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ABSTRACT OF THE DISSERTATION

Algorithms for Optimal Paths of One, Many, and an Infinite Number of Agents

by

Alex Tong Lin
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2020
Professor Stanley J. Osher, Chair

In this dissertation, we provide efficient algorithms for modeling the behavior of a single
agent, multiple agents, and a continuum of agents. For a single agent, we combine the
modeling framework of optimal control with advances in optimization splitting in order to
efficiently find optimal paths for problems in very high-dimensions, thus providing allevia-
tion from the curse of dimensionality. For a multiple, but finite, number of agents, we take
the framework of multi-agent reinforcement learning and utilize imitation learning in order
to decentralize a centralized expert, thus obtaining optimal multi-agents that act in a de-
centralized fashion. For a continuum of agents, we take the framework of mean-field games
and use two neural networks, which we train in an alternating scheme, in order to efficiently
find optimal paths for high-dimensional and stochastic problems. These tools cover a wide

variety of use-cases that can be immediately deployed for practical applications.
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CHAPTER 0

Introduction

This dissertation provides efficient algorithms for optimal paths for one, many, and an in-
finite number of agents. We first examine the case of a singular agent by introducing an
optimization splitting algorithm that efficiently solves optimal control problems, with the
novelty of being effective at both high-dimensional and space-time-dependent cases. We then
turn our attention to a multiple, but finite number of agents, i.e. multi-agents, by solving
multi-agent reinforcement learning problems with CESMA (Centralized Expert Supervises
Multi-Agents), which obtains decentralized multi-agent controllers from a centralized ex-
pert. Finally, we then examine the case of a continuum of agents by efficiently solving high-
dimensional and stochastic mean-field games problems with an algorithm called APAC-Net
(Alternating the Population and Control Neural Network), allowing us to model the behavior

of a mass of interacting agents.

A single agent interacting with its environment can be effectively modeled with the
theory of optimal control, where we seek the best control law that minimizes a given cost
functional. In order to efficiently do this for high-dimensional and space-time-dependent
problems, we take advances in optimization splitting and apply them to the general optimal
control problem. The idea is to first discretize the problem in the time variable, and then turn
the constrained minimization problem into an unconstrained saddle-point problem. Then we
make use of the convex conjugate to conjure the Hamiltonian, and after renaming variables,
we end up with an expression that is amenable to techniques from optimization splitting.
In this way, instead of using grids — whose size grows exponentially with dimensions, and
thus making computation intractable in higher dimensions — we calculate and adjust the

trajectory curves of the control problem until an optimum is found. When considering more



than one agent, trajectories can get quite complicated as now each agent must now consider

the actions of other agents.

For multiple agents, we view the problem in the Multi-agent Reinforcement Learning
(MARL) setting, which is an extension of Reinforcement Learning (RL). Firstly, the goal of
Reinforcement Learning is to find the best policy for an agent interacting with its environ-
ment that best maximizes a reward functional. The key difference between RL and Optimal
Control is that in RL the agent does not have a model of the environment, and must use
sample trajectories in order to find the best policy. MARL extends this framework to the
multi-agent setting where now the goal is to find a policy for each agent that either maxi-
mizes an overall reward — such as in the cooperative setting — or finds an equilibrium. We
introduce an algorithm called CESMA (Centralized Expert Supervises Multi-Agents) which
first trains a centralized expert to solve the multi-agent problem, and then we use imitation
learning to obtain decentralized multi-agent policies, the goal of MARL. This training proce-
dure is effective for a finite number of agents, but when one wants to consider a tremendously
large number of agents where infinite makes a great approximation, then we need to start

considering densities of agents.

For a continuum of homogeneous agents, where dealing with a mass rather than individual
particles is most appropriate, the field of Mean-Field Games (MFG) is perfectly suited as a
framework. The MFG problem is a system of two PDEs — a Hamilton-Jacobi equation that
acts as a value function for an individual agent, and a continuity equation that describes
how the mass of agents move. In order to compute high-dimensional and stochastic MFGs,
we avoid the use of grids, similar to our work in optimal control, and we reformulate the
problem so that we are computing and adjusting characteristic curves. This is now done
using two neural networks — one that computes the solution to the Hamilton-Jacobi PDE
and another to compute the solution to the continuity equation — and they are trained in
an adversarial fashion. From this, high-dimensional and stochastic MFG problems are now

efficiently computable.

In this dissertation, we present efficient algorithms for modeling optimal behavior of one,



many, and an infinite number of agents. For the single agent case, we use advances in
optimization to solve high-dimensional and space-time-dependent optimal control problems.
For a multiple but finite number of agents, we use imitation learning and apply it to multi-
agent reinforcement learning to obtain decentralized policies from a centralized expert. For
an infinite number of agents, we solve high-dimensional and stochastic Mean-Field Games
problems by training two neural networks in an adversarial fashion. These trio of algorithms

are all novel, efficient, and easy-to-use for immediate application to real-world problems.



CHAPTER 1

One

Abstract: Recent observations have bridged splitting methods arising from optimization, to
the Hopf and Lax formulas for Hamilton-Jacobi Equations. This has produced extremely fast
algorithms in computing solutions of these PDEs. More recent observations were made in
generalizing the Hopf and Lax formulas to state-and-time-dependent cases. In this article,
we apply a new splitting method based on the Primal Dual Hybrid Gradient algorithm
(a.k.a. Chambolle-Pock) to nonlinear optimal control and differential games problems, based
on techniques from the derivation of the new Hopf and Lax formulas, which allow us to
compute solutions at specified points directly, i.e. without the use of grids in space. This
algorithm also allows us to create trajectories directly. Thus we are able to lift the curse
of dimensionality a bit, and therefore compute solutions in much higher dimensions than
before. And in our numerical experiments, we actually observe that our computations scale

polynomially in time. Furthermore, this new algorithm is embarrassingly parallelizable. [83]

1.1 Introduction

Hamilton-Jacobi Equations (HJE) are crucial in solving and analyzing problems arising
from optimal control, differential games, dynamical systems, calculus of variations, quantum

mechanics, and the list goes on [42, 98].

Most methods to compute HJE use grids and finite-difference discretization. Some of
these methods use ENO/WENO-type methods [100], and others use Dijkstra-type methods
[32] such as fast marching [131] and fast sweeping [130]. But due to their use of grids, they

suffer from the curse of dimensionality, i.e. they do not scale well with increases in dimension



in the space variable, i.e. they generally scale exponentially.

In past years, there has been an effort to mitigate the effects of dimensionality on compu-
tations of HJE. Some recent attempts to solve Hamilton-Jacobi equations use methods from
low rank tensor representations [66], or methods based on alternating least squares [120], or
methods by sparse grids [72], or methods using pseudospectral [111] and iterative methods
[71]. There have also been attempts to mitigate the curse of dimensionality which have been
motivated by reachability [5, 91]. In this work, we examine and advertize the effectiveness of

splitting to solve Hamilton-Jacobi equations and to directly compute optimal trajectories.

We note that splitting for optimal control problems was used by [95] (2013), where they
applied it to cost functionals with a quadratic and convex term. In terms of Hamilton-
Jacobi equations, Kirchner et al. [74] (2018) have effectively applied PDHG [139, 38| (a.k.a.
Chambolle-Pock [16]) to Hamilton-Jacobi equations arising from linear optimal control prob-
lems. They applied splitting to the Hopf formula to compute HJE for bounded input, high-
dimensional linear control problems. Another main feature of their methods is they are able
to directly generate optimal trajectories by making use of the the closed-form solution to
linear ODEs. See also previous work by Kirchner et al. [73] where they apply the Hopf for-
mula to a differential games problems, which resulted in complex “teaming" behavior even

under linearized pursuit-evasion models.

In this current paper, we have worked in parallel with the above authors and have also
applied splitting to Hamilton-Jacobi equations arising from nonlinear problems. Our vol-
unteered method has some nice properties: (1) relatively quick computations of solutions
in high dimensions (see 1.6.4, although one can easily extend to 100 dimensions for exam-
ple, and also see 1.6.1.3 where we observe a linear relationship between computation time
and dimension), especially when we include parallelization, the method is embarrassingly
parallelizable [64], (2) the ability to directly generate optimal trajectories of the optimal con-
trol/differential games problems, (3) the ability to compute problems with non-linear ODE
dynamics, (4) the ability to compute solutions for nonconvex and nonsmooth Hamiltonians

and initial conditions, (5) the ease of parallelization of our algorithm to compute solutions



to HJE, i.e. each core can use the algorithm to compute the solution at a point, so given N
cores we can compute solutions of the HJE at N points simultaneously, and (6) the ease of
parallelization to directly compute trajectories, i.e. in our discretization of the time, we can

parallelize by assigning each computational core a point in the time discretization.

Our work lies in using the techniques used to derive the Generalized Hopf and Lax
formulas introduced by Y.T. Chow, J. Darbon, S. Osher, and W. Yin [23|, which generalize
to the state-and-time-dependent cases (note in the literature that the classical Lax formula
is sometimes called the Hopf-Lax formula). See also previous work from the same authors,
[19, 20], and also [27, 28] where they provide fast algorithms under convexity assumptions.
To perform the optimization, we use a new splitting method that is based on the Primal Dual
Hybrid Gradient (PDHG) method (a.k.a. Chambolle-Pock), which we conjecture to both
converge to a local minimum for most well-behaved problems, and which we conjecture to
also approximate the solution. To do this, we discretize the optimal control problem and the
differential games problem in time, a technique inspired by [95] and [23]. This new splitting
method has been experimentally seen (1.6) to be faster than the using coordinate-descent in

most cases, which the authors in [23] use to compute the solutions.

As far as the authors know, the use of splitting as applied to minimax differential games
problems, mainly on the state-and-time dependent equation (1.13) and (1.14), is new. In
this case, we seem to be able to compute HJE with nonconvex Hamiltonians and nonconvex

initial data (1.6.3.3), although they do have the structure of being convex-concave.

The paper is organized as follows:

e 1.2 Gives brief overviews of Hamilton-Jacobi Equations and its intimate connections

to optimal control 1.2.1 and differential games 1.2.2.

e 1.3 Gives a brief overview of splitting methods from optimization, focusing on ADMM

1.3.1 and PDHG 1.3.2.

e 1.4 Presents the generalized Lax and Hopf formulas for optimal control and differential

games that were conjectured by [23]. We also go through its discretization in 1.4.1,



which is the basis of our algorithm.

1.5 Presents the main algorithms.

1.6 Presents various computational examples.

1.7 Ends with a brief conclusion, and a discussion on future work.

1.9 Gives a more in-depth explanation on how to use the algorithms.

1.2 Hamilton-Jacobi Equations and Its Connection to Optimal Con-

trol and Differential Games

1.2.1 Hamilton-Jacobi Equations and Optimal Control

Most of our exposition on optimal control will follow [41], and also [40] (Chapter 10).

The goal of optimal control theory is to find a control policy that will drive a system
while optimizing a criterion. Given an initial point x € R™ and an initial time ¢t € [0,T],

where T is some fixed end-point time, the system will obey an ODE

x(s) = f(x(s), a(s),s), t<s<T

where f: (R" x A x R) - R, where A € R™. We call x the state, and a the control. And

the functional we want to optimize is J,, : A — R where

Joilo] == g(x(T)) —I—L L(x(s), a(s), s) ds. (1.1)

and where A := {a : [t,T] — A} is some admissable control set, and g : R" — R and
L:(R"x AxR)— R. We can either minimize the above functional, in which we call it a
cost, or we can mazimize it, in which we call it a payoff. For our exposition, we will choose

to minimize J,¢[-], so it will be a cost. Then we define the value function

o(z,t) = min J,4[a]. (1.2)

a()eA



Under some mild conditions on f, g, and L, this value function will satisfy the terminal-valued

Hamilton-Jacobi PDE (HJ PDE)
Op(z,t) + H(z,V,o(z,t),t) = 0, (x,t) e R™ x (0,7)
¢(z,T) = g(z).
where H(x,p,t) = minges {{(f(x,a,t),p) + L(z,a,t)}.
To get an initial-valued PDE, can make a change of variables t — T —t. Or equivalently

we can reformulate the optimal control problem “backwards in time" so that we have

x(s) = f(x(s), a(s),s), 0<s<t

and

t

Jole = g(x(0) + f L(x(s), a(s), s) ds.

0
Then our ¢(z,t) = mingjeq Jo e[ will satisfy an initial-valued HJ PDE with H(z,p,t) =
maxges {(f(x,a,t),p) — L(x,a,t)}. Note that if f = a, then this form of the Hamiltonian

expresses H as the convex conjugate [103] of L.

If we think from a physical perspective in which time moves forward, the first formulation
feels more comfortable. If we come from the fields of PDE or mathematical optimization,

the latter formulation will feel more comfortable.

So how does having a HJ PDE help us synthesize an optimal control? Using the first
formulation as it feels more physically intuitive, we can heuristically argue that given an
inital time ¢ € (0,7] and a state = € R™, we consider the optimal ODE

x*(s) = f(x*(s), a*(s),s), t<s<T
x*(t) =«

where at each time s € (0,7"), we choose the value of a*(s) to be such that

(f(x*(s), a™(s), 5), Cp(x*(s), 8)) + L(x"(s), a*(s), )

= min {(f(x*(s), a, 5), %o (x*(s)) + L(x*(s), a, 5)}

= H(x*(s), 0:0(x*(s), ), )



We call a*(-) defined in this way as the feedback control, and this can be obtained from V,¢
(see Section 10.3.3 of [40]). This is also related to Pontryagin’ Maximum Principle (Chapter
4 of [41]).

Note that in the case H(x,p,t) = H(p), then we have available the (classical) Hopf and

Lax formulas which are expressions for the solutions ¢(z,t) of the HJ PDE:

When the Hamiltonian H(p) is convex and the initial date ¢ is (uniformly) Lipschitz

continuous, then we have the Lax formula:

é(z,t) = min {g(y) +tH* (xt;y>}

yeR™
where H*(x) = maxyes {(v,z) — H(v)} is the convex conjugate of L.
And if the initial data ¢ is (uniformly) Lipschitz continuous and convex, and H is con-

tinuous, then we have the Hopf formula,

P(z,t) = sup {—9"(y) + (y,z) —tH(y)} = (¢*(y) + tH(y))" (1.3)

where g* is the convex conjugate of g. Note the last equality implies the solution is convex in

x. We note again that the argument minimum of the above expression is in-fact V,¢(x,t).

1.2.2 Hamilton-Jacobi Equations and Differential Games

Our exposition of differential games will follow [41] (Chapter 6), but also see [67, 138]. In
the field of differential games, we restrict our exposition to two-person, zero-sum differential
games. Let an initial point x € R™ and an initial time ¢ € [0,T] be given, where T is some
fixed endpoint time. A two-person, zero-sum differential game will have the dynamics,

x(s) = f(x(s), a(s),B(s),s), t<s<T

x(t) ==z
where f: (R" x A x B x R) —» R, and where A € R™ and B < R’. The control e is the
control for player I, and the control B is the control for player 1. The functional will be
Jert A(t) x B(t) — R where

T

Jrile, B] = g(x(T)) + f L(x(s), e(s), B(s), s) ds. (1.4)

t



and where A(t) = {a : [t,T] — A} and B(t) := {B : [t,T] — B} are admissable control
sets, and g : R > Rand L: (R*x Ax BxR)—R.

In order to model that at each time, neither player has knowledge of the other’s future
moves, we use a concept of strategy that was used by Varaiya [133] as well as Elliot and
Kalton [37]. This idea allows us to model that each player will select a control in response

to all possible controls the opponent can select.

A strategy for player I is a mapping ® : B(t) — A(t) such that for all times s € [t,T]

Telt,s], B(r)=pB(r) implies  @[B](r) = P[B](r)

The ®[3] models player I’s response to player I selecting 3. We similarly define a strategy
U : A(t) — B(t) for player I1:

T € [t,s], a(r)=a(r) implies Ula](r) = ¥[a](7)

and U[a] models player I1’s response to player I selecting c.

Letting A(t) and B(t) be the set of strategies for player I and player I1, respectively,

then we define the lower value function as

“(x,t) = inf sup  Jyoilo, V| 1.5
oen) = it s ol U] (15)

and the upper value function as

+ _ .
¢F(z,t) = sup 11éljf9

1..[®[8], B]. L
®[JeA(t) B(eB() [®[8], 8] (1.6)

(t
Note that we always have ¢~ (z,t) < ¢t (z,t) for all x € R™ and t € [0, T]. For a proof, see
[42].
These value functions satisfy the terminal-valued HJ PDEs
O~ (z,t) + maxge s mingep {(f(z, a,b,t), Voo~ (x,t)) + L(x,a,b,t)} =0
¢~ (z,T) = g()
and
Ot (z,t) + mingep maxea {(f(z, a,b,t), Voot (x,t)) + L(x,a,b,t)} =0
¢*(x,T) = g()

10



where we have the lower PDE Hamiltonian

H™ (z,p,t) = maxmin {(f(z,a,b,t),p) + L(x,a,b,t)}
acA beB

and the upper PDE Hamiltonian

H*(x,p,t) = minmax {(f(x,a,b,t),p) + L(x,a,b,t)}
beB acA

In general, we have

max min {(f(z, a,b,t),p) + L(x,a,b,t)} < minmax {(f(z,a,b,t),p) + L(z,a,b,t)}
acA beB beB acA

and in most cases the inequality is strict, and thus the lower and upper value functions are
different. But when the above is an equality, then the game is said to satisfy the minimaz
conditions, also called Isaac’s condition, and we have ¢~ = ¢, and we say the game has

value.

Our examples will focus on differential games which satisfy the minimax condition, and

will thus have value.

In differential games, we usually run into nonconvex Hamiltonians, so it is the Hopf

formula (1.3) that is used the most.

1.3 Splitting Algorithms from Optimization

Here we review a couple of splitting algorithms from optimization.

1.3.1 ADMM (Alternating Method of Multipliers)

ADMM [8], which is also known as Split-Bregman [54], is an optimization method to solve

problems of the following form:

min - f(z) +g(2)

r,ze€X

subject to Ax + Bz =c¢

11



where X is a finite-dimensional real vector space equipped with an inner product (-, -), and
f:X —- Rand g: X — R are proper, convex, lower semicontinuous functions. We also
have that A and B are continuous linear operators (e.g. matrices), with ¢ a fixed element in

X. Now we form the augmented Lagrangian of the above problem:
Ly(,2,y) = f(@) + g(2) + {y, A + Bz — ) + £ Av + Bz — [}

Then we alternately minimize:

r

$k+1

= argmin, Lp(!lﬁ', Zka yk)

k+1 k+1
)

= argmin, L,(z"", 2, y*)

\ Ykt = gk 4 p(Azht! 4 BT ()

where in the last step we update the dual variable. Note that the arg min expressions are
frequently precisely the prozimal operator [103| of a (not necessarily convex) function. The
proximal operator is defined as: Given f : R” — R a proper lLs.c. function, not necessarily

convex, then,

(14207 (¢) = axg min {f<as> + o - |} (1.7)

The proximal of f with step-size A is also denoted prox, ;(-).

1.3.2 PDHG (Primal-Dual Hybrid Gradient)

The PDHG algorithm [139, 38], which also goes by the name Chambolle-Pock [16], attempts

to solve problems of the form
min  f(Ax) + g(x)
zeX

where we make similar assumptions on X, f, g, and A as we did for ADMM. PDHG takes
the Lagrangian dual formulation of the above problem and seeks to find a saddle point of

the following problem:

min max (Az,y) + g(z) — f*(y)

zeX yeY

12



where f*(y) = sup,cx {{(z,y) — f(y)} is the convex conjugate of f. PDHG is also an alter-

nating minimization technique that makes use of proximal operators. The updates are:

Yt = (I + odf*) " Hy* + o Az¥)

{ gkl = ([ + Tag)fl(xk _ UA*yk+1)

jk+1 _ xk+1 + Q(xlwl o ZL’k)
\

where o, 7 > 0 are such that o7|A[*> < 1, and 0 € [0, 1], although 6 = 1 seems to work best

in practice.

1.4 The Generalized Lax and Hopf formulas

A recent result by Y.T. Chow, J. Darbon. S. Osher, and W. Yin [23] gives a conjectured
generalization to the Lax and Hopf formulas. Given a Hamilton-Jacobi Equation,
O + H(z, Voo(z,1),1) in R? x (0, 0),
¢(z,0) = g(z).

Il
o

we have that when H(x,p,t) is smooth, and convex with respect to p, and possibly under
some more mild conditions, we have

t

¢(z,t) = min {g(X(O)) + J p(s) - V,H(x(s),p(s),s) — H(x(s),p(s),s) ds}

[ x(s) = V,H(x(s),p(s))
where < P) = =V Hx().p(e)
x(t) ==z
| p(t) =

where x and p are the characteristics of the PDE. The expression in the bottom braces are

ODEs which x(-) and p(-) satisfy.

And when we move the convexity onto g, i.e. when H(z,p,t) is smooth and ¢ is convex,

13



then

t

p(z,t) = sup {—g*(p(O)) +a-v+ f

veRd 0

x(s) - Vo H(x(s),p(s),s) — H(x(s),p(s),s) ds}

f .

x(s) = V,H(x(s),p(s))

(
h p(S) = _va(X<S>7p<S>>
where <

x(t) ==z

p(t) =v

\

Chow, Darbon, Osher, and Yin used coordinate descent with multiple initial guesses to
perform the optimization. They do this by first making an initial guess for v € R?, then they
compute the ODEs, and then compute the value of the objective, i.e. the first lines of the
two formulas. Then they re-adjust one coordinate v € R? and repeat. Details can be found

in their paper [23].

1.4.1 Discretizing the Generalized Lax and Hopf Formulas for Optimal Control

In order to derive the generalized Lax and Hopf formulas, we can first discretize the value
function of the optimal control problem (1.1) and (1.2). Before we begin we note we are
merely making formal calculations, much in the spirit of E. Hopf in his seminal paper where
he derived the classical Hopf formula [65]. This is the procedure followed in [23]: We have
the value function equals

ot.0) = min {a(x0) + |

where x(-) and u(s) satisfy the ODE

Two notes: (1) we are formulating our optimal control problem “backwards in time" so that
we end up with an initial-valued HJ PDE, and (2) here (z,t) are fixed points where we want

to compute the HJE.

14



We discretize the time domain such that
0<s1 <s9<--- <8y =t,

and we set z; = x(s;) and u; = u(s;). Note in our numerical examples, we make a uniform

discretization of the time domain.

Now we use the backward Euler discretization of the ODE and set xx = x to obtain the

optimization problem

{3} o0 {us 1,

N
min {g(:vo) + (52 L(xj,u;,85) | {x; —xj_1 = (5f(xj,uj,sj)}§v:1 ,IN = x}

j=1
As usual in constrained optimization problems, we compute the Lagrangian function (i.e.
Lagrange multipliers) to get:
N N
g(xo) +6 D Llwj,uj,85) + D 0y, x5 — w1 — 6 (25,5, ;) + (pn, @ — ) (1.8)
j=1 j=1

Note that the constraint xy = x is trivially unneeded in the Lagrangian function. Then we

N

. . . N . . .« . N . .
minimize over {z;};_, and {u;};_,, while maximizing over {p;};_; to obtain the expression,

N N
max min min {g(xg) + 52 L(xj,u;,s5) + Z (pj,xj —xj_1 — 6f(xj,u4,5)) + (PN, T — ZL‘N>} :

N N— N
{pj}jzl {$]'}]-:01 {Uj}j:1 j=1 j=1

After moving the minimum over {u;}}_, inside, we get

N N
max min {g@o) + Y pj = xia) + (py, T —aN) +6 ) min {L(z;,u;,55) = (pjs (25,15 5j)>}}

{pj §\I:1 {xk}évzo j=1 j=1 J
N N
= max mi}vl 9(xo) + Z (pj,j — xj1) + (PN, T — TN) — 52 H(zj,pj, 85)
{pj}j:1 {Z’k}jzo j=1 j=1
After the above step, we have now been able to remove a numerical optimization in u by using
the definition of the Hamiltonian. This considerably simplifies the problem, and reduces the

dimensionality of the optimization.

We note that we need py = 0 in order for the maximization/minimization to not be

infinite. And thus, we can remove the minimization with respect to z’¥ and we get

¢(z,t) ~ max min {g(:cg) + Z (pj,xj —xj_1) — 52 H(xj,pj, sj)} (1.9)

{pj};'\lzl {zj ;I\/:O j=1 j=1

15



We can do a similar analysis using the forward Euler discretization to obtain,

N— N—-1
élr,t) ~ max m{ 2 Pyt >—52H<xj,pj,sj>} (1.10)

{5 { i j=0

but this latter expression has the disadvantage of coupling the g and H with respect to xg,

as they both depend on xy. Although this could actually be an advantage as one may have

H acting as a regularizer to g.

In order to obtain the discretized version of the generalized Hopf formula, we start with
the Lax formula with backward Euler (1.9), and use the linear term (p;, ) and compute
the convex conjugate; the calculation goes as follows:

N—-1 N
max min {g(mo) + Z (pj,xj —xj_1) — 52 H(mj7pj78j)}
j=1

{pj}j:1 {xj}jzo

7j=1

{p7} 1{953}] 1 o

7j=1

N-— N
= max min {min{g(mo) (p1,%0)} + (p1, 1) Z p],xj—xj1>—5ZH(xj,pj,sj)}

{p; }§V=1 {z; };'Vzl

N-1
= max min { g (p1) + (p1,21) + Z Pj, Tj — Tj_1) 52Hx],p],sy)}

= j=1

—1 N
= max min {—g*(pl (PN, Z p]+1,xj)—52 H(ffjapﬁsj)}

{pj}j:1 {xj}j:l

where in the last equality, we performed a summation-by-parts and also used zy = x. So

we have the discretized version of the Hopf formula:

{pj}JNzl {55,

N-— N
¢(z,t) ~ max min { g*(p1) + (pn, Z — Pit1,Tj) — 52H(xj,pj,sj)} (1.11)

j=1 j=1
Note that it is a bit harder to perform the optimization when we approximate the ODE
dynamics with forward Euler because we then must compute the convex conjugate of the

sum ¢(-) + H(-, po, o), which can be more complicated.

1.4.2 Discretizing the Generalized Lax and Hopf Formulas for Differential Games

Again following the procedure of [23], we have a conjectured generalization to the Lax and

Hopf formulas for differential games, which we will discretize. Before we give the calculation

16



we qualify that, in the spirit of E. Hopf when he computed the Hopf formula in his seminal

paper [65], these calculations are merely formal:

Given a two-person, zero-sum differential game with value (i.e., it satisfies the Isaacs
conditions so that the minmax Hamiltonian and maxmin Hamilton are equal, see section

1.2.2), with given z € R% and y € R%, and t € (0,%0), and with dynamics

-

= 0<s<t
< y(s)) fo(x(s),y(s), ee(s), B(s), s)
x(t) _ (=
L \y(®) y

we have that the value function satisfies

8(z,9,8) = inf  sup {g<x<o>,y<o>>+ |

a()x() B0,y () 0

t

Lix(s).¥(s) ale) B s} (112

Now, we discretize in time and approximate the ODE with backward Euler, and a formal

computation gives us,

N
~ min max fEano xk‘ayk‘aak7ﬁk’a3k)
{ak}ivzl{xk}szo {ﬁk}kN—lz{yk}{c\]—o{ zzl }
(
T — Tp— Thoy Ykr Oy B, Sk
(Al Noovon oy
Yk — Yr—1 Jo (ks Y, O, By Sk
such that < ( )
N Xz
L \un y

It is at this point we want to form the Lagrangian. The only trouble is that the concept
of a “Lagrangian" for minimax problems (a.k.a. saddle-point problems) has not been well-
examined. But in a paper by [35] (and also in [106]), the authors have a version of a

Lagrangian for minimax problems, which we apply to our problem to get,

N
g(l’myo +5ZL$]7y]7a]7ﬁja8])+ <pj7xj_ j 1_5f1(xjayj7aja6jasj)>
7j=1 7j=1
N
+Z —q5,Y; — 5f2(x]7y]7a]’/8j78j)>
7j=1



Then we take the min max to obtain

N
min o max < g(ae,y0) +6 ) L,y i, 8, 8)
{2 4B} P
N
+Z<pj7$j_$j—1_5f1($ja?/jvajvﬂja33 Z —45,Y5 — 5f2(x],y],a],6j,s]))}
=1 i=1

N
— millvq max 9(xo, Yo) +5Zm1nmax L(xj,y;, a4, B5,5;) — < ,
{3} 5=0 fwiki=o Jj=1 o —4g; f2(xj7yj705j75j7sj)

N N
=+ Z Dj, Tj — xj—1> + Z <_QJ'7 Y; — ?Jj—l)}
7j=1

J=1

D; f1(x5, 95, 5, Bj, 85) >

=

N N
= min  max { 9(0, %) 52 H(zj,y5,p;. 45, 85) + Z (pj x5 — 1) + D (~q5,Y; — yj—l)}
j=1 j=1 Jj=1

{z; }j:O {y; }j:()

Now we maximize over {p;}*_; and minimize over {g;}}_, to obtain,

Mz

$(z,y,t) ~ min max min max { g(xo, o) 52Hx],y],pj, ~qj,55) + > Dy @ — 1)
{‘11'}9721 {pj}év:1 {f’fj}évzo {v; ;\/:O 1

Jj=1 J
N

+ (=g, — yj—l)}
j=1

and after organizing a bit, we get,

N
ﬁb(xa%t) A~ min max min max $0,y0 _|_§ < J J >
Jj=1 -

{‘Jj}é'v:1 {pJ}N 1 {xﬂ}g =0 {yﬂ}g 0 q; Yi —Yj—1

N
_52 H(xjayjapjv _Qj78j>}

=1

(1.13)

The authors in [35] apply their method to convex-concave differential games, which we

also do in 1.6 (see also 1.6.3.3 where we have convex-concave initial conditions).

Note: If we can split g(z,y) = e(x) + h(y), and if e is convex and h is concave, then we
may take advantage of e*, the convex conjugate of e, and h,, the concave conjugate of h (the
formula for the concave conjugate is the same as the convex-conjugate, but you change the

sup to an inf) [108], in order to have an analogous Hopf formula:
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PN x
¢(r,y,t) ¥ min max min max { —e*(p;) — hyo(—q1) + ,
(Y o (g (b ’ —av ) \y

= Dj — Pj+1 xj N
+ Z 5 _5ZH(xj7yjapj7_Qj,5j)

j=1 —(g — gj+1) Yj j=1
(1.14)

In some ways the function e*(p) + h,(q) may perhaps be called the convez-concave con-

jugate for the convex-concave function g(x,y).

Remark: The authors in [35] state that this “minimax Lagrangian," even in the simplest

formulation given in their work, is new.

1.4.3 The advantage of the Hamiltonian for optimization

There is tremendous advantage in having a Hamiltonian. This is because if we want to instead
perform optimization of the value function directly, we will be solving for the controls and

this requires a constrained optimization technique.

The miraculous advantage of having a Hamiltonian for optimization purposes is it en-
codes information from both the running cost function L, as well as the dynamics x(s) =
f(x(s),u(s),s). And thus we are now free to perform unconstrained optimization. But if
we solve for the value function (1.1) and (1.2) directly, the we need to perform constrained

optimization.

Another key additional advantage is that we lower the dimension of the numerical opti-

mization by analytically minimizing over u, and conjuring the Hamiltonian.
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1.5 The Main Algorithm: Splitting for Hamilton-Jacobi Equations

1.5.1 Splitting for HJE arising from Optimal Control

Before discussing the algorithms, we note that we do not yet have a proof of convergence nor
approximation. This is currently a work-in-progress. But as shown in our numerical results
1.6, these algorithms seem to agree with classical methods used to solve Hamilton-Jacobi

equations.

Taking the Lax formula with backward Euler (1.9) as an expository example, we can
organize our problem to look similar to a primal-dual formulation which is attacked by

splitting using PDHG. We stack variables and let
e T = (z9,%1,...,2y), and similarly for p and §,
o G(i) = g(x0),
o Hy(%,p,8) =030, H(xk, up, sp),

e D be the difference matrix such that (p, D7) = Zi\;l (pj,xj — 1)

then our problem looks like:

max min G(%) + (p, D7) + Hs(, p, 3).

{p; }§V:1 {z; };V:o

This looks similar to the problem that is attacked by PDHG, except for a couple of differences:
e PDHG solves a saddle point problem where the I:L;(JE, P, §) term does not depend on
(nor 3).

e In PDHG, the Hj term is the convex conjugate of some function we want to minimize.

But in our case, we have
H(z,p,s) = max {(f(z,u,s),p) — L(z,u, s)}

and f(z,u,s) does not even have to be linear. So in some ways, H is a “generalized

convex conjugate."
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But we perform an alternating minimization technique similar to PDHG and we arrive at

our main algorithm for optimal control:

For the Lax with backward Euler: Given an z € R? and some time ¢ € (0, o), we set § > 0
small and let the time-grid size be N = t/6+1 (we set N = t/¢ for Hopf). Then we randomly
initialize £ = (z¢, x1,...,2xy) but let xy = x, and we randomly initialize p = (po, p1, ..., PN)
but let py = 0 as it is not minimized over, but used for computational accounting. And we

let Z = . Then our algorithm follows the pattern of alternating optimization with quadratic

7 = argmax, {G#) — As(a*.5.5) - 15— (5 + D)3
##1 — argmin, {G(7) — Hy(3,7,5) + 17— (3 — DT+)[3}
2k+1 — jk+1 + Q(ik'ﬂ o j.k)
where 0,7 > 0 are step-sizes with o7|D|* < 1 and 6 € [0,1] (as suggested in [16]). In our

numerical experiments, § = 1 was frequently the best choice and also in practice, we would

change the arg max into an arg min. So we have 1.

Algorithm 1 Splitting for HJE for Optimal Control, Lax with backward Euler
Given: Ziarget € R? and time t € (0, o0).

Initialize: § > 0 and set N = t/§ + 1. And randomly initialize 2° and p°, but with
T = Tparger- And set 2Y = 7% Also choose o, 7 such that o7|D|? < 1 and 6 € [0, 1].
while tolerance criteria large do

P71 = argming { ~G(#*) + Hy(#,5.5) + 5 — (7* + 0 D) I3}

71 = argmin, {G(7) — Hy(#,5,5) + 7 — (3 — D7) 3

Fhtl — zhtl | Q(fkﬂ o jk)
fval = g(wo) + 30, (P25 —@jm1) — 6 XL, Hzj,u5,85)

return fval

And a similar algorithm will be obtained when we use a forward Euler discretization 1.10
for the ODE dynamics. We can obtain better accuracy if we average the backward Euler

and forward Euler approximations for the ODEs, which is reminiscent of the trapezoidal
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approximation having better accuracy as it is the average of the forward and backward

Euler.
We also have the Hopf formulation: Let,

e G*(p) = (g*(p1),0,...,0), and

e let D be the difference matrix such that (Dp,z) = (py,x) + Z,]gv:_ll (P& — Pr+1, Tr) (so

this one differs from 1 as it acts on p)

then we have 2.

1.5.1.1 When to use the Hopf formula

We make the observation that the Lax formula is suitable (i.e. converges) when we have a
convex Hamiltonian in p which is also bounded below in p (or satisfies a coercivity condition,
see [40]; if we want a convex Hamiltonian that is not bounded in p, then we must use Hopf

in this case.

Algorithm 2 Splitting for HJE for Optimal Control, Hopf (with backward Euler)

Given: Tiarger € R? and time ¢ € (0, 0).

Initialize: 6 > 0 and set N = t/§. And randomly initialize z° and p°, but with 2% = Zarget-
And set 2% = 7% Also choose o, 7 such that o7|D|? <1 and 6 € [0, 1].
while tolerance criteria large do
P = argming { G (5) + Hs(3%,5,5) + %[5 — (5 + o D7) 3}
#1 — argming { ~G*(5) — Hy(#, 5,5) + £ — (3 — rDp* 1) 3]
SRl = ghtl g g(ghtl _ gh)
fval = —g*(p1) + (PN, Trarger) + D501 (P — Pyersa5) — 0 20 H(wj,p;,55)

return fval

See 1.5.3 on how to perform the argmin/argmax in each iteration.
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1.5.2 Splitting for HJE arising from Differential Games

For differential games, we use a similar algorithm to the optimal control case. We take
the discretized version of the cost function (1.12) and perform an alternating minimization
technique inspired by PDHG, but applied to minimax problems. Using the same notation
as in 1 and 2, and the same D matrix as in 1, we have the algorithm for differential games

n 3.

Algorithm 3 Splitting for HJE for Differential Games, Lax
Given: (Ziarget, Yrarger) € R? and time ¢ € (0, o0).

Initialize: § > 0 and set N = ¢/§ + 1. And randomly set z°, 7°, p°, and ¢°, but with

2% = Trarget aNd Y = Yarger. And set (2°,9°) = (7% 3°). Also choose 0,7 such that

o7|D|? < 1 and 6 € [0,1].

while tolerance criteria large do

1 = argmax, {G(f’“ ) = Hs(* 7" —q’“, ) = 15— (7 + D)3}
Gl = argminq{ ( ) ( ,y P =g, §’f) + %HQN - ((7’“ + ang’f)Hg}
#1 = argming { G(7, 7*) — H5(7, 7,7+ fi’”l,f‘?’“) + g — (@ DT

g+l = arg maxg{ (T, §) — Hg(@k+1, g, prrt, —gh+t, 5%) — 51l — (7* - TDTCij)H%}

i.k’Jrl :’i,kJrl NkJrl
e +0 -
gk—i—l gk+l gk:-i-l
N Dj N
fval = g(x07y0) +Zj:1 _52]‘:1 H<$jayjapj>_qj7sj)
—qj —Yji—1

return fval

If we have G(z,y) = E(z) + H(y) where E is convex and H is concave, then we may
make use of convex-conjugates and concave-conjugates (see (1.14)) to obtain an analogous
Hopf formula as in 2, but for differential games. Here D is the same difference matrix as in

the Hopf case, 2. This is 4.

23



Algorithm 4 Splitting for HJE for Differential Games, Hopf (for separable convex-concave

initial conditions)

Given: (Ziarget, Yrarget) € R? and time ¢ € (0, o0).

Initialize: 6 > 0 and set N = t/6. And randomly set 7%, ¢", p°, and ¢°, but with

Y = Trarget a0d Y = Yarger. And set (2°,9°) = (2% 3°). Also choose 0,7 such that

o7|D|? < 1 and 6 € [0, 1].
while tolerance criteria large do

1 = argmax, {—E*(p1) — Ha(—a1) — Hs(@, 7,5, ~, ) = 5[5 — (7* + o DT3)[3}
@+ = argming {—E7(p1) — Ha(—a) = Hs(@*, 5", 5, ~4,5) + &3 — (@ + o D7) 3]

7F*1 = arg min, {—E*(pl) — ﬁ*(—th) = f[g(:i‘,yjk,ﬁ“l, —gttL R + %Hi — (3% - TDﬁk“)Hg}

§t = argmay { ~B*(pr) = Ha(—q1) — Hy(@0, 5,5, —g+, 59 = |

7 - (@ - D)3}
§k+1 jk+1 jk+1 ~k

§k+1 gk+1 gk+1 gk

PN T - Pj = Pj+1 x;
fval = —e*(p1) — hu(—q1) + < ’ > + Zj-v:11< N B > _

—4qn Yy (95 — gj+1) Yj
N
0251 H(zj, 95,05 — 45, 55)

return fval
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1.5.3 Remarks on how to perform the argmin/argmax in each iteration

In each iteration for the above algorithms, we have an optimization problem when updating

.%k+1 (

~k+1)

7 ~k+1 (

or p Thand®

q In some of our experiments, the optimization turned into a

K1 /gE+L or we were able to make

closed-form proximal expression (mainly when updating p
use of one step of gradient descent of the objective (mainly when updating #*+1 or 7**! or
when G = g is involved). As an example, one way to update the Lax formula for optimal

control (1) using a backward Euler discretization is

(k41

P = Prox, g,z (p* + o D7)

S L = G — 7 DT — rVLG(F) + TV Hy (3, Y 5)

Skl _ =kl ~k+1 _ =k
[ 2" =2 0(EM T - 3h).

and one way to update the Hopf formula for optimal control (2) is,

p
~k+1

D = proxaﬁa(ik;)(ﬁk +oDi* — oVg*(p1))

{ FRHl = Fk TDTﬁk-H + vaﬁﬁ(jk,ﬁk+l)

§k+1 _ i,k-&-l + 9<jk+1 - jk)
\

where we see the update for p*! is a proximal gradient update [103| (Section 4.2).

There are many combinations we can use, but the intuition is to take a gradient step on
the smooth part, and a proximal step on the non-smooth part. And if we have a sum of a
smooth part and a non-smooth part, we can mix a gradient step with a proximal step (i.e.

a proximal gradient step) as we have done above.

1.5.4 Computation of characteristic curves/optimal trajectories

A benefit from the new algorithm is that alongside computing solutions at each point, it

also allows us to directly compute trajectories/characteristic curves of the Hamilton-Jacobi
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equation at each point. In fact, our algorithm is a hybrid of the direct collocation method

(a direct method) [135] and Pontryagin’s Maximum Principle (an indirect method) [63].

We give some examples of characteristic curves/optimal trajectories in our numerical

results (1.6).

1.5.5 The advantage of splitting over coordinate descent

The advantage of these methods over coordinate descent is not only its speed, but it also
does not seem to require as many multiple initial guesses for nonconvex optimization. And
in our numerical experiments in 1.6, we only used a single initial guess in all our examples.

And for most examples in our experiments in 1.6, it only requires one guess.

It also the advantage that one can apply the method to non-smooth problems, as opposed

to coordinate-descent, where one takes numerical gradients.

And practically, splitting is more straightforward to implement than coordinate descent,
where we would require divided differences to numerically compute the gradients, and we also
have available to us the multitude of splitting techniques from the optimization literature,

such as ADMM and Douglas-Rachford splitting to name a few.

1.5.6 A remark on the connection between Hamilton-Jacobi equations and op-

timization, and the implications on future optimization methods

The relationships between Hamilton-Jacobi equations and optimization have been noted in
the literature [109, 110]. More recently, there has been a connection between deep learning
optimization and HJE [18]. More concretely, there is a straight-forward connection between
Hamilton-Jacobi equations and the proximal operator (which can be interpreted as implicit

gradient descent):

Given a function f(-), the proximal operator of f is

(1+30)(0) = axganin {1 (0) + e — ol
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If we change the argmin, into a min,, then we get the familiar Lax (a.k.a. Hopf-Lax)

formula for the Hamilton-Jacobi equation with H(z) = 1|z|3, and for ¢t = A. So in this way,
the Generalized Lax and Hopf formulas can be viewed as a generalization of the proximal

operator.

Also, the proximal operator, i.e. the argmin, operator, is featured heavily in our algo-
rithms. In classical PDHG, the primal variable x and the dual variable p are decoupled.
But for our algorithms, the coupling is in the form of a state-dependent Hamiltonian. This
coupling of the primal and dual variables can have implications on future optimization meth-
ods, as we can then attempt various coupling functions, i.e. Hamiltonians, and examine their

effectiveness in general optimization techniques.

We also reiterate that our algorithms have been able to perform nonconvex optimization
without as many multiple initial guesses as in other algorithm such as coordinate descent. In
fact, in all our examples in 1.6, we only used a single initial guess. So we feel a deeper theo-
retical examination of these algorithms will likely be beneficial to the theory and literature

of nonconvex optimization methods.

1.6 Numerical Results

Here we present numerical examples using our algorithm. The computations were run on a
laptop with an Intel i7-4900MQ 2.90Ghzx 4 Haswell Core processor, of which only one core
processor was utilized for computations. And the computations for the Eikonal equation and
the Difference of Norms were computed in C++, while the (unnamed) Isaacs example and

the Quadcopter were computed in MATLAB, version R2017b.

For initializations, we initialized 7° = (x0,29,...,2%) to be such that each z (for
i = 0,...,N—1) is a random point close t0 Tiaget, and we let % = Ttarget- 11 par-

O each coordinate, except for z%;, was randomly initialized so that |z° —

ticular, for T
(Ttargets Ttargets - - - » Ttarget) oo < 0.1. We chose p° to be a random vector close to the ori-

gin so that |p° — 0], < 0.1.
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We chose 6 = 1 in all cases.
The PDHG step-sizes o and 7, and the time-step size ¢ all varied for each example.

The error tolerance for all optimal control examples were chosen such that primal and
dual variables satisfy |zft1 — 2¥||2 < 107® and ||p*™! — p*|3 < 1078, The error tolerance for
all the differential games example were also similarly [(z¥+1 y*+1) — (2%, y%)||2 < 107® and

k1

I(pE+L, 1) — (p*, ¢%)||2 < 1078, although we had to slightly modify our stopping criteria

here.

For the difference of norms example, if the algorithm reached some max count, then
we would examine the value function and stop the algorithm when the value of the value

function for consecutive iterations reached a difference below some tolerance.

For the (unnamed) Isaacs example with fully convex initial conditions, we chose the
error to be such that the relative error of the value function of consecutive iterations was

—6 M
less than 107°, i.e. Hmin(ufvalk“u,l)

‘ < 107%. This example turned out to be the harshest on

our algorithm.

In all cases, when we derive the Hamiltonian, we are starting from an optimal control
with a terminal condition and solving “backwards in time" (see 1.2.1) as this naturally gives

us an initial-valued Hamilton-Jacobi PDE.

1.6.1 State-and-Time-Dependent Eikonal Equation (Optimal Control)
1.6.1.1 Brief background on Eikonal equations

The state-dependent Eikonal equations are HJE with Hamiltonians,

H*(z,p) = c(@)pl, H™ = —c()|p].
where ¢(z) > 0 and | - || is any norm; in our examples we take the Euclidean norm. We also

test a state-and-time-dependent equation of Eikonal type, where H(x,p,t) = c(z —t)|p|.

They arise from optimal control problems that have dynamics

f(z,u) = c(z)u, with |u| <1 and ¢(z) # 0 for all =
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and with cost-functional

t

ﬂﬂ:gmm»+jﬂgwwnw

0

where J¢;(-) is the indicator function of the unit ball in R”, i.e. 0 for all points within the

unit ball including the boundary, and +co for all points outside.

This is a nonlinear optimal control example due to the presence of c(z). Also, our
algorithm is performing nonconvex optimization (due to the presence of ¢(x), but also in
our negative Eikonal equation example where we are performing minimization with a —g(x)

term where ¢ is quadratic).

The Eikonal equation features heavily in the level set method [99, 98|, which has made

wide-ranging contributions in many fields.

Note the optimization in solving negative Eikonal equation can be obtained by examining
the positive Eikonal equation. This is actually a general phenomenon of Hamiltonians that
obey H(x,—p,t) = H(x,p,t). This is because if ¢ solves a HJE with initial data ¢g and
Hamiltonian such that H(z, —p,t) = H(z,p,t), then examining —¢,

(=) + H(x,V(=9),t) =0 ¢ — H(z,Vo,t) =0
(—=9)(x,0) = —g() ¢(z,0) = g(z)
so we see —¢ solves the positive Eikonal equation with initial data —g¢ if and only if ¢ solve
the negative Eikonal equation with initial data g. And note that both are viscosity solutions

as this computation still holds when we compute the viscous version of the HJE [40] (Section

10.1).

1.6.1.2 Implementation details

Here we take
c(x) = 1+ 3exp(—4fz - (1,1,0,...,0)[3),
which is a positive bump function. The initial condition of our HJE PDE is

g(z) = =1/2+ (1/2) (A2, 2), A= diag(2.5%1,0.5%,...,0.5%).
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We used the Lax version of our algorithm, Algorithm 1, for all cases in this section. For

the #¥+!-update, we took one step of gradient descent. And for the pF+!

update, we took
the proximal of the f;-norm (a.k.a. the shrink, operator); in general the shrink operator
can be defined for any positively homogenous of degree 1 convex function ¢. For the /-1
norm, we have the shrink, operator (in R™) can be computed coordinate-wise and the i-th

coordinate satisfies,

(shrink; (z, A); =< 0 if |z;] < A

i+ A ifx; <=M\

and the shrink, operator also can be computed coordinate-wise and the ¢-th coordinate

satisfies

(shrinky(z, \)); = m max(||zf; —A,0) if z#0
AC) i

0 if x =0.
For the negative Eikonal equation, since in our implementation we computed a positive
Eikonal equation with initial data —¢g and then took the negative, we were able to compute

the proximal of the concave quadratic —g. We call this taking the stretch operator of g (see

[19], Section 4.2.2).

For these Eikonal equations, we chose a time step-size of 6 = 0.02, and we computed in

a [—3, 3] grid with a mesh size of 0.1 on each axis.

For the positive Eikonal equation (1.6.1.2), we chose a PDHG step-size that depended on
the norm of Ve(x). If [Ve(x)[l2 > 0.001, then we took o = 50 and or else we took o = 0.5.
And we always took 7 = 0.25/0 (the 0.25 comes from | D]y = 2 — e for some small € > 0, and
requiring o7 < 1/|D|?). To compute the times ¢t = 0.1, 0.2, 0.3, and 0.4, the computation

time averaged to 4.39 x 10~* seconds per point in C++.

For the negative Eikonal equation (1.6.1.2), we chose a PDHG step-size of ¢ = 100 and
7 = 0.25/0. We picked 0 = 1 for all cases. For t = 0.1, 0.2, 0.3, 0.4, and 0.5, the computation

time averaged to 0.0024 seconds per point in C+-+. We see that for the t = 0.5 curve, there
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are kinks, which may be a result of the splitting finding sub/super solutions, rather than

viscosity solutions [40] (Section 10.1). In this case, multiple initial guesses will alleviate this.

For the negative eikonal equation in 10 dimensions (1.6.1.2), we computed a 2-dimensional
slice in [—3,3] x [=3,3] x {0} x -+ x {0}. The time step-size was again 6 = 0.02 and we
chose 0 = 100, and 7 = 0.25/0. For t = 0.1, 0.2, 0.3, and 0.4 (0.5 had no level sets) the

computation time averaged to 0.004 seconds per point in C-++-.

We also computed a state-and-time-dependent Eikonal equation (1.6.1.2) where H(z, p,t) =
c(x—t(—1,1))||p|l2- Here in our specific example, ¢(z —t(—1,1)) represents a bump function
moving diagonally in the (—1, 1) direction as ¢ increases. The time step-size were the same
as in the positive eikonal case which is reasonably expected because we took the positive
eikonal case and modified it. The computational time for ¢ = 0.1, 0.2, 0.3, and 0.4 averaged

to 5.012 x 10~* seconds per point in C-++.

In these examples, we achieved a speedup of about ten times over coordinate descent,
and only one initial guess was used. In low dimensions, this problem can be solved with
SQP (Sequential Quadratic Programming) on the value function, or using Lax-Friedrichs.
We use these methods to check our accuracy and they agree to within 10~* for each point

(x,t) when using SQP.

We observe that the two different eikonal equations required vastly different step-sizes
and it is worth examining how to choose step-sizes in a future work. We speculate the

step-sizes may act as CFL conditions. This is a further point of study.

Comparing coordinate descent to our algorithm in MATLAB, we achieve about an 8-10
times speed-up.
The figures 1.6.1.2, 1.6.1.2, and 1.6.1.2, and 1.6.1.2 show the zero level sets of the HJE

solution.

In 5, we give an explicit example of how we performed our algorithm on the negative

eikonal equation.
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Algorithm 5 Splitting for the negative Eikonal equation with convex initial data g (note:

below we are actually solving the equivalent problem of the positive Eikonal equation with

concave initial data —g)

Given: Tiarget € R? and time ¢ € (0, 0).

while (|z**! — 7*|2 > tol or ||p**! — p*||2 > tol) and (count < max_count) do

for j =1to N do

Pt = shrinks (ph + o(2F — 28 1), 0dc(2*)) (proximal)
for y =0do
ot = af — 7 pEtt Yy — 1(V(—g))(xF) (gradient descent)
——

-0
for j=1to N—1do

k+1 _ k+1 k+1

z; x;“ -7 —pity) - T(—5(Vc)(x§)||p§”+1||2) (gradient descent)

for 7 =0to N do
Z;,f“ = xf” + G(xfﬂ — 2%) (extrapolation step)

fval = —g(xo) + Zj-vzl (pj,xj —xj1) — 52;-\[:1 c(z;)[psl2

return fval
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H*(x,p) = c(x)||p|| - Lax-Friedrichs

H*(x,p) = c(x)|Ipl|

Figure 1.1: Eikonal equation with H*(z,p) = ¢(z)|p|2, in two spatial dimensions. This plot
shows the zero level sets of the HJE solution for ¢ = 0.1,0.2,0.3,0.4. We observe that the
zero level sets move outward as time increases. The left figure is computed using our new

algorithm, while the right figure is computed using the conventional Lax-Friedrichs method.

H(x) = -c(x)llpl| - H(x,p) = -c(x)||p|| - Lax-Friedrichs

Figure 1.2: Eikonal equation with H~(z,p) = —c(z)|p|2, in two spatial dimensions. This
plot shows the zero level sets of the HJE solution for ¢ = 0.1,0.2,0.3,0.4. We observe that
the zero level sets move inward as time increases. Left is computed with our new algorithm,

while the right is computed using the conventional Lax-Friedrichs method.
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H'(x) = -c(x)|p|,, 10 dimensions

Figure 1.3: Eikonal equation with H~(x,p) = —c(z)|p|2, in ten spatial dimensions. This
plot shows the zero level sets of the HJE solution for t = 0.1,0.2,0.3,0.4. We observe that

the zero level sets move inward as time increases.

Hx) = c(x-t(-1,1)]Ipll,

Figure 1.4: Eikonal equation with H(x,p) = c¢(x — t(—1,1))|p|2. This plot shows the zero
level sets of the HJE solution for t = 0.1,0.2,0.3,0.4. We observe there is a similarity to the

positive eikonal case, but the “bump" is more sheared to the left.
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1.6.1.3 Dimensional scaling of the negative Eikonal equation

Here we examine how Algorithm 1 scales with dimension. We compute the negative Eikonal
equation with the same speed ¢ and initial data ¢ as above, and with 6 = 0.02 and ¢ = 100
and 7 = 0.25/0. We computed in a 2-dimensional slice [—3,3]* x {0}¢72, and we computed

from d = 10 to d = 2000 dimensions. We performed our analysis at time ¢ = 0.2.

We chose this particular example as this is a nonlinear optimal control problem that

requires us to optimize a nonconvex problem.

We used least-squares to fit both a linear function as well as a quadratic function. The

coeflicients were
lin(d) = (1.14 x 107%)d + 0.0021, quad(d) = (—5.99 x 107)d? + (1.27 x 10~*)d — 0.00195

As we can see from the equations of the fit, and from 1.6.1.3, the quadratic fit has an
extremely small quadratic coefficient. 1.6.1.3 shows the plot with the linear fit. This com-

putation was done in C++.

We predict that for general problems, the scaling will be polynomial in time.
1.6.2 Difference of norms (Differential Games)
1.6.2.1 From differential games to HJE for the difference of norms

The state-dependent HJE for the difference of norms case arises from the following differential

games problem: Given z € R® and y € R%, and some t > 0, we have the following the
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Dimensional Scaling of Negative Eikonal, t=0.2

0.25 Linear fit (red): (1.14x10°%)d + 0.0021

0.2F

0.15

Computation Time (seconds per point}

0.05

O Raw
= Linear fit

1] 200 400 600 800 1000 1200 1400 1600 1800 2000
Dimension

Figure 1.5: How our algorithm scales with dimension for the negative Eikonal equation at
time ¢t = 0.2. This is a nonlinear optimal control problem, and the optimization requires us

to perform nonconvex optimization. The plot shows a linear fit.

dynamics

als)]| < L |B(s)]| < 1, for all s,

and ¢y, ¢y are positive functions.

\
And the cost function is
"

T, 8] = g(x(0), y(0)) + f Ioi(a(s)) — T<a(B(s)) ds

0
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where J<;(+) is the indicator function the unit-ball, i.e. it equals 0 for points inside and on

the unit-ball, and +oo for points outside. Our value function is then

¢(x,y,t) = inf sup Jyla, B

alal<1 g, 81<1

Then our Hamiltonian becomes,

H(:va?pv q) = moz}xmﬁin < CIEx7y§Z ’ ! > - (I<1(a) - I<1(5))
C2\T,Y q

= max {(c1(z, y)a, p1) — Ia(@)} +min {{c2(z,9)8,9) + I<a(B)}

Cl(xv y)Hsz - Cz(xyy)HQH%

In this case, we have nonlinear dynamics, aswell as nonconvex Hamiltonian.

1.6.2.2 Implementation details for the difference of norms
Here we take,
ci(x) = 1+ 3exp(—4||z — (1,1,0,...,0)]3), ca(x) = c1(—x),
and the initial condition is
g(x) = =1/2+ (1/2) (A2, z), A= diag(2.5%1,0.5%,...,0.5%).

which is the same initial condition as in our Eikonal equation example above 1.6.1.2.

For the 2-dimensional case, we used the Hamiltonian,
H(z1, 2, p1,p2) = c(z1, 22)||p1]2 — c(—21, —22) [p2l2
and for the 7-dimensional case, we used,
H(xy,29,...,07,01,00,..1) = c(@1,...,x7)|[p1]2 — c(=21, ..., —27) [pe2,..7)|2-

where p(2,...,7) = (p27p37 cee 7p7)'
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We compute our solutions in 2 and 7 dimensions. We compute the 2-dimensional case
in a [—3,3]% grid, and we compute the 7-dimensional case in the two dimensional slice
[-3,3]% x {0} x -+ x {0}. And we used 3.

For the pF*l-update, we used the proximal of the fo-norm (a.k.a. the shrink, operator),

and for the #**!-update, we used one step of gradient descent.

We took the time-step as § = 0.02, and we took the PDHG steps ¢ = 50, and 7 = 0.25/0.
The 0.25 comes from the fact that the PDHG algorithm requires o7|D|3 < 1, and ||D||s =

2 — ¢, for some small € > 0.

The computation was done with a mesh size of 1/12 ~ 0.08333 in each axis. For the
2-dimensional case, the computation averaged out to 0.0135 seconds per point in C++, and
for the 7-dimensional case the computation averaged out to 0.01587 seconds per point in
C++. If we compared the algorithms in MATLAB on the same computer, we achieved a

10-20 times speed-up compared to coordinate descent.

We note that at certain points, the trajectories would oscillate a little for larger times
which may be due to the non-convexity and the non-unique optimal trajectories. So when a
maximum count was reached, we would raise ¢ by 20, and we would also readjust 7 = 0.25/0.
We do not recommend choosing a high ¢ at all points, or else the algorithm would result in
incorrect solutions. If the convergence was not fast enough, after some maximum count, we
would switch our convergence criteria to the value function, as the error (between consecutive
iterations) seemed to converge to zero. The procedure of raising the sigma is reminiscent of
CFL conditions for finite-difference schemes, and we are examining how best to choose the
PDHG step-sizes 0 and 7. The best ¢ and 7 to choose seem to be dependent on the point

at which we are computing.

38



HOGY.P3P,) = cOuY)IIR, | - €(xy)I1p, I HOYP,,P,) = I, [l - c-X,y)I[p, || , Lax-Friedrichs

Figure 1.6: The difference of norms HJE in two spatial dimensions. This plot shows the
zero level sets of the HJE solution for ¢ = 0.1,0.2,0.3. We observe that the zero level sets
move inward as time increases. Left is computed with our new algorithm, while the right is
computed using the conventional Lax-Friedrichs method. Note there is an anomaly at the
top-right of Lax-Friedrich computation. And there is also more of a corner in the bottom-left
of the solution computed by the new method. This may be a result of the true solution, and

which does not appear in the Lax-Friedrichs solution as it tends to smooth out solutions.

HOGYIPLP (o, ) = WPyl - X YRy, |l + 7 dimensions

Figure 1.7: The difference of norms HJE in seven spatial dimensions. This plot shows the

zero level sets of the HJE solution for ¢ = 0.1,0.2,0.3.
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1.6.3 An (unnamed) example from Isaacs (Differential Games)
1.6.3.1 From differential games to HJE for an unnamed example from Isaacs

We now examine a modified version of a differential game, obtained from [39] (Example 6.3),
in which it is named “an unnamed example of Isaacs"; the original source is found in Isaac’s

seminal work [67] (Example 8.4.3). The dynamics are as follows:

z(s) =206+ sin(a)
y(x) = —c(z,y) + cos(a)
where 0 < a < 27 and —1 < 8 < 1. These dynamics are nonlinear. We take the cost-

functional as,

t

T 8] = g(x(0), y(0)) + f 1ds

0

and the value function seeks to maximize with respect to o € [0,27], and minimize with

respect to § € [—1,1]. Then our Hamiltonian is,

23 + sin(a
H(Jjaf%p,CI): min max < ﬁ ( ) ’ p >_1
a,a€(0,27] B,8e[—1,1] —C((II, y) " Cos(a) ¢

~—  mi 28p — i —1
L Mrg[agvl]{ Bp — c(z,y)q + psin(a) + g cos(a) — 1}

—c(z,y)q + 2|p| = /P> + ¢* — 1.

This Hamiltonian is nonconvex. And the dynamics are nonlinear.

1.6.3.2 Implementation details for the (unnamed) example from Isaacs with

fully convex initial conditions
We take
c(x) = 2(1 + 3exp(—4|z — (1,1,0,...,0)|2)), (1.15)
which is a positive bump function. The initial condition of our HJE PDE is

g(z) = =1/2+ (1/2) (A2, x), A= diag(2.5%1,0.5%,...,0.5%).
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This example is perhaps the harshest on our algorithm and turns out to be slower than
coordinate descent, but in many ways this is not surprising. This is because this problem is
highly nonconvex and the g(z,y) that we use is a convex function — ideally we would like it
to be a convex-concave function which would be suitable for saddle-point problems. Not only
that, but our Hamiltonian is not bounded below with respect to ¢, and the Hopf formula

requires this assumption.

Nevertheless, we show this example in order to advertise the generality of our algorithm.
It might actually be surprising that our algorithm gives a solution that looks like the Lax-
Friedrichs solution at all. We also not that we only used one initial guess, and in our

experiments, using around 5 initial guesses smooths our the solution.

We use 3, but modified so we can utilize the convex portion of g (see the last paragraph
of 1.5.2). We compute our solutions in a 2-dimensional [—3,3]? grid. The pFtl-update
utilizes a combination of gradient descent for the ¢, and the shrinks-operator for the p. The

#F+1_update uses one step of gradient descent.

We took the time-step as d = 0.005, and we took the PDHG steps as ¢ = 20, and 7 =
0.25/0, where the 0.25 comes from the PDHG condition that o7|D|2 < 1, and | D]y = 2 —¢
for some small € > 0.

As in the difference of norms example, we did have some points that were slower to
converge. We alleviated this problem by rerunning the algorithm at the same point (without
change o nor 7) if we reached some maximum count, and sometimes took the solution if the
maximum count was reached anyway.

The computational time on a [—3,3]* grid, of mesh size 1/12 ~ 0.0833 for each axis,
averaged out to 0.412 seconds per point in MATLAB.

In this example, using 3 was slower than coordinate descent where it averaged to 0.133

seconds per point, and so we recommend using coordinate descent in this case.

1.6.3.2 gives the result of our algorithm.
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An unnamed example from Isaacs An unnamed example from Isaacs , Lax-Friedrichs

Figure 1.8: The zero level-sets for the HJE from an unnamed example of Isaacs. The times
we computed were ¢ = 0.025, 0.05, 0.075, and 0.1. The left figure is the result of our
algorithm, while the right figure is the result of Lax-Friedrichs. Here we see this example is
our harshest critic. But this is not surprising because the initial condition is a fully convex
function, whereas we’d rather have it be convex-concave. And also the Hamiltonian is not
bounded below with respect to ¢ which as an assumption of the Hopf formula. Neverthless
our algorithm is still able to achieve a result similar to Lax-Friedrichs, which might actually
be the surprising part. We also note that we only used one initial guess here, but using

multiple initial guess (around 5) smooths out the curves.

42



1.6.3.3 Implementation details for the (unnamed) example from Isaacs with

convex-concave initial conditions

We take ¢(z) to be the same as in the fully convex initial conditions (see 1.15). The initial

condition of our HJE PDE is
gla1, 22) = =1/2 + (1/2)(((2.5)21)* — (22)%)

Here we have convex-concave initial conditions, and our algorithm works well. This is an
example of a convex-concave game, in which [35] have also applied their method to linear

differential games.

We use 4, and as in all other examples here, we only have one initial guess. We compute
our solutions in a 2-dimensional [—3,3]? grid. The p**'-update utilizes a combination of
gradient descent for the ¢, and the shrinks-operator the p. The #*+!-update uses one step

of gradient descent.

We took the time-step as § = 0.005, and we took the PDHG steps as 0 = 2 for ¢ = 0.025,
0.05, 0.075, and o = 10 for ¢t = 0.1. We always chose 7 = 0.25/0, where the 0.25 comes from
the PDHG condition that o7|D|3 < 1, and | Dl = 2 — € for some small € > 0.

We computed this example in a [—3, 3]? grid with mesh size 1/12 ~ 0.0833 for each axis.

The computational time averaged to 0.125 seconds per point.

As in the difference of norms example, we did have some points that were slower to
converge. We alleviated this problem by rerunning the algorithm at the same point (without
change o nor 7) if we reached some maximum count, and sometimes took the solution if the

maximum count was reached anyway.

1.6.3.3 gives the result of our algorithm.
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An unnamed example from Isaacs N An unnamed example from Isaacs , Lax-Friedrichs
) r

Figure 1.9: The zero level-sets for the HJE from an (unnamed) example of Isaacs with
convex-concave initial conditions. The times we computed were ¢ = 0.025, 0.05, 0.075, and
0.1. The left figure is the result of our algorithm, while the right figure is the result of

Lax-Friedrichs.

1.6.4 Quadcopter (a.k.a. Quadrotor or Quad rotorcraft) (Optimal Control)
1.6.4.1 From optimal control to HJE for the quadcopter

A quadcopter is a multirotor helicopter that utilizes four rotors to propel itself across space.
The dynamics of a quadcopter [52] are:

-

T = 2 (sin(¢)sin(¢y) + cos(¢) cos(v) sin(6))

§ = (— cos(e)sin(6) + cos(d) sin(8) sin())
< Z = Lcos(0)cos(p) — g

Yo=Ty

0 =7
L 6 =7

where (x,y, z) is the position of the quadcopter in space, and (1,6, ¢) is the angular orien-

tation of the quadcopter (a.k.a. Fuler angles). The above second-order system turns into
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the first-order system,

-

Ty =Ty
Yo=Y
Z1 = 2o
U=y
6 =0,
< b1 = s
Ty = - (sin(¢1)sin(y1) + cos(¢1) cos(¢1) sin(61))
Yo = (—cos(¢n)sin(¢r) + cos(¢1) sin(61) sin()1))
zg = - cos(fh)cos(¢1) — g
vy =Ty
by =7
G2 =T

\

and so the right-side becomes our f(x, o). Here the controls are the variable u, 7y, 7, 7p.
This is a 12-dimensional, nonlinear, optimal control problem.

Denoting x = (x1, y1, 21, V1, 01, &1, T2, Yo, 22, 2, b2, ¢2), then our cost-functional is,
t
Ju, 7y, 7o, 7] = 9(x(0)) + JO 2+ [[(u(s), 74 (5), To(s), To(s)) 3 ds (1.16)

where this cost functional was chosen to follow [120] and [66]. Therefore, our Hamiltonian
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becomes,

T2 p1 P2 D4
H(x,p,t) = max_ yo | " |p2| T |02] |ps
”LL,Tw,Tg,T¢
22 D3 b2 D6
sin(¢1) sin(v1) + cos(¢1) cos(¢1) sin(61) D7 Ty P10
u
+E —cos(1)1) sin(¢1) + cos(¢p1) sin(61) sin(v1) |~ [ps | —Pog+ [ 7o | - | P11
cos(61) cos(¢1) D9 T4 P12

=2 = [[ul® = [17]1* = [I7|* = [I7]1*}

x2 D1 (e D4

=y | [p2| T |62]| |p5

Z2 Pe
2
sin(¢1) sin(v1) + cos(¢1) cos(¢1 ) sin(6y) 7
1
+ I || —cos (11) sin(¢1) + cos(¢1) sin(61) sin(y1) | - | ps
cos(f) cos(¢1) D9

1
2 2 2
— pog + — ¥ - ¥ - —2
Pog + prH 4le1“ gl

1.6.4.2 Implementation details for the quadcopter

Here we have,
g(z) = =1/2+ (1/2) (A 'z, z), A=diag(0.2,1,1,...,1).

In this case, we use the algorithm based on the generalized Hopf formula, 2

We compute our solutions in a two dimensional slice of R'2:
[—1,1] x {0} x {0} x [=1,1] x {0} x {0} x {0} x {0} x {0} x {0} x {0} x {0},

i.e. we vary the z-coordinate, as well as the x-velocity-coordinate. Recall the order of the

coordinates are: x = (x17yl:Zlvwla917¢17x2ay27227w2a927¢2)'
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For both the pF*'-update and the z**'-update, we used gradient descent, except for
the update involving ¢*(p;), where we did a proximal-gradient step, i.e. we performed a
gradient descent, ignoring g*, and then we fed the result into prox,,«)(-). This can be seen

as a proximal-gradient step [103] (Section 4.2).

In this example, we chose as time-step size 6 = 0.005, and we chose times t = 0.025,0.05, 0.075.
For the PDHG step-sizes, we chose 0 = 5, and 7 = 0.25/7, where as stated above, the 0.25

comes from the PDHG requirement o7|D|3 < 1, and |Dl]s = 2 — ¢, for some small ¢ > 0.

The computation was done on a [—1,1]* grid, with mesh size 0.01 in each axis. The

computational time averaged to 0.0733 seconds per point in MATLAB.

In this case, not only are we able to compute level-sets of the HJE, but we are also able
to take advantage of the characteristic curve/optimal trajectory generation that is freely

offered by our algorithm.

To generate the curves/trajectories, we took a randomly-generated terminal point, which

was exactly
Ttarget = (0.36, —0.62,—0.06, 0.23,0.85, —0.66, 0.72, —0.45,0.15, —0.75,0.04, —0.83)  (1.17)

and we computed up to t = 6 seconds. We chose a time-step of § = 0.05, and we chose 0 = 11
(and 7 = 0.24/0 (as opposed to 0.25 as the latter will not converge). This took about 24s to
compute in MATLAB. We verified our result by directly minimizing a discretized version of
(1.16) (see also 1.4.1 on how we discretized), which is a direct collocation method [135]. We
performed the optimization using a standard MATLAB minimization solver (fmincon with
the SQP algorithm), and this agreed with our results. The solver took 133-347s to compute
the trajectories, depending on the accuracy criteria, and we note that fmincon converges to
our splitting result the longer we let the algorithm run. So in this case, 5-10+ times speedup.

Computing trajectories at other points have found around an 8-10+ speedups.

1.6.4.2 gives the zero level-sets of the HJE, and 1.6.4.2 gives the result of computing the
curves/trajectories. 1.6.4.2 plots the x, y, and z positions of the quadcopter as it moves

through time.
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H(x) = quadcopter, 12 dim

Angul

Figure 1.10: Here we compute the zero level-sets for the HJE arising from the quadcopter.
The z-axis is the x1-position of the quadcopter, and the y-axis is the angular position in the
11 coordinate. The zero level-sets are computed for ¢ = 0.025, 0.05, and 0.075. This is a

12-dimensional, nonlinear optimal control problem.

1.7 Discussion and Future Work

In this paper, we have presented a splitting method to compute solutions to general (i.e.
convex and nonconvex) Hamilton-Jacobi equations which arise from general (i.e. linear and

nonlinear) optimal control problems and general differential games problems.

Some nice properties of our algorithm include: (1) relatively fast computation of solutions
in high-dimensions, especially when we parallelize the algorithm which is embarrassingly
parallelizable [64] (2) it can generate optimal trajectories of the optimal control/differential
games problems, (3) it can compute problems with non-linear ODEs, (4) it can compute
solutions for nonconvex Hamiltonians, (5) and the algorithm is embarrassingly parallelizable,
i.e. each core can use the algorithm to compute the solution at a point, so given N cores we

can compute solutions of the HJE at N points simultaneously.

Splitting applied to optimal control problems has been used by [95] where they apply it to

cost functionals having a quadratic and convex term. In terms of Hamilton-Jacobi equations,
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Position v.s. Time

Position

Velocity v.s. Time

Velocity
"

Angular Position

Angular Velocity

Anglular position v.s. Time

Anglular velocity v.s. Time

Figure 1.11: Here we compute the characteristic curves/optimal trajectories for the quad-

copter. We are computing at the terminal point in (1.17) and we are computing at the

terminal time ¢ = 6 seconds. A plot of the trajectories computing using a different algorithm

— SQP — looks identical.
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Trajectory of Quadcopter in 3D space

EAE WL N A 2 H N w

Figure 1.12: We plot the (z, y, z) coordinates of the quadcopter to give a plot of the trajectory

of the quadcopter in 3D space.

the authors in Kirchner et al. [74] (2018) effectively applied it to Hamilton-Jacobi equations
arising from linear optimal control problems by using the Hopf formula. They make use of
the Hopf formula and the closed-form solution to linear ODEs to not only solve HJE, but to
also directly compute optimal trajectories in high-dimensional systems. The authors of this
current paper have been working in parallel and also applied splitting to HJE and trajectory

generation for nonlinear optimal control problems and minimax differential games.

On a related note, see also previous work by Kirchner et al. 73] where they apply the
Hopf formula to differential games and show that complex “teaming" behavior can arise,

even with linearized pursuit-evasion models.

As far as we know, the idea to use splitting for differential games problem for the dis-
cretization in equation (1.13) and (1.14) is new. And we believe it is worth examining if this
PDHG-inspired method to solve minimax/saddle-point problems may apply to more general

minimax/saddle-point optimization problems.

The proof of convergence and the proof of approximation for our algorithm is still a work-
in-progress. But it seems to be that for the examples in 1.6, we get relatively the correct
answer, and our algorithm seems to scale linearly with dimension for even a nonlinear optimal

control problem requiring nonconvex optimization (see 1.6.1.3).
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We also believe that due to the deep connection between Hamilton-Jacobi equations and
optimization methods (1.5.6), it is worthwhile to examine why our algorithm works. Not
only that, but for our examples in 1.6, we were able to perform nonconvex optimization with
only a single initial guess, whereas coordinate descent required multiple. And the authors
also believe it is worth examining the algorithms 3 and 4 as the computation of minimax
differential games problems using a splitting method seems new. In essence, it may be
possible to generalize these algorithms to apply to general minimax/saddle-point problems

with continuous constraints.

Some improvements to our algorithm for differential games problems (3 and 4) can be

foreseen:

1. We have found speed-ups to our algorithm when we use acceleration methods [16, 17]

2. One may be able to devise a more sophisticated stopping criteria as that in Kirchner
et al. [74], where they apply a step-size-dependent stopping criteria based off work by
[53].

3. We would also like to utilize higher-order approximations for the ODE and integral
when discretizing the value functions of the optimal control or differential games prob-
lems. We note that for the Lax discretizations (1 and 3), one can average the forward
and backward Euler approximations to obtain higher accuracy, analogous to how the

trapezoidal approximation is the average of the two.

4. And we believe we might be able to make use of having a closed-form solution, or an
approximate solution, to computing the characteristic curves, i.e. closed form solu-
tions to £x(s) = Hy(x(s),p(s),s) and Lp(s) = —H,(x(s), p(s),s), much as in [74],

where they make use of having a closed-form solution to linear differential equations

by utilizing the exponential operator.

5. There could be an advantage in combining the splitting method to pseudo-spectral

methods [111].
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6. In the algorithms for differential equations 3 and 4, we are solving a saddle-point
problem using gradients. We might obtain faster convergence if we used a Hessian-

inspired method, such as split form of BFGS.
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discussions and suggested edits during this work. They provided us with a wealth of infor-
mation on the history of the subject and existing methods, as well as important problems.

And they were generous in giving suggestions on future directions.

1.9 Appendix: A practical tutorial for implementation purposes

1.9.1 Optimal Control

Suppose we want to compute the Hamilton-Jacobi equations associated to the following

optimal control problem:

t

b(a,t) = min {g<x<o>>+f

x(-),u() 0
where x(-) and u(s) satisfy the ODE

L(x(s),u(s),s) ds} (1.18)

x(s) = f(x(s),u(s),s), 0<s<t
(5) = fx(s). u(s). 5 o
x(t) =z
Here (z,t) € R"x [0, o) are fixed, and is the point that we want to compute the HJE solution
®.

Then we can use 1 or 2, which we describe in more detail below.

1.9.1.1 Practical tutorial for 1

If we want to use the discretized Lax formula (with a backward Euler discretization of the

ODE dynamics), then:
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1. Discretize the time domain:

O=59<s1 <Sg<--+<Sy_1 <Sy=L.

In our numerical experiments, we chose a uniform discretization of size § := t/N.

2. Approximate (1.19) using backward Euler, and also discretize (1.18) to obtain (as in

(1.9)),

N N
¢(z,t) ~ max min {g(xg) + Z (pj,xj —xj_1) — (52 H(xj,pj, sj)}
=1

{pj};y:1 {xj }é'\[:() j=1

where z; = x(s;), and p; = p(x;). Let us denote & = Zyarget to clarify notation.

3. Initialize:

(a)

Choose 6 > 0, set N = t/0 (although note that since we are using the zero-th

time-step, then we are updating N + 1 points).

Randomly initialize 2° := (2,29, ...,2%_,,2%), but with 2% = Ziarget-
Randomly initialize p° := (p9, pY, ..., p%_;,p%), but with pd = 0, as we won’t be

updating p; it is only there for computational accounting.
Set 20 := (20,29, ...,2%) = (xf, 29, ..., 2%_, 2%).

Choose o, 7 such that o7 < 1/|D|3 = 0.25 and 6 € [0, 1] (we suggest 6 = 1).

Choose some tolerance tol > 0 small.

L
~
e}
e}
e}
e}

[e]
o
o
o
o
|
~
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where 0 is a (dim x dim) zero matrix, where dim is the size of the space variable, and

I is the (dim x dim) identity matrix.

Note that in the algorithm, we can replace (Dz¥); = ij — zf_l, and similarly with

(DTp"); p] pj 41, SO we can save time by not performing a full matrix multiplication.

5. Then perform the algorithm found in 6.

Algorithm 6 Practical tutorial for the Lax formula with backward Euler, for Optimal

Control
Given: Ziager € R? and time ¢ € (0, o0).

while (|z**! — 7*|2 > tol or ||p*"! — p*||2 > tol) and (count < max_count) do

for j =1to N do

pf“ = argmin,, {5H($§,p, s;) + %Hp (pj + o (Dz");)|3 }

for j =0do

xlgﬂ = argmin, {g(m) + %Hx — (zf — 7(DTp")o)|3 } (note p§ = 0)

for j=1to N—1do
f“—argmm {- 5Hmp§“+1, i)+ 5=l — (aF —7(DTp*);)|3}

for j =0to N do

k+l _ k+1 k+1 _ ok
z; + 02§ — af)

fval = g(zo) + Zﬁvzl (pj, vj —xj_1) — 52?[:1 H(xj,pj, 85)

return fval

1.9.1.2 Practical tutorial for 2

If we want to use the discretized Hopf formula, then:
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1. Discretize the time domain:
O0=50<81 <S8y < -+ <sSy_1<58y="L.
In our numerical experiments, we chose a uniform discretization of size ¢ := t/N.

2. Approximate (1.19) using backward Euler, and also discretize (1.18) to obtain (as in

(111)),
N— N
é(z,t) ¥ max min { g*(p) + (o~ o Z — Djt1, %) 52H(xj7pj»3j>}

{pj}é_\le {Ij};\lzl j:1

where z; = x(s;), and p; = p(z;). Let us denote & = Tyarger to clarify notation.

3. Initialize:

Randomly initialize 7% := (29, ..., 2% _1,2%), but with 2% = Tiarget-
Randomly initialize p° := (p, ..., p%_;, p%)-

)
)
(c)
(d) Set 20:= (20,...,2%) = (2, ..., 2% 1. 2%).
)
)

f) Choose some tolerance tol > 0 small
4. Set
I —-I 0 O 0 0
o I —-120 0 0
D =
o o0 o o0 --- 0 —I
o 0 o o0 --- 0 I

where 0 is a (dim x dim) zero matrix, where dim is the size of the space variable, and
I is the (dim x dim) identity matrix.

Note we can replace (DTzk); = 2y — 2§ and (Dp*); = pi —pl, |, so we can save time

by not performing a full matrix multiplication.

Also note that the D here is different than in 1 and 6.
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5. Then perform the algorithm found in 7

Algorithm 7 Practical tutorial for the Hopf formula, for Optimal Control

Given: Tiarger € R? and time ¢ € (0, 0).

while (|z**! — Z*|2 > tol or ||p**! — p*||2 > tol) and (count < max_count) do

for j =1do

pf“ = argmin, {g*(p) + 6H (2}, p, s1) + 5 [p — (0} + o(DT2%)1) 3}

for j =2to N do

Pt = argming, {0H (25, p, s;) + 55 |p — (0f + o(DT24);)[3}

for j=1to N—1do

25t = argmin, {—0H (2, p’

k+1
j si) + 5l — (25 = m(DRY);)[13}

yi Y

for j =1to N do

Z;»H_l _ k+1 -‘r@( k+1 xéc)

fval = —g*(p1) + (P, Trarger) + 251 () = Djo1,25) — 6 250, H(wj,pj, s5)

return fval

1.9.2 Differential Games

Suppose we want to solve the differential games problem with the following dynamics,

r

' = O<s<t

JIRNO) £(x(s), y(s), ex(s), B(s), ) (1.20)
x(t) N E
y(t) y
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and with the following value function,

t

o(e,y,f) = inf  sup {g<x<o>,y<o>>+ | L<x<s>,y<s>,a<s>,ﬂ<s>,s>ds} (1.21)

a()x() B().y () 0

Then we can discretize the above equation and use 3 and 4, which we describe in more detail

below.

1.9.2.1 Practical tutorial for 3

If we want to use the discretized Lax formula for differential games (with a backward Euler

discretization of the ODE dynamics) (1.13), then:

1. Discretize the time domain:
O=59<s1 <Sg<--+<Sy_1 <Sy=L.
In our numerical experiments, we chose a uniform discretization of size ¢ := t/N.

2. Approximate (1.20) using backward Euler, and also discretize (1.21) to obtain (as in
(1.13)),

N N

: : pi Tj = Tj-1

¢(z,y,t) ~ min max min max < g(zo,y0) + Y, : — 0 Y H (2, 95,95 =45 55)
{ai}521 {pstjoy {=3)520 {usdjoo j=1 —q; Yi — Yj—1 j=1

where z; = x(s;), and similarly for y;, ¢;, and p;. Let us denote ¥ = Ziarget and

Y = Yrarget tO clarify notation.
3. Initialize:

1. Choose § > 0, set N = t/0 (although note that since we are using the zero-th

time-step, then we are updating N + 1 points).

2. Randomly initialize 2% := (2, 2?,...,2%_,, 2% ), but with % = Ziarget, and similarly
for 7°.
3. Randomly initialize p° := (pd, pY, ..., p%_1, p%), but with p§ = 0, as we won’t be up-

dating pY; it is only there for computational accounting. Do a similary initialization

for ¢°.
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4. Set 2% := (20,29, ..., 2%) = (28, 29,...,2%_;,2%), and set @° := (wd, w?, ... W) =
(W0, 92, -+ YN -1, UR)-
5. Choose 0,7 such that o7 < 1/|D|2 = 0.25 and 6 € [0, 1] (we suggest 6 = 1).

6. Choose some tolerance tol > 0 small.

4. Set

|
< ~
|
— ~
~ o
o o
o o
o o

o 0 00 --- 0 I

o 0 00 - 0 —I

where 0 is a (dim x dim) zero matrix, where dim is the size of the space variable, and
I is the (dim x dim) identity matrix. Note this is a very sparse matrix and we take
advantage of this.

Note that we can replace Dz* = 2F—2F | and D% = wh—wk

Tk _ ok k
R g 19 and D' p* = P —Pjt1>

and DT¢" = ¢ — ¢}, so we don’t have to perform the full matrix multiplication.

5. Then perform the algorithm found in 8.

1.9.2.2 Practical tutorial for 4

If we want to use the discretized Hopf formula for differential games (with a backward Euler

discretization of the ODE dynamics) (1.14), then:

1. Discretize the time domain:
O=59 <851 <8Sg<--+<Sy_1 <Sy=1L.

In our numerical experiments, we chose a uniform discretization of size § := t/N.
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Algorithm 8 Practical tutorial for the Lax formula with backward Euler,for Differential

Games
Given: Tiarger € R? and time ¢ € (0, 0).

while (|51 — 2%|2 > tol or |pF*! — p¥||2 > tol or ||g** — *||2 > tol or ||gFT! — ¢¥||2 >
tol) and (count < max count) do

for j =1to N do

pitt = argmin, {6H (25, 4%, p, —¢¥, s;) + & |p — (0 + o(DZ*);)|3}

for j =1to N do

¢t = argmin, {—0H (2%, yF, pM* =g, 5;) + 5 a — (¥ + o(Da");)|3}
for 5 =0do

o™t = argmin, {g(z,y5) + 5- |« — (af — 7(DTF*)o)[3}
for j=1to N—-1do

of T = argmin, {—0H (z,y¥, pi*, —i ™, s5) + 5w — (2% — 7(DTPM);)|3}
for j =0 do

yo " = argmin, {—g(z5™,y) + 5-y — (y§ — 7(DTG)o)[5}

for j=1to N —1do

yitt = argmin, {—6 H (a5, y, pi =i ) + Ly — (F — (D)) 13}
for ) =0to N do
z?:-i—l k+1+0( k+1 xéc)

wk-‘rl — y;i’-l-l + 9( k’+1 y‘;c)
N Dj Tj—Tj-1 N
fval = g(wo, o) + 25—, < ; > — 02 H(xj, 95,05, — 5, 85)
—g; Yi —Yj-1
return fval
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2. Approximate (1.20) using backward Euler, and also discretize (1.21) to obtain (as in
(1.14)),

. . p T
¢(z,y,t) ~ min max min max { —e*(p1) — he(—q1) + N ,
{Qj};'\[:1 {pj}?]:1 {wj};'\[:1 {yj}év:1 —qn Y

= Dj — Dj+1 Z; al
j=1

—(g; — gj+1) Yj j=1

where z; = x(s;), and similarly for y;, ¢;, and p;. Let us denote & = Ziaget and

Y = Yrarget to clarify notation.
3. Initialize:

1. Choose 6 > 0, set N =t/0.

2. Randomly initialize 2% := (2, 29,...,2%_;, 2% ), but with % = Ziarger, and similarly
for °.
3. Randomly initialize p° = (p,pY,...,p%_;,p%), but with pJ = 0, as we won’t be

updating pJ; it is only there for computational accounting. Do the same initialization
for ¢°.

4. Set 20 = (20,29, ...,2%) = (28,29, ..., 2% 1, 2%), and set @® := (wd, w?, ... wk) =
(yga y(l)a ce >y?\7717 y?\f)
5. Choose o, 7 such that o7 < 1/|D|2 = 0.25 and 6 € [0, 1] (we suggest 6 = 1).

6. Choose some tolerance tol > 0 small.

4. Set
I -I 0 O 0 O
0 I —-I0 0 O
D=
0O 0 0 o 0o —1/1
0O 0 0 o 0o I



where 0 is a (dim x dim) zero matrix, where dim is the size of the space variable, and
I is the (dim x dim) identity matrix. Note this is a very sparse matrix and we take

advantage of this.

Alose note that we can replace DTZF = ij — f_l, and DTw* = wf — wf_l, and

Dpt = p? — p;?H, and DgG* = qf — qﬁl, so we don’t have to perform the full matrix

multiplication.

5. Then perform the algorithm found in 9.
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Algorithm 9 Practical tutorial for the Lax formula with backward Euler, for Differential

Games
Given: Ziarget € R? and time t € (0, o0).

while (257! — 23 > tol or [p**! — p*|3 > tol or |7**! — §¥[3 > tol or """ — ¢*[3 >
tol) and (count < max_count) do
for j =1do
py*t = argmin, {e*(p) + 5H (z, 45, p, —qF, 51) + 55 |p — (pf + a(D"Z*)1)[3}
for j =2to N do
pytt = argming, {0H (2%, y5, p, —d}, 5;) + 550 — (0 +o(DT2))[3}
for j =1do
qllﬁ_l = argminq {_h*(_ ) 5H($17y17 P y —4q, Sl) Hq - ((h + U DT k ” }
for j =2to N do
Q;CJ’_I - argmlnq{ 5H jaij k+1 » 45 S]) Hq - (q] + 0- 'DT k H }
for j=1to N—1do
x;ﬁ_l = argminx {—(SH(LU,yJ 7p5+1 qjl{+17 ) ”.CL’ - (LC -7 Dp H }
for j=1to N—-1do
y; " = argming {—0H (a7 g, pf T —¢f s5) + 5oy — (uF — 7(DY);)|5)
for j =1to N do
Zéchl k+1 +(9( k+1 $§C)
wk+1 y;chl +9( k+1 y;g)

xare s — PDs €T
fva1=—e*<p1>—h*<—ql>+< T >+z§~15< N j>_

—gnN Ytarget _(QJ - Qj+1) Yj
N
021 H(xj, 45,05, =4, 5)

return fval
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CHAPTER 2

Many

Abstract: We consider the reinforcement learning problem of training multiple agents in
order to maximize a shared reward. In this multi-agent system, each agent seeks to maxi-
mize the reward while interacting with other agents, and they may or may not be able to
communicate. Typically the agents do not have access to other agent policies and thus each
agent is situated in a non-stationary and partially-observable environment. In order to ob-
tain multi-agents that act in a decentralized manner, we introduce a novel algorithm under
the framework of centralized learning, but decentralized execution. This training framework
first obtains solutions to a multi-agent problem with a single centralized joint-space learner.
This centralized expert is then used to guide imitation learning for independent decentralized
multi-agents. This framework has the flexibility to use any reinforcement learning algorithm
to obtain the expert as well as any imitation learning algorithm to obtain the decentralized
agents. This is in contrast to other multi-agent learning algorithms that, for example, can
require more specific structures. We present some theoretical error bounds for our method,
and we show that one can obtain decentralized solutions to a multi-agent problem through

imitation learning. [84]

2.1 Introduction

Reinforcement Learning (RL) is the problem of finding an action policy that maximizes
reward for an agent embedded in an environment [125]. It has recently has seen an explosion
in popularity due to its many achievements in various fields such as, robotics [80], industrial

applications [43|, game-playing [93, 119, 117], and the list continues. However, most of these
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achievements have taken place in the single-agent realm, where one does not have to consider

the dynamic environment provided by interacting agents that learn and affect one another.

This is the problem of Multi-agent Reinforcement Learning (MARL) where we seek to find
the best action policy for each agent in order to maximize their reward. The settings may be
cooperative, and thus they might have a shared reward, or the setting may be competitive,
where one agent’s gain is another’s loss. Some examples of a multi-agent reinforcement
learning problem are: decentralized coordination of vehicles to their respective destinations
while avoiding collision, or the game of pursuit and evasion where the pursuer seeks to
minimize the distance between itself and the evader while the evader seeks the opposite.

Other examples of multi-agent tasks can be found in [101] and [87].

The key difference between MARL and single-agent RL (SARL) is that of interacting
agents, which is why the achievements of SARL cannot be absentmindedly transferred to
find success in MARL. Specifically, the state transition probabilities in a MARL setting
are inherently non-stationary from the perspective of any individual agent. This is due to
the fact that the other agents in the environment are also updating their policies, and so
the Markov assumptions typically needed for SARL convergence are violated. This aspect
of MARL gives rise to instability during training, where each agent is essentially trying to

learn a moving target.

In this work, we present a novel method for MARL in the cooperative setting (with
shared reward). Our method first trains a centralized expert with full observability, and
then uses this expert as a supervisor for independently learning agents. There are a myriad
of imitation /supervised learning algorithms, and in this work we focus on adapting DAgger
(Dataset Aggregation) [113| to the multi-agent setting. After the imitation learning stage,
the agents are able to successfully act in a decentralized manner. We call this algorithm
Centralized Expert Supervises Multi-Agents (CESMA). CESMA adopts the framework of
centralized training, but decentralized execution [76], the end goal of which is to obtain

multi-agents that can act in a decentralized manner.
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2.2 Related works

The most straight-forward way of adapting single-agent RL algorithms to the multi-agent
setting is by having agents be independent learners. This was applied in [127], but this
training method gives instability issues, as the environment is non-stationary from the per-
spective of each agent [90, 10, 26]. This non-stationarity was examined in [97|, and stabilizing

experience replay was studied in [48].

Another common approach to stabilizing the environment is to allow the multi-agents
to communicate. In [122], they examine this using continuous communications so one may
backpropagate to learn to communicate. And in [46], they give an in-depth study of com-
municating multi-agents, and also provide training methods for discrete communication.
In [105], they decentralize a policy by examining what to communicate and by utilizing
supervised learning, although they mathematically solve for a centralized policy and their

assumptions require homogeneous communicating agents.

Others approach the non-stationarity issue by having the agents take turns updating their
weights while freezing others for a time, although non-stationarity is still present [36]. Other
attempts adapt (Q-learning to the multi-agent setting: Distributed @Q-Learning [79] updates
(Q-values only when they increase, and updates the policy only for actions that are not greedy
with respect to the Q-values, and Hysteretic Q-Learning [89] provides a modification. Other
approaches examine the use of parameter sharing [62] between agents, but this requires a
degree of homogeneity of the agents. And in [129], their approach to non-stationarity was
to input other agents’ parameters into the ) function. Other approaches to stabilize the
training of multi-agents are in [121], where the agents share information before selecting

their actions.

From a more centralized view point, [96, 107, 123] derived a centralized @-value function
for MARL, and in [132|, they train a centralized controller and then sequentially select

actions for each agent. The issue of an exploding action space was examined in [128].

A few works that follow the framework of centralized training, but decentralized execu-
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tion are: RLar (Reinforcement Learning as Rehearsal) [76], COMA (Counterfactual Multi-
Agent), and also [116, 49] — where the idea of knowledge-reuse is examined. In [33|, they
examine decentralization of policies from an information-theoretic perspective. There is also
MADDPG [87], where they train in a centralized-critics decentralized-actors framework; af-
ter training completes, the agents are separated from the critics and can execute in a fully

distributed manner.

For surveys of MARL, see articles in |9, 102].

2.3 Background

In this section we briefly review the requisite material needed to define MARL problems. Ad-

ditionally we summarize some of the standard approaches in general reinforcement learning

and discuss their use in MARL.

Dec-POMDP: A formal framework for multi-agent systems is called a decentralized
partially-observable Markov decision process (Dec-POMDP) [7]. A Dec-POMDP is a tuple
(1,8,{A;},{O;}, P,R) where I is the finite set of agents indexed 1 to M, S is the set of
states, A; is the set of actions for agent ¢, and thus Hf\il A; is the joint action space, O; is the
observation space of agent ¢, and thus Hf‘il O, is the joint observation space, P = P(s', 0|s, a)
(where 0 = (01,...,0)) and similarly for the others) is the state-transition probability for
the whole system, and R : § x Hf\ilﬂ — R is the reward. In the case when the joint
observations o equals the world state of the system, then we call the system a decentralized

Markov decision process (Dec-MDP).

DAgger: The Dataset Aggregation (DAgger) algorithm [113] is an iterative imitation
learning algorithm that seeks to learn a policy from expert demonstration. The main idea
is to allow the learning policy to navigate its way through the environment, and have it
query the expert on states that it sees. It does this by starting with a policy 75 which learns
from the dataset of expert trajectories D; through supervised learning. Using 75, a new

dataset is generated by rolling out the policy and having the expert provide supervision on
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the decisions that the policy made. This new dataset is aggregated with the existing set into
Dy o Dy. This process is iterated, i.e. a new 73 is trained, another new dataset is obtained
and aggregated into D3 > Dy and so on. Learning in this way has been shown to be more
stable and have nicer convergence properties as learning utilizes trajectories seen from the

learner’s state distribution, as opposed to only the expert’s state distribution.

Policy Gradients (PG): One approach to RL problems are policy gradient methods
[126]: instead of directly learning state-action values, the parameters # of the policy 7y are

adjusted to maximize the objective,

J(@) = Es~p”,a~7r9 [Qﬂ-(‘S? a’)] )

where p™ is the state distribution from following policy 7. The gradient of the above expres-

sion can be written as [126, 125
Vo (6) = Bopr aer, [V log mo(51)) Q7 (5, )]

Many policy gradient methods seek to reduce the variance of the above gradient estimate,
and thus study how one estimates Q™ (s, a) above [115]. For example, if we let Q™ (s, a) be
the sample return R = Z;it v=tr;, then we get the REINFORCE algorithm [68]. Or one
can choose to learn Q7 (s, a) using temporal-difference learning [124, 125, and would obtain
the Actor-Critic algorithms [125]. Other policy gradients algorithms are: DPG [118], DDPG
[81], A2C and A3C [92], to name a few.

Policy Gradients have been applied to multi-agent problems; in particular the Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) [87] uses an actor-critic approach to
MARL, and this is the main baseline we test our method against. Another policy gradient
method is by [50] called Counterfactual Multi-Agent (COMA), who also uses an actor-critic

approach.
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2.4 Methods

In this section, we explain the motivation and method of our approach: Centralized Expert

Supervises Multi-Agents (CESMA).

2.4.1 'Treating a multi-agent problem as a single-agent problem

Intuitively, an optimal strategy of a multi-agent problem could be found by a centralized
expert with full observability. This is because the centralized controller has the most in-
formation available about the environment, and therefore would not pay a high of cost of

partial-observability that independent learners might. This is discussed more in Section 2.5.

To find this centralized expert, we treat a multi-agent problem as a single agent problem
in the joint observation and action space of all agents. This is done by concatenating the
observations of all agents into one observation vector for the centralized expert, and the

expert learns outputs that represent the joint actions of the agents.

Our framework does not impose any other particular constraints on the expert. Any
expert architecture that outputs an action that represents the joint-actions of all of the
agents may be used. Due to that, we are free to use any standard RL algorithm for the

expert such as DDPG, DQN, or potentially even analytically derived experts.

2.4.2 Curse of dimensionality and some reliefs

When training a centralized expert, both the observation space and action space can grow
exponentially. For example, if we use a DQN for our centralized expert then the number of
output nodes will typically grow exponentially with respect to the number of agents. This is

due to each output needing to correspond to an element in the joint action space ]_[f\il A;.

One way to deal with the exponential growth in the joint action space is, rather than
requiring the centralized expert to move all agents simultaneously, we can restrict it to moving

only one agent at a time, while the others default to a “do nothing" action (assuming one is
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available). Effectively this mean the growth in the action space is now linear with respect
to the number of agents. We provide an experiment where we were able to decentralize such

an expert in Appendix 2.8.4.

This problem has also been studied by QMIX [107] and VDNs (Value-Decomposition
Networks) [123], where exponential scaling of the output space is solved by having separate
() values for each agent and then using the sum as a system (). Due to the nature of the
reduction technique, these approaches require their own theorems of convergence. Other
techniques such as action branching [128| have been considered. An experiment where we
decentralize QMIX/VDN-like centralized expert models (which grow linearly in the number

of output nodes) can be found in Appendix 2.8.3.

In our experiments, we use DDPG (with Gumbel-Softmax action selection if the envi-
ronment is discrete, as MADDPG does also) to avoid the exploding number of input nodes
of the observation space, as well as exploding number of output nodes of the action space.
Under this paradigm, the input and output nodes only grow linearly with the number of
agents, as the output nodes of a neural network in DDPG is the chosen joint action, as

opposed to a DQN, where the output nodes must enumerate all possible joint actions.

2.4.3 CESMA for multi-agents without communication

To perform imitation learning to decentralize the expert policy, we adapt DAgger to the
multi-agent setting. There are many ways DAgger can be applied to multi-agents, but we
implement a method that best allows the theoretical analysis from [113] to apply: Namely
after training the expert, we do supervised learning on a single neural network with discon-

nected components, each corresponding to one of the agents.

In more detail, after training a centralized expert 7*, we initialize the M agents mq, ..., Ty,
and initialize the dataset of observation-label pairs D. The agents then step through the
environment, storing each observation o = (o1,...,0p) (where o; is agent i’s observa-
tion) the multi-agents encounter, along with the expert action label a* = 7*(0) (where

a* = (af,...,a%;) and af is agent i’s expert label action); so we store the pair (o,a*) in D
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(/Single neural network

with disconnected
components

(Agent 1 Supervised
Learning

1 Input:

Label: )
A -
(Agent 2 Supervised
Learning

A

Shared dataset of
observation-label pairs

A

Input:
Label:

Figure 2.1: The centralized expert labels guide supervised learning for the multi-agents. The

multi-agents make up the disconnected components of a single-agent learner.

at each timestep. After D has reached a sufficient size, at every kth time step (chosen by
the practitioner; we used & = 1 in our experiments), we sample a batch from this dataset
{(0®, a*’(ﬂ))}gzl, and then distribute the data batch {(ogﬁ), af’(ﬁ))}gzl to agent ¢, for super-
vised learning; we note the training can be done sequentially or parallel. Having a shared
dataset of trajectories in this way allows us to view (7y,..., 7)) as a single neural-network
with disconnected components, and thus the error bounds from [113] directly apply, as dis-
cussed in Section 2.5. See Figure 2.1 for a diagram. Pseudo-code for our method is contained
in Appendix 2.8.6. (In Appendix 2.8.2 we test whether giving each agent its own dataset

would make a difference, and it did not seem so).

The aforementioned procedure is sufficient when the agents do not need to communicate,

but when communication is involved we have to modify the above method.

2.4.4 CESMA for multi-agents with communication

The main insight for training an agent’s communication action is that we can view a broad-
casting agent and the receiving agent as one neural network connected via the communica-
tion nodes; then in this way we we can backpropagate the action loss of the receiving agent

through to the broadcasting agent’s weights.
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In more detail, due to communication, the multi-agents now have two types of observa-

tions and actions.

We denote the physical actions (i.e. non-communication actions) as a = (aq, ..., ay) and
the communication actions/broadcasts as b = (by,...,by). For simplicity, let us assume
that all agents can communicate with each other and each agent broadcasts the same thing
to all other agents. So we denote ¢; = (by,...,b;i_1,bi11,...,by) as agent i’s observation of

the broadcast by other agents, and where b; is agent j’s broadcast to all other agents.

So for each agent i, we have m;(0;,¢;) = (a;,b;). And we also denote 7;(0;, ¢;)action = @i,

and 7Ti(0i> Ci)comm = bz

For training, as before we have a shared dataset of observations D. But as the agents
step through the environment, at each timestep we now store ((0,c),0,a"), where (o, c) is
the joint physical and communication observation of the previous timestep, 0 is the physical
observation at the current timestep, and a* = 7*(0) = (af,...,a%,;) is the expert action

label; these are the necessary ingredients for training.

Then to train, we first obtain a sample from D (practically we perform batched training,

but for simplicity we consider one sample), say ((0,¢),6,a"), and then we take the policies at

the most-recent update 7w§"*e™ ... 75w and form their broadcasts b}, = 7" (04, ¢k ) comm
for k=1,..., M. Then in principle, we want to minimize the loss function
) b b )
M
. s A
min (a3, m(05, ¢j)action),
(155 01) )

where

Gy = W BB B = L M

In practice, we train each agent i separately by minimizing their communication loss and

action loss which we describe below.

In order to train agent ¢’s communication action, we make the insight that we can back-
propagate the supervised learning loss of other agents through the communication nodes
to agent i’s parameters, precisely because the communication output of agent ¢ becomes an

observational input for the other agents.
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Then to train the communication action of agent i, we sample ((o,c),06,a") from D, and

seek to minimize the communication loss function,

rr}ranﬁ 5 w05, J)actlon) (comm. loss for agent )
Q ];ﬁl
where
Al / / /
Cj = ( 1a"'7ﬂi(0iaci)comm7---a j—1> ]+1a" b )

where we assumed without loss of generality that i < j. And so because ¢; depends on m;,

then we can backpropagate agent j’s supervised loss to agent ¢’s parameters.

To train the physical action of agent i, we sample ((o,c),0,a") from D and want to
minimize

min £(a;, 7i(0i, ¢)action), (action loss for agent 1)

where ¢ = (b}, ..., b,_1, 0, 4,...,0}).

For a graphic overview, we give a diagram in Figure 2.2 for the backpropagation of
the communication loss and the action loss, and provide pseudocode in Algorithm 11 in
Appendix 2.8.6. In some sense, our method can be viewed as a hybrid of experience replay

and supervised learning.

In this way, we have alleviated a bit the issue of sparse rewards for communication [47,
Section 4. Indeed, communication actions suffer from sparse rewards as a reward is only
bestowed on the broadcasting agent when all the following align: it sends the right message,
the receiving agent understands the message, and then acts accordingly. In our method with

an expert supervisor, the correct action by the acting agent is clear.

2.5 Theoretical analysis

2.5.1 No-regret analysis, and guarantees

Although the proposed framework could handle a myriad of imitation learning algorithms,

such as Forward Training [112], SMILe [112], SEARN [30], and more, we use DAgger in our
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Supervised learning for agent i’s action

Backpropagation to update agent i’'s communication

Supervised learning

for agent i
_, agent i " |input:

agent j's supervised loss|

to agent i's weights

Figure 2.2: Decentralizing multi-agents that communicate. The top diagram shows how
we update agent i’s communication action by backpropagating the supervised loss of other
agents. The red portions highlight the trail of backpropagation. The bottom diagram shows

how we update the action of agent i.

experiments, and thus we follow its theoretical analysis, while providing multi-agent exten-
sions. And since our method can be viewed as using a single-agent learner with disconnected
components, we can directly apply the no-regret analysis from [113| to obtain theoretical

insights.

Notationally, (i) we let ¢ be a surrogate loss of matching the expert policy 7* (e.g. the

expected 0-1 loss at each state) and denote r = r(s,a) the instantaneous reward which we

assume to be bounded in [0, 1], (ii) (W%N), . ,71'1(\]4\[)) are the multi-agents after N updates

of the policy using any supervised learning algorithm, and where each update is done after
is the average distribution of

observations that come from following the multi-agent policy (WEN), e ,7?1(\]4\7)) from a given

a T-step trajectory with 7" the task horizon, (iii) d(W(N)
1 ’

)

initial distribution, (iv) R(m\™, ... ,7T§\]4V)> is the cumulative reward after an episode of the
task, (v) and U (s, ) is the reward after ¢ steps of executing 7 in only initial state s, and

then following policy 7’ thereafter.

Then viewing the multi-agent policy as a joint single-agent policy we obtain the following
guarantee on the reward based on how well the multi-agents match the expert, which is a direct

rephrasing of [113, Theorem 3.2]:

Theorem 1. If the number of policy updates N is O(T log®(T)) for sufficiently large k = 0,
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then there exists a joint multi-agent policy (71, ..., 7Tp) € {(ﬂ'ii), . ,WE\Z)) N | such that
R(7y,...,7n) = R(7*) —uTey — O(1),

where u = 0 is such that UE, (s, 7*) = U, (s,a) < u for all actions a andt € {1,...,T},

and

(71'1,...,71’1” »»»»» ﬂ]VI

N
. 1
ey = min )N;Eo~d(ﬁgi) o, [0, (1)

Here ey is best described as the true loss of the best learned policy in hindsight. The
condition U%itﬂ(s, ™) — Uq’f:H(s, a) < u can best be described as saying the reward lost

from not following the expert at initial state s, but following it after, is at most u.

2.5.2 The partial observability problem of decentralization, and its cost

In our setting of multi-agents, the centralized expert and the decentralized multi-agents
have different structures of their policies, i.e. they are solving the problem in different policy
spaces. The centralized expert observes the joint observations of all agents, and thus it is a

function 7* : O x -+ x Opy —> Ay x -+ x Ay, and we can decompose 7* into

m(0) = (71(0), ..., mx(0)),

where 7 : O1 x -+ x Oy — A;. The goal of decentralization is to find multi-agent policies

m1, ..., Ty such that

7(0) = (13(0), . .., 75,(0)) "2 (1,(01), . . ., mar(oar)).

Note that 7} is able to observe the joint observations while 7; is only able to observe its own

local observation o;. But from this constraint, this means we may encounter issues where

*
7Ti (01, e 301,05, 0541, - . - ,OM) = a;,

%/~ ~ ~
but Y (01,...,01;1,01‘,01'+1,...,0M) = ay,

so we want m;(0;) = a; or a;, or even something else. Thus the multi-agent policy can act

sub-optimally in certain situations, being unaware of the global state. This unfortunate
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situation not only afflicts our algorithm, but any multi-agent training algorithm (and in
general, any algorithm attempting to solve a POMDP). We call this the partial observability
problem of decentralization (note partial observability affects any algorithm trying to solve a
POMDP, but here we examine from the viewpoint of decentralization). More concretely, we

can say there is a partial observability problem of decentralization if there exists observations

(01,...,0i-1,04,0441,...,0n), and (01, ...,0i_1, 04,0441, - - ., Opr) such that
*
™ (017"'70i—1a0i70i+1a"'70M)
%/~ ~ ~ ~
# T (017-'-;0i7170i70i+17'--70M>

Relating this to the no-regret analysis in Theorem 1, the partial observability problem
means that under certain environments it may be impossible for the multi-agents to match
the expert exactly; this manifests in a cost C},, where,

N
. 1
en = mln)N;Eo~d(ﬁgi) o [(0, (1, )]

(715 s — (7 Tof

> C,, forall N>1,

which implies from Theorem 1 that the best guarantee of the reward for the multi-agents is
R(7y,...,7m) = R(n*) —TC, — O(1).

The main takeaway: In the original DAgger setting (i.e. the single-agent MDP setting),
under reasonable assumptions on the distribution of states [see 113, Section 4.2], as N — oo
the cumulative reward of the learner can approximate the cumulative reward of the ex-
pert arbitrarily closely. Here when analyzing the multi-agent setting, we find that because
en = C,, then the no-regret analysis guarantees that after O(T log"(T')) updates we will find
a multi-agent policy that obtains a cumulative reward that is within a cost of partial observ-
ability term of the expert. In relation to this, in Appendix 2.8.5, we perform experiments

and analyse the supervised learning loss versus the reward obtained by the multi-agents.
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2.5.3 The need for communication

Decentralization without communication is most effective when all multi-agents can observe
the full joint observation. Then from the perspective of each agent the only non-stationarity

is from other agents’ policies (which is alleviated by decentralization).

But when each agent only has local observations, then to avoid the partial observability
problem of decentralization, there is an incentive to communicate. Namely, we want for the

multi-agent policy (7, ..., my)

m(0) = (71(0), .., my,(0))

want

= (mi(o1,¢1), ..., mar(onr, ear))s

where ¢; is the communication from either all or only some of the other agents, to agent i.
Namely we view ¢; as a function ¢; : Oy x -+ x Q;_1 X Qj41 X -+ - x Opy — €; (where C; is some
communication action space). Then we have the following requirement for the communica-

tion protocol {c¢;};—1 in order to fix the partial observability problem of decentralization,

Theorem 2. If the multi-agent communication ¢; : O1 x - -+ X Q;_1 X Qj41 X -+ x Oy — C;

satisfies the condition

(01, ., 0i-1,04,0i41, - -, O0)

#* 7T*<61, ceey 6i—170i75i+17 PN ,OM)7
implies that
¢i(01,y .., 0i-1,0i41, - ,0n)

# ¢i(01,...,0i-1,0i11,---,00)

forallt=1,..., M, then there is no partial observability cost of decentralization when the
multi-agents use {c;}M, as their communication protocol, i.e. the multi-agents can match the

expert perfectly on all observations.

The theorem above says that a sufficient condition for the communication protocol {c¢;};—;

is that from the perspective of, say, agent j, then ¢; is able to provide information to agent
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j about when the expert decides to output different actions for different global observations,

even if the global observations share o; as a local observation.

Paired with Theorem 1, this implies that under the correct communication protocal, the
multi-agents can approximate the expert arbitrarily closely (and that we need O(T log®(T))

updates). Of course, in our experiments we learn this communication protocol.

2.6 Experiments

Our experiments are conducted in the Multi-Agent Particle Environment [94, 87| provided
by OpenAl, which has basic simulated physics (e.g. Newton’s law) and multiple multi-agent

scenarios.

In order to conduct comparisons to MADDPG, we also use the DDPG algorithm with
the Gumbel-Softmax |70, 88] action selection for discrete environments, as they do. For
the single-agent centralized expert neural network, we always make sure the number of
parameters/weights matches (or is lower) than that of MADDPG’s. For the decentralized
agents, we use the same number of parameters as the decentralized agents in MADDPG (i.e.
the actor part). We always use the discount factor v = 0.9, as that seemed to work best
both for our centralized expert, and also MADDPG. Following their experimental procedure,
we average our experiments over three runs, and plot the minimum and maximum reward
envelopes. And for the decentralization, we trained three separate centralized experts, and
used each of them to obtain three decentralized policies. Full details of our hyperparameters
is in the appendix. And we always use two-hidden layer neural networks. Brief descriptions
of each environment are provided, and fuller descriptions and some example pictures are

placed in the appendix.

2.6.1 Cooperative Navigation

Here we examine the situation of N agents occupying N landmarks in a 2D plane, and the

agents are either homogeneous or nonhomogenous. The (continuous) observations of each
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agent are the relative positions of other agents, the relative positions of each landmark,
and its own velocity. The agents do not have access to others’ velocities so we have partial
observability. The reward is based on how close each landmark has an agent near it, and the

actions of each agent are discrete: up, down, left, right, and do nothing.

In Figure 2.3, we see that CESMA, when combining the number of samples in training
the expert as well as decentralization, is able to achieve the same reward as MADDPG
while utilizing fewer samples, i.e. CESMA is more sample efficient (the dashed red line is
just a visual aid that extrapolates the reward for the decentralized curves, because we stop
training once the reward sufficiently matches MADDPG). In Figure 2.4, we also noticed that
the centralized expert is able to find a policy that achieves a higher reward than a converged
MADDPG; and we were able to decentralize this expert to obtain decentralized multi-agent
policies that achieved higher rewards than MADDPG. We provide further experiments in

the appendix that tell the same story.

2.6.2 Cooperative Navigation with Communication

Here we adapt CESMA to a task that involves communication. In this scenario, the com-
munication action taken by each agent at time step t — 1 will appear as an observation to
other agents at time step t. Although we require continuous communication to backprop,
in practice we can use the softmax operator to provide the bridge between the discrete and
continuous. And during decentralized execution, our agents are able to act with discrete

communication inputs.

We examine two scenarios for CESMA that involve communication, and use the training
scenario described in section 2.4.4. The first scenario called the “speaker and listener" envi-
ronment has a speaker who broadcasts the correct goal landmark (in a “language" it must
learn) out of a possible 3 choices, and the listener, who is blind to the correct goal landmark,
must use this information to move there. Communication is a necessity in this environment.
The second scenario is cooperative navigation with communication and here we have three

agents whose observation space includes the goal landmark of the other agent(s), and not
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Figure 2.3: Reward curves for various multi-agent environments. We train the centralized
expert until its reward matches or betters MADDPG’s reward. Then we decentralize this
expert until we achieve the same reward as the expert. The dashed red line is a visual aid
which extrapolates the reward for the decentralized curves, because we stop training the
multi-agents once the reward sufficiently matches the expert. We observe that CESMA is
more sample-efficient than MADDPG.
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Figure 2.4: Reward curves for decentralization of a centralized expert policy that obtains a
better reward than a converged MADDPG and independent DDPG. The horizontal dashed
lines represent final rewards after convergence of the algorithms (i.e. no visible improvement
of the reward after many episodes), and the red solid line represents decentralization of the
centralized expert. This demonstrates that we are able to successfully decentralize expert
policies that achieve better rewards than a converged MADDPG and independent DDPG. In
other words, CESMA is able to find better optimum that MADDPG and independent DDPG

were not able to find.

their own, and there are five possible goal landmarks.

We see in Figure 2.3 that we achieve a higher reward in a more sample efficient manner.
For the speaker and listener environment, the centralized expert near-immediately converges,
and same for the decentralization. And MADDPG has a much higher variance in its conver-
gence. We also see in Figure 2.4 that the centralized expert was again able to find a policy
that achieved a higher reward than a converged MADDPG, and we were able to successfully
decentralize this to obtain a decentralized multi-agent policy achieving the same superior
reward as the expert. We provide further experiments in the appendix that tell the same

story.

2.7 Conclusion

We propose a MARL algorithm, called Centralized Expert Supervises Multiagents (CESMA),
which takes the training paradigm of centralized training, but decentralized execution. The

algorithm first trains a centralized expert policy, and then adapts DAgger to obtain decen-
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tralized policies that execute in a decentralized fashion. We also formulated an approach that
enables multi-agents to learn a communication protocol. Experiments in a variety of tasks
show that CESMA can train successful decentralized multi-agent polices at a low sample
complexity. Notably, the decentralization protocol often is able to achieve the same levels of
cumulative reward as a centralized controller, which in our experiments often achieves higher

rewards than the competing methods MADDPG and independent DDPG.

2.8 Appendix: More Experiments, Explanation of Environments

and Hyperparameters, and Proofs of Theorems

2.8.1 Decentralizing expert policies that obtain higher rewards than MADDPG
2.8.1.1 Cooperative Navigation

For the cooperative navigation experiment, in Figure 2.5, we see in all cases the centralized
expert is able to achieve a lower reward than MADDPG and DDPG. And futhermore we
were able to decentralize the expert policy (which was chosen to be the one with highest
reward) so as to reach this same superior reward. And we remark that our method seems to

work better with more agents.

The six nonhomogeneous agents case works as a good experiment to see what happens
when we stop the centralized expert before it truly converges. In this case, decentralization to
achieve the same reward as the expert is quickest and occurs within the first 5,000 episodes.

Intuitively, it makes sense that a suboptimal expert solution is faster to decentralize.

2.8.1.2 Cooperative Navigation with Communication

In the environments with communication, we see in figure 2.5 that both the centralized
expert and the decentralized agents achieve a higher reward and in a more sample efficient
manner. For the speaker and listener environment, the centralized expert near-immediately

converges, and same for the decentralization process. And MADDPG has a much higher
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Figure 2.5: Reward curves for the various multi-agent environments. In these experiments,

we test whether we can perform decentralization of centralized expert policies that achieve

a superior reward to a converged MADDPG. Namely, we test whether we can decentralize

to obtain the same superior reward as the centralized expert. The plots above show that we

can and do in every experiment. The dashed red lines for the decentralized curves represent

when we stop the decentralization procedure, as the reward sufficiently matches the expert.

The envelopes of the learning curves denote the maximum and minimum. We in particular

note that in some experiments, CESMA achieves a superior reward compared to a converged

MADDPG.

variance in its convergence. In the cooperative navigation with communication scenarios,

the story is similar, that the centralized expert quickly converges, and the decentralization

process is near immediate.

82



2.8.2 Experiment where each agent has its own dataset of trajectories

Individual vs shared dataset
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Here we describe an experiment where each agent has its own individual dataset of trajecto-
ries, versus a shared dataset. Namely, we plot the learning curves for decentralizing a policy
in the two cases: (1) When each agent has its own dataset of trajectories, or (2) when there
is a shared dataset of trajectories (which is the one we use in the experiments). We tested on
the cooperative navigation environment with 3 nonhomogeneous agents. We hypothesized
that the nonhomogeneity of the agents would have an effect on the shared reward, but this
turned out not to be so. But it is interesting to note that in the main text, we found that

the some agents had a bigger loss when doing supervised learning from the expert.

2.8.3 Experiment with DQNs
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Here we examined decentralizing DQNs. We used the cross entropy loss for the supervised
learning portion, and used the cooperative navigation environment with 3 nonhomogenous
agents. The DQNs we used are: the exponential actions DQN, which is just a naive imple-
mentation of DQNs for the multi-agents, and a Centralized VDN where the system @) value
is the sum of the individual agent ) values. We used a neural network with 200 hidden units,
batch size 64, and for the exponential DQN, we used a learning rate and 7 of 5 x 107*, and
for the QMIX/Centralized VDN DQN we used a learning rate and 7 of 1073, We also used a
noisy action selection for exploration. We stopped training of the decentralization once the
mulit-agents reached the same reward as the expert; the dashed lines are a visual-aid that

extrapolates the reward.

2.8.4 One-at-a-Time-EXpert

2.8.5 Reward vs. loss, and slow and fast learners
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Figure 2.6: Reward vs. loss, and loss vs. episode.

In our experiments with cooperative navigation, when using the cross entropy loss, we did not
find an illuminating correlation between the reward and the loss. We reran the experiments
in a truer DDPG fashion by solving a continuous version of the environment, and used the
mean-squared error for the supervised learning. We examined the loss in the cooperative
navigation task with 3 agents, both homogeneous and nonhomogeneous agents. We plot the
figures in Figure 2.6. We found that in these cases, the reward and loss were negatively

correlated as expected, namely that we achieved a higher reward as the loss decreased. In
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the nonhomogeneous case, we plot each individual agents’ reward vs its loss and found that
the big and slow agent had the biggest loss, followed by the medium agent, and the small and
fast agent being the quickest learner. This example demonstrates that in nonhomogeneous

settings, some agents may be slower to imitate the expert than others.

We also observe that there is a decrease in marginal reward vs loss — that is, at a certain

point, one needs to obtain a much lower loss for a diminishing gains in reward.

2.8.6 Pseudo-algorithm of CESMA (without communication)

Algorithm 10 CESMA: Centralized Expert Supervises Multi-Agents
Require: A centralized policy 7* that sufficiently solves the environment.

Require: M agents 7y, ..., observation buffer D for multi-agent observations, batch size

B
1: while 7y, , ..., m,, not converged do
2:  Obtain observations oy, ..., 0y from the environment
3:  Obtain agents’ actions, a; = m(01),...,ay = mp(on)
4:  Obtain expert action labels af = 7*(0y,...,0p);, fori=1,.... M
5. Store the joint observation with expert action labels ((o1,a}),. .., (o, a},) in D

6: if |D| sufficiently large then

T: Sample a batch of B multi-agent observations {((o!”, a}'"™), ..., (o4, a;‘éﬁ)))}gzl
8: Perform supervised learning for m; where the observation-label pairs

{07 aX Py

2.8.7 Pseudo-code of CESMA with communicating agents

We give a pseudocode in algorithm 11.

A diagram of the action loss and communication loss is given in figure 2.7 (action loss)

and 2.8 (communication loss).

We remark that we also considered the case of a hybrid objective, where the actions are
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learned by supervised learning from the expert, and the communication is learned similar to
a standard RL algorithm (e.g. the @)-values are communication actions). Preliminary results

showed this did not work well.

We review notation from the main text that appears in the pseudo-code of Algorithm 11:

We denote the physical actions (i.e. non-communication actions) as a = (aq,...,ay) and
the communication actions as b = (by, ..., bys). For simplicity, let us assume that all agents
can communicate with each other, so we have ¢; = (by,...,b;_1,bi41,...,bn).

So for each agent ¢, then we have m;(0;, ¢;) = (a;, b;). And we also denote m;(0;, ¢;)action =
a;, and m;(0;, ¢;)comm. = b;. And we denote the communication action from agent i to agent
J as b ;.

Supetvised learning for agent i's action

2.

» agent i »

Supervised leaming
for agent i

Figure 2.7: A diagram of the computation of the action loss for agent i. This diagram is a

bigger version of the one found in the main text.

to update agenti's

Backpropagate
agent j's supervised loss
to agent i's weights

Label :

agentj |-»

Figure 2.8: A diagram of the computation of the communication loss for agent i, derived
from the supervised learning action loss of agent j. This diagram is a bigger version of the

one found in the main text.
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2.8.8 Environments used in the experiments
2.8.8.1 Cooperative navigation

The goal of this scenario is to have N agents occupy N landmarks in a 2D plane, and the

agents are either homogeneous or heterogeneous. The environment consists of:

e Observations: The (continuous) observations of each agent are the relative positions of
other agents, the relative positions of each landmark, and its own velocity. Agents do
not have access to other’s velocities, and thus each agent only partially observes the

environment (aside from not knowing other agents’ policies).

e Reward: At each timestep, if A; is the 7th agent, and L, the jth landmark, then the

reward r; at time ¢ is,
N
rp=— > min{|4; — L;j| :i=1,...,N}
=1

This is a sum over each landmark of the minimum agent distance to the landmark.

Agents also receive a reward of —1 at each timestep that there is a collision.

e Actions: Each agents’ actions are discrete and consist of: up, down, left, right, and
do nothing. These actions are acceleration vectors (except do nothing), which the
environment will take and simulate the agents’ movements using basic physics (i.e.

Newton’s law).
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Figure 2.9: Example of cooperative navigation environment with 6 nonhomogeneous agents.

The agents (blue) must decide how best to cover each landmark (grey).

2.8.8.2 Speaker listener

In this scenario, the goal is for the listener agent to reach a goal landmark, but it does not
know which is the goal landmark. Thus it is reliant on the speaker agent to provide the
correct goal landmark. The observation of the speaker is just the color of the goal landmark,
while the observation of the listener is the relative positions of the landmark. The reward is

the distance from the landmark.

e Observations: The observation of the speaker is the goal landmark. The observation
of the listener is the communication from the speaker, as well as the relative positions

of each goal landmark.

e Reward: The reward is merely the negative (squared) distance from the listener to the

goal landmark.

e Actions: The actions of the speaker is just a communication, a 3-dimensional vector.

The actions of the listener are the five actions: up, down, left, right, and do nothing.
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Figure 2.10: Example of the speaker and listener environment. The speaker (grey) must

communicate to the agent which colored landmark to go towards (blue in this case).

2.8.8.3 Cooperative navigation with communication

In this particular scenario, we have one version with 2 agents and 3 landmarks, and another
version with 3 agents and 5 landmarks. Each agent has a goal landmark that is only known
by the other agents. Thus the each agent must communicate to the other agents its goal.

The environment consists of:

e Observations: The observations of each agent consist of the agent’s personal velocity,
the relative position of each landmark, the goal landmark for the other agent (an 3-

dimensional RGB color value), and a communication observation from the other agent.

e Reward: At each timestep, the reward is the sum of the distances between and agent

and its goal landmark.

e Actions: This time, agents have a movement action and a communication action. The
movement action consists of either not doing anything, or outputting an acceleration
vector of magnitude one in the direction of up, down, left, or right; so do nothing, up,
down, left right. The communication action is a one-hot vector; here we choose the

communication action to be a 10-dimensional vector.
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@

Figure 2.11: Example of cooperative navigation environment with communication. We have
3 agents and 5 landmarks. The lightly colored circles are agents and they must go towards

their same-colored landmark.

2.8.9 Hyperparameters

e For all environments, we chose the discount factor v to be 0.9 for all experiments,
as that seemed to benefit both the centralized expert as well as MADDPG (and as
well as independently trained DDPG). And we always used a two-hidden-layer neural
network for all of MADDPG’s actors and critics, as well as the centralized expert, and
the decentralized agents. The training of MADDPG used the hyperparameters from
the MADDPG paper [87|, which we found to be quite optimal with the exception of
having v = 0.9 (instead of 0.95), as that improved MADDPG’s performance. In the

graphs, the reward is averaged every 1,000 episodes.

e For the cooperative navigation environments with 3 agents, for both homogeneous and
nonhomogeneous: Our centralized expert neural network was a two-hidden-layer neural
network with 225 units each (as that matched the number of parameters for MADDPG
when choosing 128 as their number of hidden units for each of their 3 agents), and we
used a batch size of 64. The learning rate was 0.001, and 7 = 0.001. We also clipped
the gradient norms to 0.1. When decentralizing, each agent was a two-hidden-layer

neural network with 128 units (as in MADDPG), where we trained with a batch size
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of 32 and a learning rate of 0.001. In our experiment comparing with MADDPG, we
use the cross entropy loss. The MADDPG and DDPG parameters were 128 hidden

units, and we clipped gradients norms at 0.5, with a learning rate of 0.01.

For the cooperative navigation with 6 agents, for both homogeneous and nonhomoge-
neous: Our centralized expert neural network was a two-hidden-layer neural network
with 240 units each (as that matched the number of parameters for MADDPG when
choosing 128 as their number of hidden units for each of their 3 agents’ actor and
critic), and we used a batch size of 32. The learning rate was 0.0001, and 7 = 0.0001.
We also clipped the gradient norms to 0.1. When decentralizing, each agent was a
two-hidden-layer neural network with 128 units (as in MADDPG), where we trained
with a batch size of 32 and a learning rate of 0.001. In our experiment comparing with
MADDPG, we use the cross entropy loss. The MADDPG and DDPG parameters were

128 hidden units, and we clipped gradients norms at 0.5, with a learning rate of 0.01.

For the speaker and listener environment: Our centralized expert neural network was
a two-hidden-layer neural network with 64 units each (which gave a lower number of
parameters than MADDPG when choosing 64 as their number of hidden units for each
of their 2 agents’ actor and critic), and we used a batch size of 32. The learning rate
was 0.0001, and 7 = 0.001. When decentralizing, each agent was a two-hidden-layer
neural network with 64 units (as in MADDPG), where we trained with a batch size of
32 and a learning rate of 0.001. In our experiment comparing with MADDPG, we use
the cross entropy loss. The MADDPG and DDPG parameters were 64 hidden units,

and we clipped gradients norms at 0.5, with a learning rate of 0.01.

For the cooperative navigation with communication environment: Our centralized ex-
pert neural network was a two-hidden-layer neural network with 95 units each (which
matched the number of parameters as MADDPG when choosing 64 as their number of
hidden units for each of their 2 agents’ actor and critic), and we used a batch size of 32.
The learning rate was 0.0001, and 7 = 0.0001. When decentralizing, each agent was

a two-hidden-layer neural network with 64 units (as in MADDPG), where we trained
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with a batch size of 32 and a learning rate of 0.001. In our experiment comparing with
MADDPG, we use the cross entropy loss. The MADDPG and DDPG parameters were

64 hidden units, and we clipped gradients norms at 0.5, with a learning rate of 0.01.

e We also run all the environments for 25 time steps.

2.8.10 Proofs of theorems

We prove Theorem 2 from the main text:

Theorem 2. If the multi-agent communication ¢; : Op X --- X Q;_1 X Qj410 X -+ x Oy — C;

satisfies the condition

* * ([~ ~ ~ ~
m (017' -3 0i—1,04, 0441, - - - 7OM) F T (017 e 3 0i-1,04, 0441, - - - aOM)
implies that c;(01,...,0i—1,0i+1,..,0n5) # Ci(01, ..., 0i—1,0i41, -, 00 )
forallt=1,..., M, then there is no partial observability cost of decentralization when the

multi-agents use {c¢;};2, as their communication protocol, i.e. the multi-agents can match the

expert perfectly on all observations.

Proof. By assumption, for an agent j with observations o = (01,...,0;-1,0;,0;41,...,0n:)

and 0 = (51, c ,6]'_1, Oj5j+1, N 76M) such that

then denoting o_; as the observation without o; and similarly for 6_;, then our assumption
implies ¢;j(0_;) # ¢;(6_;). Then clearly we can construct a policy where 7;(0;,c;(0;)) #
m;(0j,¢j(0;)), because the inputs to 7; are different.

And so the multi-agents, using the communication protocol of {c;}},, can detect when
an expert decides to change its action based on differences in the global observation (i.e. o

and 0) even when the local observation (i.e. o;) stays the same.

92



Algorithm 11 CESMA: Centralized Expert Supervises Multi-Agents (Communicating

Agents)

Require: A centralized policy 7* that sufficiently solves the environment.

Require: M initial agents m,... 7y, observation buffer D for multi-agent observations,

batch size B

Require: /, the supervised learning loss

1: while 7, ..., 7 not converged do
2: Obtain the observations and communications {(o;, ¢;)}*, from the environment.
3:  With these observations, obtain actions and step through the environment, to get new
observations {6;}M,.
4:  Store the physical and communication observations together along with the expert
label (((01,¢1),01,a}),...,((op,cum), 00, a%,)) in D, where af = 7*(61,...,00m);-
5. if |D| sufficiently large then
6: Sample a batch of B multi-agent observations {((0&’3), cgﬁ)), 6@, &T’(ﬁ)), .
(o7 7). 057 axi ™)} By
7 Obtain the up-to-date communication actions from each agent: b,(f o=
Wk(ng), Céﬁ))comm
8: for each agent i = 1 to M do
9: Communication loss:
10: For each agent j # i, obtain the up-to-date communication ég-ﬁ ), which contains
agent ¢’s communication action to agent j, so we can backprop to agent ¢’s weights
11: Obtain the communication loss,

B M
1 1 /
communication loss = B Z 1 Z ((r*(67);, Wj(ég-ﬂ), 65-5) )action)
g=1 =L,

where the subscript “action" denotes the physical action (and not the communi-

cation action), and where

B) (B B B B
e ))7"'7b§’—)1,j7b§’+)17j7'”7b§\/l?j>




12:

13:

14:

15:

16:

Action loss:

Obtain the action loss:

K3 (3

B
1
action loss = ] Z E(W*(é(ﬁ))i, 772'(5(-5), é(ﬁ)))action)
p=1

where the subscript “action" denotes the physical action (and not the

communication action), and where,

A(B) B)’ B)’ B)’ B)’
CE = (bg,z‘) e 7bz(—)1,i7 bg—i-)l,i’ SRR bg\/[?z)

Update:
Update the weights of m; where the total loss equals the action loss plus the

communication loss, to obtain 7%,

Set m; «— Y forv=1,..., M.
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CHAPTER 3

Infinite

Abstract: We present APAC-Net, an alternating population and agent control neural net-
work for solving stochastic mean field games (MFGs). Our algorithm is geared toward
high-dimensional instances MFGs that are beyond reach with existing solution methods.
We achieve this in two steps. First, we take advantage of the underlying variational primal-
dual structure that MFGs exhibit and phrase it as a convex-concave saddle point problem.
Second, we parameterize the value and density functions by two neural networks, respec-
tively. By phrasing the problem in this manner, solving the MFG can be interpreted as a
special case of training a generative adversarial network (GAN). We show the potential of

our method on up to 100-dimensional MFG problems. [85]

3.1 Introduction

Mean field games (MFGs) are a class of problems that model large populations of interacting
agents. They have been widely used in economics [1, 3, 59, 55|, finance [45, 12, 15, 3|,
industrial engineering [31, 75, 56|, and data science [136, 61, 13]. In mean field games, a
continuum population of small rational agents play a non-cooperative differential game on
a time horizon [0,7]. At the optimum, the agents reach a Nash equilibrium, where they
can no longer unilaterally improve their objectives. Given the initial distribution of agents

po € P(R™), where P(R™) is the space of all probability densities, the solution to MFGs are
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obtained by solving the system of partial differential equations (PDEs),

— 00 —vAp + H(x, Vo) = F(x,p) (HJB)
op —vAp —div(pV,H(z,V¢)) =0 (FP) (3.1)
p(:L',O) = Po, Qb(va) - 9(1;7/)('7T))

which couples a Hamilton-Jacobi-Bellman (HJB) equation and a Fokker-Planck (FP) equa-
tion. Here, ¢: R™ x [0,T] — R is the value function, H: R" x R" — R is the Hamiltonian,
p(-,t) € P(R™) is the distribution of agents at time ¢, F: R™ x PR™ — R denotes the in-
teraction between the agents and the population, and G: R™ x P(R") — R is the terminal
condition, which guides them to a final distribution. Under standard assumptions, i.e., con-
vexity and coercivity of H and G, the solution to (3.1) exists and is unique. See [77, 78, 21| for
more details. This formulation can be viewed as a multi-agent reinforcement learning (RL)
problem where there are infinitely many players [61, 114, 13|, the key difference is that unlike
in RL, the reward function and the dynamics (FP) are known. Although there is a plethora
of fast solvers for the solution of (3.1) in two and three dimensions [2, 6, 24, 21, 22, 69|,
numerical methods for solving (3.1) in high dimensions are practically nonexistent due to

the need for spatial discretization; this leads to the curse of dimensionality.

Our Contribution We present APAC-Net, an alternating population and agent control
neural network approach for tractably solving high-dimensional MFGs in the stochastic case
(v > 0). We phrase the MFG problem as a saddle-point problem |78, 6, 25| and parameterize
the value function and the density function. This formulation draws a natural connection
between MFGs and generative adversarial neural networks (GANs) [57], a powerful class of
generative models that have shown remarkable success on various types of datasets [57, 4,

60, 86, 34, 14].
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3.2 Variational Primal-Dual Formulation of Mean Field Games

We derive the mathematical formulation of MFGs for our framework; in particular, we arrive
at a primal-dual convex-concave formulation tailored for our alternating networks approach.
In [25], the authors observe that all MFG systems admit an infinite-dimensional two-player
general-sum game formulation, and the potential MFGs are the ones that correspond to
zero-sum games. An MFG system (3.1) is called potential, if there exist functionals F, G

such that 6, = f(z,p), and 6,5 = g(z, p) where

(8,3 (), 1y = limy Ho+ hl,i) — ?(p), (0,9(p), 1y = lim o+ hl,i) — 9(,))’ Voo (32)

A critical feature of potential MFGs is that the solution to (3.1) can be formulated as the
solution to a convex-concave saddle point optimization problem. To this end, we begin by
stating (3.1) as a variational problem [78, 6| akin to the Benamou-Brenier formulation for

the Optimal Transport (OT) problem:

nt [ ][ ot )20t 0o + 50000t + 5060, 7)

(3.3)
st. Op—vAp+ V- (pv) =0, p(z,0) = po(z),

where L: R" x R® — R is the Lagrangian function corresponding to the Legendre transform

of the Hamiltonian H, F,G: R" x P(R") — R are mean field interaction terms, and v: R™ x

[0,T] — R™ is the velocity field. Next, setting ¢ as a Lagrange multiplier, we insert the PDE

constraint into the objective to get

w k[ 006t 0)d + 300.0) i+ 9060, 7)

¢ p(@,0) v Jo
— J J o(x,t) (Oep —vAp + V- (p(x, t)v(x,t)) dedt.
0 Jo

Finally, integrating by parts and minimizing with respect to v to obtain the Hamiltonian via

H(z,p) =inf, {—p- v+ L(x,v)}, we obtain

T
p(z,oi)rifpo(x) sgpfo {f (Gt + VAP — H(x,V@)) p(z,t) de + F(p(-, 1)) } dt

fgzﬁx(]po( \dz + G(p JMT (2, T da. .
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This formula can also be obtained in the context of HJB equations in density spaces [24], or by
integrating the HJB and the FP equations in (3.1) with respect to p and ¢, respectively [25].
According to the interpretation in [25], Player 1 represents the mean-field or the population
as a whole and their strategy is the population density p. Furthermore, Player 2 represents
the generic agent and their strategy is the value function ¢. The aim of Player 2 is to
provide a strategy that yields the best response of a generic agent against the population.
This interpretation is in accord with the intuition behind GANs. The formulation (3.4) is

the cornerstone of our method.

3.3 Connections to GANs

Generative Adversarial Networks In generative adversarial networks (GANSs) [57], we
have a discriminator and generator, and the goal is to obtain a generator that is able to
produce samples from a desired distribution. The generator does this by taking samples from
a known distribution N and transforming them into samples from the desired distribution.
Meanwhile, the purpose of the discriminator is to aid the optimization of the generator.
Given a generator network GGy and a discriminator network D,,, the original GAN objective

is to find an equilibrium to the minimax problem
iélf Sll)lp Epo [log Dy (z)] + E,n [log(1 — Dy, (Go(2)))] -
0 w

Here, the discriminator acts as a classifier that attempts to distinguish real images from
fake/generated images, and the goal of the generator is to produce samples that “fool" the

discriminator.

Wasserstein GANs In Wasserstein GANs [4], the motivation is drawn from OT theory,
where now the objective function is changed to the Wasserstein-1 (W1) distance in the

Kantorovich-Rubenstein dual formulation

inf supE,, [Dw(®)] — E.on[Du(Go(2))], st.  |VD| <1, (3.5)

Go D,
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and the discriminator is required to be 1-Lipschitz. In this setting, the goal of the discrimi-
nator is to compute the W1 distance between the distribution of py and Gy(z). In practice,
using the W1 distance helps prevent the generator from suffering "mode collapse," a situ-
ation where the generator produces samples from only one mode of the distribution pg; for
instance, if pg is the distribution of images of handwritten digits, then mode collapse entails
producing only, say, the 0 digit. Originally, [4] used weight-clipping to enforce the Lipschitz
condition of the discriminator network, but an improved method using a penalty on the

gradient was used in [60].

GANs «& MFGs A Wasserstein GAN can be seen as a particular instance of a deter-
ministic MFG [11, 6, 78]. Specifically, consider the MFG (3.4) in the following setting. Let
v =0, § be a hard constraint with target measure pr (as in optimal transport), and let H
be the Hamiltonian defined by

0 [pl<1
H(z,p) = Lpj<1 = ) (3.6)

o otherwise

where we note that this Hamiltonian arises when the Lagrangian is given by L(z,v) = %

Then (3.4) reduces to,

sup f b(x)pol() dz — f o(x)pr(x) da

]
st. V()] < 1,

where we note that the optimization in p leads to 0;¢ — H(z,V¢) = 0. And since H(p) =
Lipj<1, we have that d;¢ = 0, and ¢(z,t) = ¢(x) for all £. We observe the above is precisely

the Wasserstein-1 distance in the Kantorovich-Rubenstein duality [134].
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3.4 APAC-Net

The training process for our MFG is similar to that of GANs. We initialize neural networks

N, (z,t) and Ny(z,t). We then let
bu(z,t) = (L = t)Ny(z,t) +t9(x), Golz,t) = (1 —t)z, + tNp(x, 1), (3.7)

where z, ~ po are samples drawn from the initial distribution. Thus, Gy is the pushforward
of pg. One difference between our formulation and GANs is that ¢, automatically encodes

terminal condition by design.

Our strategy for training this GAN-like MFG consists of alternately training Gy (the
population), and ¢,, (the value function for an individual agent). Intuitively, this means we
are alternating the population and agent control neural networks (APAC-Net) in order to find
the equilibrium. Specifically, we train ¢, by first sampling a batch {2,}2 | from the given
initial density pg, and {t;}2_, uniformly from [0,1]. Next, we compute the push-forward

xy, = Go(zp, tp) for b=1,..., B. We then compute the loss,
1 & 1 &
lossy = 5 ; G (p,0) + 5 ; Ordu (T, 1) + VAG, (26, 1y) — H(V 0w (Th, 1))

where we can optionally add a regularization term A% S 0w, t) + vAG (T, 1) —
H(Vbu,(xp, 1)) +F(x, ) |* to penalize deviations from the HJB equations [114]. This extra
regularization term has also been found effective in, e.g., Wasserstein GANs [59], where the
norm of the gradient (i.e., the HJB equations) is penalized. Finally, we backpropagate the

loss to the weights of ¢,,,.

To train the generator, we again sample {z,}2 ; and {t,}2 , as before, and compute

loss, = é 2 0ibu(pa(2), 1) + VG (pa(20), to) — H(Vadu(pa(20), 1)) + F(pa(20): ).

We then backpropagate this loss with respect to the weights of Gy. Our pseudocode is shown
in Algorithm 12.
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Algorithm 12 APAC-Net for Mean-Field Games
Require: v diffusion parameter, §(x) terminal cost, H Hamiltonian, & interaction term.

Require: Initialize neural networks N, and Ny, batch size B
Require: Set ¢, and Gy as in (3.7)
Require: k& where we update Gy every k epochs.
while not converged do
Train ¢:
Sample batch {(z,t,)}2 | where 2, ~ py and ¢, ~ Unif(0,T')
xp — Go(zp,tp) for b=1,..., B.
by — % Zszl bu(2,0)
by — 300 (T, 1) + VAG (T3, 1) — H(Vabu(, 1))
Oam — A Y01 0100 (20, 1) + VAG (w0, 8) — H(Viio(s, 1)) + Fas, )|
Backpropagate the loss liota = o + ¢ + llam to w weights.

Train py every k epochs:

Sample batch {(zp, 1)}, where z, ~ po and ¢, ~ Unif(0,T')

b= 3 2 0ulpo(ze, 1), 1) + vAG(po(z0,th), 1) — H(Vadu(po(zn,1), 1)) +
F(po (2, tv), t)

Backpropagate the loss liota = o + £ to 0 weights.

3.5 Related Works

High-dimensional MFGs and Optimal Control To the best of our knowledge, the
first work to solve MFGs efficiently in high dimensions (d = 100) was done by [114]. Their
work consisted of using Lagrangian coordinates and parameterizing the value function using
a neural network. This combination allowed them to successfully avoid the need for spatial
grids for MFG problems in the case where v = 0; that is, in the deterministic case where
there is no diffusion. [114] the authors apply the Jacobi identity to estimate the population-

density. This formula, however, is available only in the deterministic case. For problems
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involving high-dimensional optimal control and differential games, spatial grids were also

avoided [21, 22, 24, 82, 29].

Reinforcement Learning Our work bears connections with reinforcement learning (RL).
When neither the Lagrangian L, nor the dynamics (constraint) in (3.3) are known, our for-
mulation amounts to solving multi-agent RL problem with infinitely many identical agents.
[61] propose a Q-Learning approach to solve these multi-agent RL problems. [13] study the
convergence of policy gradient methods on mean field reinforcement learning (MFRL) prob-
lems, i.e., problems where the agents try instead to learn the control which is socially optimal
for the entire population. [137] use an inverse reinforcement learning approach to learn the
MFG model along with its reward function. [51] propose an actor-critic method for finding

Nash equilibrium in linear-quadratic mean field games and establish linear convergence.

GAN-based approach A connection between MFGs and GANs is also made by [11].
However, APAC-Net differs from [11] in two fundamental ways. First, instead of choosing
the value function to be the generator, we set the density function as the generator. This
choice is motivated by the fact that the generator outputs samples from a desired distri-
bution. It is also aligned with other generative modeling techniques arising in continuous
normalizing flows [44, 58]. Second, rather than setting the generator/discriminator losses
as the residual errors of (3.1), we follow the works of [25, 24, 6, 78] and utilize the under-
lying variational primal-dual structure of MFGs, see (3.4); this allows us to arrive at the

Kantorovich-Rubenstein dual formulation of Wasserstein GANs [134].

3.6 Numerical Results

Experimental Setup We assume without loss of generality 7" = 1. In all experiments, our
neural networks have three hidden layers, with 100 hidden units per layer. We use a Residual
Neural Network (ResNet) for both networks, where the weight on the skip connection is 0.5.

In the discriminator, we use the Tanh activation function, and in the generator, we use the
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ReLU activation function. To train the network, we use ADAM with g = (0.5,0.9), learning

rate 5 x 107* for the discriminator, and 1 x 10~* for the generator, and batch size of 50.

We approximate the solution to a mean field game where the population must move from
a starting point to an end point while avoiding obstacles. We thus choose the Hamiltonian
to be

H([L’,p, t) = CHPHQ + ?(ZL‘,IO(CL’,t))

where F(x, p(z,t)) varies with the environment (either avoiding obstacles, or avoiding con-

gestion, etc.). Furthermore, we choose as terminal cost

S(p(T)) = j | — 2rlap(e, T)dz

where the first term is the distance between the population and a target destination. For
the obstacle and congestion problems, we only let the obstacles and congestion be contained
within the first two dimensions, so that we are able to verify correctness with the two
dimensional case. More experimental information, such as the epochs for each calculation,
or various constants, will be left in the appendix. For all experiments, we chose the stopping

criteria to be when the loss £}, in (12) plateaued.

Obstacles In this experiment, we compute the solution to a MFG where the agents are

required to avoid obstacles. In this case, we let

y >0 if (z1,22) is inside the obstacle, i.e. a collision
Flx = (z1,29,...,2q)) = Fxy,20) =y =
0 everywhere else.
the complete analytic expression of the boundary is given in the appendix. Our initial density
po is a Gaussian centered at (—2,—2,0,...,0) with standard deviation 1/4/10 ~ 0.32. We
let the terminal function bet §(x) = |(z1,z2) — (2,2)|2. The numerical results are shown in

3.1. Observe that the results are similar across dimensions, which means we have verified

correctness.

Effect of Parameter v We investigate the effect of the diffusion parameter v on the

behavior of the MFG solutions. In Fig. 3.2, we show the solutions for 2-dimensional MFGs
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d=2 d =50 d =100

Figure 3.1: Computation of the obstacle problem in dimensions 2, 50, and 100 with stochastic
parameter v = 0 and 0.4. For dimension 50 and 100, we plot the first two dimensions. The
agents start at the blue points (¢ = 0) and end at the red points (t = 1). As can be seen,
the results are similar across dimensions, which verifies correctness of the high-dimensional

(50 and 100) computations.

using v = 0,0.2,0.4, and 0.6. The blue dots represent the initial starting points of the agents,
the red dots represent the final-time positions, and the colors in between are intermediate
time-points. As can be seen, as v increases, the density of agents starts to widen, consistent

with intuition from [104].

Congestion In this experiment, we now let the interaction term be a congestion, so that
the agents are encouraged to spread out. We only let congestion be in the first two dimen-

sions, so that

T T 1
F(p(2,1)) = Orcong f f T e D ol ) dy

which is the (bounded) inverse average distance between pairs of agents. Here we let our

initial density po is a Gaussian centered at (—2,0,—2,...,—2) with standard deviation
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Figure 3.2: Comparison of 2D solutions for different values of v.

1/4/10 ~ 0.32. We let the terminal function be §(z) = | (x1, 22) — (2,0).

3.7 Conclusion

We present APAC-Net, an alternating population-agent control neural network for solving
high-dimensional stochastic mean field games. To this end, our algorithm avoids the use of
spatial grids by parameterizing the controls, ¢ and p, using two neural networks, respectively.
Our method is geared toward high-dimensional instances of these problems that are beyond
reach with existing methods. Our method also has natural connections with Wasserstein
GANSs, where p acts as a generative network and ¢ acts as a discriminative network. Our
experiments show that our method is effective in solving up to 100-dimensional MFGs. A
future direction we intend to investigate is the theoretical guidelines on the design of network

architectures.
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d=2 d =50 d =100

Figure 3.3: Computation of the congestion problem in dimensions 2, 50, and 100 with
stochastic parameter v = 0 and 0.5. For dimension 50 and 100, we plot the first two
dimensions. For the v = 0 case, we see in dimension 2 that the agents are more semi-circular,
but this is still retained in a slightly more smeared fashion in dimensions 50 and 100. In
the stochastic v = 0.5 case, we see the results are similar, verifying correctness of the

computations for high-dimensions.

Broader Impact

Many applications involving a large population of agents such as swarm robotics, 5G net-
works, stock market, and spread disease modeling often require solving high-dimensional
mean field games. Our work provides a way to solve these types of realistic problems since
it overcomes the curse of dimensionality. Our work also bridges two recent and independent
fields: mean field games and generative adversarial networks. Therefore, it sets the stage for
the research and development of methods that exploit these connections for efficient training

generative modeling and simulation of mean field games.
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3.8 Appendix: Explanations of the environments and experimental

setup

Obstacle In the obstacle problem, the obstacle penalty was calculated to be,
Fx = (1,29, ...,24)) = Fx1,22) = (max fi(x1,22),0 + max fo(z1,22), 0)obst

with aenst = 5, and if we denote v = (z1,25), then letting ¢; = (—2,0.5) and R =
<CSTEE§§ 75;28;) with 0 = 7/5, and Q = (39) and b = (0,2), then

filz,2) = = (v — )R, Qv — c1)R) — (b, (v —c1)R) — 1.
Similarly, letting co = (2, —0.5), then we let

fo(z1,29) = — (v —c2)R,Q(v — c2)R) + (b, (v —c2)R) — 1.

Our stopping criteria was when {1, in (12) plateaued. Therefore, the epochs we chose are:
For dimensions 2 with v = 0,0.2,0.4,0.6 we stopped at epoch 200k. For dimensions 50 and
100, as well as nu = 0 and 0.4, we stopped at epoch 300k.

Congestion Our stopping criteria was when f),,, in (12) plateaued. The epochs we

chose were 100k for the 2 dimensional cases, and 500k for the 50 and 100 dimensional cases.
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