          | _                        | _                   | -                    | -                  |
| 1142                                        | 515720606941                 | 249.949799                 | -46.687160               | 0.28                | 5.29e-07             | 0.9873             |
| 1143                                        |                              | -                          | -                        | -                   | -                    | -                  |
| 1144                                        | 515720676409                 | 249.951447                 | -46.536846               | 2.31                | 9.52e-06             | 0.6460             |
| 1145                                        | —                            | -                          | -                        | -                   | -                    | -                  |
| 1146                                        | 515720710562                 | 249.952316                 | -46.460327               | 0.25                | 5.29e-07             | 0.9822             |
| 1147                                        | 515725245992                 | 249.952454                 | -47.056404               | 2.38                | 5.29e-07             | 0.3657             |
| 1148                                        | 515721315109                 | 249.953094                 | -46.513466               | 1.77                | 1.71e-04             | 0.4274             |
| 1149                                        | 515725241554                 | 249.957352                 | -47.070175               | 0.94                | 5.29e-07             | 0.9649             |
| 1150                                        | 515720745989                 | 249.958115                 | -46.392399               | 0.22                | 5.29e-07             | 0.9894             |
| 1151                                        | 515720728627                 | 249.958786                 | -46.423969               | 0.30                | 5.29e-07             | 0.9865             |
| 1152                                        | 515725317132                 | 249.958954                 | -46.877514               | 0.74                | 5.29e-07             | 0.9602             |
| 1153                                        | 515725302171                 | 249.958374                 | -46.912941               | 1.19                | 5.29e-07             | 0.3049             |
| 1154                                        | 515725321000                 | 249.959152                 | -46.869823               | 0.86                | 5.29e-07             | 0.9368             |
| 1155                                        |                              | -                          | -                        | -                   | -                    | -                  |

Chandra Catalog: Infrared Counterparts (continued)

| No.            | VVV Source Name              | R.A.<br>(deg)            | Dec.<br>(deg)            | $\Delta_{\rm X-IR}$ (arcsec) | $p_{\rm noise}$      | Reliability        |
|----------------|------------------------------|--------------------------|--------------------------|------------------------------|----------------------|--------------------|
|                |                              | (408)                    | (408)                    | (drobee)                     |                      |                    |
| 1156           | 515721346639                 | 249.964218               | -46.337456               | 0.50                         | 1.71e-04             | 0.9594             |
| 1157           | 515720692626                 | 249.964523               | -46.510681               | 0.75                         | 5.29e-07             | 0.9642             |
| 1158           | 515725267772                 | 249.965454               | -47.006252               | 0.14                         | 5.29e-07             | 0.9918             |
| 1159           | 515725259625                 | 249.966278               | -47.025848               | 0.63                         | 2.92e-03             | 0.1897             |
| 1160           | —                            | -                        | -                        | -                            | -                    | -                  |
| 1161           | 515721290805                 | 249.969742               | -46.660347               | 0.84                         | 2.20e-04             | 0.8610             |
| 1162           | 515725277420                 | 249.972107               | -46.986622               | 0.30                         | 5.29e-07             | 0.9898             |
| 1163           | 515725711664                 | 249.974579               | -46.863869               | 2.33                         | 1.71e-04             | 0.6034             |
| 1164           | 515725352074<br>515720750173 | 249.976013               | -46.809776               | 0.57                         | 5.29e-07             | 0.9745             |
| $1165 \\ 1166$ | 515725360313                 | 249.977097<br>249.977020 | -46.394730<br>-46.788708 | $0.34 \\ 0.84$               | 5.29e-07<br>8.75e-07 | $0.9848 \\ 0.0774$ |
| $1160 \\ 1167$ | 515725308260                 | 249.977020<br>249.978622 | -46.908520               | 1.25                         | 1.22e-05             | 0.9000             |
| 1168           | 515720689720                 | 249.980229               | -46.529305               | 0.27                         | 5.29e-07             | 0.9865             |
| 1168<br>1169   | 515720083720<br>515720741117 | 249.980209<br>249.980392 | -46.414246               | 0.27<br>0.56                 | 5.29e-07<br>5.29e-07 | 0.9732             |
| $1109 \\ 1170$ |                              | -                        | -40.414240               | -                            | -                    | -                  |
| 1170           | 515725330087                 | 249.982849               | -46.876350               | 0.28                         | 5.29e-07             | 0.9851             |
| $1171 \\ 1172$ |                              | -                        | -40.010500               | -                            | -                    | -                  |
| 1173           | 515720706709                 | 249.983398               | -46.489277               | 0.73                         | 5.29e-07             | 0.9617             |
| 1174           | 515725255576                 | 249.984100               | -47.047737               | 1.82                         | 1.62e-04             | 0.8732             |
| 1175           | 515725699018                 | 249.984848               | -47.006939               | 0.33                         | 1.21e-04             | 0.9879             |
| 1176           | _                            | -                        | -                        | -                            | -                    | -                  |
| 1177           | 515720688090                 | 249.987808               | -46.532169               | 1.92                         | 8.60e-05             | 0.0639             |
| 1178           | 515725281301                 | 249.986862               | -46.987785               | 0.53                         | 5.29e-07             | 0.9768             |
| 1179           | —                            | -                        | -                        | -                            | -                    | -                  |
| 1180           | 515725333135                 | 249.988754               | -46.857475               | 0.39                         | 6.80e-07             | 0.9829             |
| 1181           | —                            | -                        | -                        | -                            | -                    | -                  |
| 1182           | 515725380266                 | 249.991287               | -46.751759               | 2.89                         | 5.29e-07             | 0.0623             |
| 1183           | 515720685046                 | 249.993851               | -46.542164               | 2.86                         | 5.29e-07             | 0.4487             |
| 1184           | 515720747818                 | 249.993820               | -46.409744               | 0.49                         | 5.29e-07             | 0.9774             |
| 1185           | 515720777148                 | 249.994507               | -46.353752               | 0.28                         | 5.29e-07             | 0.9854             |
| 1186           | 515725421350                 | 249.994858               | -46.658829               | 0.37                         | 1.12e-06             | 0.9831             |
| 1187           | 515720683062                 | 249.994888               | -46.552818               | 0.99                         | 1.62e-04             | 0.5468             |
| 1188           | 515721016780                 | 249.996033               | -46.536537               | 2.19                         | 1.71e-04             | 0.0473             |
| 1189           | 515725938134                 | 249.997025               | -47.020050               | 2.73                         | 1.71e-04             | 0.0817             |
| 1190           | 515725341460                 | -<br>249.997101          |                          | -                            | -<br>5.29e-07        | -                  |
| $1191 \\ 1192$ | 515721329957                 | 249.997101<br>249.998077 | -46.843819<br>-46.465347 | $0.96 \\ 1.64$               | 5.29e-07<br>2.20e-04 | $0.9657 \\ 0.8307$ |
| 1192           | 515725457121                 | 249.998077<br>249.999176 | -46.576412               | $1.04 \\ 1.23$               | 2.20e-04<br>5.29e-07 | 0.3478             |
| $1193 \\ 1194$ | 515725266067                 | 249.999170<br>250.000717 | -40.370412<br>-47.029472 | 3.72                         | 1.22e-07<br>1.22e-05 | 0.3478<br>0.3504   |
| $1194 \\ 1195$ | 515725333467                 | 250.000488               | -46.864861               | 1.27                         | 5.29e-07             | 0.6999             |
| 1196           | 515720640126                 | 250.001572               | -46.654797               | 0.28                         | 5.29e-07             | 0.9869             |
| 1197           | 515721315516                 | 250.003387               | -46.542160               | 3.41                         | 1.71e-04             | 0.0394             |
| 1198           | 515725281994                 | 250.003647               | -46.989632               | 0.41                         | 3.40e-05             | 0.9859             |
| 1199           | 515725372362                 | 250.003586               | -46.776108               | 0.97                         | 8.60e-05             | 0.4639             |
| 1200           | 515725266753                 | 250.007141               | -47.031860               | 0.81                         | 5.29e-07             | 0.9714             |
| 1201           | 515720719643                 | 250.009003               | -46.474014               | 0.65                         | 6.80e-07             | 0.9716             |
| 1202           | 515720779867                 | 250.010574               | -46.356274               | 1.73                         | 9.52e-06             | 0.5559             |
| 1203           | 515720696577                 | 250.010178               | -46.533405               | 0.36                         | 5.29e-07             | 0.9809             |
| 1204           | 515720643872                 | 250.015045               | -46.647270               | 0.40                         | 5.29e-07             | 0.9822             |
| 1205           | 515725282910                 | 250.015091               | -46.994381               | 0.27                         | 5.29e-07             | 0.9885             |
| 1206           | 515720756080                 | 250.014923               | -46.411747               | 0.65                         | 5.29e-07             | 0.9606             |
| 1207           | 515720643873                 | 250.015106               | -46.645695               | 0.73                         | 9.52e-06             | 0.9426             |
| 1208           | 515726192903                 | 250.015594               | -47.067272               | 0.75                         | 3.07e-03             | 0.5865             |
| 1209           | 515725457918                 | 250.016983               | -46.584145               | 1.21                         | 5.29e-07             | 0.9409             |
| 1210           | 515725255105                 | 250.017563               | -47.071945               | 0.31                         | 5.29e-07             | 0.9886             |
| 1211           | 515725353857                 | 250.023849               | -46.830647               | 1.85                         | 1.56e-05             | 0.4786             |
| 1212           | 515720773615                 | 250.024323               | -46.376888               | 1.88                         | 1.91e-06             | 0.2891             |
| 1213           | 515720776007                 | 250.024551               | -46.373199               | 2.68                         | 5.29e-07             | 0.1035             |
| 1214           |                              | -                        | -                        | -                            | -                    | -                  |

Chandra Catalog: Infrared Counterparts (continued)

| No.            | VVV Source Name | R.A.       | Dec.       | $\Delta_{\rm X-IR}$       | $p_{\text{noise}}$   | Reliability |
|----------------|-----------------|------------|------------|---------------------------|----------------------|-------------|
|                |                 | (deg)      | (deg)      | $(\operatorname{arcsec})$ |                      |             |
|                |                 |            |            |                           |                      |             |
| 1215           | 515720776795    | 250.027649 | -46.377327 | 0.85                      | 5.29e-07             | 0.9515      |
| 1216           | —               | -          | -          | -                         | -                    | -           |
| 1217           | 515725423248    | 250.030350 | -46.676880 | 0.38                      | 1.62e-04             | 0.0461      |
| 1218           | 515720737297    | 250.033585 | -46.454121 | 0.17                      | 5.29e-07             | 0.9892      |
| 1219           | 515721045650    | 250.034958 | -46.284840 | 1.45                      | 1.71e-04             | 0.4087      |
| 1220           | 515720718242    | 250.038177 | -46.496284 | 0.39                      | 5.29e-07             | 0.9804      |
| 1221           | 515720744600    | 250.041779 | -46.443176 | 2.78                      | 5.29e-07             | 0.4316      |
| 1222           | 515720765409    | 250.042389 | -46.407417 | 1.57                      | 1.71e-04             | 0.7758      |
| 1223           | 515725402657    | 250.042007 | -46.729919 | 1.30                      | 9.52e-06             | 0.7990      |
| 1224           | 515725343259    | 250.044342 | -46.872562 | 0.98                      | 5.29e-07             | 0.9545      |
| 1225           | 515721332159    | 250.046021 | -46.483528 | 1.47                      | 1.71e-04             | 0.5526      |
| 1226           | 515725413085    | 250.046738 | -46.713352 | 1.29                      | 9.53e-06             | 0.7777      |
| 1227           | 515725708206    | 250.046371 | -46.951996 | 0.25                      | 1.71e-04             | 0.9279      |
| 1228           | 515720674692    | 250.049591 | -46.600468 | 1.03                      | 1.62e-04             | 0.8303      |
| 1229           | 515721041595    | 250.050262 | -46.330048 | 2.24                      | 1.71e-04             | 0.4680      |
| 1230           | 515725468105    | 250.050049 | -46.585285 | 0.74                      | 1.62e-04             | 0.9616      |
| 1231           | 515720630300    | 250.051437 | -46.694302 | 1.30                      | 5.29e-07             | 0.8908      |
| 1232           | 515726007541    | 250.051559 | -46.585449 | 1.80                      | 1.55e-03             | 0.3221      |
| 1233           | 515720652021    | 250.052612 | -46.650444 | 0.34                      | 5.29e-07             | 0.9840      |
| 1234           | 515720744950    | 250.054794 | -46.449368 | 0.26                      | 1.22e-05             | 0.9785      |
| 1235           | —               | -          | -          | -                         | -                    | -           |
| 1236           | 515720723852    | 250.059387 | -46.496960 | 1.46                      | 5.29e-07             | 0.7716      |
| 1237           | 515725379575    | 250.060089 | -46.813992 | 0.19                      | 5.29e-07             | 0.9851      |
| 1238           | 515725276054    | 250.061340 | -47.045135 | 0.80                      | 5.29e-07             | 0.8520      |
| 1239           | 515725276066    | 250.060989 | -47.043713 | 0.89                      | 5.29e-07             | 0.9566      |
| 1240           | 515726192215    | 250.061966 | -47.100788 | 2.54                      | 3.07e-03             | 0.6652      |
| 1241           | 515725344863    | 250.065414 | -46.882912 | 1.21                      | 5.29e-07             | 0.8533      |
| 1242           | 515720692335    | 250.066986 | -46.581497 | 1.91                      | 1.91e-06             | 0.3255      |
| 1243           | 515725312176    | 250.068176 | -46.955322 | 1.38                      | 5.29e-07             | 0.6311      |
| 1244           | 515725942522    | 250.068405 | -47.033295 | 1.58                      | 1.71e-04             | 0.7149      |
| 1245           | 515725400661    | 250.068985 | -46.756119 | 2.31                      | 5.29e-07             | 0.8379      |
| 1246           | 515725420102    | 250.068939 | -46.710365 | 0.89                      | 5.29e-07             | 0.9600      |
| 1247           | 515720676755    | 250.069199 | -46.607704 | 1.49                      | 5.29e-07             | 0.5469      |
| 1248           | _               | -          | -          | -                         | -                    | -           |
| 1249           | 515725379615    | 250.070328 | -46.804924 | 0.37                      | 3.07e-03             | 0.9700      |
| 1250           | 515720766298    | 250.071915 | -46.420689 | 0.63                      | 5.29e-07             | 0.8678      |
| 1251           | 515725428038    | 250.073746 | -46.692600 | 0.18                      | 5.29e-07             | 0.9868      |
| 1252           | 515721035419    | 250.074783 | -46.401764 | 0.28                      | 9.53e-06             | 0.9525      |
| 1253           | 515720688501    | 250.075714 | -46.585110 | 0.24                      | 5.29e-07             | 0.9874      |
| 1254           | 515720776894    | 250.075348 | -46.402493 | 1.34                      | 1.62e-04             | 0.6139      |
| 1255           | 515720768905    | 250.076050 | -46.418728 | 1.35                      | 5.29e-07             | 0.9158      |
| 1256           | 515720699409    | 250.077072 | -46.563202 | 2.55                      | 5.29e-07             | 0.1210      |
| 1257           | 515725498011    | 250.078918 | -46.518288 | 0.07                      | 5.29e-07             | 0.9837      |
| 1258           | 515725711991    | 250.080978 | -46.927124 | 0.29                      | 2.20e-04             | 0.9730      |
| 1259           | 515721530611    | 250.081726 | -46.397476 | 0.12                      | 3.07e-03             | 0.9391      |
| 1260           | 515721515394    | 250.083252 | -46.577957 | 2.15                      | 3.07e-03             | 0.0705      |
| 1261           | 515720653734    | 250.085144 | -46.666649 | 1.14                      | 5.29e-07             | 0.9361      |
| 1261           | 515721522372    | 250.091568 | -46.503544 | 1.61                      | 3.07e-03             | 0.3126      |
| 1262           | 515725737687    | 250.093536 | -46.692299 | 1.83                      | 9.53e-06             | 0.6340      |
| 1264           |                 | -          | -          | -                         | -                    | -           |
| 1265           | 515720727205    | 250.094681 | -46.512806 | 0.58                      | 5.29e-07             | 0.9689      |
| 1266           | 515725343597    | 250.094681 | -46.897591 | 2.00                      | 5.29e-07<br>5.29e-07 | 0.4653      |
| 1260<br>1267   | 515725344712    | 250.095047 | -46.894997 | 3.18                      | 9.52e-01             | 0.4106      |
| 1268           | 515725320417    | 250.101730 | -46.954800 | 1.80                      | 5.29e-07             | 0.5900      |
| 1260<br>1269   | 515725310498    | 250.101746 | -46.978470 | 0.48                      | 1.71e-04             | 0.8964      |
| $1200 \\ 1270$ |                 | -          | -40.010410 | -                         | -                    | -           |
| $1270 \\ 1271$ | 515720793249    | 250.104477 | -46.389507 | 1.45                      | 5.29e-07             | 0.7242      |
| 1271<br>1272   | 515725335645    | 250.111908 | -46.926060 | 1.40                      | 2.01e-05             | 0.9073      |
| 1272           |                 | -          |            | -                         |                      | -           |
| 1210           |                 |            |            |                           |                      |             |

Chandra Catalog: Infrared Counterparts (continued)

| No.            | VVV Source Name | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | Dec.<br>(deg) | $\Delta_{\rm X-IR}$ (arcsec) | $p_{ m noise}$       | Reliability      |
|----------------|-----------------|------------------------------------------------------------|---------------|------------------------------|----------------------|------------------|
| 1274           | 515720748347    | 250.114990                                                 | -46.480415    | 2.34                         | 5.29e-07             | 0.3226           |
| $1274 \\ 1275$ | 515725338396    | 250.114990<br>250.114944                                   | -46.923279    | 2.34<br>2.35                 | 5.29e-07<br>5.29e-07 | 0.3220<br>0.3614 |
| 1276<br>1276   | 01072000000     | -                                                          | -40.925279    | 2.55                         | -                    | -                |
| 1270<br>1277   | E1E70E220224    |                                                            |               |                              |                      |                  |
|                | 515725338334    | 250.116730                                                 | -46.923065    | 1.18                         | 5.29e-07             | 0.9557           |
| 1278           | 515721039638    | 250.122757                                                 | -46.391678    | 1.23                         | 3.07e-03             | 0.4995           |
| 1279           | 515721039638    | 250.122757                                                 | -46.391678    | 1.04                         | 3.07e-03             | 0.5790           |
| 1280           | 515720739516    | 250.124588                                                 | -46.507507    | 0.05                         | 5.29e-07             | 0.9901           |
| 1281           |                 | -                                                          | -             | -                            | -                    | -                |
| 1282           | 515721512765    | 250.125961                                                 | -46.634529    | 1.43                         | 3.07e-03             | 0.3897           |
| 1283           | 515725325068    | 250.125198                                                 | -46.957066    | 1.59                         | 5.29e-07             | 0.2206           |
| 1284           | 515725741005    | 250.125946                                                 | -46.685524    | 0.80                         | 9.53e-06             | 0.9653           |
| 1285           | 515725407239    | 250.126373                                                 | -46.771503    | 0.14                         | 5.29e-07             | 0.9894           |
| 1286           | 515725373159    | 250.126389                                                 | -46.849628    | 0.32                         | 5.29e-07             | 0.9859           |
| 1287           | 515726001471    | 250.129791                                                 | -46.667370    | 4.25                         | 2.20e-04             | 0.1041           |
| 1288           | 515725414593    | 250.128922                                                 | -46.755047    | 3.15                         | 2.16e-04             | 0.1303           |
| 1289           | 515725303312    | 250.128860                                                 | -47.021580    | 0.76                         | 9.53e-06             | 0.9740           |
| 1290           | 515720825531    | 250.128754                                                 | -46.340179    | 1.59                         | 2.92e-03             | 0.4797           |
| 1291           |                 | -                                                          | -             | -                            | -                    | -                |
| 1292           | 515720787796    | 250.130966                                                 | -46.416676    | 1.53                         | 5.29e-07             | 0.6565           |
| 1293           | 515725962874    | 250.134155                                                 | -46.922112    | 1.54                         | 1.71e-04             | 0.8587           |
| 1294           | 515725354498    | 250.134552                                                 | -46.896202    | 2.44                         | 1.62e-04             | 0.5980           |
| 1295           | 515725463697    | 250.137085                                                 | -46.643394    | 0.36                         | 2.92e-03             | 0.7382           |
| 1296           | 515725426700    | 250.138779                                                 | -46.733253    | 1.17                         | 9.52e-06             | 0.1198           |
| 1297           |                 |                                                            |               | _                            | -                    | -                |
| 1298           | 515720828432    | 250.139359                                                 | -46.340252    | 1.40                         | 1.54e-03             | 0.8638           |
| 1299           | 515725330303    | 250.142212                                                 | -46.957737    | 0.34                         | 5.29e-07             | 0.9713           |
| $1200 \\ 1300$ | 515725450644    | 250.142212<br>250.144226                                   | -46.679020    | 2.31                         | 5.29e-07<br>5.29e-07 | 0.3715<br>0.4295 |
| 1300           |                 | -                                                          | -40.073020    | -                            | 5.236-01             | -                |
| 1302           | 515725293375    | 250.148132                                                 | -47.047157    | 2.36                         | 1.62e-04             | 0.5641           |
| 1302           | 515725425567    | 250.148132<br>250.149673                                   | -46.741905    | 1.87                         | 1.62e-04<br>1.62e-04 | 0.3041<br>0.2127 |
|                |                 |                                                            |               |                              |                      |                  |
| 1304           | 515725492314    | 250.149002                                                 | -46.589108    | 0.06                         | 5.29e-07             | 0.9872           |
| 1305           | 515720746327    | 250.150162                                                 | -46.505974    | 0.35                         | 2.92e-03             | 0.9787           |
| 1306           | 515725986926    | 250.155502                                                 | -46.776657    | 0.28                         | 1.71e-04             | 0.9878           |
| 1307           | 515725477584    | 250.157623                                                 | -46.621712    | 2.32                         | 5.29e-07             | 0.5801           |
| 1308           | 515725441564    | 250.158203                                                 | -46.713177    | 2.08                         | 9.53e-06             | 0.5427           |
| 1309           | —               | -                                                          | -             | -                            | -                    | -                |
| 1310           | 515725407399    | 250.161713                                                 | -46.791451    | 0.17                         | 9.52e-06             | 0.9919           |
| 1311           | 515720805685    | 250.161606                                                 | -46.423923    | 0.92                         | 5.29e-07             | 0.9553           |
| 1312           |                 | -                                                          | -             | -                            | -                    | -                |
| 1313           | 515725400470    | 250.162781                                                 | -46.809189    | 0.30                         | 5.29e-07             | 0.9883           |
| 1314           | 515725418454    | 250.166779                                                 | -46.771095    | 0.06                         | 5.29e-07             | 0.9924           |
| 1315           |                 | -                                                          | -             | -                            | -                    | -                |
| 1316           | 515725350432    | 250.170441                                                 | -46.927402    | 1.16                         | 1.71e-04             | 0.6822           |
| 1317           | 515725375315    | 250.177750                                                 | -46.877155    | 0.67                         | 5.29e-07             | 0.9740           |
| 1318           | 515720727347    | 250.179276                                                 | -46.568943    | 0.30                         | 9.52e-06             | 0.9836           |
| 1319           | 515725397917    | 250.180267                                                 | -46.828827    | 0.18                         | 5.29e-07             | 0.9916           |
| 1320           | 515720852967    | 250.182175                                                 | -46.316296    | 3.47                         | 5.29e-07             | 0.0894           |
| 1321           |                 | -                                                          | -             | -                            | -                    | -                |
| 1322           | 515720771508    | 250.183319                                                 | -46.477341    | 0.40                         | 5.29e-07             | 0.9805           |
| 1323           | 515725737773    | 250.185120                                                 | -46.750748    | 0.23                         | 9.53e-06             | 0.9860           |
| 1323<br>1324   | 515725496964    | 250.185120<br>250.187119                                   | -46.586102    | 0.23                         | 5.29e-07             | 0.9888           |
| $1324 \\ 1325$ | -               | -                                                          | -40.380102    |                              | 5.290-07             |                  |
| $1325 \\ 1326$ | 515725424702    |                                                            |               | -                            |                      | -                |
|                |                 | 250.189789                                                 | -46.768692    | 0.19                         | 9.52e-06             | 0.9913           |
| 1327           | 515720809599    | 250.189682                                                 | -46.413387    | 3.04                         | 9.53e-06             | 0.6595           |
| 1328           |                 | -                                                          | -             | -                            | -                    | -                |
|                | FIFEDERADAAAA   |                                                            |               | 0.71                         | 9.52e-06             | 0.5289           |
| 1329           | 515725362993    | 250.193390                                                 | -46.919075    | 0.71                         |                      |                  |
| 1330           | 515725436798    | 250.194580                                                 | -46.743565    | 0.20                         | 5.29e-07             | 0.9907           |
|                |                 |                                                            |               |                              |                      |                  |

Chandra Catalog: Infrared Counterparts (continued)

| No.  | VVV Source Name | R.A.<br>(deg) | Dec.<br>(deg) | $\Delta_{\rm X-IR}$ (arcsec) | $p_{ m noise}$ | Reliabilit |
|------|-----------------|---------------|---------------|------------------------------|----------------|------------|
| 1333 | 515725496864    | 250.198868    | -46.596066    | 1.71                         | 9.52e-06       | 0.7351     |
| 1334 | 515720809632    | 250.202484    | -46.416302    | 2.07                         | 5.29e-07       | 0.8532     |
| 1335 | _               | _             | _             | _                            | _              | _          |
| 1336 | 515725389811    | 250.205978    | -46.866478    | 0.22                         | 9.52e-06       | 0.9867     |
| 1337 | 515725466553    | 250.210236    | -46.681767    | 1.37                         | 5.29e-07       | 0.9419     |
| 1338 | 515720787949    | 250.212570    | -46.468334    | 0.41                         | 9.52e-06       | 0.9787     |
| 1339 |                 | -             | -             | -                            | -              | -          |
| 1340 | 515725361636    | 250.218887    | -46.935146    | 0.62                         | 1.71e-04       | 0.9733     |
| 1341 | 515725375282    | 250.222992    | -46.902298    | 0.49                         | 5.29e-07       | 0.9799     |
| 1342 | 515725485280    | 250.223907    | -46.640762    | 1.38                         | 5.29e-07       | 0.5511     |
| 1343 |                 | -             | -             | -                            | -              | -          |
| 1344 | _               | -             | -             | -                            | -              | -          |
| 1345 | 515725487884    | 250.241821    | -46.645172    | 0.55                         | 6.85e-06       | 0.8879     |
| 1346 | 515725402572    | 250.251007    | -46.856606    | 0.56                         | 6.80e-07       | 0.9746     |
| 1347 | 515725480333    | 250.252197    | -46.674377    | 1.35                         | 1.71e-04       | 0.5244     |
| 1348 | —               | -             | -             | -                            | -              | -          |
| 1349 | 515725495512    | 250.254074    | -46.630608    | 2.01                         | 5.29e-07       | 0.5191     |
| 1350 | 515720823546    | 250.256805    | -46.421593    | 1.47                         | 9.52e-06       | 0.4027     |
| 1351 | _               | -             | -             | -                            | -              | -          |
| 1352 | 515720788845    | 250.260132    | -46.493755    | 0.94                         | 5.29e-07       | 0.9116     |
| 1353 | 515725509067    | 250.261398    | -46.603123    | 2.16                         | 1.62e-04       | 0.7291     |
| 1354 | 515725385859    | 250.264008    | -46.904724    | 0.62                         | 1.62e-04       | 0.7714     |
| 1355 | 515725491664    | 250.269028    | -46.650070    | 0.67                         | 5.29e-07       | 0.9715     |
| 1356 | 515725542057    | 250.270813    | -46.532524    | 0.23                         | 5.29e-07       | 0.9839     |
| 1357 | _               | -             | -             | -                            | -              | -          |
| 1358 | 515725732674    | 250.273132    | -46.852352    | 0.11                         | 9.53e-06       | 0.9926     |
| 1359 | 515725470938    | 250.276108    | -46.716385    | 0.39                         | 1.62e-04       | 0.8238     |
| 1360 | 515725479120    | 250.279648    | -46.691792    | 0.85                         | 9.53e-06       | 0.9660     |
| 1361 | 515725510257    | 250.283493    | -46.609917    | 3.07                         | 6.85e-06       | 0.3527     |
| 1362 | 515725388081    | 250.292023    | -46.915203    | 1.30                         | 5.29e-07       | 0.7050     |
| 1363 | 515725557851    | 250.311966    | -46.526073    | 0.46                         | 1.71e-04       | 0.9774     |
| 1364 | 515725763313    | 250.312836    | -46.548931    | 1.09                         | 1.71e-04       | 0.4661     |
| 1365 | 515725550906    | 250.318176    | -46.542286    | 2.39                         | 9.53e-06       | 0.4479     |
| 1366 | 515726237060    | 250.318878    | -46.853573    | 2.23                         | 3.07e-03       | 0.5954     |
| 1367 | —               | -             | -             | -                            | -              | -          |
| 1368 | 515725481428    | 250.323730    | -46.722191    | 0.41                         | 9.53e-06       | 0.9839     |
| 1369 | 515725404383    | 250.325974    | -46.913670    | 1.01                         | 3.08e-03       | 0.9602     |
| 1370 | 515725576087    | 250.328049    | -46.482143    | 0.35                         | 5.29e-07       | 0.1243     |
| 1371 | 515726006840    | 250.332138    | -46.753246    | 2.46                         | 1.71e-04       | 0.7110     |
| 1372 | 515725516215    | 250.344757    | -46.644428    | 0.36                         | 9.52e-06       | 0.9846     |
| 1373 | —               | -             | -             | -                            | -              | -          |
| 1374 | 515725467960    | 250.345245    | -46.758133    | 0.18                         | 5.29e-07       | 0.9909     |
| 1375 | 515726275232    | 250.350479    | -46.528690    | 1.56                         | 3.07e-03       | 0.3320     |
| 1376 | 515725465874    | 250.350861    | -46.776630    | 0.57                         | 1.71e-04       | 0.9731     |
| 1377 | 515725564998    | 250.353088    | -46.523792    | 1.16                         | 5.29e-07       | 0.4032     |
| 1378 | 515725507052    | 250.355881    | -46.662048    | 0.30                         | 9.53e-06       | 0.9878     |
| 1379 | 515725581165    | 250.378815    | -46.513611    | 0.36                         | 9.53e-06       | 0.9816     |
| 1380 | 515725516820    | 250.380951    | -46.659634    | 0.44                         | 5.29e-07       | 0.9793     |
| 1381 | 515726004632    | 250.388962    | -46.804440    | 0.52                         | 1.55e-03       | 0.8351     |
| 1382 | 515725520598    | 250.390701    | -46.651855    | 0.20                         | 9.52e-06       | 0.9909     |
| 1383 | —               | -             | -             | -                            | -              | -          |
| 1384 | 515725512282    | 250.394791    | -46.673698    | 0.69                         | 5.29e-07       | 0.9533     |
| 1385 | 515725514125    | 250.395081    | -46.667599    | 0.24                         | 6.80e-07       | 0.9895     |
| 1386 | —               | -             | -             | -                            | -              | -          |
| 1387 | 515725484007    | 250.400558    | -46.750839    | 2.33                         | 5.29e-07       | 0.0963     |
| 1388 | 515725564028    | 250.404572    | -46.562969    | 0.58                         | 5.29e-07       | 0.9766     |
| 1389 | 515725564017    | 250.405548    | -46.566238    | 1.28                         | 3.08e-03       | 0.9057     |
| 1390 | 515725538196    | 250.406555    | -46.623428    | 0.85                         | 5.29e-07       | 0.9592     |
| 1391 |                 | _             | -             | -                            | -              | -          |

Chandra Catalog: Infrared Counterparts (continued)

| No.  | VVV Source Name | $\begin{array}{c} \text{R.A.} \\ \text{(deg)} \end{array}$ | Dec.<br>(deg) | $\Delta_{\rm X-IR}$ (arcsec) | $p_{\rm noise}$ | Reliability |
|------|-----------------|------------------------------------------------------------|---------------|------------------------------|-----------------|-------------|
| 1000 |                 |                                                            |               |                              |                 |             |
| 1392 |                 | -                                                          | -             | -                            | -               | -           |
| 1393 | 515725511146    | 250.418274                                                 | -46.692574    | 1.25                         | 9.52e-06        | 0.5504      |
| 1394 | 515725462042    | 250.418640                                                 | -46.816730    | 1.64                         | 5.29e-07        | 0.1061      |
| 1395 | 515726023847    | 250.418686                                                 | -46.690907    | 0.85                         | 1.71e-04        | 0.9571      |
| 1396 | 515725519688    | 250.440155                                                 | -46.681316    | 1.57                         | 2.20e-04        | 0.6663      |
| 1397 | 515725520234    | 250.441467                                                 | -46.680958    | 0.64                         | 9.53e-06        | 0.9741      |
| 1398 | 515725529396    | 250.444931                                                 | -46.672462    | 0.58                         | 5.29e-07        | 0.9765      |
| 1399 | 515725751382    | 250.448334                                                 | -46.763847    | 0.12                         | 3.07e-03        | 0.9687      |
| 1400 | 515725767215    | 250.460709                                                 | -46.590271    | 1.53                         | 1.71e-04        | 0.3741      |
| 1401 | 515725524359    | 250.475525                                                 | -46.696651    | 0.68                         | 5.29e-07        | 0.9727      |
| 1402 | 515725490933    | 250.482132                                                 | -46.780788    | 1.57                         | 5.29e-07        | 0.3071      |
| 1403 | 515725571376    | 250.483490                                                 | -46.588154    | 1.93                         | 5.29e-07        | 0.6553      |
| 1404 | 515725569715    | 250.506546                                                 | -46.607452    | 2.31                         | 9.53e-06        | 0.5694      |
| 1405 | 515725509306    | 250.510818                                                 | -46.759598    | 0.18                         | 5.29e-07        | 0.9804      |
| 1406 | 515725575334    | 250.512604                                                 | -46.595982    | 1.02                         | 6.80e-07        | 0.9579      |
| 1407 | 515725515726    | 250.514297                                                 | -46.740940    | 0.06                         | 5.29e-07        | 0.9865      |
| 1408 | 515725521664    | 250.519241                                                 | -46.728081    | 0.39                         | 3.08e-03        | 0.9828      |
| 1409 | 515726026038    | 250.528214                                                 | -46.738918    | 1.38                         | 1.71e-04        | 0.5958      |
| 1410 | 515725513843    | 250.533112                                                 | -46.751823    | 0.85                         | 5.29e-07        | 0.5249      |
| 1411 | 515726271337    | 250.568970                                                 | -46.697632    | 1.21                         | 3.07e-03        | 0.7554      |
| 1412 | 515725591172    | 250.579208                                                 | -46.595829    | 1.50                         | 5.29e-07        | 0.5310      |
| 1413 | 515725577848    | 250.583115                                                 | -46.647369    | 3.06                         | 9.53e-06        | 0.7123      |
| 1414 | 515726047429    | 250.587677                                                 | -46.615616    | 0.80                         | 2.92e-03        | 0.0897      |
| 1415 | 515725584528    | 250.595139                                                 | -46.619923    | 1.88                         | 5.29e-07        | 0.1914      |

Chandra Catalog: Infrared Counterparts (continued)

## Appendix B

## Additional *Chandra* and *NuSTAR* Spectra of Norma Region Sources

In this appendix, we present the *Chandra* and *NuSTAR* spectra of sources NNR 10–27 from the *NuSTAR* Norma Arm Region Survey. The plots show the data, the best-fitting spectral model, and the data residuals for each sources. The parameters of the best-fitting spectral models are provided in Table 2.21. Our spectral analysis is described in § 2.3.10. The spectra of NNR 1, 2, and 3 are shown in King et al. 2014, B16, and G14, respectively, while the spectra of sources NNR 4–9 are shown in Figure 2.27. In the figures below, *Chandra* data is shown in black, *NuSTAR* FPMA data is shown in red, and FPMB data is shown in blue. For NNR 19, black points show the *Chandra* spectrum from ObsID 16170. For NNR 21, black points denote the *Chandra* spectrum for the point source and extended emission combined while orange points display the point source contribution alone.









NNR 15











