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Abstract

The discovery of several genes that affect risk for Alzheimer's disease ignited a worldwide search 

for Single Nucleotide Polymorphisms (SNPs), common genetic variants that affect the brain. 

Genome-wide search of all possible SNP-SNP interactions is challenging and rarely attempted, 

due to the complexity of conducting ∼1011 pairwise statistical tests. However, recent advances in 

machine learning, e.g., iterative sure independence screening (SIS), make it possible to analyze 

datasets with vastly more predictors than observations. Using an implementation of the SIS 

algorithm (called EPISIS), we performed a genome-wide interaction analysis testing all possible 

SNP-SNP interactions affecting regional brain volumes measured on MRI and mapped using 

tensor-based morphometry. We identified a significant SNP-SNP interaction between rs1345203 

and rs1213205 that explains 1.9% of the variance in temporal lobe volume. We mapped the 

whole-brain, voxelwise effects of the interaction in the ADNI dataset and separately in an 

*Please address correspondence to: Dr. Paul Thompson, Ph.D., Associate Dean for Research, USC Keck School of Medicine, 
Professor of Neurology, Psychiatry, Engineering, Radiology, Pediatrics, and Ophthalmology, Imaging Genetics Center, and Institute 
for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, 2001 N. Soto Street, 
SSB1-102, Los Angeles, CA 90032, Phone: (323) 442-7246 pthomp@usc.edu.
†Many investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data, but most of them 
did not participate in analysis or writing of this report. A complete list of ADNI investigators may be found at: http://
adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Disclosure statement: The authors have no potential financial or personal conflicts of interest including relationships with other 
people or organizations within three years of beginning the work submitted that could inappropriately influence this work. One of the 
authors, Michael Weiner, receives private funding unrelated to the content of this paper.

NIH Public Access
Author Manuscript
Neurobiol Aging. Author manuscript; available in PMC 2016 January 01.

Published in final edited form as:
Neurobiol Aging. 2015 January ; 36(0 1): S151–S158. doi:10.1016/j.neurobiolaging.2014.02.033.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


independent replication dataset of healthy twins (QTIM). Each additional loading in the 

interaction effect was associated with ∼5% greater brain regional brain volume (a protective 

effect) in both ADNI and QTIM samples.

Keywords

epistasis; interaction; genome-wide; GWAS; GWIA; sure independence screening; tensor-based 
morphometry

1. Introduction

Many common brain disorders such as Alzheimer's disease (AD), schizophrenia, and bipolar 

disorder are more prevalent in family members of those affected than in the population as a 

whole (Pedersen et al., 2004; Lichtenstein et al., 2009). If disease risk increases in relatives 

of patients, it is possible to use family studies to estimate the overall proportion of disease 

risk attributable to common or rare transmitted variants in our DNA; this is the concept of 

heritability (Neale and Cardon, 1992).

However, identifying the specific DNA variants associated with increased disease risk is an 

incredibly complex task. There are over 3 billion base pairs in our DNA, and over 10 million 

of these are known to have variations that are somewhat prevalent (>1%) in the population 

(Altshuler et al., 2010). Each of these variants may have a unique and often unknown role to 

play in the biology of the human body though the vast majority likely have no role at all. 

Similarly, for many brain disorders we have an incomplete understanding of the underlying 

etiology. Commonly measured clinical scores are used for diagnosis, but, in some cases, 

neuroimaging measures may offer better biomarkers of disease progression and severity 

(Jack et al., 2004; Braskie et al., 2013).

The field of neuroimaging genetics uses neuroimaging biomarkers as proxies for disease 

(also called endophenotypes; Gottesman and Gould, 2003) to identify specific genetic 

variants that affect quantitative measures of brain structure or function. One goal of imaging 

genetics is to identify common genetic variants that affect the brain, positively or negatively, 

and then understand if and how any of those variations are associated with increased risk for 

developing a specific brain disease. Conversely, it is possible to use neuroimaging to 

identify the effects of Alzheimer's disease risk genes whose function is not yet well 

understood (Braskie et al., 2011). For example, a common variant in the CLU gene confers a 

heightened risk for AD (by 10-20%) in a large sector of the population, although the 

mechanism is not known. Neuroimaging of carriers of this variant revealed widespread 

reductions in the brains’ fiber integrity around 50 years before the disease is typically 

diagnosed. Similarly, the TREM2 gene harbors rarer variants that elevate AD by a still 

greater factor, and neuroimaging has recently establish that carriers of the adverse variant 

lose brain tissue faster (Rajagopalan et al., 2013).

Until recently, neuroimaging genetics studies have tended to focus on candidate genes such 

as brain-derived neurotrophic factor (BDNF; Bueller et al., 2006) and catechol-O-

methyltransferase (COMT; Egan et al., 2001). Biffi et al. (2010) looked at Alzheimer's 
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disease candidate genes APOE, CR1, and PICALM and found that each gene has significant 

effects on neuroimaging biomarkers like hippocampal volume. Candidate gene studies 

examine small subsets of gene changes chosen from the millions of variants in our DNA 

based on prior hypotheses about underlying disease pathways. However, many candidate 

gene studies have a mixed history of replication (see Supplementary Table 7 and 8 in Stein 

et al., 2012). For many candidate genes in psychiatry, although not so much in the dementia 

field, there is some level of controversy or uncertainty as to whether the effects are robust; 

very large consortia, such as the Psychiatric Genomics Consortium (Ripke et al., 2011) and 

the ENIGMA Consortium (Stein et al., 2012; Jahanshad et al., 2013; Hibar et al., 2013) have 

been set up to verify genetic effects with unprecedented power. In contrast, genome-wide 

association studies (GWAS), which systematically screen millions of common variants in 

our DNA, called single nucleotide polymorphisms (SNPs), have recently found a large 

number of replicated associations of genetic polymorphisms with disease, often using a 

hypotheses free screen of the genome (Harold et al., 2009). For example, Stein et al. (2012) 

performed a GWAS of mean hippocampal volume, total brain volume, and intracranial 

volume in 10,372 subjects for the Enhancing Neuro Imaging Genetics through Meta-

Analysis (ENIGMA) Consortium. Stein et al. (2012) identified two genome-wide significant 

SNPs related to hippocampal volume rs7294919 (located in chromosome 12q24.22) and 

intracranial volume rs10784502 (located in chromosome 12q14.3). The results were 

independently replicated in another large GWAS by the Cohorts for Heart and Aging 

Research in Genomic Epidemiology (CHARGE) Consortium (Bis et al., 2012). The 

convergent results from the ENIGMA and CHARGE consortia provide evidence and 

replication for real genetic effects on hippocampal and intracranial volumes that are 

consistent worldwide.

However, many of the reported findings from GWA studies have small effect sizes and 

explain only a small proportion of the variance estimated to be due to purely genetic factors. 

In the ENIGMA study of hippocampal volume, Stein et al. (2012) showed that mean 

hippocampal volume was 64-72% heritable, but their most significant SNP explained only 

0.265% percent of the total observed variance in hippocampal volume. Similarly, height is 

very highly heritable (around 80%; Silventoinen et al., 2003; Macgregor et al., 2006), and a 

large GWAS of height in 183,727 subjects identified 180 significant SNPs that collectively 

explain 10% of the observed variance in height (Allen et al., 2010). These findings have led 

to speculation about the source of the missing heritability: the proportion of variance in a 

trait that we know is influenced by genetics, but that is undetectable, so far, in the common 

genetic variants examined to date in GWA studies. Potential sources of the missing 

heritability might be caused by non-additive effects like dominance and SNP-SNP 

interactions (called epistasis; Carlborg et al., 2004) and gene-by-environment interactions 

(Visscher et al., 2008), and rare genetic variants (Manolio et al., 2009). It is also possible 

that deeper sequencing of the genome will identify causal loci with greater effects, as 

GWAS often genotypes only a subset of the common variants in the genome. Whole exome 

sequencing and whole genome sequencing, for example, are already underway for the ADNI 

cohort. While interaction testing holds promise, depending on the influence of the 

underlying interaction current statistical approaches can be underpowered (Marchini et al., 

2005). Further still, some estimates show that interactions in regions outside of the highly 
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polymorphic HLA region in the genome might not significantly improve our understanding 

of the problem of missing heritability (Clayton 2009). In this paper we will focus our 

analysis on SNP-SNP epistatic interactions. These are not well studied and some of the 

computational reasons and challenges are explained below, along with a proposed solution.

Some prior studies have examined epistatic effects of SNPs on brain structure (Pezawas et 

al., 2008; Tan et al., 2007; Wang et al., 2009). Chiang et al., (2012) tested for SNP effects on 

diffusion imaging measures, and aggregated all SNPs with correlated effects into a network. 

The concept here is different, and aims to assess gene pairs that influence each other's 

effects on the brain. None of these prior studies has considered genome-wide genotype data; 

the closest conceptually related study tested interaction effects for pre-selected SNPs in 

genes and pathways already known to be related to Alzheimer's disease (Meda et al., 2013). 

Any approach based on pre-selecting a pair of genes will overlook a vast search space of 

potential interactions among SNPs in the genome that have no obvious prior connection. In 

an interaction model, a predictor variable in the model does not have to be significant in 

order to result in a significant interaction. This is another way of saying that dropping non-

significant SNPs from the SNP-SNP interaction search will miss some important 

interactions (Cordell, 2009). Given this, prior hypotheses focusing only on SNPs that have 

the largest known individual effects may also overlook large epistatic interaction effects. 

Intriguingly, power estimates for detecting interactive effects for certain models of the 

genetic contribution to complex traits are comparable to those for single SNP tests (Marchini 

et al., 2005). The inclusion of interaction terms was shown to boost the power to detect main 

effects in models of type 1 diabetes (Cordell et al., 2001). Here we examine the genome-

wide, SNP-SNP ‘interactome’ to test genetic associations with a quantitative biomarker of 

Alzheimer's disease (temporal lobe volume) in the publicly available Alzheimer's Disease 

Neuroimaging Initiative (ADNI) dataset. We further examine the whole-brain effects of 

interaction pairs in statistical parametric maps generated with tensor-based morphometry 

(TBM); we also replicate our tests in an independent, non-overlapping dataset of young 

healthy twins from the Queensland Twin Imaging (QTIM) study (de Zubicaray et al., 2008).

2. Methods

2.1 Imaging parameters and study information

We downloaded the full baseline set of 818 high-resolution, T1-weighted structural MRI 

brain scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI). ADNI is a multi-

site, longitudinal study of patients with Alzheimer's disease (AD), mild cognitive 

impairment (MCI) and healthy elderly controls (HC). Subjects were scanned with a 

standardized protocol to maximize consistency across sites. We used the baseline 1.5 Tesla 

MRI scans, i.e., the T1-weighted 3D MP-RAGE scans, with TR/TE = 2400/1000 ms, flip 

angle = 8º, slice thickness = 1.2 mm, and a final voxel resolution = 0.9375 x 0.9375 x 1.2 

mm3. Raw MRI scans were pre-processed to remove signal inhomogeneity, non-brain tissue, 

and affine registered to the MNI template (using 9 parameters).

Additionally, we obtained 753 high-resolution, T1-weighted structural MRI brain scans 

from the Queensland Twin Imaging (QTIM) study. QTIM is a longitudinal neuroimaging 

and genetic study of young, healthy twins and their family members. All structural MRI 
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scans were acquired on a single 4-Tesla scanner (Bruker Medspec): T1-weighted images, 

inversion recovery rapid gradient echo sequence, TR/TE = 1500/3.35 ms, flip angle = 8º, 

slice thickness = 0.9 mm, 256 x 256 acquisition matrix, with a final voxel resolution = 

0.9375 × 0.9375 × 0.9 mm3. Raw MRI scans were pre-processed to remove signal 

inhomogeneity, non-brain tissue, and affine registered to the ICBM template (using 9 

parameters).

2.2 Genotype pre-processing and study demographics

Genome-wide genotyping data were available for the full set of ADNI subjects. We 

performed standard quality control procedures to ascertain the largest homogenous genetic 

sub-population in the dataset, using multi-dimensional scaling (MDS) compared to a dataset 

of subjects of known genetic identity (HapMap III; http://hapmap.ncbi.nlm.nih.gov/). The 

largest subset contained 737 subjects with CEU ancestry (i.e., Caucasians). We therefore 

removed the remaining 81 subjects from our analysis to limit the effects of genetic 

stratification on our statistical analyses (Lander and Schork et al., 1994). Additionally, we 

applied filter rules to the genotype data to remove rare SNPs (minor allele frequency < 

0.01), violations of Hardy-Weinberg Equilibrium (HWE p < 5.7x10-7), and poor call rate 

(<95%). Data were further “phased” to impute any missing individual genotypes after 

filtering using the MaCH program (Abecasis et al., 2010) following our ENIGMA 

imputation protocol (ENIGMA2 Genetics Support Team, 2012). After filtering and phasing, 

534,033 SNPs remained.

All QTIM subjects were ascertained for genetic similarity, so no subjects were removed 

before analysis. All 753 subjects in the QTIM dataset clustered with the CEU population, in 

the MDS analysis. The same genotype filter rules from the ADNI dataset were applied to the 

QTIM sample's genetic data. After filtering and phasing, 521,232 SNPs remained.

After all rounds of genotype pre-processing, the ADNI sample contained 737 subjects (mean 

age±sd: 75.5±6.8 yrs; 436 males) comprised of 173 patients diagnosed with Alzheimer's 

disease, 358 subjects with mild cognitive impairment, and 206 healthy elderly controls. The 

QTIM sample contained 753 subjects (mean age±sd: 23.1±3.0 yrs; 286 males) and consisted 

of 110 monozygotic twin pairs, 147 dizygotic twin pairs, 3 dizygotic twin trios, 143 

singletons, and 87 siblings from 438 families.

2.3 Tensor-based morphometric differences in the full brain

We calculated information on regional brain morphometry using an elastic, nonlinear 

registration algorithm (3DMI; Leow et al., 2005; Hua et al., 2012) applied to the entire 

brain. Voxelwise volumetric differences were stored, using the Jacobian value of the 

deformation matrix obtained by nonlinearly registering a subject's scan to a study-specific 

minimum deformation template (MDT). Scans from the ADNI and QTIM datasets were 

processed and analyzed separately (using separate study-specific templates). The MDT for 

the ADNI sample is a nonlinear average of 40 age- and sex-matched healthy elderly controls 

(Hua et al., 2012). The MDT for the QTIM is a nonlinear average of 32 age- and sex- 

matched, unrelated subjects (Jahanshad et al., 2012). Nonlinear registration with 3DMI 

yields an interpolated 110 x 110 x 110 voxel statistical parametric map, where the Jacobian 
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value at each voxel represents the expansion required to match the same voxel in the study-

specific MDT.

2.4 Genome-wide, gene-gene interaction testing

The EPISIS software (Ueki and Tamiya, 2012) is an implementation of the machine-

learning algorithm called sure independence screening (SIS) developed by Fan and Lv 

(2008). The SIS algorithm is a correlation learning method that can be applied to ultra-high 

dimensional datasets where the number of predictors p is much greater than the number of 

observations n. Despite the development of robust methods for cases where p>n (e.g., the 

Dantzig selector of Candes and Tao, 2007) the properties of the selector fail when p≫n. Fan 

and Lv (2008) developed the SIS algorithm to reduce the ultra-high dimension of p to a 

moderately-sized subset, while guaranteeing that the subset still explains the maximum 

amount of variance explained by the full set of predictors. It is important to note that the SIS 

method as implemented in EPISIS is a screening method, one that looks at all possible pair 

comparisons and selects the most associated among them. This is a different statistical 

approach from methods that perform dimensionality reduction, extracting the largest 

components from a set of SNP pairs independent of their relationship with the phenotype 

(Hahn et al., 2003).

We conducted an exhaustive search of association tests of genome-wide SNP-SNP 

interactions with temporal lobe volume computed by integrating the Jacobian over a 

temporal lobe ROI on the MDT (Stein et al., 2010) in the ADNI dataset using the EPISIS 

software. EPISIS utilizes the massively parallel processing available in GPGPU (General-

purpose computing on graphics processing units) framework to test p(p-1)/2 SNP-SNP 

interactions in the ADNI dataset in a feasible timeframe. We used the SIS algorithm with 

cell-wise dummy coding (CDC; Ueki and Tamiya, 2012) to reduce the full predictor space 

into a subset d of n/ln(n) interaction terms (Fan and Lv, 2008). In our dataset n = 737 so in 

this case d = 111 SNP-SNP pairs. The subset of predictors are chosen based on the strength 

of the correlation of a SNP pair with the outcome measure. The SNP pairs are coded into a 

contingency table using cell-wise dummy coding (see Ueki and Tamiya 2012) so that the 

relationship of a SNP pair with the outcome measure can be estimated in a single correlation 

test. By selecting the set of predictors with the greatest correlation with the phenotype, by 

definition that set maximizes the variance explained by a subset of SNPs of size d. After 

screening the full set of possible two-way SNP-SNP interactions, we applied ridge 

regression (Hoerl, 1962; Kohannim et al., 2011) to the subset of interaction terms (the 

multiplicative loading of each SNP-SNP pair) and selected significant SNP-SNP interaction 

terms using the extended Bayesian Information Criterion (EBIC; Chen and Chen, 2008) with 

γ = 0.5. Ridge regression with the extended BIC can be thought of as a “double” penalized 

regression, where the first step is a regular ridge regression where like terms are penalized in 

a combined model. All of the interaction terms are included in a single model and the terms 

are fit penalizing unimportant or correlated variables. The second step uses the Bayesian 

Information Criterion to determine which SNP pairs in the model are significant. The SNPs 

selected are themselves penalized by the parameter γ to reduce the risk of selecting false 

positives (Chen and Chen, 2008). The extended BIC does not provide P-values and classical 

significance measures, but instead provides a cut off that controls the Type 1 error rate and 
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selects the most parsimonious model based on the number of predictors in a model and also 

the total error variance (see Chen and Chen, 2008). The choice of the parameter γ was 

chosen based on simulations to control the false positive rate in SNP-SNP interaction testing 

across the genome (Ueki and Tamiya, 2012). A single exhaustive search of the genome-

wide, SNP-SNP interactome with EPISIS was completed in 7 hours (using one NVIDIA 

Tesla C2050 GPU card).

2.5 Voxelwise interaction analysis and replication

We tested the significant SNP-SNP interaction pair selected by ridge regression for 

association with voxelwise, regional volume differences (V) at each point, i, in the full brain. 

The association test at each voxel in the ADNI dataset followed the multiplicative 

interaction model in multiple linear regression:

(1)

Additionally, we used QTIM as an independent replication sample of the top SNP-SNP 

interaction pair identified by ridge regression after EPISIS. The voxelwise association tests 

assume the multiplicative interaction model, detailed previously. Due to the family design of 

the QTIM sample, we tested associations using mixed-effects modeling as implemented in 

the R package kinship (version 1.3) in order to account for relatedness.

3. Results

After screening the full set of SNP-SNP interaction pairs for association with temporal lobe 

volume in the ADNI dataset, we obtained a subset 111 of SNP-SNP interaction pairs. Next, 

we applied ridge regression to the pruned subset of SNP-SNP interaction pairs. Using the 

extended BIC (γ = 0.5; Ueki and Tamiya, 2012) to estimate significance in our ridge 

regression, we identified a significant interaction between rs1345203 (located on 

chromosome 2q13) which lies in a region encoding two transcription factors (ELF1/CEBPB) 

and an intergenic SNP rs1213205 (located on chromosome 16p13.2). Using a linear 

regression model for each SNP, we found that rs1345203 explains 1.3% of the variance in 

residual temporal lobe volume (i.e. after controlling for age and sex), while rs1213205 

explains 2.4%. Together the two SNPs explain 3.8% of the variance in residual temporal 

lobe volume, and including the interaction term, the full model explains 5.7%. The 

distribution of alleles for each SNP and their interaction is given in Table 1.

We further examined the significant SNP pair, rs1345203 and rs1213205, for whole-brain 

effects in the statistical parametric maps generated using tensor-based morphometry (TBM). 

In the ADNI dataset, we found broad effects bilaterally in the temporal and occipital lobes 

(Fig. 1) after correcting for multiple tests at a 5% false discovery rate (FDR) using the 

searchlight FDR method (Langers et al., 2007).

We examined the whole-brain effects of the SNP pair on voxelwise, regional brain volume 

in the statistical parametric maps in an independent dataset (QTIM). The distribution of 

alleles for each SNP and their interaction in the QTIM sample is given in Table 1. In the 

QTIM, we identified significant effects in the left temporal lobe and along the border of the 
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left frontal and occipital lobes (Fig. 2) after correction for multiple tests at 5% false 

discovery rate (FDR) using the searchlight FDR method (Langers et al., 2007).

4. Discussion

The genome is incredibly complex, and statistical epistasis has been suggested as an 

appropriate model for the biological interactions among genes and protein products in 

related pathways (Moore et al., 2009; Stich et al., 2007). In addition, epistasis has been 

posited as one biologically meaningful explanation for the missing heritability observed for 

many common complex traits (Manolio et al., 2009). Following the definition of epistasis 

given by Fisher (1919), here we examined the multiplicative effect of SNP-SNP pairs on 

brain volume differences. We found that significant interaction terms explain additional 

1.9% (P = 1.23 x 10-4) more variance in brain volume beyond what is already explained by 

the additive SNP terms. Considering that many single SNPs explain less than 2% of the 

variance of a complex phenotype, an additional 1.9% of the variance would go missing in 

models that only consider main effects. In our primary tests of associations with temporal 

lobe volume in the ADNI dataset, we screened 1011 possible SNP-SNP interaction pairs 

using the GPU acceleration implemented in the EPISIS software. The top 111 interaction 

pairs were selected after ranking the marginal effect of each SNP-SNP pair on temporal lobe 

volume, using an implementation of the sure independence screening (SIS) algorithm (Fan 

and Lv, 2008). We used ridge regression and the extended BIC (Chen and Chen, 2008) to 

identify a significant interaction between rs1345203 and rs1213205. We found significant 

protective effects of the SNP-SNP pair on brain morphometry in two independent datasets. 

The 3D maps in Figure 1 and 2 give the effect of the interaction pair on brain change 

determined by tensor-based morphometry (TBM). Processing images with TBM allows the 

user to make statistical comparisons of local brain shape, or relative brain volumes, at each 

location across the brain. A “protective” effect may be interpreted as having more brain 

tissue at a given voxel when a person has more copies of the minor alleles from the SNP pair 

compared to those with major alleles.

There are many different methods for testing epistasis in the literature. The EPISIS method 

screens all possible SNP-SNP combinations using sure independence screening (SIS). The 

SIS algorithm examines the strength of the correlation between a SNP pair and the outcome 

variable. EPISIS, which we used in this paper, is one of several possible choices of tools to 

test for epistasis by exhaustively searching the genome; others include BOOST/gBOOST, 

epiBLASTER and BiForce. EPISIS has been favorably compared with two other popular 

programs for testing epistasis, BOOST and PLINK –fast-epistasis; power comparisons and 

simulations are published in Ueki and Tamiya (2012). There do appear to be similar 

approaches available that perform an exhaustive search (i.e. epiBLASTER; Kam-Thong et 

al., 2010). However, the main innovation and advancement of EPISIS is in the dummy 

coding statistics, which allow a user to screen interaction effects without worrying about 

sparsity in combined SNP pairs. Note that the results may be biased by the choice of the 

parameter γ which was chosen based on simulation studies (Ueki and Tamiya 2012). It is 

likely that a different choice of γ would result in additional significant SNP pairs (or none at 

all). However, we provide evidence that the chosen SNP pair replicates in a completely 

independent dataset, providing further evidence that the association detected with EPISIS is 
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in fact a true effect. In this manuscript we only considered additive effects which is only one 

model for testing interactive effects. It is entirely possible that we have missed effects that 

could have been detected using a dominance model instead. To test both models in a full 

genomic search would involve a correction for an even greater number of statistical tests, 

further reducing power, but a dominant model could be tested post hoc.

The functional relevance of the epistatic effects of the two SNPs is as yet unknown. 

However, data obtained from the UCSC Genome Browser (http://genome.ucsc.edu/) show 

that rs1345203 is located in a transcription factor gene (ELF1/CEBPB) and lies within a 

region susceptible to histone acetylation and is likely highly expressed in the cell (Bernstein 

et al., 2012). The ELF1 transcription factor is involved in IL-3 immune response (Reddy et 

al., 2000) and the CEBPB transcription factor is involved in the IL-6 immune response 

(Naka et al., 2002). In addition, the rs1213205 locus lies in a region sensitive to DNAseI 

cleavage and may therefore lie in an exposed region of DNA in euchromatin (Bernstein et 

al., 2012). Loci with sensitivity to DNAseI cleavage are likely to effect gene expression by 

influencing access to downstream regulatory elements (Degner et al., 2012). Additional 

work is still required to identify precisely how these two SNPs might affect brain structure, 

and to further replicate their interaction. Specifically, we need to identify how changes at a 

given SNP are related to changes in activity in gene transcription or translation into protein 

products involved in similar biological pathways.
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Fig. 1. 
Percent change map from the ADNI overlaid on the study specific template. The percent 

change map is calculated from the interaction term in the regression equation at each voxel. 

Only significant regions in the percent change map are shown after correcting for multiple 

comparisons with searchlight FDR (Langers et al., 2007) at a 5% false discovery rate. 

Images follow radiological orientation. The origin is placed at the Posterior-Right-Inferior 

corner. Cooler colors over the tissue represent tissue expansion (larger regional brain 

volume) compared to an average template. There is a clear ‘protective’ effect of the epistatic 

loadings bilaterally in the temporal and occipital lobes.
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Fig. 2. 
Percent change map from the QTIM sample overlaid on the study specific template. The 

percent change map is calculated from the interaction term in the regression equation at each 

voxel. Only significant regions in the percent change map are shown after correcting for 

multiple comparisons with searchlight FDR (Langers et al., 2007) at a 5% false discovery 

rate. Images follow radiological orientation. The origin is placed at the Posterior-Right-

Inferior corner. Cooler colors over the tissue represent tissue expansion (larger regional 

brain volume) compared to an average template. There is a clear ‘protective’ effect of the 

epistatic loadings in the left temporal lobe and along the boundary of the frontal and 

occipital lobe.
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Table 1

The distribution of alleles for the significant SNPs and the number of subjects with each genotype by study. 

For rs1345203 the minor allele is G (in ADNI MAF = 0.19 and in QTIM MAF = 0.14) and the major allele is 

A in both studies. The minor allele is A (ADNI MAF = 0.33 and QTIM MAF = 0.30) and the major allele is G 

for rs1213205. The association testing assumes an additive model (each subject is assigned a value 0,1,2 based 

on the number of minor alleles they have at a given SNP). The interaction column gives the number of 

subjects in each category after multiplying together the minor allele counts of each of the SNPs.

Study rs1345203 rs1213205 Interaction

ADNI (n=737) G/G: 27 A/A: 93 2 minor alleles: 46

A/G: 223 G/A: 297 1 minor alleles: 79

A/A: 487 G/G: 347 0 minor alleles: 612

QTIM (n=753) G/G: 5 A/A: 78 2 minor alleles: 19

A/G: 193 G/A: 300 1 minor alleles: 70

A/A: 555 G/G: 375 0 minor alleles: 664
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