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ABSTRACT OF THE DISSERTATION

Algorithms for Optimal Paths of One, Many, and an Infinite Number of Agents

by

Alex Tong Lin

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2020

Professor Stanley J. Osher, Chair

In this dissertation, we provide efficient algorithms for modeling the behavior of a single

agent, multiple agents, and a continuum of agents. For a single agent, we combine the

modeling framework of optimal control with advances in optimization splitting in order to

efficiently find optimal paths for problems in very high-dimensions, thus providing allevia-

tion from the curse of dimensionality. For a multiple, but finite, number of agents, we take

the framework of multi-agent reinforcement learning and utilize imitation learning in order

to decentralize a centralized expert, thus obtaining optimal multi-agents that act in a de-

centralized fashion. For a continuum of agents, we take the framework of mean-field games

and use two neural networks, which we train in an alternating scheme, in order to efficiently

find optimal paths for high-dimensional and stochastic problems. These tools cover a wide

variety of use-cases that can be immediately deployed for practical applications.
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CHAPTER 0

Introduction

This dissertation provides efficient algorithms for optimal paths for one, many, and an in-

finite number of agents. We first examine the case of a singular agent by introducing an

optimization splitting algorithm that efficiently solves optimal control problems, with the

novelty of being effective at both high-dimensional and space-time-dependent cases. We then

turn our attention to a multiple, but finite number of agents, i.e. multi-agents, by solving

multi-agent reinforcement learning problems with CESMA (Centralized Expert Supervises

Multi-Agents), which obtains decentralized multi-agent controllers from a centralized ex-

pert. Finally, we then examine the case of a continuum of agents by efficiently solving high-

dimensional and stochastic mean-field games problems with an algorithm called APAC-Net

(Alternating the Population and Control Neural Network), allowing us to model the behavior

of a mass of interacting agents.

A single agent interacting with its environment can be effectively modeled with the

theory of optimal control, where we seek the best control law that minimizes a given cost

functional. In order to efficiently do this for high-dimensional and space-time-dependent

problems, we take advances in optimization splitting and apply them to the general optimal

control problem. The idea is to first discretize the problem in the time variable, and then turn

the constrained minimization problem into an unconstrained saddle-point problem. Then we

make use of the convex conjugate to conjure the Hamiltonian, and after renaming variables,

we end up with an expression that is amenable to techniques from optimization splitting.

In this way, instead of using grids – whose size grows exponentially with dimensions, and

thus making computation intractable in higher dimensions – we calculate and adjust the

trajectory curves of the control problem until an optimum is found. When considering more

1



than one agent, trajectories can get quite complicated as now each agent must now consider

the actions of other agents.

For multiple agents, we view the problem in the Multi-agent Reinforcement Learning

(MARL) setting, which is an extension of Reinforcement Learning (RL). Firstly, the goal of

Reinforcement Learning is to find the best policy for an agent interacting with its environ-

ment that best maximizes a reward functional. The key difference between RL and Optimal

Control is that in RL the agent does not have a model of the environment, and must use

sample trajectories in order to find the best policy. MARL extends this framework to the

multi-agent setting where now the goal is to find a policy for each agent that either maxi-

mizes an overall reward – such as in the cooperative setting – or finds an equilibrium. We

introduce an algorithm called CESMA (Centralized Expert Supervises Multi-Agents) which

first trains a centralized expert to solve the multi-agent problem, and then we use imitation

learning to obtain decentralized multi-agent policies, the goal of MARL. This training proce-

dure is effective for a finite number of agents, but when one wants to consider a tremendously

large number of agents where infinite makes a great approximation, then we need to start

considering densities of agents.

For a continuum of homogeneous agents, where dealing with a mass rather than individual

particles is most appropriate, the field of Mean-Field Games (MFG) is perfectly suited as a

framework. The MFG problem is a system of two PDEs – a Hamilton-Jacobi equation that

acts as a value function for an individual agent, and a continuity equation that describes

how the mass of agents move. In order to compute high-dimensional and stochastic MFGs,

we avoid the use of grids, similar to our work in optimal control, and we reformulate the

problem so that we are computing and adjusting characteristic curves. This is now done

using two neural networks – one that computes the solution to the Hamilton-Jacobi PDE

and another to compute the solution to the continuity equation – and they are trained in

an adversarial fashion. From this, high-dimensional and stochastic MFG problems are now

efficiently computable.

In this dissertation, we present efficient algorithms for modeling optimal behavior of one,

2



many, and an infinite number of agents. For the single agent case, we use advances in

optimization to solve high-dimensional and space-time-dependent optimal control problems.

For a multiple but finite number of agents, we use imitation learning and apply it to multi-

agent reinforcement learning to obtain decentralized policies from a centralized expert. For

an infinite number of agents, we solve high-dimensional and stochastic Mean-Field Games

problems by training two neural networks in an adversarial fashion. These trio of algorithms

are all novel, efficient, and easy-to-use for immediate application to real-world problems.
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CHAPTER 1

One

Abstract: Recent observations have bridged splitting methods arising from optimization, to

the Hopf and Lax formulas for Hamilton-Jacobi Equations. This has produced extremely fast

algorithms in computing solutions of these PDEs. More recent observations were made in

generalizing the Hopf and Lax formulas to state-and-time-dependent cases. In this article,

we apply a new splitting method based on the Primal Dual Hybrid Gradient algorithm

(a.k.a. Chambolle-Pock) to nonlinear optimal control and differential games problems, based

on techniques from the derivation of the new Hopf and Lax formulas, which allow us to

compute solutions at specified points directly, i.e. without the use of grids in space. This

algorithm also allows us to create trajectories directly. Thus we are able to lift the curse

of dimensionality a bit, and therefore compute solutions in much higher dimensions than

before. And in our numerical experiments, we actually observe that our computations scale

polynomially in time. Furthermore, this new algorithm is embarrassingly parallelizable. [83]

1.1 Introduction

Hamilton-Jacobi Equations (HJE) are crucial in solving and analyzing problems arising

from optimal control, differential games, dynamical systems, calculus of variations, quantum

mechanics, and the list goes on [42, 98].

Most methods to compute HJE use grids and finite-difference discretization. Some of

these methods use ENO/WENO-type methods [100], and others use Dijkstra-type methods

[32] such as fast marching [131] and fast sweeping [130]. But due to their use of grids, they

suffer from the curse of dimensionality, i.e. they do not scale well with increases in dimension
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in the space variable, i.e. they generally scale exponentially.

In past years, there has been an effort to mitigate the effects of dimensionality on compu-

tations of HJE. Some recent attempts to solve Hamilton-Jacobi equations use methods from

low rank tensor representations [66], or methods based on alternating least squares [120], or

methods by sparse grids [72], or methods using pseudospectral [111] and iterative methods

[71]. There have also been attempts to mitigate the curse of dimensionality which have been

motivated by reachability [5, 91]. In this work, we examine and advertize the effectiveness of

splitting to solve Hamilton-Jacobi equations and to directly compute optimal trajectories.

We note that splitting for optimal control problems was used by [95] (2013), where they

applied it to cost functionals with a quadratic and convex term. In terms of Hamilton-

Jacobi equations, Kirchner et al. [74] (2018) have effectively applied PDHG [139, 38] (a.k.a.

Chambolle-Pock [16]) to Hamilton-Jacobi equations arising from linear optimal control prob-

lems. They applied splitting to the Hopf formula to compute HJE for bounded input, high-

dimensional linear control problems. Another main feature of their methods is they are able

to directly generate optimal trajectories by making use of the the closed-form solution to

linear ODEs. See also previous work by Kirchner et al. [73] where they apply the Hopf for-

mula to a differential games problems, which resulted in complex “teaming" behavior even

under linearized pursuit-evasion models.

In this current paper, we have worked in parallel with the above authors and have also

applied splitting to Hamilton-Jacobi equations arising from nonlinear problems. Our vol-

unteered method has some nice properties: (1) relatively quick computations of solutions

in high dimensions (see 1.6.4, although one can easily extend to 100 dimensions for exam-

ple, and also see 1.6.1.3 where we observe a linear relationship between computation time

and dimension), especially when we include parallelization, the method is embarrassingly

parallelizable [64], (2) the ability to directly generate optimal trajectories of the optimal con-

trol/differential games problems, (3) the ability to compute problems with non-linear ODE

dynamics, (4) the ability to compute solutions for nonconvex and nonsmooth Hamiltonians

and initial conditions, (5) the ease of parallelization of our algorithm to compute solutions
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to HJE, i.e. each core can use the algorithm to compute the solution at a point, so given N

cores we can compute solutions of the HJE at N points simultaneously, and (6) the ease of

parallelization to directly compute trajectories, i.e. in our discretization of the time, we can

parallelize by assigning each computational core a point in the time discretization.

Our work lies in using the techniques used to derive the Generalized Hopf and Lax

formulas introduced by Y.T. Chow, J. Darbon, S. Osher, and W. Yin [23], which generalize

to the state-and-time-dependent cases (note in the literature that the classical Lax formula

is sometimes called the Hopf-Lax formula). See also previous work from the same authors,

[19, 20], and also [27, 28] where they provide fast algorithms under convexity assumptions.

To perform the optimization, we use a new splitting method that is based on the Primal Dual

Hybrid Gradient (PDHG) method (a.k.a. Chambolle-Pock), which we conjecture to both

converge to a local minimum for most well-behaved problems, and which we conjecture to

also approximate the solution. To do this, we discretize the optimal control problem and the

differential games problem in time, a technique inspired by [95] and [23]. This new splitting

method has been experimentally seen (1.6) to be faster than the using coordinate-descent in

most cases, which the authors in [23] use to compute the solutions.

As far as the authors know, the use of splitting as applied to minimax differential games

problems, mainly on the state-and-time dependent equation (1.13) and (1.14), is new. In

this case, we seem to be able to compute HJE with nonconvex Hamiltonians and nonconvex

initial data (1.6.3.3), although they do have the structure of being convex-concave.

The paper is organized as follows:

‚ 1.2 Gives brief overviews of Hamilton-Jacobi Equations and its intimate connections

to optimal control 1.2.1 and differential games 1.2.2.

‚ 1.3 Gives a brief overview of splitting methods from optimization, focusing on ADMM

1.3.1 and PDHG 1.3.2.

‚ 1.4 Presents the generalized Lax and Hopf formulas for optimal control and differential

games that were conjectured by [23]. We also go through its discretization in 1.4.1,

6



which is the basis of our algorithm.

‚ 1.5 Presents the main algorithms.

‚ 1.6 Presents various computational examples.

‚ 1.7 Ends with a brief conclusion, and a discussion on future work.

‚ 1.9 Gives a more in-depth explanation on how to use the algorithms.

1.2 Hamilton-Jacobi Equations and Its Connection to Optimal Con-

trol and Differential Games

1.2.1 Hamilton-Jacobi Equations and Optimal Control

Most of our exposition on optimal control will follow [41], and also [40] (Chapter 10).

The goal of optimal control theory is to find a control policy that will drive a system

while optimizing a criterion. Given an initial point x P Rn and an initial time t P r0, T s,

where T is some fixed end-point time, the system will obey an ODE
$

&

%

9xpsq “ fpxpsq,αpsq, sq, t ă s ă T

xptq “ x

where f : pRn ˆ A ˆ Rq Ñ R, where A Ď Rm. We call x the state, and α the control. And

the functional we want to optimize is Jx,t : AÑ R where

Jx,trαs ..“ gpxpT qq `
ż T

t

Lpxpsq,αpsq, sq ds. (1.1)

and where A ..“ tα : rt, T s Ñ Au is some admissable control set, and g : Rn Ñ R and

L : pRn ˆ A ˆ Rq Ñ R. We can either minimize the above functional, in which we call it a

cost, or we can maximize it, in which we call it a payoff. For our exposition, we will choose

to minimize Jx,tr¨s, so it will be a cost. Then we define the value function

φpx, tq “ min
αp¨qPA

Jx,trαs. (1.2)
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Under some mild conditions on f, g, and L, this value function will satisfy the terminal-valued

Hamilton-Jacobi PDE (HJ PDE)
$

&

%

Btφpx, tq `Hpx,∇xφpx, tq, tq “ 0, px, tq P Rn ˆ p0, T q

φpx, T q “ gpxq.

where Hpx, p, tq “ minaPA t〈fpx, a, tq, p〉` Lpx, a, tqu.

To get an initial-valued PDE, can make a change of variables tÑ T ´ t. Or equivalently

we can reformulate the optimal control problem “backwards in time" so that we have
$

&

%

9xpsq “ fpxpsq,αpsq, sq, 0 ă s ă t

xptq “ x

and

Jx,trαs ..“ gpxp0qq `
ż t

0

Lpxpsq,αpsq, sq ds.

Then our φpx, tq “ minαp¨qPA Jx,trαs will satisfy an initial-valued HJ PDE with Hpx, p, tq “

maxaPA t〈fpx, a, tq, p〉´ Lpx, a, tqu. Note that if f “ a, then this form of the Hamiltonian

expresses H as the convex conjugate [103] of L.

If we think from a physical perspective in which time moves forward, the first formulation

feels more comfortable. If we come from the fields of PDE or mathematical optimization,

the latter formulation will feel more comfortable.

So how does having a HJ PDE help us synthesize an optimal control? Using the first

formulation as it feels more physically intuitive, we can heuristically argue that given an

inital time t P p0, T s and a state x P Rn, we consider the optimal ODE
$

&

%

9x˚psq “ fpx˚psq,α˚psq, sq, t ă s ă T

x˚ptq “ x

where at each time s P p0, T q, we choose the value of α˚psq to be such that

〈fpx˚psq,α˚psq, sq, Bxφpx˚psq, sq〉` Lpx˚psq,α˚psq, sq

“ min
aPA

t〈fpx˚psq, a, sq, Bxφpx˚psq〉` Lpx˚psq, a, squ

“ Hpx˚psq, Bxφpx˚psq, sq, sq
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We call α˚p¨q defined in this way as the feedback control, and this can be obtained from ∇xφ

(see Section 10.3.3 of [40]). This is also related to Pontryagin’ Maximum Principle (Chapter

4 of [41]).

Note that in the case Hpx, p, tq “ Hppq, then we have available the (classical) Hopf and

Lax formulas which are expressions for the solutions φpx, tq of the HJ PDE:

When the Hamiltonian Hppq is convex and the initial date g is (uniformly) Lipschitz

continuous, then we have the Lax formula:

φpx, tq “ min
yPRn

!

gpyq ` tH˚
´x´ y

t

¯)

where H˚pxq “ maxvPA t〈v, x〉´Hpvqu is the convex conjugate of L.

And if the initial data g is (uniformly) Lipschitz continuous and convex, and H is con-

tinuous, then we have the Hopf formula,

φpx, tq “ sup
yPRn

t´g˚pyq ` 〈y, x〉´ tHpyqu “ pg˚pyq ` tHpyqq˚ (1.3)

where g˚ is the convex conjugate of g. Note the last equality implies the solution is convex in

x. We note again that the argument minimum of the above expression is in-fact ∇xφpx, tq.

1.2.2 Hamilton-Jacobi Equations and Differential Games

Our exposition of differential games will follow [41] (Chapter 6), but also see [67, 138]. In

the field of differential games, we restrict our exposition to two-person, zero-sum differential

games. Let an initial point x P Rn and an initial time t P r0, T s be given, where T is some

fixed endpoint time. A two-person, zero-sum differential game will have the dynamics,
$

&

%

9xpsq “ fpxpsq,αpsq,βpsq, sq, t ă s ă T

xptq “ x

where f : pRn ˆ A ˆ B ˆ Rq Ñ R, and where A Ď Rm and B Ď R`. The control α is the

control for player I, and the control β is the control for player II. The functional will be

Jx,t : Aptq ˆBptq Ñ R where

Jx,trα,βs ..“ gpxpT qq `
ż T

t

Lpxpsq,αpsq,βpsq, sq ds. (1.4)
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and where Aptq ..“ tα : rt, T s Ñ Au and Bptq ..“ tβ : rt, T s Ñ Bu are admissable control

sets, and g : Rn Ñ R and L : pRn ˆ AˆB ˆ Rq Ñ R.

In order to model that at each time, neither player has knowledge of the other’s future

moves, we use a concept of strategy that was used by Varaiya [133] as well as Elliot and

Kalton [37]. This idea allows us to model that each player will select a control in response

to all possible controls the opponent can select.

A strategy for player I is a mapping Φ : Bptq Ñ Aptq such that for all times s P rt, T s

τ P rt, ss, βpτq ” β̂pτq implies Φrβspτq ” Φrβ̂spτq

The Φrβs models player I’s response to player II selecting β. We similarly define a strategy

Ψ : Aptq Ñ Bptq for player II:

τ P rt, ss, αpτq ” α̂pτq implies Ψrαspτq ” Ψrα̂spτq

and Ψrαs models player II’s response to player I selecting α.

Letting Aptq and Bptq be the set of strategies for player I and player II, respectively,

then we define the lower value function as

φ´px, tq “ inf
Ψr¨sPBptq

sup
αp¨qPAptq

Jx,trα,Ψrαss (1.5)

and the upper value function as

φ`px, tq “ sup
Φr¨sPAptq

inf
βp¨qPBptq

Jx,trΦrβs,βs. (1.6)

Note that we always have φ´px, tq ď φ`px, tq for all x P Rn and t P r0, T s. For a proof, see

[42].

These value functions satisfy the terminal-valued HJ PDEs
$

&

%

Btφ
´px, tq `maxaPA minbPB t〈fpx, a, b, tq,∇xφ

´px, tq〉` Lpx, a, b, tqu “ 0

φ´px, T q “ gpxq

and
$

&

%

Btφ
`px, tq `minbPB maxaPA t〈fpx, a, b, tq,∇xφ

`px, tq〉` Lpx, a, b, tqu “ 0

φ`px, T q “ gpxq
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where we have the lower PDE Hamiltonian

H´
px, p, tq “ max

aPA
min
bPB

t〈fpx, a, b, tq, p〉` Lpx, a, b, tqu

and the upper PDE Hamiltonian

H`
px, p, tq “ min

bPB
max
aPA

t〈fpx, a, b, tq, p〉` Lpx, a, b, tqu

In general, we have

max
aPA

min
bPB

t〈fpx, a, b, tq, p〉` Lpx, a, b, tqu ď min
bPB

max
aPA

t〈fpx, a, b, tq, p〉` Lpx, a, b, tqu

and in most cases the inequality is strict, and thus the lower and upper value functions are

different. But when the above is an equality, then the game is said to satisfy the minimax

conditions, also called Isaac’s condition, and we have φ´ “ φ`, and we say the game has

value.

Our examples will focus on differential games which satisfy the minimax condition, and

will thus have value.

In differential games, we usually run into nonconvex Hamiltonians, so it is the Hopf

formula (1.3) that is used the most.

1.3 Splitting Algorithms from Optimization

Here we review a couple of splitting algorithms from optimization.

1.3.1 ADMM (Alternating Method of Multipliers)

ADMM [8], which is also known as Split-Bregman [54], is an optimization method to solve

problems of the following form:

min
x,zPX

fpxq ` gpzq

subject to Ax`Bz “ c
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where X is a finite-dimensional real vector space equipped with an inner product 〈¨, ¨〉, and

f : X Ñ R and g : X Ñ R are proper, convex, lower semicontinuous functions. We also

have that A and B are continuous linear operators (e.g. matrices), with c a fixed element in

X. Now we form the augmented Lagrangian of the above problem:

Lρpx, z, yq “ fpxq ` gpzq ` 〈y, Ax`Bz ´ c〉` ρ

2
}Ax`Bz ´ c}22

Then we alternately minimize:
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

xk`1 “ arg minx Lρpx, z
k, ykq

zk`1 “ arg minz Lρpx
k`1, z, ykq

yk`1 “ yk ` ρpAxk`1 `Bzk`1 ´ cq

where in the last step we update the dual variable. Note that the arg min expressions are

frequently precisely the proximal operator [103] of a (not necessarily convex) function. The

proximal operator is defined as: Given f : Rn Ñ R a proper l.s.c. function, not necessarily

convex, then,

pI ` λBfq´1
pvq ..“ arg min

x

"

fpxq `
1

2λ
}x´ v}22

*

(1.7)

The proximal of f with step-size λ is also denoted proxλf p¨q.

1.3.2 PDHG (Primal-Dual Hybrid Gradient)

The PDHG algorithm [139, 38], which also goes by the name Chambolle-Pock [16], attempts

to solve problems of the form

min
xPX

fpAxq ` gpxq

where we make similar assumptions on X, f , g, and A as we did for ADMM. PDHG takes

the Lagrangian dual formulation of the above problem and seeks to find a saddle point of

the following problem:

min
xPX

max
yPY
〈Ax, y〉` gpxq ´ f˚pyq
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where f˚pyq “ supxPX t〈x, y〉´ fpyqu is the convex conjugate of f . PDHG is also an alter-

nating minimization technique that makes use of proximal operators. The updates are:
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

yk`1 “ pI ` σBf˚q´1pyk ` σAx̄kq

xk`1 “ pI ` τBgq´1pxk ´ σA˚yk`1q

x̄k`1 “ xk`1 ` θpxk`1 ´ xkq.

where σ, τ ą 0 are such that στ}A}2 ă 1, and θ P r0, 1s, although θ “ 1 seems to work best

in practice.

1.4 The Generalized Lax and Hopf formulas

A recent result by Y.T. Chow, J. Darbon. S. Osher, and W. Yin [23] gives a conjectured

generalization to the Lax and Hopf formulas. Given a Hamilton-Jacobi Equation,
$

&

%

Btφ`Hpx,∇xφpx, tq, tq “ 0, in Rd ˆ p0,8q,

φpx, 0q “ gpxq.

we have that when Hpx, p, tq is smooth, and convex with respect to p, and possibly under

some more mild conditions, we have

φpx, tq “ min
vPRd

"

gpxp0qq `
ż t

0

ppsq ¨∇pHpxpsq,ppsq, sq ´Hpxpsq,ppsq, sq ds
*

where

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

9xpsq “ ∇pHpxpsq,ppsqq

9ppsq “ ´∇xHpxpsq,ppsqq

xptq “ x

pptq “ v

where x and p are the characteristics of the PDE. The expression in the bottom braces are

ODEs which xp¨q and pp¨q satisfy.

And when we move the convexity onto g, i.e. when Hpx, p, tq is smooth and g is convex,
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then

ϕpx, tq “ sup
vPRd

"

´g‹ppp0qq ` x ¨ v `
ż t

0

xpsq ¨∇xHpxpsq,ppsq, sq ´Hpxpsq,ppsq, sq ds
*

where

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

9xpsq “ ∇pHpxpsq,ppsqq

9ppsq “ ´∇xHpxpsq,ppsqq

xptq “ x

pptq “ v

Chow, Darbon, Osher, and Yin used coordinate descent with multiple initial guesses to

perform the optimization. They do this by first making an initial guess for v P Rd, then they

compute the ODEs, and then compute the value of the objective, i.e. the first lines of the

two formulas. Then they re-adjust one coordinate v P Rd and repeat. Details can be found

in their paper [23].

1.4.1 Discretizing the Generalized Lax and Hopf Formulas for Optimal Control

In order to derive the generalized Lax and Hopf formulas, we can first discretize the value

function of the optimal control problem (1.1) and (1.2). Before we begin we note we are

merely making formal calculations, much in the spirit of E. Hopf in his seminal paper where

he derived the classical Hopf formula [65]. This is the procedure followed in [23]: We have

the value function equals

φpx, tq “ min
xp¨q,up¨q

"

gpxp0qq `
ż t

0

Lpxpsq,upsq, sq ds
*

where xp¨q and upsq satisfy the ODE
$

&

%

9xpsq “ fpxpsq,upsq, sq, 0 ă s ă t

xptq “ x

Two notes: (1) we are formulating our optimal control problem “backwards in time" so that

we end up with an initial-valued HJ PDE, and (2) here px, tq are fixed points where we want

to compute the HJE.
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We discretize the time domain such that

0 ă s1 ă s2 ă ¨ ¨ ¨ ă sN “ t,

and we set xj “ xpsjq and uj “ upsjq. Note in our numerical examples, we make a uniform

discretization of the time domain.

Now we use the backward Euler discretization of the ODE and set xN “ x to obtain the

optimization problem

min
txjuNj“0,tuju

N
j“1

#

gpx0q ` δ
N
ÿ

j“1

Lpxj, uj, sjq | txj ´ xj´1 “ δfpxj, uj, sjqu
N
j“1 , xN “ x

+

As usual in constrained optimization problems, we compute the Lagrangian function (i.e.

Lagrange multipliers) to get:

gpx0q ` δ
N
ÿ

j“1

Lpxj, uj, sjq `
N
ÿ

j“1

〈pj, xj ´ xj´1 ´ δfpxj, uj, sjq〉` 〈pN , x´ xN〉 (1.8)

Note that the constraint xN “ x is trivially unneeded in the Lagrangian function. Then we

minimize over txjuNj“0 and tujuNj“1, while maximizing over tpjuNj“1 to obtain the expression,

max
tpjuNj“1

min
txju

N´1
j“0

min
tujuNj“1

#

gpx0q ` δ
N
ÿ

j“1

Lpxj, uj, sjq `
N
ÿ

j“1

〈pj, xj ´ xj´1 ´ δfpxj, uj, sjq〉` 〈pN , x´ xN〉

+

.

After moving the minimum over tujuNj“1 inside, we get

max
tpjuNj“1

min
txku

N
j“0

#

gpx0q `

N
ÿ

j“1

〈pj, xj ´ xj´1〉` 〈pN , x´ xN〉` δ
N
ÿ

j“1

min
uj
tLpxj, uj, sjq ´ 〈pj, fpxj, uj, sjq〉u

+

“ max
tpjuNj“1

min
txku

N
j“0

#

gpx0q `

N
ÿ

j“1

〈pj, xj ´ xj´1〉` 〈pN , x´ xN〉´ δ
N
ÿ

j“1

Hpxj, pj, sjq

+

After the above step, we have now been able to remove a numerical optimization in u by using

the definition of the Hamiltonian. This considerably simplifies the problem, and reduces the

dimensionality of the optimization.

We note that we need pN “ 0 in order for the maximization/minimization to not be

infinite. And thus, we can remove the minimization with respect to xN and we get

φpx, tq « max
tpjuNj“1

min
txjuNj“0

#

gpx0q `

N
ÿ

j“1

〈pj, xj ´ xj´1〉´ δ
N
ÿ

j“1

Hpxj, pj, sjq

+

(1.9)
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We can do a similar analysis using the forward Euler discretization to obtain,

φpx, tq « max
tpju

N´1
j“0

min
txju

N´1
j“0

#

gpx0q `

N´1
ÿ

j“0

〈pj, xj`1 ´ xj〉´ δ
N´1
ÿ

j“0

Hpxj, pj, sjq

+

(1.10)

but this latter expression has the disadvantage of coupling the g and H with respect to x0,

as they both depend on x0. Although this could actually be an advantage as one may have

H acting as a regularizer to g.

In order to obtain the discretized version of the generalized Hopf formula, we start with

the Lax formula with backward Euler (1.9), and use the linear term 〈p1, x0〉 and compute

the convex conjugate; the calculation goes as follows:

max
tpjuNj“1

min
txjuNj“0

#

gpx0q `

N´1
ÿ

j“1

〈pj, xj ´ xj´1〉´ δ
N
ÿ

j“1

Hpxj, pj, sjq

+

“ max
tpjuNj“1

min
txjuNj“1

#

min
x0
tgpx0q ´ 〈p1, x0〉u ` 〈p1, x1〉`

N´1
ÿ

j“2

〈pj, xj ´ xj´1〉´ δ
N
ÿ

j“1

Hpxj, pj, sjq

+

“ max
tpjuNj“1

min
txjuNj“1

#

´g˚pp1q ` 〈p1, x1〉`
N´1
ÿ

j“2

〈pj, xj ´ xj´1〉´ δ
N
ÿ

j“1

Hpxj, pj, sjq

+

“ max
tpjuNj“1

min
txjuNj“1

#

´g˚pp1q ` 〈pN , x〉`
N´1
ÿ

j“1

〈pj ´ pj`1, xj〉´ δ
N
ÿ

j“1

Hpxj, pj, sjq

+

where in the last equality, we performed a summation-by-parts and also used xN “ x. So

we have the discretized version of the Hopf formula:

φpx, tq « max
tpjuNj“1

min
txjuNj“1

#

´g˚pp1q ` 〈pN , x〉`
N´1
ÿ

j“1

〈pj ´ pj`1, xj〉´ δ
N
ÿ

j“1

Hpxj, pj, sjq

+

(1.11)

Note that it is a bit harder to perform the optimization when we approximate the ODE

dynamics with forward Euler because we then must compute the convex conjugate of the

sum gp¨q `Hp¨, p0, s0q, which can be more complicated.

1.4.2 Discretizing the Generalized Lax and Hopf Formulas for Differential Games

Again following the procedure of [23], we have a conjectured generalization to the Lax and

Hopf formulas for differential games, which we will discretize. Before we give the calculation
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we qualify that, in the spirit of E. Hopf when he computed the Hopf formula in his seminal

paper [65], these calculations are merely formal:

Given a two-person, zero-sum differential game with value (i.e., it satisfies the Isaacs

conditions so that the minmax Hamiltonian and maxmin Hamilton are equal, see section

1.2.2), with given x P Rd1 and y P Rd2 , and t P p0,8q, and with dynamics
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

¨

˝

9xpsq

9ypsqq

˛

‚“

¨

˝

f1pxpsq,ypsq,αpsq,βpsq, sq

f2pxpsq,ypsq,αpsq,βpsq, sq

˛

‚ 0 ă s ă t

¨

˝

xptq

yptq

˛

‚“

¨

˝

x

y

˛

‚

we have that the value function satisfies

φpx, y, tq “ inf
αp¨q,xp¨q

sup
βp¨q,yp¨q

"

gpxp0q,yp0qq `
ż t

0

Lpxpsq,ypsq,αpsq,βpsq, sq ds
*

(1.12)

Now, we discretize in time and approximate the ODE with backward Euler, and a formal

computation gives us,

« min
tαku

N
k“1txku

N
k“0

max
tβku

N
k“1,tyku

N
k“0

#

gpx0, y0q ` δ
N
ÿ

k“1

Lpxk, yk, αk, βk, skq

+

such that

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

¨

˝

xk ´ xk´1

yk ´ yk´1

˛

‚“

¨

˝

f1pxk, yk, αk, βk, skq

f2pxk, yk, αk, βk, skq

˛

‚, k “ 1, . . . , N

¨

˝

xN

yN

˛

‚“

¨

˝

x

y

˛

‚

It is at this point we want to form the Lagrangian. The only trouble is that the concept

of a “Lagrangian" for minimax problems (a.k.a. saddle-point problems) has not been well-

examined. But in a paper by [35] (and also in [106]), the authors have a version of a

Lagrangian for minimax problems, which we apply to our problem to get,

gpx0, y0q ` δ
N
ÿ

j“1

Lpxj, yj, αj, βj, sjq `
N
ÿ

j“1

〈pj, xj ´ xj´1 ´ δf1pxj, yj, αj, βj, sjq〉

`

N
ÿ

j“1

〈´qj, yj ´ yj´1 ´ δf2pxj, yj, αj, βj, sjq〉

17



Then we take the min max to obtain

min
tαjuNj“1,txju

N
j“0

max
tβjuNj“1,tyju

N
j“0

#

gpx0, y0q ` δ
N
ÿ

j“1

Lpxj, yj, αj, βj, sjq

`

N
ÿ

j“1

〈pj, xj ´ xj´1 ´ δf1pxj, yj, αj, βj, sjq〉`
N
ÿ

j“1

〈´qj, yj ´ yj´1 ´ δf2pxj, yj, αj, βj, sjq〉

+

“ min
txjuNj“0

max
tyjuNj“0

$

&

%

gpx0, y0q ` δ
N
ÿ

j“1

min
αj

max
βj

$

&

%

Lpxj, yj, αj, βj, sjq ´

〈¨
˝

pj

´qj

˛

‚,

¨

˝

f1pxj, yj, αj, βj, sjq

f2pxj, yj, αj, βj, sjq

˛

‚

〉,
.

-

`

N
ÿ

j“1

〈pj, xj ´ xj´1〉`
N
ÿ

j“1

〈´qj, yj ´ yj´1〉

+

“ min
txjuNj“0

max
tyjuNj“0

#

gpx0, y0q ´ δ
N
ÿ

j“1

Hpxj, yj, pj,´qj, sjq `
N
ÿ

j“1

〈pj, xj ´ xj´1〉`
N
ÿ

j“1

〈´qj, yj ´ yj´1〉

+

Now we maximize over tpjuNj“1 and minimize over tqjuNj“1 to obtain,

φpx, y, tq « min
tqjuNj“1

max
tpjuNj“1

min
txjuNj“0

max
tyjuNj“0

#

gpx0, y0q ´ δ
N
ÿ

j“1

Hpxj, yj, pj,´qj, sjq `
N
ÿ

j“1

〈pj, xj ´ xj´1〉

`

N
ÿ

j“1

〈´qj, yj ´ yj´1〉

+

and after organizing a bit, we get,

φpx, y, tq « min
tqjuNj“1

max
tpjuNj“1

min
txjuNj“0

max
tyjuNj“0

$

&

%

gpx0, y0q `

N
ÿ

j“1

〈¨
˝

pj

´qj

˛

‚,

¨

˝

xj ´ xj´1

yj ´ yj´1

˛

‚

〉

´δ
N
ÿ

j“1

Hpxj, yj, pj,´qj, sjq

+

(1.13)

The authors in [35] apply their method to convex-concave differential games, which we

also do in 1.6 (see also 1.6.3.3 where we have convex-concave initial conditions).

Note: If we can split gpx, yq “ epxq ` hpyq, and if e is convex and h is concave, then we

may take advantage of e˚, the convex conjugate of e, and h˚, the concave conjugate of h (the

formula for the concave conjugate is the same as the convex-conjugate, but you change the

sup to an inf) [108], in order to have an analogous Hopf formula:
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φpx, y, tq « min
tqjuNj“1

max
tpjuNj“1

min
txjuNj“1

max
tyjuNj“1

$

&

%

´e˚pp1q ´ h˚p´q1q `

〈¨
˝

pN

´qN

˛

‚,

¨

˝

x

y

˛

‚

〉

`

N´1
ÿ

j“1

〈¨
˝

pj ´ pj`1

´pqj ´ qj`1q

˛

‚,

¨

˝

xj

yj

˛

‚

〉
´ δ

N
ÿ

j“1

Hpxj, yj, pj,´qj, sjq

,

.

-

(1.14)

In some ways the function e˚ppq ` h˚pqq may perhaps be called the convex-concave con-

jugate for the convex-concave function gpx, yq.

Remark: The authors in [35] state that this “minimax Lagrangian," even in the simplest

formulation given in their work, is new.

1.4.3 The advantage of the Hamiltonian for optimization

There is tremendous advantage in having a Hamiltonian. This is because if we want to instead

perform optimization of the value function directly, we will be solving for the controls and

this requires a constrained optimization technique.

The miraculous advantage of having a Hamiltonian for optimization purposes is it en-

codes information from both the running cost function L, as well as the dynamics 9xpsq “

fpxpsq,upsq, sq. And thus we are now free to perform unconstrained optimization. But if

we solve for the value function (1.1) and (1.2) directly, the we need to perform constrained

optimization.

Another key additional advantage is that we lower the dimension of the numerical opti-

mization by analytically minimizing over u, and conjuring the Hamiltonian.
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1.5 The Main Algorithm: Splitting for Hamilton-Jacobi Equations

1.5.1 Splitting for HJE arising from Optimal Control

Before discussing the algorithms, we note that we do not yet have a proof of convergence nor

approximation. This is currently a work-in-progress. But as shown in our numerical results

1.6, these algorithms seem to agree with classical methods used to solve Hamilton-Jacobi

equations.

Taking the Lax formula with backward Euler (1.9) as an expository example, we can

organize our problem to look similar to a primal-dual formulation which is attacked by

splitting using PDHG. We stack variables and let

‚ x̃ “ px0, x1, . . . , xNq, and similarly for p̃ and s̃,

‚ G̃px̃q “ gpx0q,

‚ H̃δpx̃, p̃, s̃q “ δ
řN
k“1Hpxk, uk, skq,

‚ D be the difference matrix such that 〈p̃, Dx̃〉 “
řN´1
j“1 〈pj, xj ´ xj´1〉

then our problem looks like:

max
tpjuNj“1

min
txjuNj“0

G̃px̃q ` 〈p̃, Dx̃〉` H̃δpx̃, p̃, s̃q.

This looks similar to the problem that is attacked by PDHG, except for a couple of differences:

‚ PDHG solves a saddle point problem where the H̃δpx̃, p̃, s̃q term does not depend on x̃

(nor s̃).

‚ In PDHG, the H̃δ term is the convex conjugate of some function we want to minimize.

But in our case, we have

Hpx, p, sq “ max
u
t〈fpx, u, sq, p〉´ Lpx, u, squ

and fpx, u, sq does not even have to be linear. So in some ways, H is a “generalized

convex conjugate."
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But we perform an alternating minimization technique similar to PDHG and we arrive at

our main algorithm for optimal control:

For the Lax with backward Euler: Given an x P Rd and some time t P p0,8q, we set δ ą 0

small and let the time-grid size be N “ t{δ`1 (we set N “ t{δ for Hopf). Then we randomly

initialize x̃ “ px0, x1, . . . , xNq but let xN “ x, and we randomly initialize p̃ “ pp0, p1, . . . , pNq

but let p0 ” 0 as it is not minimized over, but used for computational accounting. And we

let z̃ “ x̃. Then our algorithm follows the pattern of alternating optimization with quadratic

penalty:
$

’

’

’

&

’

’

’

%

p̃k`1 “ arg maxp̃

!

G̃px̃kq ´ H̃δpx̃
k, p̃, s̃q ´ 1

2σ
}p̃´ pp̃k `Dz̃kq}22

)

x̃k`1 “ arg minx̃

!

G̃px̃q ´ H̃δpx̃, p̃
k`1, s̃q ` 1

2τ
}x̃´ px̃k ´DT p̃k`1q}22

)

z̃k`1 “ x̃k`1 ` θpx̃k`1 ´ x̃kq.

where σ, τ ą 0 are step-sizes with στ}D}2 ă 1 and θ P r0, 1s (as suggested in [16]). In our

numerical experiments, θ “ 1 was frequently the best choice and also in practice, we would

change the arg max into an arg min. So we have 1.

Algorithm 1 Splitting for HJE for Optimal Control, Lax with backward Euler
Given: xtarget P Rd and time t P p0,8q.

Initialize: δ ą 0 and set N “ t{δ ` 1. And randomly initialize x̃0 and p̃0, but with

x0
N ” xtarget. And set z̃0 “ x̃0. Also choose σ, τ such that στ}D}2 ă 1 and θ P r0, 1s.

while tolerance criteria large do

p̃k`1 “ arg minp̃

!

´G̃px̃kq ` H̃δpx̃
k, p̃, s̃q ` 1

2σ
}p̃´ pp̃k ` σDz̃kq}22

)

x̃k`1 “ arg minx̃

!

G̃px̃q ´ H̃δpx̃, p̃
k`1, s̃q ` 1

2τ
}x̃´ px̃k ´ τDT p̃k`1q}22

)

z̃k`1 “ x̃k`1 ` θpx̃k`1 ´ x̃kq

fval “ gpx0q `
řN
j“1 〈pj, xj ´ xj´1〉´ δ

řN
j“1Hpxj, uj, sjq

return fval

And a similar algorithm will be obtained when we use a forward Euler discretization 1.10

for the ODE dynamics. We can obtain better accuracy if we average the backward Euler

and forward Euler approximations for the ODEs, which is reminiscent of the trapezoidal
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approximation having better accuracy as it is the average of the forward and backward

Euler.

We also have the Hopf formulation: Let,

‚ G̃˚pp̃q “ pg˚pp1q, 0, . . . , 0q, and

‚ let D be the difference matrix such that 〈Dp̃, x̃〉 “ 〈pN , x〉 `
řN´1
k“1 〈pk ´ pk`1, xk〉 (so

this one differs from 1 as it acts on p̃)

then we have 2.

1.5.1.1 When to use the Hopf formula

We make the observation that the Lax formula is suitable (i.e. converges) when we have a

convex Hamiltonian in p which is also bounded below in p (or satisfies a coercivity condition,

see [40]; if we want a convex Hamiltonian that is not bounded in p, then we must use Hopf

in this case.

Algorithm 2 Splitting for HJE for Optimal Control, Hopf (with backward Euler)
Given: xtarget P Rd and time t P p0,8q.

Initialize: δ ą 0 and set N “ t{δ. And randomly initialize x̃0 and p̃0, but with x0
N ” xtarget.

And set z̃0 “ x̃0. Also choose σ, τ such that στ}D}2 ă 1 and θ P r0, 1s.

while tolerance criteria large do

p̃k`1 “ arg minp̃

!

G̃˚pp̃kq ` H̃δpx̃
k, p̃, s̃q ` 1

2σ
}p̃´ pp̃k ` σDT z̃kq}22

)

x̃k`1 “ arg minx̃

!

´G̃˚pp̃q ´ H̃δpx̃, p̃
k`1, s̃q ` 1

2τ
}x̃´ px̃k ´ τDp̃k`1q}22

)

z̃k`1 “ x̃k`1 ` θpx̃k`1 ´ x̃kq

fval “ ´g˚pp1q ` 〈pN , xtarget〉`
řN´1
j“1 〈pj ´ pj`1, xj〉´ δ

řN
j“1Hpxj, pj, sjq

return fval

See 1.5.3 on how to perform the argmin/argmax in each iteration.
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1.5.2 Splitting for HJE arising from Differential Games

For differential games, we use a similar algorithm to the optimal control case. We take

the discretized version of the cost function (1.12) and perform an alternating minimization

technique inspired by PDHG, but applied to minimax problems. Using the same notation

as in 1 and 2, and the same D matrix as in 1, we have the algorithm for differential games

in 3.

Algorithm 3 Splitting for HJE for Differential Games, Lax
Given: pxtarget, ytargetq P Rd and time t P p0,8q.

Initialize: δ ą 0 and set N “ t{δ ` 1. And randomly set x̃0, ỹ0, p̃0, and q̃0, but with

x0
N ” xtarget and y0

N ” ytarget. And set p¯̃x0, ¯̃y0q “ px̃0, ỹ0q. Also choose σ, τ such that

στ}D}2 ă 1 and θ P r0, 1s.

while tolerance criteria large do

p̃k`1 “ arg maxp̃

!

G̃px̃k, ỹkq ´ H̃δpx̃
k, ỹk, p̃,´q̃k, s̃kq ´ 1

2σ
}p̃´ pp̃k ` σD ¯̃xkq}22

)

q̃k`1 “ arg minq̃

!

G̃px̃k, ỹkq ´ H̃δpx̃
k, ỹk, p̃k`1,´q̃, s̃kq ` 1

2σ
}q̃ ´ pq̃k ` σD ¯̃ykq}22

)

x̃k`1 “ arg minx̃

!

G̃px̃, ỹkq ´ H̃δpx̃, ỹ
k, p̃k`1,´q̃k`1, s̃kq ` 1

2τ
}x̃´ px̃k ´ τDT p̃k`1q}22

)

ỹk`1 “ arg maxỹ

!

G̃px̃k`1, ỹq ´ H̃δpx̃
k`1, ỹ, p̃k`1,´q̃k`1, s̃kq ´ 1

2τ
}ỹ ´ pỹk ´ τDT q̃k`1q}22

)

¨

˝

¯̃xk`1

¯̃yk`1

˛

‚“

¨

˝

x̃k`1

ỹk`1

˛

‚` θ

¨

˝

¨

˝

x̃k`1

ỹk`1

˛

‚´

¨

˝

x̃k

ỹk

˛

‚

˛

‚.

fval “ gpx0, y0q `
řN
j“1

〈¨
˝

pj

´qj

˛

‚,

¨

˝

xj ´ xj´1

yj ´ yj´1

˛

‚

〉
´ δ

řN
j“1Hpxj, yj, pj,´qj, sjq

return fval

If we have G̃px, yq “ Ẽpxq ` H̃pyq where E is convex and H is concave, then we may

make use of convex-conjugates and concave-conjugates (see (1.14)) to obtain an analogous

Hopf formula as in 2, but for differential games. Here D is the same difference matrix as in

the Hopf case, 2. This is 4.
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Algorithm 4 Splitting for HJE for Differential Games, Hopf (for separable convex-concave

initial conditions)
Given: pxtarget, ytargetq P Rd and time t P p0,8q.

Initialize: δ ą 0 and set N “ t{δ. And randomly set x̃0, ỹ0, p̃0, and q̃0, but with

x0
N ” xtarget and y0

N ” ytarget. And set p¯̃x0, ¯̃y0q “ px̃0, ỹ0q. Also choose σ, τ such that

στ}D}2 ă 1 and θ P r0, 1s.

while tolerance criteria large do

p̃k`1 “ arg maxp̃

!

´Ẽ˚pp1q ´ H̃˚p´q1q ´ H̃δpx̃
k, ỹk, p̃,´q̃k, s̃kq ´ 1

2σ
}p̃´ pp̃k ` σDT ¯̃xkq}22

)

q̃k`1 “ arg minq̃

!

´Ẽ˚pp1q ´ H̃˚p´q1q ´ H̃δpx̃
k, ỹk, p̃k`1,´q̃, s̃kq ` 1

2σ
}q̃ ´ pq̃k ` σDT ¯̃ykq}22

)

x̃k`1 “ arg minx̃

!

´Ẽ˚pp1q ´ H̃˚p´q1q ´ H̃δpx̃, ỹ
k, p̃k`1,´q̃k`1, s̃kq ` 1

2τ
}x̃´ px̃k ´ τDp̃k`1q}22

)

ỹk`1 “ arg maxỹ

!

´Ẽ˚pp1q ´ H̃˚p´q1q ´ H̃δpx̃
k`1, ỹ, p̃k`1,´q̃k`1, s̃kq ´ 1

2τ
}ỹ ´ pỹk ´ τDq̃k`1q}22

)

¨

˝

¯̃xk`1

¯̃yk`1

˛

‚“

¨

˝

x̃k`1

ỹk`1

˛

‚` θ

¨

˝

¨

˝

x̃k`1

ỹk`1

˛

‚´

¨

˝

x̃k

ỹk

˛

‚

˛

‚.

fval “ ´e˚pp1q ´ h˚p´q1q `

〈¨
˝

pN

´qN

˛

‚,

¨

˝

x

y

˛

‚

〉
`

řN´1
j“1

〈¨
˝

pj ´ pj`1

´pqj ´ qj`1q

˛

‚,

¨

˝

xj

yj

˛

‚

〉
´

δ
řN
j“1Hpxj, yj, pj,´qj, sjq

return fval
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1.5.3 Remarks on how to perform the argmin/argmax in each iteration

In each iteration for the above algorithms, we have an optimization problem when updating

x̃k`1 (ỹk`1) or p̃k`1 (q̃k`1). In some of our experiments, the optimization turned into a

closed-form proximal expression (mainly when updating p̃k`1{q̃k`1, or we were able to make

use of one step of gradient descent of the objective (mainly when updating x̃k`1 or ỹk`1 or

when G̃ “ g is involved). As an example, one way to update the Lax formula for optimal

control (1) using a backward Euler discretization is
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

p̃k`1 “ proxσH̃δp¯̃xk,¨qpp̃
k ` σD ¯̃xkq

x̃k`1 “ x̃k ´ τDT p̃k`1 ´ τ∇x̃G̃px̃
kq ` τ∇x̃H̃δpx̃

k, p̃k`1, s̃q

¯̃xk`1 “ x̃k`1 ` θpx̃k`1 ´ x̃kq.

and one way to update the Hopf formula for optimal control (2) is,
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

p̃k`1 “ proxσH̃δp¯̃xk,¨qpp̃
k ` σD ¯̃xk ´ σ∇g˚pp1qq

x̃k`1 “ x̃k ´ τDT p̃k`1 ` τ∇x̃H̃δpx̃
k, p̃k`1q

¯̃xk`1 “ x̃k`1 ` θpx̃k`1 ´ x̃kq.

where we see the update for p̃k`1 is a proximal gradient update [103] (Section 4.2).

There are many combinations we can use, but the intuition is to take a gradient step on

the smooth part, and a proximal step on the non-smooth part. And if we have a sum of a

smooth part and a non-smooth part, we can mix a gradient step with a proximal step (i.e.

a proximal gradient step) as we have done above.

1.5.4 Computation of characteristic curves/optimal trajectories

A benefit from the new algorithm is that alongside computing solutions at each point, it

also allows us to directly compute trajectories/characteristic curves of the Hamilton-Jacobi
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equation at each point. In fact, our algorithm is a hybrid of the direct collocation method

(a direct method) [135] and Pontryagin’s Maximum Principle (an indirect method) [63].

We give some examples of characteristic curves/optimal trajectories in our numerical

results (1.6).

1.5.5 The advantage of splitting over coordinate descent

The advantage of these methods over coordinate descent is not only its speed, but it also

does not seem to require as many multiple initial guesses for nonconvex optimization. And

in our numerical experiments in 1.6, we only used a single initial guess in all our examples.

And for most examples in our experiments in 1.6, it only requires one guess.

It also the advantage that one can apply the method to non-smooth problems, as opposed

to coordinate-descent, where one takes numerical gradients.

And practically, splitting is more straightforward to implement than coordinate descent,

where we would require divided differences to numerically compute the gradients, and we also

have available to us the multitude of splitting techniques from the optimization literature,

such as ADMM and Douglas-Rachford splitting to name a few.

1.5.6 A remark on the connection between Hamilton-Jacobi equations and op-

timization, and the implications on future optimization methods

The relationships between Hamilton-Jacobi equations and optimization have been noted in

the literature [109, 110]. More recently, there has been a connection between deep learning

optimization and HJE [18]. More concretely, there is a straight-forward connection between

Hamilton-Jacobi equations and the proximal operator (which can be interpreted as implicit

gradient descent):

Given a function fp¨q, the proximal operator of f is

pI ` λBfq´1
pvq ..“ arg min

x

"

fpxq `
1

2λ
}x´ v}22

*
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If we change the arg minx into a minx, then we get the familiar Lax (a.k.a. Hopf-Lax)

formula for the Hamilton-Jacobi equation with Hpxq “ 1
2
}x}22, and for t “ λ. So in this way,

the Generalized Lax and Hopf formulas can be viewed as a generalization of the proximal

operator.

Also, the proximal operator, i.e. the arg minx operator, is featured heavily in our algo-

rithms. In classical PDHG, the primal variable x and the dual variable p are decoupled.

But for our algorithms, the coupling is in the form of a state-dependent Hamiltonian. This

coupling of the primal and dual variables can have implications on future optimization meth-

ods, as we can then attempt various coupling functions, i.e. Hamiltonians, and examine their

effectiveness in general optimization techniques.

We also reiterate that our algorithms have been able to perform nonconvex optimization

without as many multiple initial guesses as in other algorithm such as coordinate descent. In

fact, in all our examples in 1.6, we only used a single initial guess. So we feel a deeper theo-

retical examination of these algorithms will likely be beneficial to the theory and literature

of nonconvex optimization methods.

1.6 Numerical Results

Here we present numerical examples using our algorithm. The computations were run on a

laptop with an Intel i7-4900MQ 2.90Ghzˆ4 Haswell Core processor, of which only one core

processor was utilized for computations. And the computations for the Eikonal equation and

the Difference of Norms were computed in C++, while the (unnamed) Isaacs example and

the Quadcopter were computed in MATLAB, version R2017b.

For initializations, we initialized x̃0 “ px0
0, x

0
1, . . . , x

0
Nq to be such that each x0

i (for

i “ 0, . . . , N ´ 1) is a random point close to xtarget, and we let x0
N ” xtarget. In par-

ticular, for x̃0 each coordinate, except for x0
N , was randomly initialized so that }x̃0 ´

pxtarget, xtarget, . . . , xtargetq}8 ď 0.1. We chose p̃0 to be a random vector close to the ori-

gin so that }p̃0 ´ 0}8 ď 0.1.
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We chose θ “ 1 in all cases.

The PDHG step-sizes σ and τ , and the time-step size δ all varied for each example.

The error tolerance for all optimal control examples were chosen such that primal and

dual variables satisfy }xk`1 ´ xk}22 ă 10´8 and }pk`1 ´ pk}22 ă 10´8. The error tolerance for

all the differential games example were also similarly }pxk`1, yk`1q ´ pxk, ykq}22 ă 10´8 and

}ppk`1, qk`1q ´ ppk, qkq}22 ă 10´8, although we had to slightly modify our stopping criteria

here.

For the difference of norms example, if the algorithm reached some max count, then

we would examine the value function and stop the algorithm when the value of the value

function for consecutive iterations reached a difference below some tolerance.

For the (unnamed) Isaacs example with fully convex initial conditions, we chose the

error to be such that the relative error of the value function of consecutive iterations was

less than 10´6, i.e.
›

›

›

fvalk`1´fvalk

minp}fvalk`1},1q

›

›

›
ă 10´6. This example turned out to be the harshest on

our algorithm.

In all cases, when we derive the Hamiltonian, we are starting from an optimal control

with a terminal condition and solving “backwards in time" (see 1.2.1) as this naturally gives

us an initial-valued Hamilton-Jacobi PDE.

1.6.1 State-and-Time-Dependent Eikonal Equation (Optimal Control)

1.6.1.1 Brief background on Eikonal equations

The state-dependent Eikonal equations are HJE with Hamiltonians,

H`
px, pq “ cpxq}p}, H´

“ ´cpxq}p}.

where cpxq ą 0 and } ¨ } is any norm; in our examples we take the Euclidean norm. We also

test a state-and-time-dependent equation of Eikonal type, where Hpx, p, tq “ cpx´ tq}p}.

They arise from optimal control problems that have dynamics

fpx, uq “ cpxqu, with }u} ď 1 and cpxq ‰ 0 for all x
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and with cost-functional

Jrus “ gpxp0qq `

ż t

0

Iď1pupsqq ds

where Iď1p¨q is the indicator function of the unit ball in Rn, i.e. 0 for all points within the

unit ball including the boundary, and `8 for all points outside.

This is a nonlinear optimal control example due to the presence of cpxq. Also, our

algorithm is performing nonconvex optimization (due to the presence of cpxq, but also in

our negative Eikonal equation example where we are performing minimization with a ´gpxq

term where g is quadratic).

The Eikonal equation features heavily in the level set method [99, 98], which has made

wide-ranging contributions in many fields.

Note the optimization in solving negative Eikonal equation can be obtained by examining

the positive Eikonal equation. This is actually a general phenomenon of Hamiltonians that

obey Hpx,´p, tq “ Hpx, p, tq. This is because if φ solves a HJE with initial data g and

Hamiltonian such that Hpx,´p, tq “ Hpx, p, tq, then examining ´φ,
$

&

%

p´φqt `Hpx,∇p´φq, tq “ 0

p´φqpx, 0q “ ´gpxq

,

.

-

ô

$

&

%

φt ´Hpx,∇φ, tq “ 0

φpx, 0q “ gpxq

,

.

-

so we see ´φ solves the positive Eikonal equation with initial data ´g if and only if φ solve

the negative Eikonal equation with initial data g. And note that both are viscosity solutions

as this computation still holds when we compute the viscous version of the HJE [40] (Section

10.1).

1.6.1.2 Implementation details

Here we take

cpxq “ 1` 3expp´4}x´ p1, 1, 0, . . . , 0q}22q,

which is a positive bump function. The initial condition of our HJE PDE is

gpxq “ ´1{2` p1{2q
〈
A´1x, x

〉
, A “ diagp2.52, 1, 0.52, . . . , 0.52

q.
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We used the Lax version of our algorithm, Algorithm 1, for all cases in this section. For

the x̃k`1-update, we took one step of gradient descent. And for the p̃k`1 update, we took

the proximal of the `2-norm (a.k.a. the shrink2 operator); in general the shrink operator

can be defined for any positively homogenous of degree 1 convex function φ. For the `-1

norm, we have the shrink1 operator (in Rn) can be computed coordinate-wise and the i-th

coordinate satisfies,

pshrink1px, λqi “

$

’

’

’

&

’

’

’

%

xi ´ λ if xi ą λ

0 if |xi| ď λ

xi ` λ if xi ă ´λ

and the shrink2 operator also can be computed coordinate-wise and the i-th coordinate

satisfies

pshrink2px, λqqi “

$

&

%

x
}x}2

maxp}x}2 ´ λ, 0q if x ‰ 0

0 if x “ 0.

For the negative Eikonal equation, since in our implementation we computed a positive

Eikonal equation with initial data ´g and then took the negative, we were able to compute

the proximal of the concave quadratic ´g. We call this taking the stretch operator of g (see

[19], Section 4.2.2).

For these Eikonal equations, we chose a time step-size of δ “ 0.02, and we computed in

a r´3, 3s2 grid with a mesh size of 0.1 on each axis.

For the positive Eikonal equation (1.6.1.2), we chose a PDHG step-size that depended on

the norm of ∇cpxq. If }∇cpxq}2 ą 0.001, then we took σ “ 50 and or else we took σ “ 0.5.

And we always took τ “ 0.25{σ (the 0.25 comes from }D}2 “ 2´ ε for some small ε ą 0, and

requiring στ ă 1{}D}2). To compute the times t “ 0.1, 0.2, 0.3, and 0.4, the computation

time averaged to 4.39ˆ 10´4 seconds per point in C++.

For the negative Eikonal equation (1.6.1.2), we chose a PDHG step-size of σ “ 100 and

τ “ 0.25{σ. We picked θ “ 1 for all cases. For t “ 0.1, 0.2, 0.3, 0.4, and 0.5, the computation

time averaged to 0.0024 seconds per point in C++. We see that for the t “ 0.5 curve, there
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are kinks, which may be a result of the splitting finding sub/super solutions, rather than

viscosity solutions [40] (Section 10.1). In this case, multiple initial guesses will alleviate this.

For the negative eikonal equation in 10 dimensions (1.6.1.2), we computed a 2-dimensional

slice in r´3, 3s ˆ r´3, 3s ˆ t0u ˆ ¨ ¨ ¨ ˆ t0u. The time step-size was again δ “ 0.02 and we

chose σ “ 100, and τ “ 0.25{σ. For t “ 0.1, 0.2, 0.3, and 0.4 (0.5 had no level sets) the

computation time averaged to 0.004 seconds per point in C++.

We also computed a state-and-time-dependent Eikonal equation (1.6.1.2) whereHpx, p, tq “

cpx´ tp´1, 1qq}p}2. Here in our specific example, cpx´ tp´1, 1qq represents a bump function

moving diagonally in the p´1, 1q direction as t increases. The time step-size were the same

as in the positive eikonal case which is reasonably expected because we took the positive

eikonal case and modified it. The computational time for t “ 0.1, 0.2, 0.3, and 0.4 averaged

to 5.012ˆ 10´4 seconds per point in C++.

In these examples, we achieved a speedup of about ten times over coordinate descent,

and only one initial guess was used. In low dimensions, this problem can be solved with

SQP (Sequential Quadratic Programming) on the value function, or using Lax-Friedrichs.

We use these methods to check our accuracy and they agree to within 10´4 for each point

px, tq when using SQP.

We observe that the two different eikonal equations required vastly different step-sizes

and it is worth examining how to choose step-sizes in a future work. We speculate the

step-sizes may act as CFL conditions. This is a further point of study.

Comparing coordinate descent to our algorithm in MATLAB, we achieve about an 8-10

times speed-up.

The figures 1.6.1.2, 1.6.1.2, and 1.6.1.2, and 1.6.1.2 show the zero level sets of the HJE

solution.

In 5, we give an explicit example of how we performed our algorithm on the negative

eikonal equation.
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Algorithm 5 Splitting for the negative Eikonal equation with convex initial data g (note:

below we are actually solving the equivalent problem of the positive Eikonal equation with

concave initial data ´g)
Given: xtarget P Rd and time t P p0,8q.

while p}x̃k`1 ´ x̃k}22 ą tol or }p̃k`1 ´ p̃k}22 ą tolq and pcount ă max_countq do

for j “ 1 to N do

pk`1
j “ shrink2pp

k
j ` σpz

k
j ´ z

k
j´1q, σδcpx

kqq (proximal)

for j “ 0 do

xk`1
0 “ xk0 ´ τp p

k`1
0

loomoon

“0

´pk`1
1 q ´ τp∇p´gqqpxk0q (gradient descent)

for j “ 1 to N ´ 1 do

xk`1
j “ xkj ´ τpp

k`1
j ´ pk`1

j´1q ´ τp´δp∇cqpxkj q}pk`1
j }2q (gradient descent)

for j “ 0 to N do

zk`1
j “ xk`1

j ` θpxk`1
j ´ xkj q (extrapolation step)

fval “ ´gpx0q `
řN
j“1 〈pj, xj ´ xj´1〉´ δ

řN
j“1 cpxjq}pj}2

return fval
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Figure 1.1: Eikonal equation with H`px, pq “ cpxq}p}2, in two spatial dimensions. This plot

shows the zero level sets of the HJE solution for t “ 0.1, 0.2, 0.3, 0.4. We observe that the

zero level sets move outward as time increases. The left figure is computed using our new

algorithm, while the right figure is computed using the conventional Lax-Friedrichs method.

Figure 1.2: Eikonal equation with H´px, pq “ ´cpxq}p}2, in two spatial dimensions. This

plot shows the zero level sets of the HJE solution for t “ 0.1, 0.2, 0.3, 0.4. We observe that

the zero level sets move inward as time increases. Left is computed with our new algorithm,

while the right is computed using the conventional Lax-Friedrichs method.
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Figure 1.3: Eikonal equation with H´px, pq “ ´cpxq}p}2, in ten spatial dimensions. This

plot shows the zero level sets of the HJE solution for t “ 0.1, 0.2, 0.3, 0.4. We observe that

the zero level sets move inward as time increases.

Figure 1.4: Eikonal equation with Hpx, pq “ cpx ´ tp´1, 1qq}p}2. This plot shows the zero

level sets of the HJE solution for t “ 0.1, 0.2, 0.3, 0.4. We observe there is a similarity to the

positive eikonal case, but the “bump" is more sheared to the left.
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1.6.1.3 Dimensional scaling of the negative Eikonal equation

Here we examine how Algorithm 1 scales with dimension. We compute the negative Eikonal

equation with the same speed c and initial data g as above, and with δ “ 0.02 and σ “ 100

and τ “ 0.25{σ. We computed in a 2-dimensional slice r´3, 3s2 ˆ t0ud´2, and we computed

from d “ 10 to d “ 2000 dimensions. We performed our analysis at time t “ 0.2.

We chose this particular example as this is a nonlinear optimal control problem that

requires us to optimize a nonconvex problem.

We used least-squares to fit both a linear function as well as a quadratic function. The

coefficients were

linpdq “ p1.14ˆ 10´4
qd` 0.0021, quadpdq “ p´5.99ˆ 10´9

qd2
` p1.27ˆ 10´4

qd´ 0.00195

As we can see from the equations of the fit, and from 1.6.1.3, the quadratic fit has an

extremely small quadratic coefficient. 1.6.1.3 shows the plot with the linear fit. This com-

putation was done in C++.

We predict that for general problems, the scaling will be polynomial in time.

1.6.2 Difference of norms (Differential Games)

1.6.2.1 From differential games to HJE for the difference of norms

The state-dependent HJE for the difference of norms case arises from the following differential

games problem: Given x P Rd1 and y P Rd2 , and some t ą 0, we have the following the
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Figure 1.5: How our algorithm scales with dimension for the negative Eikonal equation at

time t “ 0.2. This is a nonlinear optimal control problem, and the optimization requires us

to perform nonconvex optimization. The plot shows a linear fit.
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%

¨

˝

9xpsq
9ypsq

˛

‚“

¨

˝

c1pxpsq,ypsqqαpsq

c2pxpsq,ypsqqβpsq

˛

‚, 0 ď s ď t

¨

˝

xptq

yptq

˛

‚“

¨

˝

x

y

˛

‚

αpsq} ď 1, }βpsq} ď 1, for all s,

and c1, c2 are positive functions.

And the cost function is

Jx,trα,βs “ gpxp0q,yp0qq `
ż t

0

Iď1pαpsqq ´ Iď1pβpsqq ds
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where Iď1p¨q is the indicator function the unit-ball, i.e. it equals 0 for points inside and on

the unit-ball, and `8 for points outside. Our value function is then

φpx, y, tq “ inf
α,}α}ď1

sup
β,}β}ď1

Jx,trα,βs.

Then our Hamiltonian becomes,

Hpx, y, p, qq “ max
α

min
β

$

&

%

〈¨
˝

c1px, yqα

c2px, yqβ

˛

‚,

¨

˝

p

q

˛

‚

〉
´ pIď1pαq ´ Iď1pβqq

,

.

-

“ max
α
t〈c1px, yqα, p1〉´ Iď1pαqu `min

β
t〈c2px, yqβ, q〉` Iď1pβqu

“ c1px, yq}p}2 ´ c2px, yq}q}2.

In this case, we have nonlinear dynamics, aswell as nonconvex Hamiltonian.

1.6.2.2 Implementation details for the difference of norms

Here we take,

c1pxq “ 1` 3expp´4}x´ p1, 1, 0, . . . , 0q}22q, c2pxq “ c1p´xq,

and the initial condition is

gpxq “ ´1{2` p1{2q
〈
A´1x, x

〉
, A “ diagp2.52, 1, 0.52, . . . , 0.52

q.

which is the same initial condition as in our Eikonal equation example above 1.6.1.2.

For the 2-dimensional case, we used the Hamiltonian,

Hpx1, x2, p1, p2q “ cpx1, x2q}p1}2 ´ cp´x1,´x2q}p2}2

and for the 7-dimensional case, we used,

Hpx1, x2, . . . , x7, p1, pp2,...,7qq “ cpx1, . . . , x7q}p1}2 ´ cp´x1, . . . ,´x7q}pp2,...,7q}2.

where pp2,...,7q “ pp2, p3, . . . , p7q.
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We compute our solutions in 2 and 7 dimensions. We compute the 2-dimensional case

in a r´3, 3s2 grid, and we compute the 7-dimensional case in the two dimensional slice

r´3, 3s2 ˆ t0u ˆ ¨ ¨ ¨ ˆ t0u. And we used 3.

For the p̃k`1-update, we used the proximal of the `2-norm (a.k.a. the shrink2 operator),

and for the x̃k`1-update, we used one step of gradient descent.

We took the time-step as δ “ 0.02, and we took the PDHG steps σ “ 50, and τ “ 0.25{σ.

The 0.25 comes from the fact that the PDHG algorithm requires στ}D}22 ă 1, and }D}2 “

2´ ε, for some small ε ą 0.

The computation was done with a mesh size of 1{12 « 0.08333 in each axis. For the

2-dimensional case, the computation averaged out to 0.0135 seconds per point in C++, and

for the 7-dimensional case the computation averaged out to 0.01587 seconds per point in

C++. If we compared the algorithms in MATLAB on the same computer, we achieved a

10-20 times speed-up compared to coordinate descent.

We note that at certain points, the trajectories would oscillate a little for larger times

which may be due to the non-convexity and the non-unique optimal trajectories. So when a

maximum count was reached, we would raise σ by 20, and we would also readjust τ “ 0.25{σ.

We do not recommend choosing a high σ at all points, or else the algorithm would result in

incorrect solutions. If the convergence was not fast enough, after some maximum count, we

would switch our convergence criteria to the value function, as the error (between consecutive

iterations) seemed to converge to zero. The procedure of raising the sigma is reminiscent of

CFL conditions for finite-difference schemes, and we are examining how best to choose the

PDHG step-sizes σ and τ . The best σ and τ to choose seem to be dependent on the point

at which we are computing.
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Figure 1.6: The difference of norms HJE in two spatial dimensions. This plot shows the

zero level sets of the HJE solution for t “ 0.1, 0.2, 0.3. We observe that the zero level sets

move inward as time increases. Left is computed with our new algorithm, while the right is

computed using the conventional Lax-Friedrichs method. Note there is an anomaly at the

top-right of Lax-Friedrich computation. And there is also more of a corner in the bottom-left

of the solution computed by the new method. This may be a result of the true solution, and

which does not appear in the Lax-Friedrichs solution as it tends to smooth out solutions.

Figure 1.7: The difference of norms HJE in seven spatial dimensions. This plot shows the

zero level sets of the HJE solution for t “ 0.1, 0.2, 0.3.
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1.6.3 An (unnamed) example from Isaacs (Differential Games)

1.6.3.1 From differential games to HJE for an unnamed example from Isaacs

We now examine a modified version of a differential game, obtained from [39] (Example 6.3),

in which it is named “an unnamed example of Isaacs"; the original source is found in Isaac’s

seminal work [67] (Example 8.4.3). The dynamics are as follows:
$

&

%

9xpsq “ 2β ` sinpαq

9ypxq “ ´cpx, yq ` cospαq

where 0 ď α ď 2π and ´1 ď β ď 1. These dynamics are nonlinear. We take the cost-

functional as,

Jrα, βs “ gpxp0q, yp0qq `

ż t

0

1 ds

and the value function seeks to maximize with respect to α P r0, 2πs, and minimize with

respect to β P r´1, 1s. Then our Hamiltonian is,

Hpx, y, p, qq “ min
α,αPr0,2πs

max
β,βPr´1,1s

$

&

%

〈¨
˝

2β ` sinpαq

´cpx, yq ` cospαq

˛

‚,

¨

˝

p

q

˛

‚

〉
´ 1

,

.

-

“ min
α,αPr0,2πs

max
β,βPr´1,1s

t2βp´ cpx, yqq ` p sinpαq ` q cospαq ´ 1u

“ ´cpx, yqq ` 2|p| ´
a

p2 ` q2 ´ 1.

This Hamiltonian is nonconvex. And the dynamics are nonlinear.

1.6.3.2 Implementation details for the (unnamed) example from Isaacs with

fully convex initial conditions

We take

cpxq “ 2p1` 3expp´4}x´ p1, 1, 0, . . . , 0q}22qq, (1.15)

which is a positive bump function. The initial condition of our HJE PDE is

gpxq “ ´1{2` p1{2q
〈
A´1x, x

〉
, A “ diagp2.52, 1, 0.52, . . . , 0.52

q.
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This example is perhaps the harshest on our algorithm and turns out to be slower than

coordinate descent, but in many ways this is not surprising. This is because this problem is

highly nonconvex and the gpx, yq that we use is a convex function – ideally we would like it

to be a convex-concave function which would be suitable for saddle-point problems. Not only

that, but our Hamiltonian is not bounded below with respect to q, and the Hopf formula

requires this assumption.

Nevertheless, we show this example in order to advertise the generality of our algorithm.

It might actually be surprising that our algorithm gives a solution that looks like the Lax-

Friedrichs solution at all. We also not that we only used one initial guess, and in our

experiments, using around 5 initial guesses smooths our the solution.

We use 3, but modified so we can utilize the convex portion of g (see the last paragraph

of 1.5.2). We compute our solutions in a 2-dimensional r´3, 3s2 grid. The p̃k`1-update

utilizes a combination of gradient descent for the q, and the shrink2-operator for the p. The

x̃k`1-update uses one step of gradient descent.

We took the time-step as δ “ 0.005, and we took the PDHG steps as σ “ 20, and τ “

0.25{σ, where the 0.25 comes from the PDHG condition that στ}D}22 ă 1, and }D}2 “ 2´ ε

for some small ε ą 0.

As in the difference of norms example, we did have some points that were slower to

converge. We alleviated this problem by rerunning the algorithm at the same point (without

change σ nor τ) if we reached some maximum count, and sometimes took the solution if the

maximum count was reached anyway.

The computational time on a r´3, 3s2 grid, of mesh size 1{12 « 0.0833 for each axis,

averaged out to 0.412 seconds per point in MATLAB.

In this example, using 3 was slower than coordinate descent where it averaged to 0.133

seconds per point, and so we recommend using coordinate descent in this case.

1.6.3.2 gives the result of our algorithm.
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Figure 1.8: The zero level-sets for the HJE from an unnamed example of Isaacs. The times

we computed were t “ 0.025, 0.05, 0.075, and 0.1. The left figure is the result of our

algorithm, while the right figure is the result of Lax-Friedrichs. Here we see this example is

our harshest critic. But this is not surprising because the initial condition is a fully convex

function, whereas we’d rather have it be convex-concave. And also the Hamiltonian is not

bounded below with respect to q which as an assumption of the Hopf formula. Neverthless

our algorithm is still able to achieve a result similar to Lax-Friedrichs, which might actually

be the surprising part. We also note that we only used one initial guess here, but using

multiple initial guess (around 5) smooths out the curves.
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1.6.3.3 Implementation details for the (unnamed) example from Isaacs with

convex-concave initial conditions

We take cpxq to be the same as in the fully convex initial conditions (see 1.15). The initial

condition of our HJE PDE is

gpx1, x2q “ ´1{2` p1{2qppp2.5qx1q
2
´ px2q

2
q

Here we have convex-concave initial conditions, and our algorithm works well. This is an

example of a convex-concave game, in which [35] have also applied their method to linear

differential games.

We use 4, and as in all other examples here, we only have one initial guess. We compute

our solutions in a 2-dimensional r´3, 3s2 grid. The p̃k`1-update utilizes a combination of

gradient descent for the q, and the shrink2-operator the p. The x̃k`1-update uses one step

of gradient descent.

We took the time-step as δ “ 0.005, and we took the PDHG steps as σ “ 2 for t “ 0.025,

0.05, 0.075, and σ “ 10 for t “ 0.1. We always chose τ “ 0.25{σ, where the 0.25 comes from

the PDHG condition that στ}D}22 ă 1, and }D}2 “ 2´ ε for some small ε ą 0.

We computed this example in a r´3, 3s2 grid with mesh size 1{12 « 0.0833 for each axis.

The computational time averaged to 0.125 seconds per point.

As in the difference of norms example, we did have some points that were slower to

converge. We alleviated this problem by rerunning the algorithm at the same point (without

change σ nor τ) if we reached some maximum count, and sometimes took the solution if the

maximum count was reached anyway.

1.6.3.3 gives the result of our algorithm.
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Figure 1.9: The zero level-sets for the HJE from an (unnamed) example of Isaacs with

convex-concave initial conditions. The times we computed were t “ 0.025, 0.05, 0.075, and

0.1. The left figure is the result of our algorithm, while the right figure is the result of

Lax-Friedrichs.

1.6.4 Quadcopter (a.k.a. Quadrotor or Quad rotorcraft) (Optimal Control)

1.6.4.1 From optimal control to HJE for the quadcopter

A quadcopter is a multirotor helicopter that utilizes four rotors to propel itself across space.

The dynamics of a quadcopter [52] are:
$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

:x “ u
m
psinpφq sinpψq ` cospφq cospψq sinpθqq

:y “ u
m
p´ cospψq sinpφq ` cospφq sinpθq sinpψqq

:z “ u
m

cospθq cospφq ´ g

:ψ “ τ̃ψ

:θ “ τ̃θ

:φ “ τ̃φ

where px, y, zq is the position of the quadcopter in space, and pψ, θ, φq is the angular orien-

tation of the quadcopter (a.k.a. Euler angles). The above second-order system turns into
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the first-order system,
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’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

9x1 “ x2

9y1 “ y2

9z1 “ z2

9ψ1 “ ψ2

9θ1 “ θ2

9φ1 “ φ2

9x2 “ u
m
psinpφ1q sinpψ1q ` cospφ1q cospψ1q sinpθ1qq

9y2 “ u
m
p´ cospψ1q sinpφ1q ` cospφ1q sinpθ1q sinpψ1qq

9z2 “ u
m

cospθ1q cospφ1q ´ g

9ψ2 “ τ̃ψ

9θ2 “ τ̃θ

9φ2 “ τ̃φ

and so the right-side becomes our fpx,αq. Here the controls are the variable u, τ̃ψ, τ̃θ, τ̃φ.

This is a 12-dimensional, nonlinear, optimal control problem.

Denoting x “ px1, y1, z1, ψ1, θ1, φ1, x2, y2, z2, ψ2, θ2, φ2q, then our cost-functional is,

Jru, τ̃ψ, τ̃θ, τ̃φs “ gpxp0qq `
ż t

0

2` }pupsq, τ̃ψpsq, τ̃θpsq, τ̃φpsqq}
2
2 ds (1.16)

where this cost functional was chosen to follow [120] and [66]. Therefore, our Hamiltonian
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becomes,

Hpx,p, tq “ max
u,τ̃ψ ,τ̃θ,τ̃φ

$
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’
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sinpφ1q sinpψ1q ` cospφ1q cospψ1q sinpθ1q
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cospθ1q cospφ1q
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ffi

ffi
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fl
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fi
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ffi
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»
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2 ´ ||τ̃φ||
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fi

ffi

ffi

ffi
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—
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ffi

ffi

ffi
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ffi
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fl

¨
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fi
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—
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–

sinpφ1q sinpψ1q ` cospφ1q cospψ1q sinpθ1q

´ cospψ1q sinpφ1q ` cospφ1q sinpθ1q sinpψ1q

cospθ1q cospφ1q

fi

ffi

ffi

ffi

fl

¨

»

—

—

—

–

p7

p8

p9

fi

ffi

ffi

ffi
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›

›

›

›
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›

›

›

›
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´ p9g `
1

4
}p10}

2 `
1

4
}p11}

2 `
1

4
}p12}

2 ´ 2

1.6.4.2 Implementation details for the quadcopter

Here we have,

gpxq “ ´1{2` p1{2q
〈
A´1x, x

〉
, A “ diagp0.2, 1, 1, . . . , 1q.

In this case, we use the algorithm based on the generalized Hopf formula, 2.

We compute our solutions in a two dimensional slice of R12:

r´1, 1s ˆ t0u ˆ t0u ˆ r´1, 1s ˆ t0u ˆ t0u ˆ t0u ˆ t0u ˆ t0u ˆ t0u ˆ t0u ˆ t0u,

i.e. we vary the x-coordinate, as well as the x-velocity-coordinate. Recall the order of the

coordinates are: x “ px1, y1, z1, ψ1, θ1, φ1, x2, y2, z2, ψ2, θ2, φ2q.
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For both the p̃k`1-update and the x̃k`1-update, we used gradient descent, except for

the update involving g˚pp1q, where we did a proximal-gradient step, i.e. we performed a

gradient descent, ignoring g˚, and then we fed the result into proxσpg˚qp¨q. This can be seen

as a proximal-gradient step [103] (Section 4.2).

In this example, we chose as time-step size δ “ 0.005, and we chose times t “ 0.025, 0.05, 0.075.

For the PDHG step-sizes, we chose σ “ 5, and τ “ 0.25{τ , where as stated above, the 0.25

comes from the PDHG requirement στ}D}22 ă 1, and }D}2 “ 2´ ε, for some small ε ą 0.

The computation was done on a r´1, 1s2 grid, with mesh size 0.01 in each axis. The

computational time averaged to 0.0733 seconds per point in MATLAB.

In this case, not only are we able to compute level-sets of the HJE, but we are also able

to take advantage of the characteristic curve/optimal trajectory generation that is freely

offered by our algorithm.

To generate the curves/trajectories, we took a randomly-generated terminal point, which

was exactly

xtarget “ p0.36,´0.62,´0.06, 0.23, 0.85,´0.66, 0.72,´0.45, 0.15,´0.75, 0.04,´0.83q (1.17)

and we computed up to t “ 6 seconds. We chose a time-step of δ “ 0.05, and we chose σ “ 11

(and τ “ 0.24{σ (as opposed to 0.25 as the latter will not converge). This took about 24s to

compute in MATLAB. We verified our result by directly minimizing a discretized version of

(1.16) (see also 1.4.1 on how we discretized), which is a direct collocation method [135]. We

performed the optimization using a standard MATLAB minimization solver (fmincon with

the SQP algorithm), and this agreed with our results. The solver took 133-347s to compute

the trajectories, depending on the accuracy criteria, and we note that fmincon converges to

our splitting result the longer we let the algorithm run. So in this case, 5-10+ times speedup.

Computing trajectories at other points have found around an 8-10+ speedups.

1.6.4.2 gives the zero level-sets of the HJE, and 1.6.4.2 gives the result of computing the

curves/trajectories. 1.6.4.2 plots the x, y, and z positions of the quadcopter as it moves

through time.
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Figure 1.10: Here we compute the zero level-sets for the HJE arising from the quadcopter.

The x-axis is the x1-position of the quadcopter, and the y-axis is the angular position in the

ψ1 coordinate. The zero level-sets are computed for t “ 0.025, 0.05, and 0.075. This is a

12-dimensional, nonlinear optimal control problem.

1.7 Discussion and Future Work

In this paper, we have presented a splitting method to compute solutions to general (i.e.

convex and nonconvex) Hamilton-Jacobi equations which arise from general (i.e. linear and

nonlinear) optimal control problems and general differential games problems.

Some nice properties of our algorithm include: (1) relatively fast computation of solutions

in high-dimensions, especially when we parallelize the algorithm which is embarrassingly

parallelizable [64] (2) it can generate optimal trajectories of the optimal control/differential

games problems, (3) it can compute problems with non-linear ODEs, (4) it can compute

solutions for nonconvex Hamiltonians, (5) and the algorithm is embarrassingly parallelizable,

i.e. each core can use the algorithm to compute the solution at a point, so given N cores we

can compute solutions of the HJE at N points simultaneously.

Splitting applied to optimal control problems has been used by [95] where they apply it to

cost functionals having a quadratic and convex term. In terms of Hamilton-Jacobi equations,
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Figure 1.11: Here we compute the characteristic curves/optimal trajectories for the quad-

copter. We are computing at the terminal point in (1.17) and we are computing at the

terminal time t “ 6 seconds. A plot of the trajectories computing using a different algorithm

– SQP – looks identical.
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Figure 1.12: We plot the px, y, zq coordinates of the quadcopter to give a plot of the trajectory

of the quadcopter in 3D space.

the authors in Kirchner et al. [74] (2018) effectively applied it to Hamilton-Jacobi equations

arising from linear optimal control problems by using the Hopf formula. They make use of

the Hopf formula and the closed-form solution to linear ODEs to not only solve HJE, but to

also directly compute optimal trajectories in high-dimensional systems. The authors of this

current paper have been working in parallel and also applied splitting to HJE and trajectory

generation for nonlinear optimal control problems and minimax differential games.

On a related note, see also previous work by Kirchner et al. [73] where they apply the

Hopf formula to differential games and show that complex “teaming" behavior can arise,

even with linearized pursuit-evasion models.

As far as we know, the idea to use splitting for differential games problem for the dis-

cretization in equation (1.13) and (1.14) is new. And we believe it is worth examining if this

PDHG-inspired method to solve minimax/saddle-point problems may apply to more general

minimax/saddle-point optimization problems.

The proof of convergence and the proof of approximation for our algorithm is still a work-

in-progress. But it seems to be that for the examples in 1.6, we get relatively the correct

answer, and our algorithm seems to scale linearly with dimension for even a nonlinear optimal

control problem requiring nonconvex optimization (see 1.6.1.3).
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We also believe that due to the deep connection between Hamilton-Jacobi equations and

optimization methods (1.5.6), it is worthwhile to examine why our algorithm works. Not

only that, but for our examples in 1.6, we were able to perform nonconvex optimization with

only a single initial guess, whereas coordinate descent required multiple. And the authors

also believe it is worth examining the algorithms 3 and 4 as the computation of minimax

differential games problems using a splitting method seems new. In essence, it may be

possible to generalize these algorithms to apply to general minimax/saddle-point problems

with continuous constraints.

Some improvements to our algorithm for differential games problems (3 and 4) can be

foreseen:

1. We have found speed-ups to our algorithm when we use acceleration methods [16, 17]

2. One may be able to devise a more sophisticated stopping criteria as that in Kirchner

et al. [74], where they apply a step-size-dependent stopping criteria based off work by

[53].

3. We would also like to utilize higher-order approximations for the ODE and integral

when discretizing the value functions of the optimal control or differential games prob-

lems. We note that for the Lax discretizations (1 and 3), one can average the forward

and backward Euler approximations to obtain higher accuracy, analogous to how the

trapezoidal approximation is the average of the two.

4. And we believe we might be able to make use of having a closed-form solution, or an

approximate solution, to computing the characteristic curves, i.e. closed form solu-

tions to d
dt
xpsq “ Hppxpsq,ppsq, sq and d

dt
ppsq “ ´Hxpxpsq,ppsq, sq, much as in [74],

where they make use of having a closed-form solution to linear differential equations

by utilizing the exponential operator.

5. There could be an advantage in combining the splitting method to pseudo-spectral

methods [111].
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6. In the algorithms for differential equations 3 and 4, we are solving a saddle-point

problem using gradients. We might obtain faster convergence if we used a Hessian-

inspired method, such as split form of BFGS.
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1.9 Appendix: A practical tutorial for implementation purposes

1.9.1 Optimal Control

Suppose we want to compute the Hamilton-Jacobi equations associated to the following

optimal control problem:

φpx, tq “ min
xp¨q,up¨q

"

gpxp0qq `
ż t

0

Lpxpsq,upsq, sq ds
*

(1.18)

where xp¨q and upsq satisfy the ODE
$

&

%

9xpsq “ fpxpsq,upsq, sq, 0 ă s ă t

xptq “ x
(1.19)

Here px, tq P Rnˆr0,8q are fixed, and is the point that we want to compute the HJE solution

ϕ.

Then we can use 1 or 2, which we describe in more detail below.

1.9.1.1 Practical tutorial for 1

If we want to use the discretized Lax formula (with a backward Euler discretization of the

ODE dynamics), then:
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1. Discretize the time domain:

0 “ s0 ă s1 ă s2 ă ¨ ¨ ¨ ă sN´1 ă sN “ t.

In our numerical experiments, we chose a uniform discretization of size δ ..“ t{N .

2. Approximate (1.19) using backward Euler, and also discretize (1.18) to obtain (as in

(1.9)),

φpx, tq « max
tpjuNj“1

min
txjuNj“0

#

gpx0q `

N
ÿ

j“1

〈pj, xj ´ xj´1〉´ δ
N
ÿ

j“1

Hpxj, pj, sjq

+

where xj “ xpsjq, and pj “ ppxjq. Let us denote x “ xtarget to clarify notation.

3. Initialize:

(a) Choose δ ą 0, set N “ t{δ (although note that since we are using the zero-th

time-step, then we are updating N ` 1 points).

(b) Randomly initialize x̃0 ..“ px0
0, x

0
1, . . . , x

0
N´1, x

0
Nq, but with x0

N ” xtarget.

(c) Randomly initialize p̃0 ..“ pp0
0, p

0
1, . . . , p

0
N´1, p

0
Nq, but with p0

0 ” 0, as we won’t be

updating p0
0; it is only there for computational accounting.

(d) Set z̃0 ..“ pz0
0 , z

0
1 , . . . , z

0
Nq “ px

0
0, x

0
1, . . . , x

0
N´1, x

0
Nq.

(e) Choose σ, τ such that στ ă 1{}D}22 “ 0.25 and θ P r0, 1s (we suggest θ “ 1).

(f) Choose some tolerance tol ą 0 small.

4. Set

D “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 ¨ ¨ ¨ 0 0

´I I 0 0 ¨ ¨ ¨ 0 0

0 ´I I 0 ¨ ¨ ¨ 0 0
...

...
...

... . . . ...
...

0 0 0 0 ¨ ¨ ¨ 0 I

0 0 0 0 ¨ ¨ ¨ 0 ´I

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚
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where 0 is a pdimˆ dimq zero matrix, where dim is the size of the space variable, and

I is the pdimˆ dimq identity matrix.

Note that in the algorithm, we can replace pDz̃kqj “ zkj ´ zkj´1, and similarly with

pDT p̃kqj “ pkj´p
k
j`1, so we can save time by not performing a full matrix multiplication.

5. Then perform the algorithm found in 6.

Algorithm 6 Practical tutorial for the Lax formula with backward Euler, for Optimal

Control
Given: xtarget P Rd and time t P p0,8q.

while p}x̃k`1 ´ x̃k}22 ą tol or }p̃k`1 ´ p̃k}22 ą tolq and pcount ă max_countq do

for j “ 1 to N do

pk`1
j “ arg minp

 

δHpxkj , p, sjq `
1

2σ
}p´ ppkj ` σpDz̃

kqjq}
2
2

(

for j “ 0 do

xk`1
0 “ arg minx

 

gpxq ` 1
2τ
}x´ pxk0 ´ τpD

T p̃kq0q}
2
2

(

(note pk0 “ 0)

for j “ 1 to N ´ 1 do

xk`1
j “ arg minx

 

´δHpx, pk`1
j , sjq `

1
2τ
}x´ pxkj ´ τpD

T p̃kqjq}
2
2

(

for j “ 0 to N do

zk`1
j “ xk`1

j ` θpxk`1
j ´ xkj q

fval “ gpx0q `
řN
j“1 〈pj, xj ´ xj´1〉´ δ

řN
j“1Hpxj, pj, sjq

return fval

1.9.1.2 Practical tutorial for 2

If we want to use the discretized Hopf formula, then:
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1. Discretize the time domain:

0 “ s0 ă s1 ă s2 ă ¨ ¨ ¨ ă sN´1 ă sN “ t.

In our numerical experiments, we chose a uniform discretization of size δ ..“ t{N .

2. Approximate (1.19) using backward Euler, and also discretize (1.18) to obtain (as in

(1.11)),

φpx, tq « max
tpjuNj“1

min
txjuNj“1

#

´g˚pp1q ` 〈pN , x〉`
N´1
ÿ

j“1

〈pj ´ pj`1, xj〉´ δ
N
ÿ

j“1

Hpxj, pj, sjq

+

where xj “ xpsjq, and pj “ ppxjq. Let us denote x “ xtarget to clarify notation.

3. Initialize:

(a) Choose δ ą 0, set N “ t{δ.

(b) Randomly initialize x̃0 ..“ px0
1, . . . , x

0
N´1, x

0
Nq, but with x0

N ” xtarget.

(c) Randomly initialize p̃0 ..“ pp0
1, . . . , p

0
N´1, p

0
Nq.

(d) Set z̃0 ..“ pz0
1 , . . . , z

0
Nq “ px

0
1, . . . , x

0
N´1, x

0
Nq.

(e) Choose σ, τ such that στ ă 1{}D}22 “ 0.25 and θ P r0, 1s (we suggest θ “ 1).

(f) Choose some tolerance tol ą 0 small.

4. Set

D “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

I ´I 0 0 ¨ ¨ ¨ 0 0

0 I ´I 0 ¨ ¨ ¨ 0 0
...

...
...

... . . . ...
...

0 0 0 0 ¨ ¨ ¨ 0 ´I

0 0 0 0 ¨ ¨ ¨ 0 I

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

where 0 is a pdimˆ dimq zero matrix, where dim is the size of the space variable, and

I is the pdimˆ dimq identity matrix.

Note we can replace pDT z̃kqj “ zkj ´ z
k
j´1 and pDp̃kqj “ pkj ´ p

k
j`1, so we can save time

by not performing a full matrix multiplication.

Also note that the D here is different than in 1 and 6.
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5. Then perform the algorithm found in 7

Algorithm 7 Practical tutorial for the Hopf formula, for Optimal Control
Given: xtarget P Rd and time t P p0,8q.

while p}x̃k`1 ´ x̃k}22 ą tol or }p̃k`1 ´ p̃k}22 ą tolq and pcount ă max_countq do

for j “ 1 do

pk`1
j “ arg minp

 

g˚ppq ` δHpxk1, p, s1q `
1

2σ
}p´ ppk1 ` σpD

T z̃kq1q}
2
2

(

for j “ 2 to N do

pk`1
j “ arg minp

 

δHpxkj , p, sjq `
1

2σ
}p´ ppkj ` σpD

T z̃kqjq}
2
2

(

for j “ 1 to N ´ 1 do

xk`1
j “ arg minx

 

´δHpx, pk`1
j , sjq `

1
2τ
}x´ pxkj ´ τpDp̃

kqjq}
2
2

(

for j “ 1 to N do

zk`1
j “ xk`1

j ` θpxk`1
j ´ xkj q

fval “ ´g˚pp1q ` 〈pN , xtarget〉`
řN´1
j“1 〈pj ´ pj`1, xj〉´ δ

řN
j“1Hpxj, pj, sjq

return fval

1.9.2 Differential Games

Suppose we want to solve the differential games problem with the following dynamics,
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

¨

˝

9xpsq

9ypsqq

˛

‚“

¨

˝

f1pxpsq,ypsq,αpsq,βpsq, sq

f2pxpsq,ypsq,αpsq,βpsq, sq

˛

‚ 0 ă s ă t

¨

˝

xptq

yptq

˛

‚“

¨

˝

x

y

˛

‚

(1.20)

56



and with the following value function,

φpx, y, tq “ inf
αp¨q,xp¨q

sup
βp¨q,yp¨q

"

gpxp0q,yp0qq `
ż t

0

Lpxpsq,ypsq,αpsq,βpsq, sq ds
*

(1.21)

Then we can discretize the above equation and use 3 and 4, which we describe in more detail

below.

1.9.2.1 Practical tutorial for 3

If we want to use the discretized Lax formula for differential games (with a backward Euler

discretization of the ODE dynamics) (1.13), then:

1. Discretize the time domain:

0 “ s0 ă s1 ă s2 ă ¨ ¨ ¨ ă sN´1 ă sN “ t.

In our numerical experiments, we chose a uniform discretization of size δ ..“ t{N .

2. Approximate (1.20) using backward Euler, and also discretize (1.21) to obtain (as in

(1.13)),

φpx, y, tq « min
tqjuNj“1

max
tpjuNj“1

min
txjuNj“0

max
tyjuNj“0

$

&

%

gpx0, y0q `

N
ÿ

j“1

〈¨
˝

pj

´qj

˛

‚,

¨

˝

xj ´ xj´1

yj ´ yj´1

˛

‚

〉
´ δ

N
ÿ

j“1

Hpxj, yj, pj,´qj, sjq

,

.

-

where xj “ xpsjq, and similarly for yj, qj, and pj. Let us denote x “ xtarget and

y “ ytarget to clarify notation.

3. Initialize:

1. Choose δ ą 0, set N “ t{δ (although note that since we are using the zero-th

time-step, then we are updating N ` 1 points).

2. Randomly initialize x̃0 ..“ px0
0, x

0
1, . . . , x

0
N´1, x

0
Nq, but with x0

N ” xtarget, and similarly

for ỹ0.

3. Randomly initialize p̃0 ..“ pp0
0, p

0
1, . . . , p

0
N´1, p

0
Nq, but with p0

0 ” 0, as we won’t be up-

dating p0
0; it is only there for computational accounting. Do a similary initialization

for q̃0.
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4. Set z̃0 ..“ pz0
0 , z

0
1 , . . . , z

0
Nq “ px

0
0, x

0
1, . . . , x

0
N´1, x

0
Nq, and set w̃0 ..“ pw0

0, w
0
1, . . . , w

0
Nq “

py0
0, y

0
1, . . . , y

0
N´1, y

0
Nq.

5. Choose σ, τ such that στ ă 1{}D}22 “ 0.25 and θ P r0, 1s (we suggest θ “ 1).

6. Choose some tolerance tol ą 0 small.

4. Set

D “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 ¨ ¨ ¨ 0 0

´I I 0 0 ¨ ¨ ¨ 0 0

0 ´I I 0 ¨ ¨ ¨ 0 0
...

...
...

... . . . ...
...

0 0 0 0 ¨ ¨ ¨ 0 I

0 0 0 0 ¨ ¨ ¨ 0 ´I

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

where 0 is a pdimˆ dimq zero matrix, where dim is the size of the space variable, and

I is the pdim ˆ dimq identity matrix. Note this is a very sparse matrix and we take

advantage of this.

Note that we can replace Dz̃k “ zkj ´z
k
j´1, and Dw̃k “ wkj´w

k
j´1, and DT p̃k “ pkj´p

k
j`1,

and DT q̃k “ qkj ´ q
k
j`1, so we don’t have to perform the full matrix multiplication.

5. Then perform the algorithm found in 8.

1.9.2.2 Practical tutorial for 4

If we want to use the discretized Hopf formula for differential games (with a backward Euler

discretization of the ODE dynamics) (1.14), then:

1. Discretize the time domain:

0 “ s0 ă s1 ă s2 ă ¨ ¨ ¨ ă sN´1 ă sN “ t.

In our numerical experiments, we chose a uniform discretization of size δ ..“ t{N .
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Algorithm 8 Practical tutorial for the Lax formula with backward Euler,for Differential

Games
Given: xtarget P Rd and time t P p0,8q.

while p}x̃k`1 ´ x̃k}22 ą tol or }p̃k`1 ´ p̃k}22 ą tol or }ỹk`1 ´ ỹk}22 ą tol or }q̃k`1 ´ q̃k}22 ą

tolq and pcount ă max_countq do

for j “ 1 to N do

pk`1
j “ arg minp

 

δHpxkj , y
k
j , p,´q

k
j , sjq `

1
2σ
}p´ ppkj ` σpDz̃

kqjq}
2
2

(

for j “ 1 to N do

qk`1
j “ arg minq

 

´δHpxkj , y
k
j , p

k`1
j ,´q, sjq `

1
2σ
}q ´ pqkj ` σpDw̃

kqjq}
2
2

(

for j “ 0 do

xk`1
0 “ arg minx

 

gpx, yk0q `
1
2τ
}x´ pxk0 ´ τpD

T p̃kq0q}
2
2

(

for j “ 1 to N ´ 1 do

xk`1
j “ arg minx

 

´δHpx, ykj , p
k`1
j ,´qk`1

j , sjq `
1
2τ
}x´ pxkj ´ τpD

T p̃kqjq}
2
2

(

for j “ 0 do

yk`1
0 “ arg miny

 

´gpxk`1
0 , yq ` 1

2τ
}y ´ pyk0 ´ τpD

T q̃kq0q}
2
2

(

for j “ 1 to N ´ 1 do

yk`1
j “ arg miny

 

´δHpxk`1
j , y, pk`1

j ,´qk`1
j , sjq `

1
2τ
}y ´ pykj ´ τpD

T q̃kqjq}
2
2

(

for j “ 0 to N do

zk`1
j “ xk`1

j ` θpxk`1
j ´ xkj q

wk`1
j “ yk`1

j ` θpyk`1
j ´ ykj q

fval “ gpx0, y0q `
řN
j“1

〈¨
˝

pj

´qj

˛

‚,

¨

˝

xj ´ xj´1

yj ´ yj´1

˛

‚

〉
´ δ

řN
j“1Hpxj, yj, pj,´qj, sjq

return fval
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2. Approximate (1.20) using backward Euler, and also discretize (1.21) to obtain (as in

(1.14)),

φpx, y, tq « min
tqjuNj“1

max
tpjuNj“1

min
txjuNj“1

max
tyjuNj“1

$

&

%

´e˚pp1q ´ h˚p´q1q `

〈¨
˝

pN

´qN

˛

‚,

¨

˝

x

y

˛

‚

〉

`

N´1
ÿ

j“1

〈¨
˝

pj ´ pj`1

´pqj ´ qj`1q

˛

‚,

¨

˝

xj

yj

˛

‚

〉
´ δ

N
ÿ

j“1

Hpxj, yj, pj,´qj, sjq

,

.

-

where xj “ xpsjq, and similarly for yj, qj, and pj. Let us denote x “ xtarget and

y “ ytarget to clarify notation.

3. Initialize:

1. Choose δ ą 0, set N “ t{δ.

2. Randomly initialize x̃0 ..“ px0
0, x

0
1, . . . , x

0
N´1, x

0
Nq, but with x0

N ” xtarget, and similarly

for ỹ0.

3. Randomly initialize p̃0 ..“ pp0
0, p

0
1, . . . , p

0
N´1, p

0
Nq, but with p0

0 ” 0, as we won’t be

updating p0
0; it is only there for computational accounting. Do the same initialization

for q̃0.

4. Set z̃0 ..“ pz0
0 , z

0
1 , . . . , z

0
Nq “ px

0
0, x

0
1, . . . , x

0
N´1, x

0
Nq, and set w̃0 ..“ pw0

0, w
0
1, . . . , w

0
Nq “

py0
0, y

0
1, . . . , y

0
N´1, y

0
Nq.

5. Choose σ, τ such that στ ă 1{}D}22 “ 0.25 and θ P r0, 1s (we suggest θ “ 1).

6. Choose some tolerance tol ą 0 small.

4. Set

D “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

I ´I 0 0 ¨ ¨ ¨ 0 0

0 I ´I 0 ¨ ¨ ¨ 0 0
...

...
...

... . . . ...
...

0 0 0 0 ¨ ¨ ¨ 0 ´I

0 0 0 0 ¨ ¨ ¨ 0 I

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚
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where 0 is a pdimˆ dimq zero matrix, where dim is the size of the space variable, and

I is the pdim ˆ dimq identity matrix. Note this is a very sparse matrix and we take

advantage of this.

Alose note that we can replace DT z̃k “ zkj ´ zkj´1, and DT w̃k “ wkj ´ wkj´1, and

Dp̃k “ pkj ´ pkj`1, and Dq̃k “ qkj ´ qkj`1, so we don’t have to perform the full matrix

multiplication.

5. Then perform the algorithm found in 9.
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Algorithm 9 Practical tutorial for the Lax formula with backward Euler, for Differential

Games
Given: xtarget P Rd and time t P p0,8q.

while p}x̃k`1 ´ x̃k}22 ą tol or }p̃k`1 ´ p̃k}22 ą tol or }ỹk`1 ´ ỹk}22 ą tol or }q̃k`1 ´ q̃k}22 ą

tolq and pcount ă max_countq do

for j “ 1 do

pk`1
1 “ arg minp

 

e˚ppq ` δHpxk1, y
k
1 , p,´q

k
1 , s1q `

1
2σ
}p´ ppk1 ` σpD

T z̃kq1q}
2
2

(

for j “ 2 to N do

pk`1
j “ arg minp

 

δHpxkj , y
k
j , p,´q

k
j , sjq `

1
2σ
}p´ ppkj ` σpD

T z̃kqjq}
2
2

(

for j “ 1 do

qk`1
1 “ arg minq

 

´h˚p´qq ´ δHpx
k
1, y

k
1 , p

k`1
1 ,´q, s1q `

1
2σ
}q ´ pqk1 ` σpD

T w̃kq1q}
2
2

(

for j “ 2 to N do

qk`1
j “ arg minq

 

´δHpxkj , y
k
j , p

k`1
j ,´q, sjq `

1
2σ
}q ´ pqkj ` σpD

T w̃kqjq}
2
2

(

for j “ 1 to N ´ 1 do

xk`1
j “ arg minx

 

´δHpx, ykj , p
k`1
j ,´qk`1

j , sjq `
1
2τ
}x´ pxkj ´ τpDp̃

kqjq}
2
2

(

for j “ 1 to N ´ 1 do

yk`1
j “ arg miny

 

´δHpxk`1
j , y, pk`1

j ,´qk`1
j , sjq `

1
2τ
}y ´ pykj ´ τpDq̃

kqjq}
2
2

(

for j “ 1 to N do

zk`1
j “ xk`1

j ` θpxk`1
j ´ xkj q

wk`1
j “ yk`1

j ` θpyk`1
j ´ ykj q

fval “ ´e˚pp1q ´ h˚p´q1q `

〈¨
˝

pN

´qN

˛

‚,

¨

˝

xtarget

ytarget

˛

‚

〉
`
řN´1
j“1

〈¨
˝

pj ´ pj`1

´pqj ´ qj`1q

˛

‚,

¨

˝

xj

yj

˛

‚

〉
´

δ
řN
j“1Hpxj, yj, pj,´qj, sjq

return fval
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CHAPTER 2

Many

Abstract: We consider the reinforcement learning problem of training multiple agents in

order to maximize a shared reward. In this multi-agent system, each agent seeks to maxi-

mize the reward while interacting with other agents, and they may or may not be able to

communicate. Typically the agents do not have access to other agent policies and thus each

agent is situated in a non-stationary and partially-observable environment. In order to ob-

tain multi-agents that act in a decentralized manner, we introduce a novel algorithm under

the framework of centralized learning, but decentralized execution. This training framework

first obtains solutions to a multi-agent problem with a single centralized joint-space learner.

This centralized expert is then used to guide imitation learning for independent decentralized

multi-agents. This framework has the flexibility to use any reinforcement learning algorithm

to obtain the expert as well as any imitation learning algorithm to obtain the decentralized

agents. This is in contrast to other multi-agent learning algorithms that, for example, can

require more specific structures. We present some theoretical error bounds for our method,

and we show that one can obtain decentralized solutions to a multi-agent problem through

imitation learning. [84]

2.1 Introduction

Reinforcement Learning (RL) is the problem of finding an action policy that maximizes

reward for an agent embedded in an environment [125]. It has recently has seen an explosion

in popularity due to its many achievements in various fields such as, robotics [80], industrial

applications [43], game-playing [93, 119, 117], and the list continues. However, most of these
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achievements have taken place in the single-agent realm, where one does not have to consider

the dynamic environment provided by interacting agents that learn and affect one another.

This is the problem of Multi-agent Reinforcement Learning (MARL) where we seek to find

the best action policy for each agent in order to maximize their reward. The settings may be

cooperative, and thus they might have a shared reward, or the setting may be competitive,

where one agent’s gain is another’s loss. Some examples of a multi-agent reinforcement

learning problem are: decentralized coordination of vehicles to their respective destinations

while avoiding collision, or the game of pursuit and evasion where the pursuer seeks to

minimize the distance between itself and the evader while the evader seeks the opposite.

Other examples of multi-agent tasks can be found in [101] and [87].

The key difference between MARL and single-agent RL (SARL) is that of interacting

agents, which is why the achievements of SARL cannot be absentmindedly transferred to

find success in MARL. Specifically, the state transition probabilities in a MARL setting

are inherently non-stationary from the perspective of any individual agent. This is due to

the fact that the other agents in the environment are also updating their policies, and so

the Markov assumptions typically needed for SARL convergence are violated. This aspect

of MARL gives rise to instability during training, where each agent is essentially trying to

learn a moving target.

In this work, we present a novel method for MARL in the cooperative setting (with

shared reward). Our method first trains a centralized expert with full observability, and

then uses this expert as a supervisor for independently learning agents. There are a myriad

of imitation/supervised learning algorithms, and in this work we focus on adapting DAgger

(Dataset Aggregation) [113] to the multi-agent setting. After the imitation learning stage,

the agents are able to successfully act in a decentralized manner. We call this algorithm

Centralized Expert Supervises Multi-Agents (CESMA). CESMA adopts the framework of

centralized training, but decentralized execution [76], the end goal of which is to obtain

multi-agents that can act in a decentralized manner.
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2.2 Related works

The most straight-forward way of adapting single-agent RL algorithms to the multi-agent

setting is by having agents be independent learners. This was applied in [127], but this

training method gives instability issues, as the environment is non-stationary from the per-

spective of each agent [90, 10, 26]. This non-stationarity was examined in [97], and stabilizing

experience replay was studied in [48].

Another common approach to stabilizing the environment is to allow the multi-agents

to communicate. In [122], they examine this using continuous communications so one may

backpropagate to learn to communicate. And in [46], they give an in-depth study of com-

municating multi-agents, and also provide training methods for discrete communication.

In [105], they decentralize a policy by examining what to communicate and by utilizing

supervised learning, although they mathematically solve for a centralized policy and their

assumptions require homogeneous communicating agents.

Others approach the non-stationarity issue by having the agents take turns updating their

weights while freezing others for a time, although non-stationarity is still present [36]. Other

attempts adapt Q-learning to the multi-agent setting: Distributed Q-Learning [79] updates

Q-values only when they increase, and updates the policy only for actions that are not greedy

with respect to the Q-values, and Hysteretic Q-Learning [89] provides a modification. Other

approaches examine the use of parameter sharing [62] between agents, but this requires a

degree of homogeneity of the agents. And in [129], their approach to non-stationarity was

to input other agents’ parameters into the Q function. Other approaches to stabilize the

training of multi-agents are in [121], where the agents share information before selecting

their actions.

From a more centralized view point, [96, 107, 123] derived a centralized Q-value function

for MARL, and in [132], they train a centralized controller and then sequentially select

actions for each agent. The issue of an exploding action space was examined in [128].

A few works that follow the framework of centralized training, but decentralized execu-
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tion are: RLar (Reinforcement Learning as Rehearsal) [76], COMA (Counterfactual Multi-

Agent), and also [116, 49] – where the idea of knowledge-reuse is examined. In [33], they

examine decentralization of policies from an information-theoretic perspective. There is also

MADDPG [87], where they train in a centralized-critics decentralized-actors framework; af-

ter training completes, the agents are separated from the critics and can execute in a fully

distributed manner.

For surveys of MARL, see articles in [9, 102].

2.3 Background

In this section we briefly review the requisite material needed to define MARL problems. Ad-

ditionally we summarize some of the standard approaches in general reinforcement learning

and discuss their use in MARL.

Dec-POMDP: A formal framework for multi-agent systems is called a decentralized

partially-observable Markov decision process (Dec-POMDP) [7]. A Dec-POMDP is a tuple

pI, S, tAiu, tOiu, P,Rq where I is the finite set of agents indexed 1 to M , S is the set of

states, Ai is the set of actions for agent i, and thus
śM

i“1 Ai is the joint action space, Oi is the

observation space of agent i, and thus
śM

i“1 Oi is the joint observation space, P “ P ps1,o|s, aq

(where o “ po1, . . . , oMq and similarly for the others) is the state-transition probability for

the whole system, and R : S ˆ
śM

i“1 A Ñ R is the reward. In the case when the joint

observations o equals the world state of the system, then we call the system a decentralized

Markov decision process (Dec-MDP).

DAgger: The Dataset Aggregation (DAgger) algorithm [113] is an iterative imitation

learning algorithm that seeks to learn a policy from expert demonstration. The main idea

is to allow the learning policy to navigate its way through the environment, and have it

query the expert on states that it sees. It does this by starting with a policy π̂2 which learns

from the dataset of expert trajectories D1 through supervised learning. Using π̂2, a new

dataset is generated by rolling out the policy and having the expert provide supervision on
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the decisions that the policy made. This new dataset is aggregated with the existing set into

D2 Ą D1. This process is iterated, i.e. a new π̂3 is trained, another new dataset is obtained

and aggregated into D3 Ą D2 and so on. Learning in this way has been shown to be more

stable and have nicer convergence properties as learning utilizes trajectories seen from the

learner’s state distribution, as opposed to only the expert’s state distribution.

Policy Gradients (PG): One approach to RL problems are policy gradient methods

[126]: instead of directly learning state-action values, the parameters θ of the policy πθ are

adjusted to maximize the objective,

Jpθq “ Es„pπ ,a„πθ rQ
π
ps, aqs ,

where pπ is the state distribution from following policy π. The gradient of the above expres-

sion can be written as [126, 125]:

∇θJpθq “ Es„pπ ,a„πθrp∇θ log πθps|aqqQ
π
ps, aqs.

Many policy gradient methods seek to reduce the variance of the above gradient estimate,

and thus study how one estimates Qπps, aq above [115]. For example, if we let Qπps, aq be

the sample return Rt “
řT
i“t γ

i´tri, then we get the REINFORCE algorithm [68]. Or one

can choose to learn Qπps, aq using temporal-difference learning [124, 125], and would obtain

the Actor-Critic algorithms [125]. Other policy gradients algorithms are: DPG [118], DDPG

[81], A2C and A3C [92], to name a few.

Policy Gradients have been applied to multi-agent problems; in particular the Multi-

Agent Deep Deterministic Policy Gradient (MADDPG) [87] uses an actor-critic approach to

MARL, and this is the main baseline we test our method against. Another policy gradient

method is by [50] called Counterfactual Multi-Agent (COMA), who also uses an actor-critic

approach.
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2.4 Methods

In this section, we explain the motivation and method of our approach: Centralized Expert

Supervises Multi-Agents (CESMA).

2.4.1 Treating a multi-agent problem as a single-agent problem

Intuitively, an optimal strategy of a multi-agent problem could be found by a centralized

expert with full observability. This is because the centralized controller has the most in-

formation available about the environment, and therefore would not pay a high of cost of

partial-observability that independent learners might. This is discussed more in Section 2.5.

To find this centralized expert, we treat a multi-agent problem as a single agent problem

in the joint observation and action space of all agents. This is done by concatenating the

observations of all agents into one observation vector for the centralized expert, and the

expert learns outputs that represent the joint actions of the agents.

Our framework does not impose any other particular constraints on the expert. Any

expert architecture that outputs an action that represents the joint-actions of all of the

agents may be used. Due to that, we are free to use any standard RL algorithm for the

expert such as DDPG, DQN, or potentially even analytically derived experts.

2.4.2 Curse of dimensionality and some reliefs

When training a centralized expert, both the observation space and action space can grow

exponentially. For example, if we use a DQN for our centralized expert then the number of

output nodes will typically grow exponentially with respect to the number of agents. This is

due to each output needing to correspond to an element in the joint action space
śM

i“1 Ai.

One way to deal with the exponential growth in the joint action space is, rather than

requiring the centralized expert to move all agents simultaneously, we can restrict it to moving

only one agent at a time, while the others default to a “do nothing" action (assuming one is
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available). Effectively this mean the growth in the action space is now linear with respect

to the number of agents. We provide an experiment where we were able to decentralize such

an expert in Appendix 2.8.4.

This problem has also been studied by QMIX [107] and VDNs (Value-Decomposition

Networks) [123], where exponential scaling of the output space is solved by having separate

Q values for each agent and then using the sum as a system Q. Due to the nature of the

reduction technique, these approaches require their own theorems of convergence. Other

techniques such as action branching [128] have been considered. An experiment where we

decentralize QMIX/VDN-like centralized expert models (which grow linearly in the number

of output nodes) can be found in Appendix 2.8.3.

In our experiments, we use DDPG (with Gumbel-Softmax action selection if the envi-

ronment is discrete, as MADDPG does also) to avoid the exploding number of input nodes

of the observation space, as well as exploding number of output nodes of the action space.

Under this paradigm, the input and output nodes only grow linearly with the number of

agents, as the output nodes of a neural network in DDPG is the chosen joint action, as

opposed to a DQN, where the output nodes must enumerate all possible joint actions.

2.4.3 CESMA for multi-agents without communication

To perform imitation learning to decentralize the expert policy, we adapt DAgger to the

multi-agent setting. There are many ways DAgger can be applied to multi-agents, but we

implement a method that best allows the theoretical analysis from [113] to apply: Namely

after training the expert, we do supervised learning on a single neural network with discon-

nected components, each corresponding to one of the agents.

In more detail, after training a centralized expert π˚, we initialize theM agents π1, . . . , πM ,

and initialize the dataset of observation-label pairs D. The agents then step through the

environment, storing each observation o “ po1, . . . , oMq (where oi is agent i’s observa-

tion) the multi-agents encounter, along with the expert action label a˚ “ π˚poq (where

a˚ “ pa˚1 , . . . , a˚Mq and a˚i is agent i’s expert label action); so we store the pair po, a˚q in D
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Figure 2.1: The centralized expert labels guide supervised learning for the multi-agents. The

multi-agents make up the disconnected components of a single-agent learner.

at each timestep. After D has reached a sufficient size, at every kth time step (chosen by

the practitioner; we used k “ 1 in our experiments), we sample a batch from this dataset

tpopβq, a˚,pβqquBβ“1, and then distribute the data batch tpopβqi , a
˚,pβq
i quBβ“1 to agent i, for super-

vised learning; we note the training can be done sequentially or parallel. Having a shared

dataset of trajectories in this way allows us to view pπ1, . . . , πMq as a single neural-network

with disconnected components, and thus the error bounds from [113] directly apply, as dis-

cussed in Section 2.5. See Figure 2.1 for a diagram. Pseudo-code for our method is contained

in Appendix 2.8.6. (In Appendix 2.8.2 we test whether giving each agent its own dataset

would make a difference, and it did not seem so).

The aforementioned procedure is sufficient when the agents do not need to communicate,

but when communication is involved we have to modify the above method.

2.4.4 CESMA for multi-agents with communication

The main insight for training an agent’s communication action is that we can view a broad-

casting agent and the receiving agent as one neural network connected via the communica-

tion nodes; then in this way we we can backpropagate the action loss of the receiving agent

through to the broadcasting agent’s weights.
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In more detail, due to communication, the multi-agents now have two types of observa-

tions and actions.

We denote the physical actions (i.e. non-communication actions) as a “ pa1, . . . , aMq and

the communication actions/broadcasts as b “ pb1, . . . , bMq. For simplicity, let us assume

that all agents can communicate with each other and each agent broadcasts the same thing

to all other agents. So we denote ci “ pb1, . . . , bi´1, bi`1, . . . , bMq as agent i’s observation of

the broadcast by other agents, and where bj is agent j’s broadcast to all other agents.

So for each agent i, we have πipoi, ciq “ pai, biq. And we also denote πipoi, ciqaction “ ai,

and πipoi, ciqcomm “ bi.

For training, as before we have a shared dataset of observations D. But as the agents

step through the environment, at each timestep we now store ppo, cq, ô, â˚q, where po, cq is

the joint physical and communication observation of the previous timestep, ô is the physical

observation at the current timestep, and â˚ “ π˚pôq “ pâ˚1 , . . . , â
˚
Mq is the expert action

label; these are the necessary ingredients for training.

Then to train, we first obtain a sample from D (practically we perform batched training,

but for simplicity we consider one sample), say ppo, cq, ô, â˚q, and then we take the policies at

the most-recent update πcurrent
1 , . . . , πcurrent

M and form their broadcasts b1k “ πcurrent
k pok, ckqcomm

for k “ 1, . . . ,M . Then in principle, we want to minimize the loss function,

min
pπ1,...,πM q

M
ÿ

j“1

`pâ˚j , πjpôj, ĉjqactionq,

where

ĉj “ pb
1
1, . . . , b

1
j´1, b

1
j`1, . . . , b

1
Mq, j “ 1, . . . ,M.

In practice, we train each agent i separately by minimizing their communication loss and

action loss which we describe below.

In order to train agent i’s communication action, we make the insight that we can back-

propagate the supervised learning loss of other agents through the communication nodes

to agent i’s parameters, precisely because the communication output of agent i becomes an

observational input for the other agents.
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Then to train the communication action of agent i, we sample ppo, cq, ô, â˚q from D, and

seek to minimize the communication loss function,

min
πi

ÿ

j‰i

`pâ˚j , πjpôj, ĉ
1
jqactionq, (comm. loss for agent i)

where

ĉ1j “ pb
1
1, . . . , πipoi, ciqcomm, . . . , b

1
j´1, b

1
j`1, . . . , b

1
Mq,

where we assumed without loss of generality that i ă j. And so because ĉ1j depends on πi,

then we can backpropagate agent j’s supervised loss to agent i’s parameters.

To train the physical action of agent i, we sample ppo, cq, ô, â˚q from D and want to

minimize

min
πi

`pâ˚i , πipôi, ĉ
1
iqactionq, (action loss for agent i)

where ĉ1i “ pb11, . . . , b1i´1, b
1
i`1, . . . , b

1
Mq.

For a graphic overview, we give a diagram in Figure 2.2 for the backpropagation of

the communication loss and the action loss, and provide pseudocode in Algorithm 11 in

Appendix 2.8.6. In some sense, our method can be viewed as a hybrid of experience replay

and supervised learning.

In this way, we have alleviated a bit the issue of sparse rewards for communication [47,

Section 4]. Indeed, communication actions suffer from sparse rewards as a reward is only

bestowed on the broadcasting agent when all the following align: it sends the right message,

the receiving agent understands the message, and then acts accordingly. In our method with

an expert supervisor, the correct action by the acting agent is clear.

2.5 Theoretical analysis

2.5.1 No-regret analysis, and guarantees

Although the proposed framework could handle a myriad of imitation learning algorithms,

such as Forward Training [112], SMILe [112], SEARN [30], and more, we use DAgger in our
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Figure 2.2: Decentralizing multi-agents that communicate. The top diagram shows how

we update agent i’s communication action by backpropagating the supervised loss of other

agents. The red portions highlight the trail of backpropagation. The bottom diagram shows

how we update the action of agent i.

experiments, and thus we follow its theoretical analysis, while providing multi-agent exten-

sions. And since our method can be viewed as using a single-agent learner with disconnected

components, we can directly apply the no-regret analysis from [113] to obtain theoretical

insights.

Notationally, (i) we let ` be a surrogate loss of matching the expert policy π˚ (e.g. the

expected 0-1 loss at each state) and denote r “ rps, aq the instantaneous reward which we

assume to be bounded in r0, 1s, (ii) pπpNq1 , . . . , π
pNq
M q are the multi-agents after N updates

of the policy using any supervised learning algorithm, and where each update is done after

a T -step trajectory with T the task horizon, (iii) d
pπ
pNq
1 ,...,π

pNq
M q

is the average distribution of

observations that come from following the multi-agent policy pπpNq1 , . . . , π
pNq
M q from a given

initial distribution, (iv) RpπpNq1 , . . . , π
pNq
M q is the cumulative reward after an episode of the

task, (v) and Uπ1

t ps, πq is the reward after t steps of executing π in only initial state s, and

then following policy π1 thereafter.

Then viewing the multi-agent policy as a joint single-agent policy we obtain the following

guarantee on the reward based on how well the multi-agents match the expert, which is a direct

rephrasing of [113, Theorem 3.2]:

Theorem 1. If the number of policy updates N is OpT logkpT qq for sufficiently large k ě 0,
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then there exists a joint multi-agent policy pπ̂1, . . . , π̂Mq P tpπ
piq
1 , . . . , π

piq
M qu

N
i“1 such that

Rpπ̂1, . . . , π̂Mq ě Rpπ˚q ´ uTεN ´Op1q,

where u ě 0 is such that Uπ˚

T´t`1ps, π
˚q´Uπ˚

T´t`1ps, aq ď u for all actions a and t P t1, . . . , T u,

and

εN “ min
pπ1,...,πM q

1

N

N
ÿ

i“1

Eo„ d
pπ
piq
1 ,...,π

piq
M
q

r`po, pπ1, . . . , πMqs.

Here εN is best described as the true loss of the best learned policy in hindsight. The

condition Uπ˚

T´t`1ps, π
˚q ´ Uπ˚

T´t`1ps, aq ď u can best be described as saying the reward lost

from not following the expert at initial state s, but following it after, is at most u.

2.5.2 The partial observability problem of decentralization, and its cost

In our setting of multi-agents, the centralized expert and the decentralized multi-agents

have different structures of their policies, i.e. they are solving the problem in different policy

spaces. The centralized expert observes the joint observations of all agents, and thus it is a

function π˚ : O1 ˆ ¨ ¨ ¨ ˆ OM Ñ A1 ˆ ¨ ¨ ¨ ˆAM , and we can decompose π˚ into

π˚poq “ pπ˚1 poq, . . . , π
˚
Mpoqq,

where π˚i : O1 ˆ ¨ ¨ ¨ ˆ OM Ñ Ai. The goal of decentralization is to find multi-agent policies

π1, . . . , πM such that

π˚poq “ pπ˚1 poq, . . . , π
˚
Mpoqq

want
“ pπipo1q, . . . , πMpoMqq.

Note that π˚i is able to observe the joint observations while πi is only able to observe its own

local observation oi. But from this constraint, this means we may encounter issues where

π˚i po1, . . . , oi´1, oi, oi`1, . . . , oMq “ ai,

but π˚i põ1, . . . , õi´1, oi, õi`1, . . . , õMq “ ãi,

so we want πipoiq “ ai or ãi, or even something else. Thus the multi-agent policy can act

sub-optimally in certain situations, being unaware of the global state. This unfortunate
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situation not only afflicts our algorithm, but any multi-agent training algorithm (and in

general, any algorithm attempting to solve a POMDP). We call this the partial observability

problem of decentralization (note partial observability affects any algorithm trying to solve a

POMDP, but here we examine from the viewpoint of decentralization). More concretely, we

can say there is a partial observability problem of decentralization if there exists observations

po1, . . . , oi´1, oi, oi`1, . . . , oMq, and põ1, . . . , õi´1, oi, õi`1, . . . , õMq such that

π˚po1, . . . , oi´1, oi, oi`1, . . . , oMq

‰ π˚põ1, . . . , õi´1, oi, õi`1, . . . , õMq

Relating this to the no-regret analysis in Theorem 1, the partial observability problem

means that under certain environments it may be impossible for the multi-agents to match

the expert exactly; this manifests in a cost Cp where,

εN “ min
pπ1,...,πM q

1

N

N
ÿ

i“1

Eo„ d
pπ
piq
1 ,...,π

piq
M
q

r`po, pπ1, . . . , πMqs

ě Cp, for all N ě 1,

which implies from Theorem 1 that the best guarantee of the reward for the multi-agents is

Rpπ̂1, . . . , π̂Mq ě Rpπ˚q ´ TCp ´Op1q.

The main takeaway: In the original DAgger setting (i.e. the single-agent MDP setting),

under reasonable assumptions on the distribution of states [see 113, Section 4.2], as N Ñ 8

the cumulative reward of the learner can approximate the cumulative reward of the ex-

pert arbitrarily closely. Here when analyzing the multi-agent setting, we find that because

εN ě Cp, then the no-regret analysis guarantees that after OpT logkpT qq updates we will find

a multi-agent policy that obtains a cumulative reward that is within a cost of partial observ-

ability term of the expert. In relation to this, in Appendix 2.8.5, we perform experiments

and analyse the supervised learning loss versus the reward obtained by the multi-agents.
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2.5.3 The need for communication

Decentralization without communication is most effective when all multi-agents can observe

the full joint observation. Then from the perspective of each agent the only non-stationarity

is from other agents’ policies (which is alleviated by decentralization).

But when each agent only has local observations, then to avoid the partial observability

problem of decentralization, there is an incentive to communicate. Namely, we want for the

multi-agent policy pπ1, . . . , πMq

π˚poq “ pπ˚1 poq, . . . , π
˚
Mpoqq

want
“ pπipo1, c1q, . . . , πMpoM , cMqq,

where ci is the communication from either all or only some of the other agents, to agent i.

Namely we view ci as a function ci : O1ˆ¨ ¨ ¨ˆOi´1ˆOi`1ˆ¨ ¨ ¨ˆOM Ñ Ci (where Ci is some

communication action space). Then we have the following requirement for the communica-

tion protocol tciui“1 in order to fix the partial observability problem of decentralization,

Theorem 2. If the multi-agent communication ci : O1 ˆ ¨ ¨ ¨ ˆOi´1 ˆOi`1 ˆ ¨ ¨ ¨ ˆOM Ñ Ci

satisfies the condition

π˚po1, . . . , oi´1, oi, oi`1, . . . , oMq

‰ π˚põ1, . . . , õi´1, oi, õi`1, . . . , õMq,

implies that

cipo1, . . . , oi´1, oi`1, . . . , oMq

‰ cipõ1, . . . , õi´1, õi`1, . . . , õMq

for all i “ 1, . . . ,M , then there is no partial observability cost of decentralization when the

multi-agents use tciuMi“1 as their communication protocol, i.e. the multi-agents can match the

expert perfectly on all observations.

The theorem above says that a sufficient condition for the communication protocol tciui“1

is that from the perspective of, say, agent j, then cj is able to provide information to agent
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j about when the expert decides to output different actions for different global observations,

even if the global observations share oj as a local observation.

Paired with Theorem 1, this implies that under the correct communication protocal, the

multi-agents can approximate the expert arbitrarily closely (and that we need OpT logkpT qq

updates). Of course, in our experiments we learn this communication protocol.

2.6 Experiments

Our experiments are conducted in the Multi-Agent Particle Environment [94, 87] provided

by OpenAI, which has basic simulated physics (e.g. Newton’s law) and multiple multi-agent

scenarios.

In order to conduct comparisons to MADDPG, we also use the DDPG algorithm with

the Gumbel-Softmax [70, 88] action selection for discrete environments, as they do. For

the single-agent centralized expert neural network, we always make sure the number of

parameters/weights matches (or is lower) than that of MADDPG’s. For the decentralized

agents, we use the same number of parameters as the decentralized agents in MADDPG (i.e.

the actor part). We always use the discount factor γ “ 0.9, as that seemed to work best

both for our centralized expert, and also MADDPG. Following their experimental procedure,

we average our experiments over three runs, and plot the minimum and maximum reward

envelopes. And for the decentralization, we trained three separate centralized experts, and

used each of them to obtain three decentralized policies. Full details of our hyperparameters

is in the appendix. And we always use two-hidden layer neural networks. Brief descriptions

of each environment are provided, and fuller descriptions and some example pictures are

placed in the appendix.

2.6.1 Cooperative Navigation

Here we examine the situation of N agents occupying N landmarks in a 2D plane, and the

agents are either homogeneous or nonhomogenous. The (continuous) observations of each
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agent are the relative positions of other agents, the relative positions of each landmark,

and its own velocity. The agents do not have access to others’ velocities so we have partial

observability. The reward is based on how close each landmark has an agent near it, and the

actions of each agent are discrete: up, down, left, right, and do nothing.

In Figure 2.3, we see that CESMA, when combining the number of samples in training

the expert as well as decentralization, is able to achieve the same reward as MADDPG

while utilizing fewer samples, i.e. CESMA is more sample efficient (the dashed red line is

just a visual aid that extrapolates the reward for the decentralized curves, because we stop

training once the reward sufficiently matches MADDPG). In Figure 2.4, we also noticed that

the centralized expert is able to find a policy that achieves a higher reward than a converged

MADDPG; and we were able to decentralize this expert to obtain decentralized multi-agent

policies that achieved higher rewards than MADDPG. We provide further experiments in

the appendix that tell the same story.

2.6.2 Cooperative Navigation with Communication

Here we adapt CESMA to a task that involves communication. In this scenario, the com-

munication action taken by each agent at time step t ´ 1 will appear as an observation to

other agents at time step t. Although we require continuous communication to backprop,

in practice we can use the softmax operator to provide the bridge between the discrete and

continuous. And during decentralized execution, our agents are able to act with discrete

communication inputs.

We examine two scenarios for CESMA that involve communication, and use the training

scenario described in section 2.4.4. The first scenario called the “speaker and listener" envi-

ronment has a speaker who broadcasts the correct goal landmark (in a “language" it must

learn) out of a possible 3 choices, and the listener, who is blind to the correct goal landmark,

must use this information to move there. Communication is a necessity in this environment.

The second scenario is cooperative navigation with communication and here we have three

agents whose observation space includes the goal landmark of the other agent(s), and not
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Figure 2.3: Reward curves for various multi-agent environments. We train the centralized

expert until its reward matches or betters MADDPG’s reward. Then we decentralize this

expert until we achieve the same reward as the expert. The dashed red line is a visual aid

which extrapolates the reward for the decentralized curves, because we stop training the

multi-agents once the reward sufficiently matches the expert. We observe that CESMA is

more sample-efficient than MADDPG.
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Figure 2.4: Reward curves for decentralization of a centralized expert policy that obtains a

better reward than a converged MADDPG and independent DDPG. The horizontal dashed

lines represent final rewards after convergence of the algorithms (i.e. no visible improvement

of the reward after many episodes), and the red solid line represents decentralization of the

centralized expert. This demonstrates that we are able to successfully decentralize expert

policies that achieve better rewards than a converged MADDPG and independent DDPG. In

other words, CESMA is able to find better optimum that MADDPG and independent DDPG

were not able to find.

their own, and there are five possible goal landmarks.

We see in Figure 2.3 that we achieve a higher reward in a more sample efficient manner.

For the speaker and listener environment, the centralized expert near-immediately converges,

and same for the decentralization. And MADDPG has a much higher variance in its conver-

gence. We also see in Figure 2.4 that the centralized expert was again able to find a policy

that achieved a higher reward than a converged MADDPG, and we were able to successfully

decentralize this to obtain a decentralized multi-agent policy achieving the same superior

reward as the expert. We provide further experiments in the appendix that tell the same

story.

2.7 Conclusion

We propose a MARL algorithm, called Centralized Expert Supervises Multiagents (CESMA),

which takes the training paradigm of centralized training, but decentralized execution. The

algorithm first trains a centralized expert policy, and then adapts DAgger to obtain decen-
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tralized policies that execute in a decentralized fashion. We also formulated an approach that

enables multi-agents to learn a communication protocol. Experiments in a variety of tasks

show that CESMA can train successful decentralized multi-agent polices at a low sample

complexity. Notably, the decentralization protocol often is able to achieve the same levels of

cumulative reward as a centralized controller, which in our experiments often achieves higher

rewards than the competing methods MADDPG and independent DDPG.

2.8 Appendix: More Experiments, Explanation of Environments

and Hyperparameters, and Proofs of Theorems

2.8.1 Decentralizing expert policies that obtain higher rewards than MADDPG

2.8.1.1 Cooperative Navigation

For the cooperative navigation experiment, in Figure 2.5, we see in all cases the centralized

expert is able to achieve a lower reward than MADDPG and DDPG. And futhermore we

were able to decentralize the expert policy (which was chosen to be the one with highest

reward) so as to reach this same superior reward. And we remark that our method seems to

work better with more agents.

The six nonhomogeneous agents case works as a good experiment to see what happens

when we stop the centralized expert before it truly converges. In this case, decentralization to

achieve the same reward as the expert is quickest and occurs within the first 5,000 episodes.

Intuitively, it makes sense that a suboptimal expert solution is faster to decentralize.

2.8.1.2 Cooperative Navigation with Communication

In the environments with communication, we see in figure 2.5 that both the centralized

expert and the decentralized agents achieve a higher reward and in a more sample efficient

manner. For the speaker and listener environment, the centralized expert near-immediately

converges, and same for the decentralization process. And MADDPG has a much higher
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Figure 2.5: Reward curves for the various multi-agent environments. In these experiments,

we test whether we can perform decentralization of centralized expert policies that achieve

a superior reward to a converged MADDPG. Namely, we test whether we can decentralize

to obtain the same superior reward as the centralized expert. The plots above show that we

can and do in every experiment. The dashed red lines for the decentralized curves represent

when we stop the decentralization procedure, as the reward sufficiently matches the expert.

The envelopes of the learning curves denote the maximum and minimum. We in particular

note that in some experiments, CESMA achieves a superior reward compared to a converged

MADDPG.

variance in its convergence. In the cooperative navigation with communication scenarios,

the story is similar, that the centralized expert quickly converges, and the decentralization

process is near immediate.
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2.8.2 Experiment where each agent has its own dataset of trajectories

Here we describe an experiment where each agent has its own individual dataset of trajecto-

ries, versus a shared dataset. Namely, we plot the learning curves for decentralizing a policy

in the two cases: (1) When each agent has its own dataset of trajectories, or (2) when there

is a shared dataset of trajectories (which is the one we use in the experiments). We tested on

the cooperative navigation environment with 3 nonhomogeneous agents. We hypothesized

that the nonhomogeneity of the agents would have an effect on the shared reward, but this

turned out not to be so. But it is interesting to note that in the main text, we found that

the some agents had a bigger loss when doing supervised learning from the expert.

2.8.3 Experiment with DQNs
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Here we examined decentralizing DQNs. We used the cross entropy loss for the supervised

learning portion, and used the cooperative navigation environment with 3 nonhomogenous

agents. The DQNs we used are: the exponential actions DQN, which is just a naive imple-

mentation of DQNs for the multi-agents, and a Centralized VDN where the system Q value

is the sum of the individual agent Q values. We used a neural network with 200 hidden units,

batch size 64, and for the exponential DQN, we used a learning rate and τ of 5ˆ 10´4, and

for the QMIX/Centralized VDN DQN we used a learning rate and τ of 10´3. We also used a

noisy action selection for exploration. We stopped training of the decentralization once the

mulit-agents reached the same reward as the expert; the dashed lines are a visual-aid that

extrapolates the reward.

2.8.4 One-at-a-Time-EXpert

2.8.5 Reward vs. loss, and slow and fast learners

Figure 2.6: Reward vs. loss, and loss vs. episode.

In our experiments with cooperative navigation, when using the cross entropy loss, we did not

find an illuminating correlation between the reward and the loss. We reran the experiments

in a truer DDPG fashion by solving a continuous version of the environment, and used the

mean-squared error for the supervised learning. We examined the loss in the cooperative

navigation task with 3 agents, both homogeneous and nonhomogeneous agents. We plot the

figures in Figure 2.6. We found that in these cases, the reward and loss were negatively

correlated as expected, namely that we achieved a higher reward as the loss decreased. In
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the nonhomogeneous case, we plot each individual agents’ reward vs its loss and found that

the big and slow agent had the biggest loss, followed by the medium agent, and the small and

fast agent being the quickest learner. This example demonstrates that in nonhomogeneous

settings, some agents may be slower to imitate the expert than others.

We also observe that there is a decrease in marginal reward vs loss – that is, at a certain

point, one needs to obtain a much lower loss for a diminishing gains in reward.

2.8.6 Pseudo-algorithm of CESMA (without communication)

Algorithm 10 CESMA: Centralized Expert Supervises Multi-Agents
Require: A centralized policy π˚ that sufficiently solves the environment.

Require: M agents π1, . . . πM , observation buffer D for multi-agent observations, batch size

B

1: while πθ1 , . . . , πθM not converged do

2: Obtain observations o1, . . . , oM from the environment

3: Obtain agents’ actions, a1 “ π1po1q, . . . , aM “ πMpoMq

4: Obtain expert action labels a˚i “ π˚po1, . . . , oMqi, for i “ 1, . . . ,M

5: Store the joint observation with expert action labels ppo1, a
˚
1q, . . . , poM , a

˚
Mq in D

6: if |D| sufficiently large then

7: Sample a batch of B multi-agent observations tppopβq1 , a
˚pβq
i q, . . . , pobM , a

˚pβq
M qquBβ“1

8: Perform supervised learning for πi where the observation-label pairs

tpo
pβq
i , a

˚pβq
i quBβ“1.

2.8.7 Pseudo-code of CESMA with communicating agents

We give a pseudocode in algorithm 11.

A diagram of the action loss and communication loss is given in figure 2.7 (action loss)

and 2.8 (communication loss).

We remark that we also considered the case of a hybrid objective, where the actions are
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learned by supervised learning from the expert, and the communication is learned similar to

a standard RL algorithm (e.g. the Q-values are communication actions). Preliminary results

showed this did not work well.

We review notation from the main text that appears in the pseudo-code of Algorithm 11:

We denote the physical actions (i.e. non-communication actions) as a “ pa1, . . . , aMq and

the communication actions as b “ pb1, . . . , bMq. For simplicity, let us assume that all agents

can communicate with each other, so we have ci “ pb1, . . . , bi´1, bi`1, . . . , bMq.

So for each agent i, then we have πipoi, ciq “ pai, biq. And we also denote πipoi, ciqaction “

ai, and πipoi, ciqcomm. “ bi. And we denote the communication action from agent i to agent

j as bi,j.

Figure 2.7: A diagram of the computation of the action loss for agent i. This diagram is a

bigger version of the one found in the main text.

Figure 2.8: A diagram of the computation of the communication loss for agent i, derived

from the supervised learning action loss of agent j. This diagram is a bigger version of the

one found in the main text.
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2.8.8 Environments used in the experiments

2.8.8.1 Cooperative navigation

The goal of this scenario is to have N agents occupy N landmarks in a 2D plane, and the

agents are either homogeneous or heterogeneous. The environment consists of:

‚ Observations: The (continuous) observations of each agent are the relative positions of

other agents, the relative positions of each landmark, and its own velocity. Agents do

not have access to other’s velocities, and thus each agent only partially observes the

environment (aside from not knowing other agents’ policies).

‚ Reward: At each timestep, if Ai is the ith agent, and Lj the jth landmark, then the

reward rt at time t is,

rt “ ´
N
ÿ

j“1

min t}Ai ´ Lj} : i “ 1, . . . , Nu

This is a sum over each landmark of the minimum agent distance to the landmark.

Agents also receive a reward of ´1 at each timestep that there is a collision.

‚ Actions: Each agents’ actions are discrete and consist of: up, down, left, right, and

do nothing. These actions are acceleration vectors (except do nothing), which the

environment will take and simulate the agents’ movements using basic physics (i.e.

Newton’s law).
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Figure 2.9: Example of cooperative navigation environment with 6 nonhomogeneous agents.

The agents (blue) must decide how best to cover each landmark (grey).

2.8.8.2 Speaker listener

In this scenario, the goal is for the listener agent to reach a goal landmark, but it does not

know which is the goal landmark. Thus it is reliant on the speaker agent to provide the

correct goal landmark. The observation of the speaker is just the color of the goal landmark,

while the observation of the listener is the relative positions of the landmark. The reward is

the distance from the landmark.

‚ Observations: The observation of the speaker is the goal landmark. The observation

of the listener is the communication from the speaker, as well as the relative positions

of each goal landmark.

‚ Reward: The reward is merely the negative (squared) distance from the listener to the

goal landmark.

‚ Actions: The actions of the speaker is just a communication, a 3-dimensional vector.

The actions of the listener are the five actions: up, down, left, right, and do nothing.
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Figure 2.10: Example of the speaker and listener environment. The speaker (grey) must

communicate to the agent which colored landmark to go towards (blue in this case).

2.8.8.3 Cooperative navigation with communication

In this particular scenario, we have one version with 2 agents and 3 landmarks, and another

version with 3 agents and 5 landmarks. Each agent has a goal landmark that is only known

by the other agents. Thus the each agent must communicate to the other agents its goal.

The environment consists of:

‚ Observations: The observations of each agent consist of the agent’s personal velocity,

the relative position of each landmark, the goal landmark for the other agent (an 3-

dimensional RGB color value), and a communication observation from the other agent.

‚ Reward: At each timestep, the reward is the sum of the distances between and agent

and its goal landmark.

‚ Actions: This time, agents have a movement action and a communication action. The

movement action consists of either not doing anything, or outputting an acceleration

vector of magnitude one in the direction of up, down, left, or right; so do nothing, up,

down, left right. The communication action is a one-hot vector; here we choose the

communication action to be a 10-dimensional vector.
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Figure 2.11: Example of cooperative navigation environment with communication. We have

3 agents and 5 landmarks. The lightly colored circles are agents and they must go towards

their same-colored landmark.

2.8.9 Hyperparameters

‚ For all environments, we chose the discount factor γ to be 0.9 for all experiments,

as that seemed to benefit both the centralized expert as well as MADDPG (and as

well as independently trained DDPG). And we always used a two-hidden-layer neural

network for all of MADDPG’s actors and critics, as well as the centralized expert, and

the decentralized agents. The training of MADDPG used the hyperparameters from

the MADDPG paper [87], which we found to be quite optimal with the exception of

having γ “ 0.9 (instead of 0.95), as that improved MADDPG’s performance. In the

graphs, the reward is averaged every 1,000 episodes.

‚ For the cooperative navigation environments with 3 agents, for both homogeneous and

nonhomogeneous: Our centralized expert neural network was a two-hidden-layer neural

network with 225 units each (as that matched the number of parameters for MADDPG

when choosing 128 as their number of hidden units for each of their 3 agents), and we

used a batch size of 64. The learning rate was 0.001, and τ “ 0.001. We also clipped

the gradient norms to 0.1. When decentralizing, each agent was a two-hidden-layer

neural network with 128 units (as in MADDPG), where we trained with a batch size
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of 32 and a learning rate of 0.001. In our experiment comparing with MADDPG, we

use the cross entropy loss. The MADDPG and DDPG parameters were 128 hidden

units, and we clipped gradients norms at 0.5, with a learning rate of 0.01.

‚ For the cooperative navigation with 6 agents, for both homogeneous and nonhomoge-

neous: Our centralized expert neural network was a two-hidden-layer neural network

with 240 units each (as that matched the number of parameters for MADDPG when

choosing 128 as their number of hidden units for each of their 3 agents’ actor and

critic), and we used a batch size of 32. The learning rate was 0.0001, and τ “ 0.0001.

We also clipped the gradient norms to 0.1. When decentralizing, each agent was a

two-hidden-layer neural network with 128 units (as in MADDPG), where we trained

with a batch size of 32 and a learning rate of 0.001. In our experiment comparing with

MADDPG, we use the cross entropy loss. The MADDPG and DDPG parameters were

128 hidden units, and we clipped gradients norms at 0.5, with a learning rate of 0.01.

‚ For the speaker and listener environment: Our centralized expert neural network was

a two-hidden-layer neural network with 64 units each (which gave a lower number of

parameters than MADDPG when choosing 64 as their number of hidden units for each

of their 2 agents’ actor and critic), and we used a batch size of 32. The learning rate

was 0.0001, and τ “ 0.001. When decentralizing, each agent was a two-hidden-layer

neural network with 64 units (as in MADDPG), where we trained with a batch size of

32 and a learning rate of 0.001. In our experiment comparing with MADDPG, we use

the cross entropy loss. The MADDPG and DDPG parameters were 64 hidden units,

and we clipped gradients norms at 0.5, with a learning rate of 0.01.

‚ For the cooperative navigation with communication environment: Our centralized ex-

pert neural network was a two-hidden-layer neural network with 95 units each (which

matched the number of parameters as MADDPG when choosing 64 as their number of

hidden units for each of their 2 agents’ actor and critic), and we used a batch size of 32.

The learning rate was 0.0001, and τ “ 0.0001. When decentralizing, each agent was

a two-hidden-layer neural network with 64 units (as in MADDPG), where we trained
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with a batch size of 32 and a learning rate of 0.001. In our experiment comparing with

MADDPG, we use the cross entropy loss. The MADDPG and DDPG parameters were

64 hidden units, and we clipped gradients norms at 0.5, with a learning rate of 0.01.

‚ We also run all the environments for 25 time steps.

2.8.10 Proofs of theorems

We prove Theorem 2 from the main text:

Theorem 2. If the multi-agent communication ci : O1 ˆ ¨ ¨ ¨ ˆOi´1 ˆOi`1 ˆ ¨ ¨ ¨ ˆOM Ñ Ci

satisfies the condition

π˚po1, . . . , oi´1, oi, oi`1, . . . , oMq ‰ π˚põ1, . . . , õi´1, oi, õi`1, . . . , õMq

implies that cipo1, . . . , oi´1, oi`1, . . . , oMq ‰ cipõ1, . . . , õi´1, õi`1, . . . , õMq

for all i “ 1, . . . ,M , then there is no partial observability cost of decentralization when the

multi-agents use tciuMi“1 as their communication protocol, i.e. the multi-agents can match the

expert perfectly on all observations.

Proof. By assumption, for an agent j with observations o “ po1, . . . , oj´1, oj, oj`1, . . . , oMq

and õ “ põ1, . . . , õj´1, oj õj`1, . . . , õMq such that

π˚poqj “ aj, π˚põqj “ ãj, but aj ‰ ãj.

then denoting o´j as the observation without oj and similarly for õ´j, then our assumption

implies cjpo´jq ‰ cjpõ´jq. Then clearly we can construct a policy where πjpoj, cjpojqq ‰

πjpoj, cjpõjqq, because the inputs to πj are different.

And so the multi-agents, using the communication protocol of tciuMi“1, can detect when

an expert decides to change its action based on differences in the global observation (i.e. o

and õ) even when the local observation (i.e. oj) stays the same.
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Algorithm 11 CESMA: Centralized Expert Supervises Multi-Agents (Communicating

Agents)
Require: A centralized policy π˚ that sufficiently solves the environment.

Require: M initial agents π1, . . . πM , observation buffer D for multi-agent observations,

batch size B

Require: `, the supervised learning loss

1: while π1, . . . , πM not converged do

2: Obtain the observations and communications tpoi, ciquMi“1 from the environment.

3: With these observations, obtain actions and step through the environment, to get new

observations tôiuMi“1.

4: Store the physical and communication observations together along with the expert

label pppo1, c1q, ô1, â
˚
1q, . . . , ppoM , cMq, ôM , â

˚
Mqq in D, where â˚i “ π˚pô1, . . . , ôMqi.

5: if |D| sufficiently large then

6: Sample a batch of B multi-agent observations tppo
pβq
1 , c

pβq
1 q, ô

pβq
1 , â

˚,pβq
1 q, . . . ,

ppo
pβq
M , c

pβq
M q, ô

pβq
M , â

˚,pβq
M quBβ“1

7: Obtain the up-to-date communication actions from each agent: b
pβq1

k “

πkpo
pβq
k , c

pβq
k qcomm

8: for each agent i “ 1 to M do

9: Communication loss:

10: For each agent j ‰ i, obtain the up-to-date communication ĉpβqj , which contains

agent i’s communication action to agent j, so we can backprop to agent i’s weights

11: Obtain the communication loss,

communication loss “
1

B

B
ÿ

β“1

1

M ´ 1

M
ÿ

j“1,j‰i

`pπ˚pôpβqqj, πjpô
pβq
j , ĉ

pβq1

j qactionq

where the subscript “action" denotes the physical action (and not the communi-

cation action), and where

ĉ
pβq1

j “ pb
pβq1

1,j , . . . , πipo
pβq
i , c

pβq
i q, . . . , b

pβq1

j´1,j, b
pβq1

j`1,j, . . . , b
pβq1

M,jq
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12: Action loss:

13: Obtain the action loss:

action loss “
1

B

B
ÿ

β“1

`pπ˚pôpβqqi, πipô
pβq
i , ĉ

pβq
i qqactionq

where the subscript “action" denotes the physical action (and not the

communication action), and where,

ĉ
pβq1

i “ pb
pβq1

1,i , . . . , b
pβq1

i´1,i, b
pβq1

i`1,i, . . . , b
pβq1

M,iq

14: Update:

15: Update the weights of πi where the total loss equals the action loss plus the

communication loss, to obtain πnew
i .

16: Set πi Ð πnew
i , for i “ 1, . . . ,M .
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CHAPTER 3

Infinite

Abstract: We present APAC-Net, an alternating population and agent control neural net-

work for solving stochastic mean field games (MFGs). Our algorithm is geared toward

high-dimensional instances MFGs that are beyond reach with existing solution methods.

We achieve this in two steps. First, we take advantage of the underlying variational primal-

dual structure that MFGs exhibit and phrase it as a convex-concave saddle point problem.

Second, we parameterize the value and density functions by two neural networks, respec-

tively. By phrasing the problem in this manner, solving the MFG can be interpreted as a

special case of training a generative adversarial network (GAN). We show the potential of

our method on up to 100-dimensional MFG problems. [85]

3.1 Introduction

Mean field games (MFGs) are a class of problems that model large populations of interacting

agents. They have been widely used in economics [1, 3, 59, 55], finance [45, 12, 15, 3],

industrial engineering [31, 75, 56], and data science [136, 61, 13]. In mean field games, a

continuum population of small rational agents play a non-cooperative differential game on

a time horizon r0, T s. At the optimum, the agents reach a Nash equilibrium, where they

can no longer unilaterally improve their objectives. Given the initial distribution of agents

ρ0 P PpRnq, where PpRnq is the space of all probability densities, the solution to MFGs are
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obtained by solving the system of partial differential equations (PDEs),

´ Btφ´ ν∆φ`Hpx,∇φq “ Fpx, ρq (HJB)

Btρ´ ν∆ρ´ divpρ∇pHpx,∇φqq “ 0 (FP)

ρpx, 0q “ ρ0, φpx, T q “ Gpx, ρp¨, T qq

(3.1)

which couples a Hamilton-Jacobi-Bellman (HJB) equation and a Fokker-Planck (FP) equa-

tion. Here, φ : Rn ˆ r0, T s Ñ R is the value function, H : Rn ˆ Rn Ñ R is the Hamiltonian,

ρp¨, tq P PpRnq is the distribution of agents at time t, F : Rn ˆ PRn Ñ R denotes the in-

teraction between the agents and the population, and G : Rn ˆ PpRnq Ñ R is the terminal

condition, which guides them to a final distribution. Under standard assumptions, i.e., con-

vexity and coercivity ofH and G, the solution to (3.1) exists and is unique. See [77, 78, 21] for

more details. This formulation can be viewed as a multi-agent reinforcement learning (RL)

problem where there are infinitely many players [61, 114, 13], the key difference is that unlike

in RL, the reward function and the dynamics (FP) are known. Although there is a plethora

of fast solvers for the solution of (3.1) in two and three dimensions [2, 6, 24, 21, 22, 69],

numerical methods for solving (3.1) in high dimensions are practically nonexistent due to

the need for spatial discretization; this leads to the curse of dimensionality.

Our Contribution We present APAC-Net, an alternating population and agent control

neural network approach for tractably solving high-dimensional MFGs in the stochastic case

(ν ą 0). We phrase the MFG problem as a saddle-point problem [78, 6, 25] and parameterize

the value function and the density function. This formulation draws a natural connection

between MFGs and generative adversarial neural networks (GANs) [57], a powerful class of

generative models that have shown remarkable success on various types of datasets [57, 4,

60, 86, 34, 14].
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3.2 Variational Primal-Dual Formulation of Mean Field Games

We derive the mathematical formulation of MFGs for our framework; in particular, we arrive

at a primal-dual convex-concave formulation tailored for our alternating networks approach.

In [25], the authors observe that all MFG systems admit an infinite-dimensional two-player

general-sum game formulation, and the potential MFGs are the ones that correspond to

zero-sum games. An MFG system (3.1) is called potential, if there exist functionals F,G

such that δρF “ fpx, ρq, and δρG “ gpx, ρq where

xδρFpρq, µy “ lim
hÑ0

Fpρ` hµq ´ Fpρq

h
, xδρGpρq, µy “ lim

hÑ0

Gpρ` hµq ´ Gpρq

h
, @ µ. (3.2)

A critical feature of potential MFGs is that the solution to (3.1) can be formulated as the

solution to a convex-concave saddle point optimization problem. To this end, we begin by

stating (3.1) as a variational problem [78, 6] akin to the Benamou-Brenier formulation for

the Optimal Transport (OT) problem:

inf
ρ,v

ż T

0

"
ż

Ω

ρpx, tqLpx, vpx, tqqdx ` Fpρp¨, tqq

*

dt` Gpρp¨, T qq

s.t. Btρ´ ν∆ρ`∇ ¨ pρvq “ 0, ρpx, 0q “ ρ0pxq,

(3.3)

where L : RnˆRn Ñ R is the Lagrangian function corresponding to the Legendre transform

of the Hamiltonian H, F,G : RnˆPpRnq Ñ R are mean field interaction terms, and v : Rnˆ

r0, T s Ñ Rn is the velocity field. Next, setting φ as a Lagrange multiplier, we insert the PDE

constraint into the objective to get

sup
φ

inf
ρpx,0q“ρ0pxq,v

ż T

0

"
ż

Ω

ρpx, tqLpx, vpx, tqqdx ` Fpρp¨, tqq

*

dt` Gpρp¨, T qq

´

ż T

0

ż

Ω

φpx, tq pBtρ´ ν∆ρ`∇ ¨ pρpx, tqvpx, tqq dx dt.

Finally, integrating by parts and minimizing with respect to v to obtain the Hamiltonian via

Hpx, pq “ infv t´p ¨ v ` Lpx, vqu, we obtain

inf
ρpx,0q“ρ0pxq

sup
φ

ż T

0

"
ż

Ω

pBtφ` ν∆φ´Hpx,∇φqq ρpx, tq dx` Fpρp¨, tqq

*

dt

`

ż

Ω

φpx, 0qρ0pxqdx` Gpρp¨, T qq ´

ż

Ω

φpx, T qρpx, T qdx.

(3.4)
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This formula can also be obtained in the context of HJB equations in density spaces [24], or by

integrating the HJB and the FP equations in (3.1) with respect to ρ and φ, respectively [25].

According to the interpretation in [25], Player 1 represents the mean-field or the population

as a whole and their strategy is the population density ρ. Furthermore, Player 2 represents

the generic agent and their strategy is the value function φ. The aim of Player 2 is to

provide a strategy that yields the best response of a generic agent against the population.

This interpretation is in accord with the intuition behind GANs. The formulation (3.4) is

the cornerstone of our method.

3.3 Connections to GANs

Generative Adversarial Networks In generative adversarial networks (GANs) [57], we

have a discriminator and generator, and the goal is to obtain a generator that is able to

produce samples from a desired distribution. The generator does this by taking samples from

a known distribution N and transforming them into samples from the desired distribution.

Meanwhile, the purpose of the discriminator is to aid the optimization of the generator.

Given a generator network Gθ and a discriminator network Dω, the original GAN objective

is to find an equilibrium to the minimax problem

inf
Gθ

sup
Dω

Ex„ρ0 rlogDωpxqs ` Ez„N rlogp1´DωpGθpzqqqs .

Here, the discriminator acts as a classifier that attempts to distinguish real images from

fake/generated images, and the goal of the generator is to produce samples that “fool" the

discriminator.

Wasserstein GANs In Wasserstein GANs [4], the motivation is drawn from OT theory,

where now the objective function is changed to the Wasserstein-1 (W1) distance in the

Kantorovich-Rubenstein dual formulation

inf
Gθ

sup
Dω

Ex„ρ0 rDωpxqs ´ Ez„N rDωpGθpzqqs , s.t. }∇D} ď 1, (3.5)
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and the discriminator is required to be 1-Lipschitz. In this setting, the goal of the discrimi-

nator is to compute the W1 distance between the distribution of ρ0 and Gθpzq. In practice,

using the W1 distance helps prevent the generator from suffering "mode collapse," a situ-

ation where the generator produces samples from only one mode of the distribution ρ0; for

instance, if ρ0 is the distribution of images of handwritten digits, then mode collapse entails

producing only, say, the 0 digit. Originally, [4] used weight-clipping to enforce the Lipschitz

condition of the discriminator network, but an improved method using a penalty on the

gradient was used in [60].

GANs Ø MFGs A Wasserstein GAN can be seen as a particular instance of a deter-

ministic MFG [11, 6, 78]. Specifically, consider the MFG (3.4) in the following setting. Let

ν “ 0, G be a hard constraint with target measure ρT (as in optimal transport), and let H

be the Hamiltonian defined by

Hpx, pq “ 1}p}ď1 “

$

’

&

’

%

0 }p} ď 1

8 otherwise
, (3.6)

where we note that this Hamiltonian arises when the Lagrangian is given by Lpx, vq “ }v}2
2
.

Then (3.4) reduces to,

sup
φ

ż

Ω

φpxqρ0pxq dx´

ż

Ω

φpxqρT pxq dx

s.t. }∇φpxq} ď 1,

where we note that the optimization in ρ leads to Btφ ´ Hpx,∇φq “ 0. And since Hppq “

1}p}ď1, we have that Btφ “ 0, and φpx, tq “ φpxq for all t. We observe the above is precisely

the Wasserstein-1 distance in the Kantorovich-Rubenstein duality [134].
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3.4 APAC-Net

The training process for our MFG is similar to that of GANs. We initialize neural networks

Nωpx, tq and Nθpx, tq. We then let

φωpx, tq “ p1´ tqNωpx, tq ` tGpxq, Gθpx, tq “ p1´ tqzb ` tNθpx, tq, (3.7)

where zb „ ρ0 are samples drawn from the initial distribution. Thus, Gθ is the pushforward

of ρ0. One difference between our formulation and GANs is that φω automatically encodes

terminal condition by design.

Our strategy for training this GAN-like MFG consists of alternately training Gθ (the

population), and φω (the value function for an individual agent). Intuitively, this means we

are alternating the population and agent control neural networks (APAC-Net) in order to find

the equilibrium. Specifically, we train φω by first sampling a batch tzbuBb“1 from the given

initial density ρ0, and ttbuBb“1 uniformly from r0, 1s. Next, we compute the push-forward

xb “ Gθpzb, tbq for b “ 1, . . . , B. We then compute the loss,

lossφ “
1

B

B
ÿ

b“1

φωpxb, 0q `
1

B

B
ÿ

b“1

Btφωpxb, tbq ` ν∆φωpxb, tbq ´Hp∇xφωpxb, tbqq

where we can optionally add a regularization term λ 1
B

řB
b“1 }Btφωpxb, tbq ` ν∆φωpxb, tbq ´

Hp∇xφωpxb, tbqq`Fpxb, tbq}
2 to penalize deviations from the HJB equations [114]. This extra

regularization term has also been found effective in, e.g., Wasserstein GANs [59], where the

norm of the gradient (i.e., the HJB equations) is penalized. Finally, we backpropagate the

loss to the weights of φw.

To train the generator, we again sample tzbuBb“1 and ttbuBb“1 as before, and compute

lossρ “
1

B

B
ÿ

b“1

Btφωpρθpzbq, tbq ` ν∆φωpρθpzbq, tbq ´Hp∇xφωpρθpzbq, tbqq ` Fpρθpzbq, tbq.

We then backpropagate this loss with respect to the weights of Gθ. Our pseudocode is shown

in Algorithm 12.
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Algorithm 12 APAC-Net for Mean-Field Games
Require: ν diffusion parameter, Gpxq terminal cost, H Hamiltonian, F interaction term.

Require: Initialize neural networks Nω and Nθ, batch size B

Require: Set φω and Gθ as in (3.7)

Require: k where we update Gθ every k epochs.

while not converged do

Train φω:

Sample batch tpzb, tbquBb“1 where zb „ ρ0 and tb „ Unifp0, T q

xb Ð Gθpzb, tbq for b “ 1, . . . , B.

`0 Ð
1
B

řB
b“1 φωpxb, 0q

`t Ð
1
B

řB
b“1 Btφωpxb, tbq ` ν∆φωpxb, tbq ´Hp∇xφωpxb, tbqq

`lam Ð λ 1
B

řB
b“1 }Btφωpxb, tbq ` ν∆φωpxb, tbq ´Hp∇xφωpxb, tbqq ` Fpxb, tbq}

2

Backpropagate the loss `total “ `0 ` `t ` `lam to ω weights.

Train ρθ every k epochs:

Sample batch tpzb, tbquBb“1 where zb „ ρ0 and tb „ Unifp0, T q

`t Ð 1
B

řB
b“1 Btφωpρθpzb, tbq, tbq ` ν∆φωpρθpzb, tbq, tbq ´ Hp∇xφωpρθpzb, tbq, tbqq `

Fpρθpzb, tbq, tbq

Backpropagate the loss `total “ `0 ` `t to θ weights.

3.5 Related Works

High-dimensional MFGs and Optimal Control To the best of our knowledge, the

first work to solve MFGs efficiently in high dimensions (d “ 100) was done by [114]. Their

work consisted of using Lagrangian coordinates and parameterizing the value function using

a neural network. This combination allowed them to successfully avoid the need for spatial

grids for MFG problems in the case where ν “ 0; that is, in the deterministic case where

there is no diffusion. [114] the authors apply the Jacobi identity to estimate the population-

density. This formula, however, is available only in the deterministic case. For problems
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involving high-dimensional optimal control and differential games, spatial grids were also

avoided [21, 22, 24, 82, 29].

Reinforcement Learning Our work bears connections with reinforcement learning (RL).

When neither the Lagrangian L, nor the dynamics (constraint) in (3.3) are known, our for-

mulation amounts to solving multi-agent RL problem with infinitely many identical agents.

[61] propose a Q-Learning approach to solve these multi-agent RL problems. [13] study the

convergence of policy gradient methods on mean field reinforcement learning (MFRL) prob-

lems, i.e., problems where the agents try instead to learn the control which is socially optimal

for the entire population. [137] use an inverse reinforcement learning approach to learn the

MFG model along with its reward function. [51] propose an actor-critic method for finding

Nash equilibrium in linear-quadratic mean field games and establish linear convergence.

GAN-based approach A connection between MFGs and GANs is also made by [11].

However, APAC-Net differs from [11] in two fundamental ways. First, instead of choosing

the value function to be the generator, we set the density function as the generator. This

choice is motivated by the fact that the generator outputs samples from a desired distri-

bution. It is also aligned with other generative modeling techniques arising in continuous

normalizing flows [44, 58]. Second, rather than setting the generator/discriminator losses

as the residual errors of (3.1), we follow the works of [25, 24, 6, 78] and utilize the under-

lying variational primal-dual structure of MFGs, see (3.4); this allows us to arrive at the

Kantorovich-Rubenstein dual formulation of Wasserstein GANs [134].

3.6 Numerical Results

Experimental Setup We assume without loss of generality T “ 1. In all experiments, our

neural networks have three hidden layers, with 100 hidden units per layer. We use a Residual

Neural Network (ResNet) for both networks, where the weight on the skip connection is 0.5.

In the discriminator, we use the Tanh activation function, and in the generator, we use the
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ReLU activation function. To train the network, we use ADAM with β “ p0.5, 0.9q, learning

rate 5ˆ 10´4 for the discriminator, and 1ˆ 10´4 for the generator, and batch size of 50.

We approximate the solution to a mean field game where the population must move from

a starting point to an end point while avoiding obstacles. We thus choose the Hamiltonian

to be

Hpx, p, tq “ c}p}2 ` Fpx, ρpx, tqq

where Fpx, ρpx, tqq varies with the environment (either avoiding obstacles, or avoiding con-

gestion, etc.). Furthermore, we choose as terminal cost

Gpρp¨, T qq “

ż

Ω

}x´ xT }2ρpx, T qdx

where the first term is the distance between the population and a target destination. For

the obstacle and congestion problems, we only let the obstacles and congestion be contained

within the first two dimensions, so that we are able to verify correctness with the two

dimensional case. More experimental information, such as the epochs for each calculation,

or various constants, will be left in the appendix. For all experiments, we chose the stopping

criteria to be when the loss `lam in (12) plateaued.

Obstacles In this experiment, we compute the solution to a MFG where the agents are

required to avoid obstacles. In this case, we let

Fpx “ px1, x2, . . . , xdqq “ Fpx1, x2q “ y “

$

&

%

y ą 0 if px1, x2q is inside the obstacle, i.e. a collision

0 everywhere else.

the complete analytic expression of the boundary is given in the appendix. Our initial density

ρ0 is a Gaussian centered at p´2,´2, 0, . . . , 0q with standard deviation 1{
?

10 « 0.32. We

let the terminal function bet Gpxq “ }px1, x2q ´ p2, 2q}2. The numerical results are shown in

3.1. Observe that the results are similar across dimensions, which means we have verified

correctness.

Effect of Parameter ν We investigate the effect of the diffusion parameter ν on the

behavior of the MFG solutions. In Fig. 3.2, we show the solutions for 2-dimensional MFGs
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Figure 3.1: Computation of the obstacle problem in dimensions 2, 50, and 100 with stochastic

parameter ν “ 0 and 0.4. For dimension 50 and 100, we plot the first two dimensions. The

agents start at the blue points pt “ 0q and end at the red points pt “ 1q. As can be seen,

the results are similar across dimensions, which verifies correctness of the high-dimensional

(50 and 100) computations.

using ν “ 0, 0.2, 0.4, and 0.6. The blue dots represent the initial starting points of the agents,

the red dots represent the final-time positions, and the colors in between are intermediate

time-points. As can be seen, as ν increases, the density of agents starts to widen, consistent

with intuition from [104].

Congestion In this experiment, we now let the interaction term be a congestion, so that

the agents are encouraged to spread out. We only let congestion be in the first two dimen-

sions, so that

Fpρpx, tqq “ αcong

ż T

0

ż T

0

1

}px1, x2q ´ py1, y2q}
2 ` 1

dρpx, tq dρpy, tq dy

which is the (bounded) inverse average distance between pairs of agents. Here we let our

initial density ρ0 is a Gaussian centered at p´2, 0,´2, . . . ,´2q with standard deviation
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Figure 3.2: Comparison of 2D solutions for different values of ν.

1{
?

10 « 0.32. We let the terminal function be Gpxq “ }px1, x2q ´ p2, 0q}2.

3.7 Conclusion

We present APAC-Net, an alternating population-agent control neural network for solving

high-dimensional stochastic mean field games. To this end, our algorithm avoids the use of

spatial grids by parameterizing the controls, φ and ρ, using two neural networks, respectively.

Our method is geared toward high-dimensional instances of these problems that are beyond

reach with existing methods. Our method also has natural connections with Wasserstein

GANs, where ρ acts as a generative network and φ acts as a discriminative network. Our

experiments show that our method is effective in solving up to 100-dimensional MFGs. A

future direction we intend to investigate is the theoretical guidelines on the design of network

architectures.
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Figure 3.3: Computation of the congestion problem in dimensions 2, 50, and 100 with

stochastic parameter ν “ 0 and 0.5. For dimension 50 and 100, we plot the first two

dimensions. For the ν “ 0 case, we see in dimension 2 that the agents are more semi-circular,

but this is still retained in a slightly more smeared fashion in dimensions 50 and 100. In

the stochastic ν “ 0.5 case, we see the results are similar, verifying correctness of the

computations for high-dimensions.

Broader Impact

Many applications involving a large population of agents such as swarm robotics, 5G net-

works, stock market, and spread disease modeling often require solving high-dimensional

mean field games. Our work provides a way to solve these types of realistic problems since

it overcomes the curse of dimensionality. Our work also bridges two recent and independent

fields: mean field games and generative adversarial networks. Therefore, it sets the stage for

the research and development of methods that exploit these connections for efficient training

generative modeling and simulation of mean field games.

106



3.8 Appendix: Explanations of the environments and experimental

setup

Obstacle In the obstacle problem, the obstacle penalty was calculated to be,

Fpx “ px1, x2, . . . , xdqq “ Fpx1, x2q “ pmax f1px1, x2q, 0`max f2px1, x2q, 0qαobst

with αobst “ 5, and if we denote v “ px1, x2q, then letting c1 “ p´2, 0.5q and R “
´

cospθq ´ sinpθq
sinpθq cospθq

¯

with θ “ π{5, and Q “ p 5 0
0 0 q and b “ p0, 2q, then

f1px1, x2q “ ´ 〈pv ´ c1qR,Qpv ´ c1qR〉´ 〈b, pv ´ c1qR〉´ 1.

Similarly, letting c2 “ p2,´0.5q, then we let

f2px1, x2q “ ´ 〈pv ´ c2qR,Qpv ´ c2qR〉` 〈b, pv ´ c2qR〉´ 1.

Our stopping criteria was when `lam in (12) plateaued. Therefore, the epochs we chose are:

For dimensions 2 with ν “ 0, 0.2, 0.4, 0.6 we stopped at epoch 200k. For dimensions 50 and

100, as well as nu “ 0 and 0.4, we stopped at epoch 300k.

Congestion Our stopping criteria was when `lam in (12) plateaued. The epochs we

chose were 100k for the 2 dimensional cases, and 500k for the 50 and 100 dimensional cases.
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